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摘摘摘 要要要
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The study of triangle-free graphs
by interlacing theorem for eigenvalues

Student：Hui-Wen Su Advisor：Chih-Wen Weng

Department of Applied Mathematics

National Chiao Tung University

Abstract

The thesis applies interlacing theorem for eigenvalues to study graphs without triangle.

We give a characterization of strongly regular graph srg(k2 + 1, k, 0, 1) in terns of eigenvalues

and the girth of a graph.

Keywords：Adjacency matrix, Interlacing theorem, Eigenvalues, Quotient matrix.
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Chapter 1

Introduction

This research is about the eigenvalues or the spectrum of the adjacency matrix of a

graph. The adjacency matrix of a graph and its eigenvalues can be used in several areas,

for examples mathematical research, physical interpretation, chemical and so on. It was

investigated very much in the past. Spectrum of a graph have appeared frequently in the

mathematical literature since a few fundamental papers, e.g. L. Collatz and U.Sinogowitz

[8]. Theoretical chemists were also interested in graph spectra, although they used different

terminology.

Spectral graph theory is the study of properties of a graph in relationship to the character-

istic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its

adjacency matrix or Laplacian matrix. And spectral graph theory emerged in the 1950s and

1960s. Besides graph theoretic research on the relationship between structural and spectral

properties of graphs, another major source was research in quantum chemistry (e.g. energy

of graphs ), but the connections between these two lines of work were not discovered until

much later [5].

Research papers on the bounds for whose second largest eigenvalue of the adjaceny matrix

of a graph are a lot. In [10], considering the graphs whose second largest eigenvalue at most

1, the author has almost summed up most of regular graphs with eigenvalues corresponding
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to this range. And he was almost determing graphs with the second largest eigenvalue less

than or equal to 1. Even some undetermined graphs also have the second largest eigenvalue

is not more than 1, he gave examples to illustrate.

The main tool we used is interlacing theorem for eigenvalues. Eigenvalue interlacing

theorem has been applied to graphs in many papers. For instance, Brouwer and Mesner [1]

used it to prove that the connectivity of a strongly regular graph equals its degrees and in

Brouwer and Haemers [2] eigenvalue interlacing is a basic tool for their proof of the uniqueness

of Gewirtz graph. To obtain our results we use quotient matrices of the adjacency matrix of

a graph with respect to some partition of the vertices.

Finally, the graphs that we are interested in is a connected simple graph. A simple graph

is an undirected graph without loops and multiple edges. The adjacency matrix of a simple

graph is a (0, 1)-matrix with zeros on its diagonal. If the graph is undirected, the adjacency

matrix is symmetric.
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Chapter 2

Preliminaries

In this chapter we introduce basic definitions and theorems which will be used throughout

this thesis.

2.1 Adjacent matrix

In mathematics and computer science, an adjacency matrix is a mean of representing

which vertices (or nodes) of a graph are adjacent to which other vertices.

Definition 2.1.1. Let G be a graph with vertex set V (G) = {v1, v2, ..., vn} and E(G) =

{e1, · · · , em}. The adjacency matrix of graph G, written A(G), is the n × n matrix

defined as follows. The rows and the columns of A(G) are indexed by V (G). If i 6= j then

the (i, j)-entry of A(G) is 0 for vertices i and j nonadjacent, and the (i, j)-entry is 1 for i

and j adjacent. The (i, i)-entry of A(G) is 0 for i = 1, . . . , n. We often denote A(G) simply

by A.
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Example 2.1.2. Consider the graph G shown below, and its adjacency matrix A(G).

G : , A(G) :


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 ,

where coordinates are 1, 2, 3, 4.

2.2 Eigenvalue and Eigenvector

Definition 2.2.1. Let A be an n× n matrix over R. The number λ ∈ C is an eigenvalue

of A if there exists a nonzero column vector u such that Au = λu. The vector u is called an

eigenvector of A associated with λ.

Example 2.2.2. If

A =

1 0 0

0 2 0

0 0 3


then the eigenvalues of A are λ1 = 3, λ2 = 2, λ3 = 1, and corresponding eigenvector

u1 =
(

0 0 1
)T

, u2 =
(

0 1 0
)T

, u3 =
(

1 0 0
)T

.

2.3 Quotient matrix

Computation of eigenvalues of a matrix can be very difficult. We now introduce a way,

which enables us to obtain information about the eigenvalues of a matrix from a smaller

matrix.
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Definition 2.3.1. Consider n× n an symmetric matrix A and an m×m matrix U in block

form

A =


A1,1 · · · A1,m

...
. . .

...

Am,1 · · · Am,m

 , U :=


1n1 0

. . .

0 1nm


where Ai,j is an ni × nj matrix, n1 + n2 + · · ·+ nm = n, and 1ni

is the all 1’s column vector

of size ni. Let D be the m×m diagonal matrix D := diag((
√
n1)

−1, (
√
n2)

−1, . . . , (
√
nm)−1).

Hence S := UD satisfies STS = Im. Note that N = STAS and B := DND−1. The (i, j)

entry bi,j = 1Tni
Ai,j1nj

/ni of B is the average row sum of Ai,j. B is called a quotient matrix

of A. Moreover B is an equitable quotient matrix of A if Ai,j1nj
= Bi,j1ni

. i.e. Each

row-sum of Aij has constant value Bi,j.

In the following example, one can see from the diagrams how a quotient matrix is obtained

from a matrix.

Example 2.3.2. (
1 2

5 7

)
→
(

7.5
)

(2.1)


1 2 3 4

5 6 8 1

2 1 3 2

2 3 1 4

→
1 2 7

5 6 9

2 2 5

 (2.2)

The matrix that we are concerned with in this thesis is the adjacency matrix A = A(G) of

a graphG. The quotient matrix of A(G) has combinatorial meaning. Let π = C1∪· · ·∪Ck be a

partition of the vertex set V (G), and the matrix A is partitioned according to π = C1∪· · ·∪Ck

in block form such that

A =


A1,1 · · · A1,k

...
. . .

...

Ak,1 · · · Ak,k

 ,
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where Ai,j denotes the block of A formed by rows in Ci and the columns in Cj. Let bi,j

denote the average row-sum of Ai,j. If the average row-sums of each block Ai.j is a constant

bi,j, then the partition π = C1 ∪ · · · ∪ Ck is called equitable. The matrix Aπ := [bi,j] is a

quotient matrix B of A in the above definition.

We introduce a way to obtain a 3 × 3 quotient matrix B of a connected graph G. Pick

a vertex x ∈ V (G). Let Γi := {y ∈ V (G)|d(x, y) = i} and Γ≥i := {y ∈ V (G)|d(x, y) ≥ i},

where d(x, y) is the distance between vertices x and y. According to the partition π =

{x} ∪ Γ1(x)∪ Γ≥2(x) we have the following quotient matrix B = Aπ of the adjacency matrix

A(G).

Aπ = B =

a0 b0 0

c1 a1 b1

0 c2 a2

 .

Figure 2.1: quotient matrix according to d(x, y) = i.

The following example, copied from [4], provides a different way to have quotient matrix.

Example 2.3.3. (Mckay’s graph)
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A =



0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 1 1 0


, B =

(
1 1

3 0

)
.

Figure 2.2: Mckay’s graph

In the graph of Fig. 2.2, the partition with two cells C1 = {1, 2, 4, 5, 7, 8} and C2 = {3, 6}

is equitable. The quotient matrix of A is B, and B is an equitable quotient of A.

2.4 Interlacing

The eigenvalues of adjacency matrix A(G) will be denoted by λ1, · · · , λn. Unless we

indicate otherwise, we shall assume that λ1 ≥ λ2 ≥ · · · ≥ λn. The eigenvalues or the

spectrum of a graph G is referred to the eigenvalues of A(G).

Eigenvalues of graphs have application in chemistry, and it is called Huckel theory [5].

For instance, a (carbon) molecule is chemically stable if its underlying graph has half of its

eigenvalues positive and half of its eigenvalues negative. The paper [9] consider the more

general question how to make graphs (on an even number of vertices) with λ 1
2
n ≥ 0 and

λ 1
2
n+1 ≤ 0. Their method essentially uses interlacing.
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Understanding the definition of interlacing and its properties is the main tool in Chapter

3, 4 to estimate the eigenvalues of a graph.

Definition 2.4.1. For m < n, the sequence θ1 ≥ θ2 ≥ . . . ≥ θm is said to interlace the

sequence λ1 ≥ λ2 ≥ . . . ≥ λn whenever

λi ≥ θi ≥ λn−m+i for 1 ≤ i ≤ m.

The above interlacing is tight if there exists an integer ` such that λi = θi for 1 ≤ i ≤

`, and θi = λn−m+i for `+ 1 ≤ i ≤ m.

Example 2.4.2. The sequence 6, 4, 3, 1 interlaces the sequence 6, 5, 4, 3, 2, 1. The interlacing

is not tight since 5 > 4 > 3. The sequence 6, 5, 2, 1 interlaces the sequence 6, 5, 4, 3, 2, 1

tightly.

The following theorem will be used in this thesis. See [3] for a proof.

Theorem 2.4.3. (Interlacing theorem) [3]

Let A be a symmetric matrix and B a quotient matrix of A. Then the eigenvalues of B

interlace the eigenvalues of A.

Throughout the thesis for an m×m quotient matrix B of A, we use θ1 ≥ θ2 ≥ · · · ≥ θm

to denote its eigenvalues. The following diagram illustrates this case m = 3.

Figure 2.3: the eigenvalues of B interlace the eigenvalues of A

The following example is about the adjacency matrix A of Petersen graph G and its

quotient matrix B according to the partition π = {x} ∪ Γ1(x) ∪ Γ2(x) for any x ∈ V (G).
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Example 2.4.4 (Petersen graph).

A =



0 1 0 0 1 0 1 0 0 0

1 0 1 0 0 0 0 1 0 0

0 1 0 1 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1

0 1 0 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0 0 0

0 0 0 1 0 0 1 1 0 0



, B =

0 3 0

1 0 2

0 1 2

 .

Figure 2.4: Petersen graph G

The eigenvalues of matrix A are λ1 = 3, λ2 = 1, λ3 = 1, λ4 = 1, λ5 = 1, λ6 = 1, λ7 =

−2, λ8 = −2, λ9 = −2, λ10 = −2. The eigenvalues of matrix B are θ1 = 3, θ2 = 1, θ3 = −2.

We can check that λ1 = 3 ≥ θ1 = 3 ≥ λ8 = −2, λ2 = 1 ≥ θ2 = 1 ≥ λ9 = −2,

λ3 = 1 ≥ θ3 = −2 ≥ λ10 = −2, so Theorem 2.4.3 holds. Indeed the interlacing of B on A is

tight.

2.5 Diameter

The diameter of a graph G is the value maxu,vd(u, v) among vertices u, v ∈ V (G). In

other words, a graph’s diameter is the largest number of vertices which must be traversed in

9



order to travel from one vertex to another when paths which backtrack, detour, or loop are

excluded from consideration. The graphs in Fig. 2.5 on 10 vertices have diameters 3, 4, 5,

and 7, respectively.

Figure 2.5: diameter

Definition 2.5.1. Let G be k-regular with v vertices. G is said to be an strongly regular

graph(SRG) if there are integers λ and µ such that:

1. Every two vertices x, y with d(x, y) = 1 have λ common neighbours.

2. Every two nonadjacent vertices have µ common neighbours.

A graph of this kind is said to be an srg(v, k, λ, µ).

10



Chapter 3

K-regular graph

In this chapter we will study the bounds of eigenvalues on some k-regular graph with

girth at least 5. A graph is said to be regular if all its vertices have the same degree. If

the degree of each vertex of G is k, then G is said to be k-regular. Examples of regular

graphs include cycles, complete graphs and so on. The girth of a graph is the length of

a shortest cycle contained in the graph. If a graph does not contain any cycle, its girth is

defined to be infinity. For example, the Petersen graph has girth 5. We fix the notation that

A is adjacency matrix of G with eigenvalues λi in decreasing order and B is quotient matrix

of A with eigenvalues θi in decreasing order.

3.1 Special case

Let G be a connected k-regular graph of order at least 3 and fix a vertex x ∈ V (G). We

give the following assumptions on G throughout the Sections 3.1 and 3.2.

Assumption：：：

1. G has no triangle;

2. Each vertex in Γ≥2(x) is adjacent to a unique vertex in Γ1(x). (Then Γ≥2(x) = Γ2(x).)
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Then according to the partition π = {x} ∪ Γ1(x) ∪ Γ≥2(x), the quotient matrix Aπ is

B = Aπ =

0 k 0

1 0 k − 1

0 1 k − 1

 ,

and indeed Aπ is an equtable quotient of A.

We can easily compute θ1 = k, θ2 = (−1 +
√
−3 + 4k)/2, θ3 = (−1−

√
−3 + 4k)/2. Then

by interlacing theorem in Theorem 2.4.3,

λ2 ≥ θ2 =
−1 +

√
−3 + 4k

2
, θ3 =

−1−
√
−3 + 4k

2
≥ λn.

We are interested in the necessary and sufficient conditions for the following identity

λ2 =
−1 +

√
−3 + 4k

2
.

By the following discussion, we might guess it be a strongly regular graph.

Lemma 3.1.1 ([3]). For an equitable partition, if u is an eigenvector of B for an eigenvalue

λ, then Su is an eigenvector of A for the same eigenvalue λ, where S is defined in Definition

2.3.1.

So eigenvalues of the equitable quotient matrix of an adjacency matrix are also eigenvalues

of the adjacency matrix.

Example 3.1.2. In special case with k = 2, G = C5 is a cycle of five vertices as the following

graph.
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Hence the spectrum of C5 is 2, (−1
2

+ 1
2

√
5), (−1

2
+ 1

2

√
5), (−1

2
− 1

2

√
5), (−1

2
− 1

2

√
5).

Note that Spectrum (A) = 2, (−1
2

+ 1
2

√
5)2, (−1

2
− 1

2

√
5)2.

B =

0 2 0

1 0 1

0 1 1

 .

Spectrum (B) = 2,−1
2

+ 1
2

√
5,−1

2
− 1

2

√
5.

Note that B is a equitable quotient of A, and the eigenvalues of B interlace the eigenvalues

of A tightly.

In special case with k = 3. We can obtain 2 cases. In the following, we discuss them

respectively.

Example 3.1.3. In this example, we talk about the graph of case 1 and indeed the graph is

Petersen graph.

Case 1. G

Note that Spectrum (A) = 3, 15, (−2)4. The quotient matrix of G is

B =

0 3 0

1 0 2

0 1 2

 ,

and Spectrum (B) = 3, 1,−2.
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In next example, we consider another example of 3-regular graph.

Example 3.1.4. The graph form 1 and form 2 are the same graph with different partitions

of the vertex set.

Case 2

(a) form 1 (b) form 2

Let A be the adjacency matrix of the graph in case 2. Then we obtain Spectrum(A) =

3,−1

2
+

1

2

√
17, 13, 0,−1, (−2)2,−1

2
− 1

2

√
17. We choose these partitions π1 = {x} ∪ Γ1(x) ∪

Γ2(x) and π2 = {y} ∪ Γ1(y) ∪ Γ2(y) ∪ Γ3(y) respectively, and two quotient matrices corre-

sponding respectively as follow:

B1 = Aπ1 =

0 3 0

1 0 2

0 1 2

 , B2 = Aπ2 =


0 3 0 0

1 0 2 0

0 6/5 6/5 3/5

0 0 3 0

 .

Note that Spectrum(B1) = 3, 1,−2. We check these eigenvalues 3 ≥ 3 ≥ −2 , (−1 +
√

17)/2 ≥ 1 ≥ −2 , 1 ≥ −2 ≥ (−1−
√

17)/2.

Note that Spectrum(B2) = 3, 1.145,−0.7,−2.24. We check that 3 ≥ 3 ≥ −1 , (−1 +
√

17)/2 ≥ 1.145 ≥ −2 , 0 ≥ −0.7 ≥ −2 , −1 ≥ −2.24 ≥ (−1 −
√

17)/2, so Theorem 2.4.3

also holds.
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It is easy to see 1.145 is a better lower bound of λ2 than 1, and −0.7 is a better lower

bound of λ3 than −2. In the part of upper bounds, 1.145 is a better upper bound of λ8 than 3,

−0.7 is a better upper bound of λ9 than 1, and −2.24 is a better upper bound of λ10 than −2.

From the above example, the bounds obtained from eigenvalues of 4×4 quotient matrices

could be better than the bounds from 3× 3 quotient matrices, but we do not discuss it here.

Our focus is 3×3 quotient matrices. Note that the two graphs in Example 3.1.3 and Example

3.1.4 are all the 3-regular graphs satisfying Assumption 3.1.

There are many graphs with k = 4. We only study one of them in the following example.

Example 3.1.5. Here we only pick a case to explain. The graph has the largest vertices

with d(y, z) = 4 in special case with k = 4, where y, z ∈ V (G)

.

Figure 3.1: graph G from special case with k = 4

We calculate the eigenvalues of the adjacency matrix of graph in Figure 3.1 and its

quotient matrix according to the partition π = {x}∪Γ1(x)∪Γ≥2(x). We obtain the following

result:

Spectrum(A) = 4, 3.791, 1.303, (−3
2
+1

2

√
21)2 = 0.7912, 08,−0.791,−2.303, (−3

2
−1

2

√
21)2 =

15



−3.7912, and Spectrum(B) = 4,−1
2

+ 1
2

√
13 = 1.303,−1

2
− 1

2

√
13 = −2.303. Then we also

check Theorem 2.4.3.

λ1 = 4 ≥ θ1 = 4 ≥ λ15 = −2.303,

λ2 = 3.791 ≥ θ2 = 1.303 ≥ λ16 = −3.791,

λ3 = 1.303 ≥ θ3 = −2.303 ≥ λ17 = −3.791.

3.2 Diameters and eigenvalues

Under the Assumption 3.1, we have d ≤ 4 no matter what k is. We consider d = 2 and

3 ≤ d ≤ 4 separately. The following theorem characterizes the case d = 2.

Lemma 3.2.1. [7] If an srg(k2 + 1, k, 0, 1) exists, then k = 1, 2, 3, 7, 57.

Theorem 3.2.2. G is a connected k-regular graph with diameter 2 satisfying the Assump-

tion 3.1 if and only if G is a strongly regular graph srg(k2 + 1, k, 0, 1), where k = 2, 3, 7, 57.

Proof. Let G be a srg(k2 + 1, k, 0, 1). Clealy G is k-regular satisfying the Assumption 3.1.

Since µ 6= 0, G is connected with diameter 2. On the other hand, let G be a connected

k-regular graph with d = 2 satisfying the Assumption 3.1. The number of vertices is |{x} ∪

Γ1(x) ∪ Γ≥2(x)| = 1 + k + (k − 1)k = k2 + 1. G is no triangle, so λ = 0. Finally, we need

to check that µ = 1. Pick any vertex y ∈ V (G)/{x}, then check each vertex in Γ2(y) is

adjacent to a unique vertex in Γ1(y). Suppose there are two vertices u1, u2 ∈ Γ1(y) adjencent

to v1 ∈ Γ2(y). The remaining edges in Γ1(y) = k(k − 1) − 2 = k2 − k − 2, and the number

of vertices in Γ2(y)/{y} = k2 − k − 1. It means there is at least one vertex in Γ2(y) not

adjacnet to Γ1(y). Contradict to d = 2. So, every two vertices x, y with d(x, y) = 2 have

µ = 1 common neighbours.
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The following theorem gives the relation between the diameter of a graph and its eigen-

values.

Theorem 3.2.3. [[6] Chung, 1989] Let G be a k-regular graph on n ≥ 3 vertices with

diameter d. Let λ = maxi>1|λi|. Then d ≤ d log(n−1)
log(k/λ)

e.

Consider d ≥ 3. By Theorem 3.2.3, we have a bound of maxi>1|λi| as follows.

Theorem 3.2.4. Let G be a connected k-regular graph of order at least 3 with diameter

d at least 3 satisfying the Assumption 3.1, and the 3 × 3 quotient matrix of the adjacency

matrix is 0 k 0

1 0 k − 1

0 1 k − 1

 .

Then λ > 1, where λ = maxi>1|λi|.

Proof. Apply 3 ≤ d and n = k2 + 1 to Theorem 3.2.3. We obtain 3 ≤ d log(k2)

log(k/λ)
e. Using

2 <
log(k2)

log(k/λ)
can receive λ > 1, so the proof is complete.

We give an example to check the previous theorem.

Example 3.2.5. G is consistent with Assumption 3.1.

The eigenvalue maxi>1|λi| of adjacency matrix of graph G is (−1 −
√

17)/2. We check

that

|λ10| = |
(−1−

√
17)

2
| = 2.5616 > 1.
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3.3 General case with k-regular

In this section, we want to use Theorem 2.4.3 on general case with k-regular. Let G be a

connected k-regular graph of order v with the following assumptions on G.

Assumption：：： The girth of G is at least 5;

Fix a vertex x ∈ V (G). Then according to the partition π = {x} ∪ Γ1(x) ∪ Γ≥2(x), the

quotient matrix Aπ is

B = Aπ =


0 k 0

1 0 k − 1

0
k(k − 1)

v − k − 1

vk − 2k2

v − k − 1

 . (3.1)

We shall compute the eigenvalues of B.

Lemma 3.3.1. Let G be a k-regular graph of order k2 + 1 satisfying Assumption 3.3. Then

G has diameter 2.

Proof. Pick x ∈ V (G). Note that k2 + 1 = v = |{x} ∪ Γ1(x) ∪ Γ2(x)|. Hence G has diameter

2.

Lemma 3.3.2. If the girth of a k-regular graph G is at least 5, then

v ≥ k2 + 1,

where v is the number of vertices.

Proof. When the girth is at least 5, v ≥ |{x} ∪ Γ1(x) ∪ Γ2(x)| for any vertex x ∈ V (G). Let

G be a k-regular graph. Thus

v ≥ 1 + k + (k − 1)k = k2 + 1.
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The entries of B follow from |Γ1| = k, |Γ≥2| = v − k − 1, and then

k − k(k − 1)

v − k − 1
=

vk − 2k2

v − k − 1
.

Let v be an eignevector corresponding to eigenvalue λ, using Bv = λv to solve eigenvalues.


0 k 0

1 0 k − 1

0
k(k − 1)

v − k − 1

vk − 2k2

v − k − 1


 a

b

c

 = λ

 a

b

c



We can obtain the following equations:
bk = λa,

a+ (k − 1)c = λb,
k(k − 1)

v − k − 1
b+

vk − 2k2

v − k − 1
c = λc.

Assume a = k. Then b = λ and c = λ2−k
k−1

. Substituting into the third equation,

k(k − 1)

v − k − 1
· λ+

vk − 2k2

v − k − 1
· λ

2 − k
k − 1

= λ · λ
2 − k
k − 1

.

Multiply by (v − k − 1)(k − 1),

(v − k − 1)λ3 + k(2k − v)λ2 + (−k3 + 3k2 − kv)λ+ k2(v − 2k) = 0. (3.2)

Because G is k-regular, its largest eigenvalue is k. (note : three eignvalues of matric B are

θ1 ≥ θ2 ≥ θ3)

Since B has a eigenvalue k, we need to find another two eigenvalues of B in terms of v and

k. Note that Equation 3.2 becomes

(λ− k)[(v − k − 1)λ2 + (k2 − k)λ+ (2k2 − kv)] = 0.

Then we can obtain λ = k and

λ =
−(k2 − k)±

√
(k2 − k)2 − 4(v − k − 1)(2k2 − kv)

2(v − k − 1)
.
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So, θ1 = k, θ2 =
−(k2 − k) +

√
(k2 − k)2 − 4(v − k − 1)(2k2 − kv)

2(v − k − 1)
and

θ3 =
−(k2 − k)−

√
(k2 − k)2 − 4(v − k − 1)(2k2 − kv)

2(v − k − 1)
.

Lemma 3.3.3. If G is an srg(k2 + 1, k, 0, 1) then G has exactly three distinct eigenvalues

λ1 = k, λ2 =
−1 +

√
4k − 3

2
, λn =

−1−
√

4k − 3

2
.

Proof. Note that B in (3.1) with v = k2 + 1 is an equitable quotient of A. Then by

Lemma 3.1.1, θ1 = k, θ2 =
−(k2 − k) +

√
(k2 − k)2 − 4(v − k − 1)(2k2 − kv)

2(v − k − 1)
,

θ3 =
−(k2 − k)−

√
(k2 − k)2 − 4(v − k − 1)(2k2 − kv)

2(v − k − 1)
are eigenvalues of A. It is well-known

A has exactly three eigenvalues [4].

Lemma 3.3.4. If graph is girth ≥ 5 and k-regular of order v. (k ≥ 2)

B =


0 k 0

1 0 k − 1

0
k(k − 1)

v − k − 1

vk − 2k2

v − k − 1

 ,

then the following (i), (ii) holds.

(i) θ2(v) ≥ −1 +
√

4k − 3

2
with equality iff v = k2 + 1.

(ii) θ3(v) ≤ −(k2 − k)

2(v − k − 1)
−
√

4k − 3

2
.

Proof. Because girth of graphG is at least 5, G has no cycle of length 4. Then |Γ≥2| ≥ k(k−1).

If not, it has a cycle of length 4. Contradict to girth at least 5. We can get an inequality

v ≥ k2 + 1 = k(k − 1) + k + 1.

We want to claim

θ2 =
−(k2 − k) +

√
(k2 − k)2 − 4(v − k − 1)(2k2 − kv)

2(v − k − 1)
≥ −1 +

√
4k − 3

2
. (3.3)

We have v ≥ k2 + 1 and k2 + 1 ≥ 2k2 + k + 3

3
, for all k ≥ 2. Note that

3(v − 2k2 + k + 3

3
)2 − 1

3
(k4 − 2k3 + k2) ≥ 3(k2 + 1− 2k2 + k + 3

3
)2 − 1

3
(k4 − 2k3 + k2) = 0.
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Let

f(v) = 3(v − 2k2 + k + 3

3
)2 − 1

3
(k4 − 2k3 + k2) ≥ 0. (3.4)

Simplifying f(v) = 3v2 − 2(2k2 + k + 3)v + k4 + 2k3 + 4k2 + 2k + 3. We split into two parts

of left and right sides of the Inequality 3.4, and we can obtain

4kv2 − 4k(3k + 1)v + (k4 + 6k3 + 9k2) ≥ (4k − 3)v2 − 2(4k − 3)(k + 1)v + (4k − 3)(k + 1)2.

Simplifying again,

(k2 − k)2 − 4(v − k − 1)(2k2 − kv) ≥ (4k − 3)(v − k − 1)2 ≥ 0.

Taking square root on both sides,

√
(k2 − k)2 − 4(v − k − 1)(2k2 − kv) ≥

√
4k − 3(v − k − 1). (3.5)

Because (k2 + 1− v) ≤ 0, for all v ≥ k2 + 1, we can get

√
4k − 3(v − k − 1) ≥

√
4k − 3(v − k − 1) + (k2 + 1− v)

=
√

4k − 3(v − k − 1) + (k + 1− v) + (k2 − k)

= (−1 +
√

4k − 3)(v − k − 1) + (k2 − k).

Then

√
(k2 − k)2 − 4(v − k − 1)(2k2 − kv) ≥ (−1 +

√
4k − 3)(v − k − 1) + (k2 − k).

Since (v − k − 1) > 0, as k ≥ 2. We divide by 2(v − k − 1) on the both sides to obtain

−(k2 − k) +
√

(k2 − k)2 − 4(v − k − 1)(2k2 − kv)

2(v − k − 1)
≥ −1 +

√
4k − 3

2
.

Finally, substitute v = k2 + 1 into θ2 =
−(k2 − k) +

√
(k2 − k)2 − 4(v − k − 1)(2k2 − kv)

2(v − k − 1)
,

then we can get θ2 =
−1 +

√
4k − 3

2
. Solving

−(k2 − k) +
√

(k2 − k)2 − 4(v − k − 1)(2k2 − kv)

2(v − k − 1)
=
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−1 +
√

4k − 3

2
, we can obtain v = k2 + 1. So, the Inequality 3.3 holds iff v = k2 + 1. From

Inequality 3.5, we obtain

−(k2 − k)−
√

4k − 3(v − k − 1)

2(v − k − 1)
≥ θ3 =

−(k2 − k)−
√

(k2 − k)2 − 4(v − k − 1)(2k2 − kv)

2(v − k − 1)
.

The proof is complete.

Theorem 3.3.5. Let G be a k-regular graph (k ≥ 2) of order v with girth at least 5 and let

the eigenvalues of adjacency matrix be

λ1 ≥ λ2 ≥ . . . ≥ λv.

Then

λ2 ≥
−1 +

√
4k − 3

2
,

λv ≤
−(k2 − k)

2(v − k − 1)
−
√

4k − 3

2
.

Moreover, the following are equivalent.

(i) λ2 =
−1 +

√
4k − 3

2
;

(ii) G is srg(k2 + 1, k, 0, 1), where k = 2, 3, 7, 57;

(iii) d = 2;

(iv) v = k2 + 1.

Proof. By above lemma and Theorem 2.4.3.

λ2 ≥ θ2 ≥
−1 +

√
4k − 3

2
, (3.6)

λn ≤ θ3 ≤
−(k2 − k)

2(v − k − 1)
−
√

4k − 3

2
. (3.7)
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Then we can obtain

λ2 ≥
−1 +

√
4k − 3

2
,

λv ≤
−(k2 − k)

2(v − k − 1)
−
√

4k − 3

2
.

(ii) ⇒ (i) This is clear by Lemma 3.3.3.

(iii) ⇒ (ii) Note that the Assumption 3.3 holds for some vertex x. So, (ii) follows from

Theorem 3.2.2.

(iv) ⇒ (iii) Note that Assumption 3.1 holds for some vertex x. Therefore (iii) follows from

Lemma 3.3.1.

(i) ⇒ (iv) From (3.6) and Lemma 3.3.4.

Example 3.3.6. These graphs are k-regular and girth ≥ 5. v = 10, 12, 12 and k = 3.

λ2(left) = 1 , λ2(center) = 1.56 , λ2(right) = 1.53. These eigenvalues are all≥ −1 +
√

4k − 3

2
=

1. Note that λ10(left) = −2 ≤ θ3(left) = −2 ≤ −(k2 − k)

2(v − k − 1)
−
√

4k − 3

2
= −2, λ12(center)

= −2.56 ≤ θ3(center)= −1.92 ≤ −(k2 − k)

2(v − k − 1)
−
√

4k − 3

2
= −1.875, and λ12(right) = −2.3 ≤

θ3(right)= −1.92 ≤ −1.875. Moreover, the graph on the left side is srg(10, 3, 0, 1), its diam-

eter is 2 and λ2 =
−1 +

√
4k − 3

2
= 1.
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