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Abstract

For an undirected graph G, let E(v) denote the set of edges incident on a
vertex v € V(G). A zero-sum flow is an assignment .f of non-zero real numbers
on the edges of G such'that

Y, fle)=0

ecE(v)

for all v € V(G). A zero-sum-k-flow is a zero-sum flow with integers from the
set {£1,...,=(k—1)}. Let zero-sum flow number F(G) be defined as the least
number of k:such that G admits a zero-sum k-flow. In this paper, a necessary
and sufficient condition for (2,3)-graph G with F(G) = 3 is given. Furthermore
we study zero-sum flow number of (2,3)-graphs expanded from path and tree,
namely, the Christmas lamps, the tree lamps, respectively, and conclude that
their zero-sum flow numbers are at most 5.

Keywords: zero-sum flow, zero-sum k-flow, zero-sum flow number, (2,3)-graph, Christ-

mas lamp, tree lamp.
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1 Introduction

Throughout the thesis, a graph is always undirected and connected.

An orientation of an undirected graph is an assignment of a direction to each
edge. Let G be an undirected graph with vertex set V(G) and edge set E(G). Let
D be an orientation of E(G). For a vertex v € V(G), let ET(v) (E~(v), respectively)
denote the set of directed edges according to the orientation D with their tails (heads,

respectively) at the vertex v.

Suppose k € N. A k-flow on G is an ordered pair (D, f) where D is an orientation
of E(G) and f is an assignment of integers with-absolute value at most k—1 to each

edge of G such that
Y fle)= ) fle)=0
)

e€ET(v) ecE—(v
for all v € V(G).

A nowhere-zero k-flow is a k-flow with no zeros. If G is an undirected graph,
then we say that it has a nowhere-zero k-flow if the graph G admits a nowhere-zero

k-flow.

Example 1.1. Let G be a cyele €3 of order 3, then G has a nowhere-zero 2-flow as

shown in Figure 1.

Figure 1: G has a nowhere-zero 2-flow.

Definition 1.2. A bridge of a connected graph is an edge whose removal disconnects

the graph. A bridgeless graph is a graph that contains no bridges.
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A famous conjecture of Tutte’s says that,

Conjecture 1.3. (Tutte’s 5-flow Conjecture [5]) Every bridgeless graph has a nowhere-

zero 5-flow.

Seymour has proven a result related to this conjecture in 1981.

Theorem A. (Seymour [4]) Every bridgeless graph has a nowhere-zero 6-flow.

An interesting problem about nowhere-zero k-flow is the following. Given a graph
G, what is the smallest integer k such that G has a nowhere-zero k-flow, i.e., an integer
k for which G admits a nowhere-zero k-flow, but it does not admit a (k— 1)-flow. Let
I' = I'(G) denote this minimum k called the minimum flow number of G. For I'(G)

= 2, we have completely known the situation.

Theorem B. (Tutte [6]) A graph G has a nowhere-zero-2-flow if and only if the

degree of each vertex is even.

S. Akbari, N. Ghareghani, G.B. Khosrovshahi and A. Mahmoody [1] use a linear
algebraic approach to look at Tutte’s Conjecture in 2009 which provides them with

a motivation to adopt a different. definition of k-flow in an undirected graph.

A zero-sum flow on a graph G is an assignment f of non-zero real numbers on
the edges of G such that the total sum of the assignments of all edges incident with
any vertex on G is zero. A zero-sum k-flow for a graph G is a zero-sum flow with

numbers from the set {£1,...,+(k—1)}.

Note that G has a nowhere-zero flow is not the same as G has a zero-sum flow. We
now only consider the zero-sum flow problem. Let G be a graph, we say zero-sum
rule holds on a vertex v € G if the sum of assignments of all edges incident with v is

Z€ero.

A similar conjecture of Tutte’s 5-flow conjecture is the zero-sum conjecture.



Conjecture 1.4. (Zero-Sum Congjecture [1]) If G is a graph with a zero-sum flow,

then G has a zero-sum 6-flow.

Example 1.5. Let G be a cycle Cy4 of order 4, then G has a zero-sum 2-flow as shown

in Figure 2.

Figure 2: G has a zero-sum 2-flow.

Akbari et al. have proved a necessary and sufficient condition for the existence of

zero-sum flow for non-bipartite graphs.

Theorem C. (Akbari et al. [1]) Suppose G is not-a bipartite graph. Then G has a

zero-sum flow if and only if for any edge e of G, G\ {e} has no bipartite component.

Definition 1.6. Let G be a connected graph. Then G is k-edge connected if it

remains connected whenever fewer than k edges are removed.

Akbari et al. also show that the zero-sum conjecture is true for the 2-edge con-

nected bipartite graphs.

Theorem D. (Akbari et al. [1]) Let G be a 2-edge connected bipartite graph. Then

G has a zero-sum 6-flow.

In addition, Akbari et al. have proved that the zero-sum conjecture is true for

3-regular graphs.



Theorem E. (Akbari et al. [1]) Every 3-reqular graph has a zero-sum 5-flow.

Remark 1.7. The following graph shown in Figure 3 [1] shows that in the above

theorem, zero-sum 5-flow can not be replaced with zero-sum 4-flow.

Figure 3: G has a zero-sum 5-flow.

Definition 1.8. Let G be a graph. We call G a (2,3)-graph if the degree of each

vertex is 2 or 3.

Moreover, Akbari et al. provide a relation between the (2,3)-graph and zero-sum

conjecture.

Theorem F. (Akbari et al. [1]) If Zero-Sum Congjecture is true for any (2,3)-graph,

then it is true for any graph.

For the details on the above theorems and other results, see [1, 3]. T.M. Wang
and S.-W. Hu extend the concept minimum flow number in 2011 to the following

definition.



Definition 1.9. Let G be a graph. The zero-sum flow number F(G) is defined as
the least number of k for which G may admit a zero-sum k-flow. F(G) = oo if no such

k exists.

Example 1.10. Let G be a non-bipartite graph as shown in Figure 4. Since there is

a bipartite component of G after deleting an edge of E(G), by the theorem C, F(G)

= oo,

Figure 4: F(G) = eo.

Note that F(G) = k is not the same as I'(G) = k. Akbari et al. provide a relation
between the F(G) and I'(G).

Definition 1.11. Let G be a graph, then S(G) is a graph obtain from G by augment-

ing exactly one new vertex on each.edge of G.

Lemma G. (Akbari et al. [1]) T(G) = k if and only if F(S(G)) = k.

T.M. Wang et al. [7] show some general properties of small zero-sum flow numbers,
so that the estimate of zero-sum flow numbers gets easier. A result on the zero-sum

flow numbers is the following.

Theorem H. (T.M. Wang et al. [7]) A graph G has zero-sum flow number F(G) = 2

if and only if G is Eulerian with even size (even number of edges) in each component.



2 Zero-sum flow number 3 on (2, 3)-graph

Throughout the thesis, a graph is always finite, simple, connected and undirected.

Lemma 2.1. Any (2,3)-graph has even number of vertices with degree 3.

Proof. Let G be a (2,3)-graph. Then G has an even number of vertices with odd
valency since that } ey (g)deg(x) = 2|E(G)|. That is, G has even number of vertices
with degree 3. O

Definition 2.2. A loop is an edge that connects a vertex to itself. A multigraph is
a graph that can have more than one edge between a pair of vertices and allow loops,

which add two to the degree.

Definition 2.3./The edge subdivision of an edge e with endpoints {u,v} yields
a graph containing one new vertex w, and with an edge set, replacing e by two new
edges, {u,w} and {w,v}. A subdivision of a graph G is a graph resulting from the

edge subdivision of edges.in G

Lemma 2.4. Any (2,3)-graph with at least two vertices of degree 3 is obtained by

consecutive edge subdivisions from a 3-reqular multigraph.

Proof. If the number of vertices with degree 2 is zero, the proof is done. Suppose
the number of vertices with degree 2 is bigger than zero. Then if we merge the two
edges of a vertex with degree 2 to an edge and delete that vertex, each remainder
vertices has degree 3. That is any (2,3)-graph with at least two vertices of degree 3

is obtained by consecutive edge subdivisions from a 3-regular multigraph. [



Suppose G is a (2,3)-graph, by the above theorem H, we obtain F(G) = 2 if and
only if G is an even cycle. That is the study of F(G) equal to two is completed. So we
want to discuss that G is not an even cycle, which means that the number of vertices

with degree 3 in G is greater than zero.

Definition 2.5. A path in G is called a 323-path if its internal vertices have degree

2 and its two endpoints have degrees 3.

Note that a 323-path without internal vertices is an edge in G.

Definition 2.6. A family of vertex-disjoint 323-=paths in a (2,3)-graph G is called

complete if each vertex of degree 3 is in exactly one path of the family.

Lemma 2.7. Let G be a (2,3)-graph with F(G) < 4. Then there exists a complete

family of vertez-disjoint 323-paths in G.

Proof. Since F(G) < 4, there exists an assignment f on E(G) such that f(e) € {-3,
-2,-1, 1, 2, 3}. And we know that the case as shown.in Figure 5 with numbers {even,

even, odd} on edges incident ‘on a vertex-of degree 3 is illegal of the zero-sum rule for

even € {+2} and odd € {£1, +3}.

even even

odd

Figure 5: An illegal labeling in F(G) < 4.



Hence there is no vertex of degree 3 whose two edges have numbers with absolute
value 2. Moreover, we know there must exist an edge with even number incident on a
vertex v with degree 3 and the case with numbers {even, even, even} on edges incident
on v is illegal of the zero-sum rule for even € {£2}. Let Q be the graph induced on
the edge set and Q = {e | e € E(G) and |f(e)| = 2}. Then Q is a complete family of

vertex-disjoint 323-paths in G since G is a (2,3)-graph. O

Now, by using the Lemma 2.7, we find some general properties for the zero-sum

flow number F(G) = 3.

Definition 2.8. A k-factor of a graph is a spanning k-regular subgraph. A 1-factor

is a perfect matchingin G.

T.M. Wang and S.-W. Hu [7] show the following (ii)-(iii) of theorem 2.9 are equiv-

alent.

Theorem 2.9. Let G be a 3-reqular graph. Then the following (i)-(iii) are equivalent.
(i) F(G) < 4;

(ii) G has a 1-factor;

(i) F(G) = 3.

In particular, there is no 3-reqular graph with F(G) = 4.

Proof. (i) = (ii): By the lemma 2.7, there exists a complete family of vertex-disjoint
323-paths in G, we denote it by Q. Since G is a 3-regular graph, a 323-path is an
edge in G. Hence Q is a perfect matching in G.

(ii) = (iii): Since G is not an even cycle, F(G) > 2. Suppose G has a perfect

matching Q in G. For an edge e € E(G), we give the edge values f(e) = 2 if e € Q



and f(e) = -1 if e ¢ Q. Since a matching in G is a set of edges without common
vertices, the zero-sum rule holds for any vertex v € V(G). That is F(G) = 3.

(iii) = (i): F(G) = 3 which is less than 4. N

From the theorem 2.9, it is easy to see F(G) = 5 for the graph in Figure 3.

Definition 2.10. Let G be a graph with an assignment of two colors to the edges.

Then a path P of G is alternating if no two adjacent edges of P have the same color.

Definition 2.11. A path P is tangent to-Q at x if x is a vertex of P and Q but no

edges in E(P) N E(Q) incident on x.

Theorem 2.12. Let G be a (2,3)-graph other than an even cycle. Then F(G) = 3 if

and only if the following conditions hold.:
(i) There exists a complete family Q. of vertex-disjoint 323-paths.

(ii) There exists an assignment of two colors to the edges of G such that any path

P of G not tangent to Qs alternating.

Proof. Suppose F(G) = 3. Then there exists an assignment f on E(G) such that the
edge values f(e) € {-2, -1, 1, 2}. Let Q be the graph induced on the edge set and
Q = {e| e c E(G) and |f(e)] = 2}. By the lemma 2.7, Q is a complete family of
vertex-disjoint 323-paths in G. Then (i) holds. Now we define a coloring on E(G)
such that e is blue if f(e) is positive or e is red if f(e) is negative. To prove (ii),
suppose on the contrary, P is not alternating. Then there are two edges e; and e;
incident on a vertex x € V(P) such that sgn(f(e1)) = sgn(f(ez)). By the zero-sum
rule, f(e;) = f(ez) € {£1} and the degree of x equals 3 as shown in Figure 6. Since

e € Qife € E(G) and |f(e)| = 2, P is tangent to Q at x € V(Q). Then (ii) holds.



/, /,.
,.’// ,0’//
‘Q\j//-/lzf(el) -9 X//IZf(el)
. 1 = f(e2) : 1= f(e2)
¢ o ¢
. .

Figure 6: The degree of x is 3 and f(e1) = f(e2) € {£1}

Conversely, we know F(G) > 2 since G is not.an even cycle. Suppose (i) and (ii)

hold. Define an assignment f on E(G) as follow.

1 'eisblue and eis not in a path of Q.
—1 eisred and e is notin a path of Q.
2 eis blue and e is in a path of Q.

—2 eisred _and e isin a path of Q.
Since Q is a complete family of vertex-disjoint 323-paths, there are three situations
of a vertex v € V(G). Firsty, v € V(Q) and v is an internal vertex in a path of Q,
the numbers on the edges incident with v are-2, -2 Second, v € V(Q) and v is an
endpoint in a path of Q, the numbers on the edges incident with v are 2, -1, -1 or -2,
1, 1. Third, v ¢ V(Q), the numbers on the edges incident with v are 1, -1. Hence,
Yece() f(e) = 0 for all v € V(G), where E(v) denote the set of edges incident with a

vertex v € V(G). That is mean F(G) = 3. H

Remark 2.13. Let G be a (2,3)-graph with F(G) = 4 as shown in Figure 7. The graph

G satisfies the condition (i) but does not satisfy the condition (ii) of Theorem 2.12.
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Figure 7: F(G) = 4.

3 Zero-sum flow number for Christmas lamp

Definition 3.1. An edge minor of a 323-path is obtained by contracting some edges
of the 323-path while preserving the parity of the number of edges. A minor of a

graph G is a graph resulting from the edge minors of 323-paths in G.
Note that we allow the 323-path which is contracted has same endpoints.

Example 3.2. Let G be obtained from G by contracting a 323-paths(yellow) while
preserving the parity of the number of edges as shown in Figure 8. Then G is a minor

of G.

Figure 8: G is a minor of G.
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Let G and G be (2,3)-graphs. If G is a minor of G, then F(G) = F(G). That is,
if we remove even number of edges from any 323-path of G, then the zero-sum flow

number F(G) does not change.

Theorem 3.3. Let G be a bridgeless (2,3)-graph which the number of edges of any
323-path in G is even. Then F(G) < 6.

Proof. Suppose G is a bridgeless (2,3)-graph which the number of edges of any 323-
path in G is even. Use the property of minor, there is a bridgeless (2,3)-graph G
such that F(G)) equals F(G) and there is a bridgeless 3-regular graph G, such that
G1 = S(Gy). By the theorem A, we obtain I'(G2). < 6. Moreover, by the lemma G,

we have F(S(G,)) = F(G;) < 6 which implies F(G) <.6. O

With the theorem 3.3, we know the zero-sum conjecture is true for any bridgeless
(2,3)-graph which the number of edges of any 323-path in G is even. Now, we study
a special 1-edge connected (2, 3)-graph and find the upper bound of zero-sum flow

number of this graph.

Definition 3.4. Let H be a graph and v € V(H) with neighbors u;, up, ---, us.
Let C be a cycle with vertex set V(C) = {vi,vy,:#* , %}, where r > s. A graph G
is said to be obtained from H' by replacing v by C if V(G) = V(H)UV(C) — {v}
and there exist 1 < i} < ip < --- < iy < t such that E(G) contains {uv; |1 <k <

SJUE(H)UE(C) — {vui|1 <i<s}.

Definition 3.5. A graph G is a Christmas lamp if G is obtained from a path of
order at least 2 by replacing its two endpoints by two odd cycles and some internal
vertices by cycles. Moreover, we call C is a lamp of G if C is a subgraph of G and C

is a cycle.

Example 3.6. Let Ps be a path of order 5. Then G is a Christmas lamp obtained

from Ps as shown in Figure 9.

12



l
5 (<t

Figure 9: G is a Christmas lamp obtained from a path Ps of order 5.

Definition 3.7. Suppose G is a Christmas lamp-obtained from a path H. A lamp C

of G is called internal if C is obtained by replacing an internal vertex of H.

Let G be a Christmas lamp, from the theorem C, the zero-sum flow number F(G)
< oo. Note that F(G) > 2 since G is not an even cycle. The Christmas lamp G in

Figure 10 has F(G) = 5.

Figure 10: G is a Christmas lamp which F(G) = 5.

Theorem 3.8. Let G be a Christmas lamp based on a path H. Then F(G) < 5.

Moreover, for any labeling for G, with F(G) < 5, f(E(H)) C {£2,44}.

Proof. Suppose G is a Christmas lamp. By the property of minor, there are three
kinds of lamps in G as shown in Figure 11, namely, the oo lamp, the ee lamp, the

o lamp, respectively. An internal lamp has exactly two vertices of degree 3, called

13



end vertices. An internal lamp is an oo lamp if its end vertices of degree 3 divide the
lamp into two paths of odd length. An internal lamp is an ee lamp if its end vertices
of degree 3 divide the lamp into two paths of even length. A lamp is an o lamp if it

has odd order.

00 lamp ee lamp o lamp

O o

Figure 11: Three kinds of lamps.in G

Let G be the christmas lamp-obtained from a path H = uju;---u, by replacing
some vertex u; byreycles C;. First, we igive:lables on edges of H consecutively by

setting f(ujup) =2 and when f(u;—ju;) is defined, let

—f (ui—u;) if C; is a single vertex or an ee lamp.
Fujuigy) = I (uiu) if C; is a 00 lamp.
[Add ) -
‘;Ezl_izl;| 60 =  f(ui—1u;) if Cjis-a o lamp.
11— l

The labels on E(H) are in the set {£2,+4}. Second, use the above labels on
E(H), we give labels on edges of each cycle C; of G consecutively as follow.

Case 1: For i = 1, as uy is replaced by an o lamp Cj in G, where C| = vivv3v;
and {vi,us} € E(G). Set f(viuz) = f(ujuz). If f(viup) = a, we set f(viv2) = 5,
f(vav3) = 5 and f(vav1) = 5.

Case 2: For 1 < i < n, if u;_1 is replaced by an cycle Ci_y, let u/;_1 be the
vertex such that {u';_1,u;} € E(G). Otherwise, u/;_1 = u;_1. As u; is replaced by
an o lamp C;, where C; is divided into two paths P, = vivz and P, = v{vyv3 such

that {u;_1,vi} and {v3,uiy1} € E(G). Set f(u'i—1v1) = f(ui—1u;) and f(vauipq) =

14



fluuipr). If f(u'iv) = a and f(vauiy1) = 2a, we set f(viv3) = =2, f(viva) = §
and f(vav3) = S If f(u/;-1v1) = 2a and f(vsuir1) = a, we set f(viv3) = 32, f(viva)
= 5% and f(v213) = 3.

Case 3: For 1 < i < n, if u;_; is replaced by an cycle C;_1, let u/;_1 be the vertex
such that {«';_1,u;} € E(G). Otherwise, u’;_1 = u;—1. As u; is replaced by an 0o
lamp C;, where C; is divided into two paths P, = viv4 and P, = vivav3vg such that
{/i_1,v1} and {vg,uis1} € E(G). Set f(u'i—1v1) = f(ui—1u;) and f(vauiy1) = f(uiniyr).
If f(u'i-1v1) = a and f(vauip1) = a, we set f(viva) = 5, f(viva) = 5, f(vav3) = §
and f(v3vs) = F*.

Case 4: For 1 < i < n, if u; 4 is replaced by an eycle C;_1, let u/;_1 be the vertex
such that {«';_1,u;} € E(G). Otherwise, u/;_; = wuj_1. As u; is replaced by an ee
lamp C;, where C; is divided into two paths P, = vivovs and P» = viv3vg such that
{ui-1,v1} and {va,u; 1} € E(G).-Set f(u'im1v) = flui1w) and f(vauir1) = f(uinir).
If f(u'i1v1) = a and f(vauir1) = —a, we set f(viva) = 5% flvova) = 5, f(viv3) =
- and f(v3v4) = 9.

Case 5: For i = 1, if u,_; is replaced by an cycle C,_1, let #/,_1 be the vertex such
that {u/,_1,u,} € E(G). Otherwise, u'y, | = ty—1. “As u, is replaced by an o lamp
C,, where C, is a cycle C =wjvov3vy such that {u/,_ 1w} € E(G). Set f(u',—1v1) =
flup—quy). It f(u'y—1v1) =a, we set f(vyva)-= s f(nev3) = 5 and f(v3vy) = 5.

Since a € {£2 £4}, we find an assignment f on E(G) such that f(e) € {£1, £+2,
+3, +4} and the zero-sum rule holds on any vertex v € V(G). By the property of
minor, F(G) < 5. Moreover, for any labeling for G, with F(G) < 5, assume there is
an edge e € E(H) such that f(e) € {1, £3}. Since there is no vertex with degree
3 whose edges has the labels with three odd numbers or with one odd number and
two even numbers, it will lead to f(u,—1u,) is an odd number. Then, it is impossible
make the zero-sum rule hold on all vertices of G since u, is replaced by an odd cycle

in G. Hence, for any labeling for G, with F(G) < 5, f(E(H)) C {£2, +4}. N
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Corollary 3.9. If G is a christmas lamp, then F(G) = 3 if and only if G has no

internal odd lamp.

Proof. (<) By the theorem 3.8, we can find an assignment f(e) € {£1, £2} on E(G)
such that the zero-sum rule holds on any vertex v € V(G). And we know F(G) > 2
since G is not an even cycle. That is F(G) = 3.

(=) Note that the complete family Q of vertex-disjoint 323-paths in G is uniquely
determined. Indeed, it is obtained by deleting all the edges in lamps from G. If G has
an internal odd lamp, then the two end vertices divide the odd lamp into two paths of
orders in different parity. It is.impossibleto satisfy the condition (ii) of theorem 2.12,

which means F(G) # 3. Hence, G has no internal odd lamp. O

4 Zero-sum flow number for tree lamp

Definition 4.1. A graph G is a tree lamp if G is obtained from a tree of order
at least 2 by replacing its leaves by odd cycles and some internal vertices by cycles.

Moreover, we call C.is a lamp of G if C is a subgraph of G and C is a cycle.

Example 4.2. Let T; be a tree of order 4. Then G is a tree lamp obtained from 7j

as shown in Figure 12.

. : o>
- [
>

Figure 12: G is a tree lamp obtained from a tree Ty of order 4.
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Let G be a tree lamp, from the theorem C, the zero-sum flow number F(G) < eo.
The Christmas lamp is a special case of tree lamp. Similarly, we provide an upper

bound of zero-sum flow number of tree lamp.

Theorem 4.3. If G is a tree lamp, then F(G) < 5.

Proof. Suppose G is a tree lamp obtained from a tree T, of order n > 2. We shall
prove F(G) < 5 and the corresponding labels in E(7,) are in the set {+2, +4} by
induction on n. When n = 2, G is a Christmas lamp and this is a special case
of theorem 3.8. Since any tree with order bigger than two has one vertex v with
neighbors uy,up,u3,- -+ ,us such that s > 2 and degree(u;) = 1 for 2 < i < s. Pick the
leaf uy in Ty, where n. > 3. Let G be the graph obtained from G by deleting the lamp
C., based on uy and the edge-{v;up'} where uy’ € V(C,,) andv' € V(G)\V(Cy,).
Note that G is a tree lamp based on T,,_; := T;, = up. By the induction, F(G) < 5 and
the corresponding labels in E(7,—) are in the set {42, +4}. There are two cases of
v in G as follows.

Case 1: v is not replaced by a cyecle in G. If uy is replaced by a cycle C,, in G for 1
< k <'s, let u;' be the vertexsuch that ;' € V(C,,) and{vu'} € E(G). Otherwise,
wy' = wy. If s = 2, there is'a vertex ui”suchthat {v,u1'} € E(G) and f(vu;’) € {£2,
+4}. We give the label on edge {v,uy"} by setting f(vup’) = —f(viy’). When u; is
replaced by an odd cycle C,, in G, since |f(vua")| equal 2 or 4, we can give the labels
on E(Cy,) such that f(E(G)) C {+£1, £2, £3, +4} and the zero-sum rule holds on
all vertices of G. If s > 3, since u3 is replaced by an odd cycle Cy; in G, there is a
vertex uz’ € V(C,,) such that {v,u3'} € E(G) and f(vuz') € {£2, £4}. If |f(vu3')|

= 4, we give the label on edge {v,uy’} by setting f(vuy’) and we give the

new label on edge {v,us'} by setting f(vus') = f(VTLB,) If |f(vus")| = 2, we give the
label on edge {v,us’} by setting f(vup") = —f(vus’) and we give the new label on edge
{v,us'} by setting f(vuz’) = 2 x f(vuz’). When uy is replaced by an odd cycle C,,

in G, since |f(vup)| and |f(vus’)| equal 2 or 4, we can give the labels on E(C,,) and
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new labels on E(C,;) such that f(E(G)) C {£1, £2, £3, 4} and the zero-sum rule
holds on all vertices of G. Since f(e) € {£2, 4} if e € {vi/|1 <k < s}, we obtain
the corresponding labels in E(7,) are in the set {£2, £4} and F(G) < b.

Case 2: v is replaced by a cycle C in G, where V(C) = {vi,vp,---,v,;} and t > s.
There exist 1 < i) < ip < .-+ < ig <t such that E(G) contains {v;u'|1 <k <s}. If
ug is replaced by a cycle C,, in G for 1 < k <'s, let ;” be the vertex such that u €
V(Cy) and {v;,u'} € E(G). Otherwise, uy’ = uy. First, since the edge {v;u;'}
€ E(G) and f(viju') € {£2, +4}, we give the new labels on edges {vi,,vi,+1},
{vir1,vipe2t, o, {vemovels {veovi}, {vi,va}, oo, {vi,—1,vi,} consecutively by set-
ting f(vi,vij+1) = #I"Z};‘) and-when f(v;_1vj) is changed, let f(vivit1) = f(vi—1vi)
if i € if,ip, - ,is or f(vivirr) = —f(vie1vi) it 1 € dy,ip,+--,is. Note that v, =
vi and vo = v.. Second, if f(viui") # fivi+1) + fvi—1vi,) and |f(viu’)] =
2. We give the new labels onedges {vi,vis1 | i1 < i<is} consecutively by setting

fivi41) = ‘ﬁ:iix,i' and when f(v;—jv;) is changed, let f(vivii1) = f(vio1vi) if i €

i1,02,++,is or f(viviz1) = —f(vieyw) if i &y, i, ,is. And, we give the new labels on
edges {vi,,vi,—1}, {Viy-1,vi,—2}, = -=5 {vigr1,vi, } consecutively by setting f(vivi,—1) =
—fviur’) = f(viyvij+1) and when f(vir1v;) is-changed, let f(vyvi_1) = —f(vip1vi) for
e {in—1i1 =2, i+ LdE f(viur") # fviyvip1) 4+ fn-1vi) and [f(v,u”)| =
4. We give the new labels on edges {vipsvip=t s {vig=1. v, -2}, - -+, {vi,+1,vi,} consecu-
tively by setting f(vi,vi,—1) = —f(vi;ur") = f(vi;vi,+1) and when f(viy1v;) is changed,
let f(vivie1) = —f(vig1vy) for i € {ij —1,i; —2,---,ig+ 1}. Third, we give the new
labels on edges {viu'|3 <k <s} with f(viur') = —f(vi—1vi,) — f(vivi,+1) and we
give the label on edge {viup’'} with f(vius') = —f(vi,—1vi,) — f(Vi,vi,+1). Since f(e)
€ {1, £3} if e € E(C), f(viui') € {£2, £4} for 2 < k <s. When uy is replaced by
an odd cycle C,, in G, we can give the labels on E(C,,) and new labels on E(C,,) for
2 < k < s such that f(E(G)) C {£1, £2, £3, +4} and the zero-sum rule holds on
all vertices of G. Finally, we obtain the corresponding labels in E(7,) are in the set
{2, +4} and F(G) < 5.

By the induction on n, the corresponding labels in E(7;) are in the set {2, +4}
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and F(G) < 5. That is mean if G is a tree lamp, then F(G) < 5. O

Definition 4.4. Let G and H be two graphs. Define the sum graph G+ H of G and

H with vertex set V(G+H)=V(G)UV(H) and edge set E(G+H) =E(G)UE(H).

The reason why we are interested in the tree lamp is that some (2,3)-graphs G
with finite F(G) are the sum graph of some edge disjoint tree lamps and even cycles.
For instance, the following (2,3)-graph G, shown in Figure 13, with 9 vertices and
zero-sum flow number 6 is the sum graph H; 4+ H, where H; is an even cycle and H, is
a tree lamp. In addition, a (243)-graph with infinite F(G) can not be the sum graph
of some edge disjoint tree lamps and even cycles, the graph shown in Figure 4 is an

example.

The graph G shown in Figure 13 was discovered in [1] through an exhaustive

search.

Figure 13: G has zero-sum 6-flow and G is the sum graph H; + H, of H; and Hj,
where Hj is an even cycle and H, is a tree lamp.
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5 Summary

A zero-sum k-flow on a graph G is a zero-sum flow with numbers from the set
{£1,...,£(k—1)}. The zero-sum flow number F(G) of G is the least number k for
which G may admit a zero-sum k-flow. In the Section 2, we give a necessary and
sufficient condition for a (2,3)-graph to have zero-sum flow number 3, so that in
some special cases to determine if a (2,3)-graph G has F(G) = 3 becomes easier.
Furthermore, in the Sections 3 and 4, we study the zero-sum flow number of Christmas
lamps and tree lamps, which are graphs expanded from paths and trees. At the end
of Sections 3 and 4, we conclude that Christmas lamps and tree lamps respectively

has zero-sum flow numbers-at most 5.
We list some open problems for further study:

1. Give a necessary and sufficient condition for a (2,3)-graph to have zero-sum

flow number 4.

2. Any (2,3)-graph G with finite F(G) is the sum graph of some edge disjoint tree

lamps and even cycles.
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