
國 立 交 通 大 學

應 用 數 學 系

碩 士 論 文

Combinatorial Identities
from Lagrange’s Interpolation Polynomial

拉格朗日插值多項式與組合恆等式

研究生 ：黃嬿蓉

指導教授 ：翁志文 教授

中 華 民 國 一 百 零 四 年 六 月



Combinatorial Identities

from Lagrange’s Interpolation Polynomial

拉 格 朗 日 插 值 多 項 式 與 組 合 恆 等 式

Student: Yen-Jung Huang Advisor: Chih-Wen Weng

研究生: 黃嬿蓉　 指導教授：翁志文 教授

國 立 交 通 大 學

應 用 數 學 系

碩 士 論 文

A Thesis
Submitted to Department of Applied Mathematics

College of Science
National Chiao Tung University

in Partial Fulfillment of Requirements
for the Degree of Master
in Applied Mathematics

June 2015
Hsinchu, Taiwan, Republic of China

中 華 民 國 一 百 零 四 年 六 月



拉 格 朗 日 插 值 多 項 式 與 組 合 恆 等 式

研究生：黃嬿蓉 指導教授：翁志文教授

國立交通大學

應用數學系

摘 要

對任意實多項式 g(x) 及相異數所組成的無窮數列 a = (a0, a1, . . .)，本論文定

義一個實數列 La(g(x), n)。本文研究發現 La(x
k, n) 與某種拉格朗日插值多項式的

係數有關，同時也是第二類斯特靈數的推廣。本文進行與數列 La(g(x), n) 有關的

恆等式及組合結構之研究。

關鍵詞：拉格朗日插值多項式、第二類斯特靈數。
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Combinatorial Identities from Lagrange
Interpolation Polynomial

Student: Yen-Jung Huang Advisor: Chih-Wen Weng

Department of Applied Mathematics

National Chiao Tung University

Abstract

For a given real polynomial g(x) and infinite sequence a = (a0, a1, . . .) of distinct

real numbers, we define the sequence La(g(x), n). We find that La(x
k, n) appears

in coefficient of a term of some Lagrange’s interpolation polynomial, and is also

a generalization of the Stirling number of the second kind. Further properties of

La(g(x), n) related to identities and combinatorial structure are given.

Keywords: Lagrange’s interpolation polynomial, Stirling number of the second

kind.

ii



Contents

Abstract (in Chinese) i

Abstract (in English) ii

1 Introduction 1

2 Generalized Stirling number of the second kind 3
2.1 Identities . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Three-term recurrence relation . . . . . . . . . . . . . . 4
2.3 Three bases . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Generalized Stirling number of the second kind . . . . 6
2.5 An interpretation of La(x

k, n) . . . . . . . . . . . . . . 8
2.6 A conjecture . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Some recurrence relations 10
3.1 Triangle boards . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Compare with Section 2.2 . . . . . . . . . . . . 11
3.2 Euler’s formula for the n-th differences of powers . . . 12

3.2.1 Compare with Definition 2.1 . . . . . . . . . . . 12

4 q-analogue 15
4.1 n-dimensional subspace . . . . . . . . . . . . . . . . . . 15

4.1.1 Compare with Section 2.2 . . . . . . . . . . . . 16
4.2 q-Stirling number of the second kind . . . . . . . . . . 17

4.2.1 Three term recurrence relation . . . . . . . . . 17

iii



5 Conclusions 19

Bibliography 20

iv



Chapter 1

Introduction

This thesis is motivated from [8] in which identities obtained from Lagrange’s in-
terpoation polynomial are given. The Lagrange’s Interpolation polynomial was first
published by Waring in 1779, rediscovered by Euler in 1783, and published by La-
grange in 1795[7]. Here, the definition was given as follows:

Definition 1.1. Given n+1 distinct points (a0,y0), . . ., (an,yn) in a plane, not two
of them in a vertical line, the Lagrange’s interpolation polynomial with respect
to these points, is defined as

n∑
i=0

yi ·
n∏

j=0
j ̸=i

x− aj
ai − aj

.

Note that the above polynomial is the unique polynomial of degree ≤ n that
goes through these n+ 1 points.

Throughout the thesis, let a = (a0, a1, . . .) denote a given infinite sequence of
some numbers. According to Lagrange’s interpolation polynomial and Euclidean
division algorithm, for any natural number n ∈ N and any polynomial g(x), there
exists a polynomial q(x) such that

g(x) = (x− a0)(x− a1) · · · (x− an)q(x) +
n∑

i=0

g(ai) ·
n∏

j=0
j ̸=i

x− aj
ai − aj

. (1.1)

Note that the n+ 1 points (a0, g(a0)), . . . , (an, g(an)) are in g(x).

In this thesis, g(x) is used to construct a new number La(g(x), n). In chapter 2,
we find that when g(x) = xk and a = (0, 1, 2, . . .), La(x

k, n) is the Stirling number
of the second kind. Then we derive a recurrence relation for La(g(x), n). In chapter
3, we modify the application of the Stirling number of the second kind to find our
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application of La(x
k, n). In chapter 4, we find that a q-analogue of Stirling number

of the second kind is a special case of our La(x
k, n). Finally, conclusion is in chapter

5.
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Chapter 2

Generalized Stirling number of the
second kind

Recall that a = (a0, a1, . . .) is an infinite sequence of some numbers. The following
is the main definition in the thesis.

Definition 2.1. Given a real polynomial g(x), define the sequence {La(g(x), n)}∞n=0

as
La(g(x), n) :=

n∑
i=0

g(ai)∏
j ̸=i(ai − aj)

.

Note that La(g(x), 0) = g(a0).

Lemma 2.2. The number

La(g(x), n) :=
n∑

i=0

g(ai)∏
j ̸=i(ai − aj)

appears in the coefficient of xn of the remainder when g(x) is divided by (x−a0)(x−
a1) · · · (x− an).

Proof. This is clear from (1.1).

Lemma 2.3. If g(x) is a polynomial of degree n then

La(g(x), n) = leading coefficient of g(x).

Proof. By comparing the coefficients of xn in both sides from (1.1).

2.1 Identities
The following theorem is from [8], which provide many identities.
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Theorem 2.4. If g(x) is a polynomial of degree at most n− 1 then

La(g(x), n) = 0.

Proof. This is clear from Lemma 2.2.

Taking n = 2, deg(g(x)) = 1, ai = πi, we have the following nontrivial identity.

1

(1− π)(1− π2)
+

π

(π − 1)(π − π2)
+

π2

(π2 − 1)(π2 − π)
= 0.

2.2 Three-term recurrence relation
The following lemma says that La(g(x), n) is linear on g(x).

Lemma 2.5.

La(g(x) + c · h(x), n) = La(g(x), n) + cLa(h(x), n)

for c ∈ R and polynomials g(x), h(x) ∈ R[x].

Proof. By Definition 2.1,

La(g(x) + c · h(x), n) =
n∑

i=0

g(ai) + ch(ai)∏
j ̸=i(ai − aj)

=
n∑

i=0

g(ai)∏
j ̸=i(ai − aj)

+
n∑

i=0

ch(ai)∏
j ̸=i(ai − aj)

= La(g(x), n) + cLa(h(x), n).

The following lemma shows that recurrence relations of La(g(x), n) and La(x
k, n),

which let us receive some special cases.

Lemma 2.6. For integers k, n ≥ 1, the following (i)-(ii) hold.

(i)
La((x− an)g(x), n) = La(g(x), n− 1); (2.1)

(ii)
La(x

k, n) = La(x
k−1, n− 1) + anLa(x

k−1, n). (2.2)
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Proof. (i) Note that

La(xg(x), n) : =
n∑

i=0

aig(ai)∏
j ̸=i(ai − aj)

=
n∑

i=0

(ai − an)g(ai) + ang(ai)∏
j ̸=i(ai − aj)

=
n∑

i=0

(ai − an)g(ai)∏
j ̸=i(ai − aj)

+ an

n∑
i=0

g(ai)∏
j ̸=i(ai − aj)

= La(g(x), n− 1) + anLa(g(x), n).

Hence
La(xg(x), n)− anLa(g(x), n) = La(g(x), n− 1).

By Lemma 2.5,
La((x− an)g(x), n) = La(g(x), n− 1).

(ii) Set g(x) = xk−1 in (i).

2.3 Three bases
This section studies three bases of R[x]n, the vector spaces of real polynomials of
degree at most n. The first one {xi}ni=0 is clear to be a basis of R[x]n. Define Ei(x)

and [xa]i as follows:

Ei(x) :=
n∏

j=0
j ̸=i

(x− aj),

[xa]i :=(x− a0)(x− a1) · · · (x− ai−1) (here [xa]0 := 1).

The following lemma shows that they are bases.

Lemma 2.7.
{Ei(x)}ni=0, {[xa]i}ni=0

are bases of the vector space R[x]n.

Proof. The set of polynomials {[xa]i}ni=0 is a base because [xa]i is degree of i for all
i. {[xa]i}ni=0 contains degree 1 to degree n. In order to show {Ei(x)}ni=0 is a base of
R[x]n, show

∑n
i=0 biEi(x) = 0 is needed where bi = 0 for all i. First, set x = a0 in∑n

i=0 biEi(x) = 0. Then b0
∏n

j=0
j ̸=0

(a0 − aj) = 0. Because
∏n

j=0
j ̸=0

(a0 − aj) ̸= 0, b0 = 0.
Set x = a1, . . . , an in

∑n
i=0 biEi(x) = 0. Hence b2, . . . , bn = 0.
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Note that in the new notation,

La(g(x), n) =
n∑

i=0

g(ai)

Ei(ai)
,

and
xk =

n∑
i=0

aki
Ei(ai)

Ei(x) =
n∑

i=0

Ta(k, i)Ei(x), (2.3)

where
Ta(k, i) :=

aki
Ei(ai)

.

If ai = i in (2.3), then Ei(i) = (−1)n−ii!(n− i)! and

xk =
n∑

i=0

ik

(−1)n−ii!(n− i)!
Ei(x) =

n∑
i=0

T (k, i)Ei(x),

where the number
T (k, i) :=

(−1)n−iik

i!(n− i)!
=

(
n

i

)
ik

n!

does not have a name to our knowledge.

Problem 2.8. The following two problems are for further study.

(i) Find a combinatorial interpretation of Ta(k, i).

(ii) Find a combinatorial interpretation of La(x
k, n) in general.

This study will answer (ii) of the above problem in the special case ai = i in the
Section 2.5.

2.4 Generalized Stirling number of the second kind
As both {xk}nk=0 and {[xa]k}nk=0 are bases of R[x]n,

xk =
n∑

i=0

Sa(k, i)[xa]i (2.4)

for some scalars Sa(k, i) ∈ R.

Definition 2.9. The number Sa(k, n) is called the generalized Stirling number
of the second kind.
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In the special case ai = i of Definition 2.9, the number Sa(k, n), denoted by
S(k, n), is called the Stirling number of the second kind [2].

Stirling number is named after James Stirling and defined in the 18th century.
There are two kinds of Stirling number: Stirling number of the first kind and Stirling
number of the second kind. These two numbers are well-known in combinatorics.
In [5], S(k, n) is defined as the number of all partitions of an k-set into n nonempty
subsets. One can use Principle of Inclusion and Exclusion to explain it. Note that

n!S(k, n) =
n∑

i=0

(−1)n−i

(
n

i

)
ik

=
n∑

i=0

(−1)i
(
n

i

)
(n− i)k,

is the number of surjective functions from [k] := {1, 2, . . . , k} into [n]. Hence S(k, n)

is the number of partitions of {1, 2, . . . , k} into n indistinguishable nonempty boxes.

We close this section by showing that the sequence Sa(k, n) also satisfies a three-
term recurrence relation.

Theorem 2.10.

Sa(k, n) = Sa(k − 1, n− 1) + anSa(k − 1, n). (2.5)

Proof. Compare coefficients of [xa]i in (2.2). Hence
n∑

i=0

Sa(k, i)[xa]i = xk = xk−1x.

Use (2.4) and take k as k − 1. x can be replace with x− ai−1 + ai−1. Then
n∑

i=0

Sa(k, i)[xa]i =
n∑

i=1

Sa(k − 1, i− 1)[xa]i−1(x− ai−1 + ai−1).

Write two summations as
n∑

i=0

Sa(k, i)[xa]i =
n∑

i=1

Sa(k−1, i−1)[xa]i−1(x−ai−1)+
n∑

i=1

Sa(k−1, i−1)[xa]i−1ai−1.

Change initial number of i from 1 to 0. Then
n∑

i=0

Sa(k, i)[xa]i =
n∑

i=0

(Sa(k − 1, i− 1) + aiSa(k − 1, i))[xa]i.
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2.5 An interpretation of La(x
k, n)

Lemma 2.11. For k < n, La(x
k, n) = Sa(k, n).

Proof. Note that Sa(k, n) = 0 by (2.4), and La(x
k, n) = 0 by Theorem 2.4.

We will prove that this is also true for k > i later. Note that Sa(k, 0) = ak0.

The following theorem shows that Sa(k, n) is a special case of La(g(x), n). In this
thesis, we focus on La(x

k, i).

Theorem 2.12.
La(x

k, n) = Sa(k, n).

Proof. We have proved the case for k < n, indeed both being zero. It is clear
from their definitions La(x

k, k) = 1 = Sa(k, k). Now the theorem follows from
Theorem 2.10 since both sequences satisfy the same pattern of three-term recurrence
relation.

Corollary 2.13.
aki∏

j ̸=i(ai − aj)
= Sa(k, i)− Sa(k, i− 1).

Proof. This corollary is received by Theorem 2.12 and Definition 2.1.

2.6 A conjecture
In this section, we will give a conjecture which is related to generalized unsigned
Stirling number of the first kind. First, recall the definition of the unsigned Stirling
number of the first kind.

Definition 2.14. In [5], c(k, i) is the number of permutations π ∈ Sk with exactly
i cycles. Then c(k, i) is called signless Stirling number of the first kind.

Corollary 2.15. In [5], there is the result:

k∑
i=0

c(k, i)xi = x(x+ 1) · · · (x+ k − 1).

It is also equals to

k∑
i=0

(−1)k−ic(k, i)xi = x(x− 1) · · · (x− k + 1).

8



The following definition is generalized signless Stirling number of the first kind
by Corollary 2.15. This is similar to the definition of generalized Stirling number of
the second kind.

Definition 2.16. ca(k, i) is the generalized signless Stirling number of the
first kind:

n∑
i=0

(−1)n−ica(k, i)x
i = [xa]k. (2.6)

Definition 2.17. Choose ta(n, k, i) ∈ R such that

Ek(x) =
n∑

i=0

(−1)n−ita(n, k, i)x
i. (2.7)

Note that
ta(n, k, 0) = a0a1 · · · âk · · · an,

and
ta(n, k, i) =

∑
|S|=n−i

S⊆{0,1,...,k̂,...,n}

∏
j∈S

aj,

where âk means that ak is not contained.

Conjecture 2.18.

i∑
j=0

ta(n, k, j) = ca(k, i), ta(n, k, i) = ca(k, i)− ca(k, i− 1).

The easiest way is comparing their coefficient in (2.6) and (2.7). Then we may
receive their relations.
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Chapter 3

Some recurrence relations

Here are two well-known questions and their recurrence relations. The first section
introduces triangle boards question [1]. This question tells that counting how many
ways we put k rooks on triangle board of size m such that these k rooks are non-
attacking. Then we use the result of [1] to connected to La(x

k, n). Second question
tells that using difference table to get Euler’s formula [3]. Then we will get Euler’s
formula is related to La(x

k, n).

3.1 Triangle boards
A triangle board of size m is a board consisting of m layers of unit squares and the
i-th layer from the top has i consecutive unit squares from the left. See below for a
triangle board of size 3.

We want to place k non-attacking rooks on a triangle board of size m and
k ≤ m. By placing of rooks on a triangle board of size m, we mean a subset
p of {1, 2, . . . ,m} × {1, 2, . . . ,m} such that if (i1, j1), (i2, j2) are distinct pairs in
p then i2 ̸= i1, j2 ̸= j1 and j1 ≤ i1. Let Rp := {i | (i, j) ∈ p} for a plac-
ing p. Fix a sequence w = (w1, w2, . . . , wm) of row weights wi. For a placing
p = {(p1, q1), (p2, q2), . . . , (pk, qk)}, where p1 < p2 < · · · < pk, define the placing
weight wp :=

∏
i∈Rp

wpi−i+1 of p, and total weight Wk,m :=
∑

p wp, where the sum is
over all placing p of size |Rp| = k. We want to compute the total weight Wk,m of k
non-attacking rooks on a triangle board of size m.
Note that if wi = 1 then Wk,m is the number of ways to place k non-attacking rooks

10



on a triangle board of size m. The following theorem shows the recurrence relation
of Wk,m.

Theorem 3.1.

Wk,m = Wk,m−1 + wm−k+1(m− k + 1)Wk−1,m−1.

Proof. To place k non-attacking rooks on a triangle board of size m, one can either
place them all on the first m − 1 layers or place k − 1 of them on the first m − 1

layers and the last one on the bottom. The first case contributes to number Wk,m−1

to the total weight. In the latter case, after that k − 1 rooks are placed on the first
m− 1 layers, there are m− (k − 1) positions on the bottom can be chosen to place
the last rook.

3.1.1 Compare with Section 2.2
The following theorem shows the relation of Sa(k, n) and Wk,m.

Theorem 3.2. Given row weights wi, let ai = iwi. Then

Sa(m+ 1,m+ 1− k) = Wk,m,

where 0 ≤ k ≤ m.

Proof. By induction on k+m. If k+m = 0 then m = k = 0 and Sa(1, 1) = W0,1 = 1.

In general
Wk,m = Wk,m−1 + wm−k+1(m− k + 1)Wk−1,m−1.

By induction hypothesis, Sa(m,m−k) = Wk,m−1 and Sa(m,m−k+1) = Wk−1,m−1.
Hence, write Wk,m as

Wk,m = Sa(m,m− k) + am−k+1Sa(m,m− k + 1).

By Theorem 2.10, write Wk,m as

Wk,m = Sa(m+ 1,m+ 1− k).

By Theorem 3.2 and Theorem 2.12, we will get Wk,m and La(x
k, n) whose rela-

tions are below.

Proposition 3.3.
Wk,m = La(x

m+1,m+ 1− k).

Thenthe total weight Wk,m of k non-attacking rooks on a triangle board of size
m is equal to

La(x
m+1,m+ 1− k) =

m+1∑
m+1−k=0

am+1
i∏

j ̸=i(ai − aj)
,

where ai = wii.
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3.2 Euler’s formula for the n-th differences of pow-
ers

Consider g(x) be a polynomial. Let b0 = g(0), . . ., bi = g(i), . . . be a sequence.
Now, we define a new sequence ∆b0, . . ., ∆bi,. . . where ∆bi = bi+1 − bi (i ≥ 0). This
sequence called first difference. We can also define sequence ∆jb0, . . ., ∆jbi,. . . as
jth difference where ∆jbi = ∆(∆j−1bi).
The difference table is obtained from sequences b0, . . ., bi, . . . laid on 0th row and
∆jb0, . . ., ∆jbi, . . . laid on jth row.
For example, g(x) = x4 difference table as follows.

0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561 · · ·
1, 15, 65, 175, 369, 671, 1105, 1695, 2465 · · ·
14, 50, 110, 194, 302, 434, 590, 770 · · ·

36, 60, 84, 108, 132, 156, 180 · · ·
24, 24, 24, 24, 24, 24 · · ·

0, 0, 0, 0, 0 · · ·

Next, we define h(g(x), n) as the difference table of the first number of nth row.

Lemma 3.4.
h(g(x), n) :=

n∑
i=0

(−1)n−i

(
n

i

)
g(i).

When g(x) = xk,

h(xk, n) =
n∑

i=0

(−1)n−i

(
n

i

)
ik.

Lemma 3.5.

h(xk, n) =

{
0, if 0 ≤ k < n;
n!, if k = n.

There are two cases of k. Both of them are proved by induction in [3].

3.2.1 Compare with Definition 2.1
The following proposition shows the relation of h(xk, n) and La(x

k, n).

Proposition 3.6.
h(xk, n) = n! · La(x

k, n),

where a = (0, 1, . . . , n, . . .).

12



Proof.

h(xk, n) =
n∑

i=0

(−1)n−i

(
n

i

)
ik

=
n∑

i=0

(−1)n−in!ik

i!(n− i)!

= n!
n∑

i=0

(−1)n−iik

i!(n− i)!

= n!S(k, n) = n!La(x
k, n),

where a = (0, 1, . . . , n, . . .).

Hence, h(xk, n) is the number of surjective functions from [k] := {1, 2, . . . , k}
into [n].

Lemma 3.7. In [2], let g(x) be a polynomial of degree p

g(x) = apx
p + ap−1x

p−1 + · · ·+ a1x+ a0.

Then ∆p+1g(i) = 0 for all i ≥ 0.

Proof. By induction on p. If p = 0 then g(x) = a0 is a constant. Hence ∆g(i) =

g(i+ 1)− g(i) = 0. In general

∆g(i) = g(i+ 1)− g(i)

= (ap(i+ 1)p + ap−1(i+ 1)p−1 + · · ·+ a1(i+ 1) + a0)

−(ap(i)
p + ap−1(i)

p−1 + · · ·+ a1(i) + a0).

By binomial theorem,

ap(i+ 1)p − ap(i)
p = ap(i

p +

(
p

1

)
ip−1 + · · ·+ 1)− ap(i)

p

= ap(

(
p

1

)
ip−1 + · · ·+ 1).

Because ∆g(i)’s degree is at most p− 1, it is know that ∆p+1g(i) = ∆p(∆g(i)) = 0

by induction hypothesis.

Because of Lemma 2.3 and Theorem 2.4, we try to derive a Theorem by using
Lemma 3.7 as follows. Then we will get whether h(g(x), n) is related to La(g(x), n).

Theorem 3.8.

h(g(x), n) =

{
0, if 0 ≤ deg(g(x)) < n;
leading coefficient of g(x) · n!, if deg(g(x)) = n.

13



Proof. By Lemma 3.5, we can find that when 0 ≤ deg(g(x)) < n, h(g(x), n) is 0.
Next, we consider the case for deg(g(x)) = n. In Lemma 3.5, we can separate g(x) as
anx

n, . . ., a0. Then we write down difference table of xi for all i. Next, we combine
all the difference tables of anxn, . . ., a0 so this difference table is also the difference
table of g(x). Then by Lemma 3.7 we will get leading coefficient of g(x) · n!.

The following corollary is received by Theorem 3.8, Lemma 2.3 and Theorem 2.4.

Corollary 3.9. When deg(g(x)) ≤ n,

h(g(x), n) = n! · La(g(x), n).
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Chapter 4

q-analogue

In this chapter, the first section introduces n-dimensional subspace in the beginning.
In this section, we derive recurrence relation of n-dimensional subspace. Then we use
previous result to get La(x

k, n) is related to n-dimensional subspace problem. The
second section introduces q-Stirling number of the second kind. It is q-analogue of
Stirling number of the second kind. Then the result is that it is relatd to La(x

k, n).

4.1 n-dimensional subspace
Definition 4.1. Let A(1), . . . ,A(n) be a sequence of n distinct numbers. If i < j

and A(i) > A(j), then the pair (i, j) is called an inversion of A.
The inversion number inv(A) is defined to be the number of inversions.

inv(A) = #{(i, j)|i < j and A(i) > A(j)}.

Definition 4.2.

[n]q =1 + q + · · ·+ qn−1,

[n]q! =(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Lemma 4.3. ∑
α∈Sn

qinv(α) = [n]q!

Proof. By induction on n. If n = 1 then
∑

α∈S1
qinv(α) = [1]q! = 1. In general

[k]q! = (1 + q + · · ·+ qk−1)[k − 1]q!.

By induction hypothesis, replace [k − 1]q! with
∑

α∈Sk−1
qinv(α). Then

[k]q! = (1 + q + · · ·+ qk−1)
∑

α∈Sk−1

qinv(α).

15



Hence
[k]q! =

∑
α∈Sk−1

(1 + q + · · ·+ qk−1)qinv(α).

(1 + q + · · · + qk−1) means that we put k into sequence α. Then the inversion will
increase from 0 to k − 1. Suppose sequence β is sequence α joined k. Hence

[k]q! =
∑
β∈Sk

qinv(β).

4.1.1 Compare with Section 2.2
Let

(
k
n

)
q

be the number of n-dimensional subspaces in a k-dimensional space over Fq.
We shall explain that this number satisfies the previous La(x

k, n) = La(x
k−1, n −

1) + anLa(x
k−1, n) with ai = qi as(

k

n

)
q

=

(
k − 1

n− 1

)
q

+ qn
(
k − 1

n

)
q

.

Fix a vector u ∈ GF k(q). The number of n-dimensional subspaces in GF k(q) con-
taining u is

(
k−1
n−1

)
q
. Let B be the set of n-dimensional subspaces that intersect 0

with u. Then the join of u and an element in B is an (n+ 1)-dimensional subspace
containing u. Note that there are

(
k−1
n

)
q

subspaces, each of them containing
(
n+1
n

)
q

n-dimensional subspaces, among which there are
(

n
n−1

)
q

containing u. Hence

|B| =
(
k − 1

n

)
q

((
n+ 1

n

)
q

−
(

n

n− 1

)
q

)
= qn

(
k − 1

n

)
q

.

According to proof of this study,
(
k
n

)
q

has the same pattern of three-term recur-
rence relation with La(x

k, n) when ai = qi. Hence
(
k
n

)
q
= La(x

k, n) where ai = qi.
Let ai = qi. Then

La(x
k, n) : =

n∑
i=0

aki∏
j ̸=i(ai − aj)

=
n∑

i=0

qik∏
j ̸=i(q

i − qj)

=
n∑

i=0

qik∏
j>i(q

i − qj)
∏

j<i(q
i − qj)

=
n∑

i=0

qik

(−1)n−iqni−i2q(i2−i)/2
∏

j>i(q
j−i − 1)

∏
j<i(q

i−j − 1)

=
n∑

i=0

qik

(−1)n−iq−i(2n−i−1)/2(q − 1)n[i]q![n− i]q!
=

(
k

n

)
q

.
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By Lemma 4.3, we can replace [i]q! with
∑

α∈Si
qinv(α) and replace [n − i]q! with∑

β∈Sn−i q
inv(β). It would become more easier to compute.

4.2 q-Stirling number of the second kind
We already know that S(k, n) is Stirling number of the second kind when ai = i.
q-Stirling number of the second kind was first defined by Carlitz in 1948. Af-
ter Carlitz’s paper, many combinatorial papers have introduced the q-analogue.
Now, we define Sq(k, n) be q-Stirling number of the second kind. In [6],
we define S[k, n] is the set of all partitions of {1, . . . , k} into n nonempty subsets
B1, B2, . . . , Bn. That is π = B1/B2/ · · · /Bn where Bi are all increasing sequences
and minB1 < minB2 < · · · < minBn. Here, inv(π) is the number of the pair (b, Bj)

such that b ∈ Bi where i < j and b > minBj.

Definition 4.4.
Sq(k, n) =

∑
π∈S[k,n]

qinv(π).

4.2.1 Three term recurrence relation
The following proposition shows three term recurrence relation of Sq(k, n).

Proposition 4.5.

Sq(k, n) = Sq(k − 1, n− 1) + [n]qSq(k − 1, n).

Proof. Use combinatorial argument. In the first case, let {k} be a subset of {1, . . . , k}.
There are Sq(k− 1, n− 1) ways. In the second case, {k} isn’t a subset of {1, . . . , k}.
First, we consider Sq(k − 1, n). Finally, we put k into any subset. Hence the in-
version will increase from 0 to n − 1 after adding k into Sq(k − 1, n). There are
(1 + q + · · ·+ qn−1)Sq(k − 1, n) = [n]qSq(k − 1, n) ways.

The following corollary shows the relation of Sq(k, n) and La(x
k, n).

Corollary 4.6.
Sq(k, n) = La(x

k, n),

for a=([1]q, [2]q, . . . , [n]q, . . .).

Proof. By Proposition 4.5 and (2.2) then Sq(k, n) = La(x
k, n) when an = [n]q.

Next, we will reprove Corollary 4.6 by direct computing. First, consider [i]q−[j]q.

There are two cases.
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1. j < i:
[i]q − [j]q =

qi − qj

q − 1
= qj[i− j]q;

2. j > i:
[i]q − [j]q =

qi − qj

q − 1
= −qi[j − i]q.

Hence ∏
j ̸=i

0≤j≤n

([i]q − [j]q) = qi(2n−i−1)/2[i]q![n− i]q!.

Let ai = [i]q, where q ̸= 0. Then

La(x
k, n) =

n∑
i=0

aki∏
j ̸=i(ai − aj)

=
n∑

i=0

[i]kq∏
j ̸=i(ai − aj)

=
n∑

i=0

[i]kq∏
j ̸=i([i]q − [j]q)

=
n∑

i=0

(−1)n−iq−i(2n−i−1)/2
[i]kq

[i]q![n− i]q!
= Sq(k, n).
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Chapter 5

Conclusions

In this thesis, we get two important recurrence relations which are

La((x− an)g(x), n) = La(g(x), n− 1)

and
La(x

k, n) = La(x
k−1, n− 1) + anLa(x

k−1, n).

We also proved

La(x
k, i) =

i∑
j=0

akj∏
t ̸=j(aj − at)

= Sa(k, i).

This thesis focus on the recurrence relation La(x
k, n) = La(x

k−1, n−1)+anLa(x
k−1, n).

When an = 1, it is a well-known recurrence relation which is the same as
(
k
n

)
=(

k−1
n−1

)
+
(
k−1
n

)
. Then we get

La(x
k, n) =

(
k

n

)
.

In chapter 2, consider an = n. Then we get

La(x
k, n) = S(k, n).

In chapter 4, consider an = qn and an = [n]q. Then we get

La(x
k, n) =

(
k

n

)
q

and
La(x

k, n) = Sq(k, n)

respectively. All of them are special cases of La(x
k, n).
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