Inequalities Related to Spectral Graph Theory

Guang－Siang Lee（李光祥），Chih－wen Weng（翁志文）

Department of Applied Mathematics
National Chiao Tung University
December 17， 2011

Distance Matrices

（1）Throughout let $G=(V G, E G)$ be a connected graph of order n and diameter D ．
（2）Let A_{i} be the i－th distance matrix，i．e．，an $n \times n$ matrix with rows and columns indexed by the vertex set $V G$ such that

$$
\left(A_{i}\right)_{u v}= \begin{cases}1, & \text { if } \partial(u, v)=i \\ 0, & \text { else }\end{cases}
$$

（3）In particular，$A_{0}=I$ is the identity matrix and $A_{1}=A$ is the adjacency matrix．

The 4－cube

The 4－cube

$A_{0}+A_{1}+A_{2}+A_{3}+A_{4}=J$ of 4－cube

$$
\left(\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The inner product

Definition

For two $n \times n$ symmetric matrices M, N over \mathbb{R} ，define
（1）the inner product $\langle M, N\rangle:=\frac{1}{n} \sum_{i, j} M_{i j} N_{i j}$ ，
（2）the norm $\|M\|:=\sqrt{\langle M, M\rangle}$ ，and
（3）the projection of M into N

$$
\operatorname{Proj}_{N}(M):=\frac{\langle N, M\rangle}{\|N\|^{2}} N
$$

Remark

（1）Note that $A_{0}, A_{1}, \ldots, A_{D}$ form an orthogonal basis of the space they span．
（2）The study of how a given matrix projects into some space spanned by $A_{0}, A_{1}, \ldots, A_{D}$ has long been concerned．
（3）For example，the study of error－correcting codes concerns with finding a large subset $C \subseteq V G$ and a larger integer i such that

$$
\operatorname{Proj}_{A_{\geq i}}\left(J_{C}\right)=J_{C},
$$

where

$$
\left(J_{C}\right)_{x y}:= \begin{cases}1, & \text { if } x, y \in C \text { and } x \neq y \\ 0, & \text { else }\end{cases}
$$

and

$$
A_{\geq i}:=A_{i}+A_{i+1}+\cdots+A_{D}
$$

Perron-Frobenius vector

(1) Let λ_{0} be the largest eigenvalue of A with corresponding eigenvector α, normalized to have $\langle\alpha, \alpha\rangle=n$.
(2) Note that $\alpha=(1,1, \ldots, 1)^{T}$ iff G is regular.
(3) In general a nonnegative irreducible matrix M has a unique largest real eigenvalue, whose corresponding eigenvector has positive entries. The eigenvector is generally referred as the Perron-Frobenius vector of M.
(9) The study of Perron-Frobenius vector receives much attention recently, e.g. from the study of graph flows, google page ranks.

Give A_{i} some weight

（1）Let D_{α} denote a diagonal matrix whose diagonal is the Perron－Frobenius vector α of A ．
（2）Hence G is regular if $D_{\alpha}=I$ ．
（3）The matrix $\widetilde{A}_{i}:=D_{\alpha} A_{i} D_{\alpha}$ is called the i－th weighted distance matrix of G ．
（4）$\widetilde{A}_{0}, \widetilde{A}_{1}, \cdots, \widetilde{A}_{D}$ still form an orthogonal basis of the space they span， which might be different from the space spanned by $A_{0}, A_{1}, \ldots, A_{D}$ ．
（6）Then $\widetilde{A}_{0}+\widetilde{A}_{1}+\cdots+\widetilde{A}_{D}=D_{\alpha}\left(A_{0}+A_{1}+\cdots+A_{D}\right) D_{\alpha}=D_{\alpha} J D_{\alpha}$ ．
（6）Define $\delta_{i}:=\left\|\widetilde{A}_{i}\right\|^{2}$ ，and $\delta_{\geq i}:=\delta_{i}+\delta_{i+1}+\cdots+\delta_{D}$ ．
（1）Note that δ_{i} is the＂average weights＂of vertices at distance i to a vertex．

The space $<A>=\operatorname{Span}\left(I, A, \cdots, A^{d}\right)$

（1）Assume the adjacency matrix A has $d+1$ distinct eigenvalues．
（2）Then the minimal polynomial of A has degree $d+1$ ．
（3）Thus I, A, \ldots, A^{d} form a basis of the space $<A>$ spanned by I, A ， \ldots, A^{d} ．
（9）We will apply Gram－Schmidt process to the basis I, A, \ldots, A^{d} and obtain an orthogonal basis．

Gram-Schmidt process

(1) Set $p_{0}^{\prime}(x)=1$ so that $p_{0}^{\prime}(A)=I$.
(2) When the polynomial $p_{i}^{\prime}(x)$ has been defined with degree $\left(p_{i}^{\prime}(x)\right)=i$, define

$$
p_{i+1}^{\prime}(A)=A^{i+1}-\sum_{k=0}^{i} \operatorname{Proj}_{p_{k}^{\prime}(A)}\left(A^{i+1}\right)
$$

for $0 \leq i \leq d-1$ recursively.
(3) Then $p_{0}^{\prime}(A), p_{1}^{\prime}(A), \ldots, p_{d}^{\prime}(A)$ is an orthogonal basis of the space $<A>$.

Normalization

(1) Set

$$
\begin{equation*}
p_{i}(x)=\frac{p_{i}^{\prime}\left(\lambda_{0}\right)}{\left\|p_{i}^{\prime}(A)\right\|^{2}} p_{i}^{\prime}(x) \tag{1}
\end{equation*}
$$

(2) Then $\operatorname{deg} p_{i}(x)=i$. and

$$
<A>=\operatorname{Span}\left(p_{0}(A), p_{1}(A), \cdots, p_{d}(A)\right)
$$

(3) Note that $p_{0}(A), p_{1}(A), \ldots, p_{d}(A)$ is another orthogonal basis of $\langle A\rangle$ satisfying

$$
\left\|p_{i}(A)\right\|^{2}=p_{i}\left(\lambda_{0}\right)
$$

for $0 \leq i \leq d$.
(9) The $p_{i}(x)$ is referred as the i-th predistance polynomial of G.

Orthogonality

The spaces

$$
\operatorname{Span}\left(\widetilde{A}_{0}, \widetilde{A}_{1}, \ldots, \widetilde{A}_{D}\right)
$$

and

$$
<A>=\operatorname{Span}\left(p_{0}(A), p_{1}(A), \ldots, p_{d}(A)\right)
$$

are not always equal, but they are connected by the orthogonal property:

$$
\widetilde{A}_{\geq i} \perp p_{<i}(A)
$$

where

$$
p_{<i}(A)=p_{0}(A)+p_{1}(A)+\cdots+p_{i-1}(A) .
$$

This can be proved by using the fact that $\left(A^{j}\right)_{x y}$ counts the number of walks of length j from x to y.

Both spaces have the equal sum $H(A)=D_{\alpha} J D_{\alpha}$ It turns out that

$$
p_{0}(A)+p_{1}(A)+\ldots+p_{d}(A)=H(A)=D_{\alpha} J D_{\alpha}=\widetilde{A}_{0}+\widetilde{A}_{1}+\cdots+\widetilde{A}_{D}
$$

where $H(x)=p_{0}(x)+p_{1}(x)+\cdots+p_{d}(x)$ is called the Hoffman polynomial of G ．

This follows

$$
p_{0}\left(\lambda_{0}\right)+p_{1}\left(\lambda_{0}\right)+\ldots+p_{d}\left(\lambda_{0}\right)=n=\delta_{0}+\delta_{1}+\cdots+\delta_{D}
$$

Together with

$$
\widetilde{A}_{\geq i} \perp p_{<i}(A)
$$

shows a well－known fact that

$$
D \leq d
$$

Combining orthogonality and equal sum

Lemma

The projection of $p_{\geq i}(A)$ into $\widetilde{A}_{\geq i}$ is $\widetilde{A}_{\geq i}$ ．

Proof．

$$
\begin{aligned}
\operatorname{Proj}_{\widetilde{A}_{\geq i}} p_{\geq i}(A) & =\frac{\left\langle\widetilde{A}_{\geq i}, p_{\geq i}(A)\right\rangle}{\delta_{\geq i}} \widetilde{A}_{\geq i} \\
& =\frac{\left\langle\widetilde{A}_{\geq i}, H(A)\right\rangle}{\delta_{\geq i}} \widetilde{A}_{\geq i} \\
& =\frac{\left\langle\widetilde{A}_{\geq i}, \widetilde{A}_{\geq i}\right\rangle}{\delta_{\geq i}} \widetilde{A}_{\geq i} \\
& =\widetilde{A}_{\geq i} .
\end{aligned}
$$

Corollary

$\delta_{\geq i} \leq p_{\geq i}\left(\lambda_{0}\right)$ with equality iff $p_{\geq i}(A)=\widetilde{A}_{\geq i}$.

Proof．

This follows from $\operatorname{Proj}_{\tilde{A}_{\geq i}} p_{\geq i}(A)=\widetilde{A}_{\geq i}$ and the definitions $\left\|\widetilde{A}_{\geq i}\right\|^{2}=\delta_{\geq i}$ and $\left\|p_{\geq i}(A)\right\|^{2}=p_{\geq i}\left(\lambda_{0}\right)$ ．

Corollary

$\delta_{\geq i} \leq p_{\geq i}\left(\lambda_{0}\right)$ with equality iff $p_{\geq i}(A)=\widetilde{A}_{\geq i}$ ．

Proof．

This follows from $\operatorname{Proj}_{\tilde{A}_{\geq i}} p_{\geq i}(A)=\widetilde{A}_{\geq i}$ and the definitions $\left\|\widetilde{A}_{\geq i}\right\|^{2}=\delta_{\geq i}$ and $\left\|p_{\geq i}(A)\right\|^{2}=p_{\geq i}\left(\lambda_{0}\right)$ ．

When $i=D$ the above Corollary is referred as the Spectral Excess Theorem．The original Spectral Excess Theorem only considers the regular graphs with $d=D$ essentially．

In the case $i=d=D$ the above inequality in the last page becomes $\delta_{D} \leq p_{D}\left(\lambda_{0}\right)$, and equality hold iff $p_{D}(A)=\widetilde{A}_{D}$. Together with $p_{D+1}(A)=0$,

$$
p_{0}(A)+p_{1}(A)+\ldots+p_{d}(A)=H(A)=D_{\alpha} J D_{\alpha}=\widetilde{A}_{0}+\widetilde{A}_{1}+\cdots+\widetilde{A}_{D}
$$

and using the following three-term relations
Lemma

$$
x p_{i}(x)=c_{i+1} p_{i+1}(x)+a_{i} p_{i}(x)+b_{i-1} p_{i-1}(x) \quad 0 \leq i \leq d
$$

for some scalars $c_{i+1}, a_{i}, b_{i-1} \in \mathbb{R}$ with $b_{-1}=c_{d+1}:=0$,
one can in turns prove

$$
p_{D-1}(A)=\widetilde{A}_{D-1}, p_{D-2}(A)=\widetilde{A}_{D-2}, p_{D-3}(A)=\widetilde{A}_{D-3}, \ldots, I=p_{0}(A)=\widetilde{A}_{0}
$$

A graph with $D=d$ and all the above equalities is called a distance-regular graph.

As an application we show the following．

Theorem

A graph whose smallest odd cycle has length $2 d+1$（odd－girth $2 d+1$ ） must be distance－regular．

Petersen graph has odd－girth

A graph with odd－girth

$$
5=2 D+1=2 d+1
$$

$$
5=2 D+1<2 d+1=11
$$

Hoffman graph

The Hoffman graph has $d=D=4$ and $p_{i}(A)=\widetilde{A}_{i}$ for $i=0,1,3$ ，but $p_{2}(A) \neq \widetilde{A}_{2}$ and $p_{4}(A) \neq \widetilde{A}_{4}$ ．

The graph P_{3}

Let G be a path of three vertices. It can be computed that $\lambda_{0}=\sqrt{2}$, $d=D=2, \alpha=(\sqrt{3} / 2, \sqrt{6} / 2, \sqrt{3} / 2)^{t}, p_{0}(x)=1, p_{1}(x)=3 \sqrt{2} x / 4$, $p_{2}(x)=3\left(x^{2}-4 / 3\right) / 4$, and

$$
\begin{aligned}
& I+\frac{3 \sqrt{2}}{4}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+\left(\begin{array}{ccc}
-1 / 4 & 0 & 3 / 4 \\
0 & 1 / 2 & 0 \\
3 / 4 & 0 & -1 / 4
\end{array}\right) \\
= & \left(\begin{array}{ccc}
3 / 4 & 3 \sqrt{2} / 4 & 3 / 4 \\
3 \sqrt{2} / 4 & 3 / 2 & 3 \sqrt{2} / 4 \\
3 / 4 & 3 \sqrt{2} / 4 & 3 / 4
\end{array}\right)=\widetilde{A}_{0}+\widetilde{A}_{1}+\widetilde{A}_{2} .
\end{aligned}
$$

Hence $I=p_{0}(A) \neq \widetilde{A}_{0}, p_{1}(A)=\widetilde{A}_{1}$, and $p_{2}(A) \neq \widetilde{A}_{2}$.

Suppose $D=d$. We are interested in determining the family \mathscr{S} containing the subsets $S \subseteq\{1,2, \ldots, D\}$ such that $p_{i}(A)=\widetilde{A}_{i}$ for $i \in S$ implies the distance-regularity. For example $\{D\} \in \mathscr{S}$ by spectral excess theorem, and $\{D-1\},\{D-3, D-1\} \notin \mathscr{S}$ from the above two examples.

Suppose $D=d$ ．We are interested in determining the family \mathscr{S} containing the subsets $S \subseteq\{1,2, \ldots, D\}$ such that $p_{i}(A)=\widetilde{A}_{i}$ for $i \in S$ implies the distance－regularity．For example $\{D\} \in \mathscr{S}$ by spectral excess theorem，and $\{D-1\},\{D-3, D-1\} \notin \mathscr{S}$ from the above two examples．

By using three－term relations and their variations，we can prove

Theorem

Suppose $D=d$ ．Then $\{D-2, D-1\} \in \mathscr{S}$ ．

Theorem

Suppose G is bipartite and $D=d$ ．Then $\{D-4, D-2\} \in \mathscr{S}$ ．
Theorem
Suppose $D=d$ ．Then $\{D-1, D-3, D-5, \ldots\} \notin \mathscr{S}$ ．

Even though $\{D-1\} \notin \mathscr{S}$, some regularities on G still can be found.

Even though $\{D-1\} \notin \mathscr{S}$ ，some regularities on G still can be found．

Theorem

Suppose G is bipartite with $D=d$ ，and $p_{D-1}(A)=\widetilde{A}_{D-1}$ ．Then the following holds．
（i）$p_{i}(A)=\widetilde{A}_{i}$ for $i=D-3, D-5, \ldots$ ．
（ii）If D is odd then G is regular．
（iii）If D is even then G is regular or bi－regular．

We are also interested in determining the family \mathscr{S}^{\prime} containing the subsets $S^{\prime} \subseteq\{1,2, \ldots, D\}$ such that the assumption

$$
p_{>D}(A)+\sum_{i \in S^{\prime}} p_{i}(A)=\sum_{i \in S^{\prime}} \widetilde{A}_{i}
$$

implies the distance-regularity.

We are also interested in determining the family \mathscr{S}^{\prime} containing the subsets $S^{\prime} \subseteq\{1,2, \ldots, D\}$ such that the assumption

$$
p_{>D}(A)+\sum_{i \in S^{\prime}} p_{i}(A)=\sum_{i \in S^{\prime}} \widetilde{A}_{i}
$$

implies the distance－regularity．

Theorem

Suppose $D=d$ ．Then $\{1,2, \ldots, D-1\} \in \mathscr{S}^{\prime}$ ．

Theorem

Suppose G is bipartite and $D=d$ ．Then $\{D-2, D-4, D-6, \ldots\} \in \mathscr{S}^{\prime}$ ．

Theorem

Suppose G is bipartite（without assuming $D=d$ ）．Then $\{D-1, D\} \in \mathscr{S}^{\prime}$ ．

Back to the inequalities

We have shown that $\delta_{\geq i} \leq p_{\geq i}\left(\lambda_{0}\right)$ ．

Back to the inequalities

We have shown that $\delta_{\geq i} \leq p_{\geq i}\left(\lambda_{0}\right)$. Use

$$
p_{0}\left(\lambda_{0}\right)+p_{1}\left(\lambda_{0}\right)+\ldots+p_{d}\left(\lambda_{0}\right)=\delta_{0}+\delta_{1}+\cdots+\delta_{D}
$$

to have $\delta_{\leq i-1} \geq p_{\leq i-1}\left(\lambda_{0}\right)$.

Back to the inequalities

We have shown that $\delta_{\geq i} \leq p_{\geq i}\left(\lambda_{0}\right)$. Use

$$
p_{0}\left(\lambda_{0}\right)+p_{1}\left(\lambda_{0}\right)+\ldots+p_{d}\left(\lambda_{0}\right)=\delta_{0}+\delta_{1}+\cdots+\delta_{D}
$$

to have $\delta_{\leq i-1} \geq p_{\leq i-1}\left(\lambda_{0}\right)$.
These are inequalities about largest eigenvalue λ_{0} and Perron-Frobenius vector α of G.

Back to the inequalities

We have shown that $\delta_{\geq i} \leq p_{\geq i}\left(\lambda_{0}\right)$. Use

$$
p_{0}\left(\lambda_{0}\right)+p_{1}\left(\lambda_{0}\right)+\ldots+p_{d}\left(\lambda_{0}\right)=\delta_{0}+\delta_{1}+\cdots+\delta_{D}
$$

to have $\delta_{\leq i-1} \geq p_{\leq i-1}\left(\lambda_{0}\right)$.
These are inequalities about largest eigenvalue λ_{0} and Perron-Frobenius vector α of G.

For the case $i=0$, we have

$$
\left(\alpha_{1}^{4}+\alpha_{2}^{4}+\cdots+\alpha_{n}^{4}\right) / n=\delta_{0} \geq p_{0}\left(\lambda_{0}\right)=1
$$

which can be easily proved directly by using Cauchy-Schwarz inequality and using $\alpha_{1}^{2}+\alpha_{2}^{2}+\cdots+\alpha_{n}^{2}=n$.

Questions

(1) Is it easy to obtain a direct proof of $\delta_{\leq i-1} \geq p_{\leq i-1}\left(\lambda_{0}\right)$ for $i \geq 1$ as we have deon for $i=0$ in previous page?

Questions

(1) Is it easy to obtain a direct proof of $\delta_{\leq i-1} \geq p_{\leq i-1}\left(\lambda_{0}\right)$ for $i \geq 1$ as we have deon for $i=0$ in previous page?
(2) Which one is true? $\delta_{1} \geq p_{1}\left(\lambda_{0}\right), \delta_{1} \leq p_{1}\left(\lambda_{0}\right)$, or they can not be compared.

Questions

(1) Is it easy to obtain a direct proof of $\delta_{\leq i-1} \geq p_{\leq i-1}\left(\lambda_{0}\right)$ for $i \geq 1$ as we have deon for $i=0$ in previous page?
(2) Which one is true? $\delta_{1} \geq p_{1}\left(\lambda_{0}\right), \delta_{1} \leq p_{1}\left(\lambda_{0}\right)$, or they can not be compared.
(3) Are there any applications of the above inequalities.

Questions

(1) Is it easy to obtain a direct proof of $\delta_{\leq i-1} \geq p_{\leq i-1}\left(\lambda_{0}\right)$ for $i \geq 1$ as we have deon for $i=0$ in previous page?
(2) Which one is true? $\delta_{1} \geq p_{1}\left(\lambda_{0}\right), \delta_{1} \leq p_{1}\left(\lambda_{0}\right)$, or they can not be compared.
(3) Are there any applications of the above inequalities.
(9) What is the relation among the $(D+1)$-spaces

$$
\operatorname{Span}\left(p_{0}(A), p_{1}(A), \ldots, p_{i-1}(A), \widetilde{A}_{i}, \widetilde{A}_{i+1}, \ldots, \widetilde{A}_{D}\right)
$$

for $1 \leq i \leq D$.

Questions

(1) Is it easy to obtain a direct proof of $\delta_{\leq i-1} \geq p_{\leq i-1}\left(\lambda_{0}\right)$ for $i \geq 1$ as we have deon for $i=0$ in previous page?
(2) Which one is true? $\delta_{1} \geq p_{1}\left(\lambda_{0}\right), \delta_{1} \leq p_{1}\left(\lambda_{0}\right)$, or they can not be compared.
(3) Are there any applications of the above inequalities.
(9) What is the relation among the $(D+1)$-spaces

$$
\operatorname{Span}\left(p_{0}(A), p_{1}(A), \ldots, p_{i-1}(A), \widetilde{A}_{i}, \widetilde{A}_{i+1}, \ldots, \widetilde{A}_{D}\right)
$$

for $1 \leq i \leq D$.

Thanks for your attention．

