二階投影平面架構能提供最好的群試設計
 －－－－－－對七物件及最多兩感染物而論

研究生：陳建文 指導教授：翁志文 教授國立交通大學
應用數學系

中文摘要

我們證明一個由二階投影典面的關係矩陣，刪去一列所得到大小爲 6 乘以 7 的二元矩陣其分離性爲二。我們同時證明不存在分離性爲二，行數小於七，列數小於六的二元矩陣。

A projective plane of order 2 offers the best group tests

-for 7 items and at most 2 defectives

Student: Chien-Wen Chen

Advisor: Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

We prove that the matrix obtained by deleting a row of the incidence matrix of the projective plane of order 2 is $\overline{2}$-separable. We also prove that there is no $\overline{2}$-separable $s \times t$ matrix with $s<t<7$.

謝誌

首先感謝翁志文老師在這兩年間細心的指導，雖然我程度不太好，老師還是耐心的跟我討論問題，從老師身上學習到如何思考問題的方法，也學到一些人生觀念，除此之外，眞覺得老師的修養很好，從沒看他發脾氣，總是不厭其煩的幫助學生，是我學習的對象，眞的很感激他。

在這兩年也謝謝學長和同學們的陪伴，包含黃喩培，黃槁文，李光祥，陳巧玲，葉彬，林育生，林志嘉，黃思綸，林家銘，劉侖欣…等人，不僅在寫論文的事上，也在修課上，常常受到你們的幫助和指導，藉著和你們的討論，不足我所短缺的點，實在由朿的感謝你們。

也感謝在交大求學過程中，有敎導過我的老師們，有翁志文，陳秋媛，黃大原，莊重，林琦琨，及在淡大的王筱蘭，胡守仁，高金美，余成義，李武炎，吳孟年，帶我一步一步的認識數學，使我慢慢的學得思考數學的技巧和方法。

在我大學及硏究所的日子裡，謝謝淡水及新竹召會的弟兄姊妹一路關心我，扶持我，請我吃飯，找我交通，一同經歷高山，一同經歷低谷，使我能一直留在美地裡，享受生命的交通，使我們在一裡被建造在一起，其中包含陳啓文一家，盧正五一家，譚昌琳一家，吳耀銓一家，黃世賢一家，蔡明隆一家，陳富強一家，張忠斌一家，周浩忠一家，楊龍杰一家，賴緯杰一家，李天政一家，蕭宏志一家，林四皓一家，馮藝鴻一家，李林彩一家，陶逖一家，冉龍台一家，劉雲楷，劉錢亞滿，王李秀珊，尤姊，淑雲姊，李苑佳，陳深泓，張士毓，吳緯中，嚴漢軍，李佳興，李禧年，林韶烈，王得安，何家齊，朱永恩，李耀主，鄭子恆，薛漢偉，顏以理，黃湘傑，陳俊元，何振泰，黃逸齊，鄧展政，葉承恩，李彥德，李銘倫，蔡承安，蔣岳鋒，王柏凱，王詩婷，葉軍政，羅博文，王鍾宣恩，䪩昭維，鄭家胤，丁俊宏，陳達恩，劉家豪，林帝宇，羅晟，劉浩皿，林同心，潘建綱，黃振銘，李文凡，詹博全，祝偉倫，

陳彥興，鍾宗穎，詹哲賢，陳建町，李彥廷，許時挺，周節，徐傳源，林卓誠，陳育廷，林韋任 \cdots ，還有許多別的人，若是一一都寫出來，我想所寫的書就是世界也容不下了。

最後還要謝謝我的父母和家人，謝謝你們的鼓勵和養育之恩，使我在生活的需要上不致短缺，且順利的完成學業。

Contents

1 Introduction 1

2 The Matrix Representation 2

3 Basic Definitions of BIBD 3

4 The main result 6

5 References 20

1 Introduction

In combinatorial group testing, a prototype problem called (\bar{d}, n) problem is to assume that there are up to d defectives among n given items, and the problem is to separate the good items from the defective ones by group tests. A group test is administered on an arbitrary subset S of the items with two possible outcomes; a negative outcome means S contains no defectives and a positive outcome means S contains at least one defective, not knowing exactly how many or which ones. A group testing algorithm is nonadaptive if all tests must be specified at once. A nonadaptive algorithm can be represented by a 0-1 matrix where columns are items, rows are tests, and a 1-entry in cell (i, j) means item j is contained in test i. Note that a column can be viewed as a subset whose elements are indices of the rows incident to the column. Thus we can talk about the union of columns. S.H.Hung and F.K.Hwang [1] prove that what values of n, given d, individual testing is optimal on nonadaptive group testing.

Group testing has applications to biological experiments, DNA sequencing, electrical and chemical testing, coding, etc. The binary matrices have three types: d-separable, \bar{d}-separable and d-disjunct which have been found to be major tools in understanding and constructing a nonadaptive group testing. Hong-Bin Chen and Frank K. Hwang [3] proved that M is a d separable matrix and $1 \leq k \leq d-1$, then M is $\overline{k+1}$-separable, if and only if M is k-disjunct. We use the property to prove that the matrix obtained by deleting a row of the incidence matrix of a projective plane of order n is \bar{n}-separable. In particular, $n=2$, the matrix obtained by deleting a row of the incidence matrix of the projective plane of order 2 is $\overline{2}$-separable. In this
paper, we want to show there is no $\overline{2}$-separable $s \times t$ matrix with $s<t<7$. For example, there is a $\overline{2}$-separable matrix $M_{5 \times 7}$. Now, we get a matrix $M_{5 \times 6}$ by deleting a column from the matrix $M_{5 \times 7}$. Then, the matrix $M_{5 \times 6}$ must be not $\overline{2}$-separable.

2 The Matrix Representation

Consider a $s \times t$ 0-1 matrix M where R_{i} and C_{j} denote row i and column j, respectively. M is called d-separable if the boolean sums of d columns are all distinct. M is called \bar{d}-separable if the boolean sums of $\leq d$ columns are all distinct. M is called d-disjunct if the boolean sum of any d columns does not contain any other column. It is clear to know that \bar{d}-separable implies d-separable and d-separable implies k-separable for every $1 \leq k \leq d$.

Let $B(S)$ denote the boolean sum of a set S of columns.
Lemma 1. [2] If the matrix M is d-disjunct then M is \bar{d}-separable.
Proof. Suppose that M is not \bar{d}-separable, i.e., there exist a set K of k columns and another set K^{\prime} of k^{\prime} columns, $1 \leq k \leq k^{\prime} \leq d$, such that $B(K)=B\left(K^{\prime}\right)$. Let C_{j} be a column in $K^{\prime} \backslash K$. Then $C_{j} \subseteq B(K)$ and M is not k-disjunct, hence not d-disjunct.

Lemma 2. [2] Deleting any row R_{i} from a d-disjunct matrix M yields a d-separable matrix M_{i}.

Proof. Let S be a set of d columns and S^{\prime} be an another set of d columns. We claim that $B(S)$ and $B\left(S^{\prime}\right)$ must differ in at least 2 rows. Suppose not, $B(S)$ and $B\left(S^{\prime}\right)$ differ in one row. Assume $B(S) \subseteq B\left(S^{\prime}\right)$, then there is a
cloumn C_{i} in $S \backslash S^{\prime}$ such that $C_{i} \subseteq B(S) \subseteq B\left(S^{\prime}\right)$. Since, M is d-disjunct. This is a contradiction. Hence, they are different even after the deletion of a row.

Theorem 3. [3] Let M be a d-separable matrix and $1 \leq k \leq d-1$. Then M is $\overline{k+1}$-separable, if and only if M is k-disjunct.

Proof. Sufficiency:
Suppose to the contrary that there exist two distinct sets S and S^{\prime} of columns in $M,|S| \leq k+1,\left|S^{\prime}\right| \leq k+1$, such that $B(S)=B\left(S^{\prime}\right)$. By the d-separable property of M, we may assume $|S|<\left|S^{\prime}\right| \leq k+1$. Then there exist a column $C \in S^{\prime} \backslash S$. Since $C \subseteq B\left(S^{\prime}\right)$, we obtain $C \subseteq B(S)$, which violates the k-disjunct property of M.

Necessity:

Suppose M is not k-disjunct, i.e., there exist a column C and a set S of k other columns such that $C \subseteq B(S)$. Then $B(S)=B\left(S^{\prime}\right)$ where $S^{\prime}=S \bigcup\{C\}$ and $|S|,\left|S^{\prime}\right| \leq k+1$. Hence M is not $\overline{k+1}$-separable.

3 Basic Definitions of BIBD

Definition 4. A design is a pair (X, B) such that the following properties are satisfied:

1. X is a set of elements called points, and
2. B is a collection of nonempty subsets of X called blocks.

Let v, k, and λ be positive integers such that $v>k \geq 2$. A (v, k, λ) balanced incomplete block design (which we abbreviate to (v, k, λ)-BIBD) is
a design (X, B) such that the following properties are satisfied:

1. $|X|=v$,
2. each block contains exactly k points, and
3. every pair of distinct points is contained in exactly λ blocks.

Example 5. A (7, 3, 1)-BIBD

$$
\begin{aligned}
X & =\{1,2,3,4,5,6,7\} \\
B & =\{123,145,167,246,257,347,356\} .
\end{aligned}
$$

We will use the notation that $b=|B|$ and r_{x} is the number of blocks containing x, for all $x \in X$. In a (v, k, λ)-BIBD, every point has the same number of blocks which pass it. So, we called $r_{x}=r$.

Definition 6. The incidence matrix of (X, B) is the $v \times b 0-1$ matrix $M=$ ($m_{i, j}$) defined by the rule

$$
m_{i, j}= \begin{cases}1 & \text { if } x_{i} \in A_{j}, \\ 0 & \text { if } x_{i} \notin A_{j},\end{cases}
$$

where A_{1}, \cdots, A_{v} are blocks. The incidence matrix, M of a (v, k, λ)-BIBD satisfies the following properties:

1. every column of M contains exactly $k 1$'s,
2. every row of M contains exactly $r=\frac{\lambda(v-1)}{k-1} 1$'s,
3. two distinct rows of M both contain 1 in exactly λ columns.

An $\left(n^{2}+n+1, n+1,1\right)$-BIBD with $n \geq 2$ is called a projective plane of order n and it is a symmetric $\operatorname{BIBD}(b=v, r=k)$.

Corollary 7. The incidence matrix of a projective plane of order n is n disjunct.

Proof. In the incidence matrix of a projective plane of order n, any two columns intersect in exactly 1 point and every column contains exactly $n+1$ 1's. Now, we take a set S of n columns. Suppose there exists another cloumn C_{j} with weight $n+1$ such that $C_{j} \subseteq B(S)$. By Pigeonhole Principle, the column C_{j} and one of columns in S have two 1's in their intersection. This is a contradiction.

Corollary 8. The matrix obtained by deleting a row of the incidence matrix of the projective plane of order n is \bar{n}-separable.

Proof. Now, we delete a point from a projective plane, i.e., deleting a row from the incidence matrix M. Let it be M^{\prime}. By Lemma $2, M^{\prime}$ is n-separable. Every column in M^{\prime} contains $n+1$ or n 1's. Now, we claim that M^{\prime} is $(n-1)$ disjunct. We take a set S of $n-1$ columns. Suppose there exists another cloumn C_{j} with weight n such that $C_{j} \subseteq B(S)$. By Pigeonhole Principle, the column C_{j} and one of columns in S have two 1's in their intersection. This is a contradiction. M^{\prime} is $(n-1)$-disjunct. By Theorem $3, M^{\prime}$ is \bar{n} separable.

In particular, when $n=2$, this is a $(7,3,1)$-BIBD, i.e., this is a projective plane of order 2 . The 6×7 matrix obtained by deleting a row of the incidence matrix of the projective plane of order 2 is $\overline{2}$-separable. Now, we prove that there is no $\overline{2}$-separable $s \times t$ matrix with $s<t<7$.

4 The main result

Theorem 9. There is no $\overline{2}$-separable $s \times t$ matrix with $s<t<7$.
Proof. If the $s \times t$ matrix is not $\overline{2}$-separable, the $k \times t$ matrix is not $\overline{2}$-separable for $k<s$, either. So, we just consider the condition $s=t-1$. Suppose to the contrary that there exists a $\overline{2}$-separable matrix $M_{s \times t}=\left[m_{i j}\right]$. So, any two columns in $M_{s \times t}$ are different. Let (s, t) be such a pair of $M_{s \times t}$ that t is smallest.

First, we have two claims:

1. Each column in $M_{s \times t}$ has at least 2 1's

Suppose there is a zero column in $M_{s \times t}$. Any column union with the zero column is still itself. This is a contradiction.

Suppose there is a column with one 1 in $M_{s \times t}$. Then the other elements of the row corresponding to this 1 are all 0 . Otherwise, $M_{s \times t}$ is not a $\overline{2}$-separable matrix. So, $M_{s \times t}$ has the following form.

$$
\left(\begin{array}{ccccccc}
& & & 0 & & & \\
& \ddots & & \vdots & & & \\
& & & 0 & & & \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
& & & 0 & & & \\
& & & \vdots & & \ddots & \\
& & & 0 & & &
\end{array}\right)
$$

But we can get a $\overline{2}$-separable matrix $M_{s-1 \times t-1}$ by deleting the row and the column corresponding to this 1 . This is a contradiction to t be the smallest.
2. Each column in $M_{s \times t}$ has at most s-2 1's

Suppose there is a column with all 1's in $M_{s \times t}$. Any column union with the this column is this column. This is a contradiction.

Suppose there is a column with s-1 1's in $M_{s \times t}$. Say this is the last
column as follows.

$$
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
1 \\
0
\end{array}\right)
$$

Then $m_{s j}=1$, where $1 \leq j \leq t-1$. Otherwise, if a $m_{s k}=0$ for some $1 \leq k \leq t-1$, the union of column k and column t is identical with

But the union of any column from 1 to $t-1$ and the column t is a column with all 1's. This is a contradiction to $M_{s \times t}$ be $\overline{2}$-separable.

Since $M_{s \times t}$ is $\overline{2}$-separable. The columns which we choosed have

$$
\binom{t}{1}+\binom{t}{2}
$$

conditions. Since each column in $M_{5 \times 6}$ has at least 2 1's, the boolean sum of the columns which we choosed have

$$
\binom{s}{2}+\binom{s}{3}+\cdots+\binom{s}{s}
$$

results. Since the number of results is more than the number of conditions, the $\overline{2}$-separable matrix $M_{s \times t}$ satisfies

$$
\binom{t}{1}+\binom{t}{2} \leq\binom{ s}{2}+\binom{s}{3}+\cdots+\binom{s}{s} .
$$

Now we want to discuss the conditions for $t<7$.

1. When $\mathrm{s}=2, \mathrm{t}=3 ; \mathrm{LHS}=6, \mathrm{RHS}=1$.

This is a contradiction.
2. When $\mathrm{s}=3, \mathrm{t}=4 ; \mathrm{LHS}=10, \mathrm{RHS}=4$.

This is a contradiction.
3. When $\mathrm{s}=4, \mathrm{t}=5$; $\mathrm{LHS}=15, \mathrm{RHS}=11$.

This is a contradiction.
4. When $\mathrm{s}=5, \mathrm{t}=6$; $\mathrm{LHS}=21, \mathrm{RHS}=26$.

This case satisfies the neccessary condition.

Hence, we just consider the matrix $M_{5 \times 6}$.

By two claims, the weight of a column in $M_{5 \times 6}$ is 2 or 3 , so we have 5 conditions.

1. There are at least four columns with weight 3 .
2. There are three columns with weight 3 and three columns with weight 2 in $M_{5 \times 6}$.
3. There are two columns with weight 3 and four columns with weight 2 in $M_{5 \times 6}$.
4. There are only one column with weight 3 in $M_{5 \times 6}$.
5. The weight of every column in $M_{5 \times 6}$ is 2 .

Now we discuss the cases step-by-step.
First, we define $N=\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ where n_{i} is the number of zeros at the i th row in $M_{5 \times 6}$.

Case 1: There are at least four columns with weight 3.
We just consider the matrix $M_{5 \times 4}$ which consists of four columns with weight 3. In other word, every column in this $M_{5 \times 4}$ has 20 's. So, there are 80 's in this $M_{5 \times 4}$. Now, we want to discuss the conditions of N. If $N=(4,4,0,0,0)$, then $M_{5 \times 4}$ as follows.

0	0	0	0
0	0	0	0
1	1	1	1
1	1	1	1
1	1	1	1

But there are two columns identical. This is a contradiction. Thus, we find N such that any two columns are different. So, when $N=(4,4,0,0,0),(4,3,1,0,0)$, $(4,2,2,0,0),(4,2,1,1,0),(3,3,2,0,0)$ and $(3,3,1,1,0)$, they do not satisfy the condition. And we find five cases for N which satisfy the condition.

Case 1.1: $N=(4,1,1,1,1)$. W.L.O.G, we take $M_{5 \times 4}$ as follows.

A	B	C	D
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	1
1	1	1	0

But the unions of any two columns are identical. Hence, $M_{5 \times 4}$ is not $\overline{2}-$ separable. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Case 1.2: $N=(3,2,2,1,0)$. W.L.O.G, we take $M_{5 \times 4}$ as follows.

A	B	C	D
0	0	0	1
1	1	0	0
1	0	1	0
0	1	1	1
1	1	1	1

But the union of column A and column B is identical with the union of column A and column C. Hence, $M_{5 \times 4}$ is not $\overline{2}$-separable. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Case 1.3: $N=(3,2,1,1,1)$. W.L.O.G, we take $M_{5 \times 4}$ as follows.

A	B	C	D
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	1
1	1	1	0

But the union of column A and column B is identical with the union of column A and column C. Hence, $M_{5 \times 4}$ is not $\overline{2}$-separable. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Case 1.4: $N=(2,2,2,1,1)$. W.L.O.G, we take $M_{5 \times 4}$ as follows.

A	B	C	D
0	0	1	1
1	0	0	1
1	1	0	0
0	1	1	1
1	1	1	0

But the union of column A and column C is identical with the union of column A and column D. Hence, $M_{5 \times 4}$ is not $\overline{2}$-separable. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Case 1.5: $N=(2,2,2,2,0)$. W.L.O.G, we take $M_{5 \times 4}$ as follows.

A	B	C	D
0	0	1	1
1	0	0	1
1	1	0	0
0	1	1	0
1	1	1	1

But the union of column A and column C is identical with the union of column B and column D. Hence, $M_{5 \times 4}$ is not $\overline{2}$-separable. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Note: A column with weight 2 has ten conditions.

A	B	C	D	E	F	G	H	I	J
1	1	1	1	0	0	0	0	0	0
1	0	0	0	1	1	1	0	0	0
0	1	0	0	1	0	0	1	1	0
0	0	1	0	0	1	0	1	0	1
0	0	0	1	0	0	1	0	1	1

In the following cases, we will use it.
Case 2: There are the three columns with weight 3 and three columns with weight 2 in $M_{5 \times 6}$.

First, we take three columns with weight 3 . There are 60 's in these cloumns. Now, we find N such that two columns are different. So, when $N=(3,3,0,0,0)$ and $(3,2,1,0,0)$, they do not satisfy the condition. And we find four cases for N which satisfy the condition.

Case 2.1: $N=(3,1,1,1,0)$. W.L.O.G, we take the three columns as follows.

$$
\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}
$$

But the union of any two columns are identical. Thus, $M_{5 \times 6}$ is not $\overline{2}$ separable in this case.

Case 2.2: $N=(2,2,1,1,0)$. W.L.O.G, we take the three columns as follows.

X	Y	Z
0	0	1
0	1	0
1	0	1
1	1	0
1	1	1

Since $M_{5 \times 6}$ is $\overline{2}$-separable matrix, we can't take columns B, D, F, G, H, I, J. Hence, we have $M_{5 \times 6}$ as follows.

X	Y	Z	A	C	E
0	0	1	1	1	0
0	1	0	1	0	1
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1	0	0	0

But the union of column X and column A is identical with the union of column Y and column Z. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Case 2.3: $N=(2,2,2,0,0)$. W.L.O.G, we take the three columns as follows.

0	0	1
0	1	0
1	0	0
1	1	1
1	1	1

Since $M_{5 \times 6}$ is $\overline{2}$-separable, we can't take columns C, D, F, G, H, I, J. Hence, we have $M_{5 \times 6}$ as follows.

				A	B	E
0	0	1	1	1	0	
0	1	0	1	0	1	
1	0	0	0	1	1	
1	1	1	0	0	0	
1	1	1	0	0	0	

But the union of column A and column B is identical with the union of column A and column E. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Case 2.4: $N=(2,1,1,1,1)$. W.L.O.G, we take the three columns as
follows.

X	Y	Z
0	0	1
1	1	0
1	0	1
0	1	1
1	1	0

But the union of column X and column Z is identical with the union of column Y and column Z . Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Case 3: There are two columns with weight 3 and four columns with weight 2 in $M_{5 \times 6}$.

First, we take two columns with weight 3 . There are 40 's in these cloumns. Now, we find N such that two columns are different. So, when $N=(2,2,0,0,0)$, it do not satisfy the condition. And we find two cases for N which satisfy the condition.

Case 3.1: $N=(1,1,1,1,0)$. W.L.O.G, we take the two columns as follows.

0	1
0	1
1	0
1	0
1	1

Since $M_{5 \times 6}$ is $\overline{2}$-separable, we can't take columns A, D, G, H, I, J. Hence,
we have $M_{5 \times 6}$ as follows.
$\left.\begin{array}{llllll} & & & B & C & E\end{array}\right)$

But the union of column B and column F is identical with the union of column C and column E. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Case 3.2: $N=(2,1,1,0,0)$. W.L.O.G, we take the two columns as follows.

$$
\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1 \\
1 & 1
\end{array}
$$

Since $M_{5 \times 6}$ is $\overline{2}$-separable, we can't take columns F, G, H, I, J and we just can take one of columns B, C, D. But we only have five columns. This is a contradiction. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Case 4: There are only one column with weight 3 in $M_{5 \times 6}$.
First, we take the column with weight 3. W.L.O.G, we take one column
as follow.

```
1
1
1
0
0
```

Since $M_{5 \times 6}$ is $\overline{2}$-separable, we can't take columns A, B, E. And we just can take one of columns C, F, H, we just can take one of columns D, G and we just can take two of columns H, I, J. But we only have five columns. This is a contradiction. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Case 5: The weight of every column in $M_{5 \times 6}$ is 2 .
There are $2 \times 6=12$ 1's in $M_{5 \times 6}$. But there are five rows. By Pigeonhole Principle, there must be a row that contains 3 1's in $M_{5 \times 6}$.

There are $3 \times 3=90$'s in these columns. It remains four rows. By Pigeonhole

Principle, there must be a row that contains 30 's.

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
\square & \square & \square \\
\square & \square & \square \\
\square & \square & \square
\end{array}\right)
$$

W.L.O.G, the three columns are

$$
\begin{gathered}
B \\
C
\end{gathered} \quad D
$$

$M_{5 \times 6}$ is $\overline{2}$-separable. But the union of column C and column H is identical with the union of column B and column H, the union of column B and column I is identical with the union of column D and column I and the union of column C and column J is identical with the union of column D and column J. So, we can not take cloumns H, I and J. Since the union of column A and column D is identical with the union of column G and column D, we just can take one of columns A, G. Since the union of column C and column E is identical with the union of column B and column F , we just can take one of columns E, F. But we only have five columns. This is a contradiction. Thus, $M_{5 \times 6}$ is not $\overline{2}$-separable in this case.

Through above discussion, $M_{5 \times 6}$ is not $\overline{2}$-separable. Thus, there is no $\overline{2}$-separable $s \times t$ matrix with $s<t<7$.

Conjecture 10. There is no \bar{d}-separable matrix of size $s \times t$ with $s<t<$ $d^{2}+d+1$.

5 References

[1] S. H. Huang, Frank K. Hwang, When is Individual Testing Optimal for Nonadaptive Group Testing?, Department of Applied Mathematics National Chiao Tung University, Hsinchu 30050, Taiwan, R.O.C.
[2] Du, Ding-Zhu, Frank K. Hwang, Combinatorial group testing and its applications, $2^{\text {nd }}$ ed, pp135.
[3] Hong-Bin Chen, Frank K. Hwang, Exploring the missing link among d-separable, \bar{d}-separable and d-disjunct matrices, Discrete Applied Mathematics 155(2007) 662-664.

