Hamiltonian and 1-tough properties in Cartesian product graphs

Chih-wen Weng (joint work with Louis Kao)

Department of Applied Mathematics, National Chiao Tung University Taiwan

(New Name: National Yang-Ming Chiao Tung University (YMCT))

11:40-12:20, November 17, 2019

Overview

1 Introduction

2 Main Theorem

3 Applications of Main Theorem

• Path factor of a bipartite graph

Proof of the Main Theorem

- Construction of Hamiltonian cycle I
- Construction of Hamiltonian cycle II

5 Conjectures

Cartesian Product graph $G_1 \square G_2$

$$\begin{split} V(G_1 \Box G_2) = & \{ v_u : v \in V(G_1), u \in V(G_2) \}, \\ E(G_1 \Box G_2) = & \{ v_u v_w : v \in V(G_1), uw \in E(G_2) \} \\ \cup & \{ v_u w_u : u \in V(G_2), vw \in E(G_1) \}. \end{split}$$

Example

With $V(P_3) = \{1, 2, 3\}$ and $V(K_{1,4}) = \{x, y, z, w, u\}$), the graph $P_3 \Box K_{1,4}$ is as follows:

Graph Terminologies

- A graph is Hamiltonian if it contains a spanning cycle.
- A graph is traceable if it contains a spanning path.
- A path factor of a graph is its spanning subgraph such that each component is isomorphic to a path with order at least two.
- If each component in a path factor is isomorphic to P_2 , the path factor is called a perfect matching.

Example

A graph without a path factor

Main Theorem

Let $\Delta(G)$ denote the maximum degree of graph G and c(G) denote the number of connected components in G.

Main Theorem

Let G_1 be a traceable graph and G_2 a connected graph. Assume one of the following (a),(b) holds:

- (a) G_2 has a perfect matching and $|V(G_1)| \ge \Delta(G_2)$, or
- (b) G_2 has a path factor and $|V(G_1)|$ is an even integer with $|V(G_1)| \ge 4\Delta(G_2) 2.$

Then $G_1 \square G_2$ has a Hamiltonian cycle.

Toughness

- A graph G is t-tough if t is a rational number such that $|S| \ge t \cdot c(G S)$ for any cut set S of G.
- If G is not complete, the largest t makes G to be t-tough is called the toughness of G, denoted by t(G).
- Hamiltonian \Rightarrow 1-tough ($|S| \ge c(G S)$).
- 1-tough \Rightarrow Hamiltonian.

Example

A 1-tough graph which is not Hamiltonian.

Toughness and Hamiltonicity

- V. Chvátal (1973) :
 - ▶ Introduce the idea of graph toughness
 - \blacktriangleright Conjecture : There exists a real number t_0 such that all t_0 -tough graphs are Hamiltonian.
- J. Harant, P.J. Owens (1995) :
 - Construct non-Hamiltonian graphs with toughness greater than 1.25.
- D. Bauer, H.H. Broersma, H.H. Veldman (2000) :
 - Construct non-Hamiltonian graphs with toughness greater than 2.
- A.Kabela, T.Kaiser (2017):
 - ▶ 10-tough chordal graphs are hamiltonian.

Application of Main Theorem (a)

Corollary A

Let T be a tree with a perfect matching and n be a positive integer. Then the following three statements are equivalent:

- $P_n \Box T$ is Hamiltonian.
- **2** $P_n \Box T$ is 1-tough.
- \circ n $\geq \Delta(T)$.

Proof.

- $3 \Rightarrow 1$: This is Theorem 1 (a)
- $1 \Rightarrow 2$: This is clear
- **2⇒3**:?

Proof of Corollary A

Proof.

 $\textcircled{2} \Rightarrow \textcircled{3}$: If $n < \Delta(T)$ then c(T-S) > |S| for some $S \subseteq V(P_n \Box T)$ as shown below:

The graph $P_3 \Box K_{1,4}$ with $|V(P_3)| = 3 < 4 = |\Delta(K_{1,4})|$.

Application of Main Theorem (b)

Corollary B

Let H be a connected bipartite graph. Assume n is an even integer and $n \ge 4\Delta(H) - 2$. Then the following three statements are equivalent:

- $P_n \Box H$ is Hamiltonian.
- **2** $P_n \Box H$ is 1-tough.
- **③** H has a path factor.

Proof.

- $3 \Rightarrow 1$: This is Theorem 1 (a)
- $\textcircled{1} \Rightarrow \textcircled{2} : This is clear$
- **2⇒3**:?

1-tough $P_n \Box H \Rightarrow H$ has a path factor,

we need a little more works, but one can easily realize

Hamiltonian $P_n \Box H \Rightarrow H$ has a path factor,

from the following graph:

Path factor of a bipartite graph

To complete the proof of Corollary B, we need to proof the following theorem.

Lemma B

If $\mathbf{P_n}\Box\mathbf{H}$ is a 1-tough bipartite graph then \mathbf{H} has a path factor.

Let i(G) denote the number of isolated vertices in G. The following result proved by J. Akiyama, D. Avis and H. Era (1980) is useful.

Proposition

Let G be a graph. Then G has a path factor if and only if $i(G-S) \le 2|S|$ for all $S \subseteq V(G)$.

Path factor of a bipartite graph

Restricted to bipartite graphs, the following proposition is a supplementary.

Proposition

If H is a bipartite graph that does not contain a path factor, then there exists a vertex subset S that belongs to a single partite set of H with i(H-S) > 2|S|.

Proof of Lemma B

Lemma B

If $P_n \Box H$ is a 1-tough bipartite graph then H has a path factor.

Proof.

Assume H has no path factor and choose a vertex subset S in a single partite set of H such that |I| = i(H - S) > 2|S|, where $I := \{u : u \text{ is isolated in } H - S\}$. Let $V(P_n \Box H) = X \cup Y$ be a bipartition with $|X| \le |Y|$; and if |X| = |Y|, let $1_S := \{1_s : s \in S\} \subseteq Y$, so $1_I \subseteq X$. Hence $2|1_S| = 2|S| < i(G - S) = |I|$.

If |X| < |Y|, set X' = X, Y' = Y; if |X| = |Y|, set $X' = (X \cup 1_S) - 1_I$, $Y' = (Y \cup 1_I) - 1_S$. Then $t(G) \le |X'|/c(G - X') < 1$.

A tree with a path factor

Lemma

For a tree T with a $\{P_2, P_3\}$ -factor F, there exists a component c of F such that T - c is a tree with $\{P_2, P_3\}$ -factor $F - \{c\}$.

A tree T with a perfect matching

A tree with a path factor

Lemma

For a tree T with a $\{P_2, P_3\}$ -factor F, there exists a component c of F such that T - c is a tree with $\{P_2, P_3\}$ -factor $F - \{c\}$.

A tree T - c with a perfect matching

Theorem A is a stronger version of Main Theorem (a)

Theorem A

Let T be a tree with a perfect matching and $n \ge \Delta(T)$. Then there exists a Hamiltonian cycle of $P_n \Box T$ which contains exactly $n - \deg_T(v)$ of the edges: $\{i_v(i+1)_v : i = 1, 2, \cdots, n-1\}$ for any vertex $v \in V(T)$.

Base Case:

The standard Hamiltonian cycle

for $P_n \Box P_2$

Proof of Theorem A

Theorem A

Let T be a tree with a perfect matching and $n \ge \Delta(T)$. Then there exists a Hamiltonian cycle of $P_n \Box T$ which contains exactly $n - \deg_T(v)$ of the edges: $\{i_v(i+1)_v : i = 1, 2, \cdots, n-1\}$ for any vertex $v \in V(T)$.

Proof of Theorem A

Theorem A

Let T be a tree with a perfect matching and $n \ge \Delta(T)$. Then there exists a Hamiltonian cycle of $P_n \Box T$ which contains exactly $n - \deg_T(v)$ of the edges: $\{i_v(i+1)_v : i = 1, 2, \cdots, n-1\}$ for any vertex $v \in V(T)$.

Proof of Theorem A

Theorem A

Let T be a tree with a perfect matching and $n \ge \Delta(T)$. Then there exists a Hamiltonian cycle of $P_n \Box T$ which contains exactly $n - \deg_T(v)$ of the edges: $\{i_v(i+1)_v : i = 1, 2, \cdots, n-1\}$ for any vertex $v \in V(T)$.

Standard Hamiltonian cycle H for $P_n \Box P_3$

$$\begin{array}{l} L_v = \{i_v(i+1)_v : i \equiv 0, 1, 3 \pmod{4} \} \\ C_v = \{i_v(i+1)_v : i \equiv 0, 2 \pmod{4} \} \\ R_v = \{i_v(i+1)_v : i \equiv 1, 2, 3 \pmod{4} \} \end{array}$$

$$\begin{aligned} |\mathrm{H} \cap \mathrm{X}_{\mathrm{v}}| &\geq \lceil \mathrm{n}/4 \rceil - \mathrm{deg}(\mathrm{v}) \\ (\forall \mathrm{X} \in \{\mathrm{L}, \mathrm{C}, \mathrm{R}\}) \end{aligned}$$

Theorem B is a stronger version of Theorem 1 (b)

Theorem B

Let G be a connected graph with a path factor and n be an even integer with $n \ge 4\Delta(G) - 2$. Then $P_n \square G$ contains a Hamiltonian cycle H such that for any vertex $a \in V(G)$, the number of edges in the intersection of H and any of the three edge sets L_a, C_a, R_a is at least $\lceil n/4 \rceil - \deg_G(a)$.

Base cases:

The standard Hamiltonian cycle H_1 for $P_n \Box P_2$, The standard Hamiltonian cycle H_2 for $P_n \Box P_3$.

Proof of Theorem B

Proof of Theorem B-edges matching

The assumption $n \ge 4\Delta(G) - 2$ ensures a pair of edges matches in a vertical position.

Chih-wen Weng (NCTU)

Proof of Theorem 4 - Combine the Hamiltonian cycle

The lower bound of n

The condition $n \ge \Delta(T)$ is an equivalent statement to the Hamiltonicity of $P_n \Box T$ when T has a perfect matching in Corollary A.

Can the assumption $n \ge 4\Delta(H) - 2$ in Corollary B be replaced by $n \ge \Delta(H)$?

Corollary B

Let H be a connected bipartite graph. Assume n is an even integer and $n \ge 4\Delta(H) - 2$. Then the following three statements are equivalent:

- **1** $P_n \Box H is Hamiltonian.$
- **2** $P_n \Box H$ is 1-tough.
- **I** has a path factor.

The lower bound of n

The answer is NO!

Here we provide a 1-tough non-Hamiltonian graph $P_n \Box T$ such that T is a tree with a path factor and $n = \Delta(T) + 1$.

$G = P_4 \Box T$ is 1-tough

Consider three cases: (i) $S \cap \{x, y\} \neq \emptyset$, (ii) $S \cap \{x, y\} = \emptyset$ and $\{u, v, w\} \subseteq S$, (iii) $S \cap \{x, y\} = \emptyset$ and $\{u, v, w\} \not\subseteq S$.

Chih-wen Weng (NCTU)

 $S \cap \{x, y\} \neq \emptyset$

$$\begin{split} c(G-S) &\leq c(C-(S\cap C)) + c(\{x,y\}-(S\cap\{x,y\}))\\ &\leq |S\cap C|+|S\cap\{x,y\}| = |S| \end{split}$$

$S \cap \{x, y\} = \emptyset$ and $\{u, v, w\} \subseteq S$

Let $S' = S - \{u, v, w\}$, and T' be spanning tree of $G - \{x, y, u, v, w\}$. Note that T' is obtained by connected a vertex to a path.

$$c(G - S) \le 1 + c(T' - S') \le |S'| + 3 = |S|.$$

$S \cap \{x,y\} = \emptyset \text{ and } \{u,v,w\} \not\subseteq S$

Say $u \notin S$. Then x, y are connected to the component containing u in C - S.

Conjecture 1

When T has a path factor and $\Delta(T) < n < 4\Delta(T) - 2$, it seems difficult to to find a Hamiltonian cycle in $P_n \Box T$ systematically. In general, we have the following conjecture.

Conjecture

For $n \ge 8$ a multiple of 4, there is a connected graph G with a path factor satisfying $n = 4\Delta(G) - 4$ such that $P_n \Box G$ is not Hamiltonian.

The case n is odd

For n being an odd integer and G a bipartite graph, the graph $P_n \Box G$ is also possible to be Hamiltonian if it is balanced. For instance, let $V(G_2) = \{1, 2, 3, 4, 5, 6\}$ and $E(G_2) = \{12, 23, 34, 25, 36\}$. Then $P_5 \Box G_2$ is Hamiltonian.

Conjecture 2

Note that our construction of Hamiltonian cycles of $P_n \Box G$ always contains the edge $1_x 1_y$, where xy is an edge in a component of a $\{P_2, P_3\}$ -factor of the graph G. Use these edges as bridges, we can construct a Hamiltonian cycle for $P_{2k+5} \Box G$ from those of $P_5 \Box G$ and $P_{2k} \Box G$.

Conjecture

Let G be a graph with path factor and $n \ge 4\Delta(G) - 2$ such that $P_n \Box G$ is balanced bipartite. Then $P_n \Box G$ is Hamiltonian.

Thank you for your attention.