國立交通大學

應用數學系

碩 士 論 文

在全非負矩陣上的哈達馬運算
 Hadamard Operations on Totally Nonnegative Matrices

研 究 生：林志嘉
指導教授：翁志文 教授

在全非負矩陣上的哈達馬運算 Hadamard Operations on Totally Nonnegative Matrices

研 究 生：林志嘉
指導教授：翁志文

Student：Chih－Chia Lin
Advisor：Chih－Wen Weng

國立交通大學
應 用 數 學 系
碩士論文

A Thesis
Submitted to Department of Applied Mathematics
1 College of Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Applied Mathematics

June 2011

Hsinchu，Taiwan，Republic of China

中華民國一百年六月

在全非負矩陣上的哈達馬運算

本論文我們關心的是全非負矩陣和全正矩陣的性質。一個其任意子矩陣的行列式值皆為非負或皆為正的非負矩陣稱之為全非負矩陣或為全正矩陣。這様的矩陣在數學领域裡扮演著相當重要的角色。此篇論文主要的目的在於介紹非負矩陣和正矩陣的基本性質及收集一些關於全非負矩陣和全正矩陣的已知性質，並重新回憶哈達馬乘積和半正定性質的關聯。此外，我們也將討論關於永沍全正的性質。

Hadamard Operations on Totally Nonnegative Matrices

Student: Chih-Chia Lin

Advisors: Dr. Chih-Wen Weng

Department (Institute) of Applied Mathematics National Chiao Tung University

In this thesis we are concerned with the properties of totally nonnegative (resp. positive) matrices. An m-by-n entry-wise nonnegative matrix is totally nonnegative (resp. positive) if the determinant of any square submatrix is nonnegative (resp. positive). A totally nonnegative matrix plays an important role in various mathematical branches. The primary propose here is to introduce the basic properties of nonnegative (resp. positive) matrix and to collect the known results in matrix theory with the totally nonnegative (resp. positive) property involved. We will recall the relation between Hadamard product and the positive semidefinite property, and study the relation between Hadamard product and the totally nonnegative (resp. totally positive) property. Furthermore, we also discuss the eventually totally positive property.

誌謝

本篇論文的完成，首先要感謝我的指導教授一翁志文教授。在老師悉心的指導下我學習到做數學所需的細淢和敏鋭，也明白了不是每件事情都如其表面上所看到的那個様子。這様子的成長是我在還沒有歴過前所無法去想像或是嘗試去描敘的。這之中我更親自體會到那份追求學問和渴望得到答案的真誠靈魂會在當我又邁向前一步時綻放開來。

其次要感謝的是黄喻培學長。學長提供了許多新的想法給我，並且設身處地的把我的論文當作自己的論文那般地要求。記憶猶新的是在口試前幾個禮拜的夜晚，不論天晴天雨，學長總是義無反顧的陪我到三更半夜只為了能幫助我完成論文。我們可以為了一個數學問題反覆演練修改，也可以為了一個人生規劃的話題辯論整晩；像場飛翔競賽般，時而周旋時而條地衝刺，而那些論文中的問題既使我們都不知道最後會不會有终點，但不可否認的我們都因為可以更向目標靠近而真摯的感到開心。

1896

很感謝陪我一起走過的研究生活的夥伴，有你們在才有一場又一場精彩的球賽，有你們在才有那些說不完的無理頭笑話，有你們在才有一個又一個圍坐著喝酒聊天的夜晚。特別感謝雨位和我一起往未來努力著的兄弟，陳紹琦，傅景祥，我相信我們都將會成為很優秀的老師。另外我想感謝最後這一年在我身邊最特別的一份鼓勵和陪伴，讓我的生活充満精彩也感受到温暖。

最後我特別感謝我的家人，無論我在人生的旅途上做了什麼様的決定，家人總是百分之百的支持我，做為我強而有力的後盾。完成了這個階段，我知道我還會走得更遠，見識更大的世界，我會做好準備迎接新的挑戰。

Contents

Chinese Abstract i
English Abstract ii
Acknowledgement iii
Contents iv
1 Introduction 1
2 Preliminaries 2
3 Schur Product Theorem 4
4 The Closeness of Hadamard Product and Hadamard Power 8
5 Hadamard Core
11
6 The Hadamard Core for Bidiagonal and Tridiagonal Matri-
ces
MHATII 15
7 The Matrices Eventually of Positive Determinant 18
8 Eventually Totally Nonnegative Matrices and Eventually To- tally Positive Matrices 23
9 References 27

1 Introduction

A matrix is totally nonnegative (resp. positive) if the determinant of any square submatrix is nonnegative (resp. positive). For example, a Vandermonde matrix whose rows are positive and increasing is a totally positive matrix. Hence it is safe to say that everywhere a Vandermonde matrix is applied, so is a totally positive matrix.

In the 1930s, F.R. Gantmacher and M.G. Krein developed the theory of totally nonnegative matrices connecting with vibrations of mechanical systems. Then, important instances of totally nonnegative matrices are provided by green functions of certain differential operators. Besides, the theory of total nonnegativity connecting with the variation diminishing properties of matrices was developed by I.J. Sehoenberg, which leads to spline theory.

Then, the following researcher was S. Karlin who started to demonstrate in multitudinous publications in the late 1950s on the subject the breath of application and depth of mathematical importance of total nonnegativity. Affected by Karlin, many authors get the motivation to explore the application of total nonnegativity to approximation theory, analysis, statistics, biology, and geometric modeling [9].

In this paper, we organize the basic properties of totally nonnegative and totally positive matrices. The fundamental material is mainly obtained from $[3,10,6,1]$. This paper is divided into eight sections. Section 1 is introductory. Section 2 contains the definitions and notations used in this
paper. In the section 3, we investigate the properties of the matrices whose principal minors are nonnegative and prove the Schur Product Theorem. In the section 4, we give some notations and examples for the Hadamard product of two totally nonnegative matrices. In the section 5, we describe some property of Hadamard core and find which matrices is in Hadamard core. In the section 6 , we describe the core for bidiagonal and tridiagonal matrices. In the section 7, we present relations between Hadamard power and determinant for a nonnegative matrix. In the last section, we set up and prove some theorems about eventually totally nonnegative property and eventually totally positive property. Furthermore, we characterize the relation between totally nonnegative property and eventually totally positive property. Most of the results in this paper can be found in $[4,5\}$.

2 Preliminaries

A nonnegative matrix is a matrix with all its entries nonnegative. For some reference of nonnegative matrices, please see $[2,7]$. The Hadamard product of two m-by- n matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ is denoted and defined by $A \circ B=\left[a_{i j} b_{i j}\right]$, i.e., an entry-wise product.

Suppose A, B, C are matrices of the same size and λ is a scalar. Then

$$
\begin{aligned}
A \circ B & =B \circ A, \\
A \circ(B \circ C) & =(A \circ B) \circ C, \\
A \circ(B+C) & =A \circ B+A \circ C, \\
\lambda(A \circ B) & =(\lambda A) \circ B=A \circ(\lambda B) .
\end{aligned}
$$

The t-th Hadamard power of $A=\left[a_{i j}\right]$ for any $t \geq 0$ and $A \geq 0$ (entry-wise nonnegative) is defined by $A^{(t)}=\left[a_{i j}^{t}\right]$.

The Hadamard product and Hadamard power play a central role within matrix analysis and its applications. Here we assume that all matrices are entry-wise nonnegative.

For an m-by- n matrix $A, \alpha \subseteq\{1,2, \ldots, m\}$, and $\beta \subseteq\{1,2, \ldots, n\}$, the submatrix of A lying in rows with indices in α and the columns with indices in β (in the arithmetic order). Let $A[\alpha \mid \beta]$ be the submatrix of A. Furthermore, let $A(\alpha \mid \beta)$ be the submatrix obtained from A by deleting the rows indexed by α and columns indexed by β. The principal submatrix $A[\alpha \mid \alpha]$ is abbreviated to $A[\alpha]$, and the complementary principal submatrix $A(\alpha \mid \alpha)$ is abbreviated to $A(\alpha)$. Moreover, we denote $A[\alpha \mid \cdot]$ as $A[\alpha \mid\{1,2, \ldots, n\}]$ and $A[\cdot \mid \beta]$ as $A[\{1,2, \ldots, m\} \mid \beta]$.

A minor of a matrix A is the determinant of the submatrix $A[\alpha \mid \beta]$, where $A[\alpha \mid \beta]$ is a square matrix. The determinant of $A[\alpha \mid \alpha]$ is called a principal minor. If the indices of α and β are contiguous, then the determinant of $A[\alpha \mid \beta]$ is called a contiguous minor.

An m-by- n matrix A is called totally nonnegative (resp. totally positive), if all minors of A are nonnegative(resp. positive). We use $T N$ (resp. TP) to denote the set of all totally nonnegative (resp. totally positive) matrices. And we use $T N_{k}$ (resp. $T P_{k}$) to denote the set of matrices whose j-by- j minors are all nonegative (resp. positive) for $1 \leq j \leq k$. In particular, $T N_{1}$ is the set of matrices with nonnegative entry. We use $T N_{2}^{+}$to denote the set of all square $T N_{2}$ matrices whose 2-by-2 principal minors based upon consecutive indices are positive. Hence $T P \subseteq T P_{2} \subseteq T N_{2}^{+}$.

3 Schur Product Theorem

Here we want to recall the Schur Product Theorem (see[8]) and its proof. The theorem relates positive semidefinite matrices to the Hadamard product, which plays a central role in the analysis of the determinants of matrices. Here we assume that all-matrices have real nonnegative entries.

1896
Now we introduce some notations. The transpose of a matrix A is denoted by A^{T}. A square matrix is called symmetric if it is equal to its transpose. That is, $A=A^{T}$.

Definition 3.1. If A is an n-by- n symmetric matrix and $\mathcal{Q}(x)=x^{T} A x \geq 0$ for any non-zero vector $x \in \mathbb{R}^{n}$, then A is a positive semidefinite matrix. Note that all eigenvalues of a positive semidefinite matrix A are nonnegative and all principal minors of A are nonnegative.

Here we collect some properties about positive semidefinite matrices to prove the Schur Product Theorem.

Lemma 3.2. Any n-by-n rank one positive semidefinite matrix A can be written as the form $A=x x^{T}$ where x is a column n-vector.

Proof. Let A be an n-by- n rank one positive semidefinite matrix. Since A is positive semidefinite, there exists an orthogonal matrix U made up of orthonormalized eigenvectors of A such that

where u_{1} is the first column of U. We choose $x=\sqrt{\lambda_{1}} u_{1}$, and then $A=x x^{T}$.

1896
Lemma 3.3. If B is an $n-b y-n$ positive semidefinite matrix with rank r, then there exists r positive semidefinite rank one matrices $B_{1}, B_{2}, \ldots, B_{r}$ such that $B=B_{1}+B_{2}+\cdots+B_{r}$.

Proof. Let B be an n-by- n rank r positive semidefinite matrix. Since B is positive semidefinite, there exists an orthogonal matrix U made up of
orthonormalized eigenvectors of B such that

where u_{i} is the i-th column of U and $\lambda_{k}>0$ for $1 \leq k \leq r$. We choose $B_{i}=\lambda_{i} u_{i} u_{i}^{T}$ then $B=B_{1}+B_{2}+\cdots+B_{r}$. Note that λ_{i} is the only positive eigenvalue of B_{i}.

Let D_{k} be the diagonal matrix whose only nonzero entry is $\left[D_{k}\right]_{k k}=\lambda_{k}$, $B_{k}=U D_{k} U^{T}$. Since $\lambda_{k} \geq 0$ forall $1 \leq k \leq r$, then D_{k} is positive semidefinite for all $1 \leq k \leq r$. Now consider $x^{T} B_{k} x$ for any $x \in \mathbb{R}^{n}$, then

$$
\geq 0
$$

This is true for all $1 \leq k \leq r$ and so B_{k} is positive semidefinite for all k.

Note that the converse of Lemma 3.3 also holds.

Lemma 3.4. If B is an n-by-n rank r matrix and suppose $B=B_{1}+B_{2}+$ $\cdots+B_{r}$, where B_{i} 's are rank one positive semidefinite n-by-n matrices. Then B itself is positive semidefinite.

Proof. By the Definition 3.1 and note that for all $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
x^{T} B x & =x^{T}\left(B_{1}+B_{2}+\cdots+B_{r}\right) x \\
& =x^{T} B_{1} x+x^{T} B_{2} x+\cdots+x^{T} B_{r} x \\
& \geq 0 .
\end{aligned}
$$

Theorem 3.5. (Schur Product Theorem) Suppose A and B are two n-by-n positive semidefinite matrices. Then the Hadamard product of A and B is also positive semidefinte.

Proof. Let A and B be two n-by $-n$ positive semidefinite matrices. There are three cases to consider. First, suppose $\operatorname{rank}(\mathrm{B})=0$. This implies that $B=\mathcal{O}$, and therefore $A \circ B=\mathcal{O}$, which is clearly positive semidefinite. Second, suppose $\operatorname{rank}(\mathrm{B})=1$. Then B can be written as the form $B=x x^{T}$ for some vector $x \in \mathbb{R}^{n}$. Then $[A \circ B]_{i j}=[A]_{i j}[B]_{i j}=[A]_{i j}[x]_{i}\left[x^{T}\right]_{j}=\left[D_{x} A D_{x}\right]_{i j}$, where D_{x} is the diagonal matrix with x in the diagonal. Now we prove that $D_{x} A D_{x}$ is positive semidefinite. Note that, for any $v \in \mathbb{R}^{n}$

$$
\begin{aligned}
v^{T} D_{x} A D_{x} v & =v^{T} D_{x}^{T} A D_{x} v \\
& =\left(D_{x} v\right)^{T} A\left(D_{x} v\right) \\
& \geq 0
\end{aligned}
$$

since A is positive semidefinite. This proves that $D_{x} A D_{x}$ is positive semidefinite. Finally, suppose that $\operatorname{rank}(\mathrm{B})=r$ for some $1<r \leq n$. Then $B=$
$B_{1}+B_{2}+\cdots+B_{r}$, where the rank of B_{i} is one for $1 \leq i \leq r$. Then $A \circ B=A \circ\left(B_{1}+B_{2}+\cdots+B_{r}\right)=A \circ B_{1}+A \circ B_{2}+\cdots+A \circ B_{r}$. Since each $A \circ B_{i}$ is positive semidefinite, then $A \circ B$ is positive semidefinite by Lemma 3.4.

Therefore, if A and B are two n-by- n positive semidefinite matrices, then the Hadamard product of A and B is also positive semidefinte.

4 The Closeness of Hadamard Product and Hadamard Power

In this section, we prove the closeness of $T N_{2}\left(\right.$ resp. $\left.T P_{2}\right)$ under Hadamard product and Hadamard power. Furthermore, we also give some counterexamples to show $T N_{k}$ and $T P_{k}$ are not generally closed under Hadamard product and Hadamard power for

Theorem 4.1. If $A, B \in T N_{2}$ (resp. TP P_{2}, then $A \circ B \in T N_{2}$ (resp. $T P_{2}$) and $A^{(t)} \in T N_{2}$ (resp. $T P_{2}$) for all $t>0.89$

Proof. Let

$$
A_{1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

and

$$
B_{1}=\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]
$$

be arbitrary 2-by-2 submatrices in the same site of A and B respectivity. Here $a, b, c, d, e, f, g, h \geq 0$ and $\operatorname{det}\left(A_{1}\right) \geq 0$ (i.e. $a d \geq b c$), $\operatorname{det} B_{1} \geq 0$ (i.e.
$e h \geq f g$). We consider the matrices

$$
A_{1} \circ B_{1}=\left[\begin{array}{cc}
a e & b f \\
c g & d h
\end{array}\right]
$$

and

$$
A_{1}^{(t)}=\left[\begin{array}{ll}
a^{t} & b^{t} \\
c^{t} & d^{t}
\end{array}\right] .
$$

Then
and

$$
\operatorname{det}\left(A_{1} \circ B_{1}\right)=a e d h-b f c g
$$

Since A_{1}, B_{1} are arbitrary, so we have $A \circ B \in T N_{2}$ and $A^{(t)} \in T N_{2}$ for all $t>0$. Similarly the $T P_{2}$ case also holds.

Note that, from the proof above, we know that if $A, B \in T N_{2}$, then $A \circ B \in T N_{2}$. But $A \circ B$ in $T N_{2}$ does not imply that A and B are both in $T N_{2}$.

Example 4.2. Let

$$
A=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{ll}
5 & 3 \\
2 & 2
\end{array}\right]
$$

Then $A \notin T N$ and $B \in T N$, but

$$
A \circ B=\left[\begin{array}{cc}
10 & 9 \\
2 & 2
\end{array}\right]
$$

is in $T N$.
We know from Lemma 4.1, if $A, B \in T N_{2}$ (resp. $T P_{2}$), then $A \circ B \in T N_{2}$ (resp. $T P_{2}$). However $T N_{k}$ and $T P_{k}$ are not generally closed under Hadamard product when $k \geq 3$.

Example 4.3. Let
and

be in $T N$. Note that

$$
A \circ B=\left[\begin{array}{ccc}
4 & 2 & 0 \\
2 & 4 & 9 \\
0 & 9 & 25
\end{array}\right]
$$

is not in $T N$, since $\operatorname{det}(A \circ B)=-24<0$. Similiarly (see [5]), let

$$
A=\left[\begin{array}{cccc}
1 & 11 & 22 & 20 \\
6 & 67 & 139 & 140 \\
16 & 182 & 395 & 445 \\
12 & 138 & 309 & 376
\end{array}\right]
$$

Then A can be checked to be in $T P$. But $\operatorname{det}\left(A^{(2)}\right)=-114904113$, so $A^{(2)}$ is not in $T P$.

5 Hadamard Core

In previous section, we see that the set $T N$ is not closed under Hadamard product. Our interest here is tocharacterize a subset of $T N$ which is closed under Hadamard product.

Definition 5.1. For $T N$ and $T N_{k}$, the corresponding Hadamard cores are defined as follows:

$$
C T N:=\{A \in T N: B \in T N \Rightarrow A \circ B \in T N\}
$$

and

$$
C T N_{k}:=\left\{A \in T N_{k}: B \in T N_{k} \Rightarrow A \circ B \in T N_{k}\right\}
$$

Let $\alpha \geq 0$ and $J_{m \times n}$ be the m-by- n matrix with all entries 1 . Then αI_{n} and $\alpha J_{m \times n}$ are clearly in $C T N$. We discuss the properties of the Hadamard core further.

Lemma 5.2. $T N_{2}=C T N_{2}$.
Proof. Suppose $A \in T N_{2}$. Since the $T N_{2}$ is closed under Hadamard product, by Lemma 4.1 we have $A \circ B \in T N_{2}$ for all $B \in T N_{2}$. It follows that A is in $C T N_{2}$. For the converse, if $A \in C T N_{2}$ then from the Definition 5.1 we know $A \in T N_{2}$.

Lemma 5.3. [4] If $A \in C T N$ and $B \in C T N$, then $A \circ B \in C T N$.
Proof. Let C be any m-by-n $T N$ matrix. Then $B \circ C \in T N$ since $B \in C T N$. Hence $A \circ(B \circ C) \in T N$. Since $A \circ(B \circ C)=(A \circ B) \circ C$, We have that $A \circ B \in C T N$.

Lemma 5.4. If $A \in C T N$, then $A^{(t)} \in C T N$ for all $t \in \mathbb{N}$.
Мाना川ノ
Proof. If $A \in C T N$, then $A \circ B \in T N$ for any $B \in T N$. We prove this by mathematical induction. If $t=1$, this is trivial true. Suppose $t=k$ holds. Consider the case $t=k \pm 1 . A^{(k+1)} \circ B=\left(A^{(k)} \circ A\right) \circ B=A^{(k)} \circ(A \circ B)$. Since $A \in C T N$ and by the induction hypothesis, $A^{(k+1)} \bigcirc B \in T N$. We conclude that $A^{(t)} \in C T N$ for all $t \in \mathbb{N}$.

In the following Lemma, we show that the property of being in the concerned sets or not is not influenced by multiplicating a positive diagonal matrix.

Lemma 5.5. Multiplicating by positive diagonal matrices at the left or right side does not affect the property of a matrix A being in TN, TP, or CTN.

Proof. Let D, E be two positive diagonal matrices. Consider the matrix $D A E[\alpha \mid \beta]$ where $\alpha=\left\{a_{1}, \cdots, a_{k}\right\}, \beta=\left\{b_{1}, \cdots, b_{k}\right\}$. If $A \in T N$, then
$\operatorname{det}(D A E[\alpha \mid \beta])=\left(\Pi_{i=1}^{k} D_{a_{i} a_{i}} E_{b_{i} b_{i}}\right) \cdot \operatorname{det} A[\alpha \mid \beta] \geq 0$. Since $D A E[\alpha \mid \beta]$ is arbitrary, $D A E$ is in $T N$. If $A \notin T N$, there exists a minor $A\left[\alpha^{\prime} \mid\right.$ $\left.\beta^{\prime}\right]<0$ where $\alpha^{\prime}=\left\{a_{1}^{\prime}, \cdots, a_{k}^{\prime}\right\}, \beta^{\prime}=\left\{b_{1}^{\prime}, \cdots, b_{k}^{\prime}\right\}$. Thus $\operatorname{det}\left(D A E\left[\alpha^{\prime} \mid\right.\right.$ $\left.\left.\beta^{\prime}\right]\right)=\left(\Pi_{i=1}^{k} D_{a_{i}^{\prime} a_{i}^{\prime}} E_{b_{i}^{\prime} b_{i}^{\prime}}\right) \cdot \operatorname{det} A\left[\alpha^{\prime} \mid \beta^{\prime}\right]<0$. Similarly, the TP case also holds.

If $A \in C T N$, we know the Hadamard product of A and B is in $T N$ for $B \in T N$. Consider the matrix $(D A) \circ B,(D A) \circ B=A \circ(D B)$ where $D B \in T N$. It is followed by that $A \circ(D B) \in T N$ and $D A \in C T N$. Similarly, multiplicating by positive diagonal matrices on the right side does not affect the property of being in $C T N$.

For $x=\left[x_{i}\right] \in \mathbb{R}^{n}$, let $\operatorname{diag}(x)$ denote the n-by- n diagonal matrix such that $[\operatorname{diag}(x)]_{i i}=x_{i}$ and $[\operatorname{diag}(x)]_{i j}=0$ for $i \neq j$. Next, we discuss the rank one totally nonnegative matrices. $=S$ S
Theorem 5.6. Let A be an $n-b y-n$ rank one matrix. Then the following are equivalent.
(i) $A \in T N$;
(ii) $A=x y^{T}$ for some nonnegative column vectors;
(iii) $A \in C T N$;
(iv) $A \in T N_{1}$.

Proof. Let A_{i} denote the i-th row of A. Since $\operatorname{rank}(\mathrm{A})=1$, there exists a $k \in\{1,2, \cdots, n\}$ such that $A_{i}=c_{i} A_{k}$ where c_{i} 's are constants. In particular, $c_{k}=1$. Let $y^{T}=A_{k}$ and x be the column vector such that $x_{i}=c_{i}$. Then $A=x y^{T}$.
(i) \Rightarrow (ii) Since $A \in T N$, then all entries of A are nonnegative. We can further assume that all entries of x and y are nonnegative.
$(i i) \Rightarrow($ iii $)$ Let $D=\operatorname{diag}(x), E=\operatorname{diag}(y)$ and J the all 1's n-by- n matrix. Note that $A=D J E$. Hence the (iii) follows since $J \in C T N$ and by Lemma 5.5.
$(i i i) \Rightarrow(i v)$ If $A \in C T N$, it is clearly $A \in T N_{1}$.
(iv) $\Rightarrow(i)$ Since $\operatorname{rank}(A)=1$, then $\operatorname{det} A[\alpha \mid \beta]=0$ when $|\alpha|=|\beta| \geq 2$. It is clearly that $A \in T N$.

Theorem 5.7. Let A be an n-by-n rank two matrix. Then the following are equivalent.
(i) $A \in T N$;
(ii) $A \in T N_{2}$;
(iii) $A \in C T N_{2}$.

Proof. (i) \Rightarrow (ii) It trivially holds by the definition of $T N$.
(ii) $\Rightarrow\left(\right.$ i Since $A \in T N_{2}, A$ is nonnegative and all 2-by-2 minors of A are nonnegative. To show that $A \in T N$, it suffices to check all the k-by- k minors of A for $3 \leq k \leq n$. Consider $A[\alpha \mid \beta]$ for $\alpha, \beta \subseteq\{1,2, \cdots, n\}$ and $|\alpha|=|\beta|=k \geq 3$. Since $\operatorname{rank}(A)=2, \operatorname{rank}(A[\alpha \mid \beta]) \leq 2$. It follows that $\operatorname{det}(A[\alpha \mid \beta])=0$. Thus we can conclude that $A \in T N$.
$($ ii $) \Longleftrightarrow($ iii) This equivalence holds by Lemma 5.2.

6 The Hadamard Core for Bidiagonal and Tridiagonal Matrices

In this section, we describe the closeness of bidiagonal and tridiagonal matrices under Hadamard product. Furthermore, we show that the positive semidefinite tridiagonal matrices are in $T N$.

Definition 6.1. Let U be an n-by- n matrix with non-zero entries along the main diagonal and the super-diagonal. This kind of matrices are called upper bidiagonal. That is, U is a matrix of the form

Let L be an n-by- n matrix with non-zero entries along the main diagonal and the sub-diagonal. This kind of matrices are ealled lower bidiagonal. That is, L is a matrix of the form

$$
L=\left[\begin{array}{cccccc}
a_{1} & & & & & 0 \\
b_{1} & a_{2} & & & & \\
& b_{2} & a_{3} & & & \\
& & \ddots & \ddots & & \\
& & & b_{n-2} & a_{n-1} & \\
0 & & & & b_{n-1} & a_{n}
\end{array}\right]_{n \times n}
$$

If an n-by- n matrix A is upper bidiagonal or lower bidiagonal matrix, then A is bidiagonal matrix.

Definition 6.2. A square matrix $T=\left[t_{i j}\right]$ is called tridiagonal if $t_{i j}=0$ whenever $|i-j|>1$. Thus a tridiagonal matrix has the form

$$
T=\left[\begin{array}{cccccc}
b_{1} & c_{1} & & & & 0 \\
a_{1} & b_{2} & c_{2} & & & \\
& a_{2} & b_{3} & c_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & a_{n-2} & b_{n-1} & c_{n-1} \\
0 & & & & a_{n-1} & b_{n}
\end{array}\right]_{n \times n}
$$

The following theorem describes the relation of tridiagonal matrix and totally nonnegative property.

Theorem 6.3. [4] Let T be an $\overline{n-b} y-n$ nonnegative tridiagonal matrix. Then T is totally nonnegative if and only if T has nonnegative principal minors. Proof. If T is totally nonnegative, then by the definition of totally nonnegative property, T is an entry-wise nonnegative matrix with nonnegative principal minors. For the converse, suppose T is an n-by- n tridiagonal matrix with nonnegative principal minors. We want to show that all non-principal minors of T are also nonnegative. We prove this by mathematical induction. Let $T^{\prime}=\left[t_{i j}^{\prime}\right]$ and $T^{\prime}=T[\alpha \mid \beta]$ with $\alpha \neq \beta$. If $n=1$, this is trivially true. Suppose $n<k$ holds. Consider the case $n=k$. Let $\alpha=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ and $\beta=\left\{b_{1}, b_{2}, \cdots, b_{k}\right\}$ be the indices of rows and columns in T. There are three cases to consider. If $a_{1}<b_{1}$, then $t_{1 i}^{\prime}=0$ for all $2 \leq i \leq k$. Thus $\operatorname{det}\left(T^{\prime}\right)$ $=t_{11}^{\prime} \cdot \operatorname{det}\left(T^{\prime}(1)\right) \geq 0$ by the induction hypothesis. If $a_{1}>b_{1}$, then $t_{i 1}^{\prime}=0$
for all $2 \leq i \leq k$. Thus $\operatorname{det}\left(T^{\prime}\right)=t_{11}^{\prime} \cdot \operatorname{det}\left(T^{\prime}(1)\right) \geq 0$ by the induction hypothesis. If $a_{i}=b_{i}$ for $1 \leq i \leq l$ and $a_{l+1} \neq b_{l+1}$ for some $1 \leq l \leq k-1$, then either $T\left[\left\{a_{1}, \cdots, a_{l}\right\} \mid\left\{b_{l+1}, \cdots, b_{k}\right\}\right]$ or $T\left[\left\{a_{l+1}, \cdots, a_{k}\right\} \mid\left\{b_{1}, \cdots, b_{l+1}\right\}\right]$ is zero matrix. The matrix is a block triangular matrix and by the induction hypothesis, $\operatorname{det}\left[T^{\prime}\right] \geq 0$. We complete this proof.

Corollary 6.4. If T is an n-by-n entry-wise nonnegative bidiagonal matrix, then $T \in T N$.

Proof. If T is an n-by- n entry-wise nonnegative bidiagonal matrix, then it is also a tridiagonal matrix with nonnegative principal minors. By Theorem 6.3, $T \in T N$.

Theorem 6.5. Let T be an n-by-n bidiagonal matrix. Then the following are equivalent.
(i) $T \in T N_{1}$;
(ii) $T \in C T N$;
(iii) $T \in T N$.

Proof. (i) \Rightarrow (ii) Let T be an n-by- n bidiagonal matrix and $T \in T N_{1}$. For any n-by- n matrix $B \in T N, T \circ B$ is still an n-by- n bidiagonal matrix and $T \circ B \in T N_{1}$. By Corollary 6.4, we can conclude that $T \in C T N$.
$(i i) \Rightarrow(i i i)$ It follows trivially from the definition of Hadamard core.
$($ iii $) \Rightarrow(i)$ Since $T N \subseteq T N_{1}, T \in T N_{1}$.

We relate the totally nonnegative property in tridiagonal matrix via its eigenvalues.

Corollary 6.6. Let T be a nonnegative symmetric tridiagonal matrix. If the eigenvalues of T are nonnegative, then $T \in T N$.

Proof. Let T be a nonnegative symmetric tridiagonal matrix and $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be the eigenvalues of T. If $\lambda_{i} \geq 0$ for $1 \leq i \leq n$, then T is a positive semidefinite matrix. That is, T is a nonnegative tridiagonal matrix with nonnegative principal minors. By Theorem 6.3, T is totally nonnegative.

Here we give a counterexample to show that a nonnegative semidefinite matrix is not generally totally nonnegative.

Example 6.7. Let

Note that A is a nonnegative semidefinite matrix, but $A \notin T N$ since $\operatorname{det}(A[\{1,2\} \mid$ $\{2,3\}])=-2$.

7 The Matrices Eventually of Positive Determinant

Here we consider the matrices whose sufficiently large Hadamard power have positive determinant. We list some sufficient conditions for these matrices.

Definition 7.1. An entry-wise nonnegative matirx A is called eventaully of positive determinant if there exists a number $T \geq 0$ such that $\operatorname{det} A^{(t)}>0$ for all $t>T$.

Definition 7.2. We call a nonnegative square matrix $A=\left[a_{i j}\right]$ normalized dominant if $a_{i i}=1$, for $i=1,2, \cdots, n$ and $0 \leq a_{i j}<1$, for $i \neq j$.

Definition 7.3. Two nonnegative matrices A and B are diagonally equivalent if there exist positive diagonal matrices D, E such that $B=D A E$.

We want to show that a square matrix in $T N_{2}^{+}$is eventually of positive determinant. This is obtained by Fallat and Johnson in [5]. We follow their idea but complete the details to rewrite the proof. We begin from the following Lemmas.

Lemma 7.4. [5] If A is an n-by-n_matrix and $A \in T N_{2}^{+}$, then A is diagonally equivalent to a normalized dominant matrix.

Proof. Suppose the diagonal, the super- and sub- diagonal entries of A are all positive. Hence there exists a positive diagonal matrix D such that $B=D A$ and B has ones on its main diagonal. Let $F=\left[f_{i i}\right]$ be a positive diagonal matrix defined by choosing any positive number f_{11} and recursively applying

$$
f_{(k+1),(k+1)}^{2}=f_{k, k}^{2} \frac{b_{k,(k+1)}}{b_{(k+1), k}}
$$

Let $C=\left[c_{i j}\right]=F B F^{-1}$. Then C has symmetric tridiagonal part and $c_{i i}=1$ for all i. Since $C \in T N_{2}^{+}$, it follows that $0<c_{i, i+1}<1$, for each $i=$ $1,2, \cdots, n-1$.

Claim: $c_{i, i+k}<1$ for $k=2,3, \cdots, n-i$
We prove this by induction on k.
(1) For $k=2, \operatorname{det}(C[\{i, i+1\} \mid\{i+1, i+2\}])=c_{i,(i+1)} c_{(i+1),(i+2)}-c_{i,(i+2)} c_{(i+1),(i+1)} \geq$ 0 since $C \in T N_{2}$

We know that $c_{(i+1),(i+1)}=1$ and $0 \leq c_{i,(i+1)}, c_{(i+1),(i+2)}<1$, hence we have $0 \leq c_{i,(i+2)}<1$.
(2) Suppose $0 \leq c_{i,(i+k)}<1$ for $2 \leq k<p$.
(3) For $k=p$. Consider $\operatorname{det}(C[\{i, i+p-1\} \mid\{i+p-1, i+p\}])=$ $c_{i,(i+p-1)} c_{(i+p-1),(i+p)}-c_{i,(i+p)} c_{(i+p-1),(i+p-1)} \geq 0$. Since $0 \leq c_{i,(i+p-1)}<1$ by the induction hypothesis, and we know that $0 \leq c_{(i+p-1),(i+p)}<1$ and $c_{(i+p-1),(i+p-1)}=1$, we have $0 \leq c_{i,(i+p)}<1$.

In a word, all of the entries above the main diagonal are strictly less than one.

Similarly, consider the entries below the main diagonal of C. We can conclude that C is a normalized dominant matrix.

Suppose A has at least one zero in the super- or sub- diagonal entries of A. We verify this case by induction on $n .896$
(1) For $n=1$, it is trivial. For $n=2$, suppose A is lower-triangular. Then $A=\left[\begin{array}{ll}a & 0 \\ b & c\end{array}\right]$. Let $D=\left[\begin{array}{cc}\frac{1}{a} & 0 \\ 0 & \epsilon\end{array}\right]$ and $E=\left[\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{c \epsilon}\end{array}\right]$ for some sufficiently small $\epsilon>0$. Then $D A E=\left[\begin{array}{cc}1 & 0 \\ \epsilon b & 1\end{array}\right]$ is a normalized dominant matrix. Similarly, the lower-triangular case also holds.
(2) Suppose that the statement holds when $n<m$.
(3) Consider the case of $n=m$. Since $A \in T N_{2}^{+}$is an m-by- m matrix with at least one zero in the super- or sub- diagonal. Suppose the zero entry occurs in the super-diagonal of A, that is $a_{i, i+1}=0$ for some i with $1 \leq i \leq m-1$. Since $A \in T N_{2}^{+}$, all of the main diagonal entries of A are positive. For any $i+2 \leq j \leq m$, consider the submatrix $A[\{i, i+1\} \mid$ $\{i+1, j\}]$. Then $\operatorname{det}(A[\{i, i+1\} \mid\{i+1, j\}])=a_{i, i+1} a_{i+1, j}-a_{i, j} a_{i+1, i+1} \geq$ 0 . Since $a_{i, i+1}=0$ and $a_{i+1, i+1}>0$, we can conclude that $a_{i, j}=0$. Furthermore, for any $1 \leq k \leq i, i+1 \leq l \leq m$, consider the submatrix $A[\{k, i\} \mid\{i, l\}]$. Then $\operatorname{det}(A[\{k, i\} \mid\{i, l\}])=a_{k l} a_{i l}-a_{k l} a_{i i} \geq 0$, since $a_{i l}=0$ and $a_{i i}>0$, we can conclude that $a_{k l}=0$.
In a word, A must be in the form $A=\left[\begin{array}{cc}A_{1} & 0 \\ A_{2} & A_{3}\end{array}\right]$, where A_{1} is i-by- i and A_{3} is $(m-i)$-by- $(m-i)$, and both A_{1} and A_{3} are in $T N_{2}^{+}$.

By induction, both A_{1} and A_{3} are diagonally equivalent to a normalized dominant matrix. Let $B_{1}=D_{1} A_{1} E_{1}, B_{3}=D_{3} A_{3} E_{3}$ be two normalized dominant matrices where $D_{1}, E_{1}, D_{3}, E_{3}$ are all diagonal matrices. Then 1896

$$
\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{3}
\end{array}\right]\left[\begin{array}{cc}
A_{1} & 0 \\
A_{2} & A_{3}
\end{array}\right]\left[\begin{array}{cc}
E_{1} & 0 \\
0 & E_{3}
\end{array}\right]=\left[\begin{array}{cc}
B_{1} & 0 \\
D_{3} A_{2} E_{1} & B_{3}
\end{array}\right] .
$$

For proper small $\epsilon>0$,

$$
\left[\begin{array}{cc}
I & 0 \\
0 & \epsilon I
\end{array}\right]\left[\begin{array}{cc}
B_{1} & 0 \\
D_{3} A_{2} E_{1} & B_{3}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & \epsilon^{-1} I
\end{array}\right]=\left[\begin{array}{cc}
B_{1} & 0 \\
\epsilon D_{3} A_{2} E_{1} & B_{3}
\end{array}\right] .
$$

Since $\epsilon>0$ and small, so the entries of $\epsilon D_{3} A_{2} E_{1}$ are positive and less than one. By choosing $D=\left[\begin{array}{cc}D_{1} & 0 \\ 0 & \epsilon D_{3}\end{array}\right], E=\left[\begin{array}{cc}E_{1} & 0 \\ 0 & \epsilon^{-1} E_{3}\end{array}\right], D A E$
is normalized dominant. Similarly, the case that the zero entry occurs in the sub-diagonal also holds.

Lemma 7.5. [5] If A is an n-by-n normalized dominant matrix, then A is eventually of positive determinant.

Proof. Since A is an n-by- n normalized dominant matrix, the off-diagonal entries of $A^{(t)}$ tend to 0 as t increases, and so $\operatorname{det}\left(A^{(t)}\right)$ tend to 1 as t increases. Hence there exists a $T>0$ such that $\operatorname{det}\left(A^{(t)}\right)>0$ for all $t \geq T$.

Diagonally equivalence ensures the invariance of being eventually of positive determinant.

Lemma 7.6. If A is an n-by-n matrix that is diagonally equivalent to a eventually of positive determinant matrix, then A is eventually of positive determinant.

Proof. There exists positive diagonal matrices $0 D, E$, and $T>0$ such that $B=D A E$, and there exists a $T \geq 0$ such that $\operatorname{det}\left(B^{(t)}\right)>0$ for all $t>T$. Note that

$$
\begin{aligned}
\operatorname{det}\left(B^{(t)}\right) & =\operatorname{det}\left((D A E)^{(t)}\right) \\
& =\operatorname{det}\left(D^{(t)} A^{(t)} E^{(t)}\right) \\
& =\operatorname{det}\left(D^{(t)}\right) \operatorname{det}\left(A^{(t)}\right) \operatorname{det}\left(E^{(t)}\right)
\end{aligned}
$$

and we have

$$
\frac{\operatorname{det}\left(B^{(t)}\right)}{\operatorname{det}\left(D^{(t)}\right) \operatorname{det}\left(E^{(t)}\right)}=\operatorname{det}\left(A^{(t)}\right)
$$

Since $\operatorname{det}\left(B^{(t)}\right), \operatorname{det}\left(D^{(t)}\right)$ and $\operatorname{det}\left(E^{(t)}\right)$ are all positive, then $\operatorname{det}\left(A^{(t)}\right)$ is positive. So we conclude that A is eventually of positive determinant.

Theorem 7.7.

Proof. By Lemma 7.4, A is diagonally equivalent to a normalized dominant matrix B. Additionally, by Lemma 7.5 and Lemma $7.6, A$ is eventually of positive determinant.

8 Eventually Totally Nonnegative Matrices and Eventually Totally Positive Matrices

The purpose of this section is to set up and characterize the eventually totally positive property. We show that totally positive property is closely related to eventually totally positive property.

Definition 8.1. An entry-wise nonnegative matirx A is called eventually totally nonnegative (resp. eventually totally positive), if there exists a number $T \geq 0$ such that $A^{(t)} \in T N($ resp. TP) for all $t>T$.

To check whether a matrix is in $T P_{2}$ or not, it suffices to check the 2-by-2 contiguous minors. This is also brought up by Fallat and Johnson in [5]. We rewrite the proof.

Lemma 8.2. Let A be an 2-by-n or n-by-2 entry-wise positive matrix such that all the 2-by-2 contiguous minors are positive. Then $A \in T P_{2}$.

Proof. Consider the 2-by- n matrix A. There exists a positive diagonal matrix D such that $A D=B$ is in the form

$$
B=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]
$$

Since multiplied by a positive diagonal matrix does not affect the positive 2-by- 2 contiguous minors property, we have that $x_{i+1}>x_{i}$, for $i=1,2, \ldots, n-$ 1. Hence it follows that B is in $T P_{2}$, and by Lemma $5.5, A$ is in $T P_{2}$. Similarly, the n-by- 2 case also holds.

Applying this Lemma, the following Theorem can be obtained.
Theorem 8.3. [5] Let A be an m-by-n entry-wise positive matrix such that all the 2-by-2 contiguous minors of A are positive. Then $A \in T P_{2}$.

Proof. Consider the 2-by-2 matrix $A\left[\left\{a_{1}, a_{2}\right\} \mid\left\{b_{1}, b_{2}\right\}\right]$. We want to show that the corresponding minor is positive. Consider the two consecutive rows $A[\{i, i+1\} \mid \cdot]$ in A. Then it is in $T P_{2}$ by Lemma 8.2. In particular, $\operatorname{det}\left(A\left[\{i, i+1\} \mid\left\{b_{1}, b_{2}\right\}\right]\right)>0$. Thus $A\left[\because \mid\left\{b_{2}, b_{2}\right\}\right]$ is an n-by- 2 matrix whose consecutive minors are positive. By applying Lemma 8.2 again, we have that $A\left[\cdot \mid\left\{b_{1}, b_{2}\right\}\right]$ is also in $T P_{2}$. In particular, $\operatorname{det}\left(A\left[\left\{a_{1}, a_{2}\right\} \mid\left\{b_{1}, b_{2}\right\}\right]\right)>0$. Since the choice of $\left\{a_{1}, a_{2}\right\},\left\{b_{1}, b_{2}\right\}$ is arbitrary, then we conclude that $A \in$ $T P_{2}$.

The following is a counterexample about $T N_{2}$ case.
Example 8.4. Let

$$
A=\left[\begin{array}{llll}
4 & 2 & 0 & 5 \\
2 & 1 & 0 & 1 \\
1 & 2 & 0 & 7
\end{array}\right]
$$

Then all the 2 -by- 2 contiguous minors of A are nonnegative. Since $\operatorname{det}(A[\{1,2\} \mid$ $\{2,4\}])=-3<0, A \notin T N_{2}$.

The following well known Theorem shows that being of positive 2-by-2 contiguous minors is a sufficient condition for being eventually totally positive. See [5] for detail.

Theorem 8.5. ([5]) Suppose A is an m-by-n matrix. Then the following statements are equivalent:
(i) A is eventually totally positive.
(ii) $A \in T P_{2}$.
(iii) A is entry-wise positive and-all 2-by-2 contiguous minors of A are positive.

Proof. (i) \Rightarrow (ii) Suppose A is eventually totally positive then clearly A must have positive entries. Since the 2-by-2 minor in row $\{i, j\}$ and columns $\{p, q\}$ in $A^{(t)}$ is positive for some t, we have $a_{i p}^{(t)} a_{j q}^{(t)}>a_{i q}^{(t)} a_{j p}^{(t)}$, by taking t-th roots, this minor of A is positive. Since the 2 -by- 2 minor is arbitrary, then $A \in T P_{2}$.
(ii) \Rightarrow (iii) Since $A \in T P_{2}$, then A is entry-wise positive and all 2-by-2 minors of A are positive, so the 2-by-2 contiguous minors of A are positive.
$($ iii $) \Rightarrow(i)$ Since A is entry-wise positive and all 2-by-2 contiguous minors of A are positive, then $A[\alpha \mid \beta] \in T N_{2}^{+}$. By Theorem 7.7, $A[\alpha \mid \beta]$ is eventually of positive determinant. We conclude that A is eventually $T P$.

Example 8.6. Let A be the following square matrix

$$
A=\left[\begin{array}{llll}
8 & 3 & 2 & 1 \\
2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2 \\
1 & 2 & 3 & 7
\end{array}\right]
$$

Note that $A \in T N_{2}$ but $A \notin T N$ since $\operatorname{det}(A[\{2,3,4\}])=-1$.
Corollary 8.7. If $A \in T P$, then A is eventually totally positive.

Proof. If A is in $T P$, then A must be in $T P_{2}$. By the Theorem $8.5, A$ is in eventually TP.

But A is eventually totally positive does not imply that A is in $T P$.

Example 8.8. Let

where ϵ is a sufficiently small positive number. Then A is not in $T P$ since $\operatorname{det}(A)=-1+3^{3 / 2} \epsilon-4 \epsilon^{2}<0$. Consider the t-th power of matrix A,

$$
A^{(t)}=\left[\begin{array}{ccc}
1 & 3^{t / 2} & \epsilon^{t} \\
3^{t / 2} & 4^{t} & 2^{t} \\
\epsilon^{t} & 1 & 1
\end{array}\right]
$$

The 2 -by- 2 minors of $A^{(t)}$ are trivially positive and $\operatorname{det}\left(A^{(t)}\right)=4^{t}-2^{t}-3^{t}+$ $6^{t} \epsilon^{2 t}-4^{t} \epsilon^{2 t}>0$ for any $t \geq 2$. Thus A is eventually totally positive.

9 References

[1] T. Ando, Totally positive matrices, Linear Algebra Appl. 90(1987) 165-219.
[2] Berman, Abraham, Nonnegative matrices in the mathematical sciences, Philadelphia, Society for Industrial and Applied Mathematics, 1994.
[3] A.S. Crans, S.M. Fallat, The Hadamard core for totally nonnegative matrices, An unpublished paper from a National Science Foundation Research Experiences for Undergraduates program held at the College of William and Mary in the summer of 1998.
[4] A.S. Crans, S.M. Fallat, C.R. Johnson, The Hadamard core of the totally nonnegative matrices, Linear Algebra Appl. 328(2001) 203-222. 1896
[5] Shaun M. Fallat, Charles R. Johnson, Hadamard powers and totally positive matrices, Linear Algebra and its Applications. 423(2007) 420427.
[6] S.M. Fallat, Totally nonnegative matrices, Departments of Applied Science and Mathematics, College of William and Mary, Williamsburg, VA, Ph.D. Dissertation 1999.
[7] Minc, Henryk, Nonnegative matrices, New York, Wiley, 1988.
[8] Vern I. Paulse, Stephen C. Power, Roger R. Smith, Schur Products and Matrix Completions, Journal of Functional Analysis. 85 (1989)151-178.
[9] L.L. Schumaker, Spline functions: Basic theory, Wiley, 1981.
[10] D.G. Wagner, Total positivity of Hadamard products, J. Math. Anal. Appl. 163 (1992) 459-483.

