The spectral excess theorem for general graphs

Guang-Siang Lee, Chih-wen Weng

Department of Applied Mathematics
National Chiao Tung University
September 10, 2011

Overview

Let D denote the diameter of a graph and d denote the spectral diameter of a graph. ($d+1$ is the number of distinct eigenvalues of $G)$

Petersen graph has odd-girth

A graph with odd-girth

$$
5=2 D+1<2 d+1
$$

Overview

The theory we derive here will show that a graph with odd-girth $2 \mathrm{~d}+1$ must be regular, and then indeed distance-regular by a recent result of E.R. van Dam and W.H. Haemers.
(E.R. van Dam and W.H. Haemers, An odd characterization of the generalized odd graphs, J. Combin. Theory Ser. B (2011), doi:10.1016/j.jctb.2011.03.001).

Outline

- Orthogonal polynomials associated with a graph
- Hoffman polynomial
- The generalized spectral excess theorem
- $D=d$
- Graphs with odd-girth $2 d+1$
- Orthogonal polynomials associated with a graph

Hoffman polynomials

The generalized spectral excess theorem
$D=d$
Graphs with odd-girth $2 d+1$

Notations

Let $G=(V G, E G)$ be a connected graph on n vertices, with diameter D, adjacency matrix A, and distance function ∂. Assume that A has $d+1$ distinct eigenvalues $\lambda_{0}>\lambda_{1}>\ldots>\lambda_{d}$ with corresponding multiplicities $1=m_{0}, m_{1}, \ldots, m_{d}$. The spectrum of G will be denoted by the multi-set

$$
\mathrm{sp} G=\left\{\lambda_{0}^{m_{0}}, \lambda_{1}^{m_{1}}, \ldots, \lambda_{d}^{m_{d}}\right\} .
$$

The parameter d is called the spectral diameter of G. It is well known that $D \leq d$ and

$$
Z(x):=\prod_{i=0}^{d}\left(x-\lambda_{i}\right)
$$

is the minimal polynomial of A.

Inner product polynomial space

Consider the $(d+1)$-dimensional vector space $\mathbb{R}_{d}[x] \cong \mathbb{R}[x] /\langle Z(x)\rangle$ with inner product defined by

$$
\langle p(x), q(x)\rangle_{\triangle}:=\sum_{i=0}^{d} \frac{m_{i}}{n} p\left(\lambda_{i}\right) q\left(\lambda_{i}\right)=\operatorname{tr}(p(A) q(A)) / n
$$

Inner product polynomial space

Consider the $(d+1)$-dimensional vector space $\mathbb{R}_{d}[x] \cong \mathbb{R}[x] /\langle Z(x)\rangle$ with inner product defined by

$$
\langle p(x), q(x)\rangle_{\triangle}:=\sum_{i=0}^{d} \frac{m_{i}}{n} p\left(\lambda_{i}\right) q\left(\lambda_{i}\right)=\operatorname{tr}(p(A) q(A)) / n
$$

and norm defined by

$$
\|p(x)\|_{\triangle}=\sqrt{\langle p(x), p(x)\rangle_{\triangle}}
$$

for $p(x), q(x) \in \mathbb{R}_{d}[x]$.

Inner product polynomial space

Consider the $(d+1)$-dimensional vector space $\mathbb{R}_{d}[x] \cong \mathbb{R}[x] /\langle Z(x)\rangle$ with inner product defined by

$$
\langle p(x), q(x)\rangle_{\triangle}:=\sum_{i=0}^{d} \frac{m_{i}}{n} p\left(\lambda_{i}\right) q\left(\lambda_{i}\right)=\operatorname{tr}(p(A) q(A)) / n
$$

and norm defined by

$$
\|p(x)\|_{\triangle}=\sqrt{\langle p(x), p(x)\rangle_{\triangle}}
$$

for $p(x), q(x) \in \mathbb{R}_{d}[x]$.
Note that
(1) $1, x, \ldots, x^{d}$ is a basis of $\mathbb{R}_{d}[x]$.
(2) $\langle p(x), p(x)\rangle_{\triangle}=0$ iff $p(x)=0$.
(3) $\langle x p(x), q(x)\rangle_{\triangle}=\langle p(x), x q(x)\rangle_{\triangle}$.

Gram-Schmidt process

The projection of $q(x)$ into $p(x)$ is defined by

$$
\operatorname{Proj}_{p(x)}(q(x)):=\frac{\langle p(x), q(x)\rangle_{\triangle}}{\|p(x)\|_{\triangle}^{2}} p(x) .
$$

Set $p_{0}^{\prime}(x)=1$ and

$$
\begin{equation*}
p_{i+1}^{\prime}(x)=x^{i+1}-\sum_{k=0}^{i} \operatorname{Proj}_{p_{k}^{\prime}(x)}\left(x^{i+1}\right) \tag{1}
\end{equation*}
$$

for $0 \leq i \leq d-1$ recursively. Then $p_{0}^{\prime}(x), p_{1}^{\prime}(x), \ldots, p_{d}^{\prime}(x)$ is an orthogonal basis of $\mathbb{R}_{d}[x]$ such that $p_{i}^{\prime}(x)$ has degree i and leading coefficient 1 .

Lemma

$p_{i}^{\prime}\left(\lambda_{0}\right)>0$ for $0 \leq i \leq d$.

Lemma
 $p_{i}^{\prime}\left(\lambda_{0}\right)>0$ for $0 \leq i \leq d$.

Proof.

Let $\theta_{1}, \theta_{2}, \ldots, \theta_{h}$ be zeros of $p_{i}^{\prime}(x)$ in $\left(\lambda_{d}, \lambda_{0}\right)$ for which $p_{i}^{\prime}(x)$ takes opposite signs in $\left(\theta_{j}-\varepsilon, \theta_{j}\right)$ and in $\left(\theta_{j}, \theta_{j}+\varepsilon\right)$ for all $1 \leq j \leq h$ and for some $\varepsilon>0$.

Set $q(x)=\prod_{j=1}^{h}\left(x-\theta_{j}\right)$.
Then $q(x) p_{i}^{\prime}(x) \geq 0$ for all $x \in\left[\lambda_{d}, \lambda_{0}\right]$ or $q(x) p_{i}^{\prime}(x) \leq 0$ for all $x \in\left[\lambda_{d}, \lambda_{0}\right]$.
Since $h \leq i<d+1$, there exists an eigenvalue λ_{j} such that $q\left(\lambda_{j}\right) p_{i}^{\prime}\left(\lambda_{j}\right) \neq 0$. Hence $\left\langle q(x), p_{i}^{\prime}(x)\right\rangle_{\triangle} \neq 0$ for all $x \in\left[\lambda_{d}, \lambda_{0}\right]$.

As $q(x)$ can be written as a linear combination of $p_{0}^{\prime}(x), p_{1}^{\prime}(x), \ldots, p_{h}^{\prime}(x)$, $h=i$ and all zeros of $p_{i}^{\prime}(x)$ appear in $\left(\lambda_{d}, \lambda_{0}\right)$.

Thus $q(x)=p_{i}^{\prime}(x)$ and hence $p_{i}^{\prime}\left(\lambda_{0}\right)=q\left(\lambda_{0}\right)>0$.

The predistance polynomials

Set

$$
\begin{equation*}
p_{i}(x)=\frac{p_{i}^{\prime}\left(\lambda_{0}\right)}{\left\|p_{i}^{\prime}(x)\right\|_{\triangle}^{2}} p_{i}^{\prime}(x) \tag{2}
\end{equation*}
$$

Then $p_{0}(x), p_{1}(x), \ldots, p_{d}(x)$ is the unique system of orthogonal polynomials in $\mathbb{R}_{d}[x]$ satisfying

$$
\operatorname{deg} p_{i}(x)=i
$$

and

$$
\left\|p_{i}(x)\right\|_{\Delta}^{2}=p_{i}\left(\lambda_{0}\right)
$$

for $0 \leq i \leq d$. The $p_{i}(x)$ is referred as the i-th predistance polynomial of G. Note that $p_{d}\left(\lambda_{0}\right)>0$.

Three-term relations

Lemma

$$
\begin{equation*}
x p_{i}(x)=c_{i+1} p_{i+1}(x)+a_{i} p_{i}(x)+b_{i-1} p_{i-1}(x) \quad 0 \leq i \leq d \tag{3}
\end{equation*}
$$

for some scalars $c_{i+1}, a_{i}, b_{i-1} \in \mathbb{R}$ with $b_{-1}=c_{d+1}:=0$.

Three-term relations

Lemma

$$
\begin{equation*}
x p_{i}(x)=c_{i+1} p_{i+1}(x)+a_{i} p_{i}(x)+b_{i-1} p_{i-1}(x) \quad 0 \leq i \leq d \tag{3}
\end{equation*}
$$

for some scalars $c_{i+1}, a_{i}, b_{i-1} \in \mathbb{R}$ with $b_{-1}=c_{d+1}:=0$.

Proof.

Since $x p_{i}(x)$ has degree $i+1$, write $x p_{i}(x)=\sum_{j=0}^{i+1} \alpha_{i j} p_{j}(x)$ for some $\alpha_{i j} \in \mathbb{R}$. Then

$$
\begin{aligned}
\alpha_{i j}\left\langle p_{j}(x), p_{j}(x)\right\rangle_{\triangle} & =\left\langle\sum_{k=0}^{i+1} \alpha_{i k} p_{k}(x), p_{j}(x)\right\rangle_{\triangle}=\left\langle x p_{i}(x), p_{j}(x)\right\rangle_{\triangle} \\
& =\left\langle p_{i}(x), x p_{j}(x)\right\rangle_{\triangle}=0
\end{aligned}
$$

if $\operatorname{deg}\left(x p_{j}(x)\right)=j+1<i$.

Note that

$$
c_{i+1}=\frac{\left\langle x p_{i}(x), p_{i+1}(x)\right\rangle_{\triangle}}{\left\|p_{i+1}(x)\right\|_{\Delta}^{2}} \neq 0
$$

and

$$
b_{i}=\frac{\left\langle x p_{i+1}(x), p_{i}(x)\right\rangle_{\triangle}}{\left\|p_{i}(x)\right\|_{\Delta}^{2}}=\frac{\left\langle p_{i+1}(x), x p_{i}(x)\right\rangle_{\triangle}}{\left\|p_{i}(x)\right\|_{\triangle}^{2}} \neq 0
$$

for $0 \leq i \leq d-1$.

The number

$$
\bar{k}_{d}:=|\{(u, v) \mid u, v \in V G, \partial(u, v)=d\}| / n
$$

is called the the average excess of G, and the number $p_{d}\left(\lambda_{0}\right)$ is called the spectral excess of G.

The number

$$
\bar{k}_{d}:=|\{(u, v) \mid u, v \in V G, \partial(u, v)=d\}| / n
$$

is called the the average excess of G, and the number $p_{d}\left(\lambda_{0}\right)$ is called the spectral excess of G.

The spectral excess theorem states that

$$
\begin{equation*}
\bar{k}_{d} \leq p_{d}\left(\lambda_{0}\right) \tag{4}
\end{equation*}
$$

if G is regular, and the equality holds iff G is distance-regular.
(M.A. Fiol and E. Garriga, From local adjacency polynomials to local pseudo-distance-regular graphs, J. Combin. Theory Ser. B 71 (1997), 162-183).

The following example shows that the regularity assumption of G in the spectrum excess theorem is necessary.

Example

Let G be a path of three vertices. Then $\operatorname{sp}(G)=\{\sqrt{2}, 0,-\sqrt{2}\}$.
By (1), $p_{0}^{\prime}(x)=1, p_{1}^{\prime}(x)=x, p_{2}^{\prime}(x)=x^{2}-4 / 3$.
By (2), $p_{0}(x)=1, p_{1}(x)=3 \sqrt{2} x / 4, p_{2}(x)=3\left(x^{2}-4 / 3\right) / 4$. Note that $\bar{k}_{2}=2 / 3$ and $p_{2}\left(\lambda_{0}\right)=1 / 2$. This shows that (4) does not hold.

We will generalize the spectrum excess theorem to the non-regular graphs.

Inner product matrix space

Definition

For two $n \times n$ symmetric matrices M, N over \mathbb{R}, define the inner product

$$
\begin{equation*}
\langle M, N\rangle:=\frac{1}{n} \operatorname{tr}(M N)=\frac{1}{n} \sum_{i, j} M_{i j} N_{i j}=\frac{1}{n} \sum_{i, j}(M \circ N)_{i j}, \tag{5}
\end{equation*}
$$

and the norm

$$
\|M\|=\sqrt{\langle M, M\rangle},
$$

where " \circ " is the entrywise or Hadamard product of matrices.

Thus $\langle p(A), q(A)\rangle=\langle p(x), q(x)\rangle_{\triangle}$ for $p(x), q(x) \in \mathbb{R}_{d}[x]$.

Orthogonal polynomials associated with a graph

- Hoffman polynomials

The generalized spectral excess theorem

$D=d$
Graphs with odd-girth $2 d+1$

Hoffman polynomial

Definition

The polynomial

$$
H(x):=n \prod_{i=1}^{d} \frac{x-\lambda_{i}}{\lambda_{0}-\lambda_{i}}
$$

is called the Hoffman polynomial of G.

Hoffman polynomial

Definition

The polynomial

$$
H(x):=n \prod_{i=1}^{d} \frac{x-\lambda_{i}}{\lambda_{0}-\lambda_{i}}
$$

is called the Hoffman polynomial of G.

Let $q_{i}(x)=\sum_{j=0}^{i} p_{j}(x)$. Then $q_{i}(x)$ has degree i and $q_{0}(x), q_{1}(x), \ldots, q_{d}(x)$ is a basis of $\mathbb{R}_{d}[x]$. Note that

$$
\left\|q_{i}(x)\right\|_{\triangle}^{2}=\sum_{j=0}^{i}\left\|p_{j}(x)\right\|_{\triangle}^{2}=\sum_{j=0}^{i} p_{j}\left(\lambda_{0}\right)=q_{i}\left(\lambda_{0}\right)
$$

An optimization problem

Lemma

For $p(x) \in \mathbb{R}_{d}[x]$ with degree at most i and $\|p(x)\|_{\Delta}=\left\|q_{i}(x)\right\|_{\Delta}$, $p\left(\lambda_{0}\right)^{2} \leq q_{i}\left(\lambda_{0}\right)^{2}$ with equality iff $p(x)= \pm q_{i}(x)$.

An optimization problem

Lemma

For $p(x) \in \mathbb{R}_{d}[x]$ with degree at most i and $\|p(x)\|_{\Delta}=\left\|q_{i}(x)\right\|_{\Delta}$, $p\left(\lambda_{0}\right)^{2} \leq q_{i}\left(\lambda_{0}\right)^{2}$ with equality iff $p(x)= \pm q_{i}(x)$.

Proof.

Let $p(x)=\sum_{j=0}^{i} \alpha_{j} p_{j}(x)$ for some $\alpha_{j} \in \mathbb{R}$.
As $q_{i}\left(\lambda_{0}\right)=\left\|q_{i}(x)\right\|_{\triangle}^{2}=\|p(x)\|_{\triangle}^{2}=\sum_{j=0}^{i} \alpha_{j}^{2} p_{j}\left(\lambda_{0}\right)$, by Cauchy's inequality,

$$
p\left(\lambda_{0}\right)^{2}=\left[\sum_{j=0}^{i} \alpha_{j} p_{j}\left(\lambda_{0}\right)\right]^{2} \leq\left[\sum_{j=0}^{i} \alpha_{j}^{2} p_{j}\left(\lambda_{0}\right)\right]\left[\sum_{j=0}^{i} p_{j}\left(\lambda_{0}\right)\right]=q_{i}\left(\lambda_{0}\right)^{2},
$$

with equality iff all α_{j} are equal; indeed $\alpha_{j}= \pm 1$.

The dual problem

Lemma

For $p(x) \in \mathbb{R}_{d}[x]$ with degree at most i and $\|p(x)\|_{\Delta}=\left\|q_{i}(x)\right\|_{\Delta}$, $\sum_{j=1}^{d} m_{j} q_{i}\left(\lambda_{j}\right)^{2} \leq \sum_{j=1}^{d} m_{j} p\left(\lambda_{j}\right)^{2}$ with equality iff $p(x)= \pm q_{i}(x)$.

The dual problem

Lemma

For $p(x) \in \mathbb{R}_{d}[x]$ with degree at most i and $\|p(x)\|_{\Delta}=\left\|q_{i}(x)\right\|_{\Delta}$, $\sum_{j=1}^{d} m_{j} q_{i}\left(\lambda_{j}\right)^{2} \leq \sum_{j=1}^{d} m_{j} p\left(\lambda_{j}\right)^{2}$ with equality iff $p(x)= \pm q_{i}(x)$.

Proof.

This follows from the previous lemma and

$$
\frac{1}{n}\left(p\left(\lambda_{0}\right)^{2}+\sum_{j=1}^{d} m_{j} p\left(\lambda_{j}\right)^{2}\right)=\|p(x)\|_{\triangle}^{2}=\left\|q_{i}(x)\right\|_{\triangle}^{2}=\frac{1}{n}\left(q_{i}\left(\lambda_{0}\right)^{2}+\sum_{j=1}^{d} m_{j} q_{i}\left(\lambda_{j}\right)^{2}\right)
$$

Lemma

For any graph, the sum of all the predistance polynomials gives the Hoffman polynomial, i.e.,

$$
\begin{equation*}
H(x)=q_{d}(x)=p_{0}(x)+p_{1}(x)+\cdots+p_{d}(x) . \tag{6}
\end{equation*}
$$

Lemma

For any graph, the sum of all the predistance polynomials gives the Hoffman polynomial, i.e.,

$$
\begin{equation*}
H(x)=q_{d}(x)=p_{0}(x)+p_{1}(x)+\cdots+p_{d}(x) . \tag{6}
\end{equation*}
$$

Proof.

Let $p(x)=c \prod_{i=1}^{d} \frac{x-\lambda_{i}}{\lambda_{0}-\lambda_{i}}$ for some $c \in \mathbb{R}$ such that $\|p(x)\|_{\triangle}=\left\|q_{d}(x)\right\|_{\triangle}$.
By dual problem lemma, $\sum_{j=1}^{d} m_{j} q_{d}\left(\lambda_{j}\right)^{2} \leq \sum_{j=1}^{d} m_{j} p\left(\lambda_{j}\right)^{2}=0$.
Then $\sum_{j=1}^{d} m_{j} q_{d}\left(\lambda_{j}\right)^{2}=0$ and thus $q_{d}(x)= \pm p(x)$.
Hence $q_{d}\left(\lambda_{0}\right)=\left\|q_{d}(x)\right\|_{\triangle}^{2}=\left(q_{d}\left(\lambda_{0}\right)^{2}+\sum_{j=1}^{d} m_{j} q_{d}\left(\lambda_{j}\right)^{2}\right) / n=q_{d}\left(\lambda_{0}\right)^{2} / n$.
Therefore, $q_{d}\left(\lambda_{0}\right)=n$, and $q_{d}(x)=n \prod_{i-1}^{d} \frac{x-\lambda_{i}}{\lambda_{0}-\lambda_{i}}=H(x)$.

Let α be the eigenvector of A corresponding to λ_{0} such that $\alpha^{t} \alpha=n$ and all entries are positive. Note that $\alpha=(1,1, \ldots, 1)^{t}$ iff G is regular.

Lemma

For the graph G,

$$
H(A)=\frac{n \alpha \alpha^{t}}{\alpha^{t} \alpha}=\alpha \alpha^{t}
$$

Moreover, G is regular iff $H(A)=J$, the all 1's matrix.

Let α be the eigenvector of A corresponding to λ_{0} such that $\alpha^{t} \alpha=n$ and all entries are positive. Note that $\alpha=(1,1, \ldots, 1)^{t}$ iff G is regular.

Lemma

For the graph G,

$$
H(A)=\frac{n \alpha \alpha^{t}}{\alpha^{t} \alpha}=\alpha \alpha^{t}
$$

Moreover, G is regular iff $H(A)=J$, the all 1's matrix.

Proof.

The first equality follows since the matrix in the middle of the equation acts as $H(A)$ on the right eigenvectors of A. The second equality follows from the assumption $\alpha^{t} \alpha=n$. The remaining is clear.

Orthogonal polynomials associated with a graph

Hoffman polynomials

- The generalized spectral excess theorem
$D=d$
Graphs with odd-girth $2 d+1$

For $u \in V G$, let α_{u} be the entry corresponding to u in the eigenvector α. Let A_{i} be the i-th distance matrix, i.e., an $n \times n$ matrix with rows and columns indexed by the vertex set $V G$ such that

$$
\left(A_{i}\right)_{u v}= \begin{cases}1, & \text { if } \partial(u, v)=i \\ 0, & \text { else. }\end{cases}
$$

In particular, $A_{0}=I$ and $A_{1}=A$.

For $u \in V G$, let α_{u} be the entry corresponding to u in the eigenvector α. Let A_{i} be the i-th distance matrix, i.e., an $n \times n$ matrix with rows and columns indexed by the vertex set $V G$ such that

$$
\left(A_{i}\right)_{u v}= \begin{cases}1, & \text { if } \partial(u, v)=i \\ 0, & \text { else }\end{cases}
$$

In particular, $A_{0}=I$ and $A_{1}=A$.
Define

$$
\begin{aligned}
p_{\geq D}(x) & :=p_{D}(x)+p_{D+1}(x)+\cdots+p_{d}(x), \\
\widetilde{A}_{i} & :=A_{i} \circ H(A), \\
\delta_{i} & :=\left\|\widetilde{A}_{i}\right\|^{2} .
\end{aligned}
$$

For $u \in V G$, let α_{u} be the entry corresponding to u in the eigenvector α. Let A_{i} be the i-th distance matrix, i.e., an $n \times n$ matrix with rows and columns indexed by the vertex set $V G$ such that

$$
\left(A_{i}\right)_{u v}= \begin{cases}1, & \text { if } \partial(u, v)=i \\ 0, & \text { else. }\end{cases}
$$

In particular, $A_{0}=I$ and $A_{1}=A$.
Define

$$
\begin{aligned}
p_{\geq D}(x) & :=p_{D}(x)+p_{D+1}(x)+\cdots+p_{d}(x), \\
\widetilde{A}_{i} & :=A_{i} \circ H(A), \\
\delta_{i} & :=\left\|\widetilde{A}_{i}\right\|^{2} .
\end{aligned}
$$

More precisely, \widetilde{A}_{i} is regarded as a "weighted" version of A_{i} as follows:

$$
\left(\widetilde{A}_{i}\right)_{u v}=\left\{\begin{align*}
\alpha_{u} \alpha_{v}, & \text { if } \partial(u, v)=i \tag{7}\\
0, & \text { else }
\end{align*}\right.
$$

Note that $\delta_{d}=0$ iff $d>D$. The number δ_{D} is referred as average weighted excess and $p_{\geq D}\left(\lambda_{0}\right)$ is as generalized spectral excess of G.

Note that if $D=d$ we have $p_{\geq D}(x)=p_{D}(x)$.
By the above definitions, we have

$$
\begin{equation*}
\left\|p_{\geq D}(A)\right\|^{2}=\left\|p_{\geq D}(x)\right\|_{\triangle}^{2}=p_{\geq D}\left(\lambda_{0}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{A}_{0}+\widetilde{A}_{1}+\cdots+\widetilde{A}_{D}=H(A) \tag{9}
\end{equation*}
$$

It is well-known that $\left(A^{i}\right)_{u v}$ counts the number of walks of length i in G from u to v. In particular, if there exists a cycle of length i in G then $\operatorname{tr}\left(A^{i}\right) \neq 0$. Although \widetilde{A}_{i} might be different to A_{i}, they are similar as for $j<i$,

$$
\begin{equation*}
\left\langle A_{i}, p_{j}(A)\right\rangle=0=\left\langle\widetilde{A}_{i}, p_{j}(A)\right\rangle \tag{10}
\end{equation*}
$$

from (5).

Lemma

The projection of \widetilde{A}_{D} into $p_{\geq D}(A)$ is

$$
\operatorname{Proj}_{p \geq D}(A) \widetilde{A}_{D}=\frac{\delta_{D}}{p_{\geq D}\left(\lambda_{0}\right)} p_{\geq D}(A) .
$$

Lemma

The projection of \widetilde{A}_{D} into $p_{\geq D}(A)$ is

$$
\operatorname{Proj}_{p \geq D}(A) \widetilde{A}_{D}=\frac{\delta_{D}}{p_{\geq D}\left(\lambda_{0}\right)} p_{\geq D}(A)
$$

Proof.

By (5), (8), (9), and (10),

$$
\begin{aligned}
\operatorname{Proj}_{p \geq D}(A) \widetilde{A}_{D} & =\frac{\left\langle\widetilde{A}_{D}, p_{\geq D}(A)\right\rangle}{\left\|p_{\geq D}(A)\right\|^{2}} p_{\geq D}(A) \\
& =\frac{\left\langle\widetilde{A}_{D}, H(A)\right\rangle}{p_{\geq D}\left(\lambda_{0}\right)} p_{\geq D}(A) \\
& =\frac{\delta_{D}}{p_{\geq D}\left(\lambda_{0}\right)} p_{\geq D}(A) .
\end{aligned}
$$

Generalized spectral excess theorem

Theorem

Let G be a connected graph with diameter D. Then $\delta_{D} \leq p_{\geq D}\left(\lambda_{0}\right)$ with equality iff $\widetilde{A}_{D}=p_{\geq D}(A)$.

Generalized spectral excess theorem

Theorem

Let G be a connected graph with diameter D. Then $\delta_{D} \leq p_{\geq D}\left(\lambda_{0}\right)$ with equality iff $\widetilde{A}_{D}=p_{\geq D}(A)$.

Proof.

By Lemma 3.1,

$$
0 \leq\left\|\widetilde{A}_{D}\right\|^{2}-\left\|\operatorname{Proj}_{p_{\geq D}(A)} \widetilde{A}_{D}\right\|^{2}=\delta_{D}-\frac{\delta_{D}^{2}}{p_{\geq D}\left(\lambda_{0}\right)}
$$

The equality is attained iff $\widetilde{A}_{D}=\operatorname{Proj}_{p \geq D}(A) \widetilde{A}_{D}=p_{\geq D}(A)$.

Revisiting the case that G is a path of three vertices in Example 1.3, $d=D=2$ and thus $p_{\geq D}\left(\lambda_{0}\right)=p_{2}\left(\lambda_{0}\right)=1 / 2$. Note that $\alpha=(\sqrt{3} / 2, \sqrt{6} / 2, \sqrt{3} / 2)^{t}$. By (7), we have

$$
\widetilde{A}_{D}=\left(\begin{array}{ccc}
0 & 0 & 3 / 4 \\
0 & 0 & 0 \\
3 / 4 & 0 & 0
\end{array}\right)
$$

Hence $\delta_{D}=3 / 8 \leq 1 / 2=p_{\geq D}\left(\lambda_{0}\right)$ satisfies the inequality in Theorem 3.2.

Revisiting the case that G is a path of three vertices in Example 1.3, $d=D=2$ and thus $p_{\geq D}\left(\lambda_{0}\right)=p_{2}\left(\lambda_{0}\right)=1 / 2$. Note that $\alpha=(\sqrt{3} / 2, \sqrt{6} / 2, \sqrt{3} / 2)^{t}$. By (7), we have

$$
\widetilde{A}_{D}=\left(\begin{array}{ccc}
0 & 0 & 3 / 4 \\
0 & 0 & 0 \\
3 / 4 & 0 & 0
\end{array}\right)
$$

Hence $\delta_{D}=3 / 8 \leq 1 / 2=p_{\geq D}\left(\lambda_{0}\right)$ satisfies the inequality in Theorem 3.2.

Remark

If G is regular with diameter $D=2$, then the equality in Theorem 3.2 holds. Indeed $\widetilde{A}_{2}=A_{2}=J-I-A=H(A)-I-A=p_{\geq 2}(A)$.

Orthogonal polynomials associated with a graph Hoffman polynomials

The generalized spectral excess theorem

- $D=d$

Graphs with odd-girth $2 d+1$

Note that $p_{0}(A)=I$. The following simple lemma plays a key role in proving the regularity of a graph.

Lemma
$\widetilde{A}_{0}=p_{0}(A)$ iff G is regular.

Note that $p_{0}(A)=I$. The following simple lemma plays a key role in proving the regularity of a graph.

Lemma
$\widetilde{A}_{0}=p_{0}(A)$ iff G is regular.

Proof.

From (7), $\left(\widetilde{A}_{0}\right)_{u u}=\alpha_{u}^{2}$ for $u \in V G$. Since α has positive entries and $\alpha^{t} \alpha=n, \alpha^{t}=(1,1, \ldots, 1)$ iff G is regular.

Theorem

Let G be a connected graph of diameter D equal to spectral diameter d. Then $\widetilde{A}_{D}=p_{D}(A)$ iff $\widetilde{A}_{i}=p_{i}(A)$ for $0 \leq i \leq D-1$. Moreover, if $A_{D}=p_{D}(A)$ then G is distance-regular.

Theorem

Let G be a connected graph of diameter D equal to spectral diameter d. Then $\widetilde{A}_{D}=p_{\underset{D}{D}}(A)$ iff $\widetilde{A}_{i}=p_{i}(A)$ for $0 \leq i \leq D-1$.
Moreover, if $\widetilde{A}_{D}=p_{D}(A)$ then G is distance-regular.

Proof.

The sufficiency follows from deleting $\widetilde{A}_{i}=p_{i}(A)$ for $0 \leq i \leq D-1$ in both sides of

$$
\begin{equation*}
\widetilde{A}_{0}+\widetilde{A}_{1}+\cdots+\widetilde{A}_{D}=H(A)=p_{0}(A)+p_{1}(A)+\cdots+p_{D}(A) \tag{11}
\end{equation*}
$$

The necessity follows by (backward) induction on $0 \leq i \leq D$. The base case is the assumption that $\widetilde{A}_{D}=p_{D}(A)$. Suppose now that $p_{k}(A)=\widetilde{A}_{k}$ for $D \geq k \geq i$. Then deleting these common terms from both sides of (11), we have

$$
\begin{equation*}
\widetilde{A}_{0}+\widetilde{A}_{1}+\cdots+\widetilde{A}_{i-1}=p_{0}(A)+p_{1}(A)+\cdots+p_{i-1}(A) \tag{12}
\end{equation*}
$$

Proof.

and by induction hypothesis to the three-term recurrence in (3),

$$
\begin{align*}
A \widetilde{A}_{i} & =c_{i+1} p_{i+1}(A)+a_{i} p_{i}(A)+b_{i-1} p_{i-1}(A) \\
& =c_{i+1} \widetilde{A}_{i+1}+a_{i} \widetilde{A}_{i}+b_{i-1} p_{i-1}(A) \tag{13}
\end{align*}
$$

It remains to show that $p_{i-1}(A)=\widetilde{A}_{i-1}$. To this end, consider the following two cases:
(i) For $\partial(u, v) \geq i-1,\left(p_{i-1}(A)\right)_{u v}=\left(\widetilde{A}_{i-1}\right)_{u v}$ by (12).
(ii) For $\partial(u, v)<i-1,\left(A \widetilde{A}_{i}\right)_{u v}=\sum_{w \in G(u)}\left(\widetilde{A}_{i}\right)_{w v}=0$, where the last equality follows since $\partial(w, v) \leq 1+\partial(u, v)<i$.
Then $\left(p_{i-1}(A)\right)_{u v}=0$ by (13) and since $b_{i-1} \neq 0$.
This proves the necessity. Suppose $\widetilde{A}_{D}=p_{D}(A)$. Then G is regular by applying the necessary condition in the case $i=0$ to Lemma 4.1. Thus G is distance-regular by the spectral excess thoerem.

Orthogonal polynomials associated with a graph

Hoffman polynomials

The generalized spectral excess theorem
$D=d$

- Graphs with odd-girth $2 d+1$

Graph with odd girth $2 d+1$

From now on, assume that G has odd-girth $2 d+1$, i.e., the shortest odd cycle has length $2 d+1$. As an application of Theorem 4.2, we will show that G has diameter $D=d$ and G must be distance-regular.

Graph with odd girth $2 d+1$

From now on, assume that G has odd-girth $2 d+1$, i.e., the shortest odd cycle has length $2 d+1$. As an application of Theorem 4.2, we will show that G has diameter $D=d$ and G must be distance-regular.
For a vertex u, let $G_{d}(u)$ be the set of vertices at distance d from u. If $D<d$ then $G_{d}(u)=\emptyset$.

Let $c=n / \prod_{i=1}^{d}\left(\lambda_{0}-\lambda_{i}\right)$ and note that c is the leading coefficient of the Hoffman polynomial $H(x)$. For two vertices $u, v \in V G$ with $\partial(u, v)=d$,

$$
\begin{equation*}
\left(A^{d}\right)_{u v}=H(A)_{u v} / c \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A^{d+1}\right)_{u v}=Z(A)_{u v}+\left(\sum_{i=0}^{d} \lambda_{i}\right)\left(A^{d}\right)_{u v}=\left(\sum_{i=0}^{d} \lambda_{i}\right) H(A)_{u v} / c . \tag{15}
\end{equation*}
$$

Lemma

The average weighted excess δ_{D} of G equals $c^{2} \operatorname{tr}\left(A^{2 d+1}\right) /\left(n \sum_{i=0}^{d} \lambda_{i}\right)$. In particular, $D=d$.

Lemma

The average weighted excess δ_{D} of G equals $c^{2} \operatorname{tr}\left(A^{2 d+1}\right) /\left(n \sum_{i=0}^{d} \lambda_{i}\right)$. In particular, $D=d$.

Proof.

For vertices $u, v \in V G$ with $\partial(u, v)<d,\left(A^{d}\right)_{u v}=0$ or $\left(A^{d+1}\right)_{v u}=0$ since no odd cycle has length less than $2 d+1$. By (5), (9), (14), (15),

$$
\begin{aligned}
n\left(\sum_{i=0}^{d} \lambda_{i}\right) \delta_{d} & =\left(\sum_{i=0}^{d} \lambda_{i}\right) \sum_{u, v \in V G}\left[\left(\widetilde{A}_{d}\right)_{u v}\right]^{2} \\
& =\left(\sum_{i=0}^{d} \lambda_{i}\right) \sum_{u \in V G_{G}} \sum_{v \in G_{d}(u)}\left[H(A)_{u v}\right]^{2} \\
& =c^{2} \sum_{u \in V G} \sum_{v \in V G}\left(A^{d}\right)_{u v}\left(A^{d+1}\right)_{u v}=c^{2} \operatorname{tr}\left(A^{2 d+1}\right) .
\end{aligned}
$$

As $\operatorname{tr}\left(A^{2 d+1}\right) \neq 0$, we have $\sum_{i=0}^{d} \lambda_{i} \neq 0$ and $\delta_{d}=c^{2} \operatorname{tr}\left(A^{2 d+1}\right) /\left(n \sum_{i=0}^{d} \lambda_{i}\right)>0$. This also implies $D=d$.

Lemma

Referring the notations of three-term recurrence in (3),
(i) $a_{j-1}=0$ for $1 \leq j \leq d$;
(ii) $p_{j}(x)$ is an even or odd polynomial depending on whether j is even or odd for $0 \leq j \leq d$.
Moreover, the generalized spectral excess $p_{d}\left(\lambda_{0}\right)$ is $c^{2} \operatorname{tr}\left(A^{2 d+1}\right) /\left(n \sum_{i=0}^{d} \lambda_{i}\right)$.

Proof.

Clearly, $p_{0}(x)=1$ is even. We prove $(i)-(i i)$ by induction on $j \geq 1$. By (2), $p_{1}(x)=n \lambda_{0} x / \sum_{i=0}^{d} m_{i} \lambda_{i}^{2}$ is odd. Setting $i=0$ in (3), $a_{0}=0$. Hence we have $(i)-(i i)$ in the base case $j=1$. By (3),

$$
\begin{equation*}
a_{k} p_{k}\left(\lambda_{0}\right)=\left\langle a_{k} p_{k}(x), p_{k}(x)\right\rangle_{\triangle}=\left\langle x p_{k}(x), p_{k}(x)\right\rangle_{\triangle}=\operatorname{tr}\left(A p_{k}^{2}(A)\right) / n \tag{16}
\end{equation*}
$$

for $0 \leq k \leq d$. Now suppose (i)-(ii) for $j=k<d$. Since $x p_{k}^{2}(x)$ is an odd polynomial of degree $2 k+1<2 d+1$, the last term in (16) is zero. Hence $a_{k}=0$ and (i) holds for $j=k+1$. From (i) and setting $i=k$ in (3), the polynomial $p_{k+1}(x)$ satisfies (ii). This proves $(i)-(i i)$ in any j.

Proof.

For the remaining, since the last term in (16) with $k=d$ equals $c^{2} \operatorname{tr}\left(A^{2 d+1}\right) / n$, it suffices to show $a_{d}=\sum_{i=0}^{d} \lambda_{i}$. Choose two vertices u and v at distance d. Then by (3), (6), (15),

$$
a_{d} H(A)_{u v}=a_{d} p_{d}(A)_{u v}=\left(A p_{d}(A)\right)_{u v}=c\left(A^{d+1}\right)_{u v}=\left(\sum_{i=0}^{d} \lambda_{i}\right) H(A)_{u v}
$$

where the third equality follows because $x p_{d}(x)$ has no term of degree d. Dividing both sides by $H(A)_{u v}$, we have $a_{d}=\sum_{i=0}^{d} \lambda_{i}$.

Proof.

For the remaining, since the last term in (16) with $k=d$ equals $c^{2} \operatorname{tr}\left(A^{2 d+1}\right) / n$, it suffices to show $a_{d}=\sum_{i=0}^{d} \lambda_{i}$. Choose two vertices u and v at distance d. Then by (3), (6), (15),

$$
a_{d} H(A)_{u v}=a_{d} p_{d}(A)_{u v}=\left(A p_{d}(A)\right)_{u v}=c\left(A^{d+1}\right)_{u v}=\left(\sum_{i=0}^{d} \lambda_{i}\right) H(A)_{u v}
$$

where the third equality follows because $x p_{d}(x)$ has no term of degree d. Dividing both sides by $H(A)_{u v}$, we have $a_{d}=\sum_{i=0}^{d} \lambda_{i}$.

From Lemma 5.1-5.2, and Theorem 4.2, we immediately have the following theorem.

Theorem

Any connected graph with $d+1$ distinct eigenvalues and odd-girth $2 d+1$ must be distance-regular.

Reference

N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
(R) A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.

囲 C. Dalfó, E.R. van Dam, M.A. Fiol and E. Garriga, Dual concept of almost distance-regularity and the spectral excess theorem, preprint.
R. Dalfó, E.R. van Dam, M.A. Fiol, E. Garriga and B.L. Gorissen, On almost distance-regular graphs, J. Combin. Theory Ser. A 118 (2011), 1094-1113.
E.R. van Dam, The spectral excess theorem for distance-regular graphs: a global (over)view, Electron. J. Combin. 15 (1) (2008), R129.

囲 E.R. van Dam and W.H. Haemers, An odd characterization of the generalized odd graphs, J. Combin. Theory Ser. B (2011), doi:10.1016/j.jctb.2011.03.001
（R．A．Fiol and E．Garriga，From local adjacency polynomials to local pseudo－distance－regular graphs，J．Combin．Theory Ser．B 71 （1997）， 162－183．
國 M．A．Fiol，S．Gago and E．Garriga，A simple proof of the spectral excess theorem for distance－regular graphs，Linear Algebra Appl． 432 （2010），2418－2422．
（國 A．J．Hoffman，On the polynomial of a graph，Amer．Math．Monthly 70 （1963），30－36．

R T．Huang，Spectral characterization of odd graphs $O_{k}, k \leq 6$ ，Graphs Combin． 10 （1994），235－240．
目 T．Huang and C．Liu，Spectral characterization of some generalized odd graphs，Graphs Combin． 15 （1999），195－209．

屢 P．Terwilliger，The subconstituent algebra of an association scheme I， J．Alg．Combin． 1 （1992），363－388．

P．M．Weichsel，On distance－regularity in graphs，J．Combin．Theory Ser．B 32 （1982），156－161．

