圖的度數對之研究

學生：黃苓芸

指導教授：翁志文

國立交通大學

應用數學系

摘要

簡單圖 G 上一點 v 的平均二度數定義為與 v 相鄰之點的度數平均。度數列和平均二度數列在最大拉普拉斯特徵值上界的應用，已有許多研究成果。若 G 中所有點的平均二度數皆為 k ，則 G 稱為擬 k 正則圖。在此論文中，我們證明若 G 為擬 k 正則圖，則 k 是整數；進而找出所有擬正則樹。我們也考慮了當 G 的最大度數為 $k^{2}-k$ 的情形，並給出一些基本的結果。最後，我們對於擬 3 正則圖給出了更多的結果。並且刻畫出所有十個點之内非正則的擬 3 正則圖。

關鍵字：圖，鄰接矩陣，拉普拉斯矩陣，度數，平均二度數，擬 k 正則。

The Degree Pairs of a Graph

Student: Ling-Yun Huang Advisor: Chih-Wen Weng

Department of Applied Mathematics National Chiao Tung University

Abstract

Let v be a vertex in a simple graph G. The average 2-degree of v is the average of degrees of vertices adjacent to v. The applications of the degree and average 2-degree sequences on the upper bounds for the maximum eigenvalue of Laplacian matrix of a graph is studied by many authors. The graph G is called pseudo k-regular if each vertex in G has average 2-degree k. We prove that if G is pseudo k-regular then k is integral. Moreover, all pseudo regular trees are given in this thesis. We also consider the case when the maximum degree of G is $k^{2}-k$, and give some basic results. In the end, we give more results of pseudo 3-regular graphs. And characterize all the pseudo 3-regular graph within ten vertices but not regular.

Keywords: Graph, adjacency matrix, Laplacian matrix, degree, average 2-degree, pseudo k-regular.

Table of Contents

Abstract (in Chinese) i
Abstract (in English) ii
Table of Contents iii
List of Figures iv
1 Introduction 1
2 Degree pairs 6
3 Pseudo k-regular graphs 10
Bibliography 28

List of Figures

1.1 Two graphs with different sequences of degree pairs $\left(d_{i}, m_{i}\right)$. 4
1.2 Two graphs with the same sequence of degree pairs $\left(d_{i}, m_{i}\right)$. 4
2.1 A graph with the given sequence A. 7
2.2 A graph has girth at most 4 8
3.1 A graph with $m_{i}=2$ 11
3.2 A graph with $m_{i}=3$ 11
3.3 A graph with $m_{i}=4$ 11
3.4 The tree T_{2}. 12
3.5 The tree T_{3}. 12
3.6 The graph U_{3} with type A vertices. 16
3.7 The graph M_{3}. 16
3.8 The graphs in \mathcal{E}_{k} 17
3.9 Switching. 18
3.10 The graph $E_{3} \in \mathcal{E}_{3}$. 18
3.11 The graphs in \mathcal{F}_{3}. 19
3.12 The graph $F_{3} \in \mathcal{F}_{3}$. 19
3.13 Graphs with $\Delta(G)=5$ 20
3.14 Graphs has $\Delta(G)=4$ with degree sequence ($3,3,3,3$). 21
3.15 The graph has $\Delta(G)=4$ with degree sequence $(3,3,3,3)$. 22
3.16 Graphs has $\Delta(G)=4$ with degree sequence ($4,3,3,2$). 22
3.17 The graph has $\Delta(G)=4$ with degree sequence $(4,3,3,2)$. 22
3.18 Graphs has $\Delta(G)=4$ with degree sequence $(4,4,2,2)$. 23
3.19 The graph has $\Delta(G)=4$ with degree sequence $(4,4,2,2)$ 23
3.20 Graphs with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(7,1,4,2,0)$. 25
3.21 The graph with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(8,2,2,2,2)$. 25
3.22 Graphs with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(9,3,0,6,0)$, 26
3.23 The graph with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(9,2,3,3,1)$. 26
3.24 Graphs with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(9,1,6,2,0)$. 26
3.25 Graphs with sequence ($n, a_{4}, a_{3}, a_{2}, a_{1}$) $=(10,2,4,4,0)$. 27
3.26 The graph with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(10,2,4,0,4)$. 27

Chapter 1

Introduction

Let G be a graph with vertex set $V G=\{1,2, \ldots, n\}$ and edge set $E G$. Let d_{i} be the degree of the vertex $i \in V G$, defined as follows:

$$
d_{i}:=\left|G_{1}(i)\right|,
$$

where $G_{1}(i)$ means the set $\{j \in V G \mid j i \in E G\}$ of neighbors of i.

The sequence $\left\{d_{i}\right\}_{i \in V G}$ of G is called a degree sequence of G. There is a multitude of equivalent conditions for determining when a given sequence of integers is a degree sequence. Havel [11] in 1955 and Hakimi [9] in 1962 independently obtained recursive conditions for a sequence to be a degree sequence of a graph if and only if the subsequence with its largest element deleted is also a sequence of a graph. In 1973, Wang and Kleitman [19] proved the necessary and sufficient conditions for arbitrary deleting. There are seven criteria for a sequence to be a degree sequence of a graph, which are proposed by Ryser [17] in 1957, Berge [1] in 1973, Fulkerson, Hoffman, and McAndrew [6] in 1965, Bollobàs [2] in 1978, Grünbaum [7] in 1969, Hässelbarth [10] in 1984, and Erdös and Gallai [5] in 1960. And in 1991, Sierksma and Hoogerveen [18] proved that the above seven criteria are equivalent.

Let m_{i} be the average 2-degree of the vertex $i \in V G$, defined as follows.

$$
m_{i}:=\frac{1}{d_{i}} \sum_{j i \in E G} d_{j} .
$$

And the sequence $\left\{m_{i}\right\}_{i \in V G}$ of G is called a average 2-degree sequence of G. We shall give a survey of average 2-degree sequence of a graph.

Let G be a simple graph. The adjacency matrix of G is the $0-1$ matrix A indexed by $V G$ such that $A_{x y}=1$ if and only if $x y \in E G$. The degree matrix of G is the diagonal matrix D indexed by $V G$ such that $D_{x x}$ is the degree d_{x} of $x \in V G$. The average 2-degree sequence appears often in the study of maximum eigenvalue $\ell_{1}(G)$ of the Laplacian matrix $L=D-A$ associated with G, where D is the degree matrix and A is the adjacency matrix of G. The following results are about the upper bounds of $\ell_{1}(G)$:

1. In 1998, Merris gave the following bound [15] :

$$
\ell_{1}(G) \leq \max _{i \in V G}\left\{d_{i}+m_{i}\right\}
$$

2. Also in 1998, Li and Zhang gave the following bound [14]:

$$
\ell_{1}(G) \leq \max _{i j \in E G}\left\{\frac{d_{i}\left(d_{i}+m_{i}\right)+d_{j}\left(d_{j}+m_{j}\right)}{d_{i}+d_{j}}\right\}
$$

3. In 2001, Li and Pan gave the following bound [13]:

$$
\ell_{1}(G) \leq \max _{i \in V G}\left\{\sqrt{2 d_{i}\left(d_{i}+m_{i}\right)}\right\} .
$$

4. In 2004, Das gave the following bound [4]:

$$
\ell_{1}(G) \leq \max _{i j \in E G}\left\{\frac{d_{i}+d_{j}+\sqrt{\left(d_{i}-d_{j}\right)^{2}+4 m_{i} m_{j}}}{2}\right\}
$$

5. Also in 2004, Zhang gave the following bounds [21]:
(a)

$$
\ell_{1}(G) \leq \max _{i j \in E G}\left\{2+\sqrt{d_{i}\left(d_{i}+m_{i}-4\right)+d_{j}\left(d_{j}+m_{j}-4\right)+4}\right\}
$$

(b)

$$
\ell_{1}(G) \leq \max _{i \in V G}\left\{d_{i}+\sqrt{d_{i} m_{i}}\right\} .
$$

(c)

$$
\ell_{1}(G) \leq \max _{i j \in E G}\left\{\sqrt{d_{i}\left(d_{i}+m_{i}\right)+d_{j}\left(d_{j}+m_{j}\right)}\right\}
$$

As everyone knows, a graph G is k-regular if $d_{i}=k$ for all vertices $i \in V G$. If $m_{i}=k$ for all vertices $i \in V G, G$ is called pseudo k-regular in [20]. For convenience, we rearrange the vertices of G by $1,2, \cdots, n$ such that $m_{1} \geq m_{2} \geq \cdots \geq m_{n}$. Let $a_{1}(G)$ be the maximum eigenvalue of adjacency matrix A associated with G, and we have following.

Let $B=D^{-1} A D$, where D is the degree matrix and A is the adjacency matrix of G. Then B is a nonnegative irreducible $n \times n$ matrix. By PerronFrobenius Theorem in [16], we have $a_{1}(G) \leq m_{1}$ with equality if and only if G is a pseudo k-regular graph.

In 2011, Chen, Pan and Zhang [3] proved the following.

Theorem 1.1. Let $a:=\max \left\{d_{i} / d_{j} \mid 1 \leq i, j \leq n\right\}$. Then

$$
a_{1}(G) \leq \frac{m_{2}-a+\sqrt{\left(m_{2}+a\right)^{2}+4 a\left(m_{1}-m_{2}\right)}}{2}
$$

with equality if and only if G is a pseudo k-regular graph.

And in 2014, Huang and Weng [12] proved the following.

Theorem 1.2. For any $b \geq \max \left\{d_{i} / d_{j} \mid i j \in E G\right\}$ and $1 \leq l \leq n$,

$$
a_{1}(G) \leq \frac{m_{l}-b+\sqrt{\left(m_{l}+b\right)^{2}+4 b \sum_{i=1}^{l-1}\left(m_{i}-m_{l}\right)}}{2}
$$

with equality if and only if G is a pseudo k-regular graph.

This thesis studies degree sequence together with average 2-degree sequence of a graph. Thus we define the sequence $\left\{\left(d_{i}, m_{i}\right)\right\}_{i \in V G}$ of pairs as a degree pairs.

Figure 1.1: Two graphs with different sequences of degree pairs $\left(d_{i}, m_{i}\right)$.

Figure 1.2: Two graphs with the same sequence of degree pairs $\left(d_{i}, m_{i}\right)$.

This thesis is organized as follows. In Chapter 2, we introduce some basic results about degree pairs. In Chapter 3, we prove that if G is pseudo k-regular then $k \in \mathbb{N}$, and give a family of pseudo k-regular graphs T_{k}. Furthermore, we prove that T_{k} is the only pseudo k-regular tree for each k. We also consider the case when the maximum degree of G is $k^{2}-k$, and give some basic results. In the end, we give more results of pseudo 3-regular graphs. And characterize all the pseudo 3-regular graph within ten vertices but not regular.

Chapter 2

Degree pairs

Let G be a simple graph with vertex set $V G=\{1,2, \ldots, n\}$, edge set $E G$, and sequence $\left\{\left(d_{i}, m_{i}\right)\right\}_{i \in V G}$ degree pairs. The following lemma provides a feasible condition of degree pairs.

Lemma 2.1.

$$
\sum_{i \in V G} d_{i} m_{i}=\sum_{i \in V G} d_{i}^{2}
$$

Proof.

$$
\sum_{i \in V G} d_{i} m_{i}=\sum_{i \in V G} d_{i} \frac{\sum_{j i \in E G} d_{j}}{d_{i}}=\sum_{i \in V G} \sum_{i j \in E G} d_{i}=\sum_{i \in V G} d_{i}^{2}
$$

We give a sequence $A=\{(1,3),(1,3),(2,3),(3,2),(3,2)\}$, and a sequence $B=\{(1,4),(3,2),(3,3),(3,3),(4,2)\}$. Observe that sequence A matches the condition in Lemma 2.1, and is a sequence of degree pairs of the graph as shown in Figure 2.1. But sequence B does not match the condition in Lemma 2.1, so its not a sequence of degree pairs of any graph.

Figure 2.1: A graph with the given sequence A.

Here is another feasible condition for degree pairs.

Lemma 2.2. There are even number of odd values $d_{i} m_{i}$ among $i \in V G$.

Proof. Since $\sum_{i \in V G} d_{i}$ is even, there are even number of odd d_{i}, and so does d_{i}^{2}. Hence $\sum_{i \in V G} d_{i} m_{i}=\sum_{i \in V G} d_{i}^{2}$ is even.

Corollary 2.3 .

$$
\sum_{i \in V G} m_{i}^{2} \geq \sum_{i \in V G} d_{i}^{2}
$$

with equality if and only if $m_{i}=d_{i}=k$ for all i.
Proof.

$$
\left(\sum_{i \in V G} d_{i}^{2}\right)\left(\sum_{i \in V G} m_{i}^{2}\right) \geq\left(\sum_{i \in V G} d_{i} m_{i}\right)^{2}=\left(\sum_{i \in V G} d_{i}^{2}\right)^{2}
$$

and equality if and only if $m_{i}=c d_{i}$ for all $i \in V G$, where $c=1$ by the Lemma 2.1. This is also equivalent to that all neighbors of a vertex of minimum degree k also have degree k.

Degree sequence gives hints of graph properties. For example, the wellknown fact $|E G|=\frac{1}{2} \sum_{i \in V G} d_{i}$ expresseds the number of edges of a graph as a sum its degree sequence.

The sequence of degree pairs give more hints of graph structure. In general, $d_{i} m_{i} \geq\left|G_{1}(i)\right|+\left|G_{2}(i)\right|$, and there are at least $\left(d_{i} m_{i}-n\right) / 2$ triangles based on the vertex i.

Proposition 2.4. If $\max _{i \in V G} d_{i} m_{i} \geq n$ then the graph has girth at most 4 .

Proof. If the graph has girth at least 5 then

$$
n-1=|V G|-1 \geq\left|G_{1}(i)+G_{2}(i)\right|=d_{i} m_{i} .
$$

for any $i \in V G$.

Figure 2.2: A graph has girth at most 4.

In Figure 2.2, we observe that $\max _{i \in V G} d_{i} m_{i}=8 \geq 6=|V G|$

The distance $d(x, y)$ between two vertices x and y of a graph is the minimum length of the paths connecting them. Let G^{2} be the square of G, denote the graph with $V G^{2}=V G$ and $E G^{2}=\{x y \mid d(x, y) \leq 2\}$. The independence number of G is $\alpha(G)=\max \{|S| \mid S \subseteq V G, S$ is the independent set of $G\}$.

Proposition 2.5.

$$
\alpha\left(G^{2}\right) \geq \sum_{i \in V G} \frac{1}{1+d_{i} m_{i}},
$$

where $\alpha\left(G^{2}\right)$ is the independence number of the square of G.

Proof. If a vertex is picked equally in random then the probability of a vertex i appears before those vertices in $G_{1}(i) \cap G_{2}(i)$ is $\left(1+\left|G_{i}(i)\right|+\left|G_{2}(i)\right|\right)^{-1}$. Hence the expected size of a set consisting of these i is $\sum_{i \in V G}\left(1+\left|G_{i}(i)\right|+\left|G_{2}(i)\right|\right)^{-1}$, which is at least $\sum_{i \in V G} \frac{1}{1+d_{i} m_{i}}$.

The following lemma will be used later.

Lemma 2.6. $d_{i} \leq m_{i}\left(m_{j}-1\right)+1$ for any j with $j i \in E G$ and $d_{j} \leq m_{i}$. Moreover the above equality holds if and only if $d_{j}=m_{i}$ and all neighbors of j excluding i have degree 1.

Proof. Pick j such that $j i \in E G$ and $d_{j} \leq m_{i}$. Then $d_{j} m_{j} \geq d_{i}+\left(d_{j}-1\right) \cdot 1$. Hence

$$
m_{i}\left(m_{j}-1\right)+1 \geq d_{j}\left(m_{j}-1\right)+1 \geq d_{i} .
$$

Chapter 3

Pseudo k-regular graphs

We now turn to the study of pseudo k-regular graphs, i.e. $m_{i}=k$ for all i. We try to give some theories for pseudo k-regular graphs.

From the definition of pseudo k-regular graphs, $k \in \mathbb{Q}$, but indeed we have the following.

Proposition 3.1. If G is pseudo k-regular then $k \in \mathbb{N}$.
Proof. Let A be the adjacency matrix of G, and note that

$$
\left(d_{1}, d_{2}, \ldots, d_{n}\right) A=k\left(d_{1}, d_{2}, \ldots, d_{n}\right) .
$$

Being a zero of the characteristic polynomial of A, k is an algebraic integer. Since k is also a positive rational number, k is indeed a positive integer.

Obviously, any k-regular graph is a pseudo k-regular graph. However, a pseudo k-regular graph may not be a regular graph. An interesting problem is to characterize all the non-regular pseudo k-regular graphs. There are some examples in [12] of pseudo k-regular graphs that are not regular in the following Example 3.2.

Example 3.2. The graphs in Figure 3.1, 3.2, and 3.3 are pseudo k-regular but not regular.

Figure 3.1: A graph with $m_{i}=2$.

Figure 3.2: A graph with $m_{i}=3$.

Figure 3.3: A graph with $m_{i}=4$.

It is natural to ask when a pseudo k-regular graph attains the maximum number of edges when the order n of a graph is given.

Theorem 3.3. A pseudo k-regular graph has at most $n k / 2$ edges, and the maximum is obtained if and only if the graph is regular.

Proof. From

$$
2 k|E G|=\sum_{i \in V G} d_{i} m_{i}=\sum_{i \in V G} d_{i}^{2} \geq\left(\sum_{i \in V G} d_{i}\right)^{2} / n=4|E G|^{2} / n,
$$

we have $|E G| \leq n k / 2$ and equality is obtained if and only if d_{i} is a constant.

We shall study the connected pseudo k-regular graphs of order n which attain the minimum number of edges, i.e. pseudo k-regular trees. We also want to study connected pseudo k-regular graphs of order n with maximal degree among such graphs.

Definition 3.4. Let T_{k} be the tree of order $k^{3}-k^{2}+k+1$ whose root has degree $k^{2}-k+1$ and each neighbor of the root has $k-1$ children as leafs.

Figure 3.4: The tree T_{2}.

Figure 3.5: The tree T_{3}.

Note that T_{1} is exactly the complete graph K_{2}. For each $k \geq 2, T_{k}$ exists and provides an example for a non-regular pseudo k-regular graph.

Let $\Delta(G)=\max \left\{d_{i} \mid i \in V G\right\}$ be the maximal degree of G. We have the following result.

Theorem 3.5. Let G be a connected graph with $m_{i} \leq k$ for all $i \in V G$ and some $k \in \mathbb{N}$. Then $\Delta(G) \leq k^{2}-k+1$. Moreover the following (i)-(ii) are equivalent.
(i) $\Delta(G)=k^{2}-k+1$.
(ii) G is the tree T_{k}.

Proof. Choose i such that $d_{i}=\Delta(G)$. Then by Proposition 2.6, $\Delta(G)=$ $d_{i} \leq m_{i}\left(m_{j}-1\right)+1=k^{2}-k+1$ for any j with $j i \in E G$ and $d_{j} \leq m_{i}$. Moreover $\Delta(G)=k^{2}-k+1$ if and only if $d_{j}=m_{j}=m_{i}=k$ and $d_{z}=1$ for all neighbors $z \neq i$ of j. Hence (i) and (ii) are equivalent.

We have seen that the degree of a neighbor of maximum degree vertex is k in T_{k}. We are interested in what other vertices have this property.

Lemma 3.6. Let G be a pseudo k-regular graph. Then the following (i)-(ii) hold.
(i) If z is a vertex of degree 1 then k is the degree of the neighbor of z.
(ii) If $i j$ is an edge with $2 \leq d_{j}<k$ then $2 \leq d_{i} \leq k^{2}-3 k+4$, with the second equality if and only if all neighbors of j except i have degree 2 .

Proof. (i) is clear. To prove (ii), note that $d_{i} \neq 1$, otherwise $d_{j}=k$, a contradiction. Indeed $d_{z} \neq 1$ for any neighbors z of j. Hence

$$
d_{i}+2\left(d_{j}-1\right) \leq d_{j} m_{j}=d_{j} k
$$

Hence

$$
d_{i} \leq d_{j}(k-2)+2 \leq k^{2}-3 k+4
$$

Corollary 3.7. Let G be a pseudo k-regular graph of order n with a vertex of degree $d_{i} \geq k^{2}-3 k+5$. Then
(i) Any neighbor j of i has degree $d_{j}=k$;
(ii) The order of G is at least $f(k):=\left\lceil\left(5 k^{4}-31 k^{3}+94 k^{2}-140 k+100\right) / k^{2}\right\rceil$.

Proof. (i) From Lemma 3.6 (i) $d_{j} \neq 1$, and from Lemma 3.6 (ii) $d_{j} \geq k$. This is true for all neighbors j of i. Hence $d_{j}=k$.
(ii) From Lemma $2.1 \sum_{w \in V G} d_{w}^{2}=\sum_{w \in V G} d_{w} m_{w}$,

$$
d_{i}^{2}+d_{i} k^{2}+\sum_{w \notin\{i\} \cup G_{1}(i)} d_{w}^{2}=k d_{i}+k^{2} d_{i}+\sum_{w \notin\{i\} \cup G_{1}(i)} k d_{w} .
$$

Hence

$$
\begin{aligned}
k^{4}-7 k^{3}+22 k^{2}-35 k+25 & \leq \sum_{w \notin i\} \cup G_{1}(i)} d_{w}\left(k-d_{w}\right) \\
& \leq\left(\frac{k}{2}\right)^{2}\left(n-1-\left(k^{2}-3 k+5\right)\right)
\end{aligned}
$$

Note that for $k=3, k^{2}-3 k+5=5$ and $f(3)=11$.

Now we try to characterize the pseudo k-regular graphs. It is easily seen that a graph is pseudo k-regular if and only if each component of it is pseudo k-regular. Hence we just focus on the characterization of connected pseudo k-regular graphs.

The first two cases of pseudo k-regular graphs are easy to settle.

Lemma 3.8. If G is connected pseudo 1-regular then G is K_{2}.

Lemma 3.9. If G is connected pseudo 2-regular then G is a cycle or T_{2}.

Proof. Note that $\Delta(G)=2$ or 3 , and the first implies that G is a cycle and the latter implies that $G=T_{2}$.

Pseudo k-regular graphs is also called harmonic graphs [8], and finite harmonic tree are already given. But for the complete of this thesis we reprove the Theorem as follow.

Theorem 3.10. [8, Theorem 2.1] If G is a pseudo k-regular tree, then $G=$ T_{k}.

Proof. By Lemma 3.8 and Lemma 3.9, the assumption holds for each $k \leq 2$. Let $G=(V G, E G)$ be a pseudo k-regular tree with $k \geq 3$. Pick any $v \in V G$ with $d_{v} \geq 2$ as a root. Since a star is not pseudo k-regular, there exists a leaf x with parent $y \neq v$, such that all children of y are leaves. Then y has degree k by Lemma 3.6 and has $k-1$ children as leaves. Hence the degree of root $d_{v}=k m_{y}-(k-1)=k^{2}-k+1$. This concludes that $G=T_{k}$ by Definition 3.4.

We shall study pseudo k-regular graph with the second largest degree $k^{2}-k$.

Definition 3.11. Let U_{k} be the tree of order $k^{3}-k^{2}+1$ whose root has degree $k^{2}-k$ and each neighbor of the root has $k-1$ children as leafs.

Figure 3.6: The graph U_{3} with type A vertices.

We shall select some vertices from a graph and call them type A vertices. In general a type A vertex has degree 1 and its unique neighbor j has $d_{j}=k$ and $m_{j}=\left(k^{2}-t\right) / k$, where t is the number of type A neighbors of j (in U_{k}, $t=1$).

Let M_{k} be the graph obtained from U_{k} by identifying $\left(k^{2}-k\right) / 2$ pairs of type A vertices into $\left(k^{2}-k\right) / 2$ vertices. Then M_{k} gives a pseudo k-regular graphs with maximum degree $k^{2}-k$ for each $k \geq 3$.

Figure 3.7: The graph M_{3}.

Proposition 3.12. If G is a pseudo k-regular graph with a vertex x of degree $k^{2}-k$, then the subgraph induced on $\{x\} \cup G_{1}(x) \cup G_{2}(x)$ is U_{k} with possibly even number of vertices in type A being identified in pairs. Moreover a type A vertex not been identified with another one has degree 2 in G.

Proof. Let y be a neighbor of x. Then y has degree $d_{y}=k$ by Corollary 3.7(i), and has a neighbor $z \neq x$ of degree $d_{z} \geq 2$ by Theorem 3.5. Hence $k^{2}=$ $d_{y} m_{y} \geq d_{x}+d_{z}+\left(d_{y}-2\right) \geq\left(k^{2}-k\right)+2+(k-2)=k^{2}$. This implies that $d_{z}=2$ and the remaining vertices $w \notin\{x, z\}$ of y have degree $d_{w}=1$. Note that z, w have distance two to x. As one neighbor of z has degree k, the other neighbor of z also has degree k. Hence the vertex z might adjacent to some neighbor of x or to some vertex of degree k and at distance 3 to x.

Let \mathcal{E}_{k} be a family of graphs constructed as the following. Firstly pick a bipartite $(k-1)$-regular graph of order $2(2 k-1)$ with bipartition $X \cup Y$, where $|X|=|Y|=2 k-1$. Then add a new vertex connecting to all vertices of X. One can check that graphs in \mathcal{E}_{k} are pseudo k-regular of order $4 k-1$ with maximum degree $2 k-1$.

Figure 3.8: The graphs in \mathcal{E}_{k}.

By a switching on G, we mean a process to obtain a new graph G^{\prime} by removing two edges $x y$ and $u v$ such that $d_{x}=d_{u}$ and $d_{y}=d_{v}$ and adding two new edges $x v$ and $y u$ to form a new graph, where $x v$ and $y u$ are not edges in G. In this case G and G^{\prime} are called switching equivalent

Figure 3.9: Switching.

Figure 3.10: The graph $E_{3} \in \mathcal{E}_{3}$.

Every graph in \mathcal{E}_{3} is switching equivalent to E_{3}.

From Corollary 3.7 (ii), we know a pseudo 3-regular graph with maximum degree at least 5 has at least $f(3)=11$ vertices. All the graphs in \mathcal{E}_{k} are extremal for this property.

Let \mathcal{F}_{k} be a family of graphs constructed as the following. Firstly pick any $(k-2)$-regular graph H of order $(2 k-1)(k-1)$, not necessary connected.

Secondly add $(2 k-1)(k-1)$ new vertices of degree 1 by connecting them to vertices of H one by one. Finally partition the vertex set of H into $k-1$ blocks of equal size $2 k-1$ and connect all vertices in a block to a new vertex to make it degree $2 k-1$. One can check that graphs in \mathcal{F}_{k} are pseudo k-regular with maximum degree $2 k-1$.

Figure 3.11: The graphs in \mathcal{F}_{3}.

Figure 3.12: The graph $F_{3} \in \mathcal{F}_{3}$.

Every graph in \mathcal{F}_{3} is switching equivalent to F_{3}.

Now we restrict our attention to pseudo 3-regular graph G.

Note that the maximum degree $3 \leq \Delta(G) \leq k^{2}-k+1=7$ and the case $\Delta(G)=7$ is solved by Theorem 3.5 and Theorem 3.10.

The local structure of a maximum degree $\Delta(G)=6$ is obtained in Proposition 3.12 for $k=3$.

The following lemma is immediate from Corollary 3.7.

Lemma 3.13. Let G be a pseudo 3 -regular graph with a vertex i of degree $d_{i}=5$. Then all neighbors j of i have degree $d_{j}=3$, and the neighbors of j have degree sequence (5, 2, 2) or (5, 3, 1).

Proposition 3.14. If G is a pseudo 3 -regular graph with a vertex i of degree 5, then the subgraph induced on $G_{1}(i)$ is union of disjoint edges or isolated vertices, and each endpoint of an edge is adjacent to a vertex of degree 1 in $G_{2}(i)$ and each isolated vertex is adjacent to two vertices in $G_{2}(i)$ with degrees $(3,1)$ or $(2,2)$.

Figure 3.13: Graphs with $\Delta(G)=5$.

Now we study the local structure of a vertex of degree 4 in a pseudo k-regular graph.

Lemma 3.15. Let G be a pseudo 3 -regular graph. Then the neighbor degree sequence of a vertex of degree 4 is $(3,3,3,3),(4,3,3,2)$, or $(4,4,2,2)$.

Proof. Let (a, b, c, d) be a degree sequence of the neighbors of a vertex i of degree $d_{i}=4$, where $a \geq b \geq c \geq d$. Note that $a \leq 4$ otherwise $d_{i}=3$ by Corollary 3.7 (i). Then $a+b+c+d=d_{i} \cdot 3=12$. By checking all possible such sequences (a, b, c, d), we find these are as listed in the lemma or $(4,4,3,1)$, which is impossible since the neighbor of a leaf must have degree 3 .

Proposition 3.16. If G is a pseudo 3 -regular graph with a vertex i of degree 4 and the neighbor degree sequence of i is $(3,3,3,3)$, then the subgraph induced on $G_{1}(i)$ is union of disjoint edges or isolated vertices, and each endpoint of an edge is adjacent to a vertex of degree 2 in $G_{2}(i)$ (possibly identified in pairs) and each isolated vertex is adjacent to two vertices in $G_{2}(i)$ with degrees 2,3 or degrees 1,4 .

Figure 3.14: Graphs with $\Delta(G)=4$ and the neighbor degree sequence of a vertex of degree 4 is $(3,3,3,3)$.

In Figure 3.14 we have $1+\left|G_{1}(i)\right|+\left|G_{2}(i)\right| \geq 7$.

Figure 3.15: The graph has $\Delta(G)=4$ with degree sequence $(3,3,3,3)$.

Proposition 3.17. If G is a pseudo 3-regular graph with a vertex i of degree 4 and the neighbor degree sequence of i is (4,3,3,2), then the neighbor of i with degree 2 in G is isolated in $G_{1}(i)$, and the neighbor of i with degree 3 in G has at most one neighbor in $G_{1}(i)$.

Figure 3.16: Graphs with $\Delta(G)=4$ and the neighbor degree sequence of a vertex of degree 4 is $(4,3,3,2)$.

In Figure 3.16 we have $1+\left|G_{1}(i)\right|+\left|G_{2}(i)\right| \geq 8$.

Figure 3.17: The graph has $\Delta(G)=4$ with degree sequence $(4,3,3,2)$.

Proposition 3.18. If G is a pseudo 3 -regular graph with a vertex i of degree 4 and the neighbor degree sequence of i is $(4,4,2,2)$, then the neighbor of i with degree 2 in G is not connected to a neighbor of i with degree 4 in G.

Figure 3.18: Graphs with $\Delta(G)=4$ and the neighbor degree sequence of a vertex of degree 4 is $(4,4,2,2)$.

In Figure 3.18 we have $1+\left|G_{1}(i)\right|+\left|G_{2}(i)\right| \geq 9$.

Figure 3.19: The graph has $\Delta(G)=4$ with degree sequence $(4,4,2,2)$.

We will list all pseudo 3-regular graphs which are not regular of order within 10. From Corollary 3.7 (ii), such graphs have maximum degree 4.

Lemma 3.19. Let G be a connected pseudo 3 -regular graph with $\Delta(G)=4$ and $a_{j}:=\left|\left\{i \mid d_{i}=j\right\}\right|$ for $j=1,2,3,4$. Then
(i) $a_{1}+a_{2}=2 a_{4}$,
(ii) $|V G|=a_{3}+3 a_{4}$,
(iii) $a_{1} \leq a_{3}$,
(iv) a_{1}, a_{2}, a_{3} have same parity.

Proof. (i) and (ii) follow from solving

$$
0=\sum_{i \in V G}\left(m_{i}-d_{i}\right) d_{i}=\sum_{i \in V G}\left(3-d_{i}\right) d_{i}=a_{1} \cdot 2+a_{2} \cdot 2+a_{4}(-4) .
$$

(iii) follows since there exists an injection from the set of degree one vertices into set of degree 3 vertices. Since there are even number of vertices of odd degrees, $a_{1}+a_{3}$ is even. The remaining follows from (i) and (ii). This proves (iv).

From the above lemma, the following is the possible sequence of ($n, a_{4}, a_{3}, a_{2}, a_{1}$) for a connected pseudo 3-regular graph of order n with $\Delta(G)=4$ and $7 \leq n \leq 10$.

$$
\begin{aligned}
& \left(n, a_{4}, a_{3}, a_{2}, a_{1}\right) \\
= & (10,3,1,5,1),(10,2,4,4,0),(10,2,4,2,2),(10,2,4,0,4),(10,1,7,1,1) \\
= & (9,3,0,6,0),(9,2,3,3,1),(9,2,3,1,3),(9,1,6,2,0),(9,1,6,0,2) \\
= & (8,2,2,4,0),(8,2,2,2,2),(8,1,5,1,1) \\
= & (7,2,1,3,1),(7,1,4,2,0),(7,1,4,0,2) .
\end{aligned}
$$

One can check directly that there is no graph whose corresponding sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)$ is $(10,3,1,5,1),(10,2,4,2,2),(10,1,7,1,1),(9,2,3,1,3)$, $(9,1,6,0,2),(8,2,2,4,0),(8,1,5,1,1),(7,2,1,3,1)$, or $(7,1,4,0,2)$.

Small pseudo 3-regular but not 3-regular graphs are listed as follows.

$$
|V G|=7:
$$

Figure 3.20: Graphs with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(7,1,4,2,0)$.

$$
|V G|=8:
$$

Figure 3.21: The graph with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(8,2,2,2,2)$.
$|V G|=9:$

(Switching equivalent)

Figure 3.22: Graphs with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(9,3,0,6,0)$.

Figure 3.23: The graph with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(9,2,3,3,1)$.

(Switching equivalent)

Figure 3.24: Graphs with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(9,1,6,2,0)$.
$|V G|=10:$

(Switching equivalent)

Figure 3.25: Graphs with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(10,2,4,4,0)$.

Figure 3.26: The graph with sequence $\left(n, a_{4}, a_{3}, a_{2}, a_{1}\right)=(10,2,4,0,4)$.

Under what kind of partial information of the pairs $\left(d_{i}, m_{i}\right)$, one can conclude the diameter of G is at most 6 .

In our study of pseudo k-regular graph with a vertex of the maximum degree $k^{2}-k+1$, the obtained graph T_{k} has diameter 4.

The vertices with large degrees should also play an important role in other graphs.

Bibliography

[1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, and American Elsevier, New York (1973).
[2] B. Bollobàs, Extremal Graph Theory, Academic Press, New York (1978).
[3] Y. Chen and R. Pan, and X. Zhang, Two sharp upper bounds for the signless Laplacian spectral radius of graphs, Discrete Mathematics, Algorithms and Applications 3 (2011), 185-191.
[4] K.C. Das, A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs, Linear Algebra and its Applications 376 (2004), 173-186.
[5] P. Erdös, T. Gallai, Graphs with prescribed degrees of vertices (Hungarian), Matematikai Lapokt 11 (1960), 264-274.
[6] D.R. Fulkerson, A.J. Hoffman, and M.H. McAndrew. Some properties of graphs with multiple edges, Canadian Journal of Mathematics 17 (1965), 166-177.
[7] B. Grünbaum, Graphs, and complexes, Report of the university of Washington, Seattle, Mathematic 572B (1969).
[8] S. Grun̈ewald, Harmonic trees, Applied mathematics letters 15 (2002), 1001-1004.
[9] S.L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, Journal of the Society for Industrial and Applied Mathematics 10 (1962), 496-506.
[10] W. Hässelbarth, Die Verzweigtheit von Graphen, Match 16 (1984), 3-17.
[11] V. Havel, A remark on the existence of finite graphs (Hungarian), Casopis Pest. Mat. 80 (1955), 477-480.
[12] Y. P. Huang and C. W. Weng, Spectral radius and average 2-degree sequence of a graph, Discrete Mathematics, Algorithms and Applications 6 (2014).
[13] J.S. Li and Y.L. Pan, De Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph, Linear Algebra and its Applications 328 (2001), 153-160.
[14] J.S. Li and X.D. Zhang, On Laplacian eigenvalues of a graph, Linear Algebra and its Applications 285 (1998), 305-307.
[15] R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra and its Applications 285 (1998), 33-35.
[16] H. Minc, Nonnegative Matrices, John Wiley and Sons, New York, 1988.
[17] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canadian Journal of Mathematics 9 (1957), 371-377.
[18] G. Sierksma, H. Hoogeveen, Seven criteria for integer sequences being graphic, Journal of Graph Theory 15 (1991), 223-231.
[19] D.L. Wang and D.J. Kleitman, On the existence of N-connected graphs with prescribed degrees ($n \geq 2$), Networks 3 (1973), 225-239.
[20] A. M. Yu, M. Lu and F. Tian, On the spectral radius of graphs, Linear Algebra and its Applications 387 (2004), 41-49.
[21] X.D. Zhang, Two sharp upper bounds for the Laplacian eigenvalues, Linear Algebra and its Applications 376 (2004), 207-213.

