Bidiagonal triples and the quantum group $U_{q}\left(s l_{2}\right)$

Chih-wen Weng
(joint work with Paul Terwilliger)
Department of Applied Mathematics,
National Chiao Tung University,
Taiwan

The Basis of $s l_{2}(\mathbb{K})$

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

h, e, f satisfy

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h
$$

Another Basis of $\operatorname{sl}_{2}(\mathbb{K})$

$$
A=\left(\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), C=\left(\begin{array}{cc}
-1 & 0 \\
-2 & 1
\end{array}\right)
$$

A, B, C satisfy

$$
\begin{gathered}
{[A, B]=-2 A-2 B,[B, C]=-2 B-2 C,} \\
{[C, A]=-2 C-2 A .}
\end{gathered}
$$

Bidiagonal Matrices

Let X denote a square matrix. We say X is upper bidiagonal whenever both (i) each nonzero entry of X is on the diagonal or superdiagonal; (ii) each entry on the superdiagonal of X is nonzero. We say X is lower bidiagonal whenever the transpose of X is upper bidiagonal.

Examples

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
q^{-3} & q^{3}-q^{-3} & 0 & 0 \\
0 & q^{-1} & q^{3}-q^{-1} & 0 \\
0 & 0 & q & q^{3}-q \\
0 & 0 & 0 & q^{3}
\end{array}\right), \\
& C=\left(\begin{array}{cccc}
q^{-3} & 0 & 0 & 0 \\
q^{-3}-q^{-1} & q^{-1} & 0 & 0 \\
0 & q^{-3}-q & q & 0 \\
0 & 0 & q^{-3}-q^{3} & q^{3}
\end{array}\right),
\end{aligned}
$$

where $q^{2} \neq 1, q^{4} \neq 1, q^{6} \neq 1$.

Bidiagonal Triple

Let \mathbb{K} be an algebraically closed field with characteristic 0 . Let \mathbb{V} denote a vector space over \mathbb{K} with finite positive dimension. By a bidiagonal triple on \mathbb{V} we mean a sequence of linear transformations $A, B, C: \mathbb{V} \rightarrow \mathbb{V}$ that satisfy the following three conditions:

Bidiagonal Triple

(i) There exists a basis for \mathbb{V} with respect to which the matrices representing A, B, C are upper bidiagonal, diagonal, and lower bidiagonal, respectively.
(ii) There exists a basis for \mathbb{V} with respect to which the matrices representing B, C, A are upper bidiagonal, diagonal, and lower bidiagonal, respectively .
(iii) There exists a basis for \mathbb{V} with respect to which the matrices representing C, A, B are upper bidiagonal, diagonal, and lower bidiagonal, respectively.

Example

A, C as before and

$$
B=\left(\begin{array}{cccc}
q^{3} & 0 & 0 & 0 \\
0 & q & 0 & 0 \\
0 & 0 & q^{-1} & 0 \\
0 & 0 & 0 & q^{-3}
\end{array}\right)
$$

Then A, B, C is a bidiagonal triple.

Proof

$P=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & q^{-2} & -1-q^{-2} & 1 \\ -q^{-6} & q^{-2}+q^{-4}+q^{-6} & -1-q^{-2}-q^{-4} & 1\end{array}\right)$
Then

$$
P^{-1} B P=A, P^{-1} C P=B, P^{-1} A P=C .
$$

More Examples

(i) A is upper bidiagonal with entries $A_{i i}=q^{2 i-n}$

$$
\begin{aligned}
& \text { for } 0 \leq i \leq n \text { and } A_{i, i+1}=q^{n}-q^{2 i-n} \text { for } \\
& 0 \leq i \leq n-1
\end{aligned}
$$

(ii) B is diagonal with $B_{i i}=q^{n-2 i}$ for $0 \leq i \leq n$.
(iii) C is lower bidiagonal with entries $C_{i i}=q^{2 i-n}$ for $0 \leq i \leq n$ and $C_{i, i-1}=q^{-n}-q^{2 i-n}$ for $1 \leq i \leq n$.

Then the sequence A, B, C is a bidiagonal triple on \mathbb{K}^{n+1} (with base q).

More Examples

(i) A is upper bidiagonal with entries $A_{i i}=2 i-n$ for $0 \leq i \leq n$ and $A_{i, i+1}=2 n-2 i$ for $0 \leq i \leq n-1$.
(ii) B is diagonal with $B_{i i}=n-2 i$ for $0 \leq i \leq n$.
(iii) C is lower bidiagonal with entries $C_{i i}=2 i-n$ for $0 \leq i \leq n$ and $C_{i, i-1}=-2 i$ for $1 \leq i \leq n$.

Then the sequence A, B, C is a bidiagonal triple on \mathbb{K}^{n+1} (with base $q=1$).

Normalized Bidiagonal Triples

We refer all of the above mentioned bidiagonal triples as normalized bidisgonal triples with base q.

Lemma

Let A, B, C denote a bidiagonal triple on \mathbb{V}. Let $\alpha^{ \pm}, \beta^{ \pm}, \gamma^{ \pm}$denote scalars in \mathbb{K} with $\alpha^{+}, \beta^{+}, \gamma^{+}$ nonzero. Then the sequence

$$
\alpha^{+} A+\alpha^{-} I, \quad \beta^{+} B+\beta^{-} I, \quad \gamma^{+} C+\gamma^{-} I
$$

is a bidiagonal triple on \mathbb{V}.

Affine Equivalence

Let A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ denote two bidiagonal triples on \mathbb{V}. We say these two sequences are affine equivalent whenever
$A^{\prime}=\alpha^{+} A+\alpha^{-} I, B^{\prime}=\beta^{+} B+\beta^{-} I, C^{\prime}=\gamma^{+} C+\gamma^{-} I$
for some scalars $\alpha^{ \pm}, \beta^{ \pm}, \gamma^{ \pm} \mathbb{K}$ with $\alpha^{+}, \beta^{+}, \gamma^{+}$ nonzero.

Main Theorem

Each bidiagonal triple is affine equivalent to a normalized bidiagonal triple with base q.

Lie Algebra $s l_{2}(\mathbb{K})$

This algebra has a basis e, f, h satisfying

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h,
$$

where [,] denotes the Lie bracket.

Irreducible $s l_{2}$-Modules

There exists a family

$$
\begin{equation*}
\mathbb{V}_{n} \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

of finite dimensional irreducible $s l_{2}$-modules with the following properties. The module \mathbb{V}_{n} has a basis $v_{0}, v_{1}, \ldots, v_{n}$ satisfying $h v_{i}=(n-2 i) v_{i}$ for $0 \leq i \leq n, f v_{i}=(i+1) v_{i+1}$ for $0 \leq i \leq n-1$, $f v_{d}=0, e v_{i}=(n-i+1) v_{i-1}$ for $1 \leq i \leq n, e v_{0}=0$.

Irreducible $s l_{2}$-Modules

Every irreducible $s l_{2}$-module of dimension $n+1$ is isomorphic to the \mathbb{V}_{n} in previous slide.

Alternative Basis for $s l_{2}$

Set $x=-h+2 e, y=h, z=-h-2 f$ in $s l_{2}$. Then x, y, z is another basis of $s l_{2}$ satisfying

$$
[x, y]=-2 x-2 y,[y, z]=-2 y-2 z,[z, x]=-2 z-2 x .
$$

Bidiagonal Triples and $s l_{2}$

The alternate basis x, y, z of $s l_{2}$ act on \mathbb{V}_{n} as a bidiagonal triple.

$U_{q}\left(s l_{2}\right)$

Quantum algebra $U_{q}\left(s l_{2}\right)$ is the unital associative \mathbb{K}-algebra with generators e, f, k, k^{-1} and the following relations:

$$
\begin{aligned}
& k k^{-1}=k^{-1} k=1 \\
& k e k^{-1}=q^{2} e, k f k^{-1}=q^{-2} f, \\
& e f-f e=\frac{k-k^{-1}}{q-q^{-1}}
\end{aligned}
$$

where $q \in \mathbb{K}$ is not a root of unity.

Alternative Presentation

The quantum algebra $U_{q}\left(s l_{2}\right)$ is isomorphic to the unital associative \mathbb{K}-algebra with generators x, y, z, z^{-1} and the following relations:

$$
\begin{aligned}
& y y^{-1}=y^{-1} y=1 \\
& \frac{q x y-q^{-1} y x}{q-q^{-1}}=1 \\
& \frac{q y z-q^{-1} z y}{q-q^{-1}}=1 \\
& \frac{q z x-q^{-1} x z}{q-q^{-1}}=1
\end{aligned}
$$

Proof

An isomorphism is given by:

$$
\begin{aligned}
y^{ \pm 1} & \rightarrow k^{ \pm 1} \\
z & \rightarrow k^{-1}+f, \\
x & \rightarrow k^{-1}-q\left(q-q^{-1}\right)^{2} k^{-1} e .
\end{aligned}
$$

The inverse of this isomorphism is given by:

$$
\begin{aligned}
& k^{ \pm 1} \rightarrow y^{ \pm 1} \\
& f \rightarrow z-y^{-1} \\
& e \rightarrow \frac{1-y x}{q\left(q-q^{-1}\right)^{2}} . \\
& \text { gugamate }
\end{aligned}
$$

Irreducible $U_{q}\left(s l_{2}\right)$-Modules

There exists a family

$$
\mathbb{V}_{\varepsilon, n} \quad \varepsilon \in\{1,-1\}, \quad n=0,1,2 \ldots
$$

of finite dimensional irreducible $U_{q}\left(s l_{2}\right)$-modules with the following properties. The module $\mathbb{V}_{\varepsilon, n}$ has a basis $u_{0}, u_{1}, \ldots, u_{n}$ such that $k u_{i}=\varepsilon q^{n-2 i} u_{i}$ for $0 \leq i \leq n$, f $u_{i}=[i+1]_{q} u_{i+1}$ for $0 \leq i \leq n-1$, $f u_{n}=0, e u_{i}=\varepsilon[n-i+1]_{q} u_{i-1}$ for $1 \leq i \leq n$, $e u_{0}=0$.

Irreducible $U_{q}\left(s l_{2}\right)$-Modules

Every irreducible $U_{q}\left(s l_{2}\right)$-module of dimension $n+$ 1 is isomorphic to $\mathbb{V}_{-1, n}$ or $\mathbb{V}_{1, n}$.

Bidiagonal Triples and $U_{q}\left(s l_{2}\right)$

Let $\mathbb{V}_{\varepsilon, n}$ denote the finite dimensional irreducible $U_{q}\left(s l_{2}\right)$-module. Then the alternate generators $\varepsilon x, \varepsilon y, \varepsilon z$ act on $\mathbb{V}_{\varepsilon, n}$ as a bidiagonal triple.

Thank You

