Inequalities Related to Spectral Graph Theory

Guang-Siang Lee(李光祥), Chih-wen Weng(翁志文)

Department of Applied Mathematics National Chiao Tung University

December 17, 2011

Distance Matrices

- Throughout let G = (VG, EG) be a connected graph of order n and diameter D.
- 2 Let A_i be the *i*-th distance matrix, i.e., an $n \times n$ matrix with rows and columns indexed by the vertex set VG such that

$$(A_i)_{uv} = \begin{cases} 1, & \text{if } \partial(u, v) = i; \\ 0, & \text{else.} \end{cases}$$

In particular, A₀ = I is the identity matrix and A₁ = A is the adjacency matrix.

The 4-cube

Chih-wen Weng (Dep. of A. Math., NCTU)Inequalities Related to Spectral Graph Theo

 $A_0 + A_1 + A_2 + A_3 + A_4 = J$ of 4-cube

(1	1	1	1	1	1	1	1			1	1	1			1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1		1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\begin{pmatrix} 1 \end{pmatrix}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 /

The inner product

Definition

For two $n \times n$ symmetric matrices M, N over \mathbb{R} , define

- **1** the inner product $\langle M, N \rangle := \frac{1}{n} \sum_{i,j} M_{ij} N_{ij}$,
- 2 the norm $||M|| := \sqrt{\langle M, M \rangle}$, and
- **③** the projection of M into N

$$\mathsf{Proj}_N(M) := rac{\langle N, M
angle}{\|N\|^2} N.$$

Remark

- Note that A₀, A₁,..., A_D form an orthogonal basis of the space they span.
- 2 The study of how a given matrix projects into some space spanned by A_0, A_1, \ldots, A_D has long been concerned.
- **③** For example, the study of error-correcting codes concerns with finding a large subset $C \subseteq VG$ and a larger integer *i* such that

$$\mathsf{Proj}_{A_{\geq i}}(J_C) = J_C,$$

where

$$(J_C)_{xy} := \begin{cases} 1, & \text{if } x, y \in C \text{ and } x \neq y; \\ 0, & \text{else,} \end{cases}$$

and

$$A_{\geq i} := A_i + A_{i+1} + \cdots + A_D.$$

Perron-Frobenius vector

- Let λ₀ be the largest eigenvalue of A with corresponding eigenvector α, normalized to have < α, α >= n.
- 2 Note that $\alpha = (1, 1, ..., 1)^T$ iff G is regular.
- In general a nonnegative irreducible matrix M has a unique largest real eigenvalue, whose corresponding eigenvector has positive entries. The eigenvector is generally referred as the Perron-Frobenius vector of M.
- The study of Perron-Frobenius vector receives much attention recently, e.g. from the study of graph flows, google page ranks.

Give A_i some weight

- Let D_{α} denote a diagonal matrix whose diagonal is the Perron-Frobenius vector α of A.
- **2** Hence *G* is regular if $D_{\alpha} = I$.
- The matrix Ã_i := D_αA_iD_α is called the *i*-th weighted distance matrix of G.
- $\widetilde{A}_0, \widetilde{A}_1, \dots, \widetilde{A}_D$ still form an orthogonal basis of the space they span, which might be different from the space spanned by A_0, A_1, \dots, A_D .
- **5** Then $\widetilde{A}_0 + \widetilde{A}_1 + \dots + \widetilde{A}_D = D_{\alpha}(A_0 + A_1 + \dots + A_D)D_{\alpha} = D_{\alpha}JD_{\alpha}$.
- Define $\delta_i := \|\widetilde{A}_i\|^2$, and $\delta_{\geq i} := \delta_i + \delta_{i+1} + \dots + \delta_D$.
- Note that δ_i is the "average weights" of vertices at distance *i* to a vertex.

The space $\langle A \rangle =$ Span (I, A, \dots, A^d)

- **(**) Assume the adjacency matrix A has d + 1 distinct eigenvalues.
- 2 Then the minimal polynomial of A has degree d+1.
- Thus I, A, ..., A^d form a basis of the space < A > spanned by I, A, ..., A^d.
- We will apply Gram-Schmidt process to the basis I, A, ..., A^d and obtain an orthogonal basis.

Gram-Schmidt process

- Set $p'_0(x) = 1$ so that $p'_0(A) = I$.
- 2 When the polynomial $p'_i(x)$ has been defined with degree $(p'_i(x)) = i$, define

$$p_{i+1}'(A) = A^{i+1} - \sum_{k=0}^{l} \mathsf{Proj}_{p_k'(A)}(A^{i+1})$$

for $0 \le i \le d-1$ recursively.

 Then $p_0'(A), p_1'(A), \ldots, p_d'(A)$ is an orthogonal basis of the space $<\!A>$.

Normalization

Set

$$p_i(x) = \frac{p'_i(\lambda_0)}{\|p'_i(A)\|^2} p'_i(x).$$
(1)

2 Then deg $p_i(x) = i$. and

$$< A >=$$
 Span $(p_0(A), p_1(A), \cdots, p_d(A)).$

Note that p₀(A), p₁(A),..., p_d(A) is another orthogonal basis of <A > satisfying

$$\|p_i(A)\|^2 = p_i(\lambda_0)$$

for $0 \le i \le d$.

• The $p_i(x)$ is referred as the *i*-th predistance polynomial of G.

Orthogonality

The spaces

$$\mathsf{Span}\;(\widetilde{A}_0,\widetilde{A}_1,\ldots,\widetilde{A}_D)$$

and

$$<\!A>= \mathsf{Span}\ (p_0(A),p_1(A),\ldots,p_d(A))$$

are not always equal, but they are connected by the orthogonal property:

$$\widetilde{A}_{\geq i} \perp p_{\langle i}(A),$$

where

$$p_{$$

This can be proved by using the fact that $(A^j)_{xy}$ counts the number of walks of length *j* from *x* to *y*.

Both spaces have the equal sum $H(A) = D_{\alpha}JD_{\alpha}$

It turns out that

$$p_0(A) + p_1(A) + \ldots + p_d(A) = H(A) = D_\alpha J D_\alpha = \widetilde{A}_0 + \widetilde{A}_1 + \cdots + \widetilde{A}_D,$$

where $H(x) = p_0(x) + p_1(x) + \cdots + p_d(x)$ is called the Hoffman polynomial of *G*.

This follows

$$p_0(\lambda_0) + p_1(\lambda_0) + \ldots + p_d(\lambda_0) = n = \delta_0 + \delta_1 + \cdots + \delta_D.$$

Together with

$$\widetilde{A}_{\geq i} \perp p_{< i}(A)$$

shows a well-known fact that

$$D \leq d$$
.

Combining orthogonality and equal sum

Lemma

The projection of $p_{\geq i}(A)$ into $\widetilde{A}_{\geq i}$ is $\widetilde{A}_{\geq i}$.

Proof.

$$\operatorname{Proj}_{\widetilde{A}_{\geq i}} p_{\geq i}(A) = \frac{\langle \widetilde{A}_{\geq i}, p_{\geq i}(A) \rangle}{\delta_{\geq i}} \widetilde{A}_{\geq i}$$
$$= \frac{\langle \widetilde{A}_{\geq i}, H(A) \rangle}{\delta_{\geq i}} \widetilde{A}_{\geq i}$$
$$= \frac{\langle \widetilde{A}_{\geq i}, \widetilde{A}_{\geq i} \rangle}{\delta_{\geq i}} \widetilde{A}_{\geq i}$$
$$= \widetilde{A}_{\geq i}.$$

Corollary

$$\delta_{\geq i} \leq p_{\geq i}(\lambda_0)$$
 with equality iff $p_{\geq i}(A) = \widetilde{A}_{\geq i}$.

Proof.

This follows from $\operatorname{Proj}_{\widetilde{A}\geq i} p_{\geq i}(A) = \widetilde{A}_{\geq i}$ and the definitions $\|\widetilde{A}_{\geq i}\|^2 = \delta_{\geq i}$ and $\|p_{\geq i}(A)\|^2 = p_{\geq i}(\lambda_0)$.

Corollary

 $\delta_{\geq i} \leq p_{\geq i}(\lambda_0)$ with equality iff $p_{\geq i}(A) = \widetilde{A}_{\geq i}$.

Proof.

This follows from $\operatorname{Proj}_{\widetilde{A}_{\geq i}} p_{\geq i}(A) = \widetilde{A}_{\geq i}$ and the definitions $\|\widetilde{A}_{\geq i}\|^2 = \delta_{\geq i}$ and $\|p_{\geq i}(A)\|^2 = p_{\geq i}(\lambda_0)$.

When i = D the above Corollary is referred as the Spectral Excess Theorem. The original Spectral Excess Theorem only considers the regular graphs with d = D essentially.

In the case i = d = D the above inequality in the last page becomes $\delta_D \leq p_D(\lambda_0)$, and equality hold iff $p_D(A) = \widetilde{A}_D$. Together with $p_{D+1}(A) = 0$,

$$p_0(A) + p_1(A) + \ldots + p_d(A) = H(A) = D_\alpha J D_\alpha = \widetilde{A}_0 + \widetilde{A}_1 + \cdots + \widetilde{A}_D,$$

and using the following three-term relations

Lemma

$$xp_i(x) = c_{i+1}p_{i+1}(x) + a_ip_i(x) + b_{i-1}p_{i-1}(x)$$
 $0 \le i \le d$

for some scalars c_{i+1} , a_i , $b_{i-1} \in \mathbb{R}$ with $b_{-1} = c_{d+1} := 0$,

one can in turns prove

$$p_{D-1}(A) = \widetilde{A}_{D-1}, p_{D-2}(A) = \widetilde{A}_{D-2}, p_{D-3}(A) = \widetilde{A}_{D-3}, \dots, I = p_0(A) = \widetilde{A}_0.$$

A graph with D = d and all the above equalities is called a distance-regular graph.

As an application we show the following.

Theorem

A graph whose smallest odd cycle has length 2d + 1 (odd-girth 2d + 1) must be distance-regular.

Petersen graph has odd-girth

$$5 = 2D + 1 = 2d + 1$$
.

A graph with odd-girth 5 = 2D + 1 < 2d + 1 = 11.

Hoffman graph

The Hoffman graph has d = D = 4 and $p_i(A) = \widetilde{A}_i$ for i = 0, 1, 3, but $p_2(A) \neq \widetilde{A}_2$ and $p_4(A) \neq \widetilde{A}_4$.

The graph P_3

Let *G* be a path of three vertices. It can be computed that $\lambda_0 = \sqrt{2}$, d = D = 2, $\alpha = (\sqrt{3}/2, \sqrt{6}/2, \sqrt{3}/2)^t$, $p_0(x) = 1$, $p_1(x) = 3\sqrt{2}x/4$, $p_2(x) = 3(x^2 - 4/3)/4$, and

$$I + \frac{3\sqrt{2}}{4} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} -1/4 & 0 & 3/4 \\ 0 & 1/2 & 0 \\ 3/4 & 0 & -1/4 \end{pmatrix}$$
$$= \begin{pmatrix} 3/4 & 3\sqrt{2}/4 & 3/4 \\ 3\sqrt{2}/4 & 3/2 & 3\sqrt{2}/4 \\ 3/4 & 3\sqrt{2}/4 & 3/4 \end{pmatrix} = \widetilde{A}_0 + \widetilde{A}_1 + \widetilde{A}_2.$$

Hence $I = p_0(A) \neq \widetilde{A}_0$, $p_1(A) = \widetilde{A}_1$, and $p_2(A) \neq \widetilde{A}_2$.

Suppose D = d. We are interested in determining the family \mathscr{S} containing the subsets $S \subseteq \{1, 2, ..., D\}$ such that $p_i(A) = \widetilde{A}_i$ for $i \in S$ implies the distance-regularity. For example $\{D\} \in \mathscr{S}$ by spectral excess theorem, and $\{D-1\}, \{D-3, D-1\} \notin \mathscr{S}$ from the above two examples.

Suppose D = d. We are interested in determining the family \mathscr{S} containing the subsets $S \subseteq \{1, 2, ..., D\}$ such that $p_i(A) = \widetilde{A}_i$ for $i \in S$ implies the distance-regularity. For example $\{D\} \in \mathscr{S}$ by spectral excess theorem, and $\{D-1\}, \{D-3, D-1\} \notin \mathscr{S}$ from the above two examples.

By using three-term relations and their variations, we can prove

Theorem

Suppose
$$D = d$$
. Then $\{D-2, D-1\} \in \mathscr{S}$.

Theorem

Suppose G is bipartite and D = d. Then $\{D-4, D-2\} \in \mathscr{S}$.

Theorem

Suppose
$$D = d$$
. Then $\{D-1, D-3, D-5, \ldots\} \notin \mathscr{S}$.

Even though $\{D-1\} \notin \mathscr{S}$, some regularities on G still can be found.

Even though $\{D-1\} \notin \mathscr{S}$, some regularities on G still can be found.

Theorem

Suppose G is bipartite with D = d, and $p_{D-1}(A) = \widetilde{A}_{D-1}$. Then the following holds.

(i)
$$p_i(A) = \widetilde{A}_i$$
 for $i = D - 3, D - 5, ...$

(ii) If D is odd then G is regular.

(iii) If D is even then G is regular or bi-regular.

We are also interested in determining the family \mathscr{S}' containing the subsets $S' \subseteq \{1, 2, \ldots, D\}$ such that the assumption

$$p_{>D}(A) + \sum_{i \in S'} p_i(A) = \sum_{i \in S'} \widetilde{A}_i$$

implies the distance-regularity.

We are also interested in determining the family \mathscr{S}' containing the subsets $S' \subseteq \{1, 2, \ldots, D\}$ such that the assumption

$$p_{>D}(A) + \sum_{i \in S'} p_i(A) = \sum_{i \in S'} \widetilde{A}_i$$

implies the distance-regularity.

Theorem

Suppose
$$D = d$$
. Then $\{1, 2, \dots, D-1\} \in \mathscr{S}'$.

Theorem

Suppose G is bipartite and D = d. Then $\{D-2, D-4, D-6, \ldots\} \in \mathscr{S}'$.

Theorem

Suppose G is bipartite (without assuming D = d). Then $\{D - 1, D\} \in \mathscr{S}'$.

Back to the inequalities

We have shown that $\delta_{\geq i} \leq p_{\geq i}(\lambda_0)$.

Back to the inequalities

We have shown that $\delta_{\geq i} \leq p_{\geq i}(\lambda_0)$. Use

$$p_0(\lambda_0) + p_1(\lambda_0) + \ldots + p_d(\lambda_0) = \delta_0 + \delta_1 + \cdots + \delta_D$$

to have $\delta_{\leq i-1} \geq p_{\leq i-1}(\lambda_0).$

Back to the inequalities

We have shown that $\delta_{\geq i} \leq p_{\geq i}(\lambda_0)$. Use

$$p_0(\lambda_0) + p_1(\lambda_0) + \ldots + p_d(\lambda_0) = \delta_0 + \delta_1 + \cdots + \delta_D$$

to have $\delta_{\leq i-1} \geq p_{\leq i-1}(\lambda_0)$.

These are inequalities about largest eigenvalue λ_0 and Perron-Frobenius vector α of G.

Back to the inequalities

We have shown that $\delta_{\geq i} \leq p_{\geq i}(\lambda_0)$. Use

$$p_0(\lambda_0) + p_1(\lambda_0) + \ldots + p_d(\lambda_0) = \delta_0 + \delta_1 + \cdots + \delta_D$$

to have $\delta_{\leq i-1} \geq p_{\leq i-1}(\lambda_0)$.

These are inequalities about largest eigenvalue λ_0 and Perron-Frobenius vector α of G.

For the case i = 0, we have

$$(\alpha_1^4 + \alpha_2^4 + \dots + \alpha_n^4)/n = \delta_0 \ge p_0(\lambda_0) = 1,$$

which can be easily proved directly by using Cauchy-Schwarz inequality and using $\alpha_1^2 + \alpha_2^2 + \cdots + \alpha_n^2 = n$.

Questions

● Is it easy to obtain a direct proof of $\delta_{\leq i-1} \geq p_{\leq i-1}(\lambda_0)$ for $i \geq 1$ as we have deon for i = 0 in previous page?

- Is it easy to obtain a direct proof of $\delta_{\leq i-1} \geq p_{\leq i-1}(\lambda_0)$ for $i \geq 1$ as we have deon for i = 0 in previous page?
- ② Which one is true? $\delta_1 \ge p_1(\lambda_0), \ \delta_1 \le p_1(\lambda_0)$, or they can not be compared.

- Is it easy to obtain a direct proof of $\delta_{\leq i-1} \geq p_{\leq i-1}(\lambda_0)$ for $i \geq 1$ as we have deon for i = 0 in previous page?
- ② Which one is true? $\delta_1 \ge p_1(\lambda_0), \ \delta_1 \le p_1(\lambda_0)$, or they can not be compared.
- Are there any applications of the above inequalities.

- Is it easy to obtain a direct proof of $\delta_{\leq i-1} \geq p_{\leq i-1}(\lambda_0)$ for $i \geq 1$ as we have deon for i = 0 in previous page?
- ② Which one is true? $\delta_1 \ge p_1(\lambda_0), \ \delta_1 \le p_1(\lambda_0)$, or they can not be compared.
- Are there any applications of the above inequalities.
- What is the relation among the (D+1)-spaces

$$\mathsf{Span}(p_0(A),p_1(A),\ldots,p_{i-1}(A),\widetilde{A}_i,\widetilde{A}_{i+1},\ldots,\widetilde{A}_D)$$
 for $1\leq i\leq D.$

- Is it easy to obtain a direct proof of $\delta_{\leq i-1} \geq p_{\leq i-1}(\lambda_0)$ for $i \geq 1$ as we have deon for i = 0 in previous page?
- ② Which one is true? $\delta_1 \ge p_1(\lambda_0), \ \delta_1 \le p_1(\lambda_0)$, or they can not be compared.
- Are there any applications of the above inequalities.
- What is the relation among the (D+1)-spaces

$$\mathsf{Span}(p_0(A),p_1(A),\ldots,p_{i-1}(A),\widetilde{A}_i,\widetilde{A}_{i+1},\ldots,\widetilde{A}_D)$$
 for $1\leq i\leq D.$

Thanks for your attention.