Bidiagonal triples and the quantum group $U_q(sl_2)$

Chih-wen Weng (joint work with Paul Terwilliger) Department of Applied Mathematics, National Chiao Tung University,

Taiwan

The Basis of
$$sl_2(\mathbb{K})$$

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

h, e, f satisfy

$$[h, e] = 2e,$$
 $[h, f] = -2f,$ $[e, f] = h.$

Another Basis of $sl_2(\mathbb{K})$

$$A = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ -2 & 1 \end{pmatrix}$$

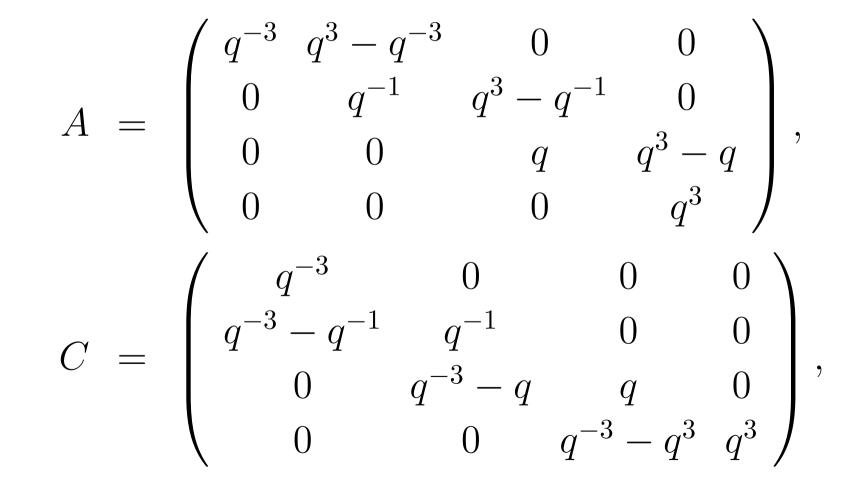
A, B, C satisfy

$$[A, B] = -2A - 2B, [B, C] = -2B - 2C,$$
$$[C, A] = -2C - 2A.$$

Bidiagonal Matrices

Let X denote a square matrix. We say X is upper bidiagonal whenever both (i) each nonzero entry of X is on the diagonal or superdiagonal; (ii) each entry on the superdiagonal of X is nonzero. We say X is lower bidiagonal whenever the transpose of X is upper bidiagonal.

Examples



where $q^2 \neq 1, q^4 \neq 1, q^6 \neq 1$.

Bidiagonal Triple

Let \mathbb{K} be an algebraically closed field with characteristic 0. Let \mathbb{V} denote a vector space over \mathbb{K} with finite positive dimension. By a **bidiagonal triple** on \mathbb{V} we mean a sequence of linear transformations $A, B, C : \mathbb{V} \to \mathbb{V}$ that satisfy the following three conditions:

Bidiagonal Triple

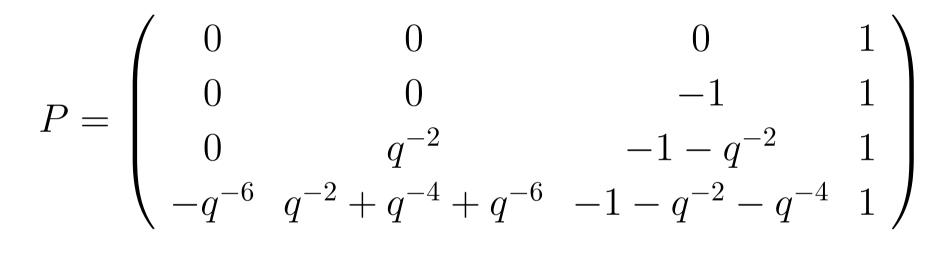
- (i) There exists a basis for \mathbb{V} with respect to which the matrices representing A, B, C are upper bidiagonal, diagonal, and lower bidiagonal, respectively.
- (ii) There exists a basis for \mathbb{V} with respect to which the matrices representing B, C, A are upper bidiagonal, diagonal, and lower bidiagonal, respectively.
- (iii) There exists a basis for \mathbb{V} with respect to which the matrices representing C, A, B are upper bidiagonal, diagonal, and lower bidiagonal, respectively.

A, C as before and

$$B = \begin{pmatrix} q^3 & 0 & 0 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & q^{-1} & 0 \\ 0 & 0 & 0 & q^{-3} \end{pmatrix}$$

Then A, B, C is a bidiagonal triple.

Proof



Then

 $P^{-1}BP = A, P^{-1}CP = B, P^{-1}AP = C.$

More Examples

(i) A is upper bidiagonal with entries $A_{ii} = q^{2i-n}$ for $0 \le i \le n$ and $A_{i,i+1} = q^n - q^{2i-n}$ for $0 \le i \le n-1$.

(ii) B is diagonal with $B_{ii} = q^{n-2i}$ for $0 \le i \le n$.

(iii) *C* is lower bidiagonal with entries $C_{ii} = q^{2i-n}$ for $0 \le i \le n$ and $C_{i,i-1} = q^{-n} - q^{2i-n}$ for $1 \le i \le n$.

Then the sequence A, B, C is a bidiagonal triple on \mathbb{K}^{n+1} (with base q).

More Examples

(i) A is upper bidiagonal with entries $A_{ii} = 2i - n$ for $0 \le i \le n$ and $A_{i,i+1} = 2n - 2i$ for $0 \le i \le n - 1$.

(ii) B is diagonal with $B_{ii} = n - 2i$ for $0 \le i \le n$.

(iii) *C* is lower bidiagonal with entries $C_{ii} = 2i - n$ for $0 \le i \le n$ and $C_{i,i-1} = -2i$ for $1 \le i \le n$.

Then the sequence A, B, C is a bidiagonal triple on \mathbb{K}^{n+1} (with base q = 1).

Normalized Bidiagonal Triples

We refer all of the above mentioned bidiagonal triples as normalized bidisgonal triples with base q.

Lemma

Let A, B, C denote a bidiagonal triple on \mathbb{V} . Let $\alpha^{\pm}, \beta^{\pm}, \gamma^{\pm}$ denote scalars in \mathbb{K} with $\alpha^{+}, \beta^{+}, \gamma^{+}$ nonzero. Then the sequence

 $\alpha^+ A + \alpha^- I, \quad \beta^+ B + \beta^- I, \quad \gamma^+ C + \gamma^- I$

is a bidiagonal triple on \mathbb{V} .

Affine Equivalence

Let A, B, C and A', B', C' denote two bidiagonal triples on \mathbb{V} . We say these two sequences are affine equivalent whenever

 $A' = \alpha^{+}A + \alpha^{-}I, B' = \beta^{+}B + \beta^{-}I, C' = \gamma^{+}C + \gamma^{-}I$

for some scalars $\alpha^{\pm}, \beta^{\pm}, \gamma^{\pm}$ K with $\alpha^{+}, \beta^{+}, \gamma^{+}$ nonzero.

Main Theorem

Each bidiagonal triple is affine equivalent to a normalized bidiagonal triple with base q.

Lie Algebra $sl_2(\mathbb{K})$

This algebra has a basis e, f, h satisfying

[h, e] = 2e, [h, f] = -2f, [e, f] = h,

where [,] denotes the Lie bracket.

$\begin{array}{c} \mbox{Irreducible} \\ sl_2\mbox{-Modules} \end{array}$

There exists a family

$$\mathbb{V}_n \qquad n = 0, 1, 2, \dots \tag{1}$$

of finite dimensional irreducible sl_2 -modules with the following properties. The module \mathbb{V}_n has a basis v_0, v_1, \ldots, v_n satisfying $hv_i = (n - 2i)v_i$ for $0 \le i \le n, fv_i = (i + 1)v_{i+1}$ for $0 \le i \le n - 1,$ $fv_d = 0, ev_i = (n - i + 1)v_{i-1}$ for $1 \le i \le n, ev_0 = 0.$

$\begin{array}{c} \text{Irreducible} \\ sl_2 \text{-Modules} \end{array}$

Every irreducible sl_2 -module of dimension n+1 is isomorphic to the \mathbb{V}_n in previous slide.

Alternative Basis for sl_2

Set x = -h + 2e, y = h, z = -h - 2f in sl_2 . Then x, y, z is another basis of sl_2 satisfying

[x, y] = -2x - 2y, [y, z] = -2y - 2z, [z, x] = -2z - 2x.

Bidiagonal Triples and sl_2

The alternate basis x, y, z of sl_2 act on \mathbb{V}_n as a bidiagonal triple.

 $U_q(sl_2)$

Quantum algebra $U_q(sl_2)$ is the unital associative K-algebra with generators e, f, k, k^{-1} and the following relations:

$$kk^{-1} = k^{-1}k = 1,$$

$$kek^{-1} = q^{2}e, kfk^{-1} = q^{-2}f,$$

$$ef - fe = \frac{k - k^{-1}}{q - q^{-1}},$$

where $q \in \mathbb{K}$ is not a root of unity.

Alternative Presentation

The quantum algebra $U_q(sl_2)$ is isomorphic to the unital associative \mathbb{K} -algebra with generators x, y, z, z^{-1} and the following relations:

$$\begin{aligned} yy^{-1} &= y^{-1}y = 1, \\ \frac{qxy - q^{-1}yx}{q - q^{-1}} &= 1, \\ \frac{qyz - q^{-1}zy}{q - q^{-1}zy} &= 1, \\ \frac{qzx - q^{-1}xz}{q - q^{-1}xz} &= 1. \end{aligned}$$

Proof

An isomorphism is given by:

$$y^{\pm 1} \rightarrow k^{\pm 1},$$

 $z \rightarrow k^{-1} + f,$
 $x \rightarrow k^{-1} - q(q - q^{-1})^2 k^{-1} e.$

The inverse of this isomorphism is given by:

$$\begin{array}{rcl} k^{\pm 1} & \rightarrow & y^{\pm 1}, \\ f & \rightarrow & z - y^{-1}, \\ e & \rightarrow & \frac{1 - yx}{q(q - q^{-1})^2}. \end{array}$$

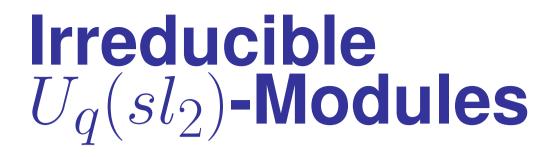
n group $U_{m{q}}\left(sl_{2}
ight)$ – p.23/27 al triples andthe quantur

Irreducible $U_q(sl_2)$ -Modules

There exists a family

$$\mathbb{V}_{\varepsilon,n}$$
 $\varepsilon \in \{1, -1\},$ $n = 0, 1, 2...$

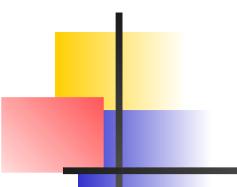
of finite dimensional irreducible $U_q(sl_2)$ -modules with the following properties. The module $\mathbb{V}_{\varepsilon,n}$ has a basis u_0, u_1, \ldots, u_n such that $ku_i = \varepsilon q^{n-2i}u_i$ for $0 \le i \le n$, $fu_i = [i+1]_q u_{i+1}$ for $0 \le i \le n-1$, $fu_n = 0$, $eu_i = \varepsilon [n-i+1]_q u_{i-1}$ for $1 \le i \le n$, $eu_0 = 0$.



Every irreducible $U_q(sl_2)$ -module of dimension n+1 is isomorphic to $\mathbb{V}_{-1,n}$ or $\mathbb{V}_{1,n}$.

Bidiagonal Triples and $U_q(sl_2)$

Let $\mathbb{V}_{\varepsilon,n}$ denote the finite dimensional irreducible $U_q(sl_2)$ -module. Then the alternate generators $\varepsilon x, \varepsilon y, \varepsilon z$ act on $\mathbb{V}_{\varepsilon,n}$ as a bidiagonal triple.



Thank You