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Spectral Radius of a Bipartite Graph

Student * Yen-Jen Cheng Advisor : Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

The spectral radius of a square matrix C' is the largest magnitude of an
eigenvalue of C' and the spectral radius of a graph G is the spectral radius
of the adjacency matrix of G. Let G be a bipartite graph with e edges with-
out isolated vertices. It was known that the spectral radius of G is at most
the square root of e, and the upper bound is attained if and only if G is a
complete bipartite graph. Our first result extends this result to find the maxi-
mum spectral radius of a non-complete bipartite graph with e edges under the
assumption that (e — 1,e + 1) is not a pair of twin primes.

Bhattacharya, Friedland and Peled conjectured that a non-complete bipar-
tite graph which has the maximum spectral radius with given e and bi-order
(p,q) is obtained from a complete bipartite graph by deleting edges incident
to a common vertex. We find counter examples of this conjecture. Under the
additional assumption e > pg — q or under the assumption p < 5, where p < g,
we prove a weaker version of the above conjecture that drops the non-complete
assumption of the bipartite graph.

To handle the problem above, we study the spectral radius of a nonnegative

matrix C' which takes the square of the adjacency matrix of G as a special case.
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For a general nonnegative matrix C', we give a new approach to obtain lower
bounds and upper bounds of the spectral radius of C' which are the spectral
radii of matrices obtained by suitably reweighting the entries in a row of C'
keeping the row-sum unchanged. This method helps us to find many spectral

bounds of C' easily.

Keywords: bipartite graph, adjacency matrix, nonnegative matrix, spectral

radius.
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Chapter 1

Introduction

For a square matrix C, the spectral radius of C' is
p(C) = max{|\| | A is an eigenvalue of C'},

where |A| is the magnitude of complex number . Given an undirected graph
G, the adjacency matriz of GG is the square matrix A indexed by its vertices,
and
1, if ¢ is adjacent to 7;
Aij -
0, otherwise.

The spectral radius of G is the spectral radius of its adjacency matrix A.

1.1 Spectral radius of a bipartite graph

The problem of finding the maximum spectral radius of a graph with e edges
was initially posed by Brualdi and Hoffman [1, p.438] in 1976. They later gave

the following conjecture [5],

Conjecture 1.1.1 (BH Conjecture). The mazimum spectral radius of a graph
with e edges is attained by taking a complete graph and adding a new vertex
which is adjacent to a corresponding number of vertices in the complete graph,

probably together with some isolated vertices.

The above conjecture was proved by Rowlinson [22] in 1988. In 2008,
Bhattacharya, Friedland and Peled [2] proved that if G is a bipartite graph
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with e edges, then p(G) < /e with equality if and only if G is a complete
bipartite graph, possibly together with some isolated vertices. Moreover, they
gave a conjecture as a bipartite graphs analogue of the BH conjecture.

The following comes from [2].

"We assume here the normalization 1 < p < ¢q. Let e be a positive integer
satisfying e < pg. Denote by K(p,q,e) the family of subgraphs of K, , with
e edges and with no isolated vertices and which are not complete bipartite
graphs.

Problem A. Let 2 <p < ¢, 1 < e < pq be integers. Characterize the graphs
which solve the maximal problem

max Apmax(G). *
aax (G) (*)

We conjecture below an analog of the Brualdi-Hoffman conjecture for non-
bipartite graphs, which was .......

Conjecture B. Under the assumptions of Problem A an extremal graph that
solves the maximal problem (*) is obtained from a complete bipartite graph
by adding one vertex and a corresponding number of edges.”

Let KCo(p, g, €) denote the subset of K(p, ¢, e) such that each graph in the
subset is obtained from a complete bipartite graph by adding one vertex and
a corresponding number of edges. Note that KCo(p,q,e) is also the subset
of K(p,q,e) such that each graph in the subset is obtained from a complete
bipartite graph by deleting edges incident on a common vertex. Noting that
Ko(p,p,p* — p) = 0, We restate Conjecture B with the additional assumption
that Ko(p,q,e) #0,:

Conjecture 1.1.2 (BFP Conjecture for K(p, q,¢e)). If G € K(p, q,€) such that
p(G) = maxpgex(pqe) p(H) and Ko(p,q,e) # 0, then G € Ko(p, q,¢€).

In paper [2], Bhattacharya, Friedland and Peled also proved BFP Conjec-
ture for K(p,q,e) withe=st—land2<s<p<t<qg<t+(t—1)/(s—1).
As stated clearly above, the complete graphs are excluded in their consider-

ation of BFP Conjecture for IC(p,q,e). One might observe from the special



case K(5,10,35) of their result to know that they exclude the 35-edge sub-
graph Kj 7 of K50 in consideration and choose the 35-edge subgraph of K 1o
obtained from K49 by deleting an edge.

In Chapter 3, we will extend the above result p(G) < /e of [2] and deter-
mine the e-edge bipartite graphs G with

6+\/62—4(6—1—\/6——1)
2

< p(G) < Ve

As a byproduct, we prove BEP Conjecture for C(p, ¢, e) when e € {st —1, st'+
1]s<p,t<gqt <q—1}in Theorem 3.6.1.

In 2010, Chen, Fu, Kim, Stehr and Watts [6] proved BFP Conjecture for
K(p,q,pq—2). In 2015, Liu and Weng [19] proved BFP Conjecture for K(p, g, €)
under assumption pqg — p < e < pq. Note that if pg — p < e < pq, there are
no e-edge complete subgraphs of K,,. In Proposition 3.6.2, we will provide
a class of counter examples that disproves BFP Conjecture for K(p, ¢, €) with
e=p(lg—1),p>3and ¢>p+2.

Since complete graphs are considered in BH Conjecture, one might expect
that a bipartite graphs analogue of the BH conjecture also includes complete
bipartite graphs in considering. For 1 < e < pgq, let C(p,q,¢e) be the class of
all subgraphs of K, , with e edges and no isolated vertices (we do not assume
p < q), and Cy(p, g, e) be the subset of C(p,q,e) such that each graph in the
subset is a complete bipartite graph or a graph obtained from a complete
bipartite graph by adding one vertex and a corresponding number of edges.

The following is a weaker version of BFP Conjecture.

Conjecture 1.1.3 (Weak BFP Conjecture for C(p,q,e).). If G € C(p,q,e)
such that p(G) = maxpee(p,q.e) P(H), then G € Co(p, g, e).

Note that Co(p,q,e) # 0 if e < pg. Indeed, since e = sq + r for some
nonnegative integers s, r such that s < p,r < ¢, the graph in K(p, ¢, €) obtained
from K, by adding a vertex in the part of g vertices and a corresponding
number of edges is in Ky(p, ¢, €). If BFP Conjecture for K(p, ¢, e) holds, then
weak BFP Conjecture for C(p, ¢, e) holds with the same p, ¢, e. We prove weak
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BFP Conjecture for C(p, q,¢) when p < 5 in Theorem 3.7.1 and Theorem 5.2.4,
and when e > pg — ¢ in Theorem 5.2.3.

1.2 The spectral radius of a nonnegative ma-
trix

Although we are mainly interested in binary symmetric matrices, our results
are extended to nonnegative matrices, not necessary symmetric. In Chapter
4, we give a systematic method to get upper bounds and lower bounds of the
spectral radius of a nonnegative matrix. This method will be used in Chapter
D.

For real matrices C' = (¢;;), C' = (¢}

j
i,7, then we say C' < C”. A column vector v/ = (v}, v}, ..., v,)7T is called rooted

) of the same size, if ¢;; < ¢j; for all

if v; > v, >0 for 1 <j<n-—1 Forann xn matrix C", we use C'[—|n)
to denote the first n x (n — 1) submatrix of C’, and C” is called rooted if the
columns in C’'[—|n) and the row-sum vector of C’ are all rooted. The main
theorem of Chapter 4 is the following.
Theorem C. Let C' = (¢;;) be an n X n nonnegative matrix and C" = (¢;;) be
an n X n rooted matrix. Assume that

(i) C[—|n) < C'[—|n) and (r1,7r9,...,1)T < (P, rh, ... 7!

', where (11,9,

.., 7n) T is the row-sum vector of C' and (r},75,...,7.)T is the row-sum

Y’ n

vector of C;

(i) C’ has a positive rooted eigenvector v/ = (v}, v},...,v,)T for X for some
N eR;
Then the spectral radius p(C”) of C” is an upper bound of p(C'). O

We use Theorem C to extend a classical result of Richard Stanley in 1987
[25] for a symmetric (0, 1)-matrix to the following theorem for a general non-
negative matrix, which is also appeared in Theorem 4.5.2 of Chapter 4.

Theorem D. Let C' = (¢;;) be an n x n nonnegative matrix. Let m be the

sum of entries and d (resp. f) be any number which is larger than or equal

4



to the largest diagonal element (resp. the largest off-diagonal element) of M.
Then

d—f++/(d—f)2+4mf
p(C) < 5 :

Moreover, if mf > 0 then the above equality holds if and only if m = k(k —
1)f + kd and PC'PT has the form

(ka+ (d—f)I; 0

0 On_k) = (fJe+(d— f)I) ® Opny

for some permutation matrix P and some nonnegative integer k. [
We apply the dual version of Theorem C to prove the following theorem,
appeared in Corollary 4.8.2.
Theorem E. Let C' = (¢;;) be an n x n (0,1) matrix with row-sums
r>ryg>--->1, >0, and choose t >n —r, + 1 and t <n. Then
re+ /1 —4(n —t)(ry — ry)
Moreover, if C' is irreducible, then the equality holds if and only if r; = r, or

(a) r1 =ry and ryyq = 1y, and
(b) D e cij =re— (n—1t) foralli€ [t], and
djei Cij =Tn— (n—1t) forallt <i<mn,where [t] :={1,2,... 1}
O

For a decreasing sequence D = (dy,ds, . .., d,) of positive integers, set

P i—1
Ty = de + ('L - 1)dl — de
k=1 k=1

The following is an application of Theorem C, appeared in Theorem 5.1.1.
Theorem F. Let G be a bipartite graph and D = (dy,ds, ..., d,) be the

degree sequence of one part of G in decreasing order. Then for 1 < /¢ < p,

ry + \/(27’12 —1r1)2 +4dy Zle(ﬂ‘ — 1)
<
p(G) < 5 :

with equality if and only if G = Gp, di = d; and dy11 = d,, for some 1 <t <
¢—1, where Gp is the bipartite graph with degree sequence D of one part. [




Chapter 2
Preliminaries

In this chapter, we shall provide the notations and properties of matrices and

graphs which will be adopted in this thesis.

2.1 Matrices

In this section, we introduce matrix notations.

2.1.1 Submatrices

For a matrix C' = (¢;;) and subsets a, § of row indices and column indices
respectively, we use Cla|f] to denote the submatrix of C' with size |a| x |5
that has entries ¢;; for i € a and j € 8, Cla|B) := C[a|B], where 3 is the
complement of 5 in the set of column indices, and similarly, for the definitions
of C(a|B] and C(alB). For £ € N, [{] :={1,2,...,¢}, symbol — is the complete
set of indices, and we use ¢ to denote the singleton subset {i} to reduce the
double use of parentheses. For example of the n x n matrix C, C[—|n) =
C[[n]|[n — 1]] is the n x (n — 1) submatrix of C' obtained by deleting the last



column of C'. The following are more examples. Let

0111 011 1
1 001 , 1 01 0
C: s C =
1 000 110 -1
1100 1 11 -1
Then
011 011
1 00 1 01
Cl-[Bl =Cl-]4) = ,C'[—14) = ;
1 00 110
1 10 1 11
Cl-[4] = (1,1,0,0)7, C'[—4] = (1,0,—1,—1)7, Cl4|-] = (110 0) and

C'[4|4) = (1 1 1), where M7 denotes the transpose of matrix M.

2.1.2 Perron-Frobenius theorem

The following is the famous Perron-Frobenius theorem, which plays an impor-

tant role in Chapter 4.

Theorem 2.1.1 ([3, Theorem 2.2.1], [16, Corollary 8.1.29, Theorem 8.3.2]).
If C is a nonnegative square matriz, then the following (i)-(iii) hold.

(i) The spectral radius p(C) is an eigenvalue of C with a corresponding non-
negative right eigenvector and a corresponding nonnegative left eigenvec-

tor.

(i7) If there exists a column vector v > 0 and a nonnegative number X such
that Cv < v, then p(C) < A.

(7ii) If there exists a column vector v > 0, v # 0 and a nonnegative number
A such that Cv > Av, then p(C) > A.



Moreover, if in addition C is irreducible, then the eigenvalue p(C) in (i)
has algebraic multiplicity 1 and its corresponding left eigenvector and right
eigenvector can be chosen to be positive, and any nonnegative left or right

eigenvector of C' only corresponds to the eigenvalue p(C'). [

Unless specified otherwise, by an eigenvector we mean a right eigenvector.
The nonnegative eigenvectors in (i) are called Perron eigenvectors. The fol-
lowing two lemmas are well-known consequences of Theorem 2.1.1. We shall

provide their proofs since they motivate our proofs of results.

Lemma 2.1.2 ([3, Theorem 2.2.1]). If 0 < C < C" are square matrices, then
p(C) < p(C"). Moreover, if C" is irreducible, then p(C") = p(C) if and only if
C'=C.

Proof. Let v be a nonnegative eigenvector of C for p(C'). From the assumption,
C'v > Cv = p(C)v. By Theorem 2.1.1(iii) with (C,\) = (C’, p(C)), we have
p(C") > p(C). Clearly C’" = C implies p(C") = p(C). If p(C") = p(C) and C" is
irreducible, then p(C)v'Tv = p(C") v v = vTC'v > vTCv = p(C)v' v, where
o'l is a positive left eigenvector of C’ for p(C”). Hence the above inequality is
the equality v'7C'v = vI'Cv. Assume by way of contradiction that C" # C.
Then C" — C' is a nonzero nonnegative matrix. Hence v (C' — C)v > 0 since

v" and v are positive, a contradiction.

]

In Lemma 2.1.2, the matrix C’ is a matriz realization of the upper bound
p(C") of p(C) and the matrix C' in Lemma 2.1.2 is a matrix realization of the
lower bound p(C) of p(C"). Hence the pair (p(C), p(C")) is a pair of reciprocal
bounds. We shall provide other matrix realizations and reciprocal bounds in
Chapter 4.

Lemma 2.1.3 ([16, Theorem 8.1.22]). If an n x n matriz C = (¢;;) is non-
negative with row-sum vector (ri,rs,...,r,)%, where r; = Z1§j§n cij and

ry>r; > 1, forl <i<n, then
rn < p(C) <71y,

8



Moreover, if C is irreducible, then p(C) =1 (resp. p(C) =1,) if and only if

C' has constant row-sum.

We provide a proof of the following generalized version of Lemma 2.1.3,
which is due to M. N. Ellingham and Xiaoya Zha [11].

Lemma 2.1.4 ([11]). If an nxn matriz C' with row-sum vector (r1,7a, ..., 1),

where vy > r; > 1, for 1 < 1 < n, has a nonnegative left eigenvector

vl = (vy,v9,...,v,) for 0, then
Tn S 9 S 1.

Moreover, 0 = ry (resp. 0 = ry,) if and only if r; = ry (resp. r; = ry,) for the
indices i with v; # 0. In particular, if v1 is positive, 0 = ry (resp. 0 =r,) if

and only if C' has constant row-sum.

Proof. Without loss of generality, let >, v; = 1 and u be the all-one column

vector. Then

n
0 =60viu=0v"Cu= Z VT
i=1
So @ is a convex combination of those r; with indices ¢ satisfying 1 < i < n

and v; > 0, and the lemma follows. ]

2.1.3 Quotient matrix

Define [n] = {1,2,...,n}. For a partition II = {my, mo,..., 7} of [n], the £ x ¢
matrix II(C) := (mg), where 7, equals the average row-sum of the submatrix
Clma|m] of C, is called the quotient matriz of C' with respect to II. In matrix
notation,

I(C) = (s*9)"ts*Cs, (2.1.1)

where S = (s;) is the n x £ characteristic matriz of 11, i.e.,

1, it j €my;
Sﬂ, = )
0, otherwise



forl<j<nand 1 <b< [/ If

Wabzzcij (1§a,b§€)
JE™

for all i € m,, then II(C) = (my) is called the equitable quotient matriz of C’
with respect to II. Note that II(C') is an equitable quotient matrix if and only
if

STI(C) = C5S. (2.1.2)
Recall that a column vector v' = (v}, v5, ..., v;,)" is called rooted if v} > v}, > 0
for1<j<n-—1.

Lemma 2.1.5 ([3, Lemma 2.3.1]). If an n x n matriz C' has an equitable
quotient matriz IL(C') with respect to partition I1 = {my, o, ..., 7} of [n] with
characteristic matriz S, and X\ is an eigenvalue of 1I(C) with eigenvector u,
then X is an eigenvalue of C with eigenvector Su. Moreover, if u is rooted and

n € my, then Su is rooted.

Proof. From (2.1.2), CSu = STI(C)u = ASu. O

2.1.4 Matrices ¢’ with p(C") = p(II(C"))

Some special matrices whose spectral radii are preserved by equitable quotient
operation are given in this subsection. One example is the class of nonnegative

matrices.

Lemma 2.1.6. If Il = {my,...,m} is a partition of [n] and C" = (cj;) is an
n X n matriz satisfying c; = ci; for all i,k in the same part 7, of Il and
J € [n], then C" and its quotient matriz ILI(C") with respect to 11 have the same

set of nonzero eigenvalues. In particular, p(C") = p(II(C")).

Proof. From the construction of C’, TI(C”) is clearly an equitable quotient
matrix of C’. Let X be a nonzero eigenvalue of C” with eigenvector v =
(vy,...,v )T, Then v} = (Cv');/N = (CV')x/N = v, for all i,k in the same

10



part m, of I. Let !, = v} with any choice of i € m,. Then v’ := (u},...,u}) #0,
and I1(C")u" = Nu/. From this and Lemma 2.1.5, we know that C’ and II(C")
have the same set of nonzero eigenvalues, and thus p(C") = p(II(C")). O

Lemma 2.1.6 gives a kind of matrices C’ whose spectral radius remaining
unchanged under some equitable quotient operation. The following shows
that the equitable quotient matrix of a nonnegative matrix with respect to

any partition preserves the spectral radius.

Proposition 2.1.7. If an nxn nonnegative matriz C' has an equitable quotient
matriz II(C") with respect to a partition 11 of [n], then p(C") = p(II(C")).

Proof. For € > 0, we consider the matrix C” = C’" + €J, where J is the all-
one matrix. Then C” is irreducible with the same equitable partition of C".
Moreover the equitable quotient matrix II(C") of C” is also irreducible since
II(C") is positive. By Theorem 2.1.1, II(C"”) has the eigenvalue p(II(C")) with
a corresponding positive eigenvector v. Then C” has eigenvalue p(II(C")) with
a positive eigenvector Sv by Lemma 2.1.5. Therefore p(C”) = p(II(C")) by
the irreducible case of Theorem 2.1.1. This concludes that
p(C) = lim p(C" +eJ) = lim p(II(C" +eJ)) = p(IL(C"))

by the continuous property of complex eigenvalues [21]. O

Godsil [12, Corollary 5.2.3] gave another proof of Proposition 2.1.7. We

follow his proof for the general case.

Lemma 2.1.8 ([12]). Let C" be an nxn matriz which has an equitable quotient
matriz TL(C") with respect to a partition 11 of [n] and has a left eigenvector v’
for eigenvalue \. If vT'S # 0, then v1S is a left eigenvector of TI(C") for A,

where S is the characteristic matriz of 11.

Proof. From (2.1.2), we have SII(C') = C'S. Then
v STI(C") = 0T C'S = MT'S.
So vT'S is an left eigenvector of II(C”) for . O

11



For a square matrix with a real eigenvalue, let p,(C’) denote the maximum

real eigenvalue of C".

Corollary 2.1.9. Let C' be an n xn matriz with a nonnegative left eigenvector
for p.(C"). If C'" has an equitable quotient matriz I1(C") with respect to a
partition 11 of [n], then p,(C") = p,(IL(C")).

Proof. Considering their right eigenvectors and applying Lemma 2.1.5, we have
p-(C") > p(I(C")). If v is a nonnegative left eigenvector of C’ for p,.(C"),
then vTS # 0, where S is the characteristic matrix of II. Hence v7S is a
left eigenvector of II(C”) for p,(C’) by Lemma 2.1.8. Since p,(C”) is also an
eigenvalue of I1(C"), it follows that p,.(C") = p,.(I1(C")). O

Proposition 2.1.10. For a partition 11 of [n/, if n x n matrices C' and C”
have equitable quotient matrices IL(C") and I1(C") with respect to 11 respectively,
then C'C" has equitable quotient matriz II(C'C") with respect to 11 and

I1(C'C") = TI(C)II(C").

In particular, if C'~' exists and C' has equitable quotient matriz TI(C"), then
CcH=t =1(c'1).

Proof. From (2.1.2), we have STI(C") = C"S and SII(C”) = C"S, where S is
the characteristic matrix of II. By (2.1.1),

I(CHII(C") = (STS)~1STC'STI(C") = (ST8) " STC'C"s = T(CC).

Hence

C'C"S = C'SII(C") = SI(CIL(C") = SIL(C'C™).

By (2.1.2) again, C'C" has the equitable quotient matrix II(C"C") with respect
to II.
The second part follows from II(C)II(C'') = II(CC"Y) =1U(1,) = [,. O

12



Figure 2.1: K34

2.2 Bipartite graphs

A graph G is bipartite if its vertex set can be partitioned into two disjoint sets
X and Y such that every edge of G has one endpoint in X and the other in Y,
and the pair (|X|,|Y]) is called the bi-order of G. A bipartite graph G with
bipartition X, Y is called a complete bipartite graph if E(G) = X x Y. We
use the notation K, , to denote a complete bipartite graph of bi-order (p,q).
See Figure 2.1 for the graph K3 4.

A bipartite graph G is biregular if the each of the vertices in the same part
has the same degree. Let H, H' be two bipartite graphs with given ordered
bipartitions V(H) = X JY and V(H') = X' JY’, where V(H)V(H') = ¢.
The bipartite sum H + H' of H and H' (with respect to the given ordered
bipartitions) is the graph obtained from H and H’ by adding an edge between
x and y for each pair (z,y) € (X x Y')|J(X' xY). Let N,, be the bipartite
graph with bi-order (p,q) without any edges, The graph Kja + Nao is given
in Figure 2.2.

2.2.1 The bipartite graph Gp

Let D = (dy,ds,...,d,) be a sequence of nonincreasing positive integers of
length p. Let Gp denote the bipartite graph with bipartition X UY’, where
X ={x1,20,...,xp} and Y = {y1,¥2, ..., Y.}, with ¢ = dy, and z;y; is an edge
if and only if j < d;. The graph G 422,11y is illustrated in Figure 2.3.

Note that D is the degree sequence of the part X in the bipartition X UY

13
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Figure 2.2: The bipartite sum and an example K39 + Njo
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Figure 2.3: The graph G(4221,1) and the Ferrers diagram F'(4,2,2,1,1)

of Gp. Ase=dy +dy+---+d,, D is a partition of the number e of edges in
Gp. The degree sequence D* = (dy,ds, ..., d;) of the other part Y forms the
conjugate partition of e, where e = dj +d5+---+d; and d} = [{i | d; > j}|. See
[4, Section 8.3] for details. The sequence D will define a Ferrers diagram of
1’s that has p rows with d; 1’s in row ¢ for 1 <7 < p. For example, the Ferrers
diagram F'(D) of the sequence D = (4,2,2,1,1) is illustrated in Figure 2.4.
One can check that D* = (5,3,1,1) in the above D.

According to the order 1, x2, ..., Zp, Y1, Y2, - . ., Yq, the adjacency matrix of

14



G p is of the form

A:( O B<D)>, (2.2.1)
B(D)" 0O,

where B(D) is the p x ¢ (0,1)-matrix obtained from the Ferrers diagram F(D)
by filling 0’s into the empty cells. We have that

e (BOBOT 0
B 0 B(D)'B(D)) "

Let H = H(D) := B(D)B(D)*, which is the p x p matrix as follows:

di dy d3 --- d,

dy dy d3 --- d,

dp dy dyp dp

For example, if D = (4,2,2,1,1), then

1 111 4 2 2 11
1 100 2 2 2 11
BD)=[1 100, H=]22 211
1 0 00 1 1111
1 000 11111

It is well-known that B(D)B(D)T and B(D)TB(D) have the same nonzero

eigenvalues. Hence
p*(Gp) = p(A%) = p(H). (2.2.3)

2.2.2 Spectral upper bounds by D

The graph Gp is important in the study of the spectral radius of bipartite
graphs with prescribed degree sequence D of one part of the bipartition. Bhat-
tacharya, Friedland and Peled [2] proved the following lemma.

15



Lemma 2.2.1. ([2, Theorem 3.1]) Let G be a bipartite graph without isolated
vertices such that one part in the bipartition of G has degree sequence D =
(dy,...,dy). Then p(G) < p(Gp) with equality if and only if G = Gp (up to

isomorphism).

The adjacency matrix A(Gp) of Gp is a matrix realization of the upper
bound of p(G) in Lemma 2.2.1. The following lemma is used in the proof of
Lemma 2.2.1 which may be traced back to [23].

Lemma 2.2.2. Let G be a bipartite graph of bi-order (p,q) and (uq, us,. . ., up;
U1,0s, ...,U,) be a positive Perron eigenvector of the adjacency matriz of G
according to the bipartition X \JY, where vertices in the part Y of G are
ordered to ensure vy > vy > -+ > v, For 1 <i < j <gq, if xpy; is an edge
and xyy; is not an edge in G for some xy € X, then the new bipartite graph G’
with the same vertex set as G obtained by deleting the edge xy; and adding a
new edge xyy; has spectral radius p(G') > p(G).

2.2.3 Spectral upper bounds by D and D’

Chia-an Liu and Chih-wen Weng [19] found the upper bounds of p(G) ex-

pressed by degree sequences of two parts of the bipartition of G.

Lemma 2.2.3. ([19]) Let G be a bipartite graph with bipartition X UY of
orders p and q respectively such that the part X has degree sequence D =
(di,...,dp), and the other part Y has degree sequence D' = (dy,dy...,d,),
both in nonincreasing order. For 1 < s < pand 1 <t < q, let X, =

dody + 32070 (di — dy) + 301 (df — dy), Ve = 30001 (ds — di) - X200 (d) — ).

Then
Xt + \/ Xs2,t —4Y,
/)(G) < ¢s,t = .

2
Furthermore, if G is connected then the above equality holds if and only if

there exist nonnegative integers ' < s and t' < t, and a bireqular graph H of

bipartition orders p — s’ and q —t' respectively such that G = Ky v + H.

16



It worths mentioning that the graph G = Ky y+H attaining the equality in
Lemma 2.2.3 is not necessary to be Gp. The idea of the proof in Lemma 2.2.3
is to apply Lemma 2.1.3 for the spectral radius to matrices that are similar to
the adjacency matrix of G by diagonal matrices with variables on diagonals.
Results using this powerful method can also be found in [7, 9, 10, 15, 17, 18, 24].
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Chapter 3

The largest spectral radius of a

non-complete bipartite graph

Let G be a bipartite graph. There are several extending results of p(G) < y/e.
These extending results are scattered in [2, 6, 19]. We give another extending
result here. To illustrate this, we need some notations. For 2 < s <1, let K,
denote the graph obtained from the complete bipartite graph K, of bi-order
(s,t) by deleting an edge, and K j , denote the graph obtained from K,; by
adding a new edge xy, where x is a new vertex and y is a vertex in the part of
order s. Note that K5, ,, = K3, and K, and K, are not complete bipartite
graphs. In Proposition 3.3.2 we shall show that K ; and K j , are the only two
types of e-edge graphs G of order at least 4 satisfying

6+\/€2—4(6—1—\/H)

5 < p(G) < Ve

For e > 2, let

e) := max max G
p( ) P,q GEIC(p,q,e)p( )

denote the maximal value p(G) of a bipartite graph G with e edges which
is not a union of a complete bipartite graph and some isolated vertices. For
the case that (e — 1,e + 1) is not a pair of twin primes, i.e., a pair of primes

with difference two, we will describe the bipartite graph G' with e edges such
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that p(G) = p(e). Indeed, we will show in Theorem 3.4.1 that if e > 3 and
p(G) = ple) then G € {K;,, K}, ,»}, where s’ and t' (resp. s” and t") are
chosen to minimize s subject to 2 < s <t and e = st — 1 (resp. e = st + 1).
The twin prime case is not completely solved because G could be any one
of K, and K;,J,,. Nevertheless, we find that the values of p(e) tend to
be smaller than others when (e — 1,e + 1) is a pair of twin primes. Indeed,
this property characterizes a pair of twin primes. See Theorem 3.4.2 for the
detailed description. In Section 3.6.1, we prove BFP Conjecture for K(p, g, e)
when e € {st — 1,st’ +1 | s < p,t < q,t' < q—1}. Our results are the
main tools in [20] for determining if K, and K, are determined by their

eigenvalues.

3.1 An upper bound of p(Gp)

We have learned p(G) < p(Gp) in Lemma 2.2.1 for a bipartite graph G with
one-part degree sequence D. We shall provide an upper bound of Gp in this
section.

Applying Lemma 2.2.3 to the graph G = Gp for a given sequence D =
(dy,ds,. .., dy) of nonincreasing positive integers of length p, one immediately
finds that d; = d; and

t—

—

p
(d;‘ _d::) = Z di,

1 i=d}+1

j
where (di,ds,...,dj} ) is the conjugate partition corresponding to D defined
in Section 2.2.1. Moreover, if s is chosen such that d, < ds_1 and t = dg + 1,
then d; = s — 1 and the corresponding Ferrers diagram F'(D) has a blank in

the (s,t) position, so

s—1 P
Xop=d(s—=1)+ > (di—d))+ Y di=e
i=1 i=s

and
s—1

Y., _Z(di—ds)~idi, (3.1.1)

i=1
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completely expressed by D. Hence we have the following simpler form of
Lemma 2.2.3.

Lemma 3.1.1. Assume that s is chosen satisfying ds < ds_1 in the sequence

D = (dy,da, . ..,dy,) of positive integers and e = dy +das + - - -+ dp,. Then

et Jer — 43T (di— d) - Y d,
2 )

p(Gp) <
with equality if and only if D contains exactly two different values. [

The following are a few special cases of Gp that satisfy the equality in

Lemma 3.1.1.

Example 3.1.2. ([19]) Suppose that 2 < p < ¢q and K (resp. °K,,) is
the graph obtained from K, by deleting k := pg — e edges incident on a
common vertex in the part of order ¢ (resp. p), where k < p or, equivalently,

p(q — 1) < e. Then

p(KE,) = \/e + \/62 —4k(qg—1)(p — k)

5 (k=pg—e<p),

P(“Kpg (k=pg—e<q).

- \/e+ \/62 —4k(p —1)(q — k)
N 2
3.2 p(K,,)

Applying Example 3.1.2 to the graph K, = KP4t =P~ K, . one immediate
finds that

- e+ —4le—(p+q)+2)

p(K,,) = \/ 5 :

which obtains maximum (resp. minimum) when p is minimum (resp. p is
maximum) subject to the fixed number e = pg — 1 of edges and 2 < p < g.
Note that

e—(p+q)+2<e—-2ypg+2=e—2Ve+1+2<e—1—+e—-1
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for e > 6. Hence

(k=) 6+\/62 6—1—\/6—1)
P\ pq

(¢g>p>3).

As K, has 3 edges, one can check that

et+4/e2—4(e—1—+e—1
p(Ky,) = \/:”2\/5 < v ) (3.2.1)

Similarly K, = Kf;q;il has spectral radius

pUI,) = \/ crye-le-log) 322

which obtains the maximum (resp. minimum) when p is minimum (resp.

maximum) subject to the fixed number e = pg+ 1 and 2 < p < ¢. Note that
e—1—qg<e—1—+/e—1in this case. Hence

oK e+\/62 e—l—m)

with equality if and only if p = ¢ = v/e — 1. This proves the following lemma.
Lemma 3.2.1. The following (i)-(iii) hold.

(i) For all positive integers 2 < p' < ¢, (p',q¢) # (2,2), 2 < p" < ¢’

/1

satisfying e = p'q' — 1 = p"q¢" + 1, we have

e+ /€2 — e—l—m
PE ) P(E ) = \/ )'

.4

Moreover the above equality does not hold for p(Kqu,), and holds for
p(Kp o) if and only if p" = q".
(ii) If e+ 1 is not a prime and p' > 2 is the least integer such that p' divides

e+ 1 and ¢ = (e+1)/p’ so that e = p'q’ — 1, then for any positive
integers 2 < p < q with e = pg — 1, we have p(K,,) < p(K, ), with

pq
equality if and only if (p,q) = (P, q).
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(iii) If e—1 is not a prime, and p” > 2 is the least integer such that p" divides
vl

e—1andq" = (e—1)/p" so that e = p"q" + 1, then for positive integers
2 <p < q with e = pq + 1, we have p(Kf,) < p(K ),

pl/7q//

), with equality if
and only if (p,q) = (p",4").
O

Note that the condition 2 < p’ < ¢,(p',¢) # (2,2) in (i) is from the
previous condition 3 < p’ < ¢ and K, , = K, for ¢ > 3.

3.3 p(G) with G # K., K%,

In this section, we consider bipartite graphs which are not complete bipartite
and not considered in Lemma 3.2.1(i). The following lemma is for the special
case that the graph has the form G = Gp.

Lemma 3.3.1. Let D = (dy,ds, . ..,d,) be a partition of e. Suppose that Gp is
g O K;/7q,/ for
any 1 <p" <d,(p),q) #(2,2), 1 <p" <q" such that e =p'q’ — 1 =p"q" + 1.
Then

not a complete bipartite graph and is not one of the graphs K,

6+\/62—4(6—1—\/6—1)
p(Gp) < :
2
Proof. When e < 3, Gp = K,, is the only graph satisfies the assumption
above and the inequality holds by (3.2.1). We assume that e > 4. Let ¢ = d;.
The assumption implies that ¢ > 2 and 4 < e < pq — 2. Using D* to replace

D if necessary, we might assume that 2 < p < g and ¢ > 3. Since Gp is not
complete, we choose s such that 1 < s < p and ds_; > ds. Set t = dgs + 1.
According to the partition (s—1, 1, p—s) of rows and the partition (¢—1, 1, g—t)
of columns, the Ferrers diagram F'(D) is divided into 9 blocks and the number
b;; of I’s in the block (4, j) for 1 <,j < 3 is shown as

bll b12 b13 (S — ].)ds s—1 Zf;il (dz — ds — ].)
bor by boz| = ds 0 0
b1 b3z D33 Y endi O 0
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Note that bll = b12b21 and b11+b12+b13+b21+b31 = €. Referring to Lemma 3.1.1
and (3.1.1), it suffices to show that Y;; > e —1 — /e — 1. Note that

s—1
Yo=Y (di —d) Zd s—1+Zd—d—1 d+2d
=1 i=s+1

=(b12 + b13) (b1 + b31) = b1y + bi2bsy + ba1bis + bisbsy,

biobo1 # 0, and G # Kp_',q' implies that b3 # 0 or bs; # 0. If both of by5 and b3,
are not zero, then biob31 > bia+b31 — 1, ba1b13 > boy +b13— 1, and by3b3; > 1, so
Yt > b+ (bia+bsi —1)+(boy +b13—1)+1 = e—1 > e—1—+/e — 1. Therefore,
the proof is completed. The above proof holds for any s with d,_; < ds. We
choose the least one with such property, and might assume one of the following
two cases (1)-(ii).

Case (i). byg = 0 and by3 # 0: Then s =p =b12+1> 2, and G = °K,,,
where e =pg — (¢ —d,) > (p—1)g+ 1> (p—l) + 1. Thus

}g7t:b11+b21b13Ze-l-blgze—p>€—1—\/€—1.

Case (ii). bj3 = 0 and b3; # 0: The condition b3; # 0 implies that
q > p > 3. The condition b13 = 0 implies that t = ¢ and by; = ¢ —1 > 2. The
proof is further divided into the following two cases (iia) and (iib).

Case (iia). 1 < b33 <bo: If s<p—1,let & =s+1andt' =dy+1. Then
dy_1 > dy and dygy1 # 0. Let bgj be the b;; corresponding to the new choice
of s and ¢'. Then b|3b5, # 0 and the proof is completed as in the beginning.
Note that s # p since b3; # 0. Then we may assume s = p — 1. This implies
that b33 =d, <gq—lande=pg—1—q+d, > p*—p> (p—1)*+ 1. Let
s'=pand t' =d,+ 1, and then

You =bh(bjy+bls) >e—1-by=ec—p>e—1—+e—1.
Case (iib). b3y > boy: If byo = 1 then by the assumption G # K;,,q,,,

there exists another s” > s such that dy» < dg_1. Apply the above proof on
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(s,t) = (s",t"). Since bj; > 1, we might assume 05, = 0. Then s” = p and

e=(p-1)(¢g—1)+d,+1> (p—1)>+ 1. Hence
Yorpr = by (0l +0)3) >e—1-b,=e—p>e—1—+e—1.
We now assume in the last situation that b1, > 1. Then
Yot =biy + (byy — )by + b3y > by +bip+2b3 —2>e—2>e—1—+e— 1.
O
We now study the general case.

Proposition 3.3.2. Let G be a bipartite graph without isolated vertices with
e edges which is neither a complete bipartite graph mor one of the graphs
Ky oo Ko forany 2 < pf < ¢, (p,q) # (2,2), 2 < p" < ¢, such that

p',q"
/v

e=p'qd —1=p"q" +1 is the number of edges in G. Then

e+y/e2—4e—1—+ve—1
p(G) < \/ <2 )

Proof. If G is not connected, then

e—1—+e=1)

p(G) <Ve—-1< 6+\/e2_4(2

Assume G is connected. Let GGp be the graph obtained from a degree sequence
D of any part, say X, in the bipartition X UY of G. Then p(G) < p(Gp) by
Lemma 2.2.1. The proof is done if G satisfies the assumption of Lemma 3.3.1.
Let D' be the degree sequence of the other part Y in the bipartition of G. Then
we might assume that G # Gp, G # Gp/, and Gp and G are graphs of the
forms K4, K, /. or K;C,,q,,.

For y; € Y, let N(y;) be the set of neighbors of y; in G. Suppose for
this moment that |N(y;)| = |N(y;)| and N(y;) # N(y;) for some y;,y; € Y.

Assume that y; is in front of y; in the order that makes the entries in the latter
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\/e+\/e2—4(e—1—\/e—1) i
2 v

T

G=Ky,or G#K,g, K K, G=K] or K  except Ky,

p,q’

Figure 3.1: Values of p(G)

part of the positive Perron eigenvector nonincreasing. Let G” be the bipartite
graph obtained from G by moving one edge incident on y; but not on y; to
incident on y;, keeping the other endpoint of this edge unchanged. Let D” be
the new degree sequence on the part Y of the new bipartite graph G”. Then
p(G) < p(G") < p(Gpr), where the first inequality is obtained from Lemma
2.2.2. We will show that Gp~ is not of the form K, K, ,, or K;/,q”- Thus
the proof follows from Lemma 3.3.1. Suppose Gp» is of the form K, , K .,
and K ;C,’ .- Note that the elements in the degree sequence of any part of K,
K, o, or K . is of the form k,... k¢, where £ could be 1,k — 1,k k + 1,
for some positive integer k. Noticing that D" is obtained from D’ by replacing
two given equal values a by a —1 and a4+ 1. If a — 1 > 1, then the difference
between a+1 and a—1 is two, a contradiction. If a—1 = 1, then G p» must be
Kgfq_l and D' = (3,...,3,2,2). So Gp is not a graph of the form K, ,, K, .,
or K, ., a contradiction. Hence we might assume that if [N (y;)| = |N(y;)|
then N(y;) = N(y;) for all y;,y; € Y. Reordering the vertices in Y such that
the former has larger degree and then doing the same thing for X, we find

indeed G = Gp = Gp since G is connected, a contradiction. O

From Lemma 3.2.1(i) and Proposition 3.3.2, we can characterize the value
p(G) of a bipartite graph G as shown in Figure 3.1.

Here we provide an application of Proposition 3.3.2.
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Corollary 3.3.3. Let G be a bipartite graph without isolated vertices which is
neither a complete bipartite graph nor one of the graphs Ky 4, K, ., K;?,yq,, for
any 1 <p<q 2<p <q,2<p" <q" such that e =pg=p'q —1=p"¢"+1
is the number of edges in G. Assume that e = st + 1 (resp. e = st — 1) for
2<s<t. Then

p(G) < p(KJ)  (resp. p(G) < p(Kg,)).

Proof. If s =t = 2 and e = st — 1 = 3 then either G = 3K, the disjoint
union of three edges or G = Kj» U K, the disjoint of a path of order 3 and
an edge. One can easily check that p(G) < p(K,,). The remaining cases are
from Proposition 3.3.2 and Lemma 3.2.1(i) and noticing that K3, , = K3, for
t> 2. [

3.4 Main Theorems

For e > 2, recall that p(e) is the maximal value p(G) of a bipartite graph
G with e edges which is not a union of a complete bipartite graph and some

isolated vertices. Note that

_ 3+V5
p(2) = p(2K5) = 1, and p(3) = p(K,,) = 5
Two theorems about p(e) are given in this section.

Theorem 3.4.1. Let G be a bipartite graph with e > 3 edges without isolated
vertices such that p(G) = p(e). Then the following (i)-(iv) hold.

(i) If e is odd then G = K, ,, where ¢ = (e +1)/2.

(ii) If e is even, e — 1 is a prime and e + 1 is not a prime, then G = K,

where p' > 3 is the least integer that divides e +1 and ¢ = (e +1)/p'.

(iii) If e is even, e — 1 is not a prime and e + 1 is a prime, then G = K;/ e

where p” > 3 is the least integer that divides e — 1 and ¢" = (e — 1) /p".
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(iv) Ifeis even and neither e—1 nor e+1 is a prime, then G € {K, ., K, .},

where p',q" are as in (ii) and p”,q" are as in (iii).

Proof. By the definition of p(e), G is not a complete graph. From Lemma 3.2.1(i)
and Proposition 3.3.2, we only need to compare the spectral radii p(KI; q) and
p(KI‘: q) for all possible positive integers 2 < p < ¢ that keep the graphs having
e edges. This has been done in Lemma 3.2.1(ii)-(iii). O

Due to Yitang Zhang’s recent result [26], the conjecture that there are
infinite pairs of twin primes receives much attention. Theorem 3.4.2 provides

a spectral description of the pairs of twin primes.

Theorem 3.4.2. Let e > 4 be an integer. Then (e —1,e+1) is a pair of twin

primes if and only if

e+/e2—4(e—1—+e—1
ple) < \/ (2 )

Proof. The necessity is by Proposition 3.3.2. The sufficiency is from Theo-
rem 3.4.1 and Lemma 3.2.1(i). O

3.5 Numerical comparisons

In the case (iv) of Theorem 3.4.1, the two graphs K, , and KJ’,q” are can-
didates to be extremal graph. For even e < 100 and neither e — 1 nor e + 1
is a prime, we shall determine which graph has larger spectral radius. The
symbol — in the last column of the following table means that K, , wins, i.e.

p(K,, ) > p(K, ) and + otherwise.
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e P, ) p(K v o) winner
26 | V13+3V17T | V13+V149 | —
34 | V1T+V265 | V17+V267 | +
50 | v/25+v693 | V25+583 | —
56 | V28 + V748 | /28 4+ V740 |  —
64 | v/32+976 | V/32+ 1082
76 | /38 + /1384 | /38 + /1394
86 | /43 + V1813 | V43 + V1781 | —
92 | /46 + /2096 | V/46 + 2078 | —
94 | /AT + V2137 | VAT + V2147 |  +

Table 3.1: Comparisons of p(K, ) and p(K, ) for e < 100

3.6 BFP Conjecture for K(p,q,e)

3.6.1 The case e = st +1

Theorem 3.6.1. BFP Conjecture for K(p,q,e) holds for e € {st — 1,st' +
Lls<pt<gt <qg-—1}

Proof. When e = st — 1 (s < p,t < q)ore=st+1 (s <pt<q-—1),
K., € K(p,q,¢e) or K;ft € Ko(p, q, e) respectively, it implies BFP Conjecture
for Ko(p, g, €) directly by Corollary 3.3.3. ]

3.6.2 Counter examples

Let ¢ > p > 3 be two positive integers and Dy = (¢,q—1,...,q—1,¢—2), Dy =
(4,9,...,9,q — p) be two sequences of p positive integers. Then Gp,,Gp, €
K(p,q,p(q — 1)). Note that Gp, is the only graph in Ky(p,q,p(q¢ — 1)). The
following proposition shows that BFP Conjecture for K(p,q,p(q — 1)) is false
when ¢ > p + 2.
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Proposition 3.6.2. Suppose ¢ > p+2. Then p(Gp,) < p(Gp,). In particular,
BFP Congjecture for K(p,q,p(q — 1)) is false.

Proof. Referring to H in (2.2.2), we have

g |g—1 - qg—1]qg—2
q—1{q—1 -+ q—1|q—2
H(Dy) = : : : : ,
g—1|¢g—1 -+ q—1|q—2
q—2|q—2 -+ q—2|q—2
q q q q—
q q q q—7p
H(D,) = :
q q - q9 |q9—Dp
g—p|q9—p - q—p|q—0p

Let II = {{1}.{2,...,p— 1}, {p}}. Then

g (@—-2)(¢—-1) ¢-2
I(HDy)) = [g-1 (p—2)(g—1) ¢—2],
q—2 (p—2)(¢g—2) ¢—2

q (pP—2)g qg—p
[(H(D2)) = | ¢ (pP=2)¢g q—p
q—p P—2)(a¢—p) q¢—p
are equitable quotient matrices of H(D;), H(Dy) with respect to II respec-
tively. Note that p(II(H(D;))) = p(H(D;)) = p*(Gp,) for i = 1,2 by Proposi-
tion 2.1.7 and (2.2.3).
The characteristic polynomials of II(H(D;)) and II(H (D)) are



respectively. Since g >p+3>p+2+1/(p—1)=p*/(p—1)+ 1,
g2(x) = g1(z) + (P = 2(((p— V(g — 1) —=p)z+q—-2) > 0
for x > p(H(D;)). Therefore the zeros of g, are less than p(H(D;)) and
p(H(D2)) < p(H(Dy)).

This implies p(Gp,) < p(Gp,). Since Gp, is the unique graph in Ky(p, q, p(q—
1)), the graph with maximum spectral radius among K(p, ¢, p(¢ — 1)) in not
in Ko(p, q,p(q — 1)). O

3.7 Weak BFP Conjecture for C(p,q,e) with
p<3

We shall prove weak BFP Conjecture for C(p,q,e) with p < 3 despite the
existence of a counter example for BFP Conjecture for (p, q,e) with p = 3

in the last section.
Theorem 3.7.1. If p < 3, then weak BFP Conjecture for C(p,q,e) holds.

Proof. When p < 3, there is at least one of K, ;, K K, in Cy(p, q, ) for some

st

s,t. So weak BFP Conjecture for C(p, ¢, ¢) holds by Corollary 3.3.3. 0
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Chapter 4

Spectral bounds of a

nonnegative matrix

The research in this chapter is motivated by the following theorem of Xing
Duan and Bo Zhou in 2013 [10, Theorem 2.1].

Theorem 4.0.1. Let C = (¢;;) be a nonnegative n x n matriz with row-sums

rE > Ty > s 2Ty, [ 1= max jepn) iz Gj and d = MaXi<i<y Ci. Then

rg+d—f+\/(w—d+f)2+4f2f;1l(n—re)
p(C) < 5

(4.0.1)

for 1 <€ < n. Moreover, if C is irreducible, then the equality holds in (4.0.1)

if and only if ry = r, or for some 2 <t </, we have ry_1 >ry =--- =1y and

Ci; —
’ f,oifitjandl<i<n, 1<j<t—1.

Theorem 4.0.1 generalizes the results in [5, 7, 13, 14, 18, 24, 25] and relates
to the results in [17, 19, 25], while the upper bound of p(C') expressed in (4.0.1)
is somewhat complicated and deserves an intuitive realization.

The values on the right hand side of (4.0.1) is realized as the largest real
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eigenvalue p,.(C’) of the n x n matrix

(4.0.2)

,Tg,...,Tg)T

d f firr form—d—(n=-2)f
fod fLr 7 fora—d—(n=2)f
[ fr forei—d—(n=2)f

C'=|ff - fldf - f r—d-—(n-2)f
fr f d foore—d=(n=2)f
fr firr d re—d—(n-2)f
fr fFirr o= -=-1f

which has the following three properties:
(i) (ri,re,..oyreyeesr))t > (r1,m2, ... )T, where (rq,7a, ...
and (ry,7,...,7,)7 are the row-sum vectors of C’ and C' respectively,

(ii) C'[—|n) > C[—|n), and

/

(iii) C” has a positive eigenvector (v}, vh, ..., v,)T for p.(C") with v} > v/, for

1 <9< n.

r n

Property (iii) will be checked by Lemma 4.3.4. Since the above matrix C’

is not necessarily nonnegative, the spectral radius p(C") of C" is replaced by

the largest real eigenvalue p,.(C”) in the property (iii). Our main result in

Theorem 4.2.3 is in a more general form that will imply for any matrix C’

that satisfies the properties (i)-(iii) above, we have p(C) < p,(C"). Moreover,
when a matrix C’ is fixed and C' and C” satisfy (i)-(iii), the matrices C' with
p(C) = p.(C") are completely determined. We apply Theorem 4.2.3 to find a

sharp upper bound of p(C') expressed by the sum of entries in C', the largest

off-diagonal entry f and the largest diagonal entry d in Theorem 4.5.2.
Note that p,.(C") = p,(C") for the largest real eigenvalues of C' and C”
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respectively, where C” is as in (4.0.2) and

4 e f| n—d— (-2
fd fl m—d=—0U-2)f
c' =1 : SR : (4.0.3)
ff - dirog—d—U-2)f
ff - forne==-0f
is the equitable quotient matrix of C’ with respect to the partition {{1}, {2},
w0 —=1} {60+ 1,...,n}} of {1,2,...,n}. Moreover p.(C") = p.(C"),

where
C/// _ ( <£ - 2)f +d f ) (4.0.4)
Y= (=) =2)f+d) r—(t=1)f)"

is the equitable quotient of the transpose C" of C” with respect to the parti-
tion {{1,2,...,0—1},{¢}} of {1,2,...,¢}. Motivated by these observations,
Theorem 4.7.1 will provide an upper bound p,(C") of p(C), where C” is a
matrix of size smaller than that of C' obtained by applying equitable quotient
to suitable matrix C” that satisfies properties (i)-(iii) described above.

Each of our theorems on upper bounds of p(C) has a dual version that
deals with lower bounds. We provide a new class of sharp lower bounds of
p(C) in Theorem 4.8.1. Applying Theorem 4.8.1 to a binary matrix C, we
improve the well known inequality p(C') > r, as stated in Corollary 4.8.2. We
believe that many new spectral bounds of the spectral radius of a nonnegative
matrix will be easily obtained by our matrix realization in this chapter.

In addition to the above results, Lemma 4.1.1 and Lemma 4.1.2 are of

independent interest in matrix theory.

4.1 The spectral bound p(C’)

We generalize Lemma 2.1.2 in the sense of Lemma 2.1.4 to find spectral bounds
of €', where the matrix C' considered are not necessarily nonnegative, but

instead, assume that C' has a nonnegative eigenvector.
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Lemma 4.1.1. Let C = (ci5), C' = (¢};), P and Q be n x n matrices. Assume
that

(i) PCQ < PC'Q;

(i) C" has an eigenvector Qu for N for some nonnegative column vector

uw = (U, U, ..., u,)" and N € R;

(iii) C' has a left eigenvector v P for X\ for some nonnegative row vector

vl = (vy,v9,...,0,) and X\ € R; and
(iv) vI PQu > 0.
Then X < X. Moreover, A\ = X if and only if
(PC'Q)i; = (PCQ)i;  for1<i,j<n withv;#0 and u; #0. (4.1.1)

Proof. Multiplying the nonnegative vector u in (ii) to the right of both terms
of (i),
PCQu < PC'Qu = N PQu. (4.1.2)

Multiplying the nonnegative left eigenvector v? of C for X in assumption (iii)

to the left of all terms in (4.1.2), we have
M PQu = v PCQu < vT PC'Qu = NvT PQu. (4.1.3)

Now delete the positive term vT PQu by assumption (iv) to obtain A < X and
finish the proof of the first part.

Assume that A = X, so the inequality in (4.1.3) is an equality. Especially
(PCQu); = (PC'Qu); for any i with v; # 0. Hence (PCQ);; = (PC'Q);; for
any ¢ with v; # 0 and any 7 with u; # 0.

Conversely, (4.1.1) implies

v PCQu = Z v;(PCQ);u; = Z v;i(PC'Q)iju; = v PC'Qu,

.3 1,J

so A =X by (4.1.3) and (iv). O
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In Lemma 4.1.1, the pair (A, \') is a pair of reciprocal bounds, the matrix
(" is a realization of the upper bound X of A and the matrix C' is a realization
of the lower bound A of X. If C is nonnegative and P = Q = I, where [
is the n x n identity matrix, then Lemma 4.1.1 becomes Lemma 2.1.2 with
an additional assumption v7u > 0 which immediately holds if C or C” is
irreducible by Theorem 2.1.1.

In the sequels, we shall call two statements that resemble each other by
switching < and > and corresponding variables, like § > r, and 6 < ry, as
dual statements, and their proofs are called dual proofs if one proof is obtained
from the other by simply switching one of < and > to the other. The following

is a dual version of lemma 4.1.1 and its proof is by dual proof.

Lemma 4.1.2. Let C = (c;;), C" = (c};), P and Q be n X n matrices. Assume
that

(i) PCQ = PC'Q;

(i) C" has an eigenvector Qu for N for some nonnegative column vector

u = (up, U, ..., u,)" and N € R;

(iii) C has a left eigenvector vT P for X\ for some nonnegative row vector

vl = (vy,v9,...,0,) and X\ € R; and
(iv) vI PQu > 0.
Then A > X. Moreover, A = X if and only if
(PC'Q)i; = (PCQ)i;  for1<i,j<n withv; #0 and u; #0. (4.1.4)

]
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4.2 The special case P = [ and a particular ()

We shall apply Lemma 4.1.1 and Lemma 4.1.2 by taking P = I and

10 - 01
01 01

Q=1: : . = . (4.2.1)
00 11
00 0 1

Hence for n x n matrix C" = (¢j;), the matrix PC'Q in Lemma 4.1.1(i) is

/ / / /
‘11 G2 0 G 51
/ / / /
€21 Cap 0 G T2
!/ . . . . .
C Q = : : C. . . ) (422)
/ / / /
Ch11 G112 77 Cuin-1 Th
/ / / /
Cn1 Cn2 e Crn n—1 L&Y
where (r},75,...,r. )T is the row-sum column vector of C".
Definition 4.2.1. A column vector v/ = (v}, vh,...,v,)T is called rooted if

U;ZU;LEOforlgjgn—l.
The following Lemma is immediate from the above definition.

Lemma 4.2.2. If u = (uy,uy,...,u,)’ and v' = (v},v},...,0)) = Qu =

(Ug + Up, Up + Uy -+ oy Up—1 + Up, uy) T, then
(i) V' is rooted if and only if u is nonnegative;
(i) For 1 <j<n—1,u; >0 if and only if vj > v,,.
O

The following theorem is immediate from Lemma 4.1.1 by applying P = I,
the @ in (4.2.1), v = Qu and referring to (4.2.2) and Lemma 4.2.2.
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Theorem 4.2.3. Let C' = (¢;;), C' = (¢;;) be n X n matrices. Assume that

(i) C[=|n) < C'[—=|n) and (ri,re,...,rn)T < (r},1h, ..., 10T, where (rq, 7o,
o) and (P rh, o )T are the row-sum vectors of C and C' re-
spectively;

(ii) C" has a rooted eigenvector v' = (v}, vh, ..., v/)T for X for some XN € R;

(iii) C has a nonnegative left eigenvector v1 = (vy,va,...,v,) for X € R;
(iv) vTv' > 0.
Then X < X. Moreover, A\ = X if and only if

(a) r;=r, for 1 <i <n with v; # 0 when v], # 0;

(b) Cij = Cij for1<i<n, 1<j<n-—1withuv;#0 and v; > v,.

]

Note that the cases (a)-(b) in Theorem 4.2.3 are from the line (4.1.1) in
Theorem 4.1.1. The first part of assumption (i) in Theorem 4.2.3 says that
the last column is irrelevant in the comparison of C' and C’. The following

theorem is a dual version of Theorem 4.2.3.
Theorem 4.2.4. Let C = (¢;5), C' = (¢ij) be n x n matrices. Assume that

(i) C[=|n) > C'[—|n) and (r1,re,...,rn)T > (r},1h,...,r0)T, where (11,79,

coosr)Tand (i1, . 7T are the row-sum vectors of C' and C' re-

r'n

spectively;
(ii) C" has a rooted eigenvector v' = (v}, vh, ..., v/)T for X for some N € R;
(iii) C has a nonnegative left eigenvector vT = (v, va,...,v,) for X € R;
(iv) vTv' > 0.

Then X > X. Moreover, A\ = X if and only if
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(a) m; =7} for 1 <i <n with v; # 0 when v, # 0;

(b) cgj:cij for1<i<n, 1<j<n-1 withvi#OandU;>v;L.

Example 4.2.5. Consider the following three matrices

3
0

_ O

1 3
3, C=|1
2 1

[ S Y
N =
_ =W

2 0
20
2 0

with C)[—|3) < C[—|3) < C![—|3), and the same row-sum vector (5,3,3).
Note that C} has a rooted eigenvector v" = (1,0,0)” for M = 3 and C/, has
a rooted eigenvector v = (2,1,1)T for ™ = 4. Since C is irreducible, it
has a left positive eigenvector (vy,ve,v3) > 0. Hence assumptions (i)-(iv) in
Theorem 4.2.3 and Theorem 4.2.4 hold, and we conclude that \** < p(C') < A
Since [3] x [1] is the set of the pairs (4, j) described in Theorem 4.2.3(b) and
Theorem 4.2.4(b), from simple comparison of the first columns Cj[—| 1] #
C[—| 1] = C’[—| 1] of these three matrices, we easily conclude that 3 = \* <
p(C) = X" = 4 by the second part of Theorem 4.2.3 and that of Theorem 4.2.4.

4.3 Matrices with a rooted eigenvector

Before giving applications of Theorem 4.2.3 and Theorem 4.2.4, we need to
construct C” which possesses a rooted eigenvector for some \'. The following

lemma comes immediately.

Lemma 4.3.1. If a square matrix C' has a rooted eigenvector for X', then
C" 4 dI also has the same rooted eigenvector for N + d, where d is a constant

and I is the identity matriz with the same size of C". [

A rooted column vector defined in Definition 4.2.1 is generalized to a rooted

matrix as follows.
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Definition 4.3.2. A matrix C' = (¢};) is called rooted if its columns and its

row-sum vector are all rooted except the last column of C".

The matrix @ in (4.2.1) is invertible with

10 -+ 0 —1
01 -~ 0 —1

Q=
00 -~ 1 —1
00 - 0 1

Multiplying Q! to C'Q in (4.2.2), Q7'C'Q is

/ / / / / / / !
Ci1 — Cn1 Cla — Cp2 T Cln-1"Crn1 T —Th
/ / / / / / / !
Co1 — Cn1 Coo = Cpo ER & WS Rl A | To =Ty
(4.3.1)
/ / / / / / ! /
Ch—11"Cn1 Cn—12—"Ch2 " Co1n-1"Chn-1 Thn—1 Ty
/ / / /
Cn1 Cn2 e Cp n—1 Tn

The matrices C’ and Q~'C’Q have the same set of eigenvalues. Moreover,
v’ is an eigenvector of C’ for X if and only if v = Q~!¢’ is an eigenvector of
Q7 'C’'Q for . From (4.3.1), C' is rooted if and only if Q~*C’Q is nonnegative.
The first part of the following lemma follows immediately from the above
discussion and Theorem 2.1.1 by choosing X' = p(C").

Lemma 4.3.3. If C' is a rooted matriz, then Q~*C'Q is nonnegative, p(C")
is an eigenvalue of C', and C" has a rooted eigenvector v/ = Qu for p(C"),
where u is a mnonnegative eigenvector of Q~1C'Q for p(C"). Moreover, with

v = (v),vh, ... 0T, the following (i)-(ii) hold.
(i) If C'In|n) is positive, then v’ is positive.

(ii) If C'In|n) is positive and r; > r,, for all 1 <i <n —1, then v; > v, for
all1<j<n-—1.
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Proof. It remains to prove (i) and (ii).

(i) Suppose that C’[n|n) is positive and v/, = 0. Then

Zcﬁw v = ch]v] = (C"V'),, = p(C")v), = 0.

Hence v' is a zero vector since ¢;,; > 0 for j < n—1, a contradiction. So v;, > 0
and v’ > 0 since v’ is rooted.

(ii) The assumptions imply that the matrix Q~'C'Q in (4.3.1) is irreducible.
Hence u is positive. By Lemma 4.2.2(ii), v} > v, for 1 < j < n. O

The largest real eigenvalue of the following matrix will be used to obtain
bounds of the spectral radius of a nonnegative matrix.
Fix d, f,r1,72,...,7, > 0 such that r; > r, for 1 <j <n —1, and let

d f - [ mn—(d+(n-2)f)
[od foora=(d+(n—=2)f)
M (d, fori,m9,. ) = | SR : (4.3.2)
ff d 11— (d+ (n—2)f)
fr / rn—(n—1)f
be an n x n matrix with row-sum vector (ry,rs,...,7r,)7.

Note that for any square matrix C’, it might be p(C’ + dI) # p(C") + d,
but p.(C" + dI) = p.(C") + d always holds, where p,.(C" + dI) and p,(C") are
the largest real eigenvalues of C'+dI and C’ respectively. Also p(C’) = p,.(C")

if C" is nonnegative.
Lemma 4.3.4. The following (i)-(ii) hold.

(i) The matriz M,(d, f,r1,72,...,7,) has a rooted eigenvector v’ = (v}, v,
. ul)T for the largest real eigenvalue p.(My(d, f,ri,72,...,7)) of
n(d, f, T1,T9,... ,Tn>.

(i) If f >0, then v' > 0.
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Proof. Let M, := M,(d, f,r1,79,...,1,). First assume d > f. Then M, is
rooted. (i)-(ii) follows from (i)-(ii) of Lemma 4.3.3, in particular p(M,) =
pr(My). If d < f, then the matrix (f —d)I + M, is a rooted matrix. As in the
first part, let v" be a rooted eigenvector of (f —d)I + M, for p((f —d)I + M,,).
Note that v is also a rooted eigenvector of M,, for p.(M,) = p((f—d) [+ M,)—
(f —d). This proves (i), and (ii) follows similarly from (ii) of Lemma 4.3.3. [

Lemma 4.3.5. For M,, = M,(d, f,r1,r2,...,1) and My = My(d, f,r1,72,...,7¢)
defined in (4.3.2), where d,f > 0 and ry > ry > -+ > 1, > 0, we have the

following (i)-(iit).

(i) The largest real eigenvalue p.(M,) of M, satisfies

Potd—f 4 (rn—d+ f)2+4f X0 (i —70)
pT(Mn) = \/ 2 -

>max(d — f,r,).

(ii) If r, =0, then

_d—f+/(d—f)2+4fm
2 Y

pr(My)
where m := Z;:ll r; s the sum of all entries of M,.
(iii) If ry = ry, for some t < n, then p.(M;) = p,(M,).

Proof. (i) We consider the matrix M, + (f — d)I. Note that (M, + (f —d)I)T

has equitable quotient matrix

(n—1)f f )
P = (d+ (0 =2)f) T—(d+ (n—2)f)

with respect to the partition IT = {{1,2,...,n—1},{n}} of [n], which has two

(M + (f = d)I)") = (

eigenvalues

P = d £ A\ (= o )4 T )
2 .
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Since (M,, + (f — )I)")i; = (M, + (f — d)I)T); for all i,k € [n — 1] and
j € [n] and by Lemma 2.1.6, (M, + (f — d)I)* has eigenvalues

oa T A PP AT )
7 2 7

and M, has eigenvalues

rotd = f (g —d ot )2 AF S )
2 .

(d= )2

Note that

Pt d— f A\ (rn — d o )2 AT ()
2

> max(d — f,ry).

So the proof of (i) is complete.
(i) and (iii) follow from (i) immediately. O

4.4 Rooted matrices under equitable quotient

We have learned that the spectral radius of a nonnegative matrix is preserved
under equitable quotient operation. A rooted matrix has the similar property

if the partition is chosen carefully.

Lemma 4.4.1. If an n x n rooted matriz C' has an equitable quotient matrix
II(C") with respect to a partition I1 = {my, ..., m}, where 7, = {p}, then II(C")
is rooted, p(II(C")) is an eigenvalue of C" and

p(C") = p(II(C")).

Proof. Let @ be the same as in (4.2.1). It’s easy to see that  and Q7!
have equitable quotient matrices I1(Q) and TI(Q~') respectively, and so does
QC'Q™! with

MQC'Q™) = MQ)ICHILQ) ™
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by Proposition 2.1.10. Since QC'Q~! as shown in (4.3.1) is nonnegative,
H(Q)II(CHII(Q) ™! is also nonnegative and II(C”) is rooted. Hence p(IT1(C"))
is an eigenvalue of II(C") by Lemma 4.3.3. Furthermore,

p(C") = p(QC'Q™") = p(II(QC'Q™)) = p(II(Q)IC(Q)™") = p(II(C"))
by Proposition 2.1.7. [
Remark 4.4.2. In Lemma 4.4.1, we have that II(Q)II(C)II(Q™!) = TI(QC'Q™)

is nonnegative and I1(C") is rooted, but II(C'"T)T may not be rooted. For ex-

ample, let
2 0 —1
C'=1(0 2 -1
0 0 1

Then C” has equitable quotient matrix I1(C") with respect to the partition

I = {{1,2}, {3}} and II(C'T)T = (2

-2
is not rooted.
0 1

Note that if 7, contains p and another number, then the equality in Lemma
4.4.1 may not hold.

Example 4.4.3. Let ¢’ be a rooted matrix with equitable quotient matrix
F(C") with respect to the partition II = {{1},{2,3}} as follows

213 3 5 6
01
0j0 1

Notice that p(C") =3 # 2 = p(11(C")).

4.5 Spectral upper bounds with prescribed sum

of entries

Let Ji, I and Oy be the k x k all-one matrix, the k x k identity matrix and
the k X k zero matrix respectively. We recall an old result of Richard Stanley
[25].
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Theorem 4.5.1 ([25]). Let C' = (¢;;) be an n xn symmetric (0,1) matriz with

zero trace. Let the number of 1’s of C be 2e. Then

< —1++v1+4 8e
—_ 2 .

(k:)
e =

2
and PCPT has the form

Jp — 1 0
(ko k On_k) :(Jk—fk)@on—k

p(C)

Equality holds if and only if

for some permutation matrix P and positive integer k.

]

The following theorem generalizes Theorem 4.5.1 to nonnegative matrices,

not necessarily symmetric.

Theorem 4.5.2. Let C' = (¢;;) be an n X n nonnegative matriz. Let m be the

sum of entries in C' and d (resp. f) be any number which is larger than or

equal to the largest diagonal element (resp. the largest off-diagonal element)

of C. Then

cd=f+Vd= [P +amf

p(C) 5

(4.5.1)

Moreover, if mf > 0, then the equality in (4.5.1) holds if and only if m =

k(k—1)f + kd and PCPT has the form

fl+(d— ), 0O
0 On—k

for some permutation matriz P and some nonnegative integer k.

> = (f i+ (d = ))I) & Op s

Proof. If f = 0 then the nonzero entries only appear on the diagonal of C|
so p(C) < d and (4.5.1) holds. Assume f > 0 for the remaining. Consider
the (n 4+ 1) x (n + 1) nonnegative matrix M = C @& O; which has row-sum
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vector (ry,72, ..., 7, Tny1)? with 7,41 = 0 and a nonnegative left eigenvec-
tor vT for p(M) = p(C). Let C" = M, 1(d, f,r1,79,...,7nt1) as defined in
(4.3.2) which has the same row-sum vector of M, and has a positive rooted
eigenvector v/ = (v},v},...,vl1)" for p,(C") by Lemma 4.3.4(i). Clearly
M[—|n+1) < C’'[—|n+1) and vTv' > 0. Hence the assumptions (i)-(iv) in The-
orem 4.2.3 hold with (C,\,\') = (M, p(M), p.(C")). Now by Theorem 4.2.3

and Lemma 4.3.5(ii), we have

d—f++/(d—f)?>+4mf
0(C) = o) < pi(cr) = LIV DT Am]
finishing the proof of the first part.
To prove the second part, assume m = k(k — 1)f + kd and PCPT =
(f I+ (d— f)I) ® O,y for one direction. Using p(C) = p(PCPT) = p(fJy +

(d — f)Ii), we have

d—f+\/(d— [ +4mf

p(C) = (k—1)f +d= )

For the other direction, assume p(C) = p,(C") and mf > 0. In particular
C #0and M # 0. Let (v1,vs,...,v,11) be a nonnegative left eigenvector of
M. Then v,,.1 = 0. Write 97 = (vy,vs,...,v,). We first assume that C has
no zero row. Then r; > r,yy = 0 for 1 < i < n. By Lemma 4.3.3(ii) with
(C",n) = (M,n + 1), we have v > v,,. Then ¢;; = m;; = ¢j; for the indices
1 <1< nwith v; 20 and any 1 < j7 < n by Theorem 4.2.3(b). Hence

p(C)T =07C =0"C'(n+ 1n+1) =07 (fJ + (d - f)I). (4.5.2)

Since 97 is a nonnegative left eigenvalue of the irreducible nonnegative matrix

fJ+(d— f)I for p(C), we have © > 0. This together with fJ+ (d— f)I > C
and (4.5.2) imply C' = fJ+ (d— f)I, finishing the proof for the case under the
assumption that C' has no zero row. Assume that C' has n — k zero rows for
some 1 < k < n — 1. Then there is a permutation matrix P such that all zero
rows of PC'PT appear in the end, so the (n — k) x n submatrix PC P ([k]|—]
of PCPT is 0 and the k x n submatrix PC'PT[[k]|—] of PC'PT has no zero
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row. Let C; = PCPT[[k]|[k]] and m' be the sum of entries in C;. Notice that
p(Cy) = p(C) and m' < m. Applying the first part of the theorem to C}, we

have

d—f+@d—[P+4'f _d—f+/(d=[)?+4m] _

<
p(C1) < 5 5

p(C) = plCh).

Forcing m’ = m, Cy has no zero row and Cy = fJy + (d — f)I;. Hence
PCPT[[K]|[k]) = 0 and this implies PCPT = (fJp + (d — f)Ix) ® O,,_ and
m=k(k—1)f+ kd. O

We give another proof of Theorem 4.5.2 which needs less knowledge but is
tricky:.
The second proof of Theorem 4.5.2. Since C' in nonnegative, it has a nonneg-
ative left eigenvector v = (vy,...,v,) for p(C). Without lose of generality,
we assume that for some 1 < k < n, v; > 0 for 1 <i < k and v; = 0 for
k+1<i<mn. Let p=p(C). Then the matrix C? — (d — f)C has the same
nonnegative left eigenvector v? for p? — (d — f)p. So the maximum row-sum
of C? — (d — f)C is an upper bound of p? — (d — f)p by Lemma 2.1.4.

Define r;(M) as the i-th row-sum of M. Let r; = r;(C'). We have

ri(C?) = i i CisCsj = i(cis i Csj) = CiuTi + Z CisTs < dri + f(m — 1),
j=1 s=1 s=1  j=1 si

with equality if and only if ¢;;r; = dr; and ¢;srs = frg for s # 4. So

p?—(d— f)p < max r;(C? — (d — £)C) = max 1;(C?) — (d — f)r; < fm.

1<i<n 1<i<n

This implies

- d—f++/(d—[f)2+4fm

p(C) 5

By Lemma 2.1.4,

_d—f+/(d—f)?+4fm

p(C) 5 (4.5.3)
if and only if for 1 <i <k
ciir; =dr; for 1 < j <nand cirs = frg for s £4,1 < j <n. (4.5.4)
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Suppose mf > 0. If C = (fJx + (d — f)Ix) ® O,_y, it is easy to see
that (4.5.4) holds. Now assume (4.5.3) holds. Then (4.5.4) holds. Since
Vg1 = -+ = v, = 0, C[[K]|[k]) is a zero matrix. This implies 7, = 0 for
k+1<s <mn,otherwise r; # 0 and ¢;s = f # 0 for 1 < i < k. So C|[k]|—]
is a zero matrix. Since v; > 0, ¢s # 0 for some 1 < s < k and r, # 0.
Then ¢;s = f # 0for 1 < i < k,;i #s. Hencer; # 0 for 1 <i < k. So
ClkJ|[k] = fJe + (d = [)Iy and C = (fJp + (d = f)I) & Op—. [

In the first proof of Theorem 4.5.2, we get an upper bound from a new
matrix C’ by computing its spectral radius, and in the second one, we get
an upper bound by computing the maximum row-sum of g(C'), where g(z) =
2?2 — (d — f)x. These two proofs are quite different. Can we find a relation

between them?

Problem 4.5.3. For a bound of C' given by computing the maximum row-sum
of g(C) from a polynomial g(z), can we find C’ as in the second proof such

that p(C") equals the bound? How about the converse?

4.6 The spectral bound p(I1(C"))

From now on we assume that the square matrix C is nonnegative, and the
eigenvalue p(C) of C corresponds to a nonnegative left eigenvector v* by The-
orem 2.1.1(i). Then the assumption (iii) in Theorem 4.2.3 and Theorem 4.2.4
immediately holds. In Lemma 4.3.1 and Lemma 4.3.3, we know that a rooted
matrix C’ (and its translates) has a rooted eigenvector for p,(C”). In this
section, we shall apply properties of the equitable quotient to find some matri-
ces which are not translates of rooted matrices but still have positive rooted
eigenvectors. We use this method to reduce the size of C’ in finding the bound
N of A = p(C) in Theorem 4.2.3 and Theorem 4.2.4.

Theorem 4.6.1. Let C' = (c¢;;) be a nonnegative n x n matriz with row-sum

T and 11 = {my,m, ..., 7} a partition of {1,2,...,n} with

vector (ri,...,1my)
n € m. Let C" = (cj;) be ann xn matriz that admits an € x ¢ equitable quotient

matriz I1(C") = (n!,) of C" with respect to 11 satisfying the following (i)-(ii):
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(i) C[—|n) < C'[—|n) and II(C") has row-sum vector IL(r") =(m(r")1, m(r')a,

("))t with w(r'), > maxien, 75 for 1 <a < L.

(ii) TI(C") has a positive rooted eigenvector II(v') =(m(v')y, (v )2, ..., w(v"))T

for some nonnegative eigenvalue X .

Then
p(C) < M\, (4.6.1)

Moreover, if C is irreducible, then p(C) = N if and only if
(a) ri =m(r"), for1<a</{andié€n,, and

(b) c; = ci for all 1 < i,5 < n such that for 1 < b < { with j € m, we

have 7(v')y > w(v'),.

Proof. Let S be the n x £ characteristic matrix of II. From the construction
of IT and ', ' = SU(r") = (r},...,7")T is the row-sum vector of C’, and
v' = STI(v') is a positive rooted eigenvector of C’ for X' by Lemma 2.1.5.
Since C is nonnegative, there exists a nonnegative left eigenvector v? of C
for p(C) by Theorem 2.1.1(i). Hence vv’ > 0. Thus assumptions (i)-(iv) of
Theorem 4.2.3 hold, concluding p(C) < .

Suppose that C' is irreducible. Then the above v is positive. Hence the
condition (b) of p(C) = A" in Theorem 4.2.3 becomes cj; = ¢;; for 1 < i <
n,1 < j <n—1with v} > v, and this is equivalent to the condition (b) here
from the structure of v' = SII(v"). The condition (a) here is immediate from

that in Theorem 4.2.3 since 7} = 7(r'), for i € m,. O

Notice that the irreducible assumption of C' in the second part of Theo-
rem 4.5.2 is not necessary. The following example shows that this is a must
in that of Theorem 4.6.1.

Example 4.6.2. Consider the following two 3 x 3 matrices
30 0 3

C= 10 and II(C") = ( )

11

01

— = O

3 0
1 0|, C=
0 0

— = O
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is the equitable quotient matrix of C’ with respect to the partition II =
{{1},{2,3}}. Note that C[—|3) = C'[—]3) and (3,2,1)T < (3,2,2)T, where
(3,2, )T and (3,2,2)" are the row-sum vectors of C' and C” respectively. Since
II(C") + I is positive and rooted, II(C”) has a positive rooted eigenvector for
N = p(II(C")) = (1 ++/13)/2 by Lemma 4.3.3(i). Hence assumptions (i)-(ii)
in Theorem 4.6.1 hold. By direct computing, p(C) = (1 + v/13)/2, so the the
equality in (4.6.1) holds. However, ro = 2 # 1 = r3, a contradiction to (a) in

Theorem 4.6.1. This contradiction is because of the reducibility of C.

The following is a dual version of Theorem 4.6.1.

Theorem 4.6.3. Let C' = (c¢;;) be a nonnegative n x n matriz with row-sum
vector (r1,...,rn)7, and Il = {m,m, ..., 7} a partition of {1,2,...,n} with
n € m. Let C" be an n X n matriz that admits an ¢ x { equitable quotient

matriz I1(C") = (n!,) of C" with respect to 11 satisfying the following (i)-(ii):
(i) C[—|n) > C'[—|n) and II(C") has row-sum vector IL(r") =(m(r")1, m(r')a,
o m(r)e)T with ©(r'), < mingeq, v for 1 <a < /L.
(ii) TI(C") has a positive rooted eigenvector TI(v') =(m(v')1, T(v)2, ..., m(v')e)T
for some nonnegative eigenvalue X .

Then
p(C) > N. (4.6.2)

Moreover, if C' is irreducible then p(C) = XN if and only if
(a) m; = m(r'), for1<a</{andi€n,, and

(b) c;j = ¢jj for all 1 <i,7 < n such that for 1 < b < { with j € 7, we

have w(v")y > w(v'),.
O

Remark 4.6.4. (i) The positive assumption of I1(v’) in (ii) of Theorem 4.6.3
can be removed in concluding the first part p(C') > X. The following is

a proof:
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Proof. From (i) and referring to (4.2.2), we have CQ > C'Q > 0.
Let v" = SII(v') be a rooted eigenvector of C” for A" as shown in the

/

above proof. Then u = Q~'¢’ is nonnegative by Lemma 4.2.2(i), so

Cv' = CQu > C'Qu = C"v' = XNv'. Since v is nonnegative, p(C) > X
by Theorem 2.1.1(iii). O

(ii) The following counterexample shows that to conclude p(C) < X, the

positive assumption of II(v') in (ii) of Theorem 4.6.1 can not be removed:

1 2 1
C=C"= N =11 = .p(C) =207 =(0,1),
) (1) 0.1

where the trivial partition IT = {{1},{2}} of {1,2} is adopted.
We provide an example in applying Theorem 4.6.1.

Example 4.6.5. Consider the following two 7 x 7 matrices C' and C” expressed
below under the partition II = {{1,2,3},{4,5},{6,7}} :

2 1 33 3|12 0 2 2 3|3 3|12 -1

4 2 114 26 4 4 2 114 216 5

2 3 1(4 1,8 3 2 3 2|14 2|8
C=|35 31 1|3 4], C'=14 5 3|1 1|3

5 6 1|11 03 3 5 6 1|1 13 3

0 2 112 26 0 1 2 12 2,6 -1

2 2 012 1]1 4 2 2 012 2|1 4

(4.6.3)

Apparently, C[—|7) < C'[—]7), and the row-sum vector (24, 23, 22, 20, 19, 13, 12)T
< (24,24,24, 20,20, 13, 13)7, where (24, 23, 22, 20, 19, 13, 12)7 and (24, 24, 24, 20,
20, 13, 13)T are the row-sum vectors of C' and C’ respectively. So assump-
tion (i) of Theorem 4.6.1 holds. Note that C” is not rooted and neither of its

translates. Since C' has equitable quotient matrix

7 6 11
mCc) =112 2 6
4 4 5
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with respect to II, in which II(C") 4 21 is rooted. So assumption (ii) of Theo-
rem 4.6.1 holds with \' = p,.(C") by Lemma 4.3.1 and Lemma 4.3.3(i). Hence
by Theorem 4.6.1, p(C) < p,(II(C")) ~ 18.6936.

If we apply Lemma 2.1.2 by constructing the following nonnegative matrix
C" > C, and find its equitable quotient matrix II(C”) with respect to the

above partition II:

2 2 33 3[12 0

4 2 1|4 2|6 6

2 3 24 2|8 4 7 6 12
C"=145 3|1 13 4], IC)=]12 2 :

5 6 1|1 1|3 4 4 4

1 2 1(2 2|6 0

2 2 012 22 4

one will find the upper bound
p(C") = p(TI(C") ~ 19.4
of p(C) which is larger than the previous one.

Remark 4.6.6. In Theorem 4.6.1 and Theorem 4.6.3, if the condition "C' is
nonnegative” is replaced by "C has a nonnegative left eigenvector for A” and
p(C) is replaced by A, the inequality also holds. The proof is the same. For
the convenience in the next section, we do not state that in Theorem 4.6.1 and
Theorem 4.6.3.

4.7 More irrelevant columns

Considering the part 7, of column indices of C' and C” in the assumption (i) of
Theorem 4.6.1, the assumption C[—|m,] < C'[—|m] for C" is not really neces-
sary. We might replace the columns indexed by 7, in C’ by any other columns

and adjust the values in the last column keeping the row-sums of C’ unchanged.
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In this situation, the columns of C” indexed by 7, are irrelevant columns (in
the comparison of C' and C”). For example in Example 4.6.5, the values in
the 6-th column of C” can be changed to any values (e.g., (a,b,c,d,e, f,g)7),
if the values in the 7-th column of C” make the corresponding change (e.g.,
(11—a,11=b,11—¢,6 —d,6 —e,5— f,5—g)T correspondingly), i.e., columns
6 and 7 of C” are irrelevant. The following theorem generalizes this idea when

restricting II[C"] in Theorem 4.6.1 to be a rooted matrix or its translate.

Theorem 4.7.1. Let 11 = {m,mo,...,m} be a partition of [n] with n € my,
and C' be an n X n nonnegative matrix with row-sums ry > 1re > -+ > r,. For

1<a<landl <b</{—1, chooserl ! such that

Ty Z maX;er, 7i;

> Zjem Cij for all i € my;
ch > Cp >0 fora#b;
>y

and let
-1
de=rl=S
j=1
Then the € x { matriz C" = (cl,) has a positive rooted eigenvector v" =

(v, vl v))T for p(C") and p(C) < p.(C"). Moreover, if C is irreducible,
then p(C) = p.(C") if and only if

(a) ri =1V for1<a</landi € m,, and
(b) > icm, Cii = Cap forall1 < a,b <{ with v] > v/ and i € 7,.

Proof. From the construction of C”, C” + dI is a rooted matrix with (C' +
dI)[n|n) positive for d large enough, so C" has a positive rooted eigenvector for
pr(C") by Lemma 4.3.1 and Lemma 4.3.3(i). In view of the construction of C’
in Example 4.6.5, we construct an n X n matrix C’ such that C’ has equitable
quotient matrix II(C") = C” and assumptions (i)-(ii) of Theorem 4.6.1 hold for
N = p.(II(C")). Hence the remaining follows from the conclusion of Theorem
4.6.1. O
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Remark 4.7.2. Theorem 4.0.1 is a special case of Theorem 4.7.1 with II =
{142}, ..., {¢—1}, {¢, 0+ 1,....,n}} and C" = My(d, f,r1,72,...,7¢) as
shown in (4.3.2). To characterize when the equality holds, we needs to apply
Lemma 4.3.5(iii) by choosing a new ¢ to be the least ¢ such that r; = r,. By
using the more irrelevant columns idea in Theorem 4.7.1, the assumption f :=
Max)<jxj<n Cij and d := max;<;j<, ¢; in Theorem 4.0.1 can be replaced by the

I s

respectively.

A new proof of the following theorem proposed by Csikvari [8] is another
application of Theorem 4.7.1. This proof is systematic while the original proof
is somewhat tricky. An independent set is a set of vertices in a graph, no two

of which are adjacent.

Theorem 4.7.3 ([8]). Assume that the set K = {v1,vq,..., v} forms a clique
in the graph G and V(G) \ K = {vk41,...,v,} forms an independent set. Let
e be the number of edges between K and V(G) \ K. Then

p(G)gk_lJ”/(g_l)“%. (4.7.1)

Moreover, the equality holds if and only if v; has the same neighborhood in
V(G)\ K for each 1 <i<k.

Proof. Let C' be the adjacency matrix of G according to the order vy, vs, ..., v,
and vy, 1 has the maximum degree among {vy1,...,v,} without lose of gen-
erality. Let IT = {{1},{2},...,{k},{k + 1,...,n}} and C" = (c];) be a
(k+1) x (k+ 1) matrix with a rooted eigenvector for p,(C”), where

1, ifi# 7 and j < k;
o 0, ifi=7and 1,7 <k
Y deg(v;) —k+1, ifi<kandj=Fk+1;

deg(vgyr) —k, ifi=k+1landj=k+1.
Then p(G) < p,(C”) by Theorem 4.7.1. We can see that

o k—1 e
1 deg(vpy1) — K
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is the equitable quotient matrix of C""* with respect to the partition {{1,2, ...k},
{k+1}}. So

p(G) < p(C") = pr(Cy = F Lt V(;‘”“ “lEoftde g7

< k—1+\/(§:—1)2—|—4e (4.7.3)

by Corollary 2.1.9, where ¢ = k — deg(vg11) > 0. Note that if e > 0, then the
equality in (4.7.3) holds if and only if ¢ = 0.
If v; has the same neighborhood in V(G) \ K for each 1 < i <k, then

1(0) = <k;1 eék:)

is the equitable quotient matrix of C' with respect to the partition II =
{{1,2,...,k}, {k+1,...,n}} of [n]. By Proposition 2.1.7, p(G) = p(II(C))
and the equality in (4.7.1) holds. For the converse, suppose the equality in
(4.7.1) holds. Then the equalities in (4.7.2) and in (4.7.3) also hold. If e = 0,
then v; has the same neighborhood in V(G) \ K for each 1 < i < k. Now
assume e > 0. Then the equality in (4.7.3) implies ¢ = 0 and deg(vg+1) = k. If
G is connected, then the equality in (4.7.2) and Theorem 4.7.1(a) imply that
deg(v;) = k for k+1 < j < n. So v; has the same neighborhood in V(G) \ K
for each 1 < i < k. If G is not connected, then the component G’ containing
K is the only component which is not an isolated vertex. Using GG’ instead of

G, we get the conclusion we want.

O

Remark 4.7.4. If we remove the condition "V (G)\ is an independent set” in
Theorem 4.7.3, (4.7.2) still holds.

The following is the dual theorem of Theorem 4.7.1.

Theorem 4.7.5. Let 11 = {m,mo,...,m} be a partition of [n] with n € my,

and C' an n X n nonnegative matriz with row-sums ry > r9 > -+« > 1,. For
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1<a</landl <b</{—1, chooserl, ¢l such that

a’

"

Ta S minieﬂ'a T
< Zjem, Cij for all i € wy; (4.7.4)
o> ey >0 fora# b
o>y
and let
-1
/" i !
Cop =T — Z Caj- (4.7.5)
j=1
Then the ¢ x { matriz C" = (cll,) has a positive rooted eigenvector v" =

(v, vl )T for p(C") and p(C) > p(C"). Moreover, if C is irreducible,
then p(C) = p(C") if and only if

(a) ri=rl for1<a</{andié€ m,, and

(b) D e, Cii = Cay for all 1 < a,b < { with v] > v} and i € 7,.

4.8 Some new lower bounds of spectral radius

We shall apply Theorem 4.7.5 to obtain a lower bound of p(C) for a nonneg-

ative matrix C.

Theorem 4.8.1. Let C' = (¢;;) be an n x n nonnegative matriz with row-sums
re>re > >y For1<t<mn,letll, = {{1,...;t},{t+1,...,n}} bea
partition of [n]. Let d = maxci<p ¢;i and f = maxi<j<ni<j<n,izj Cij- Assume
that 0 <1, —(n—t—1)f —d. Then

o) s eI T ATV = Cn =2~ —dP +din = )(ra = (0 =t =D = d)
el 2 '

(4.8.1)
Moreover, if C is irreducible and f > 0, then the equality holds in (4.8.1) if

and only if ry =r, or

(a) r1 =1y and ryyq =1y, and
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(b) e cis=re—(n—1t)f foralli€lt], and
Zje[t]cij:rn_(n_t_l)f—d forallt <i<n.

Proof. The lower bound of p(C') in (4.8.1) follows by applying Theorem 4.7.5

with the following positive rooted matrix

C,,:( re=(n—t)f (n—t)f ) (482)
rm—(n—t—1f—-d (n—t—1)f+d

which has row-sum vector (ry,7,)” and the assumptions in (4.7.4) and (4.7.5)
of Theorem 4.7.5 hold from the assumptions. Note that C” has a positive
rooted eigenvector (v{,v5)? for p(C”) by Lemma 4.3.3(i), and the value p(C”)
is as shown in the right of (4.8.1). To study the equality case in (4.8.1), we
apply conditions (a)-(b) in Theorem 4.7.5, in which condition (a) is exactly
the condition (a) of this theorem. If v{ > ¢4 then the condition (b) of this
theorem is exactly the condition (b) of Theorem 4.7.5. Notice that v = v} if
and only if p(C”) = r, = r, by Theorem 2.1.1 using the irreducible property

of C". This is also equivalent to r; = r, under the condition (a). N

The following corollary restricts Theorem 4.8.1 to binary matrix C.

Corollary 4.8.2. Let C = (¢;5) be an n x n (0, 1) matriz with row-sums
ry>ry > 2>1, >0, and chooset >n—r,+1 andt <n. Then

o T + \/7",? —4(n—1t)(r, — rn)‘

p(C) = 5 (4.8.3)

Moreover, if C' is irreducible, then equality holds in (4.8.3) if and only if ri = r,

or
(a) r1 =1y and ryyq =1y, and

(b) D e cis =re— (n—1t) foralli€[t], and

Zje[t] Cij=1n—(n—1t) forallt <i<n.
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Proof. 1f t = n, then (4.8.3) becomes p(C') > r,. So the corollary follows from
Lemma 2.1.3. Assume ¢t < n. Since the assumptions in Theorem 4.8.1 clearly
hold with d = f = 1, the corollary also holds by (4.8.1) in this case. N

One can easily check that the right hand side of (4.8.3) is at least 7, (with
equality iff r, = r,,) by applying Lemma 2.1.3 on (4.8.2) with d = f = 1, so

the above lower bound is better than the known one r,, in Lemma 2.1.3.

4.9 Characterizing the eigenvector of a rooted

matrix

In the second parts of Theorem 4.7.1 and Theorem 4.7.5, we need the set K :=
{blvy > v}} to help us to characterize when the equality holds. Sometimes we

can find K from the entries in C” by the following lemma.

Lemma 4.9.1. Let C" = (c,) be an £ x { rooted matriz with row-sums
rorl oor) mot all equal and v" = (V] vy, ... v))T a positive rooted eigen-

vector of C" for XN, let K = {blv] > v}}, Ky = {b|r) > r}} and when K, is
defined, let K1 = {a ¢ U,<, Ks|cyy, > i, for some b € U, Ks}. Then

(i) Usgt K, C K for each k> 1, and

(i) if the a-th row is equal to the (-th row in C" for each a ¢ |J,., K, then
Us<t K K.

Proof. For 1 < a </, we have

-1
1! _ 1! // /! //
p(C" )y = (C"v E Copy = E CpUp + E (Cly — Cp)vy + gy
b1

-1 -1
/! // /! 1 1 1 /! 1
> E CopUp + E (cly — V) + vy = E CpyVy + (1 — (1) — cu) )y
b=1 b=1
(4.9.1)
§ /! // E /! n /i . 1! 1/
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If 7/, > ry, then the inequality in (4.9.2) is strict. Hence A'v/, > Nvj, so X' > 0
and a € K. This proves the base case K1 C K. Assume K; C K. We want
to prove Ky, C K. Choose a € K;;1. Then there exists b € K; such that
ch, > ¢ and vy > v). Hence the inequality in (4.9.1) is strict and v)) > vy,
proving a € K. This proves Usgt K, C K for t > 1. If the a-th row is equal
to the (-th row in C" for each a ¢ |J,., K, then vy = vy for a ¢ |J,, K, and
Ut Ks = K. O

Corollary 4.9.2. Under the same assumption of Theorem 4.9.1, if K; = [{—1]
or the a-th row is equal to the (-th row in C" for each a satisfying vl = ry,
then K = Ky = {a|r!! > r}}.

4.10 Choosing C” to get more bounds

In this section, for a n x n nonnegative matrix C', we provide a class of matrices
such that M,(d, f,r1,72,...,7¢) is contained in it and each C” in it satisfying
the assumptions in Theorem 4.7.1 (resp. Theorem 4.7.5).

Let C be an n X n nonnegative matrix with row-sums r; > ry > - --

IN IV

Tn
2
1 <b< /-1, let sy = Ziera,jeﬂb ¢;j. Choose ] > max;en, 1; and d, for
1 < a < ¢ such that

and IT = (m,mo,...,m) a partition of [n] with n € m. For 1 < a

(i) d¢ > maxy<p<p—1 Sm,

(i) d, > max{maxj<p<s—1 Sep, MaXi<p<r—1 Sap} for 1 <a <€ —1,
(iii) dy > dy>0for 1 <a</l-—1,
(iv) v/ >rjfor 1 <a</{-1,

and let C" = (cf;) be the £ x ¢ matrix with row-sums 77, ..., 7y, where ¢}; = d;
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for1 <i</(1<j</—-1:

dl cee d1 7"/1/ — (g — ].)dl
o=\ - : . (4.10.1)
dg_l e dg_l Tgfl — (f — 1)dg_1
dg ce dg ’I“Z — (£ — 1)dg

Then C” is rooted and (C,C") satisfies the assumptions of Theorem 4.7.1.
There is a similar construction for Theorem 4.7.5.
The following lemma shows some information about the above C” and how

to choose a better C” for given dy,ds, ..., dp_1.

Lemma 4.10.1. For { a positive integer, d; > dy > 0, r! > r} > 0 for

1 <1< /land(r]) not all equal, let C" = (c}.) is of the form in (4.10.1). Then

ij
we have the following.

Ty — do) 7+ Ty = dy) — )2 A Ay Y (! —
i) e = Sl d) 4 V& <2 P+ 4de S — 1)

(ii) Let v" = (vf,...,v))T be a rooted eigenvector of C" for p(C"). Then

K = K| Ky = {ilr} > v/} J{ild: > do},

where K, K1, Ky are the same as in Lemma 4.9.1.

(iii) Givendy,...,dp—1,r],... 1], let A= Zz L+ (0=1)d; —2r) /(€ = 1)?
and B = Y"1 (r! — ({ = 1)d;). Then for 0 < dy < minj<;<,_1 di, p(C")
decrease, if A > minj<;<¢—1d; or B <0;
increase, if A<0 and B > 0;
decrease before A and increase after A, if 0 < A <minj<;<¢_1d; and B > 0.

Proof. (i) Let IT = {{1,...,£—1},{¢}}. Then II(C"") is an equitable quotient
matrix of C"T. By Corollary 2.1.9,
Zf*l d d@
p(C") = p(C") = p(IL(C")) = P(( ,, )
S (] = (E=1)di) v — (€= 1)dy

SN — do) A (S — dp) — 1)+ Ady S (] — 1)
' |
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(ii) From K = {i|r] > r}},
Ky ={i ¢ Ki|cj; > ¢; for some j € K1} = {i|r] =} and d; > d,}.

So K1 U Ky = {ilr! > v} U{ild; > do}, Ki UKy = {i|r! = r) and d; = d,}
and the i-th row is equal to the ¢-th row for i € K;|J K,. By Lemma 4.9.1,
K1 U K2 - K

(iit) Let £/ =0 —1,a =3t di, b= 10 0 = S22 — (0= 1)dy) =

b— ¢'a. Then we have a > ¢'dy, b > {'r}] and

S~ d) (TN — ) — ) A S )
N 2

p(C")
_a+ ry —'d+ \/(a —ry) — 0'dy)? 4 4dy(b — E’Té’)
pr— 2 M
Then

1 _g/ _ //_g/d 2b_£/ "
i (C”) _ _<—€,+ (CL ”TZ Z>+ ( Té/)/ )
Ody 2 V@ — 7] = 0dg)? + 4dy (b — 7))
for 0 < dy < minj<;<,1d;. Note that (a — 1) — £'dg)* + 4dy(b — €'r)) > 0
since dg > 0. If =0'(a —r) —0'dy) +2(b—'r]) <0, then 8%@/)(0”) < 0. If
—l'(a—r] —=L0dy)+2(0b—{r)) >0, we have

(=l (a—r]—0dy)+2(0b—0r))* —0?((a—r] — Cdp)* + 4de(b— 0'1)))
= 4(b—0r)) (= (a—r) —Cds) + (b— 7)) — (d,)
— Alb— (b — la).

Since b — 'y > 0,

é;(aqzo,ﬁb—wazm
4

0

—p(C") <0, ifb—{a<0.

adg ( )_ y 1 a =~
Therefore, we can determine the sign of p(C”) by the sign of

-1
—l(a—ry—=l'dg)+2(b—L'r]) = (6—1)zdg—Z(TZ—I—(E—l)di—%;/) = ((—1)*(d;—A)

=1
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and the sign of
-1

b—la=Y (/- (- 1)d;)=B.

=1

O

Remark 4.10.2. For an n X n nonnegative matrix C' and any partition II of
[n], we can choose C” + ¢I for some c instead of C” satisfying the condition in
Theorem 4.7.1 or Theorem 4.7.5 to get an upper or lower bound of the spectral
radius of C, where C” is of the form in (4.10.1). Note that the set of such
C" + cI contains My(d, f,r1,7r9,...,70).
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Chapter 5

BFP conjecture and weak BFP

conjecture

We found counter examples of BEP Conjecture for K(p, ¢, e) when e = p(¢—1),
p > 3 and ¢ > p + 2 in Proposition 3.6.2 of Chapter 3. In this chapter we
devote ourselves to prove the weak BFP Conjecture for C(p, g, e). To do this
we need better upper bounds of p(G) for bipartite graph G, and one is given
in Section 5.1. The case e > pq — ¢ are settled in Section 5.2, and the case
p < 5 in Section 5.2.2. In Section 5.3 and Section 5.4, we provide more tools

to help us get more results in Section 5.5.

5.1 Upper bounds of p(Gp)

We have learned the upper bound ¢,; of p(G) for a bipartite graph G in
Lemma 2.2.3. In this section two upper bounds ¢, and ¢(D) of p(Gp) will be

introduced.

5.1.1 Upper bound ¢,

We provide the upper bound ¢, of p(Gp) here.
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For a decreasing sequence D = (dy,ds, ..., d,) of positive integers, let

dy dy ds - d,
dy dy dg --- d,
H: d3 d3 dg dp
dp dp dp dp

with row-sums r; > ry > -+ > 1, as also shown in (2.2.2), where

-1 t

ri=e+ (i—1)d Z - Y 4, (5.1.1)

=1 k=d;+1
e=yr_,dg, t =dy and D* = (d},d;, ..., d;) is the conjugate partition of e.
Applying Theorem 4.7.1 with n = p, C' = H and the partition Il =

{{1},{2},..., {¢ -1} {60+ 1,. ..,p}} we choose the ¢ x ¢ rooted matrix
C'”:(c”) where ¢} = d; for 1 <i </(,1<j<{—1andcj=r;—({—1)d;,

ie.,

d1 d1 tee d1 r — (f — 1)d1
d2 d2 d2 7"2—(6—1)(12

C// = d3 d3 v dg rs — (6 - 1)d3 . (512)
dg dg tee dg Ty — (E - 1)dg

Then C' has equitable quotient matrix

/—
H/(C//T) _ ( k:ll dk’ dé )
(e — (0= 1)dy,) S0, dy

with respect to the partition II' = {{1,2,...,¢ — 1}, {¢}} of [p]. Note that C"
has a rooted eigenvector for p(C”). So C"* has a nonnegative left eigenvector

for p(C"). Since II'(C"") has characteristic polynomial

2? = (i >$+Zk Ve Y0, _dKZij?”k-Fde(g—l) f;;dk-
= 2 — (X d)r ey d —de S
= 2%~ (Z£:1 dk>$ +7rire — rg —dy Zk:l e + gdﬂ’g
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and by Lemma 4.4.1,

1+ \/(277 —11)2 + 4d, Zle('rl- — )
5 .

¢7 == p(C") = p(Il'(C")) = (5.1.3)

Theorem 5.1.1. Let G be a bipartite graph and D = (dy,ds, ... ,d,) be the
degree sequence of one part of G in decreasing order. Then for 1 < ¢ < p, we
have p(G) < ¢y, with equality if and only if G = Gp, di = d; and diyq = d,,
for some 1 <t </{—1. O

Proof. By Lemma 2.2.1, (2.2.3), the above setting of C”, and the first conclu-
sion of Theorem 4.7.1, we have p(G) < p(Gp) = \/p(H) < \/p(C") = ¢;. The
first inequality is equality if and only if G = Gp by Lemma 2.2.1. We apply

the second conclusion of Theorem 4.7.1 to find that the second inequality is

equality if and only if
(a) 1y =rp, and

(b) dmax(ap) = hav = Chy = dq forall1 < a,b < ¢ —1withv) > vy,
and d; = dax(ip) = his = g, = do forall 1 <b < ¢ —1 with v >
vy and for all ¢ > ¢, where v” = (v{, v}, ..., v)) is a positive rooted eigen-

vector of II(C") for p(C").

Note that r, = r, if and only if d; = d,,. By Lemma 4.9.1 and the structure
of ", {blv] > v/} = K = Ky = {bld, > dy}. Hence conditions (a)-(b) are
equivalent to d; = d; and d;4; = d, for t to be the largest integer with d;, > dy,
or 0 if no such t. O

Corollary 5.1.2. Let G be a bipartite graph and D = (dy,ds,...,d,) be the

degree sequence of one part in decreasing order. Then

p(G) < \/ rt Ve Ady 3 (n i)

2 )
with equality if and only if G = Gp and d; = d; and diy = --- = d,, for some
1<t<p—-1.
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Proof. By Lemma 2.2.1, the case £ = p in Theorem 5.1.1 and using 7, = pd,
to simplify ¢, in (5.1.3), we have

p(G) < p(Gp) < 6, = \/ LR ELEY SIGEID)

5.1.2 Comparison of ¢, and ¢,

We compare the upper bound ¢, of p(Gp) and the bound ¢;; in Lemma 2.2.3.

Lemma 5.1.3. Let D = (dy,da, ...,d,) be a decreasing sequence of positive
integers and D' = (dy,dy, ..., d;) be the degree sequence of the other part of
Gp. Then for 1 <s<p, 1<t <qwiths—1=dj,

¢5 S ¢s,t-
Proof. Let C} be an s X s matrix with
YU dd N~ d) — (s — D)di, if1<i<sandj=t,

ie.,

dy e dy o didy+ YT (s — dp) — (s — 1)dy

dy - dy  dady+ YT (d— dp) — (s — 1)dy

Cr=1| + -~ :
ds—y -+ dsq ds—ld;f + Z;;ll (d; - dé) - (S - 1)d5—1
dy - dy dydy+ YN (dy — dp) — (s — 1)d,

We will show that C; realizes the upper bound ¢,;. Note that the transpose

of the equitable quotient matrix of C{ with respect to the partition II =

{{1,...,s = 1},{s}} is

(CT)T = S di (D di)di+ (s = 1) X0 (ds = d) — (s = 1) i ds
' d, dyd, + STV (d — dy) — (5 — 1)d, '

7=1
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Since (' is rooted,

Xst + \/ Xs2,t —4Y,

p(C) = plTI(CT)) = S

2
= (bs,t'

Note that the first s — 1 column of C) is the first s — 1 column of C”
in (5.1.2) with £ = s, the s-th row-sum of C} is equal to rs in (5.1.1), and
(d; — ds)d, > r; — rs. Referring to @ in (4.2.1) with n = s, to C” in (5.1.2),
and to the form of Q7'C’'Q in (4.3.1) with C' = C; and C" = C”, we have
Q1C1Q < Q1C"Q. Thus 62 = p(C") < p(CY) = 62, =

5.1.3 Upper bound ¢(D)

For a decreasing sequence D = (dy,ds, ..., d,) of positive integers, define

f(D):=dy Y (di—d)) (5.1.4)

1<i<j<p

and

¢(D) :

e+ \/62 —4dp Y <icjcp(di — dj) \/e + /2 —4f(D)
pum— 2 = )

Note that e = Zle d; is the number of edges in Gp.

Lemma 5.1.4. Let G be a bipartite graph and D be the degree sequence of one

part of G in decreasing order. Then
p(G) < ¢(D)
with equality if and only if G = Gp and D has at most two values.

Proof. This is from Corollary 5.1.2 by using r; — r; = Z;ll(dk — d;) and

rs = e€e. O
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.,

dy

Figure 5.1: The ferrers diagram F(D") of D?

5.2 Weak BFP conjecture for C(p,q,e)

We will show that the weak BFP conjecture for C(p, ¢, ) is true when e > pg—q
or p < 5, where p < q. We need first a general setting.

When e and d, are fixed, to increase the value ¢(D) in (5.1.5), we need to
decrease the value dj, >, ;_;-,(di — d;), i.e., making the values (d;) as closed

as possible. The sequence D? below is for such purpose. Let
by, =e—d,— (p—1)k (5.2.1)

denote the remainder of e — d, dividing by p — 1, where

k=1 ]

p—1
is the quotient. Define the sequence D = (dhl.dg, o ,dg), where d]hg = d, and

p—1

E=aF if 0g, +1<i<p-—1.

e—d . .
—2 |+ 1, if1 <1<, ;
di = { er] st (5.2.2)

Note that e = d + %+ --- + d?, and the Ferrers diagram F'(D?) has the

form shown in Figure 5.1.
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Proposition 5.2.1. With the notation above,

¢(D) < ¢(D").
Moreover, if d, # 0, the above equality holds if and only if D = D*.

Proof. 1f d, = 0 then ¢(D) = /e = ¢(D?) by (5.1.4), (5.1.5). Assume d, > 0.
We will show that dj, >, (d; — d;) takes minimum value if and only if
D = D" for given e and d,. If there is a pair (d;,d;),i < j < p such that
d; > dj + 2, then choose one such pair (4,j) with j — ¢ minimum and use
(d; —1,d; + 1) to replace (d;,d;) in the original sequence. It strictly decreases
the value 2d,(i — j) of d, Z?;i(dj —d,). We can always find the above pair
(i,7) unless D = D?. This completes the proof. O

Set ¢(e,p,d,) := ¢(D*) and G(e,p,d,) := Gps:. Proposition 5.2.1 and the
proof of Theorem 5.1.1 imply that p(Gp) < ¢(e,p,d,) with equality if and
only if D = D* has at most two values. We shall compare the values ¢(e, p, dy)
if e, p are fixed and d,, is a variable. Referring to (5.1.5), it is easier to compare

the values

fle,pdy) =d, Y  (di—d), (5.2.3)

1<i<j<p

where d” is defined in (5.2.2). Note that

flespody) =d, > (di—di) =d, [(e—pdy) + Lo, (p—1—Lg,)], (5.24)
1<i<j<p
and
p(Gp) < ¢(e,p,dp) = \/e Ve 24f @0, dy) (5.2.5)

To prove weak BFP Conjecture for C(p, ¢, €), we need to show that for any
graph G € C(p,q,e) \ Co(p, g, €), there is a graph G* € Co(p, ¢, e) such that
p(G) < p(G%). The following lemma can help us find this G*.

Lemma 5.2.2. Given e,p,d,, choose integers k,{q, with 0 < {g, < p—1
such that e —d, = (p — 1)k + £g,. Assume a = d, + {3, —p+1 > 0 and
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b:=min(k,d, + lq,). Then d, € [a,b], G(e,p,a),G(e,p,b) € Co(p,q,e) and

¢(e,p, dp) < max(p(Gle,p,a)), p(Ge,p,b))).

Moreover, if the equality holds, then d, = a or d, = 0.

Proof. Clearly d, € [a,b] and G(e,p,a),G(e,p,b) € Co(p,k + 1,€) from the
setting. Also if d, + /03, —p + 1 > 0, then G(e,p,a) € Co(p,k + 1,¢); in
particular, p(G(e,p,c)) = ¢(e, p, c) for ¢ € {a,b}. To study ¢(e, p, d,), we only
need to compare the values f(e,p,d,) = dy((e — pdy) + lq,(p — 1 = £4,)) in
(5.2.4), where {q, = e — k(p — 1) — dp, and 94y, /0d, = —1. Then

Ofepds) _ 2, — 3p 4 1)dy + Lo (p— 1 — Ly
ad, v ’ ’
and o ( d))
e7p7
a—dlgpz4(gdp_p)—2dp+2<0

since {q, < p—1. So f(e,p,d,) takes the minimum value (resp. ¢(e,p,d,)

takes maximum value) only if d, is an end point of interval [a, b]. Then

¢(e,p,dy) < max(¢(Gle,p,a)), 9(G(e,p, b)) = max(p(G(e,p, a)), p(G(e, p, b))
with equality only if d, = a or d, = . [

Note that if @ = 0 in the above lemma, then ¢(e, p,a) = /e.

5.2.1 The case ¢ > pqg —q

We consider the case e > pq — ¢ in this subsection.

Theorem 5.2.3. If p < q and e > pq — q then weak BFP Conjecture for
C(p,q,e) is true.

Proof. Let G € C(p, q,e) with one part degree sequence D = (dy,ds, ..., d,).
If e = pg — g, then we choose Gy = K,_ 4. Assume e > pg — q. Referring to
(5.21),a:=d, +4ly, —p+1l=e—(p—1)(k+1) >e— (p—1)g > 0, where
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k= [ep__dfj. Let b as defined in Lemma 5.2.2. By Lemma 2.2.1, Lemma 5.1.4,

Lemma 5.2.1 and Lemma 5.2.2, we have

p(G) < p(Gp) < ¢(D) < ¢(D*) = ¢(e, p,d,) < max(p(G(e,p,a)), p(G(e, p,b))),

and p(G) # max(p(G(e,p,a)), p(G(e,p,b))) unless G = Gp = Gps € Co(p, q,€).
0

5.2.2 The case p <5

We will show that weak BFP conjecture for C(p,q,e) is true when p < 5 in

this subsection.
Theorem 5.2.4. Weak BFP conjecture for C(p,q,e) is true when p < 5.

Proof. We prove by induction on q. The case ¢ = 1 is trivial. Recall from
Section 3.7, the case p < 3 is done for any ¢. Assume p € {4,5}. Pick
G € C(p,q,e) with one part degree sequence D = (dy,ds,...,d,). We might
assume d, > 0. Then p(G) < p(Gp) < ¢(D) < ¢(DF), and p(G) = ¢(D?)
if and only if G = Gp = Gp: and D? has at most two distinct values; in
particular G € Cy(p, ¢, ¢). Hence we might assume G = G p: and D" has three
different values. We assume d; = ¢, otherwise G € C(p,q — 1, e) and the proof
is finished by induction hypothesis. Then d = d; = ¢ and dy11 = d,—1 = ¢—1,
where 1 <t = {4, < p—1 as defined in (5.2.1). By Lemma 5.2.2, we might
also assume d, + £4, —p + 1 < 0. There are only a few cases remaining. If
dp + lq, = p — 1 then we choose Gy = K14 and p(G) < p(Gy) = +/e. There
are only four cases (p,{q,,dp, e) € {(4,1,1,3¢—1),(5,1,1,4¢—2),(5,1,2,4q —
1),(5,2,1,4¢ — 1)} remaining. Let d} = d’dﬁgdp =q, dfjﬁgdﬁl =q—1=d

p—1
and D' = (di,dy,...,d, ;) be a sequence of length p — 1. Note that Gp: €
Co(p—1,q,e) C Co(p, q,e). We compare the f-values to find p(G) < ¢(DF) <
p(Gpr) = ¢(e,p—1,q—1) with referring to (5.2.3) and (5.2.5) in the following

cases of (p,€q,,d,, €):
Case (4,1,1,3¢—1): f(3¢—1,4,1) =3¢—3 >2q—2 = f(3¢—1,3,q—1),
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Case (57 ]-a 174(]_2) f(4q_27571) = 4q_4 = 4q_4 - f(4q_2a47q_1)7
Case (5,1,2,4g—1): f(4g—1,5,2) = 38¢q—16 > 3¢—3 = f(4q—1,4,q9-1),
Case (5,2,1,4g—1): f(4¢—1,5,1) =4¢—2 >3¢—3 = f(4g—1,4,q—1).

]

5.3 A condition to reduce p

To prove weak BFP conjecture for C(p, q, e), the following properties may be

useful for doing induction on p + q.

Lemma 5.3.1. Given D = (dy,da, ...,d,) withdy > dy > --->d, >0,p < p,

0 <5 <59 <000 <55 with Z‘;’.’:ﬁﬂdi = 2:15167 and dy 4+ s1 > dy + 89 >

de,—i‘Sf,, l@tD: (d1+81,d2+52,...,dﬁ+5ﬁ). Then
p(Gp) < p(Gp)
and p(Gp) = p(Gp) if and only if Gp and G are complete bipartite graphs.

Proof. Let I = {{1},...,{p}. {p+1,...,p}} be a partition of [p] and C”" =
(cf;) be a (p+1) x (p+ 1) matrix, where

" {H(D)ij+3jv 1f]§ﬁa

0, ifj=p+1.
Note that
d - dy |dsy - d
H(D) - dy - dy |dsy -+ dp |
dppr -+ dpyr | dppa o0 dp
d, --- d, d, --- d,
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d1 + 51 d2 + S9 dﬁ_l +Sﬁ—1 dﬁ—FSﬁ

ds + s1 dy+sy -+ dy_1+551  ds+sp
o _ : : : :
dy1+s1 dsg1+82 - dy1+s;.1 dyt+Sp
dy+s1  ds+sy - dy+s;m1 dy+ S
dyr1+ 81 dpp1+52 -+ dpy1+ 5521 dpy1+55 0
By Theorem 4.7.1, we have
p(H (D)) < p(C"). (5.3.1)

Since H(D);; + 5; < H(D) 4 Smax(i,j), we have C"(p+ 1|p+ 1) < H(D) and
p(C"(5+ 105+ 1)) < p(H (D)) (5.3.2)

So
p(H(D)) < p(C") = p(C"(p+1]p +1)) < p(H(D)).
It Gp and G are complete bipartite graphs, say they are of size e, then
p(Gp) = p(Gp) = v/e. For the converse, if p(Gp) = p(Gp), then the equality
in (5.3.2) implies §; = s9 = -+ = 55 > 0 since C"(p + 1|p + 1) is irreducible.
Suppose d; # d;41 for some i. Then the i-th row-sum of C” is larger than the
(p+ 1)-th row-sum of C”. By Lemma 4.9.1 and Theorem 4.7.1, H(D)[[p]|i] =

C"[[p]li] and s; = 0, a contradiction. So Gy is a complete bipartite graph and
so is Gp. O

5.4 Cubic bounds

The following are upper bounds of p(Gp) which is a zero of a cubic polynomial.

Theorem 5.4.1. Given a decreasing sequence D = (dy, ds, ..., d,) of positive

integers and 1 < s < p—1, let \ be the largest zero of the following polynomial

2 —rz +Zdzsz di—ds)+d, Z —(ri—74))|z—dp Z (d;i—ds) Z —(ri—74)),

i=s i=1
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where r; is the i-th row sum of H(D) and
. (s—1)d;i+ (p—s)ds ifi<s—1;
(p—1)d; if s <i<p.
Then
p(Gp) < 2y
Proof. Let Il = {{1,...,s = 1},{s,...,p — 1},{p}} and C" = (¢};), where

ds, ifir<s—lands<j<p-—1;
cii = d;, ifj<s—lors<iAnj<p-—1,
ri — T, lfj:p

That is,
& d dy | dy d, dy | -7
dy  d dy | dy d dy | ra—7s
ds—l ds—l ce ds—l ds dS e ds Tel — 7:3—1
C// = dS ds oo ds ds ds e ds ry — fs
dop1 dsp1 -+ dopr [ doyr dopr -0 dopr | Top1 — T
dp-1 dp1 -+ dpoy |dpr dpr 0 dpey | Ty —Tpon
dp dp ... dp dp dp .. dp dp

Then (H(D),C") satisfies the assumption in Theorem 4.7.1 for ¢ = p and

p(Gp) = v H(D) < \/p(C")

by Theorem 4.7.1. Note that C"T has the equitable quotient matrix IT1(C”)
with respect to partition IT = {{1,...,s — 1}, {s,...,p — 1}, {p}}, where

T
Sld (s—1)dy S0 (i — 1)
LC) = Srid Setdy Sim—w) |
dp dp dp

73



which has characteristic polynomial

s— p—1
-z —l—Zd Zd —dg)+dy, Z —(ri—73))]x—d, Zd —dy) Z —(ri—74))-

=S =1
By Corollary 2.1.9, p(C") = p(II(C"")) and the conclusion follows. O
Lemma 5.4.2. Recall the symbols in Theorem 5.4.1, we have the following.
s—1 p—1 s—1
() > (ditFi—r)= > (di—d)+(s=1)D (di—d)+ > (di—dp),
i=1 1<i<j<s—1 i=s i=1

p—1 p—1
(1) Z(dﬂrﬁ—ﬂ‘) = Z (di —d;) = Z (di—dj)+2(d
i=s s<i<j<p s<i<j<p—1 i=s

Proof. Tf i < s—1, then

di + fz — T
p
= (di+ (s — Ddi + (p— s)dy) — (id; + Y _ d)
j=i+1
s—1 p—1
= Y (di—d;)+ > (di—dj) + (di — dp)
j=i+1 j=s
and
s—1 p—1 s—1
D ditii—r)= > (di—d)+(s—=1)> (ds—di)+ > (di—d,).
i=1 1<i<j<s—1 i=s i=1
If s<i<p-—1, then
di + 77@ —T;
p
= (di+(p—Dd) — (id; + > d;)
j=i+1
p
= Z (d; dj)
j=i+1
and
p—1 p—1
Sditii—r)= Y (di—dj)= > (di—d)+> (di—dp).
i=s s<i<j<p s<i<j<p—1 i=s
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5.5 Other partial results

To prove weak BFP conjecture for C(p, g, e), we have to show that for every
Gp € C(p,q,e)\Co(p, q,e), there is a G* € Cy(p, q, e) such that p(Gp) < p(G?).
Let D = (dy,ds,...,d,) (we say d, = 0 if the length of D is less then p).
If d, = 0, then Gp € C(p — 1,¢q,¢) \ Co(p — 1,q,¢). We replace p by p — 1

and prove it by induction on p. So we assume d, > 1. Let e = Y7 d;

1=

and e = (p—1)¢ + m with 1 < m < p—1. If d, > m, then there exists
G* € Co(p,q,e) such that p(Gp) < p(G*) by Lemma 5.2.2. So we assume

d, < m. That is, in this section, we assume

(i) D = (dy,ds,...,d,) is a decreasing sequence of positive integers and

Gp € C(p,q,e) \ Co(p; g; €),
(i) e=(p—1)¢+m, 1<m<p—1,¢ <gq,
(i) 1 <d, < m.
Let
(iv) p=p—1,¢ = Zigp—lzdi<q’(q/ —d;).

Note that G(e,p,q') = G(e,p — 1,¢') € Co(p,q,e). Similarly, if m < ¢/,
G(e7p7 m) € CO(p7q7€>‘

Proposition 5.5.1.
p*(Gle,p.q) > pd
and p*(G(e, p,q')) is the largest zero of

2* —ex +m(p—m)q.

Ifm < ¢, then
p*(G(e,p,m)) > pg’
and p*(G(e,p,m)) is the largest zero of

2 —ex +m(qd — m)p.
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Proof. We have
p*(Gle,p,q))
_ et/ flend)

2
e++/e2—am(p—m)q’
2
et/ (g’ +m)2—4m(p—m)q’
2
 ame G R

2

> pq
and p?(G(e,p,q')) is the largest zero of
2 —ex +m(p—m)q.
If m < ¢/, the proof is similar. O
The following are some partial results.

Lemma 5.5.2. If ¢ < d,, then G(e,p — 1,¢') € Co(p,q,e) and p(G) <
p(G(e,p —1,4)).

Proof. Tt’s easy to see G(e,p—1,¢") € Co(p, q, €) under the assumptions. Since

e¢ < d,, we have
Z(di—q’)gm—dp—i—dp:m

i:d>q’
and d,1 < ¢ If dyyq < ¢, then

m

> (di—dpi) > di
=1 i=m+1
>m - (¢'(p—m) +d, — €) (5.5.1)

>mq'(p—m) = fle,;p—1,4).

If the equality in (5.5.1) holds, then D has at least three different values. By
Lemma 3.1.1, p(Gp) < p(G(e,p — 1,¢")).

Now assume d,,,+1 = ¢’. We have

q
Z d;:m—dp—i—ecgmgdfl,,

i=q'+1
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where D" = (dy,d, . ..,d,,) is the degree sequence of the other part of Gp.

Let D' = (d,,d},. .. g Dy i1 d;). By Lemma 5.3.1,

p(Gp) = p(Gp) < p(Gz)-
So we assume Gp = G5. That is,
di=dy ="+ = dm—cl]g—i-eC - q, + 17 dm—dp+ec+1 == dm+1 - q/-

Without lose of generality, let p < ¢'. If not, we use the graph Gp instead of
Gp.
Let s =m+1, g(z) = 2° — ex? + Ax — B and \ be the largest zero of g(z),

where
s— p—1

A=D di Y (di=di) +dy Yy (di = (ri = 7)),

i=1 i=1
p—1

B=d,Yy (di—dy) (di— (ri— 7).

i=1 =5

By Theorem 5.4.1, we have p(Gp) < A. By Lemma 5.4.2,

p—1 m p—1
i=m+1 i=1 i=1
p—1 m
=Y di- Y (di—dpr) +dy > (di—dy)
i=m+1 i=1 1<i<j<m
p—1 p—1
tmdy Y (dper —di) +dp Y (di = dy) +dy Y (di—dy)
i=m+1 i=1 m+1<i<j<p
and
m p—1
B=dy) (di—dm)( > (di—dj)+ Y (di—dp)).
i=1 m+1<i<j<p—1 i=m+1
Claim that

(1) A— f(e;p—1,¢') > d,p and
(2) B < d,mpq'.
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(1) We have

Z d; - Z - m+1 (q,(ﬁ - m) - €C)<m - dp + 60)7
i=m-+1 =1
dy > (di=d)=0,dy, Y (di—dj)>edy,
1<i<j<m mA1<i<j<p
p—1
md, Y (dmsr — di) = e“dym,
i=m+1
p—1
dp (q_d)ﬁ—f_m_dp)

~.
—_

Then
A > (¢ (p—m)—e)m—d,+e)+edym+dy((¢ —dp)p+m—dy)+ed,
= (m+e°—dy)pq —mq'(m — d, + €°) — e“(m — d,, + €°) + d,pq’
—d>p + dp(m — dp, + €°) + e“dym
= (m+ ¢°)pq’ —m?*q + mq'(d, —€c>+(d —ec)(m—dp—l—e) a2p + e“dym
> mpq —m*q' +e“pg’ +mq'(d, — e°) —
>m(p—m)q¢ +e‘mq +mg'(d, —e°) —
= fle;p—1,¢) + dymq' — d2p
> fle,p—1,¢') + dpp(m — dy)
> f(eap - 1,q/) + dpﬁ-
(2) We have

m

Z(dz — dm+1) =m — dp + ec,

i=1

Yo (di—d)<F-m=2) > (dny—dy) =€ (F-m—2),

m41<i<j<p—1 m+1<j<p—1
p—1
Z (di —dp) = (p—m)(q' —dp) — €.
i=m-+1
Then

B <dy(m—d,+e)(e(p—m—2)+ (p—m)(¢ —dp) — €)
<d,(m —d, +e°)(p —m)(q — dp + €)
< d,mpq'.

78



Now we have (1)(2). Therefore, for x > p?(G(e,p — 1,¢)),

g(z) = z(2® — ex + m(p —m)q') + (A —m(p —m)q)z — B

>0+ d,p-pq —dympq >0
by Proposition 5.5.1. So
p(Gp) <A < p(Gle,p — 1,4)).
O
Lemma 5.5.3. If m < ¢ and d, > %/, then p(Gp) < p(G(e,p,m)) €
CO(p7Q7 6).
Proof. Note that
f(67pa dp) —f(e,p, m) > dpﬁ(q/_dp) _mﬁ(q,_m) = ﬁ(dp_m)(q/_m_dp) >0
since d, —m <0and ¢ —m—d, <¢ —(d,+1)—d, <—1. So f(e,p,d,) >
f(e,p,m) and
ple,p,dp) < ¢(e,p,dy) < @€, p,m) = ple,p,m).
O

Lemma 5.5.4. Suppose e > d, and dpy1 < ¢'. Let s < m+1 be the least
number such that dy < ¢'. Then we have the following.

(i) If ¢(p—s+1) +dy— e = m, then p(Gp) < G(e,p—1,¢) € Co(p, ¢, €).
(i) If ¢ (p—s+1)+d,—e® < ¢, then p(Gp) < p(Gp) and G € Cle,p—1,q),
whereD: (dl,dg,...,ds_l, f:st)
Proof. (i) Note that

s—1

> (d; —d) Zd

>(m—d,+e)qd(p—s+1)+d, —e) (5.5.2)
g (5 — 5+ 1) + (€ — d)(d (5 — 5+ 1)+ dy — ¢ — m)
> (5 —m) + (¢ — dp)(g' (5 — 5+ 1) + dp — & — m)

>mdq (p—m) = fle;p—1,4).
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If the equality in (5.5.2) holds, then ds = ¢’ and D has at least three different
values. By Lemma 3.1.1, p(Gp) < p(G(e,p — 1,¢')). Clearly G(e,p — 1,¢') €

CO(pa q, 6).
(ii) Note that ¢/(p—s+1)+d,—e® = >"__d;. Then Gp € C(e,p—1,¢) and
G p is not a complete bipartite graph. By Lemma 5.3.1, p(Gp) < p(Gp) O
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Chapter 6
Conclusion

The following is a summary of this dissertation.

1. The extremal non-complete bipartite graph which has the maximum

spectral radius with e edges

« We show that bipartite graphs with e edges of the form K, ,, K o
or K;C,g,, have larger spectral radii than the others in Corollary
3.3.3, and characterize the value p(G) of a bipartite graph G with
e edges in Figure 3.1.

o We also use the above properties to characterize the extremal non-
complete bipartite graph which has the maximum spectral radius

with e edges in Theorem 3.4.1.

e When e is even and neither ¢ — 1 nor e + 1 is a prime, the two

graphs K, , and K;,,q,, are candidates to be extremal graph. We

q
determine which graph has larger spectral radius for e < 100 in

Section 3.5.

2. The extremal bipartite graph which has the maximum spectral radius

with e edges and bi-order (p, q)

» We prove BFP conjecture for K(p, q,e) whene € {st—1,st'+1]|s <
p,t <q,t’' <q—1} in Theorem 3.6.1.
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o We give counter examples to BFP conjecture for K(p,q,e) when

g >p+ 2 and p > 3 in Proposition 3.6.2.

« We prove weak BFP conjecture for C(p, ¢, e) in the cases e > pg—q
with p < ¢ or p < 5 in Theorem 5.2.3 and Theorem 5.2.4, respec-
tively.

o Weak BFP conjecture for C(p,q,e) is still open. To prove weak
BFP conjecture for C(p,q,e) in general, we use Lemma 5.3.1 and
Lemma 5.4.2 as tools and get some partial results. We show that if
a bipartite graph G € C(p, ¢, €) satisfies some condition, then there
exists G € Cy(p, ¢, €) such that p(G) < p(G*) with equality only if
G% € Cy(p, ¢, €) in Lemma 5.5.2, Lemma 5.5.3 and Lemma 5.5.4.

3. The method to find spectral bounds of a nonnegative matrix

e The most important theorem are Theorem 4.2.3 and Theorem 4.2.4.
They are the most general results in Chapter 4 but it is not so easy

to use them.

e From Theorem 4.2.3, Theorem 4.2.4 and some properties in Section
4.3, Section 4.4 and Section 4.6, we get Theorem 4.7.1 and Theorem
4.7.5 which are not so general but more convenient than the first

two.

o We can use above theorems to get many spectral bounds, for in-
stance Theorem 4.0.1, Theorem 4.5.2, Theorem 4.7.3, Theorem
4.8.1, Theorem 5.1.1 and Theorem 5.4.1.

e In Section 4.9, we give a lemma to help us to determine the set K :=
{blvy > v}} without computing the eigenvector v” = (v, ..., v))T.

This is used on characterising when the inequality in Theorem 4.7.1

or Theorem 4.7.5 is equality.

e Section 4.10 is about how to choose a C” in Theorem 4.7.1 or The-
orem 4.7.5 to get a better spectral bound.
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