Pooling designs with d－disjunct property and block weight $d+1$

Chih－wen Weng（翁志文）

（with Yu－pei Huang and Wu，Hsin－Jung）

Department of Applied Mathematics，National Chiao Tung University，Taiwan

July 12， 2010

Definition

An incidence structure (P, \mathcal{B}) is called d－disjunct if any block in \mathcal{B} is not covered by the union of d other blocks．

Definition

An incidence structure (P, \mathcal{B}) is called d－disjunct if any block in \mathcal{B} is not covered by the union of d other blocks．

Assume $P=\{1,2, \ldots, v\}, \mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$ and M is be the incidence matrix of (P, \mathcal{B}) ，i．e．

$$
M_{i j}= \begin{cases}1, & i \in B_{j} ; \\ 0, & i \notin B_{j}\end{cases}
$$

for $1 \leq i \leq v$ and $0 \leq j \leq b$ ．

Definition

An incidence structure (P, \mathcal{B}) is called d－disjunct if any block in \mathcal{B} is not covered by the union of d other blocks．

Assume $P=\{1,2, \ldots, v\}, \mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$ and M is be the incidence matrix of (P, \mathcal{B}) ，i．e．

$$
M_{i j}= \begin{cases}1, & i \in B_{j} ; \\ 0, & i \notin B_{j}\end{cases}
$$

for $1 \leq i \leq v$ and $0 \leq j \leq b$ ．
The incidence matrix M of a d－disjunct incidence structure can be used in non－adaptive group testing programming，in which $v \ll b$ is preferred．

ALGEBRAIC AND GEOMETRIC COMBINATORICS CONFERENCE 2010
（1）Let M be a $v \times b$ incidence matrix of an incidence structure and set $F_{2}=\{0,1\}$ ．Define the output function $o_{M}: F_{2}^{b} \rightarrow F_{2}^{\vee}$ by

$$
o_{M}(P):=M \star P=\bigcup_{P_{i}=1} M_{i}
$$

where \star is the matrix product by using Boolean sum to replace addition．

```
ALGEBRAIC AND GEOMETRIC COMBINATORICS CONFERENCE }201
```

（1）Let M be a $v \times b$ incidence matrix of an incidence structure and set $F_{2}=\{0,1\}$ ．Define the output function $o_{M}: F_{2}^{b} \rightarrow F_{2}^{\vee}$ by

$$
o_{M}(P):=M \star P=\bigcup_{P_{i}=1} M_{i}
$$

where \star is the matrix product by using Boolean sum to replace addition．
（2）If the incidence structure is d－disjunct，then $o_{M} \upharpoonright F_{2}^{b}(\leq d)$ is known to be injective，where $F_{2}^{b}(\leq d)$ is the set of binary vectors of length b and Hamming weight at most d ．

```
ALGEBRAIC AND GEOMETRIC COMBINATORICS CONFERENCE }201
```

（1）Let M be a $v \times b$ incidence matrix of an incidence structure and set $F_{2}=\{0,1\}$ ．Define the output function $o_{M}: F_{2}^{b} \rightarrow F_{2}^{\vee}$ by

$$
o_{M}(P):=M \star P=\bigcup_{P_{i}=1} M_{i}
$$

where \star is the matrix product by using Boolean sum to replace addition．
（2）If the incidence structure is d－disjunct，then $o_{M} \upharpoonright F_{2}^{b}(\leq d)$ is known to be injective，where $F_{2}^{b}(\leq d)$ is the set of binary vectors of length b and Hamming weight at most d ．
（3）This means that for each element u in the image of o_{M} on $F_{2}^{b}(\leq d)$ ， we know which $P \in F_{2}^{b}$ to have $o_{M}(P)=u$ ．
（1）Let M be a $v \times b$ incidence matrix of an incidence structure and set $F_{2}=\{0,1\}$ ．Define the output function $o_{M}: F_{2}^{b} \rightarrow F_{2}^{\vee}$ by

$$
o_{M}(P):=M \star P=\bigcup_{P_{i}=1} M_{i}
$$

where \star is the matrix product by using Boolean sum to replace addition．
（2）If the incidence structure is d－disjunct，then $o_{M} \upharpoonright F_{2}^{b}(\leq d)$ is known to be injective，where $F_{2}^{b}(\leq d)$ is the set of binary vectors of length b and Hamming weight at most d ．
（3）This means that for each element u in the image of o_{M} on $F_{2}^{b}(\leq d)$ ， we know which $P \in F_{2}^{b}$ to have $o_{M}(P)=u$ ．
（9）In application，P is interpreted as the unknown infected subset $\left\{j \mid P_{j}=1\right\}$ of a given set of b items，and u is interpreted as the sequence of test results．Then the injective property of o_{M} implies that the infected subset can be determined from the sequence of test results if the number of infected items is known in advance to be at most d ．

Example

The following 4×6 binary matrix is used to detect the infected item in $\{1,2,3,4,5,6\}$ ，if the infected item is known to be at most one in advance （but do not know which one）：
$\left(\begin{array}{c|cccccccc}\text { Tests／Items } & 1 & 2 & 3 & 4 & 5 & 6 & & o_{M}\left((0,0,1,0,0,0)^{T}\right) \\ \hline \text { one } & & 1 & 1 & 1 & 0 & 0 & 0 & \rightarrow\end{array}\right]$

Example

The following 4×6 binary matrix is used to detect the infected item in $\{1,2,3,4,5,6\}$ ，if the infected item is known to be at most one in advance （but do not know which one）：
$\left(\begin{array}{c|cccccccc}\text { Tests／Items } & 1 & 2 & 3 & 4 & 5 & 6 & & o_{M}\left((0,0,1,0,0,0)^{T}\right) \\ \hline & & & & & & & & \\ \text { one } & 1 & 1 & 1 & 0 & 0 & 0 & \rightarrow & 1 \\ \text { Two } & 1 & 0 & 0 & 1 & 1 & 0 & \rightarrow & 0 \\ \text { Three } & 0 & 1 & 0 & 1 & 0 & 1 & \rightarrow & 0 \\ \text { Four } & 0 & 0 & 1 & 0 & 1 & 1 & \rightarrow & 1\end{array}\right)$

If there are two infected items，the above 4×6 matrix does not work for detecting them．For example，both the infected sets $\{3,4\}$ and $\{1,6\}$ have the same output $(1,1,1,1)^{T}$ ．So it is impossible to recover the infected set from the output $(1,1,1,1)^{T}$ ．

Relation to t－design

Relation to t－design

Definition

An incidence structure (P, \mathcal{B}) is called a $t-(v, k, \lambda)$ design if
（1）$|P|=v$ ，
（2）$|B|=k$ for and $B \in \mathcal{B}$ ，and
－any t－subset of P is contained in exactly λ blocks in \mathcal{B} ．

Remark

（1）A 2－（ $v, k, 1)$ design is $(k-1)$－disjunct since a block has k points and it intersects another block in at most one point，so $k-1$ other blocks can cover at most $k-1$ points of a block，leaving at least one point uncovered．
（2）If any point is incidence in at least two blocks，then any block in a d－disjunct matrix has size at least $d+1$ ．
（3）A d－disjunct incidence structure is called a pooling design．

First result

First result

Theorem

Let (P, \mathcal{B}) be a d－disjunct pooling design with constant block size $d+1$ ， and define $v=|P|$ and $b=|\mathcal{B}|$ ．Then $b \leq \max \{v(v-1) / d(d+1), v-d\}$ ． Moreover if $v-d \leq v(v-1) / d(d+1)$ ，then the above upper bound of b is reached if and only if (P, \mathcal{B}) is a $2-(v, d+1,1)$ design．

First result

Theorem

Let (P, \mathcal{B}) be a d－disjunct pooling design with constant block size $d+1$ ， and define $v=|P|$ and $b=|\mathcal{B}|$ ．Then $b \leq \max \{v(v-1) / d(d+1), v-d\}$ ． Moreover if $v-d \leq v(v-1) / d(d+1)$ ，then the above upper bound of b is reached if and only if (P, \mathcal{B}) is a $2-(v, d+1,1)$ design．

The $v \times b$ incidence matrix

$$
M=\binom{I_{b}}{J_{d}}
$$

satisfies the equality $b=v-d$ ，where I_{b} is the $b \times b$ identity matrix and J_{d} is the $d \times d$ all 1＇s matrix．

The following example gives the equality in previous theorem for $d=q-1$ ．

Example

$\left(2-\left(q^{2}, q, 1\right)\right.$ design）Let q be a prime power．The affine plane F_{q}^{2} over F_{q} has q^{2} points and $q^{2}+q$ lines．Of course any line has q points and any two lines intersect at at most 1 point．Hence the points－lines incidence matrix is $v \times b d$－disjunct with with constant weight w ，where $v=q^{2}$ ， $b=q^{2}+q$ and $w=q=d+1$ satisfy

$$
b=q^{2}+q=v(v-1) / d(d+1)
$$

ALGEBRAIC AND GEOMETRIC COMBINATORICS CONFERENCE 2010

The following example gives the equality in previous theorem for $d=q-1$ ．

Example

（2－（ $\left.q^{2}, q, 1\right)$ design）Let q be a prime power．The affine plane F_{q}^{2} over F_{q} has q^{2} points and $q^{2}+q$ lines．Of course any line has q points and any two lines intersect at at most 1 point．Hence the points－lines incidence matrix is $v \times b d$－disjunct with with constant weight w ，where $v=q^{2}$ ， $b=q^{2}+q$ and $w=q=d+1$ satisfy

$$
b=q^{2}+q=v(v-1) / d(d+1)
$$

The first q which is not a prime power is when $q=6=d+1$ ．In this case the equality does not hold by the Bruck－Ryser－Chowla Theorem．Then there is no 5 －disjunct pooling design with 36 points， 42 blocks and constant bock size 6 ．We will construct a 5 －disjunct pooling design with 36 points， 37 blocks and constant block size 6 ．

Forward difference property

（1）Let q be a prime power and $m \geq q$ be an integer．

Forward difference property

（1）Let q be a prime power and $m \geq q$ be an integer．
（2）Let $F_{q}:=\left\{0, a^{0}, a^{1}, \ldots, a^{q-2}\right\}$ denote the finite field of q elements， where a is a generator of the cyclic multiplication group $F_{q}^{*}:=F_{q}-\{0\}$.

Forward difference property

（1）Let q be a prime power and $m \geq q$ be an integer．
（2）Let $F_{q}:=\left\{0, a^{0}, a^{1}, \ldots, a^{q-2}\right\}$ denote the finite field of q elements， where a is a generator of the cyclic multiplication group $F_{q}^{*}:=F_{q}-\{0\}$ ．
（3）Let $m \geq q$ be an integer．Let $\mathbb{Z}_{m}:=\{0,1, \ldots, m-1\}$ be the addition group of integers modulo m ．We use the order of integers to order the elements in \mathbb{Z}_{m} ，e．g． $0<1$ ．

Forward difference property

（1）Let q be a prime power and $m \geq q$ be an integer．
（2）Let $F_{q}:=\left\{0, a^{0}, a^{1}, \ldots, a^{q-2}\right\}$ denote the finite field of q elements， where a is a generator of the cyclic multiplication group $F_{q}^{*}:=F_{q}-\{0\}$ ．
（3）Let $m \geq q$ be an integer．Let $\mathbb{Z}_{m}:=\{0,1, \ldots, m-1\}$ be the addition group of integers modulo m ．We use the order of integers to order the elements in \mathbb{Z}_{m} ，e．g． $0<1$ ．
（9）A subset $T \subseteq \mathbb{Z}_{m} \times F_{q}$ is said to have the forward difference distinct property in $\mathbb{Z}_{m} \times F_{q}$ if the forward difference set

$$
F D_{T}:=\{(j, y)-(i, x) \mid(i, x),(j, y) \in T \text { with } i<j\}
$$

consists of $\frac{|T|(|T|-1)}{2}$ elements．

The Set ${ }_{m} T_{q}$

Let ${ }_{m} T_{q} \subseteq \mathbb{Z}_{m} \times F_{q}$ be defined by

$$
{ }_{m} T_{q}=\left\{\left(i, a^{i}\right) \mid i \in \mathbb{Z}_{m}, 0 \leq i \leq q-1\right\} .
$$

The Set ${ }_{5} T_{5}$

For $q=5, a=2$ ，

$$
{ }_{5} T_{5}=\{(0,1),(1,2),(2,4),(3,3),(4,1)\}
$$

and

$$
\begin{aligned}
F D_{5} T_{5}=\{ & (1,1),(1,2),(1,4),(1,3) \\
& (2,3),(2,1),(2,2) \\
& (3,2),(3,4) \\
& (4,0)\} .
\end{aligned}
$$

The Set ${ }_{5} T_{5}$
For $q=5, a=2$ ，

$$
{ }_{5} T_{5}=\{(0,1),(1,2),(2,4),(3,3),(4,1)\}
$$

and

$$
\begin{aligned}
F D_{5} T_{5}=\{ & (1,1),(1,2),(1,4),(1,3) \\
& (2,3),(2,1),(2,2) \\
& (3,2),(3,4) \\
& (4,0)\} .
\end{aligned}
$$

Since $\left|F D_{5} T_{5}\right|=10$ ，the set ${ }_{5} T_{5}$ has the forward difference distinct property in $\mathbb{Z}_{5} \times F_{5}$ ．

ALGEBRAIC AND GEOMETRIC COMBINATORICS CONFERENCE 2010

${ }_{m} T_{q}$ has the forward difference distinct property

Lemma

The set ${ }_{m} T_{q}$ has the forward difference distinct property in $\mathbb{Z}_{m} \times T_{q}$ ．

Proof．

Given any pair $(c, d) \in \mathbb{Z}_{m} \times F_{q}$ ，solve the equations

$$
(c, d)=\left(j, a^{j}\right)-\left(i, a^{i}\right)
$$

for $0 \leq i<j \leq q-1$ ．Note that $1 \leq c \leq q-1$ to have a solution．If $c=q-1$ then $j=q-1$ and $i=0$ ．If $c \neq q-1$ then $a^{i}=d /\left(a^{j-i}-1\right)=d /\left(a^{c}-1\right)$ and $j=c+i$ ．In each case the pair $\left(i, a^{i}\right),\left(j, a^{j}\right)$ is unique determined by the element $(c, d) \in \mathbb{Z}_{m} \times F_{q}$ ．

Difference Property

A subset $T \subseteq \mathbb{Z}_{m} \times F_{q}$ is said to have the difference distinct property in $\mathbb{Z}_{m} \times F_{q}$ if the difference set $D_{T}:=-F D_{T} \cup F D_{T}$ consists of $|T|(|T|-1)$ elements．

Difference Property

A subset $T \subseteq \mathbb{Z}_{m} \times F_{q}$ is said to have the difference distinct property in $\mathbb{Z}_{m} \times F_{q}$ if the difference set $D_{T}:=-F D_{T} \cup F D_{T}$ consists of $|T|(|T|-1)$ elements．

Since ${ }_{m} T_{q}$ intersects a vertical line in at most one point，we find $(0, x) \notin D_{m} T_{q}$ for any $x \in F_{q}$ ．

Non－example $(m=q=5)$

We have seen

$$
\begin{aligned}
& F D_{5} T_{5}=\{\quad(1,1),(1,2),(1,4),(1,3) \\
& (2,3),(2,1),(2,2) \\
& (3,2),(3,4) \\
& (4,0) \quad\} \text {. }
\end{aligned}
$$

Hence

$$
\begin{aligned}
-F D_{5} T_{5}=\{ & (4,4),(4,3),(4,1),(4,2) \\
& (3,2),(3,4),(3,3) \\
& (2,3),(2,1) \\
& (1,0) \quad\} .
\end{aligned}
$$

Since $\left|D_{5} T_{5}\right|=16 \neq 20$ ，the set ${ }_{5} T_{5}$ does not have the difference distinct property in $\mathbb{Z}_{5} \times F_{5}$ ．

Example $(m-1=q=5)$

$$
\begin{aligned}
F D_{6} T_{5}=\left\{\begin{array}{ll}
& (1,1),(1,2),(1,4),(1,3) \\
& (2,3),(2,1),(2,2) \\
& (3,2),(3,4) \\
& (4,0)\} .
\end{array} .\left\{\begin{aligned}
& \\
&(4,0)
\end{aligned}\right)\right.
\end{aligned}
$$

Hence considering as the negative in $\mathbb{Z}_{6} \times F_{5}$ ，we have

$$
\begin{aligned}
-F D_{6} T_{5}=\{ & (5,4),(5,3),(5,1),(5,2) \\
& (4,2),(4,4),(4,3) \\
& (3,3),(3,1) \\
& (2,0) \quad\} .
\end{aligned}
$$

Since $\left|D_{6} T_{5}\right|=20$ now，the set ${ }_{6} T_{5}$ has the difference distinct property in $\mathbb{Z}_{6} \times F_{5}$ ．
${ }_{2 q-1} T_{q}$ has the difference distinct property

Lemma

For $m \geq 2 q-1$ ，the set ${ }_{m} T_{q}$ has the difference distinct property in $\mathbb{Z}_{m} \times T_{q}$ ．

Proof．

We have $\left|F D_{m} T_{q}\right|=\left|-F D_{m} T_{q}\right|=q(q-1) / 2$ ．The first coordinate of an element in $F D_{2 q-1} T_{q}$ runs from 1 to $q-1$ ，and the first coordinate of an element in $-F D_{2 q-1} T_{q}$ from $m+1-q$ to $m-1$ ．The assumption $m \geq 2 q-1$ implies $-F D_{2 q-1} T_{q} \cap F D_{2 q-1} T_{q}=\emptyset$.
${ }_{2 q-3} T_{q}$ has the difference distinct property

Lemma

The set ${ }_{m} T_{q}$ has the difference distinct property for $m=2 q-3$ ．

Proof．

We have $\left|F D_{T_{m, q}}\right|=\left|-F D_{T_{m, q}}\right|=q(q-1) / 2$ ．Let $(c, d) \in F D_{T_{m, q}}$ ． If $m=2 q-3$ ，then $1 \leq c \leq q-1$ and $q-2 \leq-c \leq 2 q-4$ ．Thus the repetition of differences occurs only when $c=q-2$ or $c=q-1$ ．Note that $d=0$ iff $c=q-1$ ，and $-d=0$ iff $-c=q-2$ ．For $c=q-2$ ， suppose $\left(c^{\prime}, d^{\prime}\right) \in-F D_{m} T_{q}$ and $\left(c^{\prime}, d^{\prime}\right)=(c, d)$ ．Then we have $c^{\prime}=q-2$ and $d^{\prime}=0$ ．Hence $d=0$ ，a contradiction．Similarly for $c=q-1$ ，we have $d=0$ but $(q-1,0) \notin-F D_{T_{m, q}}$ ．
${ }_{2 q-4} T_{q}$ has the difference distinct property

Lemma

The set ${ }_{m} T_{q}$ has the difference distinct property for $m=2 q-4$ ．

Proof．

Let $(c, d) \in F D_{T_{m, q}}$ ．Since $m=2 q-4$ ，we have $1 \leq c \leq q-1$ and $q-3 \leq-c \leq 2 q-5$ ．Thus the repetition of differences occurs only when $c=q-3, q-2$ or $q-1$ ．Note that $d=0$ iff $c=q-1$ ，and $-d=0$ iff $-c=q-3$ ．For $c=q-1$ or $c=q-3$ ，similar process as the above $m=2 q-3$ case can be applied to get contradictions．For $c=q-2$ ， $-c=q-2$ ．Thus a repetition implies that there are $\left(q-2, d_{1}\right),\left(q-2, d_{2}\right) \in F D_{T_{m, q}}$ such that $d_{1}=-d_{2}$ ．Note that the only two elements of $F D_{T_{m, q}}$ with the first coordinate $q-2$ are $\left(q-2, a^{q-2}-1\right)$ and $\left(q-2, a^{q-1}-a\right)$ ，where a is the generator chosen for F_{q}^{*} ．So we have $a^{q-2}-1=-\left(a^{q-1}-a\right)$ and this implies $a=-1$ ，also a contradiction．

Lines with any two intersecting in at most a point

Proposition

Suppose that ${ }_{m} T_{q} \subseteq \mathbb{Z}_{m} \times F_{q}$ has the difference distinct property in $\mathbb{Z}_{m} \times F_{q}$ ．Set $\mathcal{B}=\left\{u+_{m} T_{q} \mid u \in \mathbb{Z}_{m} \times F_{q}\right\}$ ．Then $\left|L \cap L^{\prime}\right| \leq 1$ for any distinct $L, L^{\prime} \in \mathcal{B}$ ．

Proof．

Routine．

Lines with any two intersecting in at most a point

Proposition

Suppose that ${ }_{m} T_{q} \subseteq \mathbb{Z}_{m} \times F_{q}$ has the difference distinct property in $\mathbb{Z}_{m} \times F_{q}$ ．Set $\mathcal{B}=\left\{u+_{m} T_{q} \mid u \in \mathbb{Z}_{m} \times F_{q}\right\}$ ．Then $\left|L \cap L^{\prime}\right| \leq 1$ for any distinct $L, L^{\prime} \in \mathcal{B}$ ．

Proof．

Routine．
（1）Note that there are $m q$ lines and $m q$ points in $\mathbb{Z}_{m} \times F_{q}$ ，and a line has $q=|T|$ points with q different first coordinates．

Lines with any two intersecting in at most a point

Proposition

Suppose that ${ }_{m} T_{q} \subseteq \mathbb{Z}_{m} \times F_{q}$ has the difference distinct property in $\mathbb{Z}_{m} \times F_{q}$ ．Set $\mathcal{B}=\left\{u+_{m} T_{q} \mid u \in \mathbb{Z}_{m} \times F_{q}\right\}$ ．Then $\left|L \cap L^{\prime}\right| \leq 1$ for any distinct $L, L^{\prime} \in \mathcal{B}$ ．

Proof．

Routine．
（1）Note that there are $m q$ lines and $m q$ points in $\mathbb{Z}_{m} \times F_{q}$ ，and a line has $q=|T|$ points with q different first coordinates．
（2）Apparently more lines can be added to \mathcal{B} still having the conclusion of the above proposition，for example，adding vertical lines to \mathcal{B} ．

Lines with any two intersecting in at most a point

Proposition

Suppose that ${ }_{m} T_{q} \subseteq \mathbb{Z}_{m} \times F_{q}$ has the difference distinct property in $\mathbb{Z}_{m} \times F_{q}$ ．Set $\mathcal{B}=\left\{u+_{m} T_{q} \mid u \in \mathbb{Z}_{m} \times F_{q}\right\}$ ．Then $\left|L \cap L^{\prime}\right| \leq 1$ for any distinct $L, L^{\prime} \in \mathcal{B}$ ．

Proof．

Routine．
（1）Note that there are $m q$ lines and $m q$ points in $\mathbb{Z}_{m} \times F_{q}$ ，and a line has $q=|T|$ points with q different first coordinates．
（2）Apparently more lines can be added to \mathcal{B} still having the conclusion of the above proposition，for example，adding vertical lines to \mathcal{B} ．
（3）We will add m more points to P ，add $m+1$ lines to \mathcal{B} ，and add one more point to each original line in \mathcal{B} ．

ALGEBRAIC AND GEOMETRIC COMBINATORICS CONFERENCE 2010
A picture for the finial result

Lines in $Z_{m} \times\left(F_{q} \cup\{\infty\}\right)$

Second and final result

Theorem

There exists a q－disjunct pooling design (P, \mathcal{B}) with $|P|=m(q+1)$ ， $|\mathcal{B}|=m(q+1)+1$ and constant block weight $q+1$ ，where q is a prime power，and m is an integer at least three satisfying $m=2 q-4$ ， $m=2 q-3$ or $m \geq 2 q-1$ ．

Second and final result

> Theorem
> There exists a q-disjunct pooling design (P, \mathcal{B}) with $|P|=m(q+1)$, $|\mathcal{B}|=m(q+1)+1$ and constant block weight $q+1$, where q is a prime power, and m is an integer at least three satisfying $m=2 q-4$, $m=2 q-3$ or $m \geq 2 q-1$.

By choosing $q=5$ and $m=2 q-4=6$ ，there exists a 5－disjunct pooling design with 36 points， 37 blocks and constant block size 6 ．

The end

Thank you for your attention．

