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摘摘摘要要要

簡單圖 G 上一點 v 的平平平均均均二二二度度度數數數定義為與 v 相鄰之點的度數平均。度

數列和平均二度數列在最大拉普拉斯特徵值上界的應用，已有許多研究成

果。若 G 中所有點的平均二度數皆為 k ，則 G 稱為擬擬擬 k 正正正則則則圖圖圖。在此論

文中，我們證明若 G 為擬 k 正則圖，則 k 是整數；進而找出所有擬正則

樹。我們也考慮了當 G 的最大度數為 k2 − k 的情形，並給出一些基本的

結果。最後，我們對於擬 3 正則圖給出了更多的結果。並且刻畫出所有十

個點之內非正則的擬 3 正則圖。
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Abstract

Let v be a vertex in a simple graph G. The average 2-degree of v is

the average of degrees of vertices adjacent to v. The applications of the

degree and average 2-degree sequences on the upper bounds for the maximum

eigenvalue of Laplacian matrix of a graph is studied by many authors. The

graph G is called pseudo k-regular if each vertex in G has average 2-degree

k. We prove that if G is pseudo k-regular then k is integral. Moreover, all

pseudo regular trees are given in this thesis. We also consider the case when

the maximum degree of G is k2− k, and give some basic results. In the end,

we give more results of pseudo 3-regular graphs. And characterize all the

pseudo 3-regular graph within ten vertices but not regular.

Keywords: Graph, adjacency matrix, Laplacian matrix, degree, average

2-degree, pseudo k-regular.
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Chapter 1

Introduction

Let G be a graph with vertex set V G = {1, 2, . . . , n} and edge set EG.

Let di be the degree of the vertex i ∈ V G, defined as follows:

di :=|G1(i)|,

where G1(i) means the set {j ∈ V G | ji ∈ EG} of neighbors of i.

The sequence {di}i∈V G of G is called a degree sequence of G. There is

a multitude of equivalent conditions for determining when a given sequence

of integers is a degree sequence. Havel [11] in 1955 and Hakimi [9] in 1962

independently obtained recursive conditions for a sequence to be a degree

sequence of a graph if and only if the subsequence with its largest element

deleted is also a sequence of a graph. In 1973, Wang and Kleitman [19]

proved the necessary and sufficient conditions for arbitrary deleting. There

are seven criteria for a sequence to be a degree sequence of a graph, which are

proposed by Ryser [17] in 1957, Berge [1] in 1973, Fulkerson, Hoffman, and

McAndrew [6] in 1965, Bollobàs [2] in 1978, Grünbaum [7] in 1969, Hässel-

barth [10] in 1984, and Erdös and Gallai [5] in 1960. And in 1991, Sierksma

and Hoogerveen [18] proved that the above seven criteria are equivalent.
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Let mi be the average 2-degree of the vertex i ∈ V G, defined as follows.

mi :=
1

di

∑
ji∈EG

dj.

And the sequence {mi}i∈V G of G is called a average 2-degree sequence of

G. We shall give a survey of average 2-degree sequence of a graph.

Let G be a simple graph. The adjacency matrix of G is the 0-1 matrix

A indexed by V G such that Axy = 1 if and only if xy ∈ EG. The degree

matrix of G is the diagonal matrix D indexed by V G such that Dxx is the

degree dx of x ∈ V G. The average 2-degree sequence appears often in the

study of maximum eigenvalue `1(G) of the Laplacian matrix L = D − A

associated with G, where D is the degree matrix and A is the adjacency

matrix of G. The following results are about the upper bounds of `1(G):

1. In 1998, Merris gave the following bound [15] :

`1(G) ≤ max
i∈V G

{di +mi} .

2. Also in 1998, Li and Zhang gave the following bound [14]:

`1(G) ≤ max
ij∈EG

{
di(di +mi) + dj(dj +mj)

di + dj

}
.

3. In 2001, Li and Pan gave the following bound [13]:

`1(G) ≤ max
i∈V G

{√
2di(di +mi)

}
.

4. In 2004, Das gave the following bound [4]:

`1(G) ≤ max
ij∈EG

{
di + dj +

√
(di − dj)2 + 4mimj

2

}
.
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5. Also in 2004, Zhang gave the following bounds [21]:

(a)

`1(G) ≤ max
ij∈EG

{
2 +

√
di(di +mi − 4) + dj(dj +mj − 4) + 4

}
.

(b)

`1(G) ≤ max
i∈V G

{
di +

√
dimi

}
.

(c)

`1(G) ≤ max
ij∈EG

{√
di(di +mi) + dj(dj +mj)

}
.

As everyone knows, a graph G is k-regular if di = k for all vertices

i ∈ V G. If mi = k for all vertices i ∈ V G, G is called pseudo k-regular in

[20]. For convenience, we rearrange the vertices of G by 1, 2, · · · , n such that

m1 ≥ m2 ≥ · · · ≥ mn. Let a1(G) be the maximum eigenvalue of adjacency

matrix A associated with G, and we have following.

Let B = D−1AD, where D is the degree matrix and A is the adjacency

matrix of G. Then B is a nonnegative irreducible n× n matrix. By Perron-

Frobenius Theorem in [16], we have a1(G) ≤ m1 with equality if and only if

G is a pseudo k-regular graph.

In 2011, Chen, Pan and Zhang [3] proved the following.

Theorem 1.1. Let a := max {di/dj | 1 ≤ i, j ≤ n} . Then

a1(G) ≤
m2 − a+

√
(m2 + a)2 + 4a(m1 −m2)

2

with equality if and only if G is a pseudo k-regular graph.
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And in 2014, Huang and Weng [12] proved the following.

Theorem 1.2. For any b ≥ max {di/dj | ij ∈ EG} and 1 ≤ l ≤ n,

a1(G) ≤
ml − b+

√
(ml + b)2 + 4b

∑l−1
i=1(mi −ml)

2

with equality if and only if G is a pseudo k-regular graph.

This thesis studies degree sequence together with average 2-degree se-

quence of a graph. Thus we define the sequence {(di,mi)}i∈V G of pairs as a

degree pairs.
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Figure 1.1: Two graphs with different sequences of degree pairs (di,mi).
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Figure 1.2: Two graphs with the same sequence of degree pairs (di,mi).
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This thesis is organized as follows. In Chapter 2, we introduce some

basic results about degree pairs. In Chapter 3, we prove that if G is pseudo

k-regular then k ∈ N, and give a family of pseudo k-regular graphs Tk.

Furthermore, we prove that Tk is the only pseudo k-regular tree for each k.

We also consider the case when the maximum degree of G is k2 − k, and

give some basic results. In the end, we give more results of pseudo 3-regular

graphs. And characterize all the pseudo 3-regular graph within ten vertices

but not regular.
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Chapter 2

Degree pairs

Let G be a simple graph with vertex set V G = {1, 2, . . . , n}, edge set EG,

and sequence {(di,mi)}i∈V G degree pairs. The following lemma provides a

feasible condition of degree pairs.

Lemma 2.1. ∑
i∈V G

dimi =
∑
i∈V G

d2i .

Proof.

∑
i∈V G

dimi =
∑
i∈V G

di

∑
ji∈EG dj

di
=
∑
i∈V G

∑
ij∈EG

di =
∑
i∈V G

d2i .

We give a sequence A = {(1, 3), (1, 3), (2, 3), (3, 2), (3, 2)}, and a sequence

B = {(1, 4), (3, 2), (3, 3), (3, 3), (4, 2)}. Observe that sequence A matches the

condition in Lemma 2.1, and is a sequence of degree pairs of the graph as

shown in Figure 2.1. But sequence B does not match the condition in Lemma

2.1, so its not a sequence of degree pairs of any graph.
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r r r
rr

Figure 2.1: A graph with the given sequence A.

Here is another feasible condition for degree pairs.

Lemma 2.2. There are even number of odd values dimi among i ∈ V G.

Proof. Since
∑

i∈V G di is even, there are even number of odd di, and so does

d2i . Hence
∑

i∈V G dimi =
∑

i∈V G d
2
i is even.

Corollary 2.3. ∑
i∈V G

m2
i ≥

∑
i∈V G

d2i

with equality if and only if mi = di = k for all i.

Proof.

(
∑
i∈V G

d2i )(
∑
i∈V G

m2
i ) ≥ (

∑
i∈V G

dimi)
2 = (

∑
i∈V G

d2i )
2

and equality if and only if mi = cdi for all i ∈ V G, where c = 1 by the

Lemma 2.1. This is also equivalent to that all neighbors of a vertex of

minimum degree k also have degree k.

Degree sequence gives hints of graph properties. For example, the well-

known fact |EG| = 1
2

∑
i∈V G di expresseds the number of edges of a graph as

a sum its degree sequence.

The sequence of degree pairs give more hints of graph structure. In gen-

eral, dimi ≥ |G1(i)| + |G2(i)|, and there are at least (dimi − n)/2 triangles

based on the vertex i.
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Proposition 2.4. If maxi∈V G dimi ≥ n then the graph has girth at most 4.

Proof. If the graph has girth at least 5 then

n− 1 = |V G| − 1 ≥ |G1(i) +G2(i)| = dimi.

for any i ∈ V G.

r r r r
r r

Figure 2.2: A graph has girth at most 4.

In Figure 2.2, we observe that maxi∈V G dimi = 8 ≥ 6 = |V G|

The distance d(x, y) between two vertices x and y of a graph is the min-

imum length of the paths connecting them. Let G2 be the square of G,

denote the graph with V G2 = V G and EG2 = {xy | d(x, y) ≤ 2}. The inde-

pendence number of G is α(G) = max{|S| | S ⊆ V G, S is the independent

set of G}.

Proposition 2.5.

α(G2) ≥
∑
i∈V G

1

1 + dimi

,

where α(G2) is the independence number of the square of G.

Proof. If a vertex is picked equally in random then the probability of a vertex

i appears before those vertices inG1(i)∩G2(i) is (1+|Gi(i)|+|G2(i)|)−1. Hence

the expected size of a set consisting of these i is
∑

i∈V G(1+|Gi(i)|+|G2(i)|)−1,

which is at least
∑

i∈V G
1

1+dimi
.
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The following lemma will be used later.

Lemma 2.6. di ≤ mi(mj − 1) + 1 for any j with ji ∈ EG and dj ≤ mi.

Moreover the above equality holds if and only if dj = mi and all neighbors of

j excluding i have degree 1.

Proof. Pick j such that ji ∈ EG and dj ≤ mi. Then djmj ≥ di + (dj − 1) · 1.

Hence

mi(mj − 1) + 1 ≥ dj(mj − 1) + 1 ≥ di.

9



Chapter 3

Pseudo k-regular graphs

We now turn to the study of pseudo k-regular graphs, i.e. mi = k for all

i. We try to give some theories for pseudo k-regular graphs.

From the definition of pseudo k-regular graphs, k ∈ Q, but indeed we

have the following.

Proposition 3.1. If G is pseudo k-regular then k ∈ N.

Proof. Let A be the adjacency matrix of G, and note that

(d1, d2, . . . , dn)A = k(d1, d2, . . . , dn).

Being a zero of the characteristic polynomial of A, k is an algebraic integer.

Since k is also a positive rational number, k is indeed a positive integer.

Obviously, any k-regular graph is a pseudo k-regular graph. However, a

pseudo k-regular graph may not be a regular graph. An interesting problem

is to characterize all the non-regular pseudo k-regular graphs. There are

some examples in [12] of pseudo k-regular graphs that are not regular in the

following Example 3.2.

10



Example 3.2. The graphs in Figure 3.1, 3.2, and 3.3 are pseudo k-regular

but not regular.

r
r
r

r r
r r

Figure 3.1: A graph with mi = 2.

r
r
r

r
r
r

r
r
r

Figure 3.2: A graph with mi = 3.

r rr rr
r
r

r rr r
r r r r

Figure 3.3: A graph with mi = 4.

It is natural to ask when a pseudo k-regular graph attains the maximum

number of edges when the order n of a graph is given.

11



Theorem 3.3. A pseudo k-regular graph has at most nk/2 edges, and the

maximum is obtained if and only if the graph is regular.

Proof. From

2k|EG| =
∑
i∈V G

dimi =
∑
i∈V G

d2i ≥ (
∑
i∈V G

di)
2/n = 4|EG|2/n,

we have |EG| ≤ nk/2 and equality is obtained if and only if di is a constant.

We shall study the connected pseudo k-regular graphs of order n which

attain the minimum number of edges, i.e. pseudo k-regular trees. We also

want to study connected pseudo k-regular graphs of order n with maximal

degree among such graphs.

Definition 3.4. Let Tk be the tree of order k3 − k2 + k + 1 whose root has

degree k2 − k + 1 and each neighbor of the root has k − 1 children as leafs.

r
r r r
r r r

Figure 3.4: The tree T2.

r r r r r r r r r r r r r r
r r r r r r r

r

Figure 3.5: The tree T3.
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Note that T1 is exactly the complete graph K2. For each k ≥ 2, Tk exists

and provides an example for a non-regular pseudo k-regular graph.

Let ∆(G) = max{di | i ∈ V G} be the maximal degree of G. We have the

following result.

Theorem 3.5. Let G be a connected graph with mi ≤ k for all i ∈ V G and

some k ∈ N. Then ∆(G) ≤ k2 − k + 1. Moreover the following (i)-(ii) are

equivalent.

(i) ∆(G) = k2 − k + 1.

(ii) G is the tree Tk.

Proof. Choose i such that di = ∆(G). Then by Proposition 2.6, ∆(G) =

di ≤ mi(mj − 1) + 1 = k2 − k + 1 for any j with ji ∈ EG and dj ≤ mi.

Moreover ∆(G) = k2 − k + 1 if and only if dj = mj = mi = k and dz = 1 for

all neighbors z 6= i of j. Hence (i) and (ii) are equivalent.

We have seen that the degree of a neighbor of maximum degree vertex is

k in Tk. We are interested in what other vertices have this property.

Lemma 3.6. Let G be a pseudo k-regular graph. Then the following (i)-(ii)

hold.

(i) If z is a vertex of degree 1 then k is the degree of the neighbor of z.

(ii) If ij is an edge with 2 ≤ dj < k then 2 ≤ di ≤ k2 − 3k + 4, with the

second equality if and only if all neighbors of j except i have degree 2.

13



Proof. (i) is clear. To prove (ii), note that di 6= 1, otherwise dj = k, a

contradiction. Indeed dz 6= 1 for any neighbors z of j. Hence

di + 2(dj − 1) ≤ djmj = djk.

Hence

di ≤ dj(k − 2) + 2 ≤ k2 − 3k + 4.

Corollary 3.7. Let G be a pseudo k-regular graph of order n with a vertex

of degree di ≥ k2 − 3k + 5. Then

(i) Any neighbor j of i has degree dj = k;

(ii) The order of G is at least f(k) := d(5k4 − 31k3 + 94k2 − 140k + 100)/k2e .

Proof. (i) From Lemma 3.6 (i) dj 6= 1, and from Lemma 3.6 (ii) dj ≥ k. This

is true for all neighbors j of i. Hence dj = k.

(ii) From Lemma 2.1
∑

w∈V G d
2
w =

∑
w∈V G dwmw,

d2i + dik
2 +

∑
w 6∈{i}∪G1(i)

d2w = kdi + k2di +
∑

w 6∈{i}∪G1(i)

kdw.

Hence

k4 − 7k3 + 22k2 − 35k + 25 ≤
∑

w 6∈{i}∪G1(i)

dw(k − dw)

≤
(
k

2

)2

(n− 1− (k2 − 3k + 5)).
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Note that for k = 3, k2 − 3k + 5 = 5 and f(3) = 11.

Now we try to characterize the pseudo k-regular graphs. It is easily seen

that a graph is pseudo k-regular if and only if each component of it is pseudo

k-regular. Hence we just focus on the characterization of connected pseudo

k-regular graphs.

The first two cases of pseudo k-regular graphs are easy to settle.

Lemma 3.8. If G is connected pseudo 1-regular then G is K2.

Lemma 3.9. If G is connected pseudo 2-regular then G is a cycle or T2.

Proof. Note that ∆(G) = 2 or 3, and the first implies that G is a cycle and

the latter implies that G = T2.

Pseudo k-regular graphs is also called harmonic graphs [8], and finite

harmonic tree are already given. But for the complete of this thesis we

reprove the Theorem as follow.

Theorem 3.10. [8, Theorem 2.1] If G is a pseudo k-regular tree, then G =

Tk.

Proof. By Lemma 3.8 and Lemma 3.9, the assumption holds for each k ≤ 2.

Let G = (V G,EG) be a pseudo k-regular tree with k ≥ 3. Pick any v ∈ V G

with dv ≥ 2 as a root. Since a star is not pseudo k-regular, there exists a

leaf x with parent y 6= v, such that all children of y are leaves. Then y has

degree k by Lemma 3.6 and has k − 1 children as leaves. Hence the degree

of root dv = kmy − (k − 1) = k2 − k + 1. This concludes that G = Tk by

Definition 3.4.
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We shall study pseudo k-regular graph with the second largest degree

k2 − k.

Definition 3.11. Let Uk be the tree of order k3 − k2 + 1 whose root has

degree k2 − k and each neighbor of the root has k − 1 children as leafs.

r
r r r r r r
r d d r r d d r r d d r

Figure 3.6: The graph U3 with type A vertices.

We shall select some vertices from a graph and call them type A vertices.

In general a type A vertex has degree 1 and its unique neighbor j has dj = k

and mj = (k2 − t)/k, where t is the number of type A neighbors of j (in Uk,

t = 1).

Let Mk be the graph obtained from Uk by identifying (k2 − k)/2 pairs of

type A vertices into (k2 − k)/2 vertices. Then Mk gives a pseudo k-regular

graphs with maximum degree k2 − k for each k ≥ 3.r
r r r r r r
r r r r r r r r r

Figure 3.7: The graph M3.
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Proposition 3.12. If G is a pseudo k-regular graph with a vertex x of degree

k2− k, then the subgraph induced on {x}∪G1(x)∪G2(x) is Uk with possibly

even number of vertices in type A being identified in pairs. Moreover a type

A vertex not been identified with another one has degree 2 in G.

Proof. Let y be a neighbor of x. Then y has degree dy = k by Corollary 3.7(i),

and has a neighbor z 6= x of degree dz ≥ 2 by Theorem 3.5. Hence k2 =

dymy ≥ dx + dz + (dy − 2) ≥ (k2 − k) + 2 + (k − 2) = k2. This implies that

dz = 2 and the remaining vertices w 6∈ {x, z} of y have degree dw = 1. Note

that z, w have distance two to x. As one neighbor of z has degree k, the

other neighbor of z also has degree k. Hence the vertex z might adjacent to

some neighbor of x or to some vertex of degree k and at distance 3 to x.

Let Ek be a family of graphs constructed as the following. Firstly pick a

bipartite (k − 1)-regular graph of order 2(2k − 1) with bipartition X ∪ Y ,

where |X| = |Y | = 2k − 1. Then add a new vertex connecting to all vertices

of X. One can check that graphs in Ek are pseudo k-regular of order 4k − 1

with maximum degree 2k − 1.

ir
X, 2k − 1

Y , 2k − 1

(k − 1)-regular

Figure 3.8: The graphs in Ek.
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By a switching on G, we mean a process to obtain a new graph G′ by

removing two edges xy and uv such that dx = du and dy = dv and adding

two new edges xv and yu to form a new graph, where xv and yu are not

edges in G. In this case G and G′ are called switching equivalent.

r
r

r
ru
v

x

y

Figure 3.9: Switching.

r r r r r
r r r r r

r

Figure 3.10: The graph E3 ∈ E3.

Every graph in E3 is switching equivalent to E3.

From Corollary 3.7 (ii), we know a pseudo 3-regular graph with maximum

degree at least 5 has at least f(3) = 11 vertices. All the graphs in Ek are

extremal for this property.

Let Fk be a family of graphs constructed as the following. Firstly pick

any (k−2)-regular graph H of order (2k−1)(k−1), not necessary connected.
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Secondly add (2k − 1)(k − 1) new vertices of degree 1 by connecting them

to vertices of H one by one. Finally partition the vertex set of H into k − 1

blocks of equal size 2k−1 and connect all vertices in a block to a new vertex to

make it degree 2k− 1. One can check that graphs in Fk are pseudo k-regular

with maximum degree 2k − 1.

x1 xk−1

r r r r r r r r

r r

· · · · · ·

· · · · · ·
H

ry1 r r r r ry2k−1 r r
· · · · · ·

Figure 3.11: The graphs in F3.

r r r r r r r r r r
r r r r r r r r r r

r r

Figure 3.12: The graph F3 ∈ F3.

Every graph in F3 is switching equivalent to F3.

Now we restrict our attention to pseudo 3-regular graph G.
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Note that the maximum degree 3 ≤ ∆(G) ≤ k2 − k + 1 = 7 and the case

∆(G) = 7 is solved by Theorem 3.5 and Theorem 3.10.

The local structure of a maximum degree ∆(G) = 6 is obtained in Propo-

sition 3.12 for k = 3.

The following lemma is immediate from Corollary 3.7.

Lemma 3.13. Let G be a pseudo 3-regular graph with a vertex i of degree

di = 5. Then all neighbors j of i have degree dj = 3, and the neighbors of j

have degree sequence (5, 2, 2) or (5, 3, 1).

Proposition 3.14. If G is a pseudo 3-regular graph with a vertex i of degree

5, then the subgraph induced on G1(i) is union of disjoint edges or isolated

vertices, and each endpoint of an edge is adjacent to a vertex of degree 1

in G2(i) and each isolated vertex is adjacent to two vertices in G2(i) with

degrees (3, 1) or (2, 2).

r r r r r
bd r bd r r r d d

r

Figure 3.13: Graphs with ∆(G) = 5.

Now we study the local structure of a vertex of degree 4 in a pseudo

k-regular graph.
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Lemma 3.15. Let G be a pseudo 3-regular graph. Then the neighbor degree

sequence of a vertex of degree 4 is (3, 3, 3, 3), (4, 3, 3, 2), or (4, 4, 2, 2).

Proof. Let (a, b, c, d) be a degree sequence of the neighbors of a vertex i of

degree di = 4, where a ≥ b ≥ c ≥ d. Note that a ≤ 4 otherwise di = 3 by

Corollary 3.7 (i). Then a+b+c+d = di ·3 = 12. By checking all possible such

sequences (a, b, c, d), we find these are as listed in the lemma or (4, 4, 3, 1),

which is impossible since the neighbor of a leaf must have degree 3.

Proposition 3.16. If G is a pseudo 3-regular graph with a vertex i of degree 4

and the neighbor degree sequence of i is (3, 3, 3, 3), then the subgraph induced

on G1(i) is union of disjoint edges or isolated vertices, and each endpoint

of an edge is adjacent to a vertex of degree 2 in G2(i) (possibly identified

in pairs) and each isolated vertex is adjacent to two vertices in G2(i) with

degrees 2, 3 or degrees 1, 4.

r r r r
d bd r bdf d d

r

Figure 3.14: Graphs with ∆(G) = 4 and the neighbor degree sequence of

a vertex of degree 4 is (3, 3, 3, 3).

In Figure 3.14 we have 1 + |G1(i)|+ |G2(i)| ≥ 7.
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r r r r
r r

r

Figure 3.15: The graph has ∆(G) = 4 with degree sequence (3, 3, 3, 3).

Proposition 3.17. If G is a pseudo 3-regular graph with a vertex i of degree

4 and the neighbor degree sequence of i is (4, 3, 3, 2), then the neighbor of i

with degree 2 in G is isolated in G1(i), and the neighbor of i with degree 3 in

G has at most one neighbor in G1(i).

bdf bd bd r
d

r

Figure 3.16: Graphs with ∆(G) = 4 and the neighbor degree sequence of

a vertex of degree 4 is (4, 3, 3, 2).

In Figure 3.16 we have 1 + |G1(i)|+ |G2(i)| ≥ 8.

r r
r

r
r rrr

Figure 3.17: The graph has ∆(G) = 4 with degree sequence (4, 3, 3, 2).
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Proposition 3.18. If G is a pseudo 3-regular graph with a vertex i of degree

4 and the neighbor degree sequence of i is (4, 4, 2, 2), then the neighbor of i

with degree 2 in G is not connected to a neighbor of i with degree 4 in G.

bdf bdf bd bd

r

Figure 3.18: Graphs with ∆(G) = 4 and the neighbor degree sequence of

a vertex of degree 4 is (4, 4, 2, 2).

In Figure 3.18 we have 1 + |G1(i)|+ |G2(i)| ≥ 9.

r r
r r r r
r r r r

r

Figure 3.19: The graph has ∆(G) = 4 with degree sequence (4, 4, 2, 2).

We will list all pseudo 3-regular graphs which are not regular of order

within 10. From Corollary 3.7(ii), such graphs have maximum degree 4.
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Lemma 3.19. Let G be a connected pseudo 3-regular graph with ∆(G) = 4

and aj := |{i | di = j}| for j = 1, 2, 3, 4. Then

(i) a1 + a2 = 2a4,

(ii) |V G| = a3 + 3a4,

(iii) a1 ≤ a3,

(iv) a1, a2, a3 have same parity.

Proof. (i) and (ii) follow from solving

0 =
∑
i∈V G

(mi − di)di =
∑
i∈V G

(3− di)di = a1 · 2 + a2 · 2 + a4(−4).

(iii) follows since there exists an injection from the set of degree one vertices

into set of degree 3 vertices. Since there are even number of vertices of odd

degrees, a1 + a3 is even. The remaining follows from (i) and (ii). This proves

(iv).

From the above lemma, the following is the possible sequence of (n, a4, a3, a2, a1)

for a connected pseudo 3-regular graph of order n with ∆(G) = 4 and

7 ≤ n ≤ 10.

(n, a4, a3, a2, a1)

=(10, 3, 1, 5, 1), (10, 2, 4, 4, 0), (10, 2, 4, 2, 2), (10, 2, 4, 0, 4), (10, 1, 7, 1, 1)

=(9, 3, 0, 6, 0), (9, 2, 3, 3, 1), (9, 2, 3, 1, 3), (9, 1, 6, 2, 0), (9, 1, 6, 0, 2)

=(8, 2, 2, 4, 0), (8, 2, 2, 2, 2), (8, 1, 5, 1, 1)

=(7, 2, 1, 3, 1), (7, 1, 4, 2, 0), (7, 1, 4, 0, 2).

24



One can check directly that there is no graph whose corresponding se-

quence (n, a4, a3, a2, a1) is (10, 3, 1, 5, 1), (10, 2, 4, 2, 2), (10, 1, 7, 1, 1), (9, 2, 3, 1, 3),

(9, 1, 6, 0, 2), (8, 2, 2, 4, 0), (8, 1, 5, 1, 1), (7, 2, 1, 3, 1), or (7, 1, 4, 0, 2).

Small pseudo 3-regular but not 3-regular graphs are listed as follows.

|V G| = 7:

r
r

r rrr r r r
r r r

r r (Switching equivalent)

Figure 3.20: Graphs with sequence (n, a4, a3, a2, a1) = (7, 1, 4, 2, 0).

|V G| = 8:

r r r r
r r r r

Figure 3.21: The graph with sequence (n, a4, a3, a2, a1) = (8, 2, 2, 2, 2).
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|V G| = 9:

r r
r r r r

r
r r

r r
r r r r

r
r r

r r
r r r r

r
r r (Switching equivalent)

Figure 3.22: Graphs with sequence (n, a4, a3, a2, a1) = (9, 3, 0, 6, 0).

r
r r r

r r r r
r

Figure 3.23: The graph with sequence (n, a4, a3, a2, a1) = (9, 2, 3, 3, 1).

r
r

r rrr rr r r r
r r r

r rr r (Switching equivalent)

Figure 3.24: Graphs with sequence (n, a4, a3, a2, a1) = (9, 1, 6, 2, 0).
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|V G| = 10:

r r r r
r r r r

r r

r r r r
r r r r

r r

r r r r
r r r r

r r

r r r r
r r r r

r r (Switching equivalent)

Figure 3.25: Graphs with sequence (n, a4, a3, a2, a1) = (10, 2, 4, 4, 0).

r r r r
r r r r

r r

Figure 3.26: The graph with sequence (n, a4, a3, a2, a1) = (10, 2, 4, 0, 4).

Under what kind of partial information of the pairs (di,mi), one can

conclude the diameter of G is at most 6.

In our study of pseudo k-regular graph with a vertex of the maximum

degree k2 − k + 1, the obtained graph Tk has diameter 4.

The vertices with large degrees should also play an important role in other

graphs.
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