Hamiltonian and 1-tough properties in Cartesian product graphs

Chih-wen Weng (joint work with Louis Kao)
Department of Applied Mathematics, National Chiao Tung University Taiwan

(New Name: National Yang-Ming Chiao Tung University (YMCT))

11:40-12:20, November 17, 2019

Overview

(1) Introduction
(2) Main Theorem
(3) Applications of Main Theorem

- Path factor of a bipartite graph
(4) Proof of the Main Theorem
- Construction of Hamiltonian cycle - I
- Construction of Hamiltonian cycle - II
(5) Conjectures

Cartesian Product graph $\mathrm{G}_{1} \square \mathrm{G}_{2}$

$$
\begin{aligned}
\mathrm{V}\left(\mathrm{G}_{1} \square \mathrm{G}_{2}\right) & =\left\{\mathrm{v}_{\mathrm{u}}: \mathrm{v} \in \mathrm{~V}\left(\mathrm{G}_{1}\right), \mathrm{u} \in \mathrm{~V}\left(\mathrm{G}_{2}\right)\right\}, \\
\mathrm{E}\left(\mathrm{G}_{1} \square \mathrm{G}_{2}\right) & =\left\{\mathrm{v}_{\mathrm{u}} \mathrm{v}_{\mathrm{w}}: \mathrm{v} \in \mathrm{~V}\left(\mathrm{G}_{1}\right), \mathrm{uw} \in \mathrm{E}\left(\mathrm{G}_{2}\right)\right\} \\
& \cup\left\{\mathrm{v}_{\mathrm{u}} \mathrm{w}_{\mathrm{u}}: \mathrm{u} \in \mathrm{~V}\left(\mathrm{G}_{2}\right), \mathrm{vw} \in \mathrm{E}\left(\mathrm{G}_{1}\right)\right\} .
\end{aligned}
$$

Example

With $\mathrm{V}\left(\mathrm{P}_{3}\right)=\{1,2,3\}$ and $\left.\mathrm{V}\left(\mathrm{K}_{1,4}\right)=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}, \mathrm{u}\}\right)$, the graph $\mathrm{P}_{3} \square \mathrm{~K}_{1,4}$ is as follows:

Graph Terminologies

- A graph is Hamiltonian if it contains a spanning cycle.
- A graph is traceable if it contains a spanning path.
- A path factor of a graph is its spanning subgraph such that each component is isomorphic to a path with order at least two.
- If each component in a path factor is isomorphic to P_{2}, the path factor is called a perfect matching.

Example

A graph without a path factor

Main Theorem

Let $\Delta(\mathrm{G})$ denote the maximum degree of graph G and $\mathrm{c}(\mathrm{G})$ denote the number of connected components in G.

Main Theorem

Let G_{1} be a traceable graph and G_{2} a connected graph. Assume one of the following (a),(b) holds:
(a) G_{2} has a perfect matching and $\left|\mathrm{V}\left(\mathrm{G}_{1}\right)\right| \geq \Delta\left(\mathrm{G}_{2}\right)$, or
(b) G_{2} has a path factor and $\left|\mathrm{V}\left(\mathrm{G}_{1}\right)\right|$ is an even integer with $\left|\mathrm{V}\left(\mathrm{G}_{1}\right)\right| \geq 4 \Delta\left(\mathrm{G}_{2}\right)-2$.
Then $\mathrm{G}_{1} \square \mathrm{G}_{2}$ has a Hamiltonian cycle.

Toughness

- A graph G is t -tough if t is a rational number such that $|S| \geq t \cdot c(G-S)$ for any cut set S of G.
- If G is not complete, the largest t makes G to be t -tough is called the toughness of G, denoted by $\mathrm{t}(\mathrm{G})$.
- Hamiltonian \Rightarrow 1-tough $\quad(|S| \geq c(G-S))$.
- 1-tough \nRightarrow Hamiltonian.

Example

A 1-tough graph which is not Hamiltonian.

Toughness and Hamiltonicity

- V. Chvátal (1973) :
- Introduce the idea of graph toughness
- Conjecture : There exists a real number t_{0} such that all t_{0}-tough graphs are Hamiltonian.
- J. Harant, P.J. Owens (1995) :
- Construct non-Hamiltonian graphs with toughness greater than 1.25.
- D. Bauer, H.H. Broersma, H.H. Veldman (2000) :
- Construct non-Hamiltonian graphs with toughness greater than 2.
- A.Kabela, T.Kaiser (2017) :
- 10-tough chordal graphs are hamiltonian.

Application of Main Theorem (a)

Corollary A

Let T be a tree with a perfect matching and n be a positive integer. Then the following three statements are equivalent:
(1) $\mathrm{P}_{\mathrm{n}} \square \mathrm{T}$ is Hamiltonian.
(2) $\mathrm{P}_{\mathrm{n}} \square \mathrm{T}$ is 1-tough.
(3) $\mathrm{n} \geq \Delta(\mathrm{T})$.

Proof.

3 \Rightarrow (1) This is Theorem 1 (a)
(1) \Rightarrow (2) : This is clear
(2) $\Rightarrow 3$:?

Proof of Corollary A

Proof.

(2) \Rightarrow (3) : If $\mathrm{n}<\Delta(\mathrm{T})$ then $\mathrm{c}(\mathrm{T}-\mathrm{S})>|\mathrm{S}|$ for some $\mathrm{S} \subseteq \mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \square \mathrm{T}\right)$ as shown below:

The graph $\mathrm{P}_{3} \square \mathrm{~K}_{1,4}$ with $\left|\mathrm{V}\left(\mathrm{P}_{3}\right)\right|=3<4=\left|\Delta\left(\mathrm{K}_{1,4}\right)\right|$.

Application of Main Theorem (b)

Corollary B

Let H be a connected bipartite graph. Assume n is an even integer and $\mathrm{n} \geq 4 \Delta(\mathrm{H})-2$. Then the following three statements are equivalent:
(1) $\mathrm{P}_{\mathrm{n}} \square \mathrm{H}$ is Hamiltonian.
(2) $\mathrm{P}_{\mathrm{n}} \square \mathrm{H}$ is 1-tough.
(3) H has a path factor.

```
Proof.
3)}=>\mathrm{ (1):This is Theorem 1 (a)
(1)}=>\mathrm{ (2 : This is clear
(2)}=3\mathrm{ :?
```

Sixth India Taiwan Conference on Discrete Mathematics (6th-ITCDM 2019, IITBHU Varanasi, Inida)
To prove

$$
\text { 1-tough } \mathrm{P}_{\mathrm{n}} \square \mathrm{H} \Rightarrow \mathrm{H} \text { has a path factor, }
$$

we need a little more works, but one can easily realize
Hamiltonian $\mathrm{P}_{\mathrm{n}} \square \mathrm{H} \quad \Rightarrow \quad \mathrm{H}$ has a path factor,
from the following graph:

Path factor of a bipartite graph

To complete the proof of Corollary B, we need to proof the following theorem.

Lemma B
If $\mathrm{P}_{\mathrm{n}} \square \mathrm{H}$ is a 1-tough bipartite graph then H has a path factor.

Let $\mathrm{i}(\mathrm{G})$ denote the number of isolated vertices in G. The following result proved by J. Akiyama, D. Avis and H. Era (1980) is useful.

Proposition

Let G be a graph. Then G has a path factor if and only if $\mathrm{i}(\mathrm{G}-\mathrm{S}) \leq 2|\mathrm{~S}|$ for all $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$.

Path factor of a bipartite graph

Restricted to bipartite graphs, the following proposition is a supplementary.

Proposition

If H is a bipartite graph that does not contain a path factor, then there exists a vertex subset S that belongs to a single partite set of H with $\mathrm{i}(\mathrm{H}-\mathrm{S})>2|\mathrm{~S}|$.

Proof of Lemma B

Lemma B

If $\mathrm{P}_{\mathrm{n}} \square \mathrm{H}$ is a 1-tough bipartite graph then H has a path factor.

Proof.

Assume H has no path factor and choose a vertex subset S in a single partite set of H such that $|\mathrm{I}|=\mathrm{i}(\mathrm{H}-\mathrm{S})>2|\mathrm{~S}|$, where
$\mathrm{I}:=\{\mathrm{u}: \mathrm{u}$ is isolated in $\mathrm{H}-\mathrm{S}\}$. Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \square \mathrm{H}\right)=\mathrm{X} \cup \mathrm{Y}$ be a bipartition with $|\mathrm{X}| \leq|\mathrm{Y}|$; and if $|\mathrm{X}|=|\mathrm{Y}|$, let $1_{\mathrm{S}}:=\left\{1_{\mathrm{s}}: \mathrm{s} \in \mathrm{S}\right\} \subseteq \mathrm{Y}$, so $1_{\mathrm{I}} \subseteq \mathrm{X}$. Hence $2\left|1_{\mathrm{S}}\right|=2|\mathrm{~S}|<\mathrm{i}(\mathrm{G}-\mathrm{S})=|\mathrm{I}|$.

If $|\mathrm{X}|<|\mathrm{Y}|$, set $\mathrm{X}^{\prime}=\mathrm{X}, \mathrm{Y}^{\prime}=\mathrm{Y}$; if $|\mathrm{X}|=|\mathrm{Y}|$, set $\mathrm{X}^{\prime}=\left(\mathrm{X} \cup 1_{\mathrm{S}}\right)-1_{\mathrm{I}}$, $\mathrm{Y}^{\prime}=\left(\mathrm{Y} \cup 1_{\mathrm{I}}\right)-1_{\mathrm{S}}$. Then $\mathrm{t}(\mathrm{G}) \leq\left|\mathrm{X}^{\prime}\right| / \mathrm{c}\left(\mathrm{G}-\mathrm{X}^{\prime}\right)<1$.

A tree with a path factor

Lemma

For a tree T with a $\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\}$-factor F , there exists a component c of F such that $\mathrm{T}-\mathrm{c}$ is a tree with $\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\}$-factor $\mathrm{F}-\{\mathrm{c}\}$.

A tree T with a perfect matching

A tree with a path factor

Lemma

For a tree T with a $\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\}$-factor F , there exists a component c of F such that $\mathrm{T}-\mathrm{c}$ is a tree with $\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\}$-factor $\mathrm{F}-\{\mathrm{c}\}$.

A tree $T-c$ with a perfect matching

Theorem A is a stronger version of Main Theorem (a)

Theorem A

Let T be a tree with a perfect matching and $\mathrm{n} \geq \Delta(\mathrm{T})$. Then there exists a Hamiltonian cycle of $\mathrm{P}_{\mathrm{n}} \square \mathrm{T}$ which contains exactly $\mathrm{n}-\operatorname{deg}_{\mathrm{T}}(\mathrm{v})$ of the edges: $\left\{\mathrm{i}_{\mathrm{v}}(\mathrm{i}+1)_{\mathrm{v}}: \mathrm{i}=1,2, \cdots, \mathrm{n}-1\right\}$ for any vertex $\mathrm{v} \in \mathrm{V}(\mathrm{T})$.

Base Case:

The standard Hamiltonian cycle for $\mathrm{P}_{\mathrm{n}} \square \mathrm{P}_{2}$

Proof of Theorem A

Theorem A

Let T be a tree with a perfect matching and $n \geq \Delta(T)$. Then there exists a Hamiltonian cycle of $\mathrm{P}_{\mathrm{n}} \square \mathrm{T}$ which contains exactly $\mathrm{n}-\operatorname{deg}_{\mathrm{T}}(\mathrm{v})$ of the edges: $\left\{\mathrm{i}_{\mathrm{v}}(\mathrm{i}+1)_{\mathrm{v}}: \mathrm{i}=1,2, \cdots, \mathrm{n}-1\right\}$ for any vertex $\mathrm{v} \in \mathrm{V}(\mathrm{T})$.

Proof of Theorem A

Theorem A

Let T be a tree with a perfect matching and $n \geq \Delta(T)$. Then there exists a Hamiltonian cycle of $\mathrm{P}_{\mathrm{n}} \square \mathrm{T}$ which contains exactly $\mathrm{n}-\operatorname{deg}_{\mathrm{T}}(\mathrm{v})$ of the edges: $\left\{\mathrm{i}_{\mathrm{v}}(\mathrm{i}+1)_{\mathrm{v}}: \mathrm{i}=1,2, \cdots, \mathrm{n}-1\right\}$ for any vertex $\mathrm{v} \in \mathrm{V}(\mathrm{T})$.

Proof of Theorem A

Theorem A

Let T be a tree with a perfect matching and $\mathrm{n} \geq \Delta(\mathrm{T})$. Then there exists a Hamiltonian cycle of $\mathrm{P}_{\mathrm{n}} \square \mathrm{T}$ which contains exactly $\mathrm{n}-\operatorname{deg}_{\mathrm{T}}(\mathrm{v})$ of the edges: $\left\{\mathrm{i}_{\mathrm{v}}(\mathrm{i}+1)_{\mathrm{v}}: \mathrm{i}=1,2, \cdots, \mathrm{n}-1\right\}$ for any vertex $\mathrm{v} \in \mathrm{V}(\mathrm{T})$.

The Hamiltonian cycle $\mathrm{H}^{\prime \prime}$ of T

Standard Hamiltonian cycle H for $\mathrm{P}_{\mathrm{n}} \square \mathrm{P}_{3}$

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{v}}=\left\{\mathrm{i}_{\mathrm{v}}(\mathrm{i}+1)_{\mathrm{v}}: \mathrm{i} \equiv 0,1,3(\bmod 4)\right\} \\
& \left.\mathrm{C}_{\mathrm{v}}=\left\{\mathrm{i}_{\mathrm{v}} \mathrm{i}+1\right)_{\mathrm{v}}: \mathrm{i} \equiv 0,2(\bmod 4)\right\} \\
& \mathrm{R}_{\mathrm{v}}=\left\{\mathrm{i}_{\mathrm{v}}(\mathrm{i}+1)_{\mathrm{v}}: \mathrm{i} \equiv 1,2,3(\bmod 4)\right\}
\end{aligned}
$$

$\left|\mathrm{H} \cap \mathrm{X}_{\mathrm{v}}\right| \geq\lceil\mathrm{n} / 4\rceil-\operatorname{deg}(\mathrm{v})$ $(\forall \mathrm{X} \in\{\mathrm{L}, \mathrm{C}, \mathrm{R}\})$

Theorem B is a stronger version of Theorem 1 (b)

Theorem B
 Let G be a connected graph with a path factor and n be an even integer with $\mathrm{n} \geq 4 \Delta(\mathrm{G})-2$. Then $\mathrm{P}_{\mathrm{n}} \square \mathrm{G}$ contains a Hamiltonian cycle H such that for any vertex $\mathrm{a} \in \mathrm{V}(\mathrm{G})$, the number of edges in the intersection of H and any of the three edge sets L_{a}, C_{a}, R_{a} is at least $\lceil n / 4\rceil-\operatorname{deg}_{G}(a)$.

Base cases:
The standard Hamiltonian cycle H_{1} for $\mathrm{P}_{\mathrm{n}} \square \mathrm{P}_{2}$,
The standard Hamiltonian cycle H_{2} for $\mathrm{P}_{\mathrm{n}} \square \mathrm{P}_{3}$.

Proof of Theorem B

Proof of Theorem B-edges matching

The assumption $n \geq 4 \Delta(G)-2$ ensures a pair of edges matches in a vertical position.

Proof of Theorem 4 - Combine the Hamiltonian cycle

The lower bound of n

The condition $\mathrm{n} \geq \Delta(\mathrm{T})$ is an equivalent statement to the Hamiltonicity of $\mathrm{P}_{\mathrm{n}} \square \mathrm{T}$ when T has a perfect matching in Corollary A.

Can the assumption $\mathrm{n} \geq 4 \Delta(\mathrm{H})-2$ in Corollary B be replaced by $\mathrm{n} \geq \Delta(\mathrm{H})$?

Corollary B

Let H be a connected bipartite graph. Assume n is an even integer and $\mathrm{n} \geq 4 \Delta(\mathrm{H})-2$. Then the following three statements are equivalent:
(1) $\mathrm{P}_{\mathrm{n}} \square \mathrm{H}$ is Hamiltonian.
(2) $\mathrm{P}_{\mathrm{n}} \square \mathrm{H}$ is 1-tough.
(3) H has a path factor.

The lower bound of n

The answer is NO!
Here we provide a 1-tough non-Hamiltonian graph $\mathrm{P}_{\mathrm{n}} \square \mathrm{T}$ such that T is a tree with a path factor and $\mathrm{n}=\Delta(\mathrm{T})+1$.

Sixth India Taiwan Conference on Discrete Mathematics (6th-ITCDM 2019, IITBHU Varanasi, Inida)

$\mathrm{P}_{4} \square \mathrm{~T}$ is not Hamiltonian

$$
\mathrm{G}=\mathrm{P}_{4} \square \mathrm{~T} \text { is 1-tough }
$$

Consider three cases: (i) $\mathrm{S} \cap\{\mathrm{x}, \mathrm{y}\} \neq \emptyset$, (ii) $\mathrm{S} \cap\{\mathrm{x}, \mathrm{y}\}=\emptyset$ and $\{u, v, w\} \subseteq S$, (iii) $S \cap\{x, y\}=\emptyset$ and $\{u, v, w\} \nsubseteq S$.

Sixth India Taiwan Conference on Discrete Mathematics (6th-ITCDM 2019, IITBHU Varanasi, Inida)

$S \cap\{x, y\} \neq \emptyset$

$\mathrm{S} \cap\{\mathrm{x}, \mathrm{y}\}=\emptyset$ and $\{\mathrm{u}, \mathrm{v}, \mathrm{w}\} \subseteq \mathrm{S}$
Let $S^{\prime}=S-\{u, v, w\}$, and T^{\prime} be spanning tree of $G-\{x, y, u, v, w\}$. Note that T^{\prime} is obtained by connected a vertex to a path.

$$
\mathrm{c}(\mathrm{G}-\mathrm{S}) \leq 1+\mathrm{c}\left(\mathrm{~T}^{\prime}-\mathrm{S}^{\prime}\right) \leq\left|\mathrm{S}^{\prime}\right|+3=|\mathrm{S}|
$$

$\mathrm{S} \cap\{\mathrm{x}, \mathrm{y}\}=\emptyset$ and $\{\mathrm{u}, \mathrm{v}, \mathrm{w}\} \nsubseteq \mathrm{S}$

Say $\mathrm{u} \notin \mathrm{S}$. Then x , y are connected to the component containing u in C - S.

Conjecture 1

When T has a path factor and $\Delta(T)<n<4 \Delta(T)-2$, it seems difficult to to find a Hamiltonian cycle in $\mathrm{P}_{\mathrm{n}} \square \mathrm{T}$ systematically. In general, we have the following conjecture.

Conjecture

For $\mathrm{n} \geq 8$ a multiple of 4 , there is a connected graph G with a path factor satisfying $n=4 \Delta(G)-4$ such that $P_{n} \square G$ is not Hamiltonian.

The case n is odd

For n being an odd integer and G a bipartite graph, the graph $\mathrm{P}_{\mathrm{n}} \square \mathrm{G}$ is also possible to be Hamiltonian if it is balanced. For instance, let $\mathrm{V}\left(\mathrm{G}_{2}\right)=\{1,2,3,4,5,6\}$ and $\mathrm{E}\left(\mathrm{G}_{2}\right)=\{12,23,34,25,36\}$. Then $\mathrm{P}_{5} \square \mathrm{G}_{2}$ is Hamiltonian.

Conjecture 2

Note that our construction of Hamiltonian cycles of $\mathrm{P}_{\mathrm{n}} \square \mathrm{G}$ always contains the edge $1_{\mathrm{x}} 1_{\mathrm{y}}$, where xy is an edge in a component of a $\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\}$-factor of the graph G. Use these edges as bridges, we can construct a Hamiltonian cycle for $\mathrm{P}_{2 k+5} \square \mathrm{G}$ from those of $\mathrm{P}_{5} \square \mathrm{G}$ and $\mathrm{P}_{2 \mathrm{k}} \square \mathrm{G}$.

Conjecture

Let G be a graph with path factor and $n \geq 4 \Delta(G)-2$ such that $P_{n} \square G$ is balanced bipartite. Then $\mathrm{P}_{\mathrm{n}} \square \mathrm{G}$ is Hamiltonian.

Thank you for your attention.

