## The spectral excess theorem for general graphs

Guang-Siang Lee, Chih-wen Weng

Department of Applied Mathematics National Chiao Tung University

September 10, 2011

Let D denote the diameter of a graph and d denote the spectral diameter of a graph. (d+1) is the number of distinct eigenvalues of G)





Petersen graph has odd-girth

5 = 2D + 1 = 2d + 1.

A graph with odd-girth 5 = 2D + 1 < 2d + 1.

Overview

The theory we derive here will show that a graph with odd-girth 2d+1 must be regular, and then indeed distance-regular by a recent result of E.R. van Dam and W.H. Haemers.

(E.R. van Dam and W.H. Haemers, An odd characterization of the generalized odd graphs, *J. Combin. Theory Ser. B* (2011), doi:10.1016/j.jctb.2011.03.001).

## Outline

- Orthogonal polynomials associated with a graph
- Hoffman polynomial
- The generalized spectral excess theorem
- D = d
- Graphs with odd-girth 2d+1

## • Orthogonal polynomials associated with a graph

Hoffman polynomials

The generalized spectral excess theorem

D = d

Graphs with odd-girth 2d + 1

## Notations

Let G = (VG, EG) be a connected graph on n vertices, with diameter D, adjacency matrix A, and distance function  $\partial$ . Assume that A has d + 1 distinct eigenvalues  $\lambda_0 > \lambda_1 > \ldots > \lambda_d$  with corresponding multiplicities  $1 = m_0, m_1, \ldots, m_d$ . The spectrum of G will be denoted by the multi-set

sp 
$$G = \{\lambda_0^{m_0}, \lambda_1^{m_1}, \dots, \lambda_d^{m_d}\}.$$

The parameter d is called the spectral diameter of G. It is well known that  $D \leq d$  and

$$Z(x) := \prod_{i=0}^{a} (x - \lambda_i)$$

is the minimal polynomial of A.

## Inner product polynomial space

Consider the (d+1)-dimensional vector space  $\mathbb{R}_d[x] \cong \mathbb{R}[x]/\langle Z(x) \rangle$  with inner product defined by

$$\langle p(x), q(x) \rangle_{\bigtriangleup} := \sum_{i=0}^{d} \frac{m_i}{n} p(\lambda_i) q(\lambda_i) = \operatorname{tr}(p(A)q(A))/n,$$

7 / 38

## Inner product polynomial space

Consider the (d+1)-dimensional vector space  $\mathbb{R}_d[x] \cong \mathbb{R}[x]/\langle Z(x) \rangle$  with inner product defined by

$$\langle p(x), q(x) \rangle_{\bigtriangleup} := \sum_{i=0}^{d} \frac{m_i}{n} p(\lambda_i) q(\lambda_i) = \operatorname{tr}(p(A)q(A))/n,$$

and norm defined by

$$\|p(x)\|_{\bigtriangleup} = \sqrt{\langle p(x), p(x) \rangle_{\bigtriangleup}}$$

for  $p(x), q(x) \in \mathbb{R}_d[x]$ .

## Inner product polynomial space

Consider the (d+1)-dimensional vector space  $\mathbb{R}_d[x] \cong \mathbb{R}[x]/\langle Z(x) \rangle$  with inner product defined by

$$\langle p(x), q(x) \rangle_{\bigtriangleup} := \sum_{i=0}^{d} \frac{m_i}{n} p(\lambda_i) q(\lambda_i) = \operatorname{tr}(p(A)q(A))/n,$$

and norm defined by

$$\|p(x)\|_{\triangle} = \sqrt{\langle p(x), p(x) \rangle_{\triangle}}$$

for  $p(x), q(x) \in \mathbb{R}_d[x]$ .

Note that

## Gram-Schmidt process

The projection of q(x) into p(x) is defined by

$$\mathsf{Proj}_{p(x)}(q(x)) := \frac{\langle p(x), q(x) \rangle_{\triangle}}{\|p(x)\|_{\triangle}^2} p(x).$$

Set  $p'_0(x) = 1$  and

$$p'_{i+1}(x) = x^{i+1} - \sum_{k=0}^{i} \operatorname{Proj}_{p'_k(x)}(x^{i+1})$$
(1)

for  $0 \le i \le d-1$  recursively. Then  $p'_0(x), p'_1(x), \dots, p'_d(x)$  is an orthogonal basis of  $\mathbb{R}_d[x]$  such that  $p'_i(x)$  has degree *i* and leading coefficient 1.

### Lemma

 $p_i'(\lambda_0) > 0$  for  $0 \le i \le d$ .

### Lemma

 $p_i'(\lambda_0) > 0$  for  $0 \le i \le d$ .

## Proof.

Let  $\theta_1$ ,  $\theta_2$ , ...,  $\theta_h$  be zeros of  $p'_i(x)$  in  $(\lambda_d, \lambda_0)$  for which  $p'_i(x)$  takes opposite signs in  $(\theta_j - \varepsilon, \theta_j)$  and in  $(\theta_j, \theta_j + \varepsilon)$  for all  $1 \le j \le h$  and for some  $\varepsilon > 0$ .

Set 
$$q(x) = \prod_{j=1}^{h} (x - \theta_j)$$
.  
Then  $q(x)p'_i(x) \ge 0$  for all  $x \in [\lambda_d, \lambda_0]$  or  $q(x)p'_i(x) \le 0$  for all  $x \in [\lambda_d, \lambda_0]$ .  
Since  $h \le i < d+1$ , there exists an eigenvalue  $\lambda_j$  such that  $q(\lambda_j)p'_i(\lambda_j) \ne 0$ .  
Hence  $\langle q(x), p'_i(x) \rangle_{\triangle} \ne 0$  for all  $x \in [\lambda_d, \lambda_0]$ .  
As  $q(x)$  can be written as a linear combination of  $p'_0(x), p'_1(x), \dots, p'_h(x)$ ,  
 $h = i$  and all zeros of  $p'_i(x)$  appear in  $(\lambda_d, \lambda_0)$ .  
Thus  $q(x) = p'_i(x)$  and hence  $p'_i(\lambda_0) = q(\lambda_0) > 0$ 

## The predistance polynomials

Set

$$p_i(x) = \frac{p'_i(\lambda_0)}{\|p'_i(x)\|_{\triangle}^2} p'_i(x).$$
 (2)

Then  $p_0(x), p_1(x), \dots, p_d(x)$  is the unique system of orthogonal polynomials in  $\mathbb{R}_d[x]$  satisfying

 $\deg p_i(x) = i$ 

and

$$\|p_i(x)\|_{\triangle}^2 = p_i(\lambda_0).$$

for  $0 \le i \le d$ . The  $p_i(x)$  is referred as the *i*-th predistance polynomial of *G*. Note that  $p_d(\lambda_0) > 0$ .

## Three-term relations

### Lemma

$$xp_i(x) = c_{i+1}p_{i+1}(x) + a_ip_i(x) + b_{i-1}p_{i-1}(x) \qquad 0 \le i \le d$$
(3)

for some scalars  $c_{i+1}$ ,  $a_i$ ,  $b_{i-1} \in \mathbb{R}$  with  $b_{-1} = c_{d+1} := 0$ .

## Three-term relations

### Lemma

$$xp_i(x) = c_{i+1}p_{i+1}(x) + a_ip_i(x) + b_{i-1}p_{i-1}(x) \qquad 0 \le i \le d$$
(3)

for some scalars  $c_{i+1}$ ,  $a_i$ ,  $b_{i-1} \in \mathbb{R}$  with  $b_{-1} = c_{d+1} := 0$ .

## Proof.

Since  $xp_i(x)$  has degree i+1, write  $xp_i(x) = \sum_{j=0}^{i+1} \alpha_{ij}p_j(x)$  for some  $\alpha_{ij} \in \mathbb{R}$ . Then

$$\begin{aligned} \alpha_{ij} \langle p_j(x), p_j(x) \rangle_{\triangle} &= \langle \sum_{k=0}^{i+1} \alpha_{ik} p_k(x), p_j(x) \rangle_{\triangle} = \langle x p_i(x), p_j(x) \rangle_{\triangle} \\ &= \langle p_i(x), x p_j(x) \rangle_{\triangle} = 0 \end{aligned}$$

if  $\deg(xp_j(x)) = j + 1 < i$ .

### Note that

$$c_{i+1} = \frac{\langle xp_i(x), p_{i+1}(x)\rangle_{\triangle}}{\|p_{i+1}(x)\|_{\triangle}^2} \neq 0$$

and

$$b_{i} = \frac{\langle xp_{i+1}(x), p_{i}(x)\rangle_{\triangle}}{\|p_{i}(x)\|_{\triangle}^{2}} = \frac{\langle p_{i+1}(x), xp_{i}(x)\rangle_{\triangle}}{\|p_{i}(x)\|_{\triangle}^{2}} \neq 0$$

for  $0 \le i \le d-1$ .

The number

$$\overline{k}_d := |\{(u,v)| \, u, v \in VG, \partial(u,v) = d\}|/n$$

is called the the average excess of G, and the number  $p_d(\lambda_0)$  is called the spectral excess of G.

The number

$$\overline{k}_d := |\{(u,v)| \, u, v \in VG, \partial(u,v) = d\}|/n$$

is called the the average excess of G, and the number  $p_d(\lambda_0)$  is called the spectral excess of G.

The spectral excess theorem states that

$$\bar{k}_d \le p_d(\lambda_0) \tag{4}$$

if G is regular, and the equality holds iff G is distance-regular.

(M.A. Fiol and E. Garriga, From local adjacency polynomials to local pseudo-distance-regular graphs, *J. Combin. Theory Ser. B* 71 (1997), 162-183).

The following example shows that the regularity assumption of G in the spectrum excess theorem is necessary.

### Example

Let G be a path of three vertices. Then  $sp(G) = \{\sqrt{2}, 0, -\sqrt{2}\}$ . By (1),  $p'_0(x) = 1$ ,  $p'_1(x) = x$ ,  $p'_2(x) = x^2 - 4/3$ . By (2),  $p_0(x) = 1$ ,  $p_1(x) = 3\sqrt{2}x/4$ ,  $p_2(x) = 3(x^2 - 4/3)/4$ . Note that  $\overline{k}_2 = 2/3$  and  $p_2(\lambda_0) = 1/2$ . This shows that (4) does not hold.

We will generalize the spectrum excess theorem to the non-regular graphs.

## Inner product matrix space

## Definition

For two  $n \times n$  symmetric matrices M, N over  $\mathbb{R}$ , define the inner product

$$\langle M,N\rangle := \frac{1}{n} \operatorname{tr}(MN) = \frac{1}{n} \sum_{i,j} M_{ij} N_{ij} = \frac{1}{n} \sum_{i,j} (M \circ N)_{ij},$$
(5)

and the norm

$$\|M\| = \sqrt{\langle M, M \rangle},$$

where " $\circ$ " is the entrywise or Hadamard product of matrices.

Thus  $\langle p(A), q(A) \rangle = \langle p(x), q(x) \rangle_{\triangle}$  for  $p(x), q(x) \in \mathbb{R}_d[x]$ .

## Orthogonal polynomials associated with a graph

## Hoffman polynomials

The generalized spectral excess theorem

## D = d

Graphs with odd-girth 2d + 1

## Hoffman polynomial

## Definition

The polynomial

$$H(x) := n \prod_{i=1}^{d} \frac{x - \lambda_i}{\lambda_0 - \lambda_i}$$

is called the Hoffman polynomial of G.

## Hoffman polynomial

## Definition

The polynomial

$$H(x) := n \prod_{i=1}^{d} \frac{x - \lambda_i}{\lambda_0 - \lambda_i}$$

is called the Hoffman polynomial of G.

Let  $q_i(x) = \sum_{j=0}^i p_j(x)$ . Then  $q_i(x)$  has degree *i* and  $q_0(x)$ ,  $q_1(x)$ , ...,  $q_d(x)$  is a basis of  $\mathbb{R}_d[x]$ . Note that

$$\|q_i(x)\|_{ riangle}^2 = \sum_{j=0}^i \|p_j(x)\|_{ riangle}^2 = \sum_{j=0}^i p_j(\lambda_0) = q_i(\lambda_0).$$

## An optimization problem

### Lemma

For  $p(x) \in \mathbb{R}_d[x]$  with degree at most i and  $||p(x)||_{\triangle} = ||q_i(x)||_{\triangle}$ ,  $p(\lambda_0)^2 \le q_i(\lambda_0)^2$  with equality iff  $p(x) = \pm q_i(x)$ .

## An optimization problem

### Lemma

For  $p(x) \in \mathbb{R}_d[x]$  with degree at most i and  $\|p(x)\|_{\triangle} = \|q_i(x)\|_{\triangle}$ ,  $p(\lambda_0)^2 \le q_i(\lambda_0)^2$  with equality iff  $p(x) = \pm q_i(x)$ .

## Proof.

Let 
$$p(x) = \sum_{j=0}^{i} \alpha_j p_j(x)$$
 for some  $\alpha_j \in \mathbb{R}$ .  
As  $q_i(\lambda_0) = ||q_i(x)||_{\triangle}^2 = ||p(x)||_{\triangle}^2 = \sum_{j=0}^{i} \alpha_j^2 p_j(\lambda_0)$ , by Cauchy's inequality,  
 $p(\lambda_0)^2 = \left[\sum_{j=0}^{i} \alpha_j p_j(\lambda_0)\right]^2 \le \left[\sum_{j=0}^{i} \alpha_j^2 p_j(\lambda_0)\right] \left[\sum_{j=0}^{i} p_j(\lambda_0)\right] = q_i(\lambda_0)^2$ ,

with equality iff all  $\alpha_j$  are equal; indeed  $\alpha_j = \pm 1$ .

## The dual problem

### Lemma

For  $p(x) \in \mathbb{R}_d[x]$  with degree at most *i* and  $||p(x)||_{\triangle} = ||q_i(x)||_{\triangle}$ ,  $\sum_{j=1}^d m_j q_i(\lambda_j)^2 \leq \sum_{j=1}^d m_j p(\lambda_j)^2$  with equality iff  $p(x) = \pm q_i(x)$ .

## The dual problem

## Lemma

For 
$$p(x) \in \mathbb{R}_d[x]$$
 with degree at most  $i$  and  $||p(x)||_{\triangle} = ||q_i(x)||_{\triangle}$ ,  
 $\sum_{j=1}^d m_j q_i(\lambda_j)^2 \le \sum_{j=1}^d m_j p(\lambda_j)^2$  with equality iff  $p(x) = \pm q_i(x)$ .

## Proof.

## This follows from the previous lemma and

$$\frac{1}{n}(p(\lambda_0)^2 + \sum_{j=1}^d m_j p(\lambda_j)^2) = \|p(x)\|_{\triangle}^2 = \|q_i(x)\|_{\triangle}^2 = \frac{1}{n}(q_i(\lambda_0)^2 + \sum_{j=1}^d m_j q_i(\lambda_j)^2)$$

### Lemma

For any graph, the sum of all the predistance polynomials gives the Hoffman polynomial, i.e.,

$$H(x) = q_d(x) = p_0(x) + p_1(x) + \dots + p_d(x).$$
(6)

### Lemma

For any graph, the sum of all the predistance polynomials gives the Hoffman polynomial, i.e.,

$$H(x) = q_d(x) = p_0(x) + p_1(x) + \dots + p_d(x).$$
(6)

## Proof.

Let 
$$p(x) = c \prod_{i=1}^{d} \frac{x - \lambda_i}{\lambda_0 - \lambda_i}$$
 for some  $c \in \mathbb{R}$  such that  $||p(x)||_{\triangle} = ||q_d(x)||_{\triangle}$ .  
By dual problem lemma,  $\sum_{j=1}^{d} m_j q_d(\lambda_j)^2 \leq \sum_{j=1}^{d} m_j p(\lambda_j)^2 = 0$ .  
Then  $\sum_{j=1}^{d} m_j q_d(\lambda_j)^2 = 0$  and thus  $q_d(x) = \pm p(x)$ .  
Hence  $q_d(\lambda_0) = ||q_d(x)||_{\triangle}^2 = (q_d(\lambda_0)^2 + \sum_{j=1}^{d} m_j q_d(\lambda_j)^2)/n = q_d(\lambda_0)^2/n$ .  
Therefore,  $q_d(\lambda_0) = n$ , and  $q_d(x) = n \prod_{i=1}^{d} \frac{x - \lambda_i}{\lambda_0 - \lambda_i} = H(x)$ .  
Chib-wen Weng (Dep. of A, Math, NCTU) The generalized spectral excess theorem September 10, 201 20 / 38

Let  $\alpha$  be the eigenvector of A corresponding to  $\lambda_0$  such that  $\alpha^t \alpha = n$  and all entries are positive. Note that  $\alpha = (1, 1, ..., 1)^t$  iff G is regular.

### Lemma

For the graph G,

$$H(A) = \frac{n\alpha\alpha^t}{\alpha^t\alpha} = \alpha\alpha^t.$$

Moreover, G is regular iff H(A) = J, the all 1's matrix.

Let  $\alpha$  be the eigenvector of A corresponding to  $\lambda_0$  such that  $\alpha^t \alpha = n$  and all entries are positive. Note that  $\alpha = (1, 1, ..., 1)^t$  iff G is regular.

### Lemma

For the graph G,

$$H(A) = \frac{n\alpha\alpha^t}{\alpha^t\alpha} = \alpha\alpha^t.$$

Moreover, G is regular iff H(A) = J, the all 1's matrix.

## Proof.

The first equality follows since the matrix in the middle of the equation acts as H(A) on the right eigenvectors of A. The second equality follows from the assumption  $\alpha^t \alpha = n$ . The remaining is clear.

Orthogonal polynomials associated with a graph Hoffman polynomials

## • The generalized spectral excess theorem

D = d

Graphs with odd-girth 2d + 1

For  $u \in VG$ , let  $\alpha_u$  be the entry corresponding to u in the eigenvector  $\alpha$ . Let  $A_i$  be the *i*-th distance matrix, i.e., an  $n \times n$  matrix with rows and columns indexed by the vertex set VG such that

$$(A_i)_{uv} = \begin{cases} 1, & \text{if } \partial(u, v) = i; \\ 0, & \text{else.} \end{cases}$$

In particular,  $A_0 = I$  and  $A_1 = A$ .

For  $u \in VG$ , let  $\alpha_u$  be the entry corresponding to u in the eigenvector  $\alpha$ . Let  $A_i$  be the *i*-th distance matrix, i.e., an  $n \times n$  matrix with rows and columns indexed by the vertex set VG such that

$$(A_i)_{uv} = \begin{cases} 1, & \text{if } \partial(u,v) = i; \\ 0, & \text{else.} \end{cases}$$

In particular,  $A_0 = I$  and  $A_1 = A$ .

Define

$$p_{\geq D}(x) := p_D(x) + p_{D+1}(x) + \dots + p_d(x),$$
  

$$\widetilde{A}_i := A_i \circ H(A),$$
  

$$\delta_i := \|\widetilde{A}_i\|^2.$$

For  $u \in VG$ , let  $\alpha_u$  be the entry corresponding to u in the eigenvector  $\alpha$ . Let  $A_i$  be the *i*-th distance matrix, i.e., an  $n \times n$  matrix with rows and columns indexed by the vertex set VG such that

$$(A_i)_{uv} = \begin{cases} 1, & \text{if } \partial(u,v) = i; \\ 0, & \text{else.} \end{cases}$$

In particular,  $A_0 = I$  and  $A_1 = A$ .

Define

$$p_{\geq D}(x) := p_D(x) + p_{D+1}(x) + \dots + p_d(x),$$
  

$$\widetilde{A}_i := A_i \circ H(A),$$
  

$$\delta_i := \|\widetilde{A}_i\|^2.$$

More precisely,  $\widetilde{A}_i$  is regarded as a "weighted" version of  $A_i$  as follows:

$$(\widetilde{A}_i)_{uv} = \begin{cases} \alpha_u \alpha_v, & \text{if } \partial(u, v) = i; \\ 0, & \text{else.} \end{cases}$$
(7)

Note that  $\delta_d = 0$  iff d > D. The number  $\delta_D$  is referred as average weighted excess and  $p_{\geq D}(\lambda_0)$  is as generalized spectral excess of G.

Note that if D = d we have  $p_{\geq D}(x) = p_D(x)$ . By the above definitions, we have

$$|p_{\geq D}(A)||^{2} = ||p_{\geq D}(x)||_{\triangle}^{2} = p_{\geq D}(\lambda_{0})$$
(8)

and

$$\widetilde{A}_0 + \widetilde{A}_1 + \dots + \widetilde{A}_D = H(A).$$
(9)

It is well-known that  $(A^i)_{uv}$  counts the number of walks of length i in G from u to v. In particular, if there exists a cycle of length i in G then  $\operatorname{tr}(A^i) \neq 0$ . Although  $\widetilde{A}_i$  might be different to  $A_i$ , they are similar as for j < i,

$$\langle A_i, p_j(A) \rangle = 0 = \langle A_i, p_j(A) \rangle \tag{10}$$

from (5).

## Lemma

The projection of  $\widetilde{A}_D$  into  $p_{\geq D}(A)$  is

$$\operatorname{Proj}_{p \geq D(A)} \widetilde{A}_D = rac{\delta_D}{p \geq D(\lambda_0)} \ p_{\geq D}(A).$$

### Lemma

The projection of  $\widetilde{A}_D$  into  $p_{\geq D}(A)$  is

$$\operatorname{Proj}_{p \geq D(A)} \widetilde{A}_D = rac{\delta_D}{p \geq D(\lambda_0)} \ p_{\geq D}(A).$$

## Proof.

By (5), (8), (9), and (10),

$$\begin{aligned} \mathsf{Proj}_{p \ge D(A)} \widetilde{A}_D &= \frac{\langle \widetilde{A}_D, p \ge D(A) \rangle}{\|p \ge D(A)\|^2} \ p \ge D(A) \\ &= \frac{\langle \widetilde{A}_D, H(A) \rangle}{p \ge D(\lambda_0)} \ p \ge D(A) \\ &= \frac{\delta_D}{p \ge D(\lambda_0)} \ p \ge D(A). \end{aligned}$$

## Generalized spectral excess theorem

### Theorem

Let G be a connected graph with diameter D. Then  $\delta_D \leq p_{\geq D}(\lambda_0)$  with equality iff  $\widetilde{A}_D = p_{\geq D}(A)$ .

## Generalized spectral excess theorem

### Theorem

Let G be a connected graph with diameter D. Then  $\delta_D \leq p_{\geq D}(\lambda_0)$  with equality iff  $\widetilde{A}_D = p_{\geq D}(A)$ .

### Proof.

By Lemma 3.1,

$$0 \leq \|\widetilde{A}_D\|^2 - \|\mathsf{Proj}_{p \geq D(A)}\widetilde{A}_D\|^2 = \delta_D - \frac{\delta_D^2}{p > D(\lambda_0)}.$$

The equality is attained iff  $\widetilde{A}_D = \operatorname{Proj}_{p_{\geq D}(A)} \widetilde{A}_D = p_{\geq D}(A)$ .

Revisiting the case that G is a path of three vertices in Example 1.3, d = D = 2 and thus  $p_{\geq D}(\lambda_0) = p_2(\lambda_0) = 1/2$ . Note that  $\alpha = (\sqrt{3}/2, \sqrt{6}/2, \sqrt{3}/2)^t$ . By (7), we have

$$\widetilde{A}_D = \left(\begin{array}{rrr} 0 & 0 & 3/4 \\ 0 & 0 & 0 \\ 3/4 & 0 & 0 \end{array}\right)$$

Hence  $\delta_D = 3/8 \le 1/2 = p_{\ge D}(\lambda_0)$  satisfies the inequality in Theorem 3.2.

Revisiting the case that G is a path of three vertices in Example 1.3, d = D = 2 and thus  $p_{\geq D}(\lambda_0) = p_2(\lambda_0) = 1/2$ . Note that  $\alpha = (\sqrt{3}/2, \sqrt{6}/2, \sqrt{3}/2)^t$ . By (7), we have

$$\widetilde{A}_D = \left(\begin{array}{rrr} 0 & 0 & 3/4 \\ 0 & 0 & 0 \\ 3/4 & 0 & 0 \end{array}\right)$$

Hence  $\delta_D = 3/8 \le 1/2 = p_{\ge D}(\lambda_0)$  satisfies the inequality in Theorem 3.2.

## Remark

If G is regular with diameter D = 2, then the equality in Theorem 3.2 holds. Indeed  $\widetilde{A}_2 = A_2 = J - I - A = H(A) - I - A = p_{\geq 2}(A)$ .

Orthogonal polynomials associated with a graph

Hoffman polynomials

The generalized spectral excess theorem

• D = d

Graphs with odd-girth 2d + 1

Note that  $p_0(A) = I$ . The following simple lemma plays a key role in proving the regularity of a graph.

### Lemma

 $\widetilde{A}_0 = p_0(A)$  iff G is regular.

Note that  $p_0(A) = I$ . The following simple lemma plays a key role in proving the regularity of a graph.

### Lemma

 $\widetilde{A}_0 = p_0(A)$  iff G is regular.

## Proof.

From (7),  $(\widetilde{A}_0)_{uu} = \alpha_u^2$  for  $u \in VG$ . Since  $\alpha$  has positive entries and  $\alpha^t \alpha = n$ ,  $\alpha^t = (1, 1, ..., 1)$  iff G is regular.

### Theorem

Let G be a connected graph of diameter D equal to spectral diameter d. Then  $\widetilde{A}_D = p_D(A)$  iff  $\widetilde{A}_i = p_i(A)$  for  $0 \le i \le D - 1$ . Moreover, if  $\widetilde{A}_D = p_D(A)$  then G is distance-regular.

### Theorem

Let G be a connected graph of diameter D equal to spectral diameter d. Then  $\widetilde{A}_D = p_D(A)$  iff  $\widetilde{A}_i = p_i(A)$  for  $0 \le i \le D - 1$ . Moreover, if  $\widetilde{A}_D = p_D(A)$  then G is distance-regular.

## Proof.

The sufficiency follows from deleting  $\widetilde{A}_i = p_i(A)$  for  $0 \leq i \leq D-1$  in both sides of

$$\widetilde{A}_0 + \widetilde{A}_1 + \dots + \widetilde{A}_D = H(A) = p_0(A) + p_1(A) + \dots + p_D(A).$$
(11)

The necessity follows by (backward) induction on  $0 \le i \le D$ . The base case is the assumption that  $\widetilde{A}_D = p_D(A)$ . Suppose now that  $p_k(A) = \widetilde{A}_k$  for  $D \ge k \ge i$ . Then deleting these common terms from both sides of (11), we have

$$\widetilde{A}_0 + \widetilde{A}_1 + \dots + \widetilde{A}_{i-1} = p_0(A) + p_1(A) + \dots + p_{i-1}(A),$$
 (12)

## Proof.

and by induction hypothesis to the three-term recurrence in (3),

$$\begin{aligned} A\widetilde{A}_{i} &= c_{i+1}p_{i+1}(A) + a_{i}p_{i}(A) + b_{i-1}p_{i-1}(A) \\ &= c_{i+1}\widetilde{A}_{i+1} + a_{i}\widetilde{A}_{i} + b_{i-1}p_{i-1}(A). \end{aligned}$$
(13)

It remains to show that  $p_{i-1}(A) = \widetilde{A}_{i-1}$ . To this end, consider the following two cases:

- (i) For  $\partial(u,v) \ge i-1$ ,  $(p_{i-1}(A))_{uv} = (\widetilde{A}_{i-1})_{uv}$  by (12).
- (*ii*) For  $\partial(u,v) < i-1$ ,  $(A\widetilde{A}_i)_{uv} = \sum_{w \in G(u)} (\widetilde{A}_i)_{wv} = 0$ , where the last equality follows since  $\partial(w,v) \le 1 + \partial(u,v) < i$ . Then  $(p_{i-1}(A))_{uv} = 0$  by (13) and since  $b_{i-1} \ne 0$ .

This proves the necessity. Suppose  $A_D = p_D(A)$ . Then G is regular by applying the necessary condition in the case i = 0 to Lemma 4.1. Thus G is distance-regular by the spectral excess theorem.

- Orthogonal polynomials associated with a graph
- Hoffman polynomials
- The generalized spectral excess theorem
- D = d
- Graphs with odd-girth 2d + 1

## Graph with odd girth 2d + 1

From now on, assume that G has odd-girth 2d + 1, i.e., the shortest odd cycle has length 2d + 1. As an application of Theorem 4.2, we will show that G has diameter D = d and G must be distance-regular.

## Graph with odd girth 2d + 1

From now on, assume that G has odd-girth 2d + 1, i.e., the shortest odd cycle has length 2d + 1. As an application of Theorem 4.2, we will show that G has diameter D = d and G must be distance-regular. For a vertex u, let  $G_d(u)$  be the set of vertices at distance d from u. If D < d then  $G_d(u) = \emptyset$ .

Let  $c = n/\prod_{i=1}^{d} (\lambda_0 - \lambda_i)$  and note that c is the leading coefficient of the Hoffman polynomial H(x). For two vertices  $u, v \in VG$  with  $\partial(u, v) = d$ ,

$$(A^d)_{uv} = H(A)_{uv}/c$$
 (14)

and

$$(A^{d+1})_{uv} = Z(A)_{uv} + (\sum_{i=0}^{d} \lambda_i)(A^d)_{uv} = (\sum_{i=0}^{d} \lambda_i)H(A)_{uv}/c.$$
 (15)

### Lemma

The average weighted excess  $\delta_D$  of G equals  $c^2 \operatorname{tr}(A^{2d+1})/(n\sum_{i=0}^d \lambda_i)$ . In particular, D = d.

### Lemma

The average weighted excess  $\delta_D$  of G equals  $c^2 \operatorname{tr}(A^{2d+1})/(n\sum_{i=0}^d \lambda_i)$ . In particular, D = d.

## Proof.

For vertices  $u, v \in VG$  with  $\partial(u, v) < d$ ,  $(A^d)_{uv} = 0$  or  $(A^{d+1})_{vu} = 0$  since no odd cycle has length less than 2d + 1. By (5), (9), (14), (15),

$$\begin{split} n(\sum_{i=0}^{d} \lambda_{i}) \delta_{d} &= (\sum_{i=0}^{d} \lambda_{i}) \sum_{u, v \in VG} [(\widetilde{A}_{d})_{uv}]^{2} \\ &= (\sum_{i=0}^{d} \lambda_{i}) \sum_{u \in VG} \sum_{v \in G_{d}(u)} [H(A)_{uv}]^{2} \\ &= c^{2} \sum_{u \in VG} \sum_{v \in VG} (A^{d})_{uv} (A^{d+1})_{uv} = c^{2} \operatorname{tr}(A^{2d+1}). \end{split}$$

As  $\operatorname{tr}(A^{2d+1}) \neq 0$ , we have  $\sum_{i=0}^{d} \lambda_i \neq 0$  and  $\delta_d = c^2 \operatorname{tr}(A^{2d+1})/(n \sum_{i=0}^{d} \lambda_i) > 0$ . This also implies D = d.

### Lemma

Referring the notations of three-term recurrence in (3),

(*i*) 
$$a_{j-1} = 0$$
 for  $1 \le j \le d$ ;

(*ii*)  $p_j(x)$  is an even or odd polynomial depending on whether j is even or odd for  $0 \le j \le d$ .

Moreover, the generalized spectral excess  $p_d(\lambda_0)$  is  $c^2 \operatorname{tr}(A^{2d+1})/(n\sum_{i=0}^d \lambda_i)$ .

## Proof.

Clearly,  $p_0(x) = 1$  is even. We prove (*i*)-(*ii*) by induction on  $j \ge 1$ . By (2),  $p_1(x) = n\lambda_0 x / \sum_{i=0}^d m_i \lambda_i^2$  is odd. Setting i = 0 in (3),  $a_0 = 0$ . Hence we have (*i*)-(*ii*) in the base case j = 1. By (3),

$$a_k p_k(\lambda_0) = \langle a_k p_k(x), p_k(x) \rangle_{\triangle} = \langle x p_k(x), p_k(x) \rangle_{\triangle} = \operatorname{tr}(A p_k^2(A)) / n \quad (16)$$

for  $0 \le k \le d$ . Now suppose (i)-(ii) for j = k < d. Since  $xp_k^2(x)$  is an odd polynomial of degree 2k + 1 < 2d + 1, the last term in (16) is zero. Hence  $a_k = 0$  and (i) holds for j = k + 1. From (i) and setting i = k in (3), the polynomial  $p_{k+1}(x)$  satisfies (ii). This proves (i)-(ii) in any j. Chin-wen Weng (Dep. of A. Math., NCTU) The generalized spectral excess theorem September 10, 2011 35 / 38

## Proof.

For the remaining, since the last term in (16) with k = d equals  $c^2 \operatorname{tr}(A^{2d+1})/n$ , it suffices to show  $a_d = \sum_{i=0}^d \lambda_i$ . Choose two vertices u and v at distance d. Then by (3), (6), (15),

$$a_d H(A)_{uv} = a_d p_d(A)_{uv} = (A p_d(A))_{uv} = c(A^{d+1})_{uv} = (\sum_{i=0}^d \lambda_i) H(A)_{uv},$$

where the third equality follows because  $xp_d(x)$  has no term of degree d. Dividing both sides by  $H(A)_{uv}$ , we have  $a_d = \sum_{i=0}^d \lambda_i$ .

## Proof.

For the remaining, since the last term in (16) with k = d equals  $c^2 \operatorname{tr}(A^{2d+1})/n$ , it suffices to show  $a_d = \sum_{i=0}^d \lambda_i$ . Choose two vertices u and v at distance d. Then by (3), (6), (15),

$$a_d H(A)_{uv} = a_d p_d(A)_{uv} = (A p_d(A))_{uv} = c(A^{d+1})_{uv} = (\sum_{i=0}^d \lambda_i) H(A)_{uv},$$

where the third equality follows because  $xp_d(x)$  has no term of degree d. Dividing both sides by  $H(A)_{uv}$ , we have  $a_d = \sum_{i=0}^d \lambda_i$ .

From Lemma 5.1-5.2, and Theorem 4.2, we immediately have the following theorem.

### Theorem

Any connected graph with d+1 distinct eigenvalues and odd-girth 2d+1 must be distance-regular.

## Reference

- N. Biggs, *Algebraic Graph Theory*, Cambridge University Press, Cambridge, 1993.
- A.E. Brouwer, A.M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, Berlin, 1989.
- C. Dalfó, E.R. van Dam, M.A. Fiol and E. Garriga, Dual concept of almost distance-regularity and the spectral excess theorem, preprint.
- C. Dalfó, E.R. van Dam, M.A. Fiol, E. Garriga and B.L. Gorissen, On almost distance-regular graphs, J. Combin. Theory Ser. A 118 (2011), 1094-1113.
- E.R. van Dam, The spectral excess theorem for distance-regular graphs: a global (over)view, *Electron. J. Combin.* 15 (1) (2008), R129.
- E.R. van Dam and W.H. Haemers, An odd characterization of the generalized odd graphs, J. Combin. Theory Ser. B (2011), doi:10.1016/j.jctb.2011.03.001

- SECOND INDIA-TAIWAN CONFERENCE ON DISCRETE MATHEMATICS, September 8-11, 2011
- M.A. Fiol and E. Garriga, From local adjacency polynomials to local pseudo-distance-regular graphs, J. Combin. Theory Ser. B 71 (1997), 162-183.
- M.A. Fiol, S. Gago and E. Garriga, A simple proof of the spectral excess theorem for distance-regular graphs, *Linear Algebra Appl.* 432 (2010), 2418-2422.
- A.J. Hoffman, On the polynomial of a graph, *Amer. Math. Monthly* 70 (1963), 30-36.
- T. Huang, Spectral characterization of odd graphs  $O_k$ ,  $k \le 6$ , Graphs Combin. 10 (1994), 235-240.
- T. Huang and C. Liu, Spectral characterization of some generalized odd graphs, *Graphs Combin.* 15 (1999), 195-209.
- P. Terwilliger, The subconstituent algebra of an association scheme I, *J. Alg. Combin.* 1 (1992), 363-388.



P.M. Weichsel, On distance-regularity in graphs, *J. Combin. Theory Ser. B* 32 (1982), 156-161.

Chih-wen Weng (Dep. of A. Math., NCTU) The generalized spectral excess theorem