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關於 (2,3)-圖形零和流數之研究

研究生 : 游鎮魁 指導教授 : 翁志文

國 立 交 通 大 學

應 用 數 學 系

摘 要

對一無向圖形 G，令 E(v) 記為圖形中頂點 v 的相鄰邊所構成之集合。圖 G 上

一零和流為一組對邊的非零實數編號 f 使得對每一頂點 v 來說，

∑
e∈E(v)

f (e) = 0

皆成立。零和 k-流為一零和流且編號全來自集合 {±1, ...,±(k−1)}。零和流數

F(G) 定義為圖 G 具有零和 k-流之最小正整數 k。在此篇論文中，對一 (2,3)-圖形

G 給出了具有零和流數 3 的充分且必要之條件。此外我們研究由路徑和樹擴展而成

之 (2,3)-圖形上的零和流數，名曰，聖誕燈、樹燈，並總結它們的零和流數最多為

5。

關鍵字: 零和流，零和 k-流，零和流數，(2,3)-圖形，聖誕燈，樹燈。
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Zero-Sum Flow Numbers of (2,3)-Graphs
Student: Zhen-Kui Eu Advisor: Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

For an undirected graph G, let E(v) denote the set of edges incident on a
vertex v ∈ V (G). A zero-sum flow is an assignment f of non-zero real numbers
on the edges of G such that

∑
e∈E(v)

f (e) = 0

for all v ∈ V (G). A zero-sum k-flow is a zero-sum flow with integers from the
set {±1, ...,±(k−1)}. Let zero-sum flow number F(G) be defined as the least
number of k such that G admits a zero-sum k-flow. In this paper, a necessary
and sufficient condition for (2,3)-graph G with F(G) = 3 is given. Furthermore
we study zero-sum flow number of (2,3)-graphs expanded from path and tree,
namely, the Christmas lamps, the tree lamps, respectively, and conclude that
their zero-sum flow numbers are at most 5.

Keywords: zero-sum flow, zero-sum k-flow, zero-sum flow number, (2,3)-graph, Christ-

mas lamp, tree lamp.
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1 Introduction

Throughout the thesis, a graph is always undirected and connected.

An orientation of an undirected graph is an assignment of a direction to each

edge. Let G be an undirected graph with vertex set V (G) and edge set E(G). Let

D be an orientation of E(G). For a vertex v ∈V (G), let E+(v) (E−(v), respectively)

denote the set of directed edges according to the orientation D with their tails (heads,

respectively) at the vertex v.

Suppose k ∈ N. A k-flow on G is an ordered pair (D, f ) where D is an orientation

of E(G) and f is an assignment of integers with absolute value at most k−1 to each

edge of G such that

∑
e∈E+(v)

f (e)− ∑
e∈E−(v)

f (e) = 0

for all v ∈ V (G).

A nowhere-zero k-flow is a k-flow with no zeros. If G is an undirected graph,

then we say that it has a nowhere-zero k-flow if the graph G admits a nowhere-zero

k-flow.

Example 1.1. Let G be a cycle C3 of order 3, then G has a nowhere-zero 2-flow as

shown in Figure 1.

G = 1

1

1
b b

b

b b

b

Figure 1: G has a nowhere-zero 2-flow.

Definition 1.2. A bridge of a connected graph is an edge whose removal disconnects

the graph. A bridgeless graph is a graph that contains no bridges.
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A famous conjecture of Tutte’s says that,

Conjecture 1.3. (Tutte’s 5-flow Conjecture [5]) Every bridgeless graph has a nowhere-

zero 5-flow.

Seymour has proven a result related to this conjecture in 1981.

Theorem A. (Seymour [4]) Every bridgeless graph has a nowhere-zero 6-flow.

An interesting problem about nowhere-zero k-flow is the following. Given a graph

G, what is the smallest integer k such that G has a nowhere-zero k-flow, i.e., an integer

k for which G admits a nowhere-zero k-flow, but it does not admit a (k−1)-flow. Let

Γ = Γ(G) denote this minimum k called the minimum flow number of G. For Γ(G)

= 2, we have completely known the situation.

Theorem B. (Tutte [6]) A graph G has a nowhere-zero 2-flow if and only if the

degree of each vertex is even.

S. Akbari, N. Ghareghani, G.B. Khosrovshahi and A. Mahmoody [1] use a linear

algebraic approach to look at Tutte’s Conjecture in 2009 which provides them with

a motivation to adopt a different definition of k-flow in an undirected graph.

A zero-sum flow on a graph G is an assignment f of non-zero real numbers on

the edges of G such that the total sum of the assignments of all edges incident with

any vertex on G is zero. A zero-sum k-flow for a graph G is a zero-sum flow with

numbers from the set {±1, ...,±(k−1)}.

Note that G has a nowhere-zero flow is not the same as G has a zero-sum flow. We

now only consider the zero-sum flow problem. Let G be a graph, we say zero-sum

rule holds on a vertex v ∈ G if the sum of assignments of all edges incident with v is

zero.

A similar conjecture of Tutte’s 5-flow conjecture is the zero-sum conjecture.
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Conjecture 1.4. (Zero-Sum Conjecture [1]) If G is a graph with a zero-sum flow,

then G has a zero-sum 6-flow.

Example 1.5. Let G be a cycle C4 of order 4, then G has a zero-sum 2-flow as shown

in Figure 2.

1

- 1

1

- 1

b

b b

b

Figure 2: G has a zero-sum 2-flow.

Akbari et al. have proved a necessary and sufficient condition for the existence of

zero-sum flow for non-bipartite graphs.

Theorem C. (Akbari et al. [1]) Suppose G is not a bipartite graph. Then G has a

zero-sum flow if and only if for any edge e of G, G\{e} has no bipartite component.

Definition 1.6. Let G be a connected graph. Then G is k-edge connected if it

remains connected whenever fewer than k edges are removed.

Akbari et al. also show that the zero-sum conjecture is true for the 2-edge con-

nected bipartite graphs.

Theorem D. (Akbari et al. [1]) Let G be a 2-edge connected bipartite graph. Then

G has a zero-sum 6-flow.

In addition, Akbari et al. have proved that the zero-sum conjecture is true for

3-regular graphs.
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Theorem E. (Akbari et al. [1]) Every 3-regular graph has a zero-sum 5-flow.

Remark 1.7. The following graph shown in Figure 3 [1] shows that in the above

theorem, zero-sum 5-flow can not be replaced with zero-sum 4-flow.

-2 -2
-2
-2 -2 -2

-2 -2

-2

-2 -2

1 1

1 1

1

1
1

11

1

4

4
4

b

b b

b

b

bb

b

b

b

b

b

b

b b

b

Figure 3: G has a zero-sum 5-flow.

Definition 1.8. Let G be a graph. We call G a (2,3)-graph if the degree of each

vertex is 2 or 3.

Moreover, Akbari et al. provide a relation between the (2,3)-graph and zero-sum

conjecture.

Theorem F. (Akbari et al. [1]) If Zero-Sum Conjecture is true for any (2,3)-graph,

then it is true for any graph.

For the details on the above theorems and other results, see [1, 3]. T.M. Wang

and S.-W. Hu extend the concept minimum flow number in 2011 to the following

definition.
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Definition 1.9. Let G be a graph. The zero-sum flow number F(G) is defined as

the least number of k for which G may admit a zero-sum k-flow. F(G) = ∞ if no such

k exists.

Example 1.10. Let G be a non-bipartite graph as shown in Figure 4. Since there is

a bipartite component of G after deleting an edge of E(G), by the theorem C, F(G)

= ∞.

b

b

b

b

Figure 4: F(G) = ∞.

Note that F(G) = k is not the same as Γ(G) = k. Akbari et al. provide a relation

between the F(G) and Γ(G).

Definition 1.11. Let G be a graph, then S(G) is a graph obtain from G by augment-

ing exactly one new vertex on each edge of G.

Lemma G. (Akbari et al. [1]) Γ(G) = k if and only if F(S(G)) = k.

T.M. Wang et al. [7] show some general properties of small zero-sum flow numbers,

so that the estimate of zero-sum flow numbers gets easier. A result on the zero-sum

flow numbers is the following.

Theorem H. (T.M. Wang et al. [7]) A graph G has zero-sum flow number F(G) = 2

if and only if G is Eulerian with even size (even number of edges) in each component.

5



2 Zero-sum flow number 3 on (2, 3)-graph

Throughout the thesis, a graph is always finite, simple, connected and undirected.

Lemma 2.1. Any (2,3)-graph has even number of vertices with degree 3.

Proof. Let G be a (2,3)-graph. Then G has an even number of vertices with odd

valency since that ∑x∈V (G)deg(x) = 2|E(G)|. That is, G has even number of vertices

with degree 3.

Definition 2.2. A loop is an edge that connects a vertex to itself. A multigraph is

a graph that can have more than one edge between a pair of vertices and allow loops,

which add two to the degree.

Definition 2.3. The edge subdivision of an edge e with endpoints {u,v} yields

a graph containing one new vertex w, and with an edge set replacing e by two new

edges, {u,w} and {w,v}. A subdivision of a graph G is a graph resulting from the

edge subdivision of edges in G.

Lemma 2.4. Any (2,3)-graph with at least two vertices of degree 3 is obtained by

consecutive edge subdivisions from a 3-regular multigraph.

Proof. If the number of vertices with degree 2 is zero, the proof is done. Suppose

the number of vertices with degree 2 is bigger than zero. Then if we merge the two

edges of a vertex with degree 2 to an edge and delete that vertex, each remainder

vertices has degree 3. That is any (2,3)-graph with at least two vertices of degree 3

is obtained by consecutive edge subdivisions from a 3-regular multigraph.
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Suppose G is a (2,3)-graph, by the above theorem H, we obtain F(G) = 2 if and

only if G is an even cycle. That is the study of F(G) equal to two is completed. So we

want to discuss that G is not an even cycle, which means that the number of vertices

with degree 3 in G is greater than zero.

Definition 2.5. A path in G is called a 323-path if its internal vertices have degree

2 and its two endpoints have degrees 3.

Note that a 323-path without internal vertices is an edge in G.

Definition 2.6. A family of vertex-disjoint 323-paths in a (2,3)-graph G is called

complete if each vertex of degree 3 is in exactly one path of the family.

Lemma 2.7. Let G be a (2,3)-graph with F(G) ≤ 4. Then there exists a complete

family of vertex-disjoint 323-paths in G.

Proof. Since F(G) ≤ 4, there exists an assignment f on E(G) such that f (e) ∈ {-3,

-2, -1, 1, 2, 3}. And we know that the case as shown in Figure 5 with numbers {even,

even, odd} on edges incident on a vertex of degree 3 is illegal of the zero-sum rule for

even ∈ {±2} and odd ∈ {±1, ±3}.

even even

odd

b

b

b

b

Figure 5: An illegal labeling in F(G) ≤ 4.
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Hence there is no vertex of degree 3 whose two edges have numbers with absolute

value 2. Moreover, we know there must exist an edge with even number incident on a

vertex v with degree 3 and the case with numbers {even, even, even} on edges incident

on v is illegal of the zero-sum rule for even ∈ {±2}. Let Ω be the graph induced on

the edge set and Ω = {e | e ∈ E(G) and | f (e)| = 2}. Then Ω is a complete family of

vertex-disjoint 323-paths in G since G is a (2,3)-graph.

Now, by using the Lemma 2.7, we find some general properties for the zero-sum

flow number F(G) = 3.

Definition 2.8. A k-factor of a graph is a spanning k-regular subgraph. A 1-factor

is a perfect matching in G.

T.M. Wang and S.-W. Hu [7] show the following (ii)-(iii) of theorem 2.9 are equiv-

alent.

Theorem 2.9. Let G be a 3-regular graph. Then the following (i)-(iii) are equivalent.

(i) F(G) ≤ 4;

(ii) G has a 1-factor;

(iii) F(G) = 3.

In particular, there is no 3-regular graph with F(G) = 4.

Proof. (i) ⇒ (ii): By the lemma 2.7, there exists a complete family of vertex-disjoint

323-paths in G, we denote it by Ω. Since G is a 3-regular graph, a 323-path is an

edge in G. Hence Ω is a perfect matching in G.

(ii) ⇒ (iii): Since G is not an even cycle, F(G) > 2. Suppose G has a perfect

matching Ω in G. For an edge e ∈ E(G), we give the edge values f (e) = 2 if e ∈ Ω

8



and f (e) = -1 if e /∈ Ω. Since a matching in G is a set of edges without common

vertices, the zero-sum rule holds for any vertex v ∈ V (G). That is F(G) = 3.

(iii) ⇒ (i): F(G) = 3 which is less than 4.

From the theorem 2.9, it is easy to see F(G) = 5 for the graph in Figure 3.

Definition 2.10. Let G be a graph with an assignment of two colors to the edges.

Then a path P of G is alternating if no two adjacent edges of P have the same color.

Definition 2.11. A path P is tangent to Ω at x if x is a vertex of P and Ω but no

edges in E(P) ∩ E(Ω) incident on x.

Theorem 2.12. Let G be a (2,3)-graph other than an even cycle. Then F(G) = 3 if

and only if the following conditions hold:

(i) There exists a complete family Ω of vertex-disjoint 323-paths.

(ii) There exists an assignment of two colors to the edges of G such that any path

P of G not tangent to Ω is alternating.

Proof. Suppose F(G) = 3. Then there exists an assignment f on E(G) such that the

edge values f (e) ∈ {-2, -1, 1, 2}. Let Ω be the graph induced on the edge set and

Ω = {e | e ∈ E(G) and | f (e)| = 2}. By the lemma 2.7, Ω is a complete family of

vertex-disjoint 323-paths in G. Then (i) holds. Now we define a coloring on E(G)

such that e is blue if f (e) is positive or e is red if f (e) is negative. To prove (ii),

suppose on the contrary, P is not alternating. Then there are two edges e1 and e2

incident on a vertex x ∈ V (P) such that sgn( f (e1)) = sgn( f (e2)). By the zero-sum

rule, f (e1) = f (e2) ∈ {±1} and the degree of x equals 3 as shown in Figure 6. Since

e ∈ Ω if e ∈ E(G) and | f (e)| = 2, P is tangent to Ω at x ∈ V (Ω). Then (ii) holds.

9



or

2

- 1 = f (e2)

- 1 = f (e1) - 2

1 = f (e2)

1 = f (e1)
x x

P P

b

b

b b b

b

b

b

b

b

b

b

Figure 6: The degree of x is 3 and f (e1) = f (e2) ∈ {±1}

Conversely, we know F(G) > 2 since G is not an even cycle. Suppose (i) and (ii)

hold. Define an assignment f on E(G) as follow.

f (e) =


1 e is blue and e is not in a path of Ω.

−1 e is red and e is not in a path of Ω.

2 e is blue and e is in a path of Ω.

−2 e is red and e is in a path of Ω.

Since Ω is a complete family of vertex-disjoint 323-paths, there are three situations

of a vertex v ∈ V (G). First, v ∈ V (Ω) and v is an internal vertex in a path of Ω,

the numbers on the edges incident with v are 2, -2. Second, v ∈ V (Ω) and v is an

endpoint in a path of Ω, the numbers on the edges incident with v are 2, -1, -1 or -2,

1, 1. Third, v /∈ V (Ω), the numbers on the edges incident with v are 1, -1. Hence,

∑e∈E(v) f (e) = 0 for all v ∈ V (G), where E(v) denote the set of edges incident with a

vertex v ∈ V (G). That is mean F(G) = 3.

Remark 2.13. Let G be a (2,3)-graph with F(G) = 4 as shown in Figure 7. The graph

G satisfies the condition (i) but does not satisfy the condition (ii) of Theorem 2.12.
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1 -1

-1 1
-2 3 -2 1

2 -1 -1

-2 2 -1 1

b

b b

b b

bb

b b

b

b

b

b

Figure 7: F(G) = 4.

3 Zero-sum flow number for Christmas lamp

Definition 3.1. An edge minor of a 323-path is obtained by contracting some edges

of the 323-path while preserving the parity of the number of edges. A minor of a

graph G is a graph resulting from the edge minors of 323-paths in G.

Note that we allow the 323-path which is contracted has same endpoints.

Example 3.2. Let G̃ be obtained from G by contracting a 323-paths(yellow) while

preserving the parity of the number of edges as shown in Figure 8. Then G̃ is a minor

of G.
1

b

b b

b b

bb

b b

b

b

b

b b

b b b

b b

b b

b b

b

G = G̃ =

Figure 8: G̃ is a minor of G.

11



Let G and G̃ be (2,3)-graphs. If G̃ is a minor of G, then F(G) = F(G̃). That is,

if we remove even number of edges from any 323-path of G, then the zero-sum flow

number F(G) does not change.

Theorem 3.3. Let G be a bridgeless (2,3)-graph which the number of edges of any

323-path in G is even. Then F(G) ≤ 6.

Proof. Suppose G is a bridgeless (2,3)-graph which the number of edges of any 323-

path in G is even. Use the property of minor, there is a bridgeless (2,3)-graph G1

such that F(G1) equals F(G) and there is a bridgeless 3-regular graph G2 such that

G1 = S(G2). By the theorem A, we obtain Γ(G2) ≤ 6. Moreover, by the lemma G,

we have F(S(G2)) = F(G1) ≤ 6 which implies F(G) ≤ 6.

With the theorem 3.3, we know the zero-sum conjecture is true for any bridgeless

(2,3)-graph which the number of edges of any 323-path in G is even. Now, we study

a special 1-edge connected (2, 3)-graph and find the upper bound of zero-sum flow

number of this graph.

Definition 3.4. Let H be a graph and v ∈ V (H) with neighbors u1, u2, · · · , us.

Let C be a cycle with vertex set V (C) = {v1,v2, · · · ,vt}, where t ≥ s. A graph G

is said to be obtained from H by replacing v by C if V (G) = V (H)∪V (C)−{v}

and there exist 1 ≤ i1 < i2 < · · · < is ≤ t such that E(G) contains {ukvik |1 ≤ k ≤

s}∪E(H)∪E(C)−{vui|1 ≤ i ≤ s}.

Definition 3.5. A graph G is a Christmas lamp if G is obtained from a path of

order at least 2 by replacing its two endpoints by two odd cycles and some internal

vertices by cycles. Moreover, we call C is a lamp of G if C is a subgraph of G and C

is a cycle.

Example 3.6. Let P5 be a path of order 5. Then G is a Christmas lamp obtained

from P5 as shown in Figure 9.
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Figure 9: G is a Christmas lamp obtained from a path P5 of order 5.

Definition 3.7. Suppose G is a Christmas lamp obtained from a path H. A lamp C

of G is called internal if C is obtained by replacing an internal vertex of H.

Let G be a Christmas lamp, from the theorem C, the zero-sum flow number F(G)

< ∞. Note that F(G) > 2 since G is not an even cycle. The Christmas lamp G in

Figure 10 has F(G) = 5.

1

- 1

- 1

2 - 3

1

4

- 1 2- 2

- 2
b

b

b b

b

b b

b

b

Figure 10: G is a Christmas lamp which F(G) = 5.

Theorem 3.8. Let G be a Christmas lamp based on a path H. Then F(G) ≤ 5.

Moreover, for any labeling for G, with F(G) ≤ 5, f (E(H)) ⊆ {±2,±4}.

Proof. Suppose G is a Christmas lamp. By the property of minor, there are three

kinds of lamps in G as shown in Figure 11, namely, the oo lamp, the ee lamp, the

o lamp, respectively. An internal lamp has exactly two vertices of degree 3, called

13



end vertices. An internal lamp is an oo lamp if its end vertices of degree 3 divide the

lamp into two paths of odd length. An internal lamp is an ee lamp if its end vertices

of degree 3 divide the lamp into two paths of even length. A lamp is an o lamp if it

has odd order.

oo lamp ee lamp o lamp

b b

b b

b b b b

b

b b

b

b b

b

b b

Figure 11: Three kinds of lamps in G

Let G be the christmas lamp obtained from a path H = u1u2 · · ·un by replacing

some vertex ui by cycles Ci. First, we give lables on edges of H consecutively by

setting f (u1u2) = 2 and when f (ui−1ui) is defined, let

f (uiui+1) =


− f (ui−1ui) if Ci is a single vertex or an ee lamp.

f (ui−1ui) if Ci is a oo lamp.

f (ui−1ui)

| f (ui−1ui)|
∗6 − f (ui−1ui) if Ci is a o lamp.

The labels on E(H) are in the set {±2,±4}. Second, use the above labels on

E(H), we give labels on edges of each cycle Ci of G consecutively as follow.

Case 1: For i = 1, as u1 is replaced by an o lamp C1 in G, where C1 = v1v2v3v1

and {v1,u2} ∈ E(G). Set f (v1u2) = f (u1u2). If f (v1u2) = a, we set f (v1v2) = −a
2 ,

f (v2v3) = a
2 and f (v3v1) = −a

2 .

Case 2: For 1 < i < n, if ui−1 is replaced by an cycle Ci−1, let u′i−1 be the

vertex such that {u′i−1,ui} ∈ E(G). Otherwise, u′i−1 = ui−1. As ui is replaced by

an o lamp Ci, where Ci is divided into two paths P1 = v1v3 and P2 = v1v2v3 such

that {u′i−1,v1} and {v3,ui+1} ∈ E(G). Set f (u′i−1v1) = f (ui−1ui) and f (v3ui+1) =

14



f (uiui+1). If f (u′i−1v1) = a and f (v3ui+1) = 2a, we set f (v1v3) = −3a
2 , f (v1v2) = a

2

and f (v2v3) = −a
2 . If f (u′i−1v1) = 2a and f (v3ui+1) = a, we set f (v1v3) = −3a

2 , f (v1v2)

= −a
2 and f (v2v3) = a

2 .

Case 3: For 1 < i < n, if ui−1 is replaced by an cycle Ci−1, let u′i−1 be the vertex

such that {u′i−1,ui} ∈ E(G). Otherwise, u′i−1 = ui−1. As ui is replaced by an oo

lamp Ci, where Ci is divided into two paths P1 = v1v4 and P2 = v1v2v3v4 such that

{u′i−1,v1} and {v4,ui+1}∈E(G). Set f (u′i−1v1) = f (ui−1ui) and f (v4ui+1) = f (uiui+1).

If f (u′i−1v1) = a and f (v4ui+1) = a, we set f (v1v4) = −a
2 , f (v1v2) = −a

2 , f (v2v3) = a
2

and f (v3v4) = −a
2 .

Case 4: For 1 < i < n, if ui−1 is replaced by an cycle Ci−1, let u′i−1 be the vertex

such that {u′i−1,ui} ∈ E(G). Otherwise, u′i−1 = ui−1. As ui is replaced by an ee

lamp Ci, where Ci is divided into two paths P1 = v1v2v4 and P2 = v1v3v4 such that

{u′i−1,v1} and {v4,ui+1}∈E(G). Set f (u′i−1v1) = f (ui−1ui) and f (v4ui+1) = f (uiui+1).

If f (u′i−1v1) = a and f (v4ui+1) = −a, we set f (v1v2) = −a
2 , f (v2v4) = a

2 , f (v1v3) =
−a
2 and f (v3v4) = a

2 .

Case 5: For i = n, if un−1 is replaced by an cycle Cn−1, let u′n−1 be the vertex such

that {u′n−1,un} ∈ E(G). Otherwise, u′n−1 = un−1. As un is replaced by an o lamp

Cn, where Cn is a cycle C = v1v2v3v1 such that {u′n−1,v1} ∈ E(G). Set f (u′n−1v1) =

f (un−1un). If f (u′n−1v1) = a, we set f (v1v2) = −a
2 , f (v2v3) = a

2 and f (v3v1) = −a
2 .

Since a ∈ {±2 ±4}, we find an assignment f on E(G) such that f (e) ∈ {±1, ±2,

±3, ±4} and the zero-sum rule holds on any vertex v ∈ V (G). By the property of

minor, F(G) ≤ 5. Moreover, for any labeling for G, with F(G) ≤ 5, assume there is

an edge e ∈ E(H) such that f (e) ∈ {±1, ±3}. Since there is no vertex with degree

3 whose edges has the labels with three odd numbers or with one odd number and

two even numbers, it will lead to f (un−1un) is an odd number. Then, it is impossible

make the zero-sum rule hold on all vertices of G since un is replaced by an odd cycle

in G. Hence, for any labeling for G, with F(G) ≤ 5, f (E(H)) ⊆ {±2, ±4}.
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Corollary 3.9. If G is a christmas lamp, then F(G) = 3 if and only if G has no

internal odd lamp.

Proof. (⇐) By the theorem 3.8, we can find an assignment f (e) ∈ {±1, ±2} on E(G)

such that the zero-sum rule holds on any vertex v ∈ V (G). And we know F(G) > 2

since G is not an even cycle. That is F(G) = 3.

(⇒) Note that the complete family Ω of vertex-disjoint 323-paths in G is uniquely

determined. Indeed, it is obtained by deleting all the edges in lamps from G. If G has

an internal odd lamp, then the two end vertices divide the odd lamp into two paths of

orders in different parity. It is impossible to satisfy the condition (ii) of theorem 2.12,

which means F(G) ̸= 3. Hence, G has no internal odd lamp.

4 Zero-sum flow number for tree lamp

Definition 4.1. A graph G is a tree lamp if G is obtained from a tree of order

at least 2 by replacing its leaves by odd cycles and some internal vertices by cycles.

Moreover, we call C is a lamp of G if C is a subgraph of G and C is a cycle.

Example 4.2. Let T4 be a tree of order 4. Then G is a tree lamp obtained from T4

as shown in Figure 12.

T4 G

C3

C3

C3

C4
b b

b

b b

b

b b

b

b

b

b

b

b

b

b

b

Figure 12: G is a tree lamp obtained from a tree T4 of order 4.
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Let G be a tree lamp, from the theorem C, the zero-sum flow number F(G) < ∞.

The Christmas lamp is a special case of tree lamp. Similarly, we provide an upper

bound of zero-sum flow number of tree lamp.

Theorem 4.3. If G is a tree lamp, then F(G) ≤ 5.

Proof. Suppose G is a tree lamp obtained from a tree Tn of order n ≥ 2. We shall

prove F(G) ≤ 5 and the corresponding labels in E(Tn) are in the set {±2, ±4} by

induction on n. When n = 2, G is a Christmas lamp and this is a special case

of theorem 3.8. Since any tree with order bigger than two has one vertex v with

neighbors u1,u2,u3, · · · ,us such that s ≥ 2 and degree(ui) = 1 for 2 ≤ i ≤ s. Pick the

leaf u2 in Tn, where n ≥ 3. Let G̃ be the graph obtained from G by deleting the lamp

Cu2 based on u2 and the edge {v′,u2
′} where u2

′ ∈ V (Cu2) and v′ ∈ V (G) \V (Cu2).

Note that G̃ is a tree lamp based on Tn−1 := Tn−u2. By the induction, F(G̃) ≤ 5 and

the corresponding labels in E(Tn−1) are in the set {±2, ±4}. There are two cases of

v in G as follows.

Case 1: v is not replaced by a cycle in G. If uk is replaced by a cycle Cuk in G for 1

≤ k ≤ s, let uk
′ be the vertex such that uk

′ ∈ V (Cuk) and {v,uk
′} ∈ E(G). Otherwise,

uk
′ = uk. If s = 2, there is a vertex u1

′ such that {v,u1
′} ∈ E(G̃) and f (vu1

′) ∈ {±2,

±4}. We give the label on edge {v,u2
′} by setting f (vu2

′) = − f (vu1
′). When u2 is

replaced by an odd cycle Cu2 in G, since | f (vu2
′)| equal 2 or 4, we can give the labels

on E(Cu2) such that f (E(G)) ⊆ {±1, ±2, ±3, ±4} and the zero-sum rule holds on

all vertices of G. If s ≥ 3, since u3 is replaced by an odd cycle Cu3 in G̃, there is a

vertex u3
′ ∈ V (Cu3) such that {v,u3

′} ∈ E(G̃) and f (vu3
′) ∈ {±2, ±4}. If | f (vu3

′)|

= 4, we give the label on edge {v,u2
′} by setting f (vu2

′) = f (vu3
′)

2 and we give the

new label on edge {v,u3
′} by setting f (vu3

′) = f (vu3
′)

2 . If | f (vu3
′)| = 2, we give the

label on edge {v,u2
′} by setting f (vu2

′) = − f (vu3
′) and we give the new label on edge

{v,u3
′} by setting f (vu3

′) = 2× f (vu3
′). When u2 is replaced by an odd cycle Cu2

in G, since | f (vu2
′)| and | f (vu3

′)| equal 2 or 4, we can give the labels on E(Cu2) and
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new labels on E(Cu3) such that f (E(G)) ⊆ {±1, ±2, ±3, ±4} and the zero-sum rule

holds on all vertices of G. Since f (e) ∈ {±2, ±4} if e ∈ {vuk
′|1 ≤ k ≤ s}, we obtain

the corresponding labels in E(Tn) are in the set {±2, ±4} and F(G) ≤ 5.

Case 2: v is replaced by a cycle C in G, where V (C) = {v1,v2, · · · ,vt} and t ≥ s.

There exist 1 ≤ i1 < i2 < · · · < is ≤ t such that E(G) contains {vikuk
′|1 ≤ k ≤ s}. If

uk is replaced by a cycle Cuk in G for 1 ≤ k ≤ s, let uk
′ be the vertex such that uk

′ ∈

V (Cuk) and {vik ,uk
′} ∈ E(G). Otherwise, uk

′ = uk. First, since the edge {vi1u1
′}

∈ E(G̃) and f (vi1u1
′) ∈ {±2, ±4}, we give the new labels on edges {vi1 ,vi1+1},

{vi1+1,vi1+2}, · · · , {vt−1,vt}, {vt ,v1}, {v1,v2}, · · · , {vi1−1,vi1} consecutively by set-

ting f (vi1vi1+1) = − f (vi1u1
′)

| f (vi1 u1′)| and when f (vi−1vi) is changed, let f (vivi+1) = f (vi−1vi)

if i ∈ i1, i2, · · · , is or f (vivi+1) = − f (vi−1vi) if i /∈ i1, i2, · · · , is. Note that vt+1 =

v1 and v0 = vt . Second, if f (vi1u1
′) ̸= f (vi1vi1+1) + f (vi1−1vi1) and | f (vi1u1

′)| =

2. We give the new labels on edges {vi,vi+1 | i1 ≤ i < is} consecutively by setting

f (vi1vi1+1) = f (vi1 u1
′)

| f (vi1 u1′)| and when f (vi−1vi) is changed, let f (vivi+1) = f (vi−1vi) if i ∈

i1, i2, · · · , is or f (vivi+1) = − f (vi−1vi) if i /∈ i1, i2, · · · , is. And, we give the new labels on

edges {vi1,vi1−1}, {vi1−1,vi1−2}, · · · , {vis+1,vis} consecutively by setting f (vi1vi1−1) =

− f (vi1u1
′)− f (vi1vi1+1) and when f (vi+1vi) is changed, let f (vivi−1) = − f (vi+1vi) for

i ∈ {i1 −1, i1 −2, · · · , is +1}. If f (vi1u1
′) ̸= f (vi1vi1+1) + f (vi1−1vi1) and | f (vi1u1

′)| =

4. We give the new labels on edges {vi1,vi1−1}, {vi1−1,vi1−2}, · · · , {vis+1,vis} consecu-

tively by setting f (vi1vi1−1) = − f (vi1u1
′)− f (vi1vi1+1) and when f (vi+1vi) is changed,

let f (vivi−1) = − f (vi+1vi) for i ∈ {i1 − 1, i1 − 2, · · · , is + 1}. Third, we give the new

labels on edges {vikuk
′|3 ≤ k ≤ s} with f (vikuk

′) = − f (vik−1vik)− f (vikvik+1) and we

give the label on edge {vi2u2
′} with f (vi2u2

′) = − f (vi2−1vi2)− f (vi2vi2+1). Since f (e)

∈ {±1, ±3} if e ∈ E(C), f (vikuk
′) ∈ {±2, ±4} for 2 ≤ k ≤ s. When u2 is replaced by

an odd cycle Cu2 in G, we can give the labels on E(Cu2) and new labels on E(Cuk) for

2 ≤ k ≤ s such that f (E(G)) ⊆ {±1, ±2, ±3, ±4} and the zero-sum rule holds on

all vertices of G. Finally, we obtain the corresponding labels in E(Tn) are in the set

{±2, ±4} and F(G) ≤ 5.

By the induction on n, the corresponding labels in E(Tn) are in the set {±2, ±4}
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and F(G) ≤ 5. That is mean if G is a tree lamp, then F(G) ≤ 5.

Definition 4.4. Let G and H be two graphs. Define the sum graph G+H of G and

H with vertex set V (G+H) =V (G)∪V (H) and edge set E(G+H) = E(G)∪E(H).

The reason why we are interested in the tree lamp is that some (2,3)-graphs G

with finite F(G) are the sum graph of some edge disjoint tree lamps and even cycles.

For instance, the following (2,3)-graph G, shown in Figure 13, with 9 vertices and

zero-sum flow number 6 is the sum graph H1+H2 where H1 is an even cycle and H2 is

a tree lamp. In addition, a (2,3)-graph with infinite F(G) can not be the sum graph

of some edge disjoint tree lamps and even cycles, the graph shown in Figure 4 is an

example.

The graph G shown in Figure 13 was discovered in [1] through an exhaustive

search.
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Figure 13: G has zero-sum 6-flow and G is the sum graph H1 +H2 of H1 and H2,
where H1 is an even cycle and H2 is a tree lamp.
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5 Summary

A zero-sum k-flow on a graph G is a zero-sum flow with numbers from the set

{±1, ...,±(k−1)}. The zero-sum flow number F(G) of G is the least number k for

which G may admit a zero-sum k-flow. In the Section 2, we give a necessary and

sufficient condition for a (2,3)-graph to have zero-sum flow number 3, so that in

some special cases to determine if a (2,3)-graph G has F(G) = 3 becomes easier.

Furthermore, in the Sections 3 and 4, we study the zero-sum flow number of Christmas

lamps and tree lamps, which are graphs expanded from paths and trees. At the end

of Sections 3 and 4, we conclude that Christmas lamps and tree lamps respectively

has zero-sum flow numbers at most 5.

We list some open problems for further study:

1. Give a necessary and sufficient condition for a (2,3)-graph to have zero-sum

flow number 4.

2. Any (2,3)-graph G with finite F(G) is the sum graph of some edge disjoint tree

lamps and even cycles.
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