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Spectral Excess Theorem and its Applications

Student : Guang-Siang Lee Advisor : Chih-wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

The spectral excess theorem gives a quasi-spectral characterization for a regular
graph to be distance-regular. An example demonstrates that this theorem cannot be
directly applied to nonregular graphs. In order to make it applicable to nonregular
graphs, a ‘weighted’ version of the spectral excess theorem is given. As an application,
we show that a connected graph with d + 1 distinct eigenvalues and odd-girth 2d + 1
is distance-regular, generalizing a result of van Dam and Haemers. We then apply
this line of study to the class of bipartite graphs. It is well-known that the halved
graphs of a bipartite distance-regular graph are distance-regular. Examples are given
to show that the converse does not hold. Thus, a natural question is to find out when
the converse is true. We give a quasi-spectral characterization of a connected bipartite
weighted 2-punctually distance-regular graph whose halved graphs are distance-regular.
In the case the spectral diameter is even we show that the graph characterized above

is distance-regular.
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Chapter 1

Introduction

The study of characterizing the graphs whose eigenvalues and/or multiplicities sat-
isfy a prescribed identity has a long history. For example, a well-known and real-world
applicable result asserts that a connected graph is bipartite if and only if its largest
eigenvalue and smallest eigenvalue have the same absolute value (see e.g. [8, Proposi-
tion 3.5.1]). Recently, the eigenvectors, especially the one associated with the largest
eigenvalue, are also taking into consideration, for instances, in mathematical theory:
[30, 31, 27, 28, 25]; in applications: Google’s PageRank [10], Topological structures
of complicated protein-protein interaction networks [11]. See [8, p. 65-69] for more

applications.

Distance-regularity of graphs is a crucial concept in Algebraic Combinatorics [32].
However, it is in general not determined by the spectrum of the graph. See [21, 23, 7] for
some results on spectral characterizations of distance-regular graphs. The spectral ex-
cess theorem, proposed by Fiol and Garriga [27], gives a quasi-spectral characterization
for a regular graph to be distance-regular: For a connected regular graph, its average
excess (the mean of the numbers of vertices at extremal distance from each vertex) is,
at most, its spectral excess (a number which can be determined from its spectrum),

and equality holds if and only if the graph is distance-regular. For short proofs, see



[16, 29]. Therefore, besides the spectrum, a simple combinatorial property suffices for a
regular graph to be distance-regular. An example (given in Section 3.1) demonstrates
that this theorem is invalid for nonregular graphs. Motivated by this, a variation of the
spectral excess theorem, called the ‘weighted’ spectral excess theorem (Theorem 3.10),
is given in order to make it applicable to nonregular graphs, using a global approach.
It is worth mentioning that Fiol, Garriga and Yebra [31] also considered nonregular

graphs, using a local approach, however.

Applying the spectral excess theorem, van Dam and Haemers [22] proved the ‘odd-
girth theorem’ for regular graphs: A connected regular graph with d + 1 distinct eigen-
values and odd-girth (that is, the length of its shortest odd cycle) 2d + 1 is distance-
regular, generalizing results of Huang and Liu [37]. In the same paper, they posed the
question of determining whether the regularity assumption can be removed. Moreover,
they showed that the answer is affirmative for the case d+1 = 3, and claimed that they
also had proofs for the cases d+1 € {4,5}. As an application of the ‘weighted’ spectral
excess theorem, we demonstrate that the regularity assumption is indeed not necessary,
that is, the odd-girth theorem is not restricted to regular graphs (Theorem 3.19). Be-
cause the odd-girth is determined by the spectrum, this result is also a generalization

of the spectral characterization of the generalized odd graphs [36, 37].

We then apply this line of study to the class of bipartite graphs. It is well-known
that the halved graphs of a bipartite distance-regular graph are distance-regular ([15],
[6, Proposition 4.2.2]). Examples are given (in Section 4.4) to show that the converse
does not hold, that is, a connected bipartite graph whose halved graphs are distance-
regular may not be distance-regular. Thus, a natural question is to find out when
the converse is true. We will give a quasi-spectral characterization of graphs when

an identity involving eigenvalues, multiplicities, the eigenvector corresponding to the



largest eigenvalue, and partial graph structure is satisfied (Theorem 4.15).

The contents of the following two papers are included in this dissertation:

1. G.-S. Lee and C.-w. Weng, A spectral excess theorem for nonregular graphs, J.

Combin. Theory Ser. A 119 (2012), 1427-1431.

2. G.-S. Lee and C.-w. Weng, A characterization of bipartite distance-regular graphs,

Linear Algebra Appl. 446 (2014), 91-103.

This dissertation is organized as follows. In the next chapter we review some basic
notation and results on which our study is based. The spectral excess theorem and
its ‘weighted’ version for nonregular graphs, together with an application (Odd-girth
theorem) and related results, are given in Chapter 3. In the last chapter, we focus on

bipartite graphs, and give a characterization of bipartite distance-regular graphs.



Chapter 2

Preliminaries

Let us first recall some basic notation and results on which our study is based.

2.1 Basic notation

A graph G = (V, E)) consists of a vertex set V and an edge set E, where each element
in E (called an edge of G) is a 2-element subset of V. Two vertices u and v are adjacent,
or neighbors, if {u,v} € E. Two edges e and [ are incident to a common vertex u of G
ifeNf =wu. A complete graph is a simple graph in which any two vertices are adjacent.
Let K, denote a complete graph of n vertices. The degree of a vertex u, denoted by
degg;(u), is the number of vertices adjacent to u. Define k := Y. ., degs(u)/n to be
the average degree of G, where n is the number of vertices of G. If all vertices have
the same degree then the graph is called reqular. A walk in a graph G is a sequence
Xo,T1, ..., 2 of vertices, not necessary distinct, such that any two successive elements
of which are adjacent. A walk without repeated (internal) vertices is called a path.
A cycle is a path zg,zq,...,x; with zo = z;. The length of a walk, path, or cycle is
the number of edges on it. Let C),, denote a cycle of length n. A cycle is odd or even
depending on whether its length is odd or even. The girth of a graph is the length
of its shortest cycle. A w,v-path in G is a path whose vertices of degree 1 (called its

endpoints) are v and v. A graph G is connected if a u,v-path exists for every pair of



vertices u, v of G. In this dissertation, G denotes a finite, simple, and connected graph
with n vertices. The distance between two vertices u and v of GG, denoted by 0(u,v),
is the length of a shortest u,v-path. The parameter D := max{9d(u,v) | u,v € V} is
called the diameter of G. For a vertex u € V and 0 < i < D, let G;(u) be the set
of vertices at distance ¢ from u. The adjacency matrix A of GG is the binary matrix
indexed by the vertex set V', where the entry (A),, = 1 if d(u,v) =1, and (A)y, =0
otherwise. The eigenvalues of a matrix M are the numbers A\ such that Mz = Ax has
a nonzero solution vector; each such solution is an eigenvector associated with A\. The
eigenvalues of a graph are the eigenvalues of its adjavency matrix. Let the spectral
diameter d of G be the number of distinct eigenvalues minus one. The spectrum of
G, denoted by sp G = {\°, A", ..., A"}, is the list of distinct eigenvalues \;’s in
decreasing order: A\g > Ay > --- > Ay, and the superscripts stand for their multiplicities
m; = m(\;), 0 < i < d. Note that my = 1 since G is connected. It is well-known
that Z(z) = [[,(z — \;) is the minimal polynomial of G and D < d [3, Chapter
2]. Two graphs G; = (V4, Ey) and Go = (Va, Ey) are isomorphic if there is a bijection
f: Vi — V4 such that {u,v} € Fy if and only if {f(u), f(v)} € E2. Two nonisomorphic
graphs are said to be cospectral if they have the same spectrum. A graph is bipartite

if its vertex set can be partitioned into two subsets X and Y such that all edges meet

both X and Y’; such a partition (X,Y) is called a bipartition of the graph. Then, its

0 B
A:(BT 0)7

where B is an |X| x |Y| matrix. It follows that the spectrum of a bipartite graph

adjacency matrix is of the form

is symmetric with respect to zero: If (z,y)? is an eigenvector of A associated with

T

eigenvalue A, then (z, —y)" is an eigenvector associated with eigenvalue —\. (The

converse also holds, see e.g. [8, Proposition 3.5.1].) Note that a graph is bipartite if
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and only if it has no odd cycle (see e.g. [45, Theorem 1.2.18]). A bipartite graph with
bipartition (X,Y") is called a complete bipartite graph if every vertex in X is adjacent to
every vertex in Y. Let K; denote a complete bipartite graph with bipartition (X,Y),
where | X| = s and |Y| = t. A graph is multipartite if its vertex set can be partitioned
into non-empty subsets, called parts, such that any two vertices in the same part are
nonadjacent. Furthermore, a complete multipartite graph is a multipartite graph such

that any two vertices in different parts are adjacent. Let K, m,....m, denote a complete

multipartite graph with ¢ parts, where m; is the number of vertices in the i part,
1 <i <t The line graph L(G) of G is the graph whose vertices are the edges of G,
and two such vertices are adjacent in L(G) if the corresponding edges are incident to a
common vertex of G. A strongly reqular graph with parameter (n, k, A, u) (for short, an
srg(n, k, A\, 1)) is a graph on n vertices which is regular of degree k such that any two
adjacent vertices have exactly A common neighbors, and any two nonadjacent vertices
have exactly p common neighbors. For example, the cycle graph Cs is an srg(5,2,0,1).

Note that a connected regular graph with exactly three distinct eigenvalues is strongly

regular [32].
2.2 Distance-regular graphs

Recall that G;(u) denotes the set of vertices at distance ¢ from a given vertex u. For

0 <7 < D and two vertices u,v € V at distance 7, set

ci(u,v) : = |Gi(v) N Gia(u)],
a;(u,v) : = |G1(v) N G;(u)], and
bi(u,v) - = [G1(v) N Giga (u)].
We say that these parameters are well-defined if they are independent of the choice

of u,v. In this case we use the symbols ¢;, a; and b; for short. A connected graph



G with diameter D is called distance-reqular if the above-mentioned parameters are
well-defined. In other words, a connected graph GG with diameter D is distance-regular
if there are constants c¢;, a;, b;, 0 < i < D, such that for any two vertices u and
v at distance 7, among the neighbors of v, there are ¢; at distance i — 1 from u, a;
at distance ¢, and b; at distance ¢ + 1. The mentioned constants ¢;, a;, b; are called
the intersection numbers. Note that a distance-regular graph is regular with valency
k := by. Moreover, a distance-regular graph with diameter 2 is the same thing as a
connected strongly regular graph, where A = a; and u = c;. Here we give some simple
examples of distance-regular graphs that will be used later (in Section 4.4): complete
graphs, complete bipartite graph K,; with s = ¢, and complete multipartite graphs
with each part having the same number of vertices.

For 0 < ¢ < D, define the distance-i matriz A; of G to be the matrix indexed by the
vertex set V' such that the entry (A;)y, = 1 if d(u,v) =i, and (A;),, = 0 otherwise. In
particular, Ag = [ is the identity matrix and A; = A is the adjacency matrix. Clearly,
Ag+Ai+---+Ap = J, the all-ones matrix. Now the above definition of distance-regular

graphs is equivalent to the equations

AAl = Ci+1Ai+1 + CLZ'Ai + bi—lAi—l (0 S 1 S D), (21)

where b_; = cpyq := 0 (see e.g. [6]). Define fy =1 and f; = x. If G is distance-regular,
by iteratively applying (2.1), there exist polynomials f;’s, with deg f; = 4, such that
A; = fi(A) for 0 < i < D. These polynomials fy, f1,..., fp are called the distance
polynomials of a distance-regular graph. Since (xfp — bp_1fp-1 —apfp)(A) = 0, by

definition of the minimal polynomial, it follows that d +1 < D + 1 and thus D = d.



2.3 Predistance polynomials

In this section we introduce the concept of orthogonal polynomials [42] related to
a graph. The basic idea is to generalize the study of distance-regular graphs (see

[6, 43, 3, 24]).
2.3.1 General setting

Let G be a finite, simple, and connected graph of n vertices, with d + 1 distinct
eigenvalues A\g > Ay > --- > A\;. Recall that Z(x) := H?ZO(.T — ;) is the minimal
polynomial of G. From the spectrum sp G = {\g°, AT, ..., A"} of G’ we consider the
(d+1)-dimensional vector space Ry[z] = R|x]/(Z(x)) of polynomials of degrees at most

d over the real number field R with inner product

d
(p,0)a = Z %p(Ai>Q(Ai> = tr(p(A)q(A))/n, (2.2)
and norm
Iplle == vV {(p,p)a

for p, g € Ry[x], where tr(M) denotes the trace of the square matrix M (i.e., the sum of
the diagonal entries of M). It is well-known that tr(A*) = Zf:o m;\; for £ > 0. Note
that (p, p)¢ > 0 with equality if and only if p = 0. Moreover, the defined inner product

satisfies the property that (zp,q)¢ = (p, xq)¢. For p,q € Ry[z], let

. (p,q)c
Proj,(q) = TE (2.3)
pliZ
denote the projection of ¢ onto p. Define polynomials pj, = 1,p}, ..., p; of Ry[z] recur-
sively by the Gram—Schmidt procedure:
P =2t = Z Proj,, (") (2.4)
k=0

8



for 0 <i < d-—1. Then py, = 1,p] = x,...,p, is an orthogonal basis of R,[z] such
that p, has degree i and leading coefficient 1. We claim that pi(A\g) > 0 for 0 < i < d
[16]. Let 61, 0o, ..., ), be zeros of p. in (A\g, Ag) for which p, takes opposite signs in
(0j—¢€,0;) and in (6;,0;+¢€) for all 1 < j < h and for some € > 0. Set ¢ = H?Zl(a:—ﬁj).
Then gp; > 0 for all x € [Ag, Ao] or gp} < 0 for all x € [Ag, Ao]. Since p; has at most i
real roots and h < i < d + 1, there exists an eigenvalue A; such that g(A;)p;();) # 0.
As a result, (¢,p})¢ # 0 by (2.2). Since ¢ can be written as a linear combination of
Dys Py - - - Dy, We deduce that h =i and all zeros of p; are zeros of ¢q. Thus ¢ = p} and
hence pi(Ao) = q(Ag) > 0.

Set
_ pg(Ao)
1Pi11%

i p;- (2.5)
Then py = 1,p1 = Nox/k,...,pq satisfy degp; = i and (p;,p;)¢ = 0i;pi(No) for
0 <i,j <d, where §;; = 1if i = j, and 0 otherwise [27]. A simple example will
be given later (Example 2.1) in order to demonstrate the computational procedures.
Moreover, pg, p1, - .-, Pq is the unique system of orthogonal polynomials in Ry[z] with
such properties. To prove uniqueness, first note that pg, p1, ..., pq is a basis of the vector
space Ry[z], that is, for any polynomial p € Ry[z]| with degp =i, 0 < i < d, we have
p = Z;:o a;p; for some o; € R with o; # 0. Suppose that there exist o, q1, ..., qq
satisfying degq; = i and (¢;, ¢;)c = 0;jGi(Ao) for 0 < 7,5 < d. We claim that ¢; = p; for
0 < i < d. As mentioned above, write ¢; = Zé‘:o a;;p; for some o;; € R with ay; # 0.

Since gy = agopo for some nonzero real number «gg, we have

Oéoopo(Ao) = (_Io()\o) = <CZ0, QO>G = (Ozoopo, OéooPo)c = Oé%opo()\o),

which implies that agg = 1 and thus g = pg. Likewise, ¢1 = aqgpo + @11p1 for some real



numbers ayg, a; with ag; # 0. Then

0= {(q1,q0)c = {@10p0 + @11P1, Po) ¢ = 10P0( o),

which implies that a9 = 0, and thus

0411]?1(/\0) = Ch(/\o) = <C]1a Q1>G = <Oé11p1, a11p1>G = 0631]71(/\0)7

which implies that a;; = 1. Hence ¢; = p;. Using the same argument, it follows that
q; =p; for 0 < i <d.
These polynomials pg, p1, ..., pq are called the predistance polynomials of GG, which

satisfy a three-term recurrence of the form

TP; = Yit1Pi+1 + P + Bic1Dia (2.6)

for 0 < i < d, where v;41, oy, B;—1 are scalars in R, called the preintersection numbers
of G, with 8_1 = 4.1 := 0 [20]. This property can be easily explained in the following
[16]. The polynomial xp; has degree i+ 1 and thus can be expressed as xp; = ]’LB Qijp;
for some «a;; € R. For j < i—1, ay; = 0, since ;;(pj, pj)a = (xpi, pj)e = (Pi, xpj)c = 0.
Hence there are only three terms remained in the expression of zp;. After renaming the
coefficients, the above three-term recurrence follows. Note that, for 0 <7 < d —1,
Niay = <$Pz‘7pz'+;>c £0 and B — <xpi+1>§i>G _ (pi+1,$120z‘>(; 20
1pitallE 1Pl 1illZ

Moreover, a; + f; +7; = Ao for 0 < i < d, where 7o := 0 and 4 := 0 [13].

For a pair of n x n symmetric matrices M, N over real number field R, define the

inner product

(M,N) := ltr MN) Z Z(M o N)ij, (2.7)

and the norm

M| := /(M M),

10



where “ o 7 is the entrywise or Hadamard product of matrices. Thus, by (2.2) and (2.7),

we obtain that

(0, 0)a = (p(A), q(A))

(2.8)

for p,q € Ry[z]. Note that the equation (2.8) is a useful property that can be used to

compute predistance polynomials of a graph. As mentioned before, we demonstrate in

the following the computational procedures for a simple example: Pz, a path of three

vertices.

Example 2.1. The spectrum of Ps is {1/2,0, —/2}. Note that tr(I) = 3, tr(A)
tr(A?) =4, tr(A%) = 0 and tr(A*) = 8. By (2.3), (2.4), (2.7) and (2.8),

o =1,
, (1,2)¢ tr(A)
= — 1: — =
L=t 1, T "
, o (Late (z,2%)¢ ,  tr(A?%) tr(A?) 5
— g2 _ 1— o= 22— 1 - P
P=t 70 e woe 0T () tr(az) T /3

{
Note that, by (2.7),
(P Po)e = (1, 1)e = tr(I)/n =1,
(P P16 = (2,2)a = te(A*) /n = 4/3 (= k),
Py, h)e = (x* — 4/3,2% — 4/3)¢ = tr(A* —8A*/3+161/9)/n = 8/9.

Thus, by (2.5),

1
Po = <1’ 1>G 1 - 17

Ao —
P = To)o -z =3v2z/4 (= \z/k),

- A2 4/3
P2 =t 43,22 — 43

(2% —4/3) = 3(z* — 4/3) /4.

Note that & < A\ with equality if and only if G is regular [8, Proposition 3.1.2],

=0,

and

p1 = Aox/k. As a result, p; = x if and only if G is regular. Recall that the distance

11



polynomials fy, f1,..., fp of a distance-regular graph satisfy A; = f;(A) for 0 < < D.
Note that, in general, the equations A; = p;(A) does not hold. For example, if G is
nonregular, then p;(A) = \gA/k # A;. The following result gives a characterization of

distance-regular graphs.

Proposition 2.2. A graph G with d + 1 distinct eigenvalues is distance-regular if and

only if A; = pi(A) for every 0 < i < d.

Proof. (=) Suppose that G is distance-regular. Then G is regular, the distance poly-
nomials f;’s satisfy deg f; = ¢ and A; = f;(A) for 0 < i < D, and we have D = d as
mentioned before. Now it suffices to show that f; = p; for every 0 < i < d. Since G
is regular, AJ = A\gJ, where J is the all-ones matrix. Then A; has constant row sum
fi(Xo) since A;J = fi(A)J = fi(Ao)J. By uniqueness of predistance polynomials, the
result follows from

filho) ifi =7,
{fis [i)a = ([i(A), £;(A)) = (A, 4;) = ’ .

0 otherwise.
(<) Suppose that A; = p;(A) for every 0 < i < d. Since Ag = pa(A), by taking norms,
we have || A4]|> = pa(Xo) > 0, which implies that D = d. Then the three-term recurrence

(2.6) turns into the equations (2.1) and thus the graph is distance-regular. O

The parameter py(Ag), which is called the spectral excess of G, can be expressed in

terms of the spectrum:

J 1
n 1
M) == [
Pa(do) 7r§< mi7r2> ’

i=0 i

where m; = [, [A\i — A for 0 <4 < d [27]. The idea of the proof will appear in
Lemma 2.4 below. In Section 3.1, we will introduce a characterization of distance-

regular graphs in terms of the spectral excess of G.

12



2.3.2 Bipartite case

Now we consider the case that G is bipartite. Then o; = 0 for 0 < i < d [18],
and thus xp; = v;11piv1 + Bi—1pi—1. By this observation, the following lemma gives a

three-term recurrence for bipartite graphs.

Lemma 2.3. If G is bipartite, then the predistance polynomials satisfy a three-term

recurrence of the form

*p; = XipoDive + YiDi + Zi_opi_o (2.9)

for 0 < i < d, where Xi1o = Yig1%it2, Yi = BiYi1 + Bic1yi and Zi_o = [iofi1.

Moreover, by directly computing, it follows that X; +Y; + Z; = A3 for 0 <i < d. O

A polynomial p is odd (resp. even) if all its nonzero terms are of odd degrees (resp.
even degrees). If G is bipartite, then p; is odd or even only depending on its degree
i being odd or even [18]. The following lemma gives an expression of p;_1(\g) for
bipartite graphs in terms of the spectrum. The proof is essentially identical to [16, p.

8-9], except for the setting of the polynomials h;.

Lemma 2.4. Let G be a connected bipartite graph. Then

L (ha(ho) + <—1>d—1m<—Ao>>2> -
mihi()\i)z ’

Pa-1(Xo) = n (2 +

i=1
where h; =[] 40,q4(® — Aj) for 1 <i<d—1.

Proof. Note first that \y = —)\¢ and my = 1 since G is bipartite. For 1 <i <d —1,

degh; =d—2<d—1and h;(\;) =01if j # 0,4,d. Then
0 = n{hi, pa-1)c = hi(Ao)pa—1(Xo) + mihi(Ni)pa—1(Ni) + hi(=Xo)pa—1(—Xo),
and thus

_ Pa—1 (A0)hi(Ao) + pa—1(=Ao)hi(—Xo)
mihi()\i)

Pa—1(N\i)

13



Since G is bipartite, ps_1 is odd or even only depending on its degree d — 1 being odd
or even, which implies that pg_1(—Xg) = (=1)%ps_1(Xo). By definition of the inner

product, we have

npdq()\o) :n<pd717pd71>G
d—1
:2pd71()\0)2 + Z mz‘pdq()\i)Q

=1

d—1(Ao)hi(Xo —1)* 1 pa_1(Mo)hi(—Xo 2
e () +Z (Bl 1 Qo))

Therefore,

. 1<A0)_n<2+z e ) |

=1

as claimed. n

2.4 Hoffman polynomial

The polynomial

d
:"Hl;—

is called the Hoffman polynomial [35]. The relationship between predistance polynomi-
als and Hoffman polynomial is that the sum of all predistance polynomials gives the
Hoffman polynomial:

H =py+p +--+pa, (2.10)

no matter whether the graph is regular or not. For completeness, we explian (2.10)
in the following, by the same argument as in [16, p. 6-7]. Define s; = Zj’:o p; for
0 < i < d. To prove (2.10), we first show that s; is the polynomial p of degree i

maximizing p(A\g) subject to (p,p)c = (i, $i). Write p = Z] o @;p; for some «a; € R.
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Then s;(Xo) = (8i, $i)a = (D, P)e = Z;:o Oé?pj()\o). By Cauchy—Schwarz inequality,

i 2 i i
p(ho)? = (Z %‘pj()\O)) < <Z %Z-PJ‘(AO)> (ij(/\o)> = 5:(No)?,
§=0 §=0 5=0
with equality if and only if all o; are equal; indeed 0432- = 1. Since we want to maximize

p(Ao) and p;j(Ag) > 0, it follow that a; = 1, and thus s; is the optimal p. On the other

hand, since

500) = (1) = ) + - D () 2.11)

the maximality of p()\g) is equivalent to the minimality of Z;lzl m;p(\;)?. For the case
i = d, there exists a nonzero polynomial that is zero on A; for 1 < j < d. Then we can

conclude that

sq(Aj) =0 for 1 <5 <d, (2.12)

and thus, by taking i = d and p = s4 into (2.11), it follows that

sa(Ao) = 1. (2.13)

Since deg sy = d, by (2.12) and (2.13), we deduce that

proving (2.10).

Hoffman [35] proved that a connected graph G is regular if and only if H(A) = J, the
all-ones matrix. Let a be the eigenvector of A associated with Ay such that a’a = n and
all entries of « are positive. Note that such an eigenvector a exists by Perron-Frobenius
theorem (see e.g. [8, Theorem 2.2.1]), and is usually called the Perron vector. Moreover,
a=(1,1,...,1)" if and only if G is regular. The following result, given first in [26, p.

117], gives a generalization of Hoffman’s result to nonregular graphs.
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Lemma 2.5. Let G be a connected graph with adjacency matriz A and Perron vector
«. Then, H(A) = aat. Moreover, G is reqular if and only if H(A) = J, the all-ones

matriz.

Proof. This follows since the matrix aa! acts the same as

on the eigenvectors of A. O
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Chapter 3

The spectral excess theorem

The spectral excess theorem gives a quasi-spectral characterization for a regular

graph to be distance-regular. For a graph G with d+ 1 distinct eigenvalues, the number

— 1
ka =~ > |Ga(u)| = [|Adll?

ueV
is called the average excess of G. Note that kg > 0 if and only if D = d. Recall that the
number pg(Ag) is the spectral excess of G. The spectral excess theorem (Theorem 3.3),

proposed by Fiol and Garriga [27], states that

kq < Pa(No)

for a regular graph GG, and equality is attained if and only if G is distance-regular. See

[16, 29] for short proofs, and [18, 17] for some generalizations.

3.1 A simple proof

For completeness, a simple proof [29] is given in this section. Let

Proj (M) = M)

NP
denote the projection of M onto Span{N}, where M and N are symmetric matrices

over real number field R. By (2.10) and Lemma 2.5, any connected regular graph has
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the property that

Ao+ A+ -+ Ap = H(A) = po(A) + p1(A) + - + pa(A). (3.1)

It is well-known that (A%),, counts the number of walks of length ¢ in G from u to v.
By (2.7), we have

(Ai,pj(A)) =0 for j <. (3.2)

Lemma 3.1. ([29, Lemma 1]) Let G be a regqular graph with d+ 1 distinct eigenvalues.

Then, kq < pa(Xo), and equality is attained if and only if Aq = pa(A).

Proof. Note that pg(X\g) > 0. If D < d, then kq = 0 and clearly kq < pa()\o). Suppose

that D = d. Now we have k; > 0. By (3.1) and (3.2),

Proj , (pa(A)) = WA - V‘EﬂA _ 4,

Then

0 < [lpa(A)I* = [Proj,, (pa(ADI* = pa(ro) — ka.

Since equality can be attained only when D = d, the above argument tells us that

kg = pa(Ao) if and only if A; = Proj,, (pa(A)) = pa(A). O

Recall that Proposition 2.2 states that a graph G is distance-regular if and only if
A; = pi(A) for every 0 < ¢ < d. As it was shown in [31, Theorem 6.4], the follow-
ing proposition indicates that, for regular graphs, the condition on the highest degree

predistance polynomial suffices.

Proposition 3.2. ([31, Theorem 6.4], [16], [29, Proposition 2], [19]) A regular graph

G with d + 1 distinct eigenvalues is distance-regular if and only if Ay = pa(A).
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Proof. The necessity has already been proved in Proposition 2.2. To prove sufficiency,
by Proposition 2.2, we only need to show that A; = p;(A) for 0 < ¢ < d, which follows by
(backward) induction on 0 < i < d. The base case is the assumption that Ay = py(A).
Suppose now that Ay = pg(A) for d > k > i. Then deleting these common terms from

both sides of (3.1), we have

Ag+ A+ -+ A1 = po(A) +pi(A) + -+ pic1(A), (3.3)

and by induction hypothesis to the three-term recurrence in (2.6),

AA; = Api(A) = vipapina (A) + ipi(A) + Biapi-a(A)

= Yir1Aip1 + oA + Bisipi-1(A). (3.4)
It remains to show that A;,_; = p;_1(A). To this end, consider the following two cases:

(7) For O(u,v) >i—1, (Ai—1)w = (Pi=1(A))us by (3.3).
(#) For O(u,v) <i—1, (Ahi)uw = D ueq, ) (Ai)ww = 0, where the last equality follows
since J(w,v) < 1+ 9(u,v) < i. Then (p;—1(A))ww = 0 by (3.4) and since 3;_1 # 0.
This proves the sufficiency. [
The spectral excess theorem, which we restate below, is proved by Lemma 3.1 and

Proposition 3.2.

Theorem 3.3. (|29, Theorem 3]) Let G be a reqular graph with d+ 1 distinct eigenval-

ues. Then, kq < pa(Xo), and equality is attained if and only if G is distance-reqular.
The following example shows that the regularity assumption of GG in the spectral

excess theorem is necessary.

Example 3.4. Let G be a path on three vertices. Then sp(G) = {v/2,0, —v/2}. By

Example 2.1, po = 1, p1 = 3v2x/4 and p, = 3(x? — 4/3)/4. Note that ky = 2/3 and

p2(Xo) = 1/2. This shows that the inequality k; < pg(\g) does not hold.
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3.2 A weighted spectral excess theorem

In this section, we give a ‘weighted’ version of the spectral excess theorem.

3.2.1 For nonregular graphs

Recall that « is the Perron vector. For v € V', let «,, be the entry corresponding to
the vertex u in the vector a. For 0 < ¢ < D, define the weighted distance-i matriz g@
of G to be the matrix indexed by the vertex set V' such that the entry (Zz)w = o, if
d(u,v) =i, and (gz)uv = 0 otherwise. In particular, for the case that G is regular, A

is a (0, 1)-matrix and thus turns out to be the distance-i matrix A; of G. Note by (2.7)

that /To, /L, . ,ED are orthogonal. Define

gz‘:<sz‘asz‘>: Z(AVZ‘OAVDUU/M 0<i<D.

u,veV
For 0 <1 < d, define Zzi = ZjZi Aj, D>i = ZjZi p; and gzz‘ = ZjZigj' Similarly for
ﬁgi, p<i and ggi. The parameter gD is referred to as the average weighted excess and
p>p (o) as the generalized spectral excess of G. Note that if D = d then p>p(x) = pp(x).
By the construction of gi, Lemma 2.5 and (2.10), any connected graph G has the

property that
Ao+ Ay + -+ Ap = H(A) = po(A) + pi(A) + -+ + pa(A). (3.5)

Recall that (A%),, counts the number of walks of length 7 in G from u to v. Although

A might be different to A;, they are similar: by (2.7), we have

Now we are ready to give a ‘weighted’ spectral excess theorem (in Theorem 3.10).

Lemma 3.5 is a ‘weighted’ version of Lemma 3.1. In fact, the approach of giving weights,
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the entries of the Perron vector, to the vertices of a nonregular graph has been recently

used many times in the literature (see, for instance, [30, 31, 27, 28, 25]).

Lemma 3.5. Let G be a graph with diameter D. Then gD < p>p(Xo) with equality if

and only if Ap = p>p(A).
Proof. By (3.5) and (3.6),

Appep(A) 3 (Ap HA) 7 5

Projg, (p0(4)) = “H2Z :
D D

Then

0 < [lp=p(A)I* = [[Projz, (p=p(A)|I* = p=p(Ae) — dp-

Moreover, the equality is attained if and only if Ap = Projz (p>p(A)) =p>p(A). O

Example 3.6. Revisiting the case when G is a path on three vertices described in

Example 2.1 and Example 3.4, note that D = d = 2, a = (v/3/2,/6/2,v/3/2)t and

N 0 0 3/4
Ap=10 0 0
3/4 0 0

Then dp = 3/8 < 1/2 = psp(Ag) satisfies inequality in Lemma 3.5.
Recall that py = 1, and p; = x if and only if G is regular.

Remark 3.7. If GG is regular with diameter D = 2, then the equality in Lemma 3.5
holds. Indeed, Ay = Ay = J — I — A= H(A) — I — A = p=y(A).

The graph described in Remark 3.7 is a special case of distance-polynomial graphs
[44]. Tt would be interesting to characterize graphs which satisfy equality in Lemma 3.5.
Here we give two characterizations: one is under the assumption D = d (Theorem 3.10),

and the other is for bipartite graphs (Theorem 3.14). Since py(A) = I, Lemma 3.8 is
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obvious, but plays a crucial role in proving the regularity of a graph. Proposition 3.9

is a ‘weighted’ version of Proposition 3.2.
Lemma 3.8. A, = po(A) if and only if G is regular. O

Proposition 3.9. A graph G with d+ 1 distinct eigenvalues is distance-regular if and

only if Ay = pa(A).

Proof. (=) Suppose that G is distance-regular. Then G is regular, and thus the result
follows from Proposition 3.2. (<) Suppose that Ag = pg(A). We claim that A; = p;(A)
for 0 < ¢ < d, which follows by (backward) induction on 0 < i < d. If the proof
is finished, then the condition ZO = po(A) implies that G is regular by Lemma 3.8,
and the remaining follows from Proposition 3.2. The base case is the assumption that
Aq = pa(A). Suppose now that A, = p(A) for d > k > i. Then deleting these common

terms from both sides of (3.5), we have

Ag+ A+ + Ay =po(A) +pi(A) + - +pia(A), (3.7)
and by induction hypothesis to the three-term recurrence in (2.6),
AA; = Api(A) = Yir1pi1 (A) + api(A) + Bioapica (4)
= %‘+1gz‘+1 + Oéz‘gi + Bi—1pi-1(A). (3.8)
It remains to show that 1211;1 = pi—1(A). To this end, consider the following two cases:

(7) For O(u,v) >i—1, (pi—1(A))uww = (Ai—1)uw by (3.7).

(i) For O(u,v) < i—1, (AA;)u = ZweGl(u)(‘Z{i)wv = 0, where the last equality follows

since d(w,v) < 14+ O(u,v) < i. Then (p;—1(A))w = 0 by (3.8) and since f;_1 # 0.

Thus the proof is completed. O
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Combining Lemma 3.5 with Proposition 3.9, a variation of the spectral excess the-

orem is given below.

Theorem 3.10. Let G be a connected graph with diameter D. Then SD < p>p(Ao)
with equality if and only if Ap = p>p(A). Moreover, suppose further that D = d. Then

equality holds if and only if G is distance-reqular. O

3.2.2 Bipartite case

If G is bipartite, then we can rewrite (3.5) (in Lemma 3.11) more precisely by
only taking the ‘odd’ or ‘even’ part, which was also considered in [18]. Define Acdd —
Y odd igi’ p°dd = > . pi and godd — D odd 23; Similarly for A®en peven and geven,
Then (A*, A*) = §* and (p*(A),p*(A)) = p*(\o) for * € {odd, even}. Recall that, if G
is bipartite, then p; is odd or even only depending on its degree ¢ being odd or even.
The following lemma is proved by (3.5) and the fact that (p;(A))w, = 0 if O(u,v) and i

have distinct parity (since bipartite graphs contain no odd cycle).

Lemma 3.11. If G is bipartite, then A° = p°dd(A) and A= = p=°n(A). Moreover,

by taking norms, 6°9 = pedd(\o) and 5% = peven()y). O

Remark 3.12. Observe that p°dd = (H(x) — H(—x))/2, H(\g) = n and H(\g) = 0.

Thus for bipartite graphs, we deduce that §°% = §even = pedd()\g) = peven(\) = n/2.

Summing the recurrence relation (2.6) from the terms with index i + 1 to d, and

using the fact that a; + 6; + v = A\ for 0 < i < d, it follows that

TD>it1 = BiDi + NoD>i+1 — Vit1Di+1 (3.9)

[17, Proposition 2.5]. Note that, if As;y1 = psit1(A) and (u,v) < i for u,v € V, then
(Apzir1(A))w = 0 = (Aopzi41(A))uy, and thus 5;(pi(A))uw = Yit1(pi+1(A))uw by (3.9).

Using this fact, we have the following result.
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Proposition 3.13. Let G be a connected bipartite graph and i < d — 1. Then ggi =
p<i(A) if and only if A; = p;(A) for 0<j <i.

Proof. The sufficiency is clear. To prove necessity, we only need to show that A = pi(A)
(the remaining follows by similar argument). If d(u, v) > 4, then (4;)uws = (pi(A))us by
assumption. Suppose d(u,v) < i. Note that the assumption ggi = p<i(A) is equivalent
to the condition As;yy = psii1(A). If O(u,v) and i have different parity, then clearly
(gl)uv =0 = (pi(A))uw. Assume that d(u,v) and i have the same parity. Then, by
the above argument, 5;(p;(A))ww = Yir1(Pic1(A))w = 0. Since §; # 0 for i < d — 1,

(*Zz)ufu =0= (pz(A))uv ]

Define gozcéd = D odd j>i Zj, ggd = Zoddjzigj and p‘ﬁd = D odd j>i Pj- Similarly
for Az, 0% and pf, where (€, %) € {(> i,even), (< ,0dd), (< i,even)}. The following
result gives a characterization for bipartite graphs satisfying equality in Lemma 3.5 (or
equivalently, Ap = psp(A)). Unlike Theorem 3.10, there is no need for the assumption

D = d in Theorem 3.14.
Theorem 3.14. A connected bipartite graph with ZD = p>p(A) is distance-regular.

Proof. Note first that the assumption Ap = p>p(A) is equivalent to the condition
ESD,I = p<p-1(A). By Proposition 3.13, A, = pi(A) for 0 < i < D —1. By
Lemma 3.11, it follows that p%, ,(A) is the zero matrix, where * € {odd, even} has
the same parity as D 4+ 1. This happens only for the case D = d, since otherwise
Pipy1(Ao) = 0, contradicting the fact that p;(Ag) > 0 for 0 < i < d. The remaining

follows from Theorem 3.10. O]

Lemmas 3.15-3.16 present some inequalities related to the spectral excess theorem.

The proofs are essentially the same as in Lemma 3.5.
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Lemma 3.15. Let G be a connected graph. For 0 < i <d,
(i) gzi < p=i(No) with equality if and only if As; = p=i(A), and
(ii) 0<i > p<i(Xo) with equality if and only if A<; = p<i(A). O
Lemma 3.16. Let G be a connected bipartite graph. For0 <i < d and x € {odd, even},
(i) g; < p%i(Ao) with equality if and only if g’gz = p%,(A), and

(17) g; > p¥i(Xo) with equality if and only if Aéz = p%i(A). O
3.3 An application: Odd-girth theorem

Recall that a cycle is odd or even as its length is odd or even. The odd-girth
of a graph is the length of its shortest odd cycle. Applying the (standard) spectral
excess theorem, van Dam and Haemers [22] proved the ‘odd-girth theorem’ for regular
graphs: A connected regular graph with d + 1 distinct eigenvalues and odd-girth 2d + 1
is distance-regular. In the same paper, the authors posed the problem to determine
whether the regularity assumption can be removed. As an application of the ‘weighted’
spectral excess theorem (Theorem 3.10), we demonstrate that the regularity assumption
is not necessary, that is, the odd-girth theorem is not restricted to regular graphs
(Theorem 3.19).

Let GG be a connected graph, not necessarily regular, with d + 1 distinct eigenvalues
XA > A > - > Ao Let ¢ = n/ H?Zl()\() — Ai), which is the leading coefficient
of the Hoffman polynomial H, and hence also of py, in view of (2.10). Recall that
Z(x) = Hfzo(x — ;) is the minimal polynomial of A. For vertices u,v € V with
O(u,v) = d, we have
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and thus
d d

i=0 =0

In order to apply the ‘weighted’ spectral excess theorem, Lemma 3.17 and Lemma 3.18
are given to determine the average weighted excess p and the generalized spectral ex-

cess pg(No), respectively, for graphs with odd-girth 2d + 1.

Lemma 3.17. Let G be a connected graph with d+1 distinct eigenvalues and odd-girth
2d+1. Then the average weighted excess dp of G equals c2tr(A24H) /(n S N), where

c=n/TIL, (X0 — \). In particular, D = d.

Proof. Note first that the trace tr(A??!) of A%*! is nonzero since G has odd-girth
2d + 1. For vertices u,v € V with d(u,v) < d, we have (A%),,, = 0 or (4%),, =0as G
has no odd cycle with length less than 2d + 1. Then by (2.7), (3.5), (3.10) and (3.11),

we have

=ZAZZ

ueV veGy(u)

_ ZZ Ad uv Ad+1

ueV veV
— CQtI‘(A2d+1).

Since ¢ # 0 and tr(A%*1) # 0, we have Z?:o A\ # 0 and 8; # 0. Thus §; =
Atr(A2H) /(n 0 ;). Moreover, 04 > 0 since we always have d; > 0 and now 04 # 0.

This implies D = d and the result follows. [

Recall that a polynomial p is odd (resp. even) if all its nonzero terms are of odd

degrees (resp. even degrees).
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Lemma 3.18. Let G be a connected graph with d+ 1 distinct eigenvalues and odd-girth
2d+1. Referring to the notations of three-term recurrence in (2.6), the following (i)—(i7)
hold:

(i) the preintersection number a;_y =0 for 1 < j <d;

(17) the predistance polynomial p; is even or odd depending on whether j is even or

odd for 0 < j <d.

Moreover, the generalized spectral excess py(No) of G is *tr(A%2H)/(n Z?:o Ai), where
c=n/ H?:1(/\0 —Ai).

Proof. Clearly, the polynomial py = 1 is even. We prove (i)—(ii) by induction on j > 1.
Note that p; = Aoz /k is odd. Setting i = 0 in (2.6), we have ay = 0. Hence (i) (i7)

hold in the base case j = 1. In view of (2.6) with i =k,

axpr(No) = (wpr, pr)e = (xpi, ) = tr(App(A4))/n (3.12)

for 0 < k < d. Now suppose that (i)—(ii) hold for j = k < d. Since the polynomial xp?
is an odd polynomial of degree 2k + 1 < 2d + 1 and G has odd-girth 2d + 1, the last
term in (3.12) is zero. Hence ay, = 0 and () holds for j = k + 1. From (i) and setting
i = k in (2.6), the polynomial py,; satisfies (iz). This proves (i)—(ii) for any j. For
the remaining, by the fact that zp? is an odd polynomial of degree 2d + 1 and leading
coefficient ¢?, the last term in (3.12) with k = d equals c*tr(A?¢1)/n. Thus it suffices
to show that oy = Z?:o Ai. Choose two vertices u and v at distance d. Then by (2.6),
(2.10) and (3.11),

d

adH(A)uv = adpd(A)uv = (Apd(A)>uv = C(Ad—H)uv = (Z )\Z)H(A)um

=0

where the third equality follows because xpy; has no term of degree d. Dividing both
sides by H(A).,, we have ag = Z?:o A O
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From Lemmas 3.17-3.18, and Theorem 3.10, the odd-girth theorem immediately

follows.

Theorem 3.19. (Odd-girth theorem) A connected graph with d+1 distinct eigenvalues

and odd-girth 2d + 1 must be distance-regqular. O

Note that, after our result, van Dam and Fiol [19] give a short and more direct
proof of Theorem 3.19 which does not rely on the spectral excess theorem, but only a
known characterization of distance-regularity in terms of the predistance polynomial py

of highest degree (Proposition 3.2).

3.4 Some related results

A natural question motivated by Lemmas 3.15-3.16 is to study the relation between
the parameters d; and p;(Xo) for 0 < i < d—1 (the case i = d is given in Theorem 3.10).
We give some results in this section. Recall that po = 1. Proposition 3.20 is straightfor-
ward, but plays a crucial role in proving the regularity of a graph, which follows from
Lemma 3.8 and the inequality ggo > p<o(Ao) mentioned in Lemma 3.15. In fact, it can

also be derived by the Cauchy-Schwarz inequality: >, i o > (35,cy @2)?/n = n.

Proposition 3.20. Let G be a connected graph. Then 8y > 1 (= po(\o)) (which is
equivalent to ), i, at > n), with equality if and only if any of the following conditions

holds:
(i) Ao =1 (=po(A)),
(17) G is regular. O

Recall that, for u € V| the number «, denotes the entry corresponding to w in the
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Perron vector oo. Note that

1 ~ 1~ 1,
(A, Ay =~ D> (A = ~ 1Al =~ 1'DAD1 = X, (3.13)

u,v

where 1 is the all-ones vector, and D is the diagonal matrix with entries D,, = «,
for w € V. A bipartite graph with bipartition (X,Y) is called (ky, k2)-bireqular if
all ny vertices in X have degree k; and all ny vertices in Y have degree ky. Thus, by
counting the number of edges of a (ky, k2)-biregular graph in two different ways, we have
niky = nyky. Moreover, it is well-known that, for such a graph, A\g = v/k1 ks (see e.g. [34,
p. 172-173]). Proposition 3.21 characterizes the graphs satisfying o = p1(Ao), which
is useful for checking the regularity or biregularity of a graph. Recall that p; = Aoz /k

(by the Gram-Schmidt procedure), where k is the average degree of G.

Proposition 3.21. Let G be a connected graph. Then 6, > N2/k (= pi(Xo)), with

equality if and only if any of the following conditions holds:
(i) A =pi(A),
(13) G is reqular or biregular.

Proof. By (3.13),

<p1(A), g1>
[p1(A)[?

</\0A/E7 Zl>
pl()\o)

zJk
pl()\o)

Projpl(A)(gl) = pi(A) = pi(A) =

Then

0 < [ A = ||Proj,, 4 (A1 = 61 — pi(Xo).

Moreover, the equality is attained if and only if A; = Proj,, (4 (A1) = pi(A). Now it
remains to show that (i) < (i7). To prove necessity, we give the weight a,, to the vertex
u € V, and the weight o, to the edge connecting v and v. Since A = p1(A) = NA/k,

all edges receive the same weight, A\o/k. If G is not bipartite, then it contains an
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odd cycle, and this implies that all vertices on this cycle must have the same weight.
As a result, the connectedness assumption on G implies that all vertices are of the
same weight. Thus G is regular. For the case GG is bipartite, the condition ‘all edges
receive the same weight’ implies that vertices in the same partite set have the same
weight. Thus G is biregular. Now we prove sufficiency. If G is regular, then clearly
pi(A) = NA/k = A= A,. Suppose that G is (ky, ks)-biregular with bipartition (X,Y),

where |X| =ny,|Y| = ns. Then \g = v'kika, n1k; = noks and the Perron vector

ni no
ni+n ni+n
where o = L+ and o = Lt 2 Thus
27’L1 277/2

Vkika(ni + n2)A _ Mt A=da"A=A.
niky + nako 2y/N1ng -

A
p(A) = A=

The next question is to discuss the relation between 5, and p2(XNo). We give the
answer under the assumption that G is regular, and provide an example to show that
the regularity condition is necessary. Therefore, there is no hope to determine the order

of 05 and ps(N) uniformly.

Lemma 3.22. Let G be a connected reqular graph. Then gg > pa(Xo), with equality if
and only if Ay = p(A).

Proof. This follows by the inequality ggg > p<a(Ag) mentioned in Lemma 3.15 and

Propositions 3.20-3.21. O

Example 3.23. Revisiting again the path on three vertices described in Example 2.1,

Example 3.4 and Example 3.6. Note that 6, = 3/8 < 1/2 = pa(X).
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Chapter 4

A characterization of bipartite
distance-regular graphs

For an integer h < d, we say that G is weighted h-punctually distance-regular if
Avh = pn(A). The distance-i graph of G is the graph whose adjacency matrix is the
distance-i matrix of G. For a connected bipartite graph G with bipartition (X,Y"), the
halved graphs G* and GY are the two connected components of the distance-2 graph
of G. It is well-known that the halved graphs of a bipartite distance-regular graph
are distance-regular ([15], [6, Proposition 4.2.2]). Examples 4.10-4.12 are given (in
Section 4.4) to show that the converse does not hold, that is, a connected bipartite
graph whose halved graphs are distance-regular may not be distance-regular. Thus, a
natural question is to find out when the converse is true. We give an answer in the

following.

Theorem 4.1. Let G be a connected bipartite graph with bipartition (X,Y). Suppose
that G is weighted 2-punctually distance-reqular with even spectral diameter, and both

halved graphs GX and GY are distance-reqular. Then G is distance-regular.

In order to prove Theorem 4.1, we study the concepts of weighted punctual distance-
regularity and weighted partial distance-regularity in Section 4.1, which can be regarded

as generalizations of the concepts of punctual distance-regularity and partial distance-
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regularity [18, 17]. The proof of Theorem 4.1 is given in Section 4.5.

4.1 Weighted punctual distance-regularity

A connected graph is called h-punctually distance-reqular if A, = py(A); and is
called m-partially distance-reqular if A; = p;(A) for i < m. These two concepts have
been recently studied [18, 17]. In this section, we study two concepts, which are basically
the same as that in [18, 17], except that the use of weighted distance matrices is tak-
ing into account. A connected graph is called weighted h-punctually distance-reqular if
Ay = pr(A); and is called weighted m-partially distance-reqular if A; = p;(A) for i < m.
Clearly, the concepts of weighted 0-punctual distance-regularity and weighted O-partial
distance-regularity are identical. However, the weighted 1-punctual distance-regularity
and the weighted 1-partial distance-regularity are not equivalent. For example, by
Propositions 3.20-3.21, the path graph of three vertices Ps is weighted 1-punctually
distance-regular, but not weighted 1-partially distance-regular. Proposition 4.2 in-
dicates that the concepts of weighted 2-punctual distance-regularity and (weighted)

2-partial distance-regularity coincide. Recall that p; = z if and only if G is regular.

Proposition 4.2. Let G be a connected graph. Then Ay = p2(A) if and only if G is

weighted 2-partially distance-reqular.

Proof. The sufficiency is clear. We only need to prove necessity. Since Ay = pa(A) =
aA? + bA + cI for some real numbers a,b,c with a # 0, we conclude that A? has
a constant diagonal, which implies that G is regular. The remaining follows from

Propositions 3.20-3.21. 0

Proposition 4.3 states an equivalent condition of the weighted 2-punctual distance-

regularity for bipartite graphs with spectral diameter d > 3. Note that the assumption
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d > 3 is necessary, since otherwise the path graph P; of three vertices gives a coun-

terexample.

Proposition 4.3. Let G be a connected bipartite graph with spectral diameter d > 3.

Then 25;2 = p<a(No) if and only if G is weighted 2-punctually distance-regular.

Proof. (=) Suppose that d<s = p<s(Ao). By Lemma 3.15, we have A<y = p<5(A), and
the result follows by Proposition 3.13. (<) Suppose that G is weighted 2-punctually
distance-regular. By Proposition 4.2, we have ZZ = p;i(A) for 0 < i <2 and the result

follows by taking norms. [

4.2 Halved graphs with the same spectrum

Lemma 4.5 demonstrates that for a connected bipartite weighted 2-punctually distance-
regular graph, its two halved graphs have the same spectrum (with appropriate spectral
diameter), and, under further assumption, it gives a lower bound or exact value of the
diameter, depending on the parity of its spectral diameter. To prove Lemma 4.5, we

need some knowledge about Matrix Theory (Theorem 4.4).

Theorem 4.4. ([46, Theorem 2.8]) Let P and ) be m x n and n x m complex ma-
trices, respectively. Then PQ and QP have the same nonzero eigenvalues, counting

multiplicity. If m = n, then PQ and QP have the same eigenvalues. O

Lemma 4.5. Let G be a connected bipartite graph with bipartition (X,Y), diameter
D, spectral diameter d and gg = py(A). Then the halved graphs GX and GY have the
same spectrum, and are of spectral diameter |d/2|. Suppose further that at least one of
GX and G has spectral diameter which is equal to its diameter. Then D > d —1 for

odd d, and D = d otherwise.

Proof. Note first that GG is regular by Proposition 4.2 and Proposition 3.20. Since G is

bipartite, po is even, that is, py = az? + b for some real numbers a, b with a # 0. Note
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that
0 B
1= (5 o)

for some square matrix B (since G is regular). Let X; and Y; be adjacency matrices of

G* and G, respectively. Then

X, 0\ ., o~ 5 . (aBBT 4bI 0

By Theorem 4.4, BBT and BT B have the same eigenvalues, and thus G and GY have
the same spectrum. Note that if ) is an eigenvalue of A with eigenvector u then a\? +b
is an eigenvalue of A, with the same eigenvector. Thus A, has [(d+1)/2] = |d/2] + 1
distinct eigenvalues, and so do GX and G¥. Hence G¥ and GY are of spectral diameter

|d/2]. If at least one of G* and GY has spectral diameter which is equal to its diameter,

we derived that d > D > 2|d/2], as claimed. O

The following example shows that, though the two halved graphs have the same

spectrum, they may not be isomorphic.

Example 4.6. For integers D > 1 and ¢ > 1, the Hamming graph H (D, q) is the graph
with the vertex set X? the set of ordered D-tuples of elements of X (or sequences
of length D from X), where |X| = ¢. Two vertices are adjacent if they differ in
exactly one coordinate. Note that the Hamming graph H(D,q) is a distance-regular
graph with diameter D ([6, 7]). A clique of a graph is a set of mutually adjacent
vertices. A line of the Hamming graph H(D,q) is a clique of size q. Consider the
Gray graph [4, 5] on 54 vertices obtained by taking the point-line incidence graph
of the Hamming graph H(3,3), which is not distance-regular (c4 is not well-defined:
O(u,v) = O(v,w) = 4 but ¢4(u,v) =1 # 3 = ¢4(v,w), see Figure 2), with spectrum

{81, V6, V3", 0%, (—v/3)'2, (-V/6)°, (=3)!}. Note that D = 6 = d, po = 1, p1 = 7,
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p2 = 22 — 3 (we omit the computational procedures and the results for p;, 3 < i <
6). Since the graph is regular of degree 3, bipartite, and of girth 8, the parameters
¢i,a;_1,b;_o are well-defined for 1 < ¢ < 2. More precisely, ¢o := 0, ag := 0, a; = 0
(bipartite), by = 3 (3-regular), ¢; := 1 and ¢y = 1 (girth 8). Then, by (2.1), we have
AA; = coAy+ a1 Ay +byAy and thus A2 = A, +31. Hence, Ay = Ay = A2 —3] = pa2(A),
that is, the graph is weighted 2-punctually distance-regular. By construction, the two
halved graphs are the Hamming graph H(3,3) and the dual graph of H(3,3) (i.e., the
graph whose vertices are the lines of H (3, 3), and two lines are adjacent if they intersect).
They have the same spectrum, but are not isomorphic [38]: H (3, 3) is distance-regular,

but the dual graph of H(3,3) is not.

Figure 1. The Hamming graph H (3, 3)

Note that, even if the bipartite graph is not weighted 2-punctually distance-regular,
its two halved graphs are still possible to have the same spectrum (see Example 4.12

in Section 4.4).
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Figure 2. The Gray graph: point-line incidence graph of H(3,3)
4.3 Weighted (d — 1)-punctual distance-regularity

We have known that a weighted d-punctually distance-regular graph is distance-
regular (Proposition 3.9). The bipartite weighted (d — 1)-punctually distance-regular

graphs are studied in this section.

Lemma 4.7. Let G be a connected bipartite graph. Then gd—l < pa—1(Xo), with equality
if and only if Ay = pa-1(A).

Proof. This follows from Lemma 3.16. [

Proposition 4.8. Let G be a connected bipartite graph with g1 = Pa—1(Xo). Then

EZ» = p;i(A) for all i with the opposite parity of d. In particular, G is reqular if d is odd,

and bireqular otherwise.

Proof. Since da1 = Pa—1(Ao), we have A = pa—1(A) by Lemma 4.7. Note that, by
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Lemma 3.11,

Agr4 A s+ = pa_1(A) + pas(A) + - - . (4.1)

The proof follows by (backward) induction on ¢ with the opposite parity of d. The base
case is Ag_1 = pa_1(A). Suppose now that A, = p(A) for k € {d—1,d —3,--- ,d —

(2¢ — 1)}. Then deleting these common terms from both sides of (4.1), we have

Ad_isy) + Aa—ivs) + - = Pacisn) (A) + Pa—irs)(A) + -+ . (4.2)

By induction hypothesis to the three-term recurrence (2.9),

A2 A4 2 1) = Xa_(2isyPa—2i-3)(A) + Ya_(2i-1yPa—(2i1)(A) + Za_(2i11)Pa—2i41) (A)

= Xd7(2i73)12{d7(2i73) + Y¢17(2i71)2d7(2z‘71) + Za—it1)Pa—(2i+1)(A).  (4.3)

It remains to show that gd_(%ﬂ) = Pa—(2i+1)(A). To this end, consider the following

two cases:
(i) For d(u,v) > d = (2i +1), (Aa—(is1))uw = (Pa—(2i11)(A))un by (4.2).

(i) For O(u,v) < d— (20 + 1), (A2Avd7(2i71))uv = ZweGo(u)UGQ(u)<AJd7(2i71))wv = 0,

where the last equality follows since d(w,v) < 2+ 9(u,v) < d— (2i —1). Then

(Pa—(2i+1)(A))uw = 0 by (4.3) and since Zg_(2i41) = Ba—(2i+1)Ba—2 7 0.

In particular, Ay = po(A) if d is odd, and A = p1(A) otherwise. Thus the remaining

follows from Propositions 3.20-3.21. 0

The following example provides a nonregular bipartite graph with even spectral
diameter satisfying pg_1(Ao) = d4—1. A regular example is given in Section 4.4 (Exam-
ple 4.11). Some (regular) bipartite weighted (d — 1)-punctually distance-regular graphs
with odd spectral diameter are given in Section 4.4 (Example 4.10) and Section 4.6

(Example 4.17).
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Example 4.9. Consider the bipartite graph obtained from the Petersen graph by sub-
dividing each edge once (i.e., by replacing each edge with a path of three vertices), with
spectrum {\/61, 2°14,05, (—1)*,(=2)%, (—v6)'}. Clearly, this graph is (2, 3)-biregular

on 25 vertices. Note that D = d = 6, the Perron vector

a = (mav 7@7\\/%7'; 7\/%)ta

0 15

po =1, p1 = 5v62/12, po = 15(2? — 12/5)/16, ps = 5v6(a® — 42)/12, py = 25(z* —
2122 /4 + 3)/28, ps = 5v6(x® — 7o + 101) /24, ps = 5(x° — 652 /7 + 2222 — 48/7) /24
(here we omit the computational procedures). Moreover, 4; = p;(A) for i € {1,3,5}
(01 = pr(ho) = 5/2, 05 = ps(Xo) = 5, 05 = ps(ho) = 5, 0y = 25/24, &, = 85/24,
54 = 85/12, ZSV6 =5/6, po(Xo) = 1, p2(Ao) = 27/8, pa(Ao) = 375/56, ps(Ao) = 10/7), and
its two halved graphs are the Petersen graph (with spectrum {3',1° (—2)*}) and the
line graph of the Petersen graph (with spectrum {4!,25, (—1)%, (=2)?}), which are both

distance-regular [9].

Figure 3. The Petersen graph and its subdivision
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4.4 A few examples

In this section, we provide three examples to show that, a connected bipartite graph
whose halved graphs are distance-regular, may not be distance-regular. Here we omit
the computational details which are straightforward by definitions. Recall that a con-
nected regular graph with exactly three distinct eigenvalues is distance-regular (strongly

regular in fact).

Example 4.10. (weighted 2-punctually distance-regular and odd spectral diameter)

Consider the Mobius—Kantor graph, i.e., the generalized Petersen graph G(8,3) [40],
with spectrum {3',v/3", 13, (=1)%, (=v/3)%, (=3)'}. Note that D =4 < 5 = d, py = 1,
pr =1z, pp =223, p3 = 2> —52)/5, py = (' — 102% + 15)/6, ps = (2° —
5623 /5 + 212) /18, A; = p;(A) for i € {0,1,2,4} (6 = po(Ao) = 1, &1 = p1(Ao) = 3,
by = p2(Xo) = 6, b1 = pa(Xo) = 1, b3 =5, p3(No) = 24/5, ps(Ng) = 1/5), and both halved
graphs the complete multipartite graphs Ky 292 (with spectrum {6',0%, (—2)3}), which

are distance-regular.

Figure 4. The Mobius-Kantor graph

Example 4.11. (not weighted 2-punctually distance-regular and even spectral diameter)

Consider the Hoffman graph with spectrum {4%,2% 05 (—2)%, (—4)'}, which is cospec-
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tral to the Hamming 4-cube (or the Hamming graph H(4,2)) but not distance-regular
[35, 6, 16]. Note that D =d =4,py =1, p1 =, ps = (2* — 4)/2, p3 = (> — 10x) /6,
pa = (z* — 1622 +24) /24, A; = p;(A) for i € {0,1,3} (0g = po(Xo) = 1, 01 = p1(Xo) = 4,
65 = p3(Ao) =4, 03 = 13/2, 8, = 1/2, pa(Xo) = 6, pa(Ao) = 1), and its two halved graphs
are the complete graph Ky (with spectrum {7',(—1)"}) and the complete multipartite

graph Kj295 (with spectrum {6', 0%, (—2)*}), which are both distance-regular.

Figure 5. The Hamming 4-cube and the Hoffman graph

Example 4.12. (not weighted 2-punctually distance-regular and odd spectral diameter)
Consider the graph obtained by deleting a cycle Cj, from the complete bipartite graph
K5, with spectrum {3, ((v5+1)/2)%, ((v5-1)/2)%, (=v5+1)/2), (=v5-1)/2)%,(=3)'}.
Note that D =3 <5 =d, po =1, p1 = z, p» = 3(2* — 3)/5, p3 = 12(x> — 192/3) /49,

p1 = (2 — 482%/5 + 49/5)/11, ps = (2° — 54323/49 + 28202/147)/33, A; = pi(A)

for i € {0,1} (% = po(ho) = 1, 01 = p1(Xo) = 3, 0o = 4, 03 = 2, pa(Ng) = 18/5,
p3(Ao) = 96/49, ps(Xo) = 2/5, ps(Ao) = 2/49), and both halves graphs are the complete

graphs K5 (with spectrum {4', (—1)*}), which are distance-regular.
Now we have considered three erexamples.

o Example 4.10 (weighted 2-punctually distance-regular and odd spectral diameter)
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Figure 6. The graph K55 — C1o
o Example 4.11 (not weighted 2-punctually distance-regular and even spectral diameter)
o Example 4.12 (not weighted 2-punctually distance-regular and odd spectral diameter)

Note that the remaining case is that ‘G is weighted 2-punctually distance-regular with
even spectral diameter. In the next section we show that, under these additional

conditions, the graph will be distance-regular.

4.5 Proof of characterization

The following result is related to [6, Proposition 4.2.2] (in the case that d is even).

Theorem 4.13. Let G be a connected bipartite graph with bipartition (X,Y") and spectral
diameter d. Suppose that gz = pi(A) for even i, where 0 < i < d. Then both halved

graphs GX and G¥ of G are distance-reqular with diameter |d/2].

Proof. By assumption, Ay = po(A) = I and Ay, = pa(A) = aA? + bl for some real
numbers a, b with a # 0. Then G is regular and weighted 2-punctually distance-regular.
By Lemma 4.5, G* and GY have the same spectrum, and are of spectral diameter [d/2].
Since py; is even, we can assume py; = fi(az® + b) for some f; € R[z] of degree i. Thus,

for 0 <i < |d/2],

(T 3.) = A=) = e 00 = i) = (PG Y,
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where X; and Y; are distance-i matrices of GX and GY, respectively. Therefore, GX

and GY are distance-regular with diameter |d/2]. O
Now we are ready to prove Theorem 4.1.

Theorem 4.14. Let G be a connected bipartite graph with bipartition (X,Y") and spectral
diameter d. Suppose that G is weighted 2-punctually distance-reqular and both halved
graphs GX and GY are distance-regular with diameter |d/2]. Then 5 = pe(Xo), where
{=d—11ifd is odd, and { = d otherwise. In particular, if d is even, then the result

reduces to Theorem 4.1.

Proof. First note that, by Proposition 4.2 and Proposition 3.20, G is regular. By
Lemma 4.5, G¥ and G have the same spectrum, and are of spectral diameter |d/2].
Thus GX and GY have the same (pre)distance-polynomials f;, 0 < i < [d/2]. Since

G* and GY are distance-regular,

= 3) = (5 ) = A = £0m() = )

for 0 < i < |d/2], where X; and Y; are distance-i matrices of G¥ and GY, respectively,
and gy; € R[z] is even of degree 2i. Since @ is regular, A, = g,(A)J = gi(No)J.
Then each row of A, has exactly g¢(Ao) ones, and thus gg = g¢(No). Now it remains to
show that g, = py. Note that (gs, g0)a = (ge(A), ge(A)) = (Zg,gﬁ = b = gu(\o). For
every polynomial p € R, (x|, {(gs, p)g = (/L, p(A)) = 0. By uniqueness of predistance
polynomials, it follows that g, = p,. Moreover, if d is even, then by Theorem 3.10, G is

distance-regular. O

4.6 A concluding remark

Putting Proposition 4.8, Theorem 3.10, Theorem 4.13 and Theorem 4.14 together,

we can conclude the following theorem.
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Theorem 4.15. Let G be a connected bipartite graph with bipartition (X,Y') and spectral

diameter d. Then the following conditions are equivalent.
(1) A = pi(A) for even i, where 0 < i < d;
(i) &y = pe(Xo), where £ =d — 1 if d is odd, and { = d otherwise;

i11) G is weighted 2-punctually distance-reqular and both halved graphs GX and GY
(iii) 9 y g g

are distance-reqular with diameter |d/2].

Proof. (ii) = (i) By Proposition 4.8 (if d is odd) and Theorem 3.10 (if d is even).

(i) = (i73) By Theorem 4.13. (éii) = (i7) By Theorem 4.14. O

Remark 4.16. Applying a result in [1, Theorem 4.2], Theorem 4.15 (i) seems to
be improved to the condition that only i € {0,d — 2} is necessary when d is even.

Unfortunately, there is a flaw in the proof of this result [2].

Note that the Mobius—Kantor graph (Example 4.10) with odd spectral diameter
satisfies Theorem 4.15 (i)—(ii7) with D = d — 1. The following example shows that a
bipartite graph with odd spectral diameter satisfying Theorem 4.15 (i)—(iii) and D = d

needs not to be distance-regular.

Example 4.17. The Desargues graph is the bipartite double of the Petersen graph

[38], which means that its adjacency matrix is of the form

(5 1)

where B is the adjacency matrix of the Petersen graph. Consider the regular bipar-
tite graphs on 20 vertices obtained from the Desargues graph by the Godsil-McKay
switching [33], which is cospectral to the Desargues graph, but not distance-regular,

with spectrum {3!,24 15 (=1)% (=2)%, (=3)'} ([38, Proposition 2.3], [21, Proposition
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3]). Note that D = d =5, pyp = 1, pp = x, pp = 2° — 3, p3 = (2° — bx)/2,
pi o= (z* — 922 + 12)/4, ps = (z° — 1123 + 222)/12, A; = p;(A) for i € {0,1,2,4}
(go = po(Ao) = 1, 51 = pi(Ao) = 3, 52 = p2(Xo) = 6, 54 = pa(Xo) = 3, 8f3 = 32/5,
65 = 3/5, p3s(Ao) = 6, ps(Ao) = 1), and both halved graphs are distance-regular with
spectrum {6', 1%, (—=2)%}. More precisely, its two halved graphs are strongly regular with
parameter (n, k, A, u) = (10,6, 3,4), and both of them are isomorphic to the triangular

graphs T'(5) [12, 41, 14, 39].

Figure 7. The Desargues graph and its cospectral mate
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