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花 苞 圖 的 最 小 秩

研究生：許博喻 指導教授：翁志文教授

國立交通大學

應用數學系

摘 要

對一以 [n] = {1, 2, · · · , n} 為點的簡單連通圖 G 而言，當一大小為 n 的實對
稱矩陣滿足性質：此矩陣非對角的第 ij 位置非零若且唯若 i 與 j 在圖 G 上有邊，
則我們稱此矩陣與 G 相對應。一張圖的最小秩為其相對應的所有矩陣之中最小的
秩。在此論文中我們定義一種與一介於 1 與 n/4 間的數 m 有關且點數為 n 的圖，
命名為基於 [n−m] 的花苞圖。花苞圖含一個 n−m 點的環，其餘 m 個點之間沒
有邊相連。環可以藉由切斷 m 邊將環分割成 m 段長度大於 2 的區塊，使得這 m
個點各自與不同的區塊之間至少有 3 個邊相連。在此論文中，我們將證明一個基
於 [n−m] 的花苞圖其最小秩為 n−m− 2。

關鍵詞：圖、最小秩、花苞圖。
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The Minimum Rank of Buds
Student：Po-Yu Hsu Advisor：Dr. Chih-Wen Weng

Department of Applied Mathematics

National Chiao Tung University

Hsinchu 300, Taiwan, R.O.C.

abstract

For a simple graph G of order n with vertex set [n] = {1, 2, · · · , n}, an n×n real
symmetric matrix A, whose ij-th entry is not zero if and only if there is an edge
joined i and j in G, is said to be associated with G. The minimum rank of G is
defined to be the smallest possible rank over all symmetric real matrices associated
with G. A bud based on [n−m] is a graph G with vertex set V (G) = [n] satisfying
the following axioms:

1. The subgraph of G induced on [n − m] is a cycle Cn−m, and the subgraph
induced on [n] \ [n−m] has no edge.

2. The cycle Cn−m can be parted into m disjoints paths, and the length of these
paths are at least 2. For all vertex v in [n]\[n−m], v has at least three neighbors
in the same path. Any two vertices in [n] \ [n −m] are not connected to the
same path.

In the thesis we will show that a bud based on [n−m] has minimum rank n−m−2.

Keywords: Graph, Minimum rank, Bud.
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Chapter 1

Introduction

Many mathematical theories have their combinatorial realizations and vice versa,

and the study of matrices associated with a graph G gives a connection between

Graph Theory and Linear Algebra. In this thesis, ranks of matrices associated with

graphs and their combinatorial meaning are investigated.

All graphs considered in this thesis are simple and connected. For a graph

G of order n, we use E(G) as its edge set and V (G) as its vertex set, usually

V (G) = [n] = {1, 2, ..., n}. For an n × n real symmetric matrix A, Γ(A) represents

the graph such that ij ∈ E(Γ(A)) if and only if the ij-th entry of A is not zero,

indicating that the matrix A is associated with Γ(A). The minimum rank of a graph

G, denoted by m(G), is defined to be the integer

m(G) = min{rank(A) : Γ(A) = G},

where the minimum is taken over all n× n symmetric matrices A.

The minimum rank of G is related to the maximum nullity of G, denoted by

M(G) = max{nullity(A) : Γ(A) = G}.

It is well-known that m(G) +M(G) = n for all graphs. Since Γ(A) = Γ(A+ λI) =

G, M(G) is also the maximum multiplicity among the possible multiplicities of
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eigenvalues of all matrices associated with G.

The number m(G) also has combinatorial meanings. Ping-Hong Wei and Chih-

Wen Weng[8] showed that if G is a tree, that is, a connected graph satisfies |V (G)|−

1 = |E(G)|, then |E(G)|−m(G) is equal to the minimum size of edge subset S whose

deletion will yield a graph with each vertex of degree 1 or 2 . The AIM Minimum

Rank - Special Graphs Work Group[1] defined Initial configuration, color-change

rule, and zero-forcing set of a graph G as described below :

1. Initial configuration

The vertex set V (G) of G is partitioned into two classes, and these two classes

are colored black and white.

2. Color-change rule

If u is a black vertex of G, and v is the unique white neighbor of u, then the

color of v is changed to be black.

3. Zero-forcing set

A subset S ⊆ V (G) is a zero-forcing set if an all-black coloring is obtained

from the initial configuration with S colored black followed by a sequence of

color-change rules.

The minimum size of a zero-forcing set of G is denoted by Z(G). Note that

M(G) ≤ Z(G) [1].

We will compute the minimum rank of a class of graphs which are obtained by

adding a vertex and some edges to a cycle Cn−1. We check some minimum ranks of

these graphs and give two conjectures. In the end of the thesis, we define a class of

graphs, called buds based on [n−m] of order n, and show that such a graph G has

the minimum rank n−m− 2, and M(G) = Z(G) = m+ 2.

The thesis is organized as follows. In Chapter 2, we introduce some notations

and operations for graphs and matrices used in the thesis. In Chapter 3, we in-

troduces well-known theorems and propositions in which the relation of minimum
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rank between a graph and its subgraph is investigated. Also the relation between

the minimum size of zero-forcing set and the maximum nullity is introduced there.

There are two parts in Chapter 4. In the first part, we study the changing of mini-

mum ranks when adding a vertex to a cycle Cn−1, and give two conjectures. In the

second part, we compute the minimum rank and the minimum size of zero-forcing

sets of a bud, and show that its maximum nullity is equal to the minimum size of

its zero-forcing sets.
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Chapter 2

Preliminaries

In this Chapter, we define notations and operations for graphs and matrices

which we will use in this thesis.

2.1 Graphs

We consider simple and connected graphs in this thesis. For a graph G, we use

E(G) as its edge set and V (G) as its vertex set, usually V (G) = [n] = {1, 2, ..., n}.

The following table defines these three graphs Kn, Pn, Cn with vertex set [n].

Graph Notation Edge set

Complete graph Kn {ij|1 ≤ i < j ≤ n}

Path Pn {i(i+ 1)|1 ≤ i ≤ n− 1}

Cycle Cn {i(i+ 1)|1 ≤ i ≤ n− 1} ∪ {1n}

Let x, y ∈ V (G). We use the following graph operations:

1. x ∼ y means that x is a neighbor of y.
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2. G1(x) denotes the set of the neighbors of vertex x ∈ G.

3. G− x denotes the induced subgraph of G with vertex set V (G)− {x}.

4. |G| denotes the order of graph G.

2.2 Matrices

We use the following notation with an n× n matrix A, a column vector x ∈ Rn,

and subsets α, β for N.

1. {e1, e2, ..., en} is the standard basis of Rn.

2. supp(x):= {i ∈ N| the i-th entry of x is not zero }.

3. Ci(A) is the i-th column of A.

4. A(α|β) means the submatrix formed by deleting rows in α and columns in β.

A(α) = A(α|α).

5. A[α|β] means the submatrix formed by rows in α and columns in β. A[α] =

A[α|α].

2.3 Matrices associated with graph G

Recall that for an n× n real symmetric matrix A, Γ(A) represents the graph G

such that ij ∈ E(Γ(A)) if and only if the ij-th entry of A is not zero. The matrix

A is said to be associated with G if Γ(A) = G.
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Example 2.1. The 4× 4 matrix A is associated with Γ(A).

A =



1 1/5 −1 0

1/5 0 1 0

−1 1 −4 2

0 0 2 0


1

2

3 4

Γ(A) :t
t
t t

Note that the diagonal entries do not need to be 0.
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Chapter 3

Known Results

Known theorems and propositions are introduced in this chapter. The relation of

minimum rank between a graph and its subgraph is investigated. Also the relation

between the minimum size of zero-forcing set and the maximum nullity of a graph

are introduced here.

Lemma 3.1. If H is an induced subgraph of G, then we have m(H) ≤ m(G).

Proof. For any matrix A with Γ(A) = G, the submatrix A[V (H)] = A[V (H)|V (H)]

is associated with H. Thus rank(A[V (H)]) ≤rank(A). This implies m(H) ≤ m(G).

Theorem 3.2. [4, Theorem 2.8] Let A be an n × n real symmetric matrix. Then

the following (i)-(ii) are equivalent.

(i) rank(A+D) ≥ n− 1 for any diagonal matrix D.

(ii) Γ(A) = Pn.

7



Example 3.3. The following matrix P satisfies Γ(P ) = Pn, and rank(P ) = n− 2.

P =



1 1 0

1 2 1

1
. . . . . .

. . . 2 1

0 1 1


Theorem 3.2 and Example 3.3 show that Pn is the unique graph with minimum

rank n− 1 among all graphs of order n. Now we can determine the minimum rank

of graphs with order n, which has an induced subgraph Pn−1.

Lemma 3.4. If a graph G of order n is not a path and contains an induced subgraph

Pn−1, then m(G) = n− 2.

Proof. Since Pn−1 is an induced subgraph of G, by Lemma 3.1 we have m(G) ≥

m(Pn−1) = n− 2. From Theorem 3.2, because G is not a path of orde n, we know

that m(G) ≤ n− 2. Thus m(G) = n− 2.

Lemma 3.5. The minimum rank of Cn is n− 2.

Proof. It is immediately from Lemma 3.4.

Example 3.6. The matrix At = (aij) defined below satisfies Γ(At) = Ct with

rank(At) = t− 2.

aij =



2, if i = j and i, j /∈ {1, t− 1, t};

1, if i = j, i, j ∈ {1, t− 1};

t− 2, if i = j = t;

1, if |i− j| = 1;

(−1)t−1, if (i, j) = (1, t) or (i, j) = (t, 1);

0, otherwise.

8



At =



1 1 (−1)t−1

1 2 1

1
. . . . . .

. . . 2 1

1 1 1

(−1)t−1 1 t− 2



Proposition 3.7. For a cycle Cn, the set of any two adjacent vertices is a zero-

forcing set.

Proof. These two adjacent vertices form a black path. Once we change the white

neighbor of the endpoint of the black path, there forms a new black path. Finally,

all vertices are all black. Thus the set of any two adjacent vertices is a zero-forcing

set.

Here we introduce the relation between the minimum size Z(G) of zero-forcing

set and the maximum nullity M(G) of a graph G.

Proposition 3.8. [1, Proposition 2.4] Let G be any graph. Then M(G) ≤ Z(G).

Also there are some graphs with Z(G) = M(G).

Proposition 3.9. [1, Proposition 4.3] If |G| ≤ 6 , then M(G) = Z(G).

Example 3.10. The following graph G with it’s associated matrix A as an example

for Proposition 3.9 has m(G) = rank(A) = 2, and Z(G) = M(G) = 3.

9
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@

A =



0 1 0 1 1

1 0 1 0 0

0 1 0 1 1

1 0 1 0 0

1 0 1 0 0


Theorem 3.11. [1, Proposition 4.10] For each of the following families of graphs, Z(G) =

M(G)

1 Any graph G such that |G| ≤ 6.

2 Kn, Pn, Cn.

3 Any tree T .

4 All the graphs listed in Table 1[1, Page 1630].
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Chapter 4

Main Results

There are two parts in this chapter. In the first part, we study the changing

of minimum ranks when adding a vertex to a cycle Cn−1. In the second part,

we compute minimum ranks and the minimum sizes of zero-forcing set of a class of

graphs, called buds, and show that their maximum nullities is equal to the minimum

sizes of zero-forcing set of buds.

4.1 Add a vertex to Cn−1

Let n be a vertex adding to the cycle Cn−1 in this section.

Proposition 4.1. Suppose that there is exactly one edge which joins n to some

vertex x ∈ Cn−1. Then the minimum rank of the new graph G′ is n − 2, and

M(G′) = Z(G′) = 2.

Proof. Since G′ contains an induced subgraph Pn−1, by deleting a neighbor of x, we

know that m(G′) ≥ m(Pn−1) = n− 2. On the other hand, G′ is not a path of order

n, so m(G′) < n − 1. Thus the minimum rank of G′ is n − 2 and the maximum

nullity is 2. By Proposition 3.8, M(G′) ≤ Z(G′), we only need to claim that there is

a zero-forcing set of G′ with size 2. Let y be a neighbor of x in a clockwise direction.

11



Consider the set {x, y} colored in black. From y in a clockwise direction, a white

vertex can be changed to a black vertex at one time. When all vertices in Cn−1 are

all black, n is the exactly one white neighbor of x, then n can change to black. Thus

the set {x, y} is a zero-forcing set of G′ with size 2.

Proposition 4.2. Let x, y ∈ V (Cn−1) and x ∼ y. If there are exactly two edges

incident on n such that n ∼ x and n ∼ y, then the minimum rank of this new graph

G′′ is n− 2, and M(G′′) = Z(G′′) = 2.

Proof. By deleting vertex y, we know that Pn−1 is an induced subgraph of G′′.

Thus m(G′′) ≥ m(Pn−1) = n − 2. Because G′′ is not a path of order n, we have

m(G′′) < n − 1. Therefore, the minimum rank of G′′ is n − 2, and the maximum

nullity is 2. By Proposition 3.8, M(G′′) ≤ Z(G′′), we have to claim that there is a

zero-forcing set of G′′ with size 2. Consider the set {x, n} colored in black, y is the

only one white neighbor of n, so y can change to black. For other white vertices,

using the same argument as the proof in Proposition 3.7 can color all white vertices

to black. Thus the set {x, n} is a zero-forcing set of G′′ with size 2.

Let G3 be a graph of order n. G3 is obtained by adding a vertex n and two edges

to a cycle Cn−1, and the vertex n is adjacent to two vertices which have distance 2.

Before we discuss the situations of G3, we define four types n×n matrices W,X, Y, Z

as follows. According to the result of n mod 4, these matrices can be associated

with G3.

1. When n = 4k + 1, k ∈ N,

wij =



1, if one of i, j is 1, and the other is n− 1 or n ;

1, if (i, j) = (3, n) or (i, j) = (n, 3) ;

1, if |i− j| = 1,∀i, j < n ;

0, otherwise.
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W =



0 1 1 1

1 0 1 0

1
. . . . . . 1

. . . . . . 1

1 1 0 0

1 0 1 0 0



.

2. When n = 4k + 2, k ∈ N,

xij =



1, if one of i, j is 1, and the other is n− 1 or n ;

1, if (i, j) = (3, n) or (i, j) = (n, 3) ;

1, if |i− j| = 1,∀i, j < n− 1 ;

1, if i = j, i, j ∈ {1, n− 2, n− 1} ;

−1, (i, j) = (n− 2, n− 1) or (i, j) = (n− 1, n− 2) ;

0, otherwise.

X =



1 1 1 1

1 0 1 0

1
. . . . . . 1

. . . 0 1

1 1 −1

1 −1 1 0

1 0 1 0 0



.
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3. When n = 4k + 3, k ∈ N,

yij =



1, if one of i, j is 1, and the other is n− 1 or n ;

1, if (i, j) = (3, n) or (i, j) = (n, 3) ;

1, if |i− j| = 1, ∀i, j < n− 1 ;

−1, (i, j) = (n− 2, n− 1) or (i, j) = (n− 1, n− 2) ;

0, otherwise.

Y =



0 1 1 1

1 1 0

1
. . . . . . 1

. . . . . . 1

1 −1

1 −1 0 0

1 0 1 0 0



.

4. When n = 4k + 4, k ∈ N,

zij =



1, if one of i, j is 1, and the other is n− 1 or n ;

1, if (i, j) = (3, n) or (i, j) = (n, 3) ;

1, if |i− j| = 1, ∀i, j < n− 1 except i+ j = 9 ;

1, if i = j, i, j ∈ {1, 4, n− 1} ;

−1, (i, j) = (n− 2, n− 1) or (i, j) = (n− 1, n− 2) ;

−1, (i, j) = (4, 5) or (i, j) = (5, 4) ;

0, otherwise.
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Z =



1 1 1 1

1 0 1 0

1 0 1 1

1 1 −1

−1 0 1

1
. . . . . .

. . . 1

1 0 −1

1 −1 1 0

1 0 1 0 0



.

Lemma 4.3. The rank of the above-mentioned four n× n matrices W,X, Y, Z are

at most n− 3.

Proof. For each W,X, Y, Z, express its 3-th, (n − 1)-th and n-th columns as linear

combination of other columns.

(1) For W,

C3(W ) =e2 + e4 + en

=e2 + e4 + en +
2k∑
i=3

e2i −
2k∑
i=3

e2i

=e2 + en−1 + en +
2k−1∑
i=2

e2i −
2k∑
i=3

e2i

=C1(w) +
k−1∑
i=1

C4i+1(W )−
k−1∑
i=1

C4i+3(W ),

15



Cn−1(W ) =e1 + en−2

=e1 + e4k−1 +
2k−2∑
i=1

e2i+1 −
2k−2∑
i=1

e2i+1

=
2k−1∑
i=0

e2i+1 −
2k−2∑
i=1

e2i+1

=
k−1∑
i=0

C4i+2(W )−
k−1∑
i=1

C4i(W ),

and

Cn(W ) = e1 + e3 = C2(W ).

(2) For X,

C3(X) =e2 + e4 + en

=e2 + e4 + en +
n−4∑
i=5

ei −
n−4∑
i=5

ei

=e1 + e2 + en−1 + en − e1 − e3 − en−1 +
4k−2∑
i=3

ei −
4k−2∑
i=5

ei

=C1(X)− C2(X) +
k−1∑
i=1

(C4i(X) + C4i+1(X))−

k−1∑
i=1

(C4i+2(X) + C4i+3(X)) + Cn−2(X),

Cn−1(X) =e1 − en−2 + en−1

=e1 +
2k−1∑
i=1

e2i+1 −
2k−1∑
i=1

e2i+1 − e4k + en−1

=
2k−1∑
i=0

e2i+1 −
2k−2∑
i=1

e2i+1 − e4k−1 − e4k + en−1

=
k−1∑
i=0

C4i+2(X)−
k−1∑
i=1

C4i(X)− C4k(X),

and

Cn(X) = e1 + e3 = C2(X).
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(3) For Y,

C3(Y ) =e2 + e4 + en

=e2 + e4 + en +
2k+1∑
i=3

e2i −
2k+1∑
i=3

e2i

=e2 + en−1 + en +
2k∑
i=2

e2i −
2k+1∑
i=3

e2i

=C1(Y ) +
k−1∑
i=1

C4i+1(Y )−
k−1∑
i=1

C4i+3(Y ) + e4k − e4k+2

=C1(Y ) +
k−1∑
i=1

C4i+1(Y )−
k−1∑
i=1

C4i+3(Y ) + Cn−2(Y ),

Cn−1(Y ) =e1 − en−2

=e1 − e4k+1 +
2k−1∑
i=1

e2i+1 −
2k−1∑
i=1

e2i+1

=
2k−1∑
i=0

e2i+1 −
2k∑
i=1

e2i+1

=
k−1∑
i=0

C4i+2(Y )−
k∑

i=1

C4i(Y ),

and

Cn(Y ) = e1 + e3 = C2(Y ).

(4) For Z,

C3(Z) =e2 + e4 + en

=e2 + e4 + en +
2k+1∑
i=0

e2i+1 −
2k+1∑
i=0

e2i+1

=e1 + e2 + en−1 + en − e1 − e3 + e3 + e4 − e5 +
2k∑
i=2

e2i+1 −
2k+1∑
i=3

e2i+1

=C1(Z)− C2(Z) + C4(Z) +
k∑

i=2

C4i−2(Z)−
k∑

i=2

C4i(Z) + e4k+1 − e4k+3

=C1(Z)− C2(Z) + C4(Z) +
k∑

i=2

C4i−2(Z)−
k∑

i=2

C4i(Z) + Cn−2(Z),
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Cn−1(Z) =e1 − en−2 + en−1

=e1 − e4k+2 + e4k+3 +
4k+1∑
i=3

ei −
4k+1∑
i=3

ei

=e1 + e3 − e3 − e4 + e5 + e4 − e6 +
4k+1∑
i=6

ei − e5 − e7−

4k−1∑
i=8

ei − e4k − e4k+2 − e4k+1 + e4k+3

=C2(Z)− C4(Z)− C5(Z) +
k−1∑
i=1

(C4i+3(Z) + C4i+4(Z))−

k−1∑
i=1

(C4i+2(Z) + C4i+5(Z))− Cn−2(Z),

and

Cn(Z) = e1 + e3 = C2(Z).

Theorem 4.4. The minimum rank of the graph G3 is n− 3, and M(G3) = Z(G3)

= 3.

Proof. Let x, y, z ∈ V (Cn−1) with x ∼ n and y ∼ n. Since Cn−1 is an induced

subgraph of G3, by Lemma 3.1 we have that m(G3) ≥ m(Cn−1) = n − 3. These

four types matrices W,X, Y, Z can be associated with G3. From Lemma 4.3 we

know that the rank of W,X, Y, Z are less than or equal to n − 3. Therefore, we

have m(G3) ≤ n − 3. Thus the minimum rank of G3 is n − 3, and the maximum

nullity is 3. By Proposition 3.8, M(G3) ≤ Z(G3), so we have to claim that there is

a zero-forcing set of G3 with size 3. Consider the set {x, z, n} colored in black. y is

the only one white neighbor of n, so y can change to black. For other white vertices,

using the same argument as the proof in Proposition 3.7 can color all white vertices

to black. Thus the set {x, z, n} is a zero-forcing set of G3 with size 3.
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Conjecture 4.5. Let x, y ∈ V (Cn−1) with x � y. If there are exactly two edges

incident on n such that n ∼ x and n ∼ y, then the minimum rank of this new graph

is n − 3, and the maximum nullity and the minimum size of zero-forcing set are

equal to 3.

Lemma 4.6. For all n ∈ N, let An be the n × n symmetric matrix associated

with a cycle defined as the matrix in Example 3.6. Thus for any subset S ⊆ [n]

with |S| > 2, there exists a vector u ∈ Rn such that supp(u) ⊆ [max(S) − 1] and

supp(Anu) = S.

Proof. For integers 1 ≤ i < j ≤ n, define

bi =(−1)0ei + (−1)1ei−1 + · · ·+ (−1)i−1e1, and

Cij =(−1)0bi + (−1)1bi+1 + · · ·+ (−1)j−i−1bj−1.

Then we have

Anbi =


ei + ei+1 + (−1)n−1e− n, i = [n− 2];

0, i = n− 1;

(−1)n−1e1 + en−1 + (n− 2)en, i = n.

AnCij =ei + (−1)j−i−1ej + (−1)n−i(j − i)en.

Now suppose S = {t1, t2, ..., tk} ⊆ [n], k ≥ 3, and t1 < t2 < · · · < tk.

Case 1: tk = n : Choose u = Ct1,t2 + Ct1,t3 + · · ·+ Ct1,tk−1
.

Then

Anu =
k−1∑
i=1

AnCt1tj

=
k−1∑
j=2

[et1 + (−1)tj−t1−1etj + (−1)n−t1(tj − t1)en]

=(k − 2)et1 +
k−1∑
j=2

(−1)tj−t1−1etj + (−1)n−t1(
k−1∑
j=2

j − (k − 2)t1)en.
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Thus supp(Anu) = S and supp(u) ⊆ [max(S)− 1].

Case 2: tk ̸= n : Let a =
k∑

i=3

ti − (k − 2)t1, d = lcm((t2 − t1), a).

Choose

u =
d

t2 − t1
Ct1,t2 −

d

a
(

k∑
i=3

Ct1,ti).

Then

Anu =
d

t2 − t1
AnCt1,t2 −

d

a
(

k∑
i=3

AnCt1,ti)

=
d

t2 − t1
et1 +

d

t2 − t1
(−1)t2−t1−1et2 + d(−1)n−t1en −

d

a
(k − 2)et1−

d

a
[

k∑
i=3

(−1)ti−t1−1eti ] + d(−1)n−t1en

=
ad− d(k − 2)(t2 − t1)

a(t2 − t1)
et1 +

d

t2 − t1
(−1)t2−t1−1et2−

d

a

k∑
i=3

(−1)ti−t1−1eti .

To check ad− d(k − 2)(t2 − t1) > 0, we claim a− (k − 2)(t2 − t1) > 0.

a− (k − 2)(t2 − t1) =
k∑
3

ti − (k − 2)t1 − (k − 2)(t2 − t1)

=
k∑
3

ti − (k − 2)t2

>(k − 2)t3 − (k − 2)t2 > 0.

Thus supp(Anu) = S and supp(u) ⊆ [max(S)− 1].

Theorem 4.7. If G is a graph of order n which are obtained by adding a vertex n

and at least three edges to a cycle Cn−1, then the minimum rank of G is n− 3, and

M(G) = Z(G) = 3.
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Proof. Let S = G1(V ) = [t1, t2, ..., tk], where ti ∈ [n − 1], k ≥ 3; and An−1 be the

(n− 1)× (n− 1) matrix defined as the matrix in Example 3.6. By Lemma 4.6, we

know that there exists a vector u ∈ Rn−1 such that supp(An−1u) = S. Thus the

following matrix B satisfies rank(B) = n− 3 and Γ(B) = G.

B =

 An−1 An−1u

uTAn−1 uTAn−1u


n×n

This implies that the maximum nullity is 3. By proposition 3.8, M(G) ≤ Z(G),

so we have to claim that there is a zero-forcing set of G with size 3. Let x, y ∈

[n − 1] and x ∼ y. Consider the set {x, y, n} colored in black. For other white

vertices, we can color all white vertices to black by the same argument as the proof

in Proposition 3.7. Thus the set {x, y, n} is a zero-forcing set of G with size 3.

Conjecture 4.8. If G is a graph obtained by adding a vertex and some edges to

a cycle Cn−1, then the maximum nullity of G is equal to the minimum size of a

zero-forcing set of G.

4.2 Buds

Here we use notation [i, j] to mean {i, i+ 1, · · · , j − 1, j}.

Definition 4.9. For integers m < n, let Bn,m be a class of graphs G with vertex

set V (G) = [n] satisfying the following axioms:

1. The subgraph of G induced on [n − m] is a cycle Cn−m, and the subgraph

induced on [n] \ [n−m] has no edge.

2. Let 1 = t0 < t1 < t2 < · · · < tm = n−m+1, and tj − tj−1 > 2, for all j ∈ [m].

Let Si = G1(n−m+ i), where i ∈ [m]. Then |Si| ≥ 3 and Si ⊆ [ti−1, ti − 1].

The graph G ∈ Bn,m is called a bud based on [n−m].
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Theorem 4.10. If G ∈ Bn,m, then m(G) = n−m− 2.

Proof. Since G is in Bn,m, G has an induced subgraph Cn−m. By Lemma 3.1, we have

m(G) ≥ m(Cn−m) = n−m−2. Now we claim that there exists a symmetric matrix B

associated with G, and the rank of B is n−m−2. Let 1 = t0 < t1 < t2 < · · · < tm =

n−m+1, and tj−tj−1 > 2, for all j ∈ [n−m]. Let Si = G1(n−m+i), where i ∈ [m].

Then |Si| ≥ 3 and Si ⊆ [ti−1, ti − 1]. Let A = (aij) be the matrix associated with

cycle Cn−m defined as the matrix in Example 3.6. By Lemma 4.6, for any i ∈ [m],

we can choose a vector ui ∈ Rn−m such that

supp(ui) ⊆ [max(Si)− 1] ⊆ [ti − 2] and supp(Aui) = Si ⊆ [ti−1, ti − 1]. (4.1)

Notice that from the construction uT
j Aui = 0, if j < i, and indeed for i ̸= j since

uT
j Aui = uT

i Auj. Hence

uT
j Aui = 0, for i ̸= j. (4.2)

Now define the n× n symmetric matrix B = (bij) by:

bij =



aij, if 1 ≤ i ≤ j ≤ n−m;

uT
j−n+mAui−n+m, if n−m+ 1 ≤ i ≤ j ≤ n;

eTi Auj−n+m, if 1 ≤ i ≤ n and n−m+ 1 ≤ j ≤ n;

uT
i−n+mAej, if n−m+ 1 ≤ i ≤ n and 1 ≤ j ≤ n−m.

(4.3)

Let C = [u1u2 · · ·um], then

B =

 A AC

CTA CTAC

 .

From (4.1)(4.2)(4.3), we can easily check that Γ(B) ∈ Bn,m. For n−m+1 ≤ i ≤ n,

the i-th column of B[[n−m]|[n]] is a linear combination of columns of B[[n−m]] =

A. Thus rank(B[[n − m]|[n]]) = rank(B[[n − m]]) = rank(A) = n − m − 2. For

n−m+1 ≤ i ≤ n, the i-th row of B is a linear combination of the first n−m rows

22



of B. Hence rank(B) =rank(B[[n−m]|[n]]) = n−m− 2.

Corollary 4.11. If G ∈ Bn,m, then M(G) = Z(G) = m+ 2.

Proof. By Proposition 3.8, we know that M(G) ≤ Z(G). From Theorem 4.10, we

have m(G) = n−m−2. Thus M(G) = n−(n−m−2) = m+2. Hence Z(G) ≥ m+2.

By coloring the set S = [n] \ [n−m− 2] in black, we can check that by using color-

change rule, all vertices can color to black. Therefore, Z(G) ≤ n−(n−m−2) = m+2.

Hence M(G) = Z(G) = m+ 2.

Example 4.12. Let G be a graph in B10,2 base on [8] such that G1(9) = {1, 2, 4},

G1(10) = {6, 7, 8} as in the following figure.
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From Corollary 4.11, we know M(G) = 4 and then m(G) = 6. here we precisely give

a matrix B associated with G and the rank of B is 6. Let S1 = {1, 2, 4}, S2 = {6, 7, 8}

and A8 be the matrix defined in Example 3.6. Choose u1 = (0, 2,−1, 0, 0, 0, 0, 0)T ,

u2 = (−1, 1,−1, 1,−1, 1, 0, 0)T . Then the following matrix B is associated with G

and rank(B) = 6.
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B =


A8 A8u1 A8u2

uT
1A8 uT

1A8u1 0

uT
2A8 0 uT

2A8u2

 =



1 1 0 0 0 0 0 −1 2 0

1 2 1 0 0 0 0 0 3 0

0 1 2 1 0 0 0 0 0 0

0 0 1 2 1 0 0 0 −1 0

0 0 0 1 2 1 0 0 0 0

0 0 0 0 1 2 1 0 0 1

0 0 0 0 0 1 2 1 0 1

−1 1 0 0 0 0 1 6 0 1

2 3 0 −1 0 0 0 0 6 0

0 0 0 0 1 1 1 1 0 1


Example 4.13. Let G be a graph of order 8 such that G1(7) = {1, 3, 5}, G1(8) =

{2, 4, 6} as in the following figure.
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Here we precisely give a matrix B associated with G and the rank of B is 4. Let

S1 = {1, 3, 5}, S2 = {2, 4, 6} and A6 be the matrix defined in Example 3.6. Choose

u1 = (0, 1,−2, 1, 0, 0)T , u2 = (−2, 2,−1, 0, 0, 0)T . Then the following matrix B is
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associated with G and rank(B) = 4.

B =


A6 A6u1 A6u2

uT
1A6 uT

1A6u1 0

uT
2A6 0 uT

2A6u2

 =



1 1 0 0 0 −1 1 0

1 2 1 0 0 0 0 1

0 1 2 1 0 0 −2 0

0 0 1 2 1 0 0 −1

0 0 0 1 1 1 1 0

−1 0 0 0 1 4 0 2

1 0 −2 0 1 0 4 0

0 1 0 −1 0 2 0 2
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