國 立 交 通 大 學應用數學系碩 士 論 文

The Minimum Rank of a Mountain

山狀圖的最小秩研究生：王稟鈞
指導教授：翁志文教授

中華民國一百零二年六月

The Minimum Rank of a Mountain

Student：Ping－Chun Wang

Advisor：Chih－Wen Weng
研究生: 王稟鈞 指導教授: 翁志文教授

A Thesis

> Submitted to Department of Applied Mathematics College of Science
> National Chiao Tung University in Partial Fulfillment of Requirements for the Degree of Master in Applied Mathematics

June 2013
Hsinchu，Taiwan，Republic of China
中華民國一百零二年六月

山狀圖的最小秩

研 究 生：王 禀 鈞 指 導 教 授：翁志文教授

國立交通大學應用數學系

摘 要對一以 $1, ~ 2, ~ . ., ~ n$ 爲點的簡單圖 G 而言，當一大小爲 n 的實對稱矩陣滿足性質：此矩陣第 $i j$ 位置非零若且唯若 i 與 j 在圖 G 上有傻，則我們稱此矩陣與 G 相對應。一張圖的最小秩鳥其相對應的所有矩陣之最小的秩。在此論文中我們定義一種與一介於 2 與 $n-1$ 間的數 m 有關的圖，命名馬座落在 m 的山狀圖。山狀圖含一 m 個點的路征，其它 $n-m$ 個點之間没有撹相連，且它們連接到路径的方式將路棌分成一些只在端點重夢的小段，每一小段鳥一點所獨佔，且該點至少有雨邉連接此小段。在此論文中，我們將證明一個座落在 m 的山狀圖其最小秩鳥 $m-1$ 。

關鍵詞：圖，最小秩，山狀圖。

The Minimum Rank of a Mountain

Student: Pingchun Wang

Advisor: Dr. Chihwen Weng

Department of Applied Mathematics
National Chiao Tung University
H sinchu 300, Taiwan, R.O.C.

Abstract
1896
Let G be a simple graph with vertex set $V(G)=[n]=\{1,2, \ldots, n\}$ and edge set $E(G)$. The minimum rank $m(G)$ of G is the minimum possible rank of an n by n symmetric matrix A whose $i j$-th entry is not zero if and only if $i j \in E(G)$, where i, j are distinct. For $m<n$, a graph G with vertex set $[n]$ is called a mountain based on $[m]$ if G satisfies
(i) the subgraph of G induced on $\{1,2, \ldots, m\}$ is a path which is partitioned into a few closed segments;
(ii) each segment is assigned a unique vertex in $[n] \backslash[m]$ which has at least two neighbors in the closed segment; and
(iii) all edges of G are either described in (i) or in (ii).

In the thesis we show that a mountain based on $[m]$ has minimum rank $m-1$.

Keywords: graph, minimum rank, mountain.

誌 謝

首先，我要感謝指導教授翁志文教授的指導。起初來到新竹的不知所措，在教授指點下找到有興趣的研究方向，並且在研究與生活上給非常多的幫助，讓我能順利解決這兩年碰到的問題。

其次要感謝學長姐們以及同屆同學，初次來到新竹這環境有非常多的不適應，幸雐有學長姐協助以及同學們一起討論課業，解決生活上種種問題；特別在這兩年中有一些没落階段，也感謝各時期同學們的鼓舞與支持，讓我能完成這份學業

最後要感謝在家鄉的父母，讓我能在學業階段不需要顧慮其餘的事，爭取到並且完成所有美麗而充實的學業。 1896

Contents

Abstract (in Chinese) i
Abstract (in English) ii
Acknowledgment iv
1 Introduction 1
2 Preliminaries 4
2.1 Graphs 4
2.2 Matrices •••••• 5
2.3 Matrices associated with graph G 6
3 Known Results

3.1 Minimum ranks of the paths 1896 7
3.2 Compute the minimum rank by deleting a cut vertex 9
3.3 An inequality for the zero-forcing set and maximum nullity of the graphs 14
4 Our Results 15
4.1 A matrix associated with a path 15
4.2 Mountains 18

1 Introduction

The study of matrices associated with a graph G gives a connection between Linear Algebra and Graph Theory, in which many mathematical theories have their combinatorial realizations and vice versa. The thesis studies ranks of matrices associated with graphs and their combinatorial interpretations.

All the graphs considered in this thesis are simple of order n. For a graph G, we use $E(G)$ as its edge set and $V(G)$ as its vertex set, usually $V(G)=[n]=\{1,2, \cdots n\}$. For an $n \times n$ real symmetric matrix $A, \Gamma(A)$ represents the graph such that $i j \in E(\Gamma(A))$ if and only if the $i j$-th entry of A is not zero, where $i \neq j$. A real symmetric matrix A is then said to be associated with the graph $\Gamma(A)$. The minimum rank of G, denoted by $m(G)$, is defined to be the integer

$$
m(G)=\min \{\operatorname{rank}(A): \Gamma(A)=G\}
$$

$$
1896
$$

where the minimum is taking for all $n \times n$ symmetric matrices A.
The minimum rank of G is related to the maximum nullity of G, denoted by

$$
M(G)=\max \{\operatorname{nullity}(A): \Gamma(A)=G\}
$$

It's clear that the following equation holds for any graph G :

$$
\begin{equation*}
m(G)+M(G)=n \tag{1}
\end{equation*}
$$

Since $\Gamma(A)=\Gamma(A+\lambda I)=G, M(G)$ is also the maximum multiplicity of eigenvalues of a matrix associated with G.

The number $m(G)$ also has combinatorial meanings. In [1], Ping-Hong Wei, Chih-wen Weng showed that if G is a tree, which is a connected graph satisfies
$|V(G)|-1=|E(G)|$, then $|E(G)|-m(G)$ is equal to the minimum size of edge subset S whose deletion will yield a graph with each vertex of degree 1 or 2. In [8], the AIM Minimum Rank - Special Graphs Work Group defined color-change rule, derived coloring and zero-forcing set of a graph:
(i) color-change rule: let G be a graph with each vertex colored either white or black. If u is a black vertex of G, and it has exactly one neighbor v which is white, then change the color of y to black.
(ii) derived coloring: for a coloring of G, derived coloring is the result of applying the color-change rule until that no more vertex u is a black vertex of G with exactly one neighbor white.
(iii) zero-forcing set: a zero-forcing set Z for a graph G is a subset of $V(G)$ such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then the derived coloring is all black.

The minimum size of a zero-forcing set of G is denoted by $Z(G)$. Also in [8], they showed that $M(G) \leq Z(G)$.

We will compute the minimum rank of a special class of graphs which have order n and there exists an integer $2 \leq m<n$, such that the induced subgraph on vertex set $[m]$, $[n] \backslash[m]$ has edge set $\{i(i+1) \mid 1 \leq i \leq m-1\}, \emptyset$, respectively. Moreover, there exists a
sequence of integers $1=t_{0}<t_{1}<t_{2}<\ldots<t_{k-1}<t_{k}=m$ and a function
$f:[k] \mapsto[n] \backslash[m]$ such that for $1 \leq j<i \leq k, f(j) \neq f(j+1),\left|\left[t_{i-1}, t_{i}\right] \cap G(f(i))\right| \geq 2$ and $\sum_{i=1}^{k}\left|\left[t_{i-1}, t_{i}\right] \cap G(f(i))\right|=|E(G)|-m+1$, where $G(f(i))$ be the set of neighbors of $f(i)$.

See Definitions 4.4, 4.7 for a detailed description. In the end of this thesis, we show that a mountain G based on $[m]$ has minimum rank $m(G)=m-1$ and minimum size $Z(G)=n-m+1$ of a zero-forcing set of G.

The thesis is organized as follows. In the second section, Preliminaries, we define the notations, operations for graphs, matrices which we will use in the thesis. The third section, Known Results introduces the known theorems and the provide their proof. The difference of minimum rank between a graph G and a graph obtained from G by deleting a vertex is investigated. At the end of this section, we prove an inequality about the maximum rank and zero-forcing set of a graph. In the last section Our Results, we introduce a class of graphs, called mountains. We also compute the minimum rank and the minimum size of a zero-forcing set of a mountain based on $[m]$ in this section, where m is a positive integer. At the end of the thesis, we give examples about the construction of a matrix associated with a fixed mountain, which has rank equal to the minimum rank of the mountain.

2 Preliminaries

In this section, we introduce notations we will use in this thesis.

2.1 Graphs

The three graphs K_{n}, P_{n} and C_{n} with vertex set $[n]=\{1,2, \ldots, n\}$ and edge set defined in the following table will be used implicitly throughout the thesis.

Let G, G^{\prime} be two vertex-disjoint graphs and $x, z \in V(G), y \in V\left(G^{\prime}\right)$. We adopt the following graph operations.

1. $x \sim z$ means x is a neighbor of z.
2. $G(x)$ denotes the set of the neighbors of the vertex x in $V(G)$.
3. $G-x$ denotes the induced subgraph of G with vertex set $V(G) \backslash\{x\}$.
4. $G+{ }_{x y} G^{\prime}$ denotes the coalescence of G and G^{\prime} through the vertices x, y respectively, which by definition is a simple graph obtained from the disjoint union of G and G^{\prime} by identifying the vertex x from G and the vertex y from G^{\prime}.

2.2 Matrices

The matrices considered in the thesis are all symmetric over the real number field \mathbb{R}. We use the following notations with a square matrix of size $n \times n A$, a column vector $x \in \mathbb{R}^{n}$, and subsets X, Y of \mathbb{N}.

1. $\left\{e_{1}^{(k)}, e_{2}^{(k)}, \ldots, e_{k}^{(k)}\right\}$ is the standard basis of \mathbb{R}^{k}, where $k \in \mathbb{N}$. If $k=n$, then we just write as $\left\{e_{1}, e_{2} \ldots, e_{n}\right\}$.
2. $\operatorname{supp}(x):=\{i \in \mathbb{N} \mid$ the i-th entry of x is not zero $\}$.
3. $\operatorname{rank}(A)$ is the rank of A.
4. $\operatorname{cs}(A):=\left\{A u \mid u \in \mathbb{R}^{n}\right\}$ is the column space of A.
5. $\operatorname{rs}(A):=\left\{u^{T} A \mid u \in \mathbb{R}^{n}\right\}$ is the row space of A.
6. $\mathrm{ns}(A):=\left\{x \mid x \in \mathbb{R}^{n}, A x=0\right\}$ is the nullspace of A.

1895
7. $A(X \mid Y)$ denotes the submatrix of A obtained by deleting the p-th row and the q-th column of A, for all $p \in X, q \in Y$. If $X=Y$, then we just write $A(X)$.
8. $A[X \mid Y], A(X \mid Y]$ and $A[X \mid Y)$ denote the submatrices $A([n] \backslash X \mid[n] \backslash Y), A(X \mid[n] \backslash Y)$ and $A([n] \backslash X \mid Y)$ respectively and replacing X, Y by " - " means that we don't delete any row or column respectively, i.e. $A[-\mid Y]=A(\emptyset \mid Y]$.

For simple illustration, A has the form

$$
A=\left[\begin{array}{cc}
A[1] & A[1 \mid 1) \\
A(1 \mid 1] & A(1)
\end{array}\right]
$$

It is easy to see that

$$
\operatorname{rank}(A)-2 \leq \operatorname{rank}(A(1)) \leq \operatorname{rank}(A)
$$

2.3 Matrices associated with graph G

For an $n \times n$ symmetric matrix $A=\left(a_{i j}\right), \Gamma(A)$ is the graph with vertex set $[n]$ such that for distinct i and $j, i j \in E(\Gamma(A))$ if and only if $a_{i j} \neq 0$. We said that A is associated with $\Gamma(A)$.

Example 2.1. The 4×4 matrix A in Figure 1 is associated with $\Gamma(A)$.

Figure 1. A symmetric matrix and its associated graph.

Note that the diagonal entries of A do not need to be 0 .

3 Known Results

We shall introduce known properties of symmetric matrices in this section for later use.

3.1 Minimum ranks of the paths

Lemma 3.1. Let A be an $n \times n$ symmetric matrix. If $\Gamma(A)=P_{n}$, then $\operatorname{rank}(A)=n$ or $n-1$. Moreover the following are equivalent.
(i) $\operatorname{rank}(A)=n-1$;
(ii) $e_{1}^{T} \notin \mathrm{rs}(A)$;
(iii) $\operatorname{rank}(A)=\operatorname{rank}(A(1))$.

Proof. Let A be an n by n symmetric tridiagonal matrix such that $\Gamma(A)=P_{n}$ as the following

Thus b_{i} 's are non-zero real numbers. Then $\operatorname{rank}(A) \geq n-1$, since the first $n-1$ columns are linearly independent.

For (i) implying (ii), suppose $e_{1}^{T} \in \operatorname{rs}(A)$. Since the first row of A is $a_{1} e_{1}^{T}+b_{1} e_{2}^{T}$ with $b_{1} \neq 0$, we have $e_{2}^{T} \in \operatorname{rs}(A)$. As we prove $e_{1}^{T}, e_{2}^{T}, \ldots, e_{i}^{T} \in \operatorname{rs}(A)$, we have $e_{i+1}^{T} \in \operatorname{rs}(A)$ for $2 \leq i \leq n-1$, since the i-th row of A is $b_{i-1} e_{i-1}^{T}+a_{i} e_{i}^{T}+b_{i} e_{i+1}^{T}$ and $b_{i} \neq 0$, This proves $\operatorname{Span}\left(e_{1}^{T}, e_{2}^{T}, \ldots, e_{n}^{T}\right) \subseteq \mathrm{rs}(A)$. Hence $\operatorname{rank}(A)=n$.

For (ii) implying (iii), if $e_{1}^{T} \notin \operatorname{rs}(A)$, then $\operatorname{rank}(A) \neq n$. Thus $\operatorname{rank}(A)=n-1$. Since b_{i} 's
are non-zero real numbers, $\operatorname{rank}(A(1 \mid-))=\operatorname{rank}(A)=n-1$. This implies $e_{1}^{(n-1)} \in \operatorname{cs}(A)$ and so $\operatorname{rank}(A(1 \mid-))=\operatorname{rank}(A(1))$.

For (iii) implying $(i), \operatorname{rank}(A)=n-1$, since $n-1 \leq \operatorname{rank}(A)=\operatorname{rank}(A(1)) \leq n-1$.

Example 3.2. The following two matrices A_{n}, A_{n}^{\prime} satisfy $\Gamma\left(A_{n}\right)=\Gamma\left(A^{\prime}\right)=P_{n}$:

Let $v=\left[1,-1,1, \ldots,(-1)^{n-1}\right]^{T}$. Then $A_{n} v=0, A_{n}^{\prime} v=e_{1}$. This implies $\operatorname{rank}\left(A_{n}\right)=n-1$, and $\operatorname{rank}\left(A_{n}^{\prime}\right)=n$ by Lemma 3.1.

1896

Lemma 3.3. If H is an induced subgraph of G, then $m(H) \leq m(G)$.

Proof. Since for any matrix A such that $\Gamma(A)=G$, the submatrix $A[V(H)]$ is associated with H and $\operatorname{rank}(A[V(H)]) \leq \operatorname{rank}(A)$. This implies $m(H) \leq m(G)$.

The following Theorem shows that P_{n} is the unique graph with minimum rank $n-1$ among graphs of order n.

Theorem 3.4. ([3, Theorem 2.8.]) Let A be a symmetric matrix of order n. Then the following (i)-(ii) are equivalent.
(i) $\operatorname{rank}(A+D) \geq n-1$ for any diagonal matrix D;
(ii) $\Gamma(A)=P_{n}$.

Now we can determine the minimum rank of a graph which has an induced subgraph P_{n-1}.

Proposition 3.5. If G is not a path and G contains an induced subgraph P_{n-1}, then $m(G)=n-2$.

Proof. Since P_{n-1} is an induced subgraph of $G, m(G) \geq m\left(P_{n-1}\right)=n-2$. By theorem 3.4, $m(G) \leq n-2$. Thus $m(G)=n-2$.

3.2 Compute the minimum rank by deleting a cut vertex

For a graph, if the edge set of the graph is as small as possible, then the matrices
associated with the graph have more zero entries, and it may be easier to determine the minimum rank of the graph. Now we consider a connected graph G with a cut vertex, which by definition is a vertex whose deletion will make two or more components. Then the matrix associated with the graph is of the following form:

$$
\left[\begin{array}{lll}
A & a & 0 \tag{3}\\
a^{T} & c & b^{T} \\
0 & b & B
\end{array}\right],
$$

where A, B are real symmetric matrices, a, b are column vectors with proper sizes, and $c \in \mathbb{R}$. Then we may discuss the rank of the matrix by discussing the ranks of the submatrices $\left[\begin{array}{ll}A & a \\ a^{T} & c\end{array}\right]$ and $\left[\begin{array}{ll}c & b^{T} \\ b & B\end{array}\right]$.

Proposition 3.6. Let G, H be two graphs, and $x \in V(G), y \in V(H)$. Then the following are equivalent.
(i) $m\left(G+{ }_{x y} H\right)=m(G-x)+m(H-y)$;
(ii) $m(H)=m(H-y)$ and $m(G)=m(G-x)$.

Proof. If $m(H)=m(H-y)$ and $m(G)=m(G-x)$, then there exists a matrix A_{G} with $\operatorname{rank} m(G)=\operatorname{rank}\left(A_{G}\right)=\operatorname{rank}\left(A_{G}(x)\right)$, also for graph H, vertex y and matrix A_{H}. Then we have $m\left(G+_{x y} H\right) \leq m(G-x)+m(H-y)$. Now let B be a matrix with rank less than $m(G-x)+m(H-y)$ and $\Gamma(B)=G+{ }_{x y} H$. Then
$\operatorname{rank}(B)<m\left(G+{ }_{x y} H\right) \leq m(G)+m(H)$, implies $\operatorname{rank}(B[V(G)])<m(G)$ or $\operatorname{rank}(B[V(H)])<m(H)$, two contradictions. Thus $m\left(G+_{x y} H\right)=m(G-x)+m(H-y)$.

For (i) implying $(i i)$, let C be the matrix with rank $m(G+x y H)$, which is associated with $G+{ }_{x y} H$. Then C is of the form in (3), where $\Gamma(A)=G-x$ and $\Gamma(B)=H-y$.

Note that

$$
\begin{aligned}
& m(G-x)+m(H-y) \\
= & m\left(G+{ }_{x y} H\right)=\operatorname{rank}(C) \\
\geq & \operatorname{rank}(A)+\operatorname{rank}(B) \\
\geq & m(G-x)+m(H-y)
\end{aligned}
$$

Hence $m(H)=m(H-y)$ and $m(G)=m(G-x)$ by Lemma 3.3.

Example 3.7. Consider the graph C_{n}, where $n \geq 3$. Proposition 3.5 showed that for any $v \in V\left(C_{n}\right)$, the minimum rank of C_{n} is equal to $C_{n}-v$, which is also a path P_{n-1}. By

Proposition 3.6, the following graph $G=C_{n}+{ }_{v u} C_{m}$ has minimum rank
where $u \in V\left(C_{m}\right)$ and $m \geq 3$.

Figure 2. A graph $G=C_{n}+{ }_{u v} C_{m}$.

Proposition 3.8. ([4, Proposition 4.1.]) Let G be a graph, and $y \in P_{t}$ be a vertex of degree 2 , where $t \geq 3$. For any vertex $x \in G$,

$$
m\left(G+{ }_{x y} P_{t}\right)=m(G-x)+t-1
$$

Proof. Without loss of generality, let $x=|V(G)|, y$ be a vertex in $V(G), V\left(P_{t}\right)$,
respectively, where y is of degree 2 and the induced subgraph of the vertex set $V\left(P_{t}\right) \backslash y$ is equal to $P_{i} \cup P_{j}$. Then the following matrix D, which is associated with $G+{ }_{x y} P_{t}$ is of the form:

$$
D=\left[\begin{array}{cccc}
B & b & 0 & 0 \\
b^{T} & a & c_{i}^{T} & c_{j}^{T} \\
0 & c_{i} & C_{i} & 0 \\
0 & c_{j} & 0 & C_{j}
\end{array}\right]
$$

where $c_{i} \in \mathbb{R}^{i}, c_{j} \in \mathbb{R}^{j}$ and B, C_{i}, C_{j} is the matrix associated with $G-x, P_{i}, P_{j}$,
respectively. Now suppose $\operatorname{rank}(D)<m(G-x)+t-1=m(G-x)+i+j$. Then we
consider three cases as the following:
(i) $\operatorname{rank}\left(C_{i}\right)+\operatorname{rank}\left(C_{j}\right)=i+j$.

Then

(ii) $\operatorname{rank}\left(C_{i}\right)+\operatorname{rank}\left(C_{j}\right)=i+j-1$.

Without loss of generality, suppose $\operatorname{rank}\left(C_{i}\right)=i-1, \operatorname{rank}\left(C_{j}\right)=j$. Then

$$
\operatorname{rank}(D)=\operatorname{rank}\left[\begin{array}{ccc}
B & b^{T} & 0 \\
b & a^{\prime} & c_{i}^{T} \\
0 & c_{i} & C_{i}
\end{array}\right]+j=\operatorname{rank}(B)+i-1+2+j<m(G-x)+i+j
$$

(iii) $\operatorname{rank}\left(C_{i}\right)+\operatorname{rank}\left(C_{j}\right)=i+j-2$.

Then

$$
\operatorname{rank}(D)=\operatorname{rank}(B)+i-1+j-1+2<m(G-x)+i+j
$$

All the three cases imply that $\operatorname{rank}(B)<m(G-x)$, a contradiction. Thus we have $\operatorname{rank}(D) \geq m(G-x)+t-1$.

Now we choose B as a matrix associated with $G-x$ with rank $m(G-x)$ and C_{i}, C_{j} is of rank $i-1, j-1$, respectively. Then D has rank $m(G-x)+t-1$, since $c_{i} \notin \mathrm{cs}\left(\mathrm{C}_{\mathrm{i}}\right), c_{j} \notin \mathrm{cs}\left(\mathrm{C}_{\mathrm{j}}\right)$ by lemma 3.1. This implies $m\left(G+{ }_{x y} P_{t}\right) \leq m(G-x)+t-1$. Thus we conclude that $m\left(G+x y P_{t}\right)=m(G-x)+t-1$.

The propositions 3.6 and 3.8 are special cases of the following theorem.

Theorem 3.9. ([4, theorem 2.3]) Let G be a coalescence at vertex v of graphs G_{1}, \cdots, G_{t}. Then

$$
m(G)-m(G-v)=\min \left\{\sum_{i=1}^{i} m\left(G_{i}\right)-m\left(G_{i}-v\right), 2\right\}
$$

HTI

A graph G is 2-connected if $G-v$ connected for any $v \in V(G)$. From Theorem 3.9, we may assume that G is 2-connected in determining the minimum $\operatorname{rank} m(G)$ of G in the algorithmic aspect. However it is interesting to compute $m(G)$ or find its combinatorial meaning in general.

3.3 An inequality for the zero-forcing set and maximum nullity of the graphs

We are going to prove the inequality $M(G) \leq Z(G)$ for any graph G.

Lemma 3.10. Let A be any $n \times n$ matrix such that $\operatorname{rank}(A)<n-k$, for some integer $1 \leq k<n$. Then for any k-subset S of $[n]$, there exists $x \in \mathrm{~ns}(A)$ such that $\operatorname{supp}(x)=[n] \backslash S$.

Proof. Applying Gaussian elimination to a $(k+1) \times n$ matrix whose rows are $k+1$ linearly independent vectors in the nullspace of A will yield the last row with zeros in any k designated position.

The following lemma describes why we call $Z(G)$ a zero-forcing set for a graph G.
Lemma 3.11. Let G be a graph with zero-forcing set Z. If $x \in \operatorname{ns}(A)$ and $Z \subseteq[n] \backslash \operatorname{supp}(x)$, then x is a zero vector.

Proof. Let Z be a zero-forcing set of a graph G and $A=\left(a_{i j}\right)$ be a matrix associated with G, where $\operatorname{rank}(A)=m(G)$. Suppose $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \in \mathrm{~ns}(A)$ and $Z \subseteq[n] \backslash \operatorname{supp}(x)$ with $[n] \backslash \operatorname{supp}(x)$ maximum. Since Z is a zero-forcing set, $[n] \backslash \operatorname{supp}(x)$ is also too. By interpreting 1 as white and 0 as black, there exists v with $x_{v}=0$ and v has a unique neighbor $u \in \operatorname{supp}(x)$ with $x_{u}=0$.

Then

$$
0=(A x)_{v}=\sum_{i \in[n]} a_{v i} x_{i}=x_{v}+\sum_{i \sim v} a_{v i} x_{i}=a_{v u} x_{u}
$$

The third equality holds since $a_{v i} \neq 0$ only when $i \sim v$. The last equality holds since v has only one neighbor $u \neq Z$ such that x_{u} may not be zero. Since u is a neighbor of v, $a_{u v} \neq 0$. Thus $x_{u}=0$, a contradiction to $u \in \operatorname{supp}(x)$.

Now we can prove the inequality.

Theorem 3.12. Let G be any graph. Then $M(G) \leq Z(G)$.

Proof. Let G be a graph and Z be a zero-forcing set of G. If $M(G)>|Z|$, then there exists a matrix A associated with G such that nullity $(A)=M(G)>|Z|$.

By Lemma 3.10, there exists a non-zero vector $x \in \operatorname{ns}(A)$ such that $Z \subseteq \operatorname{supp}(x)$. This implies x is a zero vector by Lemma 3.11, a contradiction. Thus $M(G) \leq Z(G)$.

4 Our Results

1896
In this section, we will introduce a class of the graphs and compute the minimum rank, minimum size of zero-forcing set of the graphs.

4.1 A matrix associated with a path

Lemma 4.1. For all $n \in \mathbb{N}$, let $A_{n}=\left(a_{i j}\right)$ be the n by n symmetric matrix defined in (1), i.e.

$$
a_{i j}= \begin{cases}2, & \text { if } i=j \text { and } i, j \notin\{1, n\} \\ 1, & \text { if }|i-j|=1 \text { or } i=j \in\{1, n\} \\ 0, & \text { if }|i-j| \geq 2\end{cases}
$$

Then for any subset $S \subseteq[n]$ with $|S|>1$, there exists a vector u such that $\operatorname{supp}(u) \subseteq[\max S-1]$ and $\operatorname{supp}(A u)=S$.

Proof. For integers $1 \leq i<j \leq n$, define $b_{i}, c_{i, j}$ as the following:

$$
\begin{gather*}
b_{i}:=(-1)^{0} e_{i}+(-1)^{1} e_{i-1}+\cdots+(-1)^{i-1} e_{1} \tag{4}\\
c_{i, j}:=(-1)^{0} b_{i}+(-1)^{1} b_{i+1}+\cdots+(-1)^{j-i-1} b_{j-1} . \tag{5}
\end{gather*}
$$

Then
and

Now suppose $S=\left\{t_{1}, t_{2} \ldots, t_{k}\right\} \subseteq[n]$, where $k \geq 2$ and $t_{1}<t_{2}<\cdots<t_{k}$. Choose

$$
u=c_{t_{1}, t_{2}}+c_{t_{1}, t_{3}}+\cdots c_{t_{1}, t_{k}} .
$$

This implies

$$
A u=k e_{t_{1}}+(-1)^{t_{2}-t_{1}-1} e_{t_{2}}+(-1)^{t_{3}-t_{1}-1} e_{t_{3}}+\cdots+(-1)^{t_{k}-t_{1}-1} e_{t_{k}} .
$$

Then we have that $\operatorname{supp}(A u)=S$ and $\operatorname{supp}(u) \subseteq\left[t_{k}-1\right]=[\max S-1]$.

We provide matrices A satisfy $\operatorname{rank}(A)=n-2$ and that $\Gamma(A)$ is the graph described in Proposition 3.5.

Example 4.2. Let $G=P_{n-1}+{ }_{i 1} P_{2}$ and A_{i}, A_{n-1-i} are defined as the matrix A_{n} at
Lemma 4.1, where $1<i<n$, the following matrix satisfies $\Gamma(A)=G$ and $\operatorname{rank}(A)=n-2$.

$$
A=\left[\begin{array}{cccc}
A_{i-1} & e_{i-1}^{(i-1)} & 0 & 0 \\
\left(e_{i-1}^{(i-1)}\right)^{T} & 0 & \left(e_{1}^{(n-1-i)}\right)^{T} & 1 \\
0 & e_{1}^{(n-1-i)} & A_{n-1-i} & 0 \\
0 & 1 & 0 & 0
\end{array}\right]_{n \times n}
$$

Note that we have $\operatorname{rank}\left(A_{i-1}\right)=i-2, \operatorname{rank}\left(A_{n-1-i}\right)=n-2-i$. Since the both of n-th column and row are linearly independent, $\operatorname{rank}(A)=n-2$. Then $m\left(P_{n-1}+{ }_{i 1} P_{2}\right)=n-2$, by Lemma 3.3.

Example 4.3. Let G be a graph of order n such that the induced subgraph of G on $[n-1]$ is P_{n-1} and the vertex n has neighbors $S=\left\{t_{1}, t_{2}, \ldots t_{k}\right\}$, where $k \geq 2$. Let A_{n-1} be the matrix defined as the amtrix A_{n} at Lemma 4.1. Then there exists a vector $u \in \mathbb{R}^{n}$ such that $\operatorname{supp}\left(A_{n-1} u\right)=S$. The following matrix A satisfies $\operatorname{rank}(A)=n-2$ and $\Gamma(A)=G$:

$$
A=\left[\begin{array}{cc}
A_{n-1} & A_{n-1} u \\
u^{T} A_{n-1} & u^{T} A_{n-1} u
\end{array}\right]_{n \times n}
$$

4.2 Mountains

In Example 4.3, we proved that joining a vertex to some internal node of a path doesn't increase the minimum rank. We are going to add 2 or more vertices to a path.

Definition 4.4. A sequence $T_{1}, T_{2}, \ldots, T_{t}$ of subsets of $[m]$ is said to be separated on $[m]$ with respect to the sequence of integers $1=t_{0}<t_{1}<t_{2}<\ldots<t_{k-1}<t_{k}=m$ if there exists a function $f:[k] \mapsto[t]$ such that for $1 \leq j<i \leq k, f(j) \neq f(j+1)$, $\left|\left[t_{i-1}, t_{i}\right] \cap T_{f(i)}\right| \geq 2$ and $\sum_{\ell=1}^{k}\left|\left[t_{\ell-1}, t_{\ell}\right] \cap T_{f(\ell)}\right|=\sum_{\ell=1}^{t}\left|T_{\ell}\right|$.

Example 4.5. The following subsets T_{1}, T_{2} are separated on $[m]$ with respect to the specified sequence $\left(t_{0}, t_{1}, \ldots, t_{k}\right)$ and function $f=(f(1), f(2), \ldots, f(k))$.
(i) $T_{1}=\{1,2,5,6\}$ and $T_{2}=\{3,4\}$ with $(1,3,4,6)$ and $f=(1,2,1)$;
(ii) $T_{1}=\{1,3,5,6\}$ and $T_{2}=\{3,5\}$ with $(1,3,5,6)$ and $f=(1,2,1)$;
(iii) $T_{1}=\{1,4,5,7,9\}$ and $T_{2}=\{5,6,7\}$ with $(1,5,7,9)$ and $f=(1,2,1)$;
(iv) $T_{1}=\{1,2,5,6,7\}$ and $T_{2}=\{3,4,8,10\}$ with $(1,3,5,8,10)$ and $f=(1,2,1,2)$.
(v) $T_{1}=\{1,2,3,4,5,6\}$ and $T_{2}=\{2,3,4,5\}$ with $(1,2,3,4,5,6)$ and $f=(1,2,1,2,1)$.

Example 4.6. The following subsets T_{1}, T_{2}, T_{3} are separated on $[m]$ with respect to the specified sequence $\left(t_{0}, t_{1}, \ldots, t_{k}\right)$.
(i) $T_{1}=\{1,2,3,5,6,7\}, T_{2}=\{3,4,9,10\}$,

$$
T_{3}=\{7,8,9\} \text { with }(1,3,4,7,9,10) \text { and } f=(1,2,1,3,2)
$$

(ii) $T_{1}=\{3,4,5,10,11,12\}, T_{2}=\{5,6,9,10\}$,

$$
T_{3}=\{1,3,6,8,13,14\} \text { with }(1,3,5,6,8,10,12,14) \text { and } f=(3,1,2,3,2,1,3)
$$

Definition 4.7. For integers $m<n$, let $M_{m, n}$ be the class of graphs G with vertex set $V(G)=[n]$ satisfying the following axioms.
(i) The subgraph of G induced on $[m]$ has edge set $\{i(i+1) \mid 1 \leq i \leq m-1\}$, and the subgraph of G induced on $\{m+1, m+2, \ldots, n\}$ has no edges.
(ii) The sequence $G(m+1), G(m+2), \cdots, G(n)$ separated on $[m]$.

The graph $G \in M_{m, n}$ is called a Mountain based on $[m]$.
1896
Theorem 4.8. If $G \in M_{m, n}$, then $m(G)=m-1$.

Proof. Choose a sequence $t_{0}=1<t_{1}<t_{2}<\ldots<t_{k-1}<t_{k}=m$ and a function $f:[k] \mapsto[n] \backslash[m]$ with respect to which the sets $G(m+1), \ldots, G(n)$ are separated on $[m]$.

For $1 \leq i \leq k$, choose a column vector $u_{i} \in \mathbb{R}^{m}$ such that
$\operatorname{supp}\left(u_{i}\right) \subseteq\left[\left(\max G(f(i)) \cap\left[t_{i-1}, t_{i}\right]\right)-1\right]$ and $\operatorname{supp}\left(A_{m} u_{i}\right)=G(f(i)) \cap\left[t_{i-1}, t_{i}\right]$, where $A_{m}=\left(a_{i j}^{\prime}\right)$ is defined in Lemma 4.1. Notice that from the construction, $u_{j}^{T} A_{m} u_{i}=0$ if $j<i$, and indeed for $j \neq i$ since A_{m} is symmetric. For $m+1 \leq \ell \leq n$, let
$S_{\ell}=\{i \in[k]: f(i)=\ell\}$, and define the column vector $v_{\ell}:=\sum_{i \in S_{\ell}} u_{i}$. Note that for $m+1 \leq \ell \leq n, \ell=f(i)$ for any $i \in S_{\ell}$, so

$$
\begin{equation*}
\operatorname{supp}\left(A_{m} v_{\ell}\right)=\operatorname{supp}\left(A_{m} \sum_{i \in S_{\ell}} u_{i}\right)=G(\ell) \tag{6}
\end{equation*}
$$

Also for $p \in[n] \backslash[m]$ with $p \neq \ell$, we have $S_{\ell} \cap S_{p}=\emptyset$, so

$$
\begin{equation*}
v_{\ell}^{T} A_{m} v_{p}=\sum_{i \in S_{\ell}} \sum_{j \in S_{p}} u_{i}^{T} A_{m} u_{j}=0 \tag{7}
\end{equation*}
$$

We now define the n by n symmetric matrix $A=\left(a_{i j}\right)$ by

From the above construction in (8) and (6), (7), one can easily check that $\Gamma(A)=G$. For all $m+1 \leq \ell \leq n, A[[m] \mid \ell]=A_{m} v_{\ell}$. Hence

1896

$$
\operatorname{rank}(A[[m] \mid-])=\operatorname{rank}(A[-\mid[m]])=\operatorname{rank}\left(A_{m}\right)=m-1
$$

For $m+1 \leq i, j \leq n, A[i \mid \ell]=v_{i}^{T} A_{m} v_{j}$. Hence the column of A is a linear combination of the first m columns. Thus the rank of A is equal to $m-1$. This proves $m(G) \leq m-1$. Since G contains induce subgraph P_{m}, we have that $m(G)=m-1$ by Lemma 3.3.

Example 4.9. Let G be a mountain of order 12 based on [10] such that $G(11)$ and $G(12)$ are separated with respect to the sequence $(1,3,5,8,10)$ and $f=(11,12,11,12)$ as showing in the figure 3 . We will give a matrix A associated with G and the rank of A is 9 .

Figure 3. A mountain mased on [10] of order 12.

Since the sequence $G(11), G(12)$ is separated on $[10]$ with $(1,3,5,8,10)$ and $f=(1,2,1,2)$, let A_{10} be the matrix defined at Lemma 4.1 and we choose

$$
\begin{gathered}
u_{1}=[1,0,0,0,0,0,0,0,0,0]^{T}, u_{2}=[1,-1,1,0,0,0,0,0,0,0]^{T} ; \\
u_{3}=[-3,3,-3,3,-3,2,0,0,0,0]^{T}, u_{4}=[2,-2,2,-2,2,-2,2,-2,1,0]^{T}
\end{gathered}
$$

such that

Choose $v_{11}=u_{1}+u_{3}, v_{12}=u_{2}+u_{4}$ such that $\operatorname{supp}\left(v_{11}\right)=G(11)$ and
$\operatorname{supp}\left(v_{12}\right)=G(12)$. Then the following matrix A is associated with G and $\operatorname{rank}(A)=9$.

$$
A=\left[\begin{array}{ccc}
A_{10} & A_{10} v_{11} & A_{10} v_{12} \\
v_{11}^{T} A_{10} & 6 & 0 \\
v_{12}^{T} A_{10} & 0 & 3
\end{array}\right]
$$

This implies $m(G) \leq 9$, and it's clear that $m(G) \geq m\left(P_{10}\right)=9$. Thus $m(G)=9$.

Example 4.10. There exists a matrix A associated with the following graph G with rank 9.

Figure 3. A mountain based on [10] of order 13.

The sequence $G(11)=\{1,2,3,5,6,7\}, G(12)=\{3,4,9,10\}$ and $G(13)=\{7,8,9\}$, is separated on $[10]$ with $(1,3,5,7,9,10)$ and $f=(11,12,11,13,12)$. We choose

$$
\begin{gathered}
u_{1}=[-3,2,0,0,0,0,0,0,0,0]^{T}, u_{2}=[1,-1,1,0,0,0,0,0,0,0]^{T} \\
u_{3}=[-3,3,-3,3,-3,2,0,0,0,0]^{T}, u_{4}=[-3,3,-3,3,-3,3,-3,2,0,0]^{T}
\end{gathered}
$$

Then we have

$\operatorname{supp}\left(A_{10} u_{1}\right)=\{1,2,3\}=[1,3] \cap G(11), \operatorname{supp}\left(A_{10} u_{2}\right)=\{3,4\}=[3,5] \cap G(12) ;$
$\operatorname{supp}\left(A_{10} u_{3}\right)=\{5,6,7\}=[5,7] \cap G(11), \operatorname{supp}\left(A_{10} u_{4}\right)=\{7,8,9\}=[7,9] \cap G(13)$

$$
\text { and } \operatorname{supp}\left(A_{10} u_{5}\right)=\{9,10\}=[9,10] \cap G(12)
$$

Choose $v_{11}=u_{1}+u_{3}, v_{12}=u_{2}+u_{5}$ and $v_{13}=u_{4}$. The following matrix A is associated with G and $\operatorname{rank}(A)=9$.

$$
A=\left[\begin{array}{cccc}
A_{10} & A_{10} v_{11} & A_{10} v_{12} & A_{10} v_{13} \\
v_{11}^{T} A_{10} & 10 & 0 & 0 \\
v_{12}^{T} A_{10} & 0 & 3 & 0 \\
v_{13}^{T} A_{10} & 0 & 0 & 5
\end{array}\right]
$$

Corollary 4.11. If $G \in M_{m, n}$ then $M(G)=Z(G)=n-m+1$.

Proof. We have known $M(G) \leq Z(G)$ by Theorem 3.12, and
$M(G)=n-m(G)=n-m+1$ by Theorem 4.8 and equation (1). Initially by coloring the set $S=[n] \backslash[m-1]$ in black, one can check that applying color changing rules along the sequence of vertices $m-1, m-2, \ldots, 1$, eventually every vertex is black. Hence $Z(G) \leq n-m+1$, and indeed $M(G)=Z(G)=n-m+1$.

References

[1] Ping-Hong Wei, Chih-Wen Weng. A typical vertex of a tree. Discrete Mathematics. 226 (2001) 337-345.
[2] P. Nylen, Minimum-rank matrices with prescribed graph, Linear Algebra Appl. 248 (1996) 303-316.

$$
1896
$$

[3] M. Fiedler, A characterization of tridiagonal matrices, Linear Algebra Appl. 2 (1969) 191-197.
[4] F. Barioli, S.M. Fallat, L. Hogben, Computation of minimal rank and path cover number for graphs. Linear Algebra Appl. 392 (2004) 289-303.
[5] Liang-Hao Huang, Gerard J. Chang, Hong-Gwa Yeh, On minimum rank and zero forcing sets of a graph Linear Algebra Appl. 432 (2010) 2961-2973.
[6] W. Barrett, H. van der Holst, and R. Loewy, Graphs whose minimal rank is two. The Electronic Journal of Linear Algebra. 11 (2004) 258-280.
[7] Leslie Hogbena, Hein van der Holstb, Forbidden minors for the class of graphs G with $\zeta(G) \leq 2$. Linear Algebra and its Appl. 423 (2007) 42-52.
[8] F. Barioli, W. Barrett, S. Butler, S.M. Cioabă, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K.V. Meulen,A.W.Wehe,AIM MinimumRank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628-1648.

