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Spectral Radius of a Bipartite Graph

Student Yen-Jen Cheng Advisor Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

The spectral radius of a square matrix C is the largest magnitude of an
eigenvalue of C and the spectral radius of a graph G is the spectral radius
of the adjacency matrix of G. Let G be a bipartite graph with e edges with-
out isolated vertices. It was known that the spectral radius of G is at most
the square root of e, and the upper bound is attained if and only if G is a
complete bipartite graph. Our first result extends this result to find the maxi-
mum spectral radius of a non-complete bipartite graph with e edges under the
assumption that (e− 1, e+ 1) is not a pair of twin primes.

Bhattacharya, Friedland and Peled conjectured that a non-complete bipar-
tite graph which has the maximum spectral radius with given e and bi-order
(p, q) is obtained from a complete bipartite graph by deleting edges incident
to a common vertex. We find counter examples of this conjecture. Under the
additional assumption e ≥ pq−q or under the assumption p ≤ 5, where p ≤ q,
we prove a weaker version of the above conjecture that drops the non-complete
assumption of the bipartite graph.

To handle the problem above, we study the spectral radius of a nonnegative
matrix C which takes the square of the adjacency matrix of G as a special case.
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For a general nonnegative matrix C, we give a new approach to obtain lower
bounds and upper bounds of the spectral radius of C which are the spectral
radii of matrices obtained by suitably reweighting the entries in a row of C
keeping the row-sum unchanged. This method helps us to find many spectral
bounds of C easily.

Keywords: bipartite graph, adjacency matrix, nonnegative matrix, spectral
radius.
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Chapter 1

Introduction

For a square matrix C, the spectral radius of C is

ρ(C) = max{|λ| | λ is an eigenvalue of C},

where |λ| is the magnitude of complex number λ. Given an undirected graph
G, the adjacency matrix of G is the square matrix A indexed by its vertices,
and

Aij =

{
1, if i is adjacent to j;
0, otherwise.

The spectral radius of G is the spectral radius of its adjacency matrix A.

1.1 Spectral radius of a bipartite graph
The problem of finding the maximum spectral radius of a graph with e edges
was initially posed by Brualdi and Hoffman [1, p.438] in 1976. They later gave
the following conjecture [5],

Conjecture 1.1.1 (BH Conjecture). The maximum spectral radius of a graph
with e edges is attained by taking a complete graph and adding a new vertex
which is adjacent to a corresponding number of vertices in the complete graph,
probably together with some isolated vertices.

The above conjecture was proved by Rowlinson [22] in 1988. In 2008,
Bhattacharya, Friedland and Peled [2] proved that if G is a bipartite graph
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with e edges, then ρ(G) ≤
√
e with equality if and only if G is a complete

bipartite graph, possibly together with some isolated vertices. Moreover, they
gave a conjecture as a bipartite graphs analogue of the BH conjecture.

The following comes from [2].
”We assume here the normalization 1 ≤ p ≤ q. Let e be a positive integer

satisfying e ≤ pq. Denote by K(p, q, e) the family of subgraphs of Kp,q with
e edges and with no isolated vertices and which are not complete bipartite
graphs.
Problem A. Let 2 ≤ p ≤ q, 1 < e < pq be integers. Characterize the graphs
which solve the maximal problem

max
G∈K(p,q,e)

λmax(G). (*)

We conjecture below an analog of the Brualdi-Hoffman conjecture for non-
bipartite graphs, which was .......
Conjecture B. Under the assumptions of Problem A an extremal graph that
solves the maximal problem (*) is obtained from a complete bipartite graph
by adding one vertex and a corresponding number of edges.”

Let K0(p, q, e) denote the subset of K(p, q, e) such that each graph in the
subset is obtained from a complete bipartite graph by adding one vertex and
a corresponding number of edges. Note that K0(p, q, e) is also the subset
of K(p, q, e) such that each graph in the subset is obtained from a complete
bipartite graph by deleting edges incident on a common vertex. Noting that
K0(p, p, p

2 − p) = ∅, We restate Conjecture B with the additional assumption
that K0(p, q, e) ̸= ∅,:

Conjecture 1.1.2 (BFP Conjecture for K(p, q, e)). If G ∈ K(p, q, e) such that
ρ(G) = maxH∈K(p,q,e) ρ(H) and K0(p, q, e) ̸= ∅, then G ∈ K0(p, q, e).

In paper [2], Bhattacharya, Friedland and Peled also proved BFP Conjec-
ture for K(p, q, e) with e = st− 1 and 2 ≤ s ≤ p ≤ t ≤ q ≤ t+ (t− 1)/(s− 1).
As stated clearly above, the complete graphs are excluded in their consider-
ation of BFP Conjecture for K(p, q, e). One might observe from the special
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case K(5, 10, 35) of their result to know that they exclude the 35-edge sub-
graph K5,7 of K5,10 in consideration and choose the 35-edge subgraph of K5,10

obtained from K4,9 by deleting an edge.
In Chapter 3, we will extend the above result ρ(G) ≤

√
e of [2] and deter-

mine the e-edge bipartite graphs G with√√√√e+
√

e2 − 4(e− 1−
√
e− 1)

2
≤ ρ(G) <

√
e.

As a byproduct, we prove BFP Conjecture for K(p, q, e) when e ∈ {st−1, st′+

1 | s ≤ p, t ≤ q, t′ ≤ q − 1} in Theorem 3.6.1.
In 2010, Chen, Fu, Kim, Stehr and Watts [6] proved BFP Conjecture for

K(p, q, pq−2). In 2015, Liu and Weng [19] proved BFP Conjecture for K(p, q, e)

under assumption pq − p < e < pq. Note that if pq − p < e < pq, there are
no e-edge complete subgraphs of Kp,q. In Proposition 3.6.2, we will provide
a class of counter examples that disproves BFP Conjecture for K(p, q, e) with
e = p(q − 1), p ≥ 3 and q > p+ 2.

Since complete graphs are considered in BH Conjecture, one might expect
that a bipartite graphs analogue of the BH conjecture also includes complete
bipartite graphs in considering. For 1 ≤ e ≤ pq, let C(p, q, e) be the class of
all subgraphs of Kp,q with e edges and no isolated vertices (we do not assume
p ≤ q), and C0(p, q, e) be the subset of C(p, q, e) such that each graph in the
subset is a complete bipartite graph or a graph obtained from a complete
bipartite graph by adding one vertex and a corresponding number of edges.
The following is a weaker version of BFP Conjecture.

Conjecture 1.1.3 (Weak BFP Conjecture for C(p, q, e).). If G ∈ C(p, q, e)
such that ρ(G) = maxH∈C(p,q,e) ρ(H), then G ∈ C0(p, q, e).

Note that C0(p, q, e) ̸= ∅ if e ≤ pq. Indeed, since e = sq + r for some
nonnegative integers s, r such that s ≤ p, r < q, the graph inK(p, q, e) obtained
from Ks,q by adding a vertex in the part of q vertices and a corresponding
number of edges is in K0(p, q, e). If BFP Conjecture for K(p, q, e) holds, then
weak BFP Conjecture for C(p, q, e) holds with the same p, q, e. We prove weak
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BFP Conjecture for C(p, q, e) when p ≤ 5 in Theorem 3.7.1 and Theorem 5.2.4,
and when e ≥ pq − q in Theorem 5.2.3.

1.2 The spectral radius of a nonnegative ma-
trix

Although we are mainly interested in binary symmetric matrices, our results
are extended to nonnegative matrices, not necessary symmetric. In Chapter
4, we give a systematic method to get upper bounds and lower bounds of the
spectral radius of a nonnegative matrix. This method will be used in Chapter
5.

For real matrices C = (cij), C ′ = (c′ij) of the same size, if cij ≤ c′ij for all
i,j, then we say C ≤ C ′. A column vector v′ = (v′1, v

′
2, . . . , v

′
n)

T is called rooted
if v′j ≥ v′n ≥ 0 for 1 ≤ j ≤ n − 1. For an n × n matrix C ′, we use C ′[−|n)
to denote the first n × (n − 1) submatrix of C ′, and C ′ is called rooted if the
columns in C ′[−|n) and the row-sum vector of C ′ are all rooted. The main
theorem of Chapter 4 is the following.
Theorem C. Let C = (cij) be an n×n nonnegative matrix and C ′ = (cij) be
an n× n rooted matrix. Assume that

(i) C[−|n) ≤ C ′[−|n) and (r1, r2, . . . , rn)
T ≤ (r′1, r

′
2, . . . , r

′
n)

T , where (r1, r2,

. . . , rn)
T is the row-sum vector of C and (r′1, r

′
2, . . . , r

′
n)

T is the row-sum
vector of C ′;

(ii) C ′ has a positive rooted eigenvector v′ = (v′1, v
′
2, . . . , v

′
n)

T for λ′ for some
λ′ ∈ R;

Then the spectral radius ρ(C ′) of C ′ is an upper bound of ρ(C).
We use Theorem C to extend a classical result of Richard Stanley in 1987

[25] for a symmetric (0, 1)-matrix to the following theorem for a general non-
negative matrix, which is also appeared in Theorem 4.5.2 of Chapter 4.

Theorem D. Let C = (cij) be an n×n nonnegative matrix. Let m be the
sum of entries and d (resp. f) be any number which is larger than or equal

4



to the largest diagonal element (resp. the largest off-diagonal element) of M .
Then

ρ(C) ≤
d− f +

√
(d− f)2 + 4mf

2
.

Moreover, if mf > 0 then the above equality holds if and only if m = k(k −
1)f + kd and PCP T has the form(

fJk + (d− f)Ik 0

0 On−k

)
= (fJk + (d− f)Ik)⊕On−k

for some permutation matrix P and some nonnegative integer k.
We apply the dual version of Theorem C to prove the following theorem,

appeared in Corollary 4.8.2.
Theorem E. Let C = (cij) be an n × n (0, 1) matrix with row-sums

r1 ≥ r2 ≥ · · · ≥ rn > 0, and choose t ≥ n− rn + 1 and t ≤ n. Then

ρ(C) ≥ rt +
√

r2t − 4(n− t)(rt − rn)

2
.

Moreover, if C is irreducible, then the equality holds if and only if r1 = rn or

(a) r1 = rt and rt+1 = rn, and

(b)
∑

j∈[t] cij = rt − (n− t) for all i ∈ [t], and∑
j∈[t] cij = rn − (n− t) for all t < i ≤ n, where [t] := {1, 2, . . . , t}.

For a decreasing sequence D = (d1, d2, . . . , dp) of positive integers, set

ri =

p∑
k=1

dk + (i− 1)di −
i−1∑
k=1

dk.

The following is an application of Theorem C, appeared in Theorem 5.1.1.
Theorem F. Let G be a bipartite graph and D = (d1, d2, . . . , dp) be the

degree sequence of one part of G in decreasing order. Then for 1 ≤ ℓ ≤ p,

ρ(G) ≤

√√√√r1 +
√

(2rℓ − r1)2 + 4dℓ
∑ℓ

i=1(ri − rℓ)

2
,

with equality if and only if G = GD, d1 = dt and dt+1 = dp for some 1 ≤ t ≤
ℓ−1, where GD is the bipartite graph with degree sequence D of one part.

5



Chapter 2

Preliminaries

In this chapter, we shall provide the notations and properties of matrices and
graphs which will be adopted in this thesis.

2.1 Matrices
In this section, we introduce matrix notations.

2.1.1 Submatrices
For a matrix C = (cij) and subsets α, β of row indices and column indices
respectively, we use C[α|β] to denote the submatrix of C with size |α| × |β|
that has entries cij for i ∈ α and j ∈ β, C[α|β) := C[α|β], where β is the
complement of β in the set of column indices, and similarly, for the definitions
of C(α|β] and C(α|β). For ℓ ∈ N, [ℓ] := {1, 2, . . . , ℓ}, symbol − is the complete
set of indices, and we use i to denote the singleton subset {i} to reduce the
double use of parentheses. For example of the n × n matrix C, C[−|n) =

C[[n]|[n− 1]] is the n× (n− 1) submatrix of C obtained by deleting the last

6



column of C. The following are more examples. Let

C =


0 1 1 1

1 0 0 1

1 0 0 0

1 1 0 0

 , C ′ =


0 1 1 1

1 0 1 0

1 1 0 −1

1 1 1 −1

 .

Then

C[−|[3]] = C[−|4) =


0 1 1

1 0 0

1 0 0

1 1 0

 , C ′[−|4) =


0 1 1

1 0 1

1 1 0

1 1 1

 ,

C[−|4] = (1, 1, 0, 0)T , C ′[−|4] = (1, 0,−1,−1)T , C[4|−] = (1 1 0 0) and
C ′[4|4) = (1 1 1), where MT denotes the transpose of matrix M .

2.1.2 Perron-Frobenius theorem
The following is the famous Perron-Frobenius theorem, which plays an impor-
tant role in Chapter 4.

Theorem 2.1.1 ([3, Theorem 2.2.1], [16, Corollary 8.1.29, Theorem 8.3.2]).
If C is a nonnegative square matrix, then the following (i)-(iii) hold.

(i) The spectral radius ρ(C) is an eigenvalue of C with a corresponding non-
negative right eigenvector and a corresponding nonnegative left eigenvec-
tor.

(ii) If there exists a column vector v > 0 and a nonnegative number λ such
that Cv ≤ λv, then ρ(C) ≤ λ.

(iii) If there exists a column vector v ≥ 0, v ̸= 0 and a nonnegative number
λ such that Cv ≥ λv, then ρ(C) ≥ λ.

7



Moreover, if in addition C is irreducible, then the eigenvalue ρ(C) in (i)
has algebraic multiplicity 1 and its corresponding left eigenvector and right
eigenvector can be chosen to be positive, and any nonnegative left or right
eigenvector of C only corresponds to the eigenvalue ρ(C).

Unless specified otherwise, by an eigenvector we mean a right eigenvector.
The nonnegative eigenvectors in (i) are called Perron eigenvectors. The fol-
lowing two lemmas are well-known consequences of Theorem 2.1.1. We shall
provide their proofs since they motivate our proofs of results.

Lemma 2.1.2 ([3, Theorem 2.2.1]). If 0 ≤ C ≤ C ′ are square matrices, then
ρ(C) ≤ ρ(C ′). Moreover, if C ′ is irreducible, then ρ(C ′) = ρ(C) if and only if
C ′ = C.

Proof. Let v be a nonnegative eigenvector of C for ρ(C). From the assumption,
C ′v ≥ Cv = ρ(C)v. By Theorem 2.1.1(iii) with (C, λ) = (C ′, ρ(C)), we have
ρ(C ′) ≥ ρ(C). Clearly C ′ = C implies ρ(C ′) = ρ(C). If ρ(C ′) = ρ(C) and C ′ is
irreducible, then ρ(C)v′Tv = ρ(C ′)v′Tv = v′TC ′v ≥ v′TCv = ρ(C)v′Tv, where
v′T is a positive left eigenvector of C ′ for ρ(C ′). Hence the above inequality is
the equality v′TC ′v = v′TCv. Assume by way of contradiction that C ′ ̸= C.
Then C ′ − C is a nonzero nonnegative matrix. Hence v′T (C ′ − C)v > 0 since
v′ and v are positive, a contradiction.

In Lemma 2.1.2, the matrix C ′ is a matrix realization of the upper bound
ρ(C ′) of ρ(C) and the matrix C in Lemma 2.1.2 is a matrix realization of the
lower bound ρ(C) of ρ(C ′). Hence the pair (ρ(C), ρ(C ′)) is a pair of reciprocal
bounds. We shall provide other matrix realizations and reciprocal bounds in
Chapter 4.

Lemma 2.1.3 ([16, Theorem 8.1.22]). If an n × n matrix C = (cij) is non-
negative with row-sum vector (r1, r2, . . . , rn)

T , where ri =
∑

1≤j≤n cij and
r1 ≥ ri ≥ rn for 1 ≤ i ≤ n, then

rn ≤ ρ(C) ≤ r1.

8



Moreover, if C is irreducible, then ρ(C) = r1 (resp. ρ(C) = rn) if and only if
C has constant row-sum.

We provide a proof of the following generalized version of Lemma 2.1.3,
which is due to M. N. Ellingham and Xiaoya Zha [11].

Lemma 2.1.4 ([11]). If an n×n matrix C with row-sum vector (r1, r2, . . . , rn)T ,
where r1 ≥ ri ≥ rn for 1 ≤ i ≤ n, has a nonnegative left eigenvector
vT = (v1, v2, . . . , vn) for θ, then

rn ≤ θ ≤ r1.

Moreover, θ = r1 (resp. θ = rn) if and only if ri = r1 (resp. ri = rn) for the
indices i with vi ̸= 0. In particular, if vT is positive, θ = r1 (resp. θ = rn) if
and only if C has constant row-sum.

Proof. Without loss of generality, let
∑n

i=1 vi = 1 and u be the all-one column
vector. Then

θ = θvTu = vTCu =
n∑

i=1

viri.

So θ is a convex combination of those ri with indices i satisfying 1 ≤ i ≤ n

and vi > 0, and the lemma follows.

2.1.3 Quotient matrix
Define [n] = {1, 2, . . . , n}. For a partition Π = {π1, π2, . . . , πℓ} of [n], the ℓ× ℓ

matrix Π(C) := (πab), where πab equals the average row-sum of the submatrix
C[πa|πb] of C, is called the quotient matrix of C with respect to Π. In matrix
notation,

Π(C) = (STS)−1STCS, (2.1.1)

where S = (sjb) is the n× ℓ characteristic matrix of Π, i.e.,

sjb =

{
1, if j ∈ πb;
0, otherwise

9



for 1 ≤ j ≤ n and 1 ≤ b ≤ ℓ. If

πab =
∑
j∈πb

cij (1 ≤ a, b ≤ ℓ)

for all i ∈ πa, then Π(C) = (πab) is called the equitable quotient matrix of C ′

with respect to Π. Note that Π(C) is an equitable quotient matrix if and only
if

SΠ(C) = CS. (2.1.2)

Recall that a column vector v′ = (v′1, v
′
2, . . . , v

′
n)

T is called rooted if v′j ≥ v′n ≥ 0

for 1 ≤ j ≤ n− 1.

Lemma 2.1.5 ([3, Lemma 2.3.1]). If an n × n matrix C has an equitable
quotient matrix Π(C) with respect to partition Π = {π1, π2, . . . , πℓ} of [n] with
characteristic matrix S, and λ is an eigenvalue of Π(C) with eigenvector u,
then λ is an eigenvalue of C with eigenvector Su. Moreover, if u is rooted and
n ∈ πℓ, then Su is rooted.

Proof. From (2.1.2), CSu = SΠ(C)u = λSu.

2.1.4 Matrices C ′ with ρ(C ′) = ρ(Π(C ′))

Some special matrices whose spectral radii are preserved by equitable quotient
operation are given in this subsection. One example is the class of nonnegative
matrices.

Lemma 2.1.6. If Π = {π1, . . . , πℓ} is a partition of [n] and C ′ = (c′ij) is an
n × n matrix satisfying c′ij = c′kj for all i, k in the same part πa of Π and
j ∈ [n], then C ′ and its quotient matrix Π(C ′) with respect to Π have the same
set of nonzero eigenvalues. In particular, ρ(C ′) = ρ(Π(C ′)).

Proof. From the construction of C ′, Π(C ′) is clearly an equitable quotient
matrix of C ′. Let λ′ be a nonzero eigenvalue of C ′ with eigenvector v′ =

(v′1, . . . , v
′
n)

T . Then v′i = (Cv′)i/λ
′ = (Cv′)k/λ

′ = v′k for all i, k in the same

10



part πa of Π. Let u′
a = v′i with any choice of i ∈ πa. Then u′ := (u′

1, . . . , u
′
ℓ) ̸= 0,

and Π(C ′)u′ = λ′u′. From this and Lemma 2.1.5, we know that C ′ and Π(C ′)

have the same set of nonzero eigenvalues, and thus ρ(C ′) = ρ(Π(C ′)).

Lemma 2.1.6 gives a kind of matrices C ′ whose spectral radius remaining
unchanged under some equitable quotient operation. The following shows
that the equitable quotient matrix of a nonnegative matrix with respect to
any partition preserves the spectral radius.

Proposition 2.1.7. If an n×n nonnegative matrix C ′ has an equitable quotient
matrix Π(C ′) with respect to a partition Π of [n], then ρ(C ′) = ρ(Π(C ′)).

Proof. For ϵ > 0, we consider the matrix C ′′ = C ′ + ϵJ , where J is the all-
one matrix. Then C ′′ is irreducible with the same equitable partition of C ′.
Moreover the equitable quotient matrix Π(C ′′) of C ′′ is also irreducible since
Π(C ′′) is positive. By Theorem 2.1.1, Π(C ′′) has the eigenvalue ρ(Π(C ′′)) with
a corresponding positive eigenvector v. Then C ′′ has eigenvalue ρ(Π(C ′′)) with
a positive eigenvector Sv by Lemma 2.1.5. Therefore ρ(C ′′) = ρ(Π(C ′′)) by
the irreducible case of Theorem 2.1.1. This concludes that

ρ(C ′) = lim
ϵ→0+

ρ(C ′ + ϵJ) = lim
ϵ→0+

ρ(Π(C ′ + ϵJ)) = ρ(Π(C ′))

by the continuous property of complex eigenvalues [21].

Godsil [12, Corollary 5.2.3] gave another proof of Proposition 2.1.7. We
follow his proof for the general case.

Lemma 2.1.8 ([12]). Let C ′ be an n×n matrix which has an equitable quotient
matrix Π(C ′) with respect to a partition Π of [n] and has a left eigenvector vT

for eigenvalue λ. If vTS ̸= 0, then vTS is a left eigenvector of Π(C ′) for λ,
where S is the characteristic matrix of Π.

Proof. From (2.1.2), we have SΠ(C ′) = C ′S. Then

vTSΠ(C ′) = vTC ′S = λvTS.

So vTS is an left eigenvector of Π(C ′) for λ.

11



For a square matrix with a real eigenvalue, let ρr(C ′) denote the maximum
real eigenvalue of C ′.

Corollary 2.1.9. Let C ′ be an n×n matrix with a nonnegative left eigenvector
for ρr(C

′). If C ′ has an equitable quotient matrix Π(C ′) with respect to a
partition Π of [n], then ρr(C

′) = ρr(Π(C
′)).

Proof. Considering their right eigenvectors and applying Lemma 2.1.5, we have
ρr(C

′) ≥ ρr(Π(C
′)). If vT is a nonnegative left eigenvector of C ′ for ρr(C

′),
then vTS ̸= 0, where S is the characteristic matrix of Π. Hence vTS is a
left eigenvector of Π(C ′) for ρr(C

′) by Lemma 2.1.8. Since ρr(C
′) is also an

eigenvalue of Π(C ′), it follows that ρr(C ′) = ρr(Π(C
′)).

Proposition 2.1.10. For a partition Π of [n], if n × n matrices C ′ and C ′′

have equitable quotient matrices Π(C ′) and Π(C ′′) with respect to Π respectively,
then C ′C ′′ has equitable quotient matrix Π(C ′C ′′) with respect to Π and

Π(C ′C ′′) = Π(C ′)Π(C ′′).

In particular, if C ′−1 exists and C ′ has equitable quotient matrix Π(C ′), then
Π(C ′)−1 = Π(C ′−1).

Proof. From (2.1.2), we have SΠ(C ′) = C ′S and SΠ(C ′′) = C ′′S, where S is
the characteristic matrix of Π. By (2.1.1),

Π(C ′)Π(C ′′) = (STS)−1STC ′SΠ(C ′′) = (STS)−1STC ′C ′′S = Π(CC ′).

Hence
C ′C ′′S = C ′SΠ(C ′′) = SΠ(C ′)Π(C ′′) = SΠ(C ′C ′′).

By (2.1.2) again, C ′C ′′ has the equitable quotient matrix Π(C ′C ′′) with respect
to Π.

The second part follows from Π(C)Π(C ′−1) = Π(CC ′−1) = Π(In) = Iℓ.

12
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Figure 2.1: K3,4

2.2 Bipartite graphs
A graph G is bipartite if its vertex set can be partitioned into two disjoint sets
X and Y such that every edge of G has one endpoint in X and the other in Y ,
and the pair (|X|, |Y |) is called the bi-order of G. A bipartite graph G with
bipartition X, Y is called a complete bipartite graph if E(G) = X × Y . We
use the notation Kp,q to denote a complete bipartite graph of bi-order (p, q).
See Figure 2.1 for the graph K3,4.

A bipartite graph G is biregular if the each of the vertices in the same part
has the same degree. Let H, H ′ be two bipartite graphs with given ordered
bipartitions V (H) = X

∪
Y and V (H ′) = X ′∪Y ′, where V (H)

∩
V (H ′) = ϕ.

The bipartite sum H + H ′ of H and H ′ (with respect to the given ordered
bipartitions) is the graph obtained from H and H ′ by adding an edge between
x and y for each pair (x, y) ∈ (X × Y ′)

∪
(X ′ × Y ). Let Np,q be the bipartite

graph with bi-order (p, q) without any edges, The graph K3,2 + N2,2 is given
in Figure 2.2.

2.2.1 The bipartite graph GD

Let D = (d1, d2, . . . , dp) be a sequence of nonincreasing positive integers of
length p. Let GD denote the bipartite graph with bipartition X ∪ Y , where
X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq}, with q = d1, and xiyj is an edge
if and only if j ≤ di. The graph G(4,2,2,1,1) is illustrated in Figure 2.3.

Note that D is the degree sequence of the part X in the bipartition X ∪ Y

13
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Figure 2.2: The bipartite sum and an example K3,2 +N2,2
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F (D) =
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1
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Figure 2.3: The graph G(4,2,2,1,1) and the Ferrers diagram F (4, 2, 2, 1, 1)

of GD. As e = d1 + d2 + · · ·+ dp, D is a partition of the number e of edges in
GD. The degree sequence D∗ = (d∗1, d

∗
2, . . . , d

∗
q) of the other part Y forms the

conjugate partition of e, where e = d∗1+d∗2+ · · ·+d∗q and d∗j = |{i | di ≥ j}|. See
[4, Section 8.3] for details. The sequence D will define a Ferrers diagram of
1’s that has p rows with di 1’s in row i for 1 ≤ i ≤ p. For example, the Ferrers
diagram F (D) of the sequence D = (4, 2, 2, 1, 1) is illustrated in Figure 2.4.
One can check that D∗ = (5, 3, 1, 1) in the above D.

According to the order x1, x2, . . . , xp, y1, y2, . . . , yq, the adjacency matrix of

14



GD is of the form

A =

(
Op B(D)

B(D)T Oq

)
, (2.2.1)

where B(D) is the p× q (0,1)-matrix obtained from the Ferrers diagram F (D)

by filling 0’s into the empty cells. We have that

A2 =

(
B(D)B(D)T O

O B(D)TB(D)

)
.

Let H = H(D) := B(D)B(D)T , which is the p× p matrix as follows:

H = (hij) = (min(di, dj)) =



d1 d2 d3 · · · dp

d2 d2 d3 · · · dp

d3 d3 d3 · · · dp
... ... ... . . . ...
dp dp dp · · · dp


. (2.2.2)

For example, if D = (4, 2, 2, 1, 1), then

B(D) =



1 1 1 1

1 1 0 0

1 1 0 0

1 0 0 0

1 0 0 0


, H =



4 2 2 1 1

2 2 2 1 1

2 2 2 1 1

1 1 1 1 1

1 1 1 1 1


.

It is well-known that B(D)B(D)T and B(D)TB(D) have the same nonzero
eigenvalues. Hence

ρ2(GD) = ρ(A2) = ρ(H). (2.2.3)

2.2.2 Spectral upper bounds by D

The graph GD is important in the study of the spectral radius of bipartite
graphs with prescribed degree sequence D of one part of the bipartition. Bhat-
tacharya, Friedland and Peled [2] proved the following lemma.
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Lemma 2.2.1. ([2, Theorem 3.1]) Let G be a bipartite graph without isolated
vertices such that one part in the bipartition of G has degree sequence D =

(d1, . . . , dp). Then ρ(G) ≤ ρ(GD) with equality if and only if G = GD (up to
isomorphism).

The adjacency matrix A(GD) of GD is a matrix realization of the upper
bound of ρ(G) in Lemma 2.2.1. The following lemma is used in the proof of
Lemma 2.2.1 which may be traced back to [23].

Lemma 2.2.2. Let G be a bipartite graph of bi-order (p, q) and (u1, u2,. . .,up;
v1,v2, . . .,vq) be a positive Perron eigenvector of the adjacency matrix of G

according to the bipartition X
∪
Y , where vertices in the part Y of G are

ordered to ensure v1 ≥ v2 ≥ · · · ≥ vq. For 1 ≤ i < j ≤ q, if xkyj is an edge
and xkyi is not an edge in G for some xk ∈ X, then the new bipartite graph G′

with the same vertex set as G obtained by deleting the edge xkyj and adding a
new edge xkyi has spectral radius ρ(G′) ≥ ρ(G).

2.2.3 Spectral upper bounds by D and D′

Chia-an Liu and Chih-wen Weng [19] found the upper bounds of ρ(G) ex-
pressed by degree sequences of two parts of the bipartition of G.

Lemma 2.2.3. ([19]) Let G be a bipartite graph with bipartition X ∪ Y of
orders p and q respectively such that the part X has degree sequence D =

(d1, . . . , dp), and the other part Y has degree sequence D′ = (d′1, d
′
2 . . . , d

′
q),

both in nonincreasing order. For 1 ≤ s ≤ p and 1 ≤ t ≤ q, let Xs,t =

dsd
′
t +
∑s−1

i=1 (di − ds) +
∑t−1

j=1 (d
′
j − d′t), Ys,t =

∑s−1
i=1 (di − ds) ·

∑t−1
j=1 (d

′
j − d′t).

Then

ρ(G) ≤ ϕs,t :=

√√√√Xs,t +
√

X2
s,t − 4Ys,t

2
.

Furthermore, if G is connected then the above equality holds if and only if
there exist nonnegative integers s′ < s and t′ < t, and a biregular graph H of
bipartition orders p− s′ and q − t′ respectively such that G = Ks′,t′ +H.
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It worths mentioning that the graph G = Ks′,t′+H attaining the equality in
Lemma 2.2.3 is not necessary to be GD. The idea of the proof in Lemma 2.2.3
is to apply Lemma 2.1.3 for the spectral radius to matrices that are similar to
the adjacency matrix of G by diagonal matrices with variables on diagonals.
Results using this powerful method can also be found in [7, 9, 10, 15, 17, 18, 24].
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Chapter 3

The largest spectral radius of a
non-complete bipartite graph

Let G be a bipartite graph. There are several extending results of ρ(G) ≤
√
e.

These extending results are scattered in [2, 6, 19]. We give another extending
result here. To illustrate this, we need some notations. For 2 ≤ s ≤ t, let K−

s,t

denote the graph obtained from the complete bipartite graph Ks,t of bi-order
(s, t) by deleting an edge, and K+

s,t denote the graph obtained from Ks,t by
adding a new edge xy, where x is a new vertex and y is a vertex in the part of
order s. Note that K−

2,t+1 = K+
2,t, and K−

s,t and K+
s,t are not complete bipartite

graphs. In Proposition 3.3.2 we shall show that K−
s,t and K+

s,t are the only two
types of e-edge graphs G of order at least 4 satisfying√√√√e+

√
e2 − 4(e− 1−

√
e− 1)

2
≤ ρ(G) <

√
e.

For e ≥ 2, let
ρ(e) := max

p,q
max

G∈K(p,q,e)
ρ(G)

denote the maximal value ρ(G) of a bipartite graph G with e edges which
is not a union of a complete bipartite graph and some isolated vertices. For
the case that (e − 1, e + 1) is not a pair of twin primes, i.e., a pair of primes
with difference two, we will describe the bipartite graph G with e edges such
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that ρ(G) = ρ(e). Indeed, we will show in Theorem 3.4.1 that if e ≥ 3 and
ρ(G) = ρ(e) then G ∈ {K−

s′,t′ , K
+
s′′,t′′}, where s′ and t′ (resp. s′′ and t′′) are

chosen to minimize s subject to 2 ≤ s ≤ t and e = st − 1 (resp. e = st + 1).
The twin prime case is not completely solved because G could be any one
of K−

s′,t′ and K+
s′′,t′′ . Nevertheless, we find that the values of ρ(e) tend to

be smaller than others when (e − 1, e + 1) is a pair of twin primes. Indeed,
this property characterizes a pair of twin primes. See Theorem 3.4.2 for the
detailed description. In Section 3.6.1, we prove BFP Conjecture for K(p, q, e)

when e ∈ {st − 1, st′ + 1 | s ≤ p, t ≤ q, t′ ≤ q − 1}. Our results are the
main tools in [20] for determining if K−

s,t and K+
s,t are determined by their

eigenvalues.

3.1 An upper bound of ρ(GD)

We have learned ρ(G) ≤ ρ(GD) in Lemma 2.2.1 for a bipartite graph G with
one-part degree sequence D. We shall provide an upper bound of GD in this
section.

Applying Lemma 2.2.3 to the graph G = GD for a given sequence D =

(d1, d2,. . ., dp) of nonincreasing positive integers of length p, one immediately
finds that d′j = d∗j and

t−1∑
j=1

(d′j − d′t) =

p∑
i=d′t+1

di,

where (d∗1, d
∗
2, . . . , d

∗
d1
) is the conjugate partition corresponding to D defined

in Section 2.2.1. Moreover, if s is chosen such that ds < ds−1 and t = ds + 1,
then d′t = s − 1 and the corresponding Ferrers diagram F (D) has a blank in
the (s, t) position, so

Xs,t = ds(s− 1) +
s−1∑
i=1

(di − ds) +

p∑
i=s

di = e

and

Ys,t =
s−1∑
i=1

(di − ds) ·
p∑

i=s

di, (3.1.1)
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completely expressed by D. Hence we have the following simpler form of
Lemma 2.2.3.

Lemma 3.1.1. Assume that s is chosen satisfying ds < ds−1 in the sequence
D = (d1, d2, . . . , dp) of positive integers and e = d1 + d2 + · · ·+ dp. Then

ρ(GD) ≤

√√√√e+
√
e2 − 4

∑s−1
i=1 (di − ds) ·

∑p
i=s di

2
,

with equality if and only if D contains exactly two different values.

The following are a few special cases of GD that satisfy the equality in
Lemma 3.1.1.

Example 3.1.2. ([19]) Suppose that 2 ≤ p ≤ q and Ke
p,q (resp. eKp,q) is

the graph obtained from Kp,q by deleting k := pq − e edges incident on a
common vertex in the part of order q (resp. p), where k < p or, equivalently,
p(q − 1) < e. Then

ρ(Ke
p,q) =

√
e+

√
e2 − 4k(q − 1)(p− k)

2
(k = pq − e < p),

ρ(eKp,q) =

√
e+

√
e2 − 4k(p− 1)(q − k)

2
(k = pq − e < q).

3.2 ρ(K±
p,q)

Applying Example 3.1.2 to the graph K−
p,q = Kpq−1

p,q = pq−1Kp,q, one immediate
finds that

ρ(K−
p,q) =

√
e+

√
e2 − 4(e− (p+ q) + 2)

2
,

which obtains maximum (resp. minimum) when p is minimum (resp. p is
maximum) subject to the fixed number e = pq − 1 of edges and 2 ≤ p ≤ q.
Note that

e− (p+ q) + 2 ≤ e− 2
√
pq + 2 = e− 2

√
e+ 1 + 2 < e− 1−

√
e− 1
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for e ≥ 6. Hence

ρ(K−
p,q) >

√√√√e+
√

e2 − 4(e− 1−
√
e− 1)

2
(q ≥ p ≥ 3).

As K−
2,2 has 3 edges, one can check that

ρ(K−
2,2) =

√
3 +

√
5

2
<

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
. (3.2.1)

Similarly K+
p,q = Kpq+1

p,q+1 has spectral radius

ρ(K+
p,q) =

√
e+

√
e2 − 4(e− 1− q)

2
, (3.2.2)

which obtains the maximum (resp. minimum) when p is minimum (resp.
maximum) subject to the fixed number e = pq + 1 and 2 ≤ p ≤ q. Note that
e− 1− q ≤ e− 1−

√
e− 1 in this case. Hence

ρ(K+
p,q) ≥

√√√√e+
√

e2 − 4(e− 1−
√
e− 1)

2

with equality if and only if p = q =
√
e− 1. This proves the following lemma.

Lemma 3.2.1. The following (i)-(iii) hold.

(i) For all positive integers 2 ≤ p′ ≤ q′, (p′, q′) ̸= (2, 2), 2 ≤ p′′ ≤ q′′

satisfying e = p′q′ − 1 = p′′q′′ + 1, we have

ρ(K−
p′,q′), ρ(K

+
p′′,q′′) ≥

√√√√e+
√

e2 − 4(e− 1−
√
e− 1)

2
.

Moreover the above equality does not hold for ρ(K−
p′,q′), and holds for

ρ(K+
p′′,q′′) if and only if p′′ = q′′.

(ii) If e+1 is not a prime and p′ ≥ 2 is the least integer such that p′ divides
e + 1 and q′ := (e + 1)/p′ so that e = p′q′ − 1, then for any positive
integers 2 ≤ p ≤ q with e = pq − 1, we have ρ(K−

p,q) ≤ ρ(K−
p′,q′), with

equality if and only if (p, q) = (p′, q′).
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(iii) If e−1 is not a prime, and p′′ ≥ 2 is the least integer such that p′′ divides
e− 1 and q′′ := (e− 1)/p′′ so that e = p′′q′′+1, then for positive integers
2 ≤ p ≤ q with e = pq + 1, we have ρ(K+

p,q) ≤ ρ(K+
p′′,q′′), with equality if

and only if (p, q) = (p′′, q′′).

Note that the condition 2 ≤ p′ ≤ q′, (p′, q′) ̸= (2, 2) in (i) is from the
previous condition 3 ≤ p′ ≤ q′ and K−

2,q = K+
2,q−1 for q ≥ 3.

3.3 ρ(G) with G ̸= Ks,t, K
±
s,t

In this section, we consider bipartite graphs which are not complete bipartite
and not considered in Lemma 3.2.1(i). The following lemma is for the special
case that the graph has the form G = GD.

Lemma 3.3.1. Let D = (d1, d2, . . . , dp) be a partition of e. Suppose that GD is
not a complete bipartite graph and is not one of the graphs K−

p′,q′ or K+
p′′,q′′ for

any 1 ≤ p′ ≤ q′, (p′, q′) ̸= (2, 2), 1 ≤ p′′ ≤ q′′ such that e = p′q′ − 1 = p′′q′′ + 1.

Then

ρ(GD) <

√√√√e+
√

e2 − 4(e− 1−
√
e− 1)

2
.

Proof. When e ≤ 3, GD = K−
2,2 is the only graph satisfies the assumption

above and the inequality holds by (3.2.1). We assume that e ≥ 4. Let q = d1.
The assumption implies that q ≥ 2 and 4 ≤ e ≤ pq − 2. Using D∗ to replace
D if necessary, we might assume that 2 ≤ p ≤ q and q ≥ 3. Since GD is not
complete, we choose s such that 1 ≤ s ≤ p and ds−1 > ds. Set t = ds + 1.
According to the partition (s−1, 1, p−s) of rows and the partition (t−1, 1, q−t)

of columns, the Ferrers diagram F (D) is divided into 9 blocks and the number
bij of 1’s in the block (i, j) for 1 ≤ i, j ≤ 3 is shown as

b11 b12 b13

b21 b22 b23

b31 b32 b33

 =


(s− 1)ds s− 1

∑s−1
i=1 (di − ds − 1)

ds 0 0∑p
i=s+1 di 0 0

 .
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Note that b11 = b12b21 and b11+b12+b13+b21+b31 = e. Referring to Lemma 3.1.1
and (3.1.1), it suffices to show that Ys,t > e− 1−

√
e− 1. Note that

Ys,t =
s−1∑
i=1

(di − ds) ·
p∑

i=s

di = (s− 1 +
s−1∑
i=1

(di − ds − 1))(ds +

p∑
i=s+1

di)

=(b12 + b13)(b21 + b31) = b11 + b12b31 + b21b13 + b13b31,

b12b21 ̸= 0, and G ̸= K−
p′,q′ implies that b13 ̸= 0 or b31 ̸= 0. If both of b13 and b31

are not zero, then b12b31 ≥ b12+b31−1, b21b13 ≥ b21+b13−1, and b13b31 ≥ 1, so
Ys,t ≥ b11+(b12+b31−1)+(b21+b13−1)+1 = e−1 > e−1−

√
e− 1. Therefore,

the proof is completed. The above proof holds for any s with ds−1 < ds. We
choose the least one with such property, and might assume one of the following
two cases (i)-(ii).

Case (i). b31 = 0 and b13 ̸= 0: Then s = p = b12 + 1 ≥ 2, and G = eKp,q,
where e = pq − (q − dp) ≥ (p− 1)q + 1 > (p− 1)2 + 1. Thus

Ys,t = b11 + b21b13 ≥ e− 1− b12 = e− p > e− 1−
√
e− 1.

Case (ii). b13 = 0 and b31 ̸= 0: The condition b31 ̸= 0 implies that
q ≥ p ≥ 3. The condition b13 = 0 implies that t = q and b21 = q − 1 ≥ 2. The
proof is further divided into the following two cases (iia) and (iib).

Case (iia). 1 ≤ b31 < b21: If s < p−1, let s′ = s+1 and t′ = ds′ +1. Then
ds′−1 > ds′ and ds′+1 ̸= 0. Let b′ij be the bij corresponding to the new choice
of s′ and t′. Then b′13b

′
31 ̸= 0 and the proof is completed as in the beginning.

Note that s ̸= p since b31 ̸= 0. Then we may assume s = p − 1. This implies
that b31 = dp < q − 1 and e = pq − 1 − q + dp ≥ p2 − p > (p − 1)2 + 1. Let
s′ = p and t′ = dp + 1, and then

Ys′,t′ = b′21(b
′
12 + b′13) ≥ e− 1− b′12 = e− p > e− 1−

√
e− 1.

Case (iib). b31 ≥ b21: If b12 = 1 then by the assumption G ̸= K+
p′′,q′′ ,

there exists another s′′ > s such that ds′′ < ds′′−1. Apply the above proof on
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(s, t) = (s′′, t′′). Since b′′13 ≥ 1, we might assume b′′31 = 0. Then s′′ = p and
e = (p− 1)(q − 1) + dp + 1 > (p− 1)2 + 1. Hence

Ys′′,t′′ = b′′21(b
′′
12 + b′′13) ≥ e− 1− b′′12 = e− p > e− 1−

√
e− 1.

We now assume in the last situation that b12 > 1. Then

Ys,t = b11 + (b12 − 1)b31 + b31 ≥ b11 + b12 + 2b31 − 2 ≥ e− 2 > e− 1−
√
e− 1.

We now study the general case.

Proposition 3.3.2. Let G be a bipartite graph without isolated vertices with
e edges which is neither a complete bipartite graph nor one of the graphs
K−

p′,q′ , K
+
p′′,q′′ for any 2 ≤ p′ ≤ q′, (p′, q′) ̸= (2, 2), 2 ≤ p′′ ≤ q′′, such that

e = p′q′ − 1 = p′′q′′ + 1 is the number of edges in G. Then

ρ(G) <

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
.

Proof. If G is not connected, then

ρ(G) ≤
√
e− 1 <

√√√√e+
√

e2 − 4(e− 1−
√
e− 1)

2
.

Assume G is connected. Let GD be the graph obtained from a degree sequence
D of any part, say X, in the bipartition X ∪ Y of G. Then ρ(G) ≤ ρ(GD) by
Lemma 2.2.1. The proof is done if GD satisfies the assumption of Lemma 3.3.1.
LetD′ be the degree sequence of the other part Y in the bipartition of G. Then
we might assume that G ̸= GD, G ̸= GD′ , and GD and GD′ are graphs of the
forms Kp,q, K−

p′,q′ , or K+
p′′,q′′ .

For yi ∈ Y , let N(yi) be the set of neighbors of yi in G. Suppose for
this moment that |N(yi)| = |N(yj)| and N(yi) ̸= N(yj) for some yi, yj ∈ Y .
Assume that yi is in front of yj in the order that makes the entries in the latter
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2,2
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Figure 3.1: Values of ρ(G)

part of the positive Perron eigenvector nonincreasing. Let G′′ be the bipartite
graph obtained from G by moving one edge incident on yj but not on yi to
incident on yi, keeping the other endpoint of this edge unchanged. Let D′′ be
the new degree sequence on the part Y of the new bipartite graph G′′. Then
ρ(G) ≤ ρ(G′′) ≤ ρ(GD′′), where the first inequality is obtained from Lemma
2.2.2. We will show that GD′′ is not of the form Kp,q, K−

p′,q′ , or K+
p′′,q′′ . Thus

the proof follows from Lemma 3.3.1. Suppose GD′′ is of the form Kp,q, K−
p′,q′ ,

and K+
p′′,q′′ . Note that the elements in the degree sequence of any part of Kp,q,

K−
p′,q′ , or K+

p′′,q′′ is of the form k, . . . , k, ℓ, where ℓ could be 1, k − 1, k, k + 1,
for some positive integer k. Noticing that D′′ is obtained from D′ by replacing
two given equal values a by a− 1 and a+ 1. If a− 1 > 1, then the difference
between a+1 and a−1 is two, a contradiction. If a−1 = 1, then GD′′ must be
K+

3,q−1 and D′ = (3, . . . , 3, 2, 2). So GD′ is not a graph of the form Kp,q, K−
p′,q′ ,

or K+
p′′,q′′ , a contradiction. Hence we might assume that if |N(yi)| = |N(yj)|

then N(yi) = N(yj) for all yi, yj ∈ Y. Reordering the vertices in Y such that
the former has larger degree and then doing the same thing for X, we find
indeed G = GD = GD′ since G is connected, a contradiction.

From Lemma 3.2.1(i) and Proposition 3.3.2, we can characterize the value
ρ(G) of a bipartite graph G as shown in Figure 3.1.

Here we provide an application of Proposition 3.3.2.
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Corollary 3.3.3. Let G be a bipartite graph without isolated vertices which is
neither a complete bipartite graph nor one of the graphs Kp,q, K−

p′,q′ , K
+
p′′,q′′ for

any 1 ≤ p ≤ q, 2 ≤ p′ ≤ q′, 2 ≤ p′′ ≤ q′′ such that e = pq = p′q′ − 1 = p′′q′′ +1

is the number of edges in G. Assume that e = st + 1 (resp. e = st − 1) for
2 ≤ s ≤ t. Then

ρ(G) < ρ(K+
s,t) (resp. ρ(G) < ρ(K−

s,t)).

Proof. If s = t = 2 and e = st − 1 = 3 then either G = 3K2 the disjoint
union of three edges or G = K1,2 ∪ K2 the disjoint of a path of order 3 and
an edge. One can easily check that ρ(G) < ρ(K−

2,2). The remaining cases are
from Proposition 3.3.2 and Lemma 3.2.1(i) and noticing that K−

2,t+1 = K+
2,t for

t ≥ 2.

3.4 Main Theorems
For e ≥ 2, recall that ρ(e) is the maximal value ρ(G) of a bipartite graph
G with e edges which is not a union of a complete bipartite graph and some
isolated vertices. Note that

ρ(2) = ρ(2K2) = 1, and ρ(3) = ρ(K−
2,2) =

√
3 +

√
5

2
.

Two theorems about ρ(e) are given in this section.

Theorem 3.4.1. Let G be a bipartite graph with e ≥ 3 edges without isolated
vertices such that ρ(G) = ρ(e). Then the following (i)–(iv) hold.

(i) If e is odd then G = K−
2,q, where q = (e+ 1)/2.

(ii) If e is even, e− 1 is a prime and e+ 1 is not a prime, then G = K−
p′,q′ ,

where p′ ≥ 3 is the least integer that divides e+ 1 and q′ = (e+ 1)/p′.

(iii) If e is even, e− 1 is not a prime and e+ 1 is a prime, then G = K+
p′′,q′′ ,

where p′′ ≥ 3 is the least integer that divides e− 1 and q′′ = (e− 1)/p′′.
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(iv) If e is even and neither e−1 nor e+1 is a prime, then G ∈ {K−
p′,q′ , K

+
p′′,q′′},

where p′, q′ are as in (ii) and p′′, q′′ are as in (iii).

Proof. By the definition of ρ(e), G is not a complete graph. From Lemma 3.2.1(i)
and Proposition 3.3.2, we only need to compare the spectral radii ρ(K−

p,q) and
ρ(K+

p,q) for all possible positive integers 2 ≤ p ≤ q that keep the graphs having
e edges. This has been done in Lemma 3.2.1(ii)-(iii).

Due to Yitang Zhang’s recent result [26], the conjecture that there are
infinite pairs of twin primes receives much attention. Theorem 3.4.2 provides
a spectral description of the pairs of twin primes.

Theorem 3.4.2. Let e ≥ 4 be an integer. Then (e− 1, e+1) is a pair of twin
primes if and only if

ρ(e) <

√√√√e+
√
e2 − 4(e− 1−

√
e− 1)

2
.

Proof. The necessity is by Proposition 3.3.2. The sufficiency is from Theo-
rem 3.4.1 and Lemma 3.2.1(i).

3.5 Numerical comparisons
In the case (iv) of Theorem 3.4.1, the two graphs K−

p′,q′ and K+
p′′,q′′ are can-

didates to be extremal graph. For even e ≤ 100 and neither e − 1 nor e + 1

is a prime, we shall determine which graph has larger spectral radius. The
symbol − in the last column of the following table means that K−

p′,q′ wins, i.e.
ρ(K−

p′,q′) > ρ(K+
p′′,q′′) and + otherwise.
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e ρ(K−
p′,q′) ρ(K+

p′′,q′′) winner
26

√
13 + 3

√
17

√
13 +

√
149 −

34
√

17 +
√
265

√
17 +

√
267 +

50
√

25 +
√
593

√
25 +

√
583 −

56
√

28 +
√
748

√
28 +

√
740 −

64
√

32 +
√
976

√
32 +

√
982 +

76
√

38 +
√
1384

√
38 +

√
1394 +

86
√

43 +
√
1813

√
43 +

√
1781 −

92
√

46 +
√
2096

√
46 +

√
2078 −

94
√

47 +
√
2137

√
47 +

√
2147 +

Table 3.1: Comparisons of ρ(K−
p′,q′) and ρ(K+

p′′,q′′) for e ≤ 100

3.6 BFP Conjecture for K(p, q, e)

3.6.1 The case e = st± 1

Theorem 3.6.1. BFP Conjecture for K(p, q, e) holds for e ∈ {st − 1, st′ +

1 | s ≤ p, t ≤ q, t′ ≤ q − 1}.

Proof. When e = st − 1 (s ≤ p, t ≤ q) or e = st + 1 (s ≤ p, t ≤ q − 1),
K−

s,t ∈ K(p, q, e) or K+
s,t ∈ K0(p, q, e) respectively, it implies BFP Conjecture

for K0(p, q, e) directly by Corollary 3.3.3.

3.6.2 Counter examples
Let q > p ≥ 3 be two positive integers and D1 = (q, q−1, . . . , q−1, q−2), D2 =

(q, q, . . . , q, q − p) be two sequences of p positive integers. Then GD1 , GD2 ∈
K(p, q, p(q − 1)). Note that GD2 is the only graph in K0(p, q, p(q − 1)). The
following proposition shows that BFP Conjecture for K(p, q, p(q − 1)) is false
when q > p+ 2.
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Proposition 3.6.2. Suppose q > p+2. Then ρ(GD2) < ρ(GD1). In particular,
BFP Conjecture for K(p, q, p(q − 1)) is false.

Proof. Referring to H in (2.2.2), we have

H(D1) =



q q − 1 · · · q − 1 q − 2

q − 1 q − 1 · · · q − 1 q − 2
... ... . . . ... ...

q − 1 q − 1 · · · q − 1 q − 2

q − 2 q − 2 · · · q − 2 q − 2


,

H(D2) =



q q · · · q q − p

q q · · · q q − p
... ... . . . ... ...
q q · · · q q − p

q − p q − p · · · q − p q − p


.

Let Π = {{1}, {2, . . . , p− 1}, {p}}. Then

Π(H(D1)) =


q (p− 2)(q − 1) q − 2

q − 1 (p− 2)(q − 1) q − 2

q − 2 (p− 2)(q − 2) q − 2

 ,

Π(H(D2)) =


q (p− 2)q q − p

q (p− 2)q q − p

q − p (p− 2)(q − p) q − p


are equitable quotient matrices of H(D1), H(D2) with respect to Π respec-
tively. Note that ρ(Π(H(Di))) = ρ(H(Di)) = ρ2(GDi

) for i = 1, 2 by Proposi-
tion 2.1.7 and (2.2.3).

The characteristic polynomials of Π(H(D1)) and Π(H(D2)) are

g1(x) = x3 − p(q − 1)x2 + ((2p− 2)(q − 1)− p)x− (p− 2)(q − 2),

g2(x) = x3 − p(q − 1)x2 + p(p− 1)(q − p)x
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respectively. Since q ≥ p+ 3 > p+ 2 + 1/(p− 1) = p2/(p− 1) + 1,

g2(x) = g1(x) + (p− 2)(((p− 1)(q − 1)− p2)x+ q − 2) > 0

for x ≥ ρ(H(D1)). Therefore the zeros of g2 are less than ρ(H(D1)) and

ρ(H(D2)) < ρ(H(D1)).

This implies ρ(GD2) < ρ(GD1). Since GD2 is the unique graph in K0(p, q, p(q−
1)), the graph with maximum spectral radius among K(p, q, p(q − 1)) in not
in K0(p, q, p(q − 1)).

3.7 Weak BFP Conjecture for C(p, q, e) with
p ≤ 3

We shall prove weak BFP Conjecture for C(p, q, e) with p ≤ 3 despite the
existence of a counter example for BFP Conjecture for K(p, q, e) with p = 3

in the last section.

Theorem 3.7.1. If p ≤ 3, then weak BFP Conjecture for C(p, q, e) holds.

Proof. When p ≤ 3, there is at least one of Ks,t, K
+
s,t, K

−
s,t in C0(p, q, e) for some

s, t. So weak BFP Conjecture for C(p, q, e) holds by Corollary 3.3.3.
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Chapter 4

Spectral bounds of a
nonnegative matrix

The research in this chapter is motivated by the following theorem of Xing
Duan and Bo Zhou in 2013 [10, Theorem 2.1].

Theorem 4.0.1. Let C = (cij) be a nonnegative n× n matrix with row-sums
r1 ≥ r2 ≥ · · · ≥ rn, f := maxi,j∈[n],i ̸=j cij and d := max1≤i≤n cii. Then

ρ(C) ≤
rℓ + d− f +

√
(rℓ − d+ f)2 + 4f

∑ℓ−1
i=1(ri − rℓ)

2
(4.0.1)

for 1 ≤ ℓ ≤ n. Moreover, if C is irreducible, then the equality holds in (4.0.1)
if and only if r1 = rn or for some 2 ≤ t ≤ ℓ, we have rt−1 > rt = · · · = rℓ and

cij =

{
d, if i = j ≤ t− 1;
f, if i ̸= j and 1 ≤ i ≤ n, 1 ≤ j ≤ t− 1.

Theorem 4.0.1 generalizes the results in [5, 7, 13, 14, 18, 24, 25] and relates
to the results in [17, 19, 25], while the upper bound of ρ(C) expressed in (4.0.1)
is somewhat complicated and deserves an intuitive realization.

The values on the right hand side of (4.0.1) is realized as the largest real
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eigenvalue ρr(C
′) of the n× n matrix

C ′ =



d f · · · f f f · · · f r1 − d− (n− 2)f

f d f f f · · · f r2 − d− (n− 2)f
... . . . ... ... ... ... ...
f f · · · d f f · · · f rℓ−1 − d− (n− 2)f

f f · · · f d f · · · f rℓ − d− (n− 2)f

f f · · · f f d f rℓ − d− (n− 2)f
... ... ... ... . . . ... ...
f f · · · f f f d rℓ − d− (n− 2)f

f f · · · f f f · · · f rℓ − (n− 1)f



(4.0.2)

which has the following three properties:

(i) (r1, r2, . . . , rℓ, . . . , rℓ)
T ≥ (r1, r2, . . . , rn)

T , where (r1, r2, . . . , rℓ, . . . , rℓ)
T

and (r1, r2, . . . , rn)
T are the row-sum vectors of C ′ and C respectively,

(ii) C ′[−|n) ≥ C[−|n), and

(iii) C ′ has a positive eigenvector (v′1, v′2, . . . , v′n)T for ρr(C ′) with v′i ≥ v′n for
1 ≤ i ≤ n.

Property (iii) will be checked by Lemma 4.3.4. Since the above matrix C ′

is not necessarily nonnegative, the spectral radius ρ(C ′) of C ′ is replaced by
the largest real eigenvalue ρr(C

′) in the property (iii). Our main result in
Theorem 4.2.3 is in a more general form that will imply for any matrix C ′

that satisfies the properties (i)-(iii) above, we have ρ(C) ≤ ρr(C
′). Moreover,

when a matrix C ′ is fixed and C and C ′ satisfy (i)-(iii), the matrices C with
ρ(C) = ρr(C

′) are completely determined. We apply Theorem 4.2.3 to find a
sharp upper bound of ρ(C) expressed by the sum of entries in C, the largest
off-diagonal entry f and the largest diagonal entry d in Theorem 4.5.2.

Note that ρr(C
′) = ρr(C

′′) for the largest real eigenvalues of C ′ and C ′′
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respectively, where C ′ is as in (4.0.2) and

C ′′ =



d f · · · f r1 − d− (ℓ− 2)f

f d f r2 − d− (ℓ− 2)f
... . . . ... ...
f f · · · d rℓ−1 − d− (ℓ− 2)f

f f · · · f rℓ − (ℓ− 1)f


(4.0.3)

is the equitable quotient matrix of C ′ with respect to the partition {{1}, {2},
. . ., {ℓ − 1}, {ℓ, ℓ + 1, . . . , n}} of {1, 2, . . . , n}. Moreover ρr(C

′′) = ρr(C
′′′),

where

C ′′′ =

(
(ℓ− 2)f + d f∑ℓ−1

i=1 ri − (ℓ− 1)((ℓ− 2)f + d) rℓ − (ℓ− 1)f

)
, (4.0.4)

is the equitable quotient of the transpose C ′′T of C ′′ with respect to the parti-
tion {{1, 2, . . . , ℓ − 1}, {ℓ}} of {1, 2, . . . , ℓ}. Motivated by these observations,
Theorem 4.7.1 will provide an upper bound ρr(C

′′) of ρ(C), where C ′′ is a
matrix of size smaller than that of C obtained by applying equitable quotient
to suitable matrix C ′ that satisfies properties (i)-(iii) described above.

Each of our theorems on upper bounds of ρ(C) has a dual version that
deals with lower bounds. We provide a new class of sharp lower bounds of
ρ(C) in Theorem 4.8.1. Applying Theorem 4.8.1 to a binary matrix C, we
improve the well known inequality ρ(C) ≥ rn as stated in Corollary 4.8.2. We
believe that many new spectral bounds of the spectral radius of a nonnegative
matrix will be easily obtained by our matrix realization in this chapter.

In addition to the above results, Lemma 4.1.1 and Lemma 4.1.2 are of
independent interest in matrix theory.

4.1 The spectral bound ρ(C ′)

We generalize Lemma 2.1.2 in the sense of Lemma 2.1.4 to find spectral bounds
of C, where the matrix C considered are not necessarily nonnegative, but
instead, assume that C has a nonnegative eigenvector.
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Lemma 4.1.1. Let C = (cij), C ′ = (c′ij), P and Q be n×n matrices. Assume
that

(i) PCQ ≤ PC ′Q;

(ii) C ′ has an eigenvector Qu for λ′ for some nonnegative column vector
u = (u1, u2, . . . , un)

T and λ′ ∈ R;

(iii) C has a left eigenvector vTP for λ for some nonnegative row vector
vT = (v1, v2, . . . , vn) and λ ∈ R; and

(iv) vTPQu > 0.

Then λ ≤ λ′. Moreover, λ = λ′ if and only if

(PC ′Q)ij = (PCQ)ij for 1 ≤ i, j ≤ n with vi ̸= 0 and uj ̸= 0. (4.1.1)

Proof. Multiplying the nonnegative vector u in (ii) to the right of both terms
of (i),

PCQu ≤ PC ′Qu = λ′PQu. (4.1.2)

Multiplying the nonnegative left eigenvector vT of C for λ in assumption (iii)
to the left of all terms in (4.1.2), we have

λvTPQu = vTPCQu ≤ vTPC ′Qu = λ′vTPQu. (4.1.3)

Now delete the positive term vTPQu by assumption (iv) to obtain λ ≤ λ′ and
finish the proof of the first part.

Assume that λ = λ′, so the inequality in (4.1.3) is an equality. Especially
(PCQu)i = (PC ′Qu)i for any i with vi ̸= 0. Hence (PCQ)ij = (PC ′Q)ij for
any i with vi ̸= 0 and any j with uj ̸= 0.

Conversely, (4.1.1) implies

vTPCQu =
∑
i,j

vi(PCQ)ijuj =
∑
i,j

vi(PC ′Q)ijuj = vTPC ′Qu,

so λ = λ′ by (4.1.3) and (iv).
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In Lemma 4.1.1, the pair (λ, λ′) is a pair of reciprocal bounds, the matrix
C ′ is a realization of the upper bound λ′ of λ and the matrix C is a realization
of the lower bound λ of λ′. If C is nonnegative and P = Q = I, where I

is the n × n identity matrix, then Lemma 4.1.1 becomes Lemma 2.1.2 with
an additional assumption vTu > 0 which immediately holds if C or C ′ is
irreducible by Theorem 2.1.1.

In the sequels, we shall call two statements that resemble each other by
switching ≤ and ≥ and corresponding variables, like θ ≥ rn and θ ≤ r1, as
dual statements, and their proofs are called dual proofs if one proof is obtained
from the other by simply switching one of ≤ and ≥ to the other. The following
is a dual version of lemma 4.1.1 and its proof is by dual proof.

Lemma 4.1.2. Let C = (cij), C ′ = (c′ij), P and Q be n×n matrices. Assume
that

(i) PCQ ≥ PC ′Q;

(ii) C ′ has an eigenvector Qu for λ′ for some nonnegative column vector
u = (u1, u2, . . . , un)

T and λ′ ∈ R;

(iii) C has a left eigenvector vTP for λ for some nonnegative row vector
vT = (v1, v2, . . . , vn) and λ ∈ R; and

(iv) vTPQu > 0.

Then λ ≥ λ′. Moreover, λ = λ′ if and only if

(PC ′Q)ij = (PCQ)ij for 1 ≤ i, j ≤ n with vi ̸= 0 and uj ̸= 0. (4.1.4)
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4.2 The special case P = I and a particular Q

We shall apply Lemma 4.1.1 and Lemma 4.1.2 by taking P = I and

Q =



1 0 · · · 0 1

0 1 · · · 0 1
... ... . . . ... ...
0 0 · · · 1 1

0 0 · · · 0 1


. (4.2.1)

Hence for n× n matrix C ′ = (c′ij), the matrix PC ′Q in Lemma 4.1.1(i) is

C ′Q =



c′11 c′12 · · · c′1 n−1 r′1

c′21 c′22 · · · c′2 n−1 r′2
... ... . . . ... ...

c′n−1 1 c′n−1 2 · · · c′n−1 n−1 r′n−1

c′n1 c′n2 · · · c′n n−1 r′n


, (4.2.2)

where (r′1, r
′
2, . . . , r

′
n)

T is the row-sum column vector of C ′.

Definition 4.2.1. A column vector v′ = (v′1, v
′
2, . . . , v

′
n)

T is called rooted if
v′j ≥ v′n ≥ 0 for 1 ≤ j ≤ n− 1.

The following Lemma is immediate from the above definition.

Lemma 4.2.2. If u = (u1, u2, . . . , un)
T and v′ = (v′1, v

′
2, . . . , v

′
n) := Qu =

(u1 + un, u2 + un, . . . , un−1 + un, un)
T , then

(i) v′ is rooted if and only if u is nonnegative;

(ii) For 1 ≤ j ≤ n− 1, uj > 0 if and only if v′j > v′n.

The following theorem is immediate from Lemma 4.1.1 by applying P = I,
the Q in (4.2.1), v′ = Qu and referring to (4.2.2) and Lemma 4.2.2.
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Theorem 4.2.3. Let C = (cij), C ′ = (cij) be n× n matrices. Assume that

(i) C[−|n) ≤ C ′[−|n) and (r1, r2, . . . , rn)
T ≤ (r′1, r

′
2, . . . , r

′
n)

T , where (r1, r2,

. . . , rn)
T and (r′1, r

′
2, . . . , r

′
n)

T are the row-sum vectors of C and C ′ re-
spectively;

(ii) C ′ has a rooted eigenvector v′ = (v′1, v
′
2, . . . , v

′
n)

T for λ′ for some λ′ ∈ R;

(iii) C has a nonnegative left eigenvector vT = (v1, v2, . . . , vn) for λ ∈ R;

(iv) vTv′ > 0.

Then λ ≤ λ′. Moreover, λ = λ′ if and only if

(a) ri = r′i for 1 ≤ i ≤ n with vi ̸= 0 when v′n ̸= 0;

(b) c′ij = cij for 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 with vi ̸= 0 and v′j > v′n.

Note that the cases (a)-(b) in Theorem 4.2.3 are from the line (4.1.1) in
Theorem 4.1.1. The first part of assumption (i) in Theorem 4.2.3 says that
the last column is irrelevant in the comparison of C and C ′. The following
theorem is a dual version of Theorem 4.2.3.

Theorem 4.2.4. Let C = (cij), C ′ = (cij) be n× n matrices. Assume that

(i) C[−|n) ≥ C ′[−|n) and (r1, r2, . . . , rn)
T ≥ (r′1, r

′
2, . . . , r

′
n)

T , where (r1, r2,

. . . , rn)
T and (r′1, r

′
2, . . . , r

′
n)

T are the row-sum vectors of C and C ′ re-
spectively;

(ii) C ′ has a rooted eigenvector v′ = (v′1, v
′
2, . . . , v

′
n)

T for λ′ for some λ′ ∈ R;

(iii) C has a nonnegative left eigenvector vT = (v1, v2, . . . , vn) for λ ∈ R;

(iv) vTv′ > 0.

Then λ ≥ λ′. Moreover, λ = λ′ if and only if
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(a) ri = r′i for 1 ≤ i ≤ n with vi ̸= 0 when v′n ̸= 0;

(b) c′ij = cij for 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 with vi ̸= 0 and v′j > v′n.

Example 4.2.5. Consider the following three matrices

C ′
ℓ =


3 1 1

0 0 3

0 1 2

 , C =


3 1 1

1 0 2

1 1 1

 , C ′
u =


3 2 0

1 2 0

1 2 0


with C ′

ℓ[−|3) ≤ C[−|3) ≤ C ′
u[−|3), and the same row-sum vector (5, 3, 3)T .

Note that C ′
ℓ has a rooted eigenvector v′ℓ = (1, 0, 0)T for λ′ℓ = 3 and C ′

u has
a rooted eigenvector v′u = (2, 1, 1)T for λ′r = 4. Since C is irreducible, it
has a left positive eigenvector (v1, v2, v3) > 0. Hence assumptions (i)-(iv) in
Theorem 4.2.3 and Theorem 4.2.4 hold, and we conclude that λ′ℓ ≤ ρ(C) ≤ λ′r.
Since [3] × [1] is the set of the pairs (i, j) described in Theorem 4.2.3(b) and
Theorem 4.2.4(b), from simple comparison of the first columns C ′

ℓ[−| 1] ̸=
C[−| 1] = C ′

u[−| 1] of these three matrices, we easily conclude that 3 = λ′ℓ <

ρ(C) = λ′r = 4 by the second part of Theorem 4.2.3 and that of Theorem 4.2.4.

4.3 Matrices with a rooted eigenvector
Before giving applications of Theorem 4.2.3 and Theorem 4.2.4, we need to
construct C ′ which possesses a rooted eigenvector for some λ′. The following
lemma comes immediately.

Lemma 4.3.1. If a square matrix C ′ has a rooted eigenvector for λ′, then
C ′ + dI also has the same rooted eigenvector for λ′ + d, where d is a constant
and I is the identity matrix with the same size of C ′.

A rooted column vector defined in Definition 4.2.1 is generalized to a rooted
matrix as follows.
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Definition 4.3.2. A matrix C ′ = (c′ij) is called rooted if its columns and its
row-sum vector are all rooted except the last column of C ′.

The matrix Q in (4.2.1) is invertible with

Q−1 =



1 0 · · · 0 −1

0 1 · · · 0 −1
... ... . . . ... ...
0 0 · · · 1 −1

0 0 · · · 0 1


.

Multiplying Q−1 to C ′Q in (4.2.2), Q−1C ′Q is

c′11 − c′n1 c′12 − c′n2 · · · c′1 n−1 − c′n n−1 r′1 − r′n

c′21 − c′n1 c′22 − c′n2 · · · c′2 n−1 − c′n n−1 r′2 − r′n
... ... . . . ... ...

c′n−1 1 − c′n1 c′n−1 2 − c′n2 · · · c′n−1 n−1 − c′n n−1 r′n−1 − r′n

c′n1 c′n2 · · · c′n n−1 r′n


. (4.3.1)

The matrices C ′ and Q−1C ′Q have the same set of eigenvalues. Moreover,
v′ is an eigenvector of C ′ for λ′ if and only if u = Q−1v′ is an eigenvector of
Q−1C ′Q for λ′. From (4.3.1), C ′ is rooted if and only if Q−1C ′Q is nonnegative.
The first part of the following lemma follows immediately from the above
discussion and Theorem 2.1.1 by choosing λ′ = ρ(C ′).

Lemma 4.3.3. If C ′ is a rooted matrix, then Q−1C ′Q is nonnegative, ρ(C ′)

is an eigenvalue of C ′, and C ′ has a rooted eigenvector v′ = Qu for ρ(C ′),
where u is a nonnegative eigenvector of Q−1C ′Q for ρ(C ′). Moreover, with
v′ = (v′1, v

′
2, . . . , v

′
n)

T , the following (i)-(ii) hold.

(i) If C ′[n|n) is positive, then v′ is positive.

(ii) If C ′[n|n) is positive and r′i > r′n for all 1 ≤ i ≤ n− 1, then v′j > v′n for
all 1 ≤ j ≤ n− 1.
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Proof. It remains to prove (i) and (ii).
(i) Suppose that C ′[n|n) is positive and v′n = 0. Then

n−1∑
j=1

c′njv
′
j =

n∑
j=1

c′njv
′
j = (C ′v′)n = ρ(C ′)v′n = 0.

Hence v′ is a zero vector since c′nj > 0 for j ≤ n−1, a contradiction. So v′n > 0

and v′ > 0 since v′ is rooted.
(ii) The assumptions imply that the matrixQ−1C ′Q in (4.3.1) is irreducible.

Hence u is positive. By Lemma 4.2.2(ii), v′j > v′n for 1 ≤ j < n.

The largest real eigenvalue of the following matrix will be used to obtain
bounds of the spectral radius of a nonnegative matrix.

Fix d, f, r1, r2, . . . , rn ≥ 0 such that rj ≥ rn for 1 ≤ j ≤ n− 1, and let

Mn(d, f, r1, r2, . . . , rn) =



d f · · · f r1 − (d+ (n− 2)f)

f d f r2 − (d+ (n− 2)f)
... . . . ... ...
f f · · · d rn−1 − (d+ (n− 2)f)

f f · · · f rn − (n− 1)f


(4.3.2)

be an n× n matrix with row-sum vector (r1, r2, . . . , rn)T .
Note that for any square matrix C ′, it might be ρ(C ′ + dI) ̸= ρ(C ′) + d,

but ρr(C ′ + dI) = ρr(C
′) + d always holds, where ρr(C

′ + dI) and ρr(C
′) are

the largest real eigenvalues of C ′+dI and C ′ respectively. Also ρ(C ′) = ρr(C
′)

if C ′ is nonnegative.

Lemma 4.3.4. The following (i)-(ii) hold.

(i) The matrix Mn(d, f, r1, r2, . . . , rn) has a rooted eigenvector v′ = (v′1, v
′
2,

. . . , v′n)
T for the largest real eigenvalue ρr(Mn(d, f, r1, r2, . . . , rn)) of

Mn(d, f, r1, r2, . . . , rn).

(ii) If f > 0, then v′ > 0.
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Proof. Let Mn := Mn(d, f, r1, r2, . . . , rn). First assume d ≥ f . Then Mn is
rooted. (i)-(ii) follows from (i)-(ii) of Lemma 4.3.3, in particular ρ(Mn) =

ρr(Mn). If d < f , then the matrix (f − d)I +Mn is a rooted matrix. As in the
first part, let v′ be a rooted eigenvector of (f −d)I+Mn for ρ((f −d)I+Mn).

Note that v′ is also a rooted eigenvector of Mn for ρr(Mn) = ρ((f−d)I+Mn)−
(f−d). This proves (i), and (ii) follows similarly from (ii) of Lemma 4.3.3.

Lemma 4.3.5. For Mn = Mn(d, f, r1, r2, . . . , rn) and Mt = Mt(d, f, r1, r2, . . . , rt)

defined in (4.3.2), where d, f ≥ 0 and r1 ≥ r2 ≥ · · · ≥ rn ≥ 0, we have the
following (i)-(iii).

(i) The largest real eigenvalue ρr(Mn) of Mn satisfies

ρr(Mn) =
rn + d− f +

√
(rn − d+ f)2 + 4f

∑n−1
i=1 (ri − rn)

2

≥max(d− f, rn).

(ii) If rn = 0, then

ρr(Mn) =
d− f +

√
(d− f)2 + 4fm

2
,

where m :=
∑n−1

i=1 ri is the sum of all entries of Mn.

(iii) If rt = rn for some t ≤ n, then ρr(Mt) = ρr(Mn).

Proof. (i) We consider the matrix Mn +(f − d)I. Note that (Mn +(f − d)I)T

has equitable quotient matrix

Π((Mn + (f − d)I)T ) =

(
(n− 1)f f∑n−1

i=1 (ri − (d+ (n− 2)f)) rn − (d+ (n− 2)f)

)

with respect to the partition Π = {{1, 2, . . . , n−1}, {n}} of [n], which has two
eigenvalues

rn − d+ f ±
√

(rn − d+ f)2 + 4f
∑n−1

i=1 (ri − rn)

2
.

41



Since ((Mn + (f − d)I)T )ij = ((Mn + (f − d)I)T )kj for all i, k ∈ [n − 1] and
j ∈ [n] and by Lemma 2.1.6, (Mn + (f − d)I)T has eigenvalues

0n−2,
rn − d+ f ±

√
(rn − d+ f)2 + 4f

∑n−1
i=1 (ri − rn)

2
,

and Mn has eigenvalues

(d− f)n−2,
rn + d− f ±

√
(rn − d+ f)2 + 4f

∑n−1
i=1 (ri − rn)

2
.

Note that

rn + d− f +
√

(rn − d+ f)2 + 4f
∑n−1

i=1 (ri − rn)

2
≥ max(d− f, rn).

So the proof of (i) is complete.
(ii) and (iii) follow from (i) immediately.

4.4 Rooted matrices under equitable quotient
We have learned that the spectral radius of a nonnegative matrix is preserved
under equitable quotient operation. A rooted matrix has the similar property
if the partition is chosen carefully.

Lemma 4.4.1. If an n× n rooted matrix C ′ has an equitable quotient matrix
Π(C ′) with respect to a partition Π = {π1, . . . , πℓ}, where πℓ = {p}, then Π(C ′)

is rooted, ρ(Π(C ′)) is an eigenvalue of C ′ and

ρ(C ′) = ρ(Π(C ′)).

Proof. Let Q be the same as in (4.2.1). It’s easy to see that Q and Q−1

have equitable quotient matrices Π(Q) and Π(Q−1) respectively, and so does
QC ′Q−1 with

Π(QC ′Q−1) = Π(Q)Π(C ′)Π(Q)−1
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by Proposition 2.1.10. Since QC ′Q−1 as shown in (4.3.1) is nonnegative,
Π(Q)Π(C ′)Π(Q)−1 is also nonnegative and Π(C ′) is rooted. Hence ρ(Π(C ′))

is an eigenvalue of Π(C ′) by Lemma 4.3.3. Furthermore,

ρ(C ′) = ρ(QC ′Q−1) = ρ(Π(QC ′Q−1)) = ρ(Π(Q)Π(C ′)Π(Q)−1) = ρ(Π(C ′))

by Proposition 2.1.7.

Remark 4.4.2. In Lemma 4.4.1, we have thatΠ(Q)Π(C ′)Π(Q−1) = Π(QC ′Q−1)

is nonnegative and Π(C ′) is rooted, but Π(C ′T )T may not be rooted. For ex-
ample, let

C ′ =


2 0 −1

0 2 −1

0 0 1

 .

Then C ′ has equitable quotient matrix Π(C ′) with respect to the partition

Π = {{1, 2}, {3}} and Π(C ′T )T =

(
2 −2

0 1

)
is not rooted.

Note that if πℓ contains p and another number, then the equality in Lemma
4.4.1 may not hold.

Example 4.4.3. Let C ′ be a rooted matrix with equitable quotient matrix
F (C ′) with respect to the partition Π = {{1}, {2, 3}} as follows

C ′ =


2 3 3

0 3 −2

0 0 1

 , Π(C ′) =

(
2 6

0 1

)
.

Notice that ρ(C ′) = 3 ̸= 2 = ρ(Π(C ′)).

4.5 Spectral upper bounds with prescribed sum
of entries

Let Jk, Ik and Ok be the k × k all-one matrix, the k × k identity matrix and
the k × k zero matrix respectively. We recall an old result of Richard Stanley
[25].
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Theorem 4.5.1 ([25]). Let C = (cij) be an n×n symmetric (0,1) matrix with
zero trace. Let the number of 1’s of C be 2e. Then

ρ(C) ≤ −1 +
√
1 + 8e

2
.

Equality holds if and only if
e =

(
k

2

)
and PCP T has the form(

Jk − Ik 0

0 On−k

)
= (Jk − Ik)⊕On−k

for some permutation matrix P and positive integer k.

The following theorem generalizes Theorem 4.5.1 to nonnegative matrices,
not necessarily symmetric.

Theorem 4.5.2. Let C = (cij) be an n× n nonnegative matrix. Let m be the
sum of entries in C and d (resp. f) be any number which is larger than or
equal to the largest diagonal element (resp. the largest off-diagonal element)
of C. Then

ρ(C) ≤
d− f +

√
(d− f)2 + 4mf

2
. (4.5.1)

Moreover, if mf > 0, then the equality in (4.5.1) holds if and only if m =

k(k − 1)f + kd and PCP T has the form(
fJk + (d− f)Ik 0

0 On−k

)
= (fJk + (d− f)Ik)⊕On−k

for some permutation matrix P and some nonnegative integer k.

Proof. If f = 0 then the nonzero entries only appear on the diagonal of C,
so ρ(C) ≤ d and (4.5.1) holds. Assume f > 0 for the remaining. Consider
the (n + 1) × (n + 1) nonnegative matrix M = C ⊕ O1 which has row-sum

44



vector (r1, r2, . . . , rn, rn+1)
T with rn+1 = 0 and a nonnegative left eigenvec-

tor vT for ρ(M) = ρ(C). Let C ′ = Mn+1(d, f, r1, r2, . . . , rn+1) as defined in
(4.3.2) which has the same row-sum vector of M , and has a positive rooted
eigenvector v′ = (v′1, v

′
2, . . . , v

′
n+1)

T for ρr(C
′) by Lemma 4.3.4(i). Clearly

M [−|n+1) ≤ C ′[−|n+1) and vTv′ > 0. Hence the assumptions (i)-(iv) in The-
orem 4.2.3 hold with (C, λ, λ′) = (M,ρ(M), ρr(C

′)). Now by Theorem 4.2.3
and Lemma 4.3.5(ii), we have

ρ(C) = ρ(M) ≤ ρr(C
′) =

d− f +
√

(d− f)2 + 4mf

2
,

finishing the proof of the first part.
To prove the second part, assume m = k(k − 1)f + kd and PCP T =

(fJk+(d−f)Ik)⊕On−k for one direction. Using ρ(C) = ρ(PCP T ) = ρ(fJk+

(d− f)Ik), we have

ρ(C) = (k − 1)f + d =
d− f +

√
(d− f)2 + 4mf

2
.

For the other direction, assume ρ(C) = ρr(C
′) and mf > 0. In particular

C ̸= 0 and M ̸= 0. Let (v1, v2, . . . , vn+1) be a nonnegative left eigenvector of
M . Then vn+1 = 0. Write ṽT = (v1, v2, . . . , vn). We first assume that C has
no zero row. Then ri > rn+1 = 0 for 1 ≤ i ≤ n. By Lemma 4.3.3(ii) with
(C ′, n) = (M,n + 1), we have v′j > v′n+1. Then cij = mij = c′ij for the indices
1 ≤ i ≤ n with vi ̸= 0 and any 1 ≤ j ≤ n by Theorem 4.2.3(b). Hence

ρ(C)ṽT = ṽTC = ṽTC ′(n+ 1|n+ 1) = ṽT (fJ + (d− f)I). (4.5.2)

Since ṽT is a nonnegative left eigenvalue of the irreducible nonnegative matrix
fJ + (d− f)I for ρ(C), we have ṽ > 0. This together with fJ + (d− f)I ≥ C

and (4.5.2) imply C = fJ+(d−f)I, finishing the proof for the case under the
assumption that C has no zero row. Assume that C has n − k zero rows for
some 1 ≤ k ≤ n− 1. Then there is a permutation matrix P such that all zero
rows of PCP T appear in the end, so the (n− k)× n submatrix PCP T ([k]|−]

of PCP T is 0 and the k × n submatrix PCP T [[k]|−] of PCP T has no zero
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row. Let C1 = PCP T [[k]|[k]] and m′ be the sum of entries in C1. Notice that
ρ(C1) = ρ(C) and m′ ≤ m. Applying the first part of the theorem to C1, we
have

ρ(C1) ≤
d− f +

√
(d− f)2 + 4m′f

2
≤

d− f +
√

(d− f)2 + 4mf

2
= ρ(C) = ρ(C1).

Forcing m′ = m, C1 has no zero row and C1 = fJk + (d − f)Ik. Hence
PCP T [[k]|[k]) = 0 and this implies PCP T = (fJk + (d − f)Ik) ⊕ On−k and
m = k(k − 1)f + kd.

We give another proof of Theorem 4.5.2 which needs less knowledge but is
tricky.
The second proof of Theorem 4.5.2. Since C in nonnegative, it has a nonneg-
ative left eigenvector vT = (v1, . . . , vn) for ρ(C). Without lose of generality,
we assume that for some 1 ≤ k ≤ n, vi > 0 for 1 ≤ i ≤ k and vi = 0 for
k + 1 ≤ i ≤ n. Let ρ = ρ(C). Then the matrix C2 − (d − f)C has the same
nonnegative left eigenvector vT for ρ2 − (d − f)ρ. So the maximum row-sum
of C2 − (d− f)C is an upper bound of ρ2 − (d− f)ρ by Lemma 2.1.4.

Define ri(M) as the i-th row-sum of M . Let ri = ri(C). We have

ri(C
2) =

n∑
j=1

n∑
s=1

ciscsj =
n∑

s=1

(cis

n∑
j=1

csj) = ciiri +
∑
s ̸=i

cisrs ≤ dri + f(m− ri),

with equality if and only if ciiri = dri and cisrs = frs for s ̸= i. So

ρ2 − (d− f)ρ ≤ max
1≤i≤n

ri(C
2 − (d− f)C) = max

1≤i≤n
ri(C

2)− (d− f)ri ≤ fm.

This implies

ρ(C) ≤
d− f +

√
(d− f)2 + 4fm

2
.

By Lemma 2.1.4,

ρ(C) =
d− f +

√
(d− f)2 + 4fm

2
(4.5.3)

if and only if for 1 ≤ i ≤ k

ciiri = dri for 1 ≤ j ≤ n and cisrs = frs for s ̸= i, 1 ≤ j ≤ n. (4.5.4)
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Suppose mf > 0. If C = (fJk + (d − f)Ik) ⊕ On−k, it is easy to see
that (4.5.4) holds. Now assume (4.5.3) holds. Then (4.5.4) holds. Since
vk+1 = · · · = vn = 0, C[[k]|[k]) is a zero matrix. This implies rs = 0 for
k + 1 ≤ s ≤ n, otherwise rs ̸= 0 and cis = f ̸= 0 for 1 ≤ i ≤ k. So C[[k]|−]

is a zero matrix. Since v1 > 0, cs1 ̸= 0 for some 1 ≤ s ≤ k and rs ̸= 0.
Then cis = f ̸= 0 for 1 ≤ i ≤ k, i ̸= s. Hence ri ̸= 0 for 1 ≤ i ≤ k. So
C[k]|[k] = fJk + (d− f)Ik and C = (fJk + (d− f)Ik)⊕On−k.

In the first proof of Theorem 4.5.2, we get an upper bound from a new
matrix C ′ by computing its spectral radius, and in the second one, we get
an upper bound by computing the maximum row-sum of g(C), where g(x) =

x2 − (d − f)x. These two proofs are quite different. Can we find a relation
between them?

Problem 4.5.3. For a bound of C given by computing the maximum row-sum
of g(C) from a polynomial g(x), can we find C ′ as in the second proof such
that ρ(C ′) equals the bound? How about the converse?

4.6 The spectral bound ρ(Π(C ′))

From now on we assume that the square matrix C is nonnegative, and the
eigenvalue ρ(C) of C corresponds to a nonnegative left eigenvector vT by The-
orem 2.1.1(i). Then the assumption (iii) in Theorem 4.2.3 and Theorem 4.2.4
immediately holds. In Lemma 4.3.1 and Lemma 4.3.3, we know that a rooted
matrix C ′ (and its translates) has a rooted eigenvector for ρr(C

′). In this
section, we shall apply properties of the equitable quotient to find some matri-
ces which are not translates of rooted matrices but still have positive rooted
eigenvectors. We use this method to reduce the size of C ′ in finding the bound
λ′ of λ = ρ(C) in Theorem 4.2.3 and Theorem 4.2.4.

Theorem 4.6.1. Let C = (cij) be a nonnegative n × n matrix with row-sum
vector (r1, . . . , rn)

T , and Π = {π1, π2, . . . , πℓ} a partition of {1, 2, . . . , n} with
n ∈ πℓ. Let C ′ = (c′ij) be an n×n matrix that admits an ℓ×ℓ equitable quotient
matrix Π(C ′) = (π′

ab) of C ′ with respect to Π satisfying the following (i)-(ii):

47



(i) C[−|n) ≤ C ′[−|n) and Π(C ′) has row-sum vector Π(r′) =(π(r′)1, π(r
′)2,

. . . , π(r′)ℓ)
T with π(r′)a ≥ maxi∈πa ri for 1 ≤ a ≤ ℓ.

(ii) Π(C ′) has a positive rooted eigenvector Π(v′) =(π(v′)1, π(v
′)2, . . . , π(v

′)ℓ)
T

for some nonnegative eigenvalue λ′.

Then
ρ(C) ≤ λ′. (4.6.1)

Moreover, if C is irreducible, then ρ(C) = λ′ if and only if

(a) ri = π(r′)a for 1 ≤ a ≤ ℓ and i ∈ πa, and

(b) c′ij = cij for all 1 ≤ i, j ≤ n such that for 1 ≤ b ≤ ℓ with j ∈ πb we
have π(v′)b > π(v′)ℓ.

Proof. Let S be the n × ℓ characteristic matrix of Π. From the construction
of Π and C ′, r′ = SΠ(r′) = (r′1, . . . , r

′
n)

T is the row-sum vector of C ′, and
v′ = SΠ(v′) is a positive rooted eigenvector of C ′ for λ′ by Lemma 2.1.5.
Since C is nonnegative, there exists a nonnegative left eigenvector vT of C
for ρ(C) by Theorem 2.1.1(i). Hence vTv′ > 0. Thus assumptions (i)-(iv) of
Theorem 4.2.3 hold, concluding ρ(C) ≤ λ′.

Suppose that C is irreducible. Then the above v is positive. Hence the
condition (b) of ρ(C) = λ′ in Theorem 4.2.3 becomes c′ij = cij for 1 ≤ i ≤
n,1 ≤ j ≤ n− 1 with v′j > v′n, and this is equivalent to the condition (b) here
from the structure of v′ = SΠ(v′). The condition (a) here is immediate from
that in Theorem 4.2.3 since r′i = π(r′)a for i ∈ πa.

Notice that the irreducible assumption of C in the second part of Theo-
rem 4.5.2 is not necessary. The following example shows that this is a must
in that of Theorem 4.6.1.

Example 4.6.2. Consider the following two 3× 3 matrices

C =


0 3 0

1 1 0

1 0 0

 , C ′ =


0 3 0

1 1 0

1 0 1

 and Π(C ′) =

(
0 3

1 1

)
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is the equitable quotient matrix of C ′ with respect to the partition Π =

{{1}, {2, 3}}. Note that C[−|3) = C ′[−|3) and (3, 2, 1)T ≤ (3, 2, 2)T , where
(3, 2, 1)T and (3, 2, 2)T are the row-sum vectors of C and C ′ respectively. Since
Π(C ′) + I is positive and rooted, Π(C ′) has a positive rooted eigenvector for
λ′ = ρ(Π(C ′)) = (1 +

√
13)/2 by Lemma 4.3.3(i). Hence assumptions (i)-(ii)

in Theorem 4.6.1 hold. By direct computing, ρ(C) = (1 +
√
13)/2, so the the

equality in (4.6.1) holds. However, r2 = 2 ̸= 1 = r3, a contradiction to (a) in
Theorem 4.6.1. This contradiction is because of the reducibility of C.

The following is a dual version of Theorem 4.6.1.

Theorem 4.6.3. Let C = (cij) be a nonnegative n × n matrix with row-sum
vector (r1, . . . , rn)

T , and Π = {π1, π2, . . . , πℓ} a partition of {1, 2, . . . , n} with
n ∈ πℓ. Let C ′ be an n × n matrix that admits an ℓ × ℓ equitable quotient
matrix Π(C ′) = (π′

ab) of C ′ with respect to Π satisfying the following (i)-(ii):

(i) C[−|n) ≥ C ′[−|n) and Π(C ′) has row-sum vector Π(r′) =(π(r′)1, π(r
′)2,

. . . , π(r′)ℓ)
T with π(r′)a ≤ mini∈πa ri for 1 ≤ a ≤ ℓ.

(ii) Π(C ′) has a positive rooted eigenvector Π(v′) =(π(v′)1, π(v
′)2, . . . , π(v

′)ℓ)
T

for some nonnegative eigenvalue λ′.

Then
ρ(C) ≥ λ′. (4.6.2)

Moreover, if C is irreducible then ρ(C) = λ′ if and only if

(a) ri = π(r′)a for 1 ≤ a ≤ ℓ and i ∈ πa, and

(b) c′ij = cij for all 1 ≤ i, j ≤ n such that for 1 ≤ b ≤ ℓ with j ∈ πb we
have π(v′)b > π(v′)ℓ.

Remark 4.6.4. (i) The positive assumption ofΠ(v′) in (ii) of Theorem 4.6.3
can be removed in concluding the first part ρ(C) ≥ λ′. The following is
a proof:
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Proof. From (i) and referring to (4.2.2), we have CQ ≥ C ′Q ≥ 0.
Let v′ = SΠ(v′) be a rooted eigenvector of C ′ for λ′ as shown in the
above proof. Then u = Q−1v′ is nonnegative by Lemma 4.2.2(i), so
Cv′ = CQu ≥ C ′Qu = C ′v′ = λ′v′. Since v′ is nonnegative, ρ(C) ≥ λ′

by Theorem 2.1.1(iii).

(ii) The following counterexample shows that to conclude ρ(C) ≤ λ′, the
positive assumption of Π(v′) in (ii) of Theorem 4.6.1 can not be removed:

C = C ′ =

(
1 2

0 2

)
, λ′ = 1, v′ =

(
1

0

)
, ρ(C) = 2, vT = (0, 1),

where the trivial partition Π = {{1}, {2}} of {1, 2} is adopted.

We provide an example in applying Theorem 4.6.1.

Example 4.6.5. Consider the following two 7×7 matrices C and C ′ expressed
below under the partition Π = {{1, 2, 3}, {4, 5}, {6, 7}} :

C =



2 1 3 3 3 12 0
4 2 1 4 2 6 4
2 3 1 4 1 8 3
3 5 3 1 1 3 4
5 6 1 1 0 3 3
0 2 1 2 2 6 0
2 2 0 2 1 1 4


, C ′ =



2 2 3 3 3 12 -1
4 2 1 4 2 6 5
2 3 2 4 2 8 3
4 5 3 1 1 3 3
5 6 1 1 1 3 3
1 2 1 2 2 6 -1
2 2 0 2 2 1 4


.

(4.6.3)
Apparently, C[−|7) ≤ C ′[−|7), and the row-sum vector (24, 23, 22, 20, 19, 13, 12)T

≤ (24, 24, 24, 20, 20, 13, 13)T , where (24, 23, 22, 20, 19, 13, 12)T and (24, 24, 24, 20,

20, 13, 13)T are the row-sum vectors of C and C ′ respectively. So assump-
tion (i) of Theorem 4.6.1 holds. Note that C ′ is not rooted and neither of its
translates. Since C ′ has equitable quotient matrix

Π(C ′) =


7 6 11

12 2 6

4 4 5
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with respect to Π, in which Π(C ′) + 2I is rooted. So assumption (ii) of Theo-
rem 4.6.1 holds with λ′ = ρr(C

′) by Lemma 4.3.1 and Lemma 4.3.3(i). Hence
by Theorem 4.6.1, ρ(C) ≤ ρr(Π(C

′)) ≈ 18.6936.

If we apply Lemma 2.1.2 by constructing the following nonnegative matrix
C ′′ ≥ C, and find its equitable quotient matrix Π(C ′′) with respect to the
above partition Π:

C ′′ =



2 2 3 3 3 12 0
4 2 1 4 2 6 6
2 3 2 4 2 8 4
4 5 3 1 1 3 4
5 6 1 1 1 3 4
1 2 1 2 2 6 0
2 2 0 2 2 2 4


, Π(C ′′) =


7 6 12

12 2 7

4 4 6

 ,

one will find the upper bound

ρ(C ′′) = ρ(Π(C ′′) ≈ 19.4

of ρ(C) which is larger than the previous one.

Remark 4.6.6. In Theorem 4.6.1 and Theorem 4.6.3, if the condition ”C is
nonnegative” is replaced by ”C has a nonnegative left eigenvector for λ” and
ρ(C) is replaced by λ, the inequality also holds. The proof is the same. For
the convenience in the next section, we do not state that in Theorem 4.6.1 and
Theorem 4.6.3.

4.7 More irrelevant columns
Considering the part πℓ of column indices of C and C ′ in the assumption (i) of
Theorem 4.6.1, the assumption C[−|πℓ] ≤ C ′[−|πℓ] for C ′ is not really neces-
sary. We might replace the columns indexed by πℓ in C ′ by any other columns
and adjust the values in the last column keeping the row-sums of C ′ unchanged.

51



In this situation, the columns of C ′ indexed by πℓ are irrelevant columns (in
the comparison of C and C ′). For example in Example 4.6.5, the values in
the 6-th column of C ′ can be changed to any values (e.g., (a, b, c, d, e, f, g)T ),
if the values in the 7-th column of C ′ make the corresponding change (e.g.,
(11− a, 11− b, 11− c, 6− d, 6− e, 5− f, 5− g)T correspondingly), i.e., columns
6 and 7 of C ′ are irrelevant. The following theorem generalizes this idea when
restricting Π[C ′] in Theorem 4.6.1 to be a rooted matrix or its translate.

Theorem 4.7.1. Let Π = {π1, π2, . . . , πℓ} be a partition of [n] with n ∈ πℓ,
and C be an n× n nonnegative matrix with row-sums r1 ≥ r2 ≥ · · · ≥ rn. For
1 ≤ a ≤ ℓ and 1 ≤ b ≤ ℓ− 1, choose r′′a, c

′′
ab such that

r′′a ≥ maxi∈πa ri;

c′′ab ≥
∑

j∈πb
cij for all i ∈ πa;

c′′ab ≥ c′′ℓb > 0 for a ̸= b;

r′′a ≥ r′′ℓ

and let

c′′aℓ = r′′a −
ℓ−1∑
j=1

c′′aj.

Then the ℓ × ℓ matrix C ′′ = (c′′ab) has a positive rooted eigenvector v′′ =

(v′′1 , v
′′
2 , . . . , v

′′
ℓ )

T for ρr(C
′′) and ρ(C) ≤ ρr(C

′′). Moreover, if C is irreducible,
then ρ(C) = ρr(C

′′) if and only if

(a) ri = r′′a for 1 ≤ a ≤ ℓ and i ∈ πa, and

(b)
∑

j∈πb
cij = c′′ab for all 1 ≤ a, b ≤ ℓ with v′′b > v′′ℓ and i ∈ πa.

Proof. From the construction of C ′′, C ′′ + dI is a rooted matrix with (C�� +
dI)[n|n) positive for d large enough, so C ′′ has a positive rooted eigenvector for
ρr(C

′′) by Lemma 4.3.1 and Lemma 4.3.3(i). In view of the construction of C ′

in Example 4.6.5, we construct an n× n matrix C ′ such that C ′ has equitable
quotient matrix Π(C ′) = C ′′ and assumptions (i)-(ii) of Theorem 4.6.1 hold for
λ′ = ρr(Π(C

′)). Hence the remaining follows from the conclusion of Theorem
4.6.1.
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Remark 4.7.2. Theorem 4.0.1 is a special case of Theorem 4.7.1 with Π =

{{1}, {2}, . . . , {ℓ − 1}, {ℓ, ℓ + 1, . . . , n}} and C ′′ = Mℓ(d, f, r1, r2, . . . , rℓ) as
shown in (4.3.2). To characterize when the equality holds, we needs to apply
Lemma 4.3.5(iii) by choosing a new ℓ to be the least t such that rt = rℓ. By
using the more irrelevant columns idea in Theorem 4.7.1, the assumption f :=

max1≤i ̸=j≤n cij and d := max1≤i≤n cii in Theorem 4.0.1 can be replaced by the
possible smaller number f := max1≤i≤n,1≤j≤ℓ−1,i ̸=j cij and d := max1≤i≤ℓ−1 cii

respectively.

A new proof of the following theorem proposed by Csikvári [8] is another
application of Theorem 4.7.1. This proof is systematic while the original proof
is somewhat tricky. An independent set is a set of vertices in a graph, no two
of which are adjacent.

Theorem 4.7.3 ([8]). Assume that the set K = {v1, v2, . . . , vk} forms a clique
in the graph G and V (G) \K = {vk+1, . . . , vn} forms an independent set. Let
e be the number of edges between K and V (G) \K. Then

ρ(G) ≤
k − 1 +

√
(k − 1)2 + 4e

2
. (4.7.1)

Moreover, the equality holds if and only if vi has the same neighborhood in
V (G) \K for each 1 ≤ i ≤ k.

Proof. Let C be the adjacency matrix of G according to the order v1, v2, . . . , vn
and vk+1 has the maximum degree among {vk+1, . . . , vn} without lose of gen-
erality. Let Π = {{1}, {2}, . . . , {k}, {k + 1, . . . , n}} and C ′′ = (c′′ij) be a
(k + 1)× (k + 1) matrix with a rooted eigenvector for ρr(C ′), where

c′′ij =


1, if i ̸= j and j ≤ k;
0, if i = j and i, j ≤ k;
deg(vi)− k + 1, if i ≤ k and j = k + 1;
deg(vk+1)− k, if i = k + 1 and j = k + 1.

Then ρ(G) ≤ ρr(C
′′) by Theorem 4.7.1. We can see that

C ′′′ =

(
k − 1 e

1 deg(vk+1)− k

)
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is the equitable quotient matrix of C ′′T with respect to the partition {{1, 2, . . . k},
{k + 1}}. So

ρ(G) ≤ ρr(C
′′) = ρr(C

′′′) =
k − 1− c+

√
(k − 1 + c)2 + 4e

2
(4.7.2)

≤
k − 1 +

√
(k − 1)2 + 4e

2
(4.7.3)

by Corollary 2.1.9, where c = k − deg(vk+1) ≥ 0. Note that if e > 0, then the
equality in (4.7.3) holds if and only if c = 0.

If vi has the same neighborhood in V (G) \K for each 1 ≤ i ≤ k, then

Π(C) =

(
k − 1 e/k

k 0

)

is the equitable quotient matrix of C with respect to the partition Π =

{{1, 2, . . . , k}, {k + 1, . . . , n}} of [n]. By Proposition 2.1.7, ρ(G) = ρ(Π(C))

and the equality in (4.7.1) holds. For the converse, suppose the equality in
(4.7.1) holds. Then the equalities in (4.7.2) and in (4.7.3) also hold. If e = 0,
then vi has the same neighborhood in V (G) \ K for each 1 ≤ i ≤ k. Now
assume e > 0. Then the equality in (4.7.3) implies c = 0 and deg(vk+1) = k. If
G is connected, then the equality in (4.7.2) and Theorem 4.7.1(a) imply that
deg(vj) = k for k + 1 ≤ j ≤ n. So vi has the same neighborhood in V (G) \K
for each 1 ≤ i ≤ k. If G is not connected, then the component G′ containing
K is the only component which is not an isolated vertex. Using G′ instead of
G, we get the conclusion we want.

Remark 4.7.4. If we remove the condition ”V (G)\ is an independent set” in
Theorem 4.7.3, (4.7.2) still holds.

The following is the dual theorem of Theorem 4.7.1.

Theorem 4.7.5. Let Π = {π1, π2, . . . , πℓ} be a partition of [n] with n ∈ πℓ,
and C an n × n nonnegative matrix with row-sums r1 ≥ r2 ≥ · · · ≥ rn. For
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1 ≤ a ≤ ℓ and 1 ≤ b ≤ ℓ− 1, choose r′′a, c
′′
ab such that

r′′a ≤ mini∈πa ri;

c′′ab ≤
∑

j∈πb
cij for all i ∈ πa;

c′′ab ≥ c′′ℓb > 0 for a ̸= b;

r′′a ≥ r′′ℓ

(4.7.4)

and let

c′′aℓ = r′′a −
ℓ−1∑
j=1

c′′aj. (4.7.5)

Then the ℓ × ℓ matrix C ′′ = (c′′ab) has a positive rooted eigenvector v′′ =

(v′′1 , v
′′
2 , . . . , v

′′
ℓ )

T for ρ(C ′′) and ρ(C) ≥ ρ(C ′′). Moreover, if C is irreducible,
then ρ(C) = ρ(C ′′) if and only if

(a) ri = r′′a for 1 ≤ a ≤ ℓ and i ∈ πa, and

(b)
∑

j∈πb
cij = c′′ab for all 1 ≤ a, b ≤ ℓ with v′′b > v′′ℓ and i ∈ πa.

4.8 Some new lower bounds of spectral radius
We shall apply Theorem 4.7.5 to obtain a lower bound of ρ(C) for a nonneg-
ative matrix C.

Theorem 4.8.1. Let C = (cij) be an n×n nonnegative matrix with row-sums
r1 ≥ r2 ≥ · · · ≥ rn. For 1 ≤ t < n, let Πt = {{1, . . . , t}, {t + 1, . . . , n}} be a
partition of [n]. Let d = maxt<i≤n cii and f = max1≤i≤n,t<j≤n,i ̸=j cij. Assume
that 0 < rn − (n− t− 1)f − d. Then

ρ(C) ≥
rt − f + d+

√
(rt − (2n− 2t− 1)f − d)2 + 4(n− t)(frn − (n− t− 1)f − d)

2
.

(4.8.1)
Moreover, if C is irreducible and f > 0, then the equality holds in (4.8.1) if

and only if r1 = rn or

(a) r1 = rt and rt+1 = rn, and
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(b)
∑

j∈[t] cij = rt − (n− t)f for all i ∈ [t], and∑
j∈[t] cij = rn − (n− t− 1)f − d for all t < i ≤ n.

Proof. The lower bound of ρ(C) in (4.8.1) follows by applying Theorem 4.7.5
with the following positive rooted matrix

C ′′ =

(
rt − (n− t)f (n− t)f

rn − (n− t− 1)f − d (n− t− 1)f + d

)
, (4.8.2)

which has row-sum vector (rt, rn)T and the assumptions in (4.7.4) and (4.7.5)
of Theorem 4.7.5 hold from the assumptions. Note that C ′′ has a positive
rooted eigenvector (v′′1 , v′′2)T for ρ(C ′′) by Lemma 4.3.3(i), and the value ρ(C ′′)

is as shown in the right of (4.8.1). To study the equality case in (4.8.1), we
apply conditions (a)-(b) in Theorem 4.7.5, in which condition (a) is exactly
the condition (a) of this theorem. If v′′1 > v′′2 then the condition (b) of this
theorem is exactly the condition (b) of Theorem 4.7.5. Notice that v′′2 = v′′1 if
and only if ρ(C ′′) = rt = rn by Theorem 2.1.1 using the irreducible property
of C ′′. This is also equivalent to r1 = rn under the condition (a).

The following corollary restricts Theorem 4.8.1 to binary matrix C.

Corollary 4.8.2. Let C = (cij) be an n × n (0, 1) matrix with row-sums
r1 ≥ r2 ≥ · · · ≥ rn > 0, and choose t ≥ n− rn + 1 and t ≤ n. Then

ρ(C) ≥ rt +
√
r2t − 4(n− t)(rt − rn)

2
. (4.8.3)

Moreover, if C is irreducible, then equality holds in (4.8.3) if and only if r1 = rn

or

(a) r1 = rt and rt+1 = rn, and

(b)
∑

j∈[t] cij = rt − (n− t) for all i ∈ [t], and∑
j∈[t] cij = rn − (n− t) for all t < i ≤ n.
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Proof. If t = n, then (4.8.3) becomes ρ(C) ≥ rn. So the corollary follows from
Lemma 2.1.3. Assume t < n. Since the assumptions in Theorem 4.8.1 clearly
hold with d = f = 1, the corollary also holds by (4.8.1) in this case.

One can easily check that the right hand side of (4.8.3) is at least rn (with
equality iff rt = rn) by applying Lemma 2.1.3 on (4.8.2) with d = f = 1, so
the above lower bound is better than the known one rn in Lemma 2.1.3.

4.9 Characterizing the eigenvector of a rooted
matrix

In the second parts of Theorem 4.7.1 and Theorem 4.7.5, we need the set K :=

{b|v′′b > v′′ℓ } to help us to characterize when the equality holds. Sometimes we
can find K from the entries in C ′′ by the following lemma.

Lemma 4.9.1. Let C ′′ = (c′′ab) be an ℓ × ℓ rooted matrix with row-sums
r′′1 , r

′′
2 , . . . , r

′′
ℓ not all equal and v′′ = (v′′1 , v

′′
2 , . . . , v

′′
ℓ )

T a positive rooted eigen-
vector of C ′′ for λ′, let K = {b|v′′b > v′′ℓ }, K1 = {b|r′′b > r′′ℓ } and when Kt is
defined, let Kt+1 = {a /∈

∪
s≤tKs|c′′ab > c′′ℓb for some b ∈

∪
s≤tKs}. Then

(i)
∪

s≤t Ks ⊆ K for each k ≥ 1, and

(ii) if the a-th row is equal to the ℓ-th row in C ′′ for each a /∈
∪

s≤tKs, then∪
s≤t Ks = K.

Proof. For 1 ≤ a ≤ ℓ, we have

ρ(C ′′)v′′a = (C ′′v′′)a =
ℓ∑

b=1

c′′abv
′′
b =

ℓ−1∑
b=1

c′′ℓbv
′′
b +

ℓ−1∑
b=1

(c′′ab − c′′ℓb)v
′′
b + c′′aℓv

′′
ℓ

≥
ℓ−1∑
b=1

c′′ℓbv
′′
b +

ℓ−1∑
b=1

(c′′ab − c′′ℓb)v
′′
ℓ + c′′aℓv

′′
ℓ =

ℓ−1∑
b=1

c′′ℓbv
′′
b + (r′′a − (r′′ℓ − c′′ℓℓ))v

′′
ℓ

(4.9.1)

=
ℓ∑

b=1

c′′ℓbv
′′
b + (r′′b − r′′ℓ )v

′′
ℓ ≥

ℓ∑
j=1

c′′ℓbv
′′
b = (C ′′v′′)ℓ = ρ(C ′′)v′′ℓ . (4.9.2)
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If r′a > r′ℓ, then the inequality in (4.9.2) is strict. Hence λ′v′a > λ′v′ℓ, so λ′ > 0

and a ∈ K. This proves the base case K1 ⊂ K. Assume Kt ⊂ K. We want
to prove Kt+1 ⊂ K. Choose a ∈ Kt+1. Then there exists b ∈ Kt such that
c′′ab > c′′ℓb and v′b > v′ℓ. Hence the inequality in (4.9.1) is strict and v′′a > v′′ℓ ,
proving a ∈ K. This proves

∪
s≤t Ks ⊂ K for t ≥ 1. If the a-th row is equal

to the ℓ-th row in C ′′ for each a /∈
∪

s≤t Ks, then v′′a = v′′ℓ for a /∈
∪

s≤t Ks and∪
s≤t Ks = K.

Corollary 4.9.2. Under the same assumption of Theorem 4.9.1, if K1 = [ℓ−1]

or the a-th row is equal to the ℓ-th row in C ′′ for each a satisfying r′′a = r′′ℓ ,
then K = K1 = {a|r′′a > r′′ℓ }.

4.10 Choosing C ′′ to get more bounds
In this section, for a n×n nonnegative matrix C, we provide a class of matrices
such that Mℓ(d, f, r1, r2, . . . , rℓ) is contained in it and each C ′′ in it satisfying
the assumptions in Theorem 4.7.1 (resp. Theorem 4.7.5).

Let C be an n × n nonnegative matrix with row-sums r1 ≥ r2 ≥ · · · ≥ rn

and Π = (π1, π2, . . . , πℓ) a partition of [n] with n ∈ πℓ. For 1 ≤ a ≤ ℓ,
1 ≤ b ≤ ℓ − 1, let sab =

∑
i∈πa,j∈πb

cij. Choose r′′a ≥ maxi∈πa ri and da for
1 ≤ a ≤ ℓ such that

(i) dℓ ≥ max1≤b≤ℓ−1 sℓb,

(ii) da ≥ max{max1≤b≤ℓ−1 sℓb,max1≤b≤ℓ−1 sab} for 1 ≤ a ≤ ℓ− 1,

(iii) da ≥ dℓ > 0 for 1 ≤ a ≤ ℓ− 1,

(iv) r′′a ≥ r′′ℓ for 1 ≤ a ≤ ℓ− 1,

and let C ′′ = (c′′ij) be the ℓ× ℓ matrix with row-sums r′′1 , . . . , r′′ℓ , where c′′ij = di
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for 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ℓ− 1:

C ′′ =


d1 · · · d1 r′′1 − (ℓ− 1)d1
... . . . ... ...

dℓ−1 · · · dℓ−1 r′′ℓ−1 − (ℓ− 1)dℓ−1

dℓ · · · dℓ r′′ℓ − (ℓ− 1)dℓ

 . (4.10.1)

Then C ′′ is rooted and (C,C ′′) satisfies the assumptions of Theorem 4.7.1.
There is a similar construction for Theorem 4.7.5.

The following lemma shows some information about the above C ′′ and how
to choose a better C ′′ for given d1, d2, . . . , dℓ−1.

Lemma 4.10.1. For ℓ a positive integer, di ≥ dℓ ≥ 0, r′′i ≥ r′′ℓ ≥ 0 for
1 ≤ i ≤ ℓ and (r′′i ) not all equal, let C ′′ = (c′′ij) is of the form in (4.10.1). Then
we have the following.

(i) ρ(C ′′) =

∑ℓ−1
i=1(di − dℓ) + r′′ℓ +

√
(
∑ℓ−1

i=1(di − dℓ)− r′′ℓ )
2 + 4dℓ

∑ℓ−1
i=1(r

′′
i − r′′ℓ )

2
.

(ii) Let v′′ = (v′′1 , . . . , v
′′
ℓ )

T be a rooted eigenvector of C ′′ for ρ(C ′′). Then

K = K1

∪
K2 = {i|r′′i > r′′ℓ }

∪
{i|di > dℓ},

where K,K1, K2 are the same as in Lemma 4.9.1.

(iii) Given d1, . . . , dℓ−1, r′′1 , . . . , r′′ℓ , let A =
∑ℓ−1

i=1(r
′′
ℓ +(ℓ−1)di−2r′′i )/(ℓ− 1)2

and B =
∑ℓ−1

i=1(r
′′
i − (ℓ− 1)di). Then for 0 ≤ dℓ ≤ min1≤i≤ℓ−1 di, ρ(C ′′)

decrease, if A ≥ min1≤i≤ℓ−1 di or B ≤ 0;
increase, if A ≤ 0 and B > 0;
decrease before A and increase after A, if 0 < A < min1≤i≤ℓ−1 di and B > 0.

Proof. (i) Let Π = {{1, . . . , ℓ−1}, {ℓ}}. Then Π(C ′′T ) is an equitable quotient
matrix of C ′′T . By Corollary 2.1.9,

ρ(C ′′) = ρ(C ′′T ) = ρ(Π(C ′′T )) = ρ(

( ∑ℓ−1
i=1 di dℓ∑ℓ−1

i=1(r
′′
i − (ℓ− 1)di) r′′ℓ − (ℓ− 1)dℓ

)
)

=

∑ℓ−1
i=1(di − dℓ) + r′′ℓ +

√
(
∑ℓ−1

i=1(di − dℓ)− r′′ℓ )
2 + 4dℓ

∑ℓ−1
i=1(r

′′
i − r′′ℓ )

2
.
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(ii) From K1 = {i|r′′1 > r′′ℓ },

K2 = {i /∈ K1|c′′ij > c′′ℓj for some j ∈ K1} = {i|r′′i = r′′ℓ and di > dℓ}.

So K1

∪
K2 = {i|r′′i > r′′ℓ }

∪
{i|di > dℓ}, K1

∪
K2 = {i|r′′i = r′′ℓ and di = dℓ}

and the i-th row is equal to the ℓ-th row for i ∈ K1

∪
K2. By Lemma 4.9.1,

K1

∪
K2 = K.

(iii) Let ℓ′ = ℓ− 1, a =
∑ℓ−1

i=1 di, b =
∑ℓ−1

i=1 r
′′
i , b′ =

∑ℓ−1
i=1(r

′′
i − (ℓ− 1)di) =

b− ℓ′a. Then we have a ≥ ℓ′dℓ, b > ℓ′r′′ℓ and

ρ(C ′′) =

∑ℓ−1
i=1(di − dℓ) + r′′ℓ +

√
(
∑ℓ−1

i=1(di − dℓ)− r′′ℓ )
2 + 4dℓ

∑ℓ−1
i=1(r

′′
i − r′′ℓ )

2

=
a+ r′′ℓ − ℓ′dℓ +

√
(a− r′′ℓ − ℓ′dℓ)2 + 4dℓ(b− ℓ′r′′ℓ )

2
.

Then
∂

∂dℓ
ρ(C ′′) =

1

2
(−ℓ′ +

−ℓ′(a− r′′ℓ − ℓ′dℓ) + 2(b− ℓ′r′′ℓ )√
(a− r′′ℓ − ℓ′dℓ)2 + 4dℓ(b− ℓ′r′′ℓ )

)

for 0 < dℓ < min1≤i≤ℓ−1 di. Note that (a − r′′ℓ − ℓ′dℓ)
2 + 4dℓ(b − ℓ′r′′ℓ ) > 0

since dℓ > 0. If −ℓ′(a − r′′ℓ − ℓ′dℓ) + 2(b − ℓ′r′′ℓ ) ≤ 0, then ∂
∂dℓ

ρ(C ′′) < 0. If
−ℓ′(a− r′′ℓ − ℓ′dℓ) + 2(b− ℓ′r′′ℓ ) ≥ 0, we have

(−ℓ′(a− r′′ℓ − ℓ′dℓ) + 2(b− ℓ′r′′ℓ ))
2 − ℓ′2((a− r′′ℓ − ℓ′dℓ)

2 + 4dℓ(b− ℓ′r′′ℓ ))

= 4(b− ℓ′r′′ℓ )(−ℓ′(a− r′′ℓ − ℓ′dℓ) + (b− ℓ′r′′ℓ )− ℓ′2dℓ)

= 4(b− ℓ′r′′ℓ )(b− ℓ′a).

Since b− ℓ′r′′ℓ > 0, 
∂

∂dℓ
ρ(C ′′) ≥ 0, if b− ℓ′a ≥ 0;

∂

∂dℓ
ρ(C ′′) ≤ 0, if b− ℓ′a ≤ 0.

Therefore, we can determine the sign of ρ(C ′′) by the sign of

−ℓ′(a−r′′ℓ−ℓ′dℓ)+2(b−ℓ′r′′ℓ ) = (ℓ−1)2dℓ−
ℓ−1∑
i=1

(r′′ℓ+(ℓ−1)di−2r′′i ) = (ℓ−1)2(dℓ−A)
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and the sign of

b− ℓ′a =
ℓ−1∑
i=1

(r′′i − (ℓ− 1)di) = B.

Remark 4.10.2. For an n× n nonnegative matrix C and any partition Π of
[n], we can choose C ′′ + cI for some c instead of C ′′ satisfying the condition in
Theorem 4.7.1 or Theorem 4.7.5 to get an upper or lower bound of the spectral
radius of C, where C ′′ is of the form in (4.10.1). Note that the set of such
C ′′ + cI contains Mℓ(d, f, r1, r2, . . . , rℓ).
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Chapter 5

BFP conjecture and weak BFP
conjecture

We found counter examples of BFP Conjecture for K(p, q, e) when e = p(q−1),
p ≥ 3 and q > p + 2 in Proposition 3.6.2 of Chapter 3. In this chapter we
devote ourselves to prove the weak BFP Conjecture for C(p, q, e). To do this
we need better upper bounds of ρ(G) for bipartite graph G, and one is given
in Section 5.1. The case e ≥ pq − q are settled in Section 5.2, and the case
p ≤ 5 in Section 5.2.2. In Section 5.3 and Section 5.4, we provide more tools
to help us get more results in Section 5.5.

5.1 Upper bounds of ρ(GD)

We have learned the upper bound ϕs,t of ρ(G) for a bipartite graph G in
Lemma 2.2.3. In this section two upper bounds ϕℓ and ϕ(D) of ρ(GD) will be
introduced.

5.1.1 Upper bound ϕℓ

We provide the upper bound ϕℓ of ρ(GD) here.
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For a decreasing sequence D = (d1, d2, . . . , dp) of positive integers, let

H =



d1 d2 d3 · · · dp

d2 d2 d3 · · · dp

d3 d3 d3 · · · dp
... ... ... . . . ...
dp dp dp · · · dp


with row-sums r1 ≥ r2 ≥ · · · ≥ rp as also shown in (2.2.2), where

ri = e+ (i− 1)di −
i−1∑
k=1

dk = e−
t∑

k=di+1

d∗k, (5.1.1)

e =
∑p

k=1 dk, t = d1 and D∗ = (d∗1, d
∗
2, . . . , d

∗
t ) is the conjugate partition of e.

Applying Theorem 4.7.1 with n = p, C = H and the partition Π =

{{1}, {2}, . . . , {ℓ − 1},{ℓ, ℓ + 1, . . . , p}}, we choose the ℓ × ℓ rooted matrix
C ′′ = (c′′ij), where c′′ij = di for 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ℓ− 1 and c′′iℓ = ri − (ℓ− 1)di,
i.e.,

C ′′ =



d1 d1 · · · d1 r1 − (ℓ− 1)d1

d2 d2 · · · d2 r2 − (ℓ− 1)d2

d3 d3 · · · d3 r3 − (ℓ− 1)d3
... ... . . . ... ...
dℓ dℓ · · · dℓ rℓ − (ℓ− 1)dℓ


. (5.1.2)

Then C ′T has equitable quotient matrix

Π′(C ′′T ) =

( ∑ℓ−1
k=1 dk dℓ∑ℓ−1

k=1(rk − (ℓ− 1)dk)
∑p

k=ℓ dk

)

with respect to the partition Π′ = {{1, 2, . . . , ℓ− 1}, {ℓ}} of [p]. Note that C ′′

has a rooted eigenvector for ρ(C ′′). So C ′′T has a nonnegative left eigenvector
for ρ(C ′′). Since Π′(C ′′T ) has characteristic polynomial

x2 − (
∑p

k=1 dk)x+
∑ℓ−1

k=1 dk ·
∑p

k=ℓ dk − dℓ
∑ℓ−1

k=1 rk + dℓ(ℓ− 1)
∑ℓ−1

k=1 dk

= x2 − (
∑p

k=1 dk)x+ rℓ
∑ℓ−1

k=1 dk − dℓ
∑ℓ−1

k=1 rk

= x2 − (
∑p

k=1 dk)x+ r1rℓ − r2ℓ − dℓ
∑ℓ

k=1 rk + ℓdℓrℓ
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and by Lemma 4.4.1,

ϕ2
ℓ := ρ(C ′′) = ρ(Π′(C ′′T )) =

r1 +
√

(2rℓ − r1)2 + 4dℓ
∑ℓ

i=1(ri − rℓ)

2
. (5.1.3)

Theorem 5.1.1. Let G be a bipartite graph and D = (d1, d2, . . . , dp) be the
degree sequence of one part of G in decreasing order. Then for 1 ≤ ℓ ≤ p, we
have ρ(G) ≤ ϕℓ, with equality if and only if G = GD, d1 = dt and dt+1 = dp

for some 1 ≤ t ≤ ℓ− 1.

Proof. By Lemma 2.2.1, (2.2.3), the above setting of C ′′, and the first conclu-
sion of Theorem 4.7.1, we have ρ(G) ≤ ρ(GD) =

√
ρ(H) ≤

√
ρ(C ′′) = ϕℓ. The

first inequality is equality if and only if G = GD by Lemma 2.2.1. We apply
the second conclusion of Theorem 4.7.1 to find that the second inequality is
equality if and only if

(a) rℓ = rp, and

(b) dmax(a,b) = hab = c′′ab = da for all 1 ≤ a, b ≤ ℓ − 1 with v′′b > v′′ℓ ,

and di = dmax(i,b) = hib = c′′ℓb = dℓ for all 1 ≤ b,≤ ℓ − 1 with v′′b >

v′′ℓ and for all i ≥ ℓ, where v′′ = (v′′1 , v
′′
2 , . . . , v

′′
ℓ ) is a positive rooted eigen-

vector of Π(C ′′) for ρ(C ′′).

Note that rℓ = rp if and only if dℓ = dp. By Lemma 4.9.1 and the structure
of C ′′, {b|v′′b > v′′ℓ } = K = K1 = {b|db > dℓ}. Hence conditions (a)-(b) are
equivalent to d1 = dt and dt+1 = dp for t to be the largest integer with dt > dℓ,
or 0 if no such t.

Corollary 5.1.2. Let G be a bipartite graph and D = (d1, d2, . . . , dp) be the
degree sequence of one part in decreasing order. Then

ρ(G) ≤

√
r1 +

√
r21 − 4dp

∑p
i=1(r1 − ri)

2
,

with equality if and only if G = GD and d1 = dt and dt+1 = · · · = dp for some
1 ≤ t ≤ p− 1.
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Proof. By Lemma 2.2.1, the case ℓ = p in Theorem 5.1.1 and using rp = pdp

to simplify ϕp in (5.1.3), we have

ρ(G) ≤ ρ(GD) ≤ ϕp =

√
r1 +

√
r21 − 4dp

∑p
i=1(r1 − ri)

2
.

5.1.2 Comparison of ϕℓ and ϕs,t

We compare the upper bound ϕℓ of ρ(GD) and the bound ϕs,t in Lemma 2.2.3.

Lemma 5.1.3. Let D = (d1, d2, . . . , dp) be a decreasing sequence of positive
integers and D′ = (d′1, d

′
2, . . . , d

′
q) be the degree sequence of the other part of

GD. Then for 1 ≤ s ≤ p, 1 ≤ t ≤ q with s− 1 = d′t,

ϕs ≤ ϕs,t.

Proof. Let C1 be an s× s matrix with

(C1)ij =

{
di, if 1 ≤ i ≤ s, 1 ≤ j ≤ s− 1;
did

′
t +
∑t−1

k=1(d
′
k − d′t)− (s− 1)di, if 1 ≤ i ≤ s and j = t,

i.e.,

C1 =



d1 · · · d1 d1d
′
t +
∑t−1

j=1(d
′
j − d′t)− (s− 1)d1

d2 · · · d2 d2d
′
t +
∑t−1

j=1(d
′
j − d′t)− (s− 1)d2

... . . . ... ...
ds−1 · · · ds−1 ds−1d

′
t +
∑t−1

j=1(d
′
j − d′t)− (s− 1)ds−1

ds · · · ds dsd
′
t +
∑t−1

j=1(d
′
j − d′t)− (s− 1)ds


.

We will show that C1 realizes the upper bound ϕs,t. Note that the transpose
of the equitable quotient matrix of CT

1 with respect to the partition Π =

{{1, . . . , s− 1}, {s}} is

Π(CT
1 )

T =

(∑s−1
i=1 di (

∑s−1
i=1 di)d

′
t + (s− 1)

∑t−1
j=1(d

′
j − d′t)− (s− 1)

∑s−1
i=1 di

ds dsd
′
t +
∑t−1

j=1(d
′
j − d′t)− (s− 1)ds

)
.
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Since C1 is rooted,

ρ(C1) = ρ(Π(CT
1 )) =

Xs,t +
√
X2

s,t − 4Ys,t

2
= ϕ2

s,t.

Note that the first s − 1 column of C1 is the first s − 1 column of C ′′

in (5.1.2) with ℓ = s, the s-th row-sum of C1 is equal to rs in (5.1.1), and
(di − ds)d

′
t ≥ ri − rs. Referring to Q in (4.2.1) with n = s, to C ′′ in (5.1.2),

and to the form of Q−1C ′Q in (4.3.1) with C ′ = C1 and C ′ = C ′′, we have
Q−1C1Q ≤ Q−1C ′′Q. Thus ϕ2

s = ρ(C ′′) ≤ ρ(C1) = ϕ2
s,t.

5.1.3 Upper bound ϕ(D)

For a decreasing sequence D = (d1, d2, . . . , dp) of positive integers, define

f(D) := dp
∑

1≤i<j≤p

(di − dj) (5.1.4)

and

ϕ(D) :=

√√√√e+
√

e2 − 4dp
∑

1≤i<j≤p(di − dj)

2
=

√
e+

√
e2 − 4f(D)

2
. (5.1.5)

Note that e =
∑p

i=1 di is the number of edges in GD.

Lemma 5.1.4. Let G be a bipartite graph and D be the degree sequence of one
part of G in decreasing order. Then

ρ(G) ≤ ϕ(D)

with equality if and only if G = GD and D has at most two values.

Proof. This is from Corollary 5.1.2 by using r1 − ri =
∑i−1

k=1(dk − di) and
r1 = e.
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k

p

dp

ℓdp

Figure 5.1: The ferrers diagram F (D♮) of D♮

5.2 Weak BFP conjecture for C(p, q, e)

We will show that the weak BFP conjecture for C(p, q, e) is true when e ≥ pq−q

or p ≤ 5, where p ≤ q. We need first a general setting.
When e and dp are fixed, to increase the value ϕ(D) in (5.1.5), we need to

decrease the value dp
∑

1≤i<j≤p(di − dj), i.e., making the values (di) as closed
as possible. The sequence D♮ below is for such purpose. Let

ℓdp = e− dp − (p− 1)k (5.2.1)

denote the remainder of e− dp dividing by p− 1, where

k = ⌊e− dp
p− 1

⌋

is the quotient. Define the sequence D♮ = (d♮1.d
♮
2, . . . , d

♮
p), where d♮p = dp and

d♮i =

{
⌊ e−dp

p−1
⌋+ 1, if 1 ≤ i ≤ ℓdp ;

⌊ e−dp
p−1

⌋, if ℓdp + 1 ≤ i ≤ p− 1.
(5.2.2)

Note that e = d♮1 + d♮2 + · · · + d♮p, and the Ferrers diagram F (D♮) has the
form shown in Figure 5.1.
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Proposition 5.2.1. With the notation above,

ϕ(D) ≤ ϕ(D♮).

Moreover, if dp ̸= 0, the above equality holds if and only if D = D♮.

Proof. If dp = 0 then ϕ(D) =
√
e = ϕ(D♮) by (5.1.4), (5.1.5). Assume dp > 0.

We will show that dp
∑

1≤i<j≤p(di − dj) takes minimum value if and only if
D = D♮ for given e and dp. If there is a pair (di, dj), i < j < p such that
di ≥ dj + 2, then choose one such pair (i, j) with j − i minimum and use
(di − 1, dj +1) to replace (di, dj) in the original sequence. It strictly decreases
the value 2dp(i − j) of dp

∑p−1
j=1(dj − dp). We can always find the above pair

(i, j) unless D = D♮. This completes the proof.

Set ϕ(e, p, dp) := ϕ(D♮) and G(e, p, dp) := GD♮ . Proposition 5.2.1 and the
proof of Theorem 5.1.1 imply that ρ(GD) ≤ ϕ(e, p, dp) with equality if and
only if D = D♮ has at most two values. We shall compare the values ϕ(e, p, dp)
if e, p are fixed and dp is a variable. Referring to (5.1.5), it is easier to compare
the values

f(e, p, dp) := dp
∑

1≤i<j≤p

(d♮i − d♮j), (5.2.3)

where d♮i is defined in (5.2.2). Note that

f(e, p, dp) = dp
∑

1≤i<j≤p

(d♮i − d♮j) = dp
[
(e− pdp) + ℓdp(p− 1− ℓdp)

]
, (5.2.4)

and

ρ(GD) ≤ ϕ(e, p, dp) =

√
e+

√
e2 − 4f(e, p, dp)

2
. (5.2.5)

To prove weak BFP Conjecture for C(p, q, e), we need to show that for any
graph G ∈ C(p, q, e) \ C0(p, q, e), there is a graph G♮ ∈ C0(p, q, e) such that
ρ(G) < ρ(G♮). The following lemma can help us find this G♮.

Lemma 5.2.2. Given e, p, dp, choose integers k, ℓdp with 0 ≤ ℓdp ≤ p − 1

such that e − dp = (p − 1)k + ℓdp . Assume a := dp + ℓdp − p + 1 > 0 and
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b := min(k, dp + ℓdp). Then dp ∈ [a, b], G(e, p, a), G(e, p, b) ∈ C0(p, q, e) and

ϕ(e, p, dp) ≤ max(ρ(G(e, p, a)), ρ(G(e, p, b))).

Moreover, if the equality holds, then dp = a or dp = b.

Proof. Clearly dp ∈ [a, b] and G(e, p, a), G(e, p, b) ∈ C0(p, k + 1, e) from the
setting. Also if dp + ℓdp − p + 1 > 0, then G(e, p, a) ∈ C0(p, k + 1, e); in
particular, ρ(G(e, p, c)) = ϕ(e, p, c) for c ∈ {a, b}. To study ϕ(e, p, dp), we only
need to compare the values f(e, p, dp) = dp((e − pdp) + ℓdp(p − 1 − ℓdp)) in
(5.2.4), where ℓdp = e− k(p− 1)− dp, and ∂ℓdp/∂dp = −1. Then

∂f(e, p, dp)

∂dp
= e+ (2ℓdp − 3p+ 1)dp + ℓdp(p− 1− ℓdp)

and
∂2f(e, p, dp)

∂d2p
= 4(ℓdp − p)− 2dp + 2 < 0

since ℓdp ≤ p − 1. So f(e, p, dp) takes the minimum value (resp. ϕ(e, p, dp)

takes maximum value) only if dp is an end point of interval [a, b]. Then

ϕ(e, p, dp) ≤ max(ϕ(G(e, p, a)), ϕ(G(e, p, b))) = max(ρ(G(e, p, a)), ρ(G(e, p, b)))

with equality only if dp = a or dp = b.

Note that if a = 0 in the above lemma, then ϕ(e, p, a) =
√
e.

5.2.1 The case e ≥ pq − q

We consider the case e ≥ pq − q in this subsection.

Theorem 5.2.3. If p ≤ q and e ≥ pq − q then weak BFP Conjecture for
C(p, q, e) is true.

Proof. Let G ∈ C(p, q, e) with one part degree sequence D = (d1, d2, . . . , dp).

If e = pq − q, then we choose G0 = Kp−1,q. Assume e > pq − q. Referring to
(5.2.1), a := dp + ℓdp − p + 1 = e − (p − 1)(k + 1) ≥ e − (p − 1)q > 0, where
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k = ⌊ e−dp
p−1

⌋. Let b as defined in Lemma 5.2.2. By Lemma 2.2.1, Lemma 5.1.4,
Lemma 5.2.1 and Lemma 5.2.2, we have

ρ(G) ≤ ρ(GD) ≤ ϕ(D) ≤ ϕ(D♮) = ϕ(e, p, dp) ≤ max(ρ(G(e, p, a)), ρ(G(e, p, b))),

and ρ(G) ̸= max(ρ(G(e, p, a)), ρ(G(e, p, b))) unlessG = GD = GD♮ ∈ C0(p, q, e).

5.2.2 The case p ≤ 5

We will show that weak BFP conjecture for C(p, q, e) is true when p ≤ 5 in
this subsection.

Theorem 5.2.4. Weak BFP conjecture for C(p, q, e) is true when p ≤ 5.

Proof. We prove by induction on q. The case q = 1 is trivial. Recall from
Section 3.7, the case p ≤ 3 is done for any q. Assume p ∈ {4, 5}. Pick
G ∈ C(p, q, e) with one part degree sequence D = (d1, d2, . . . , dp). We might
assume dp > 0. Then ρ(G) ≤ ρ(GD) ≤ ϕ(D) ≤ ϕ(D♮), and ρ(G) = ϕ(D♮)

if and only if G = GD = GD♮ and D♮ has at most two distinct values; in
particular G ∈ C0(p, q, e). Hence we might assume G = GD♮ and D♮ has three
different values. We assume d1 = q, otherwise G ∈ C(p, q− 1, e) and the proof
is finished by induction hypothesis. Then d1 = dt = q and dt+1 = dp−1 = q−1,
where 1 ≤ t = ℓdp < p − 1 as defined in (5.2.1). By Lemma 5.2.2, we might
also assume dp + ℓdp − p + 1 ≤ 0. There are only a few cases remaining. If
dp + ℓdp = p− 1 then we choose G0 = Kp−1,q and ρ(G) < ρ(G0) =

√
e. There

are only four cases (p, ℓdp , dp, e) ∈ {(4, 1, 1, 3q− 1), (5, 1, 1, 4q− 2), (5, 1, 2, 4q−
1), (5, 2, 1, 4q − 1)} remaining. Let d′1 = d′dp+ℓdp

= q, d′dp+ℓdp+1 = q − 1 = d′p−1,
and D′ = (d′1, d

′
2, . . . , d

′
p−1) be a sequence of length p − 1. Note that GD′ ∈

C0(p− 1, q, e) ⊆ C0(p, q, e). We compare the f -values to find ρ(G) < ϕ(D♮) ≤
ρ(GD′) = ϕ(e, p− 1, q− 1) with referring to (5.2.3) and (5.2.5) in the following
cases of (p, ℓdp , dp, e):

Case (4, 1, 1, 3q−1): f(3q−1, 4, 1) = 3q−3 > 2q−2 = f(3q−1, 3, q−1),
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Case (5, 1, 1, 4q−2): f(4q−2, 5, 1) = 4q−4 = 4q−4 = f(4q−2, 4, q−1),

Case (5, 1, 2, 4q−1): f(4q−1, 5, 2) = 38q−16 > 3q−3 = f(4q−1, 4, q−1),

Case (5, 2, 1, 4q−1): f(4q−1, 5, 1) = 4q−2 > 3q−3 = f(4q−1, 4, q−1).

5.3 A condition to reduce p

To prove weak BFP conjecture for C(p, q, e), the following properties may be
useful for doing induction on p+ q.

Lemma 5.3.1. Given D = (d1, d2, . . . , dp) with d1 ≥ d2 ≥ · · · ≥ dp > 0, p̃ < p,
0 ≤ s1 ≤ s2 ≤ · · · ≤ sp̃ with

∑p
i=p̃+1 di =

∑p̃
k=1 sk, and d1 + s1 ≥ d2 + s2 ≥

· · · ≥ dp̃ + sp̃, let D̃ = (d1 + s1, d2 + s2, . . . , dp̃ + sp̃). Then

ρ(GD) ≤ ρ(GD̃)

and ρ(GD) = ρ(GD̃) if and only if GD and GD̃ are complete bipartite graphs.

Proof. Let Π = {{1}, . . . , {p̃}, {p̃ + 1, . . . , p}} be a partition of [p] and C ′′ =

(c′′ij) be a (p̃+ 1)× (p̃+ 1) matrix, where

c′′ij =

{
H(D)ij + sj, if j ≤ p̃;

0, if j = p̃+ 1.

Note that

H(D) =



d1 · · · dp̃ dp̃+1 · · · dp
... . . . ... ... ...
dp̃ · · · dp̃ dp̃+1 · · · dp

dp̃+1 · · · dp̃+1 dp̃+1 · · · dp
. . . ...

dp · · · dp dp · · · dp


,
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C ′′ =



d1 + s1 d2 + s2 · · · dp̃−1 + sp̃−1 dp̃ + sp̃ 0

d2 + s1 d2 + s2 · · · dp̃−1 + sp̃−1 dp̃ + sp̃ 0
... ... . . . ... ... ...

dp̃−1 + s1 dp̃−1 + s2 · · · dp̃−1 + sp̃−1 dp̃ + sp̃ 0

dp̃ + s1 dp̃ + s2 · · · dp̃ + sp̃−1 dp̃ + sp̃ 0

dp̃+1 + s1 dp̃+1 + s2 · · · dp̃+1 + sp̃−1 dp̃+1 + sp̃ 0


.

By Theorem 4.7.1, we have

ρ(H(D)) ≤ ρ(C ′′). (5.3.1)

Since H(D)ij + sj ≤ H(D) + smax(i,j), we have C ′′(p̃+ 1|p̃+ 1) ≤ H(D̃) and

ρ(C ′′(p̃+ 1|p̃+ 1)) ≤ ρ(H(D̃)). (5.3.2)

So
ρ(H(D)) ≤ ρ(C ′′) = ρ(C ′′(p̃+ 1|p̃+ 1)) ≤ ρ(H(D̃)).

If GD and GD̃ are complete bipartite graphs, say they are of size e, then
ρ(GD) = ρ(GD̃) =

√
e. For the converse, if ρ(GD) = ρ(GD̃), then the equality

in (5.3.2) implies s1 = s2 = · · · = sp̃ > 0 since C ′′(p̃ + 1|p̃ + 1) is irreducible.
Suppose di ̸= dp̃+1 for some i. Then the i-th row-sum of C ′′ is larger than the
(p̃+ 1)-th row-sum of C ′′. By Lemma 4.9.1 and Theorem 4.7.1, H(D)[[p̃]|i] =
C ′′[[p̃]|i] and si = 0, a contradiction. So GD̃ is a complete bipartite graph and
so is GD.

5.4 Cubic bounds
The following are upper bounds of ρ(GD) which is a zero of a cubic polynomial.

Theorem 5.4.1. Given a decreasing sequence D = (d1, d2, . . . , dp) of positive
integers and 1 ≤ s ≤ p−1, let λ be the largest zero of the following polynomial

x3−r1x
2+[

p−1∑
i=s

di·
s−1∑
i=1

(di−ds)+dp

p−1∑
i=1

(di−(ri−r̃i))]x−dp

s−1∑
i=1

(di−ds)

p−1∑
i=s

(di−(ri−r̃i)),
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where ri is the i-th row sum of H(D) and

r̃i =

{
(s− 1)di + (p− s)ds if i ≤ s− 1;

(p− 1)di if s ≤ i ≤ p.

Then
ρ(GD) ≤

√
λ.

Proof. Let Π = {{1, . . . , s− 1}, {s, . . . , p− 1}, {p}} and C ′′ = (c′′ij), where

c′′ij =


ds, if i ≤ s− 1 and s ≤ j ≤ p− 1;
di, if j ≤ s− 1 or s ≤ i ∧ j ≤ p− 1;
ri − r̃i, if j = p.

That is,

C ′′ =



d1 d1 · · · d1 ds ds · · · ds r1 − r̃1

d2 d2 · · · d2 ds ds · · · ds r2 − r̃2
... ... . . . ... ... ... · · · ... ...

ds−1 ds−1 · · · ds−1 ds ds · · · ds rs−1 − r̃s−1

ds ds · · · ds ds ds · · · ds rs − r̃s

ds+1 ds+1 · · · ds+1 ds+1 ds+1 · · · ds+1 rs+1 − r̃s+1

... ... ... ... ... ... . . . ... ...
dp−1 dp−1 · · · dp−1 dp−1 dp−1

... dp−1 rp−1 − r̃p−1

dp dp · · · dp dp dp · · · dp dp



.

Then (H(D), C ′′) satisfies the assumption in Theorem 4.7.1 for ℓ = p and

ρ(GD) =
√

H(D) ≤
√

ρ(C ′′)

by Theorem 4.7.1. Note that C ′′T has the equitable quotient matrix Π(C ′′)

with respect to partition Π = {{1, . . . , s− 1}, {s, . . . , p− 1}, {p}}, where

Π(C ′′T ) =


∑s−1

i=1 di (s− 1)ds
∑s−1

i=1 (ri − r̃i)∑p−1
i=s di

∑p−1
i=s di

∑p−1
i=s (ri − r̃i)

dp dp dp


T

,
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which has characteristic polynomial

x3−r1x
2+[

p−1∑
i=s

di·
s−1∑
i=1

(di−ds)+dp

p−1∑
i=1

(di−(ri−r̃i))]x−dp

s−1∑
i=1

(di−ds)

p−1∑
i=s

(ds−(ri−r̃i)).

By Corollary 2.1.9, ρ(C ′′) = ρ(Π(C ′′T )) and the conclusion follows.

Lemma 5.4.2. Recall the symbols in Theorem 5.4.1, we have the following.

(i)
s−1∑
i=1

(di+ r̃i− ri) =
∑

1≤i<j≤s−1

(di− dj)+ (s− 1)

p−1∑
i=s

(ds− di)+
s−1∑
i=1

(di− dp),

(ii)
p−1∑
i=s

(di + r̃i − ri) =
∑

s≤i<j≤p

(di − dj) =
∑

s≤i<j≤p−1

(di − dj) +

p−1∑
i=s

(di − dp).

Proof. If i ≤ s− 1, then

di + r̃i − ri

= (di + (s− 1)di + (p− s)ds)− (idi +

p∑
j=i+1

dj)

=
s−1∑

j=i+1

(di − dj) +

p−1∑
j=s

(ds − dj) + (di − dp)

and
s−1∑
i=1

(di + r̃i − ri) =
∑

1≤i<j≤s−1

(di − dj) + (s− 1)

p−1∑
i=s

(ds − di) +
s−1∑
i=1

(di − dp).

If s ≤ i ≤ p− 1, then

di + r̃i − ri

= (di + (p− 1)di)− (idi +

p∑
j=i+1

dj)

=

p∑
j=i+1

(di − dj)

and
p−1∑
i=s

(di + r̃i − ri) =
∑

s≤i<j≤p

(di − dj) =
∑

s≤i<j≤p−1

(di − dj) +

p−1∑
i=s

(di − dp).
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5.5 Other partial results
To prove weak BFP conjecture for C(p, q, e), we have to show that for every
GD ∈ C(p, q, e)\C0(p, q, e), there is a G♮ ∈ C0(p, q, e) such that ρ(GD) < ρ(G♮).
Let D = (d1, d2, . . . , dp) (we say dp = 0 if the length of D is less then p).
If dp = 0, then GD ∈ C(p − 1, q, e) \ C0(p − 1, q, e). We replace p by p − 1

and prove it by induction on p. So we assume dp ≥ 1. Let e =
∑p

i=1 di

and e = (p − 1)q′ + m with 1 ≤ m < p − 1. If dp ≥ m, then there exists
G♮ ∈ C0(p, q, e) such that ρ(GD) < ρ(G♮) by Lemma 5.2.2. So we assume
dp < m. That is, in this section, we assume

(i) D = (d1, d2, . . . , dp) is a decreasing sequence of positive integers and
GD ∈ C(p, q, e) \ C0(p, q, e),

(ii) e = (p− 1)q′ +m, 1 ≤ m < p− 1, q′ ≤ q,

(iii) 1 ≤ dp < m.

Let

(iv) p̃ = p− 1, ec =
∑

i≤p−1:di<q′(q
′ − di).

Note that G(e, p̃, q′) = G(e, p − 1, q′) ∈ C0(p, q, e). Similarly, if m ≤ q′,
G(e, p,m) ∈ C0(p, q, e).

Proposition 5.5.1.
ρ2(G(e, p̃, q′)) > p̃q′

and ρ2(G(e, p̃, q′)) is the largest zero of

x2 − ex+m(p̃−m)q′.

If m ≤ q′, then
ρ2(G(e, p,m)) > p̃q′

and ρ2(G(e, p̃,m)) is the largest zero of

x2 − ex+m(q′ −m)p̃.
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Proof. We have
ρ2(G(e, p̃, q′))

=
e+
√

e2−f(e,p̃,q′)

2

=
e+
√

e2−4m(p̃−m)q′

2

=
e+
√

(p̃q′+m)2−4m(p̃−m)q′

2

=
p̃q′+m+

√
(p̃q′−m)2+4m2q′

2

> p̃q′

and ρ2(G(e, p̃, q′)) is the largest zero of

x2 − ex+m(p̃−m)q′.

If m ≤ q′, the proof is similar.

The following are some partial results.

Lemma 5.5.2. If ec ≤ dp, then G(e, p − 1, q′) ∈ C0(p, q, e) and ρ(G) <

ρ(G(e, p− 1, q′)).

Proof. It’s easy to see G(e, p−1, q′) ∈ C0(p, q, e) under the assumptions. Since
ec ≤ dp, we have ∑

i:d≥q′

(di − q′) ≤ m− dp + dp = m

and dm+1 ≤ q′. If dm+1 < q′, then
m∑
i=1

(di − dm+1)
∑

i=m+1

di

≥m · (q′(p̃−m) + dp − ec) (5.5.1)

≥mq′(p̃−m) = f(e, p− 1, q′).

If the equality in (5.5.1) holds, then D has at least three different values. By
Lemma 3.1.1, ρ(GD) < ρ(G(e, p− 1, q′)).

Now assume dm+1 = q′. We have
q∑

i=q′+1

d′i = m− dp + ec ≤ m ≤ d′q′ ,
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where D′ = (d′1, d
′
2, . . . , d

′
q′) is the degree sequence of the other part of GD.

Let D̃′ = (d′1, d
′
2, . . . dq′ ,

∑q
i=q′+1 d

′
i). By Lemma 5.3.1,

ρ(GD) = ρ(GD′) ≤ ρ(G
D̃′).

So we assume GD′ = G
D̃′ . That is,

d1 = d2 = · · · = dm−dp+ec = q′ + 1, dm−dp+ec+1 = · · · = dm+1 = q′.

Without lose of generality, let p̃ ≤ q′. If not, we use the graph GD′ instead of
GD.

Let s = m+1, g(x) = x3− ex2+Ax−B and λ be the largest zero of g(x),
where

A =

p−1∑
i=s

di ·
s−1∑
i=1

(di − ds) + dp

p−1∑
i=1

(di − (ri − r̃i)),

B = dp

s−1∑
i=1

(di − ds)

p−1∑
i=s

(di − (ri − r̃i)).

By Theorem 5.4.1, we have ρ(GD) ≤ λ. By Lemma 5.4.2,

A =

p−1∑
i=m+1

di ·
m∑
i=1

(di − dm+1) + dp

p−1∑
i=1

(di − (ri − r̃i))

=

p−1∑
i=m+1

di ·
m∑
i=1

(di − dm+1) + dp
∑

1≤i<j≤m

(di − dj)

+mdp

p−1∑
i=m+1

(dm+1 − di) + dp

p−1∑
i=1

(di − dp) + dp
∑

m+1≤i<j≤p

(di − dj)

and

B = dp

m∑
i=1

(di − dm+1)(
∑

m+1≤i<j≤p−1

(di − dj) +

p−1∑
i=m+1

(di − dp)).

Claim that

(1) A− f(e, p− 1, q′) ≥ dpp̃ and

(2) B < dpmp̃q′.
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(1) We have
p−1∑

i=m+1

di ·
m∑
i=1

(di − dm+1) = (q′(p̃−m)− ec)(m− dp + ec),

dp
∑

1≤i<j≤m

(di − dj) = 0, dp
∑

m+1≤i<j≤p

(di − dj) ≥ ecdp,

mdp

p−1∑
i=m+1

(dm+1 − di) = ecdpm,

dp

p−1∑
i=1

(di − dp) = dp((q
′ − dp)p̃+m− dp).

Then
A ≥ (q′(p̃−m)− ec)(m− dp + ec) + ecdpm+ dp((q

′ − dp)p̃+m− dp) + ecdp

= (m+ ec − dp)p̃q
′ −mq′(m− dp + ec)− ec(m− dp + ec) + dpp̃q

′

−d2pp̃+ dp(m− dp + ec) + ecdpm

= (m+ ec)p̃q′ −m2q′ +mq′(dp − ec) + (dp − ec)(m− dp + ec)− d2pp̃+ ecdpm

≥ mp̃q′ −m2q′ + ecp̃q′ +mq′(dp − ec)− d2pp̃

≥ m(p̃−m)q′ + ecmq′ +mq′(dp − ec)− d2pp̃

= f(e, p− 1, q′) + dpmq′ − d2pp̃

≥ f(e, p− 1, q′) + dpp̃(m− dp)

≥ f(e, p− 1, q′) + dpp̃.

(2) We have
m∑
i=1

(di − dm+1) = m− dp + ec,∑
m+1≤i<j≤p−1

(di − dj) ≤ (p̃−m− 2)
∑

m+1<j≤p−1

(dm+1 − dj) = ec(p̃−m− 2),

p−1∑
i=m+1

(di − dp) = (p̃−m)(q′ − dp)− ec.

Then
B ≤ dp(m− dp + ec)(ec(p̃−m− 2) + (p̃−m)(q′ − dp)− ec)

≤ dp(m− dp + ec)(p̃−m)(q − dp + ec)

< dpmp̃q′.
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Now we have (1)(2). Therefore, for x ≥ ρ2(G(e, p− 1, q′)),

g(x) = x(x2 − ex+m(p̃−m)q′) + (A−m(p̃−m)q′)x−B

> 0 + dpp̃ · p̃q′ − dpmp̃q′ > 0

by Proposition 5.5.1. So

ρ(GD) ≤ λ < ρ(G(e, p− 1, q′)).

Lemma 5.5.3. If m ≤ q′ and dp ≥ q′

2
, then ρ(GD) < ρ(G(e, p,m)) ∈

C0(p, q, e).

Proof. Note that

f(e, p, dp)−f(e, p,m) ≥ dpp̃(q
′−dp)−mp̃(q′−m) = p̃(dp−m)(q′−m−dp) > 0

since dp −m < 0 and q′ −m− dp ≤ q′ − (dp + 1)− dp ≤ −1. So f(e, p, dp) >

f(e, p,m) and

ρ(e, p, dp) ≤ ϕ(e, p, dp) < ϕ(e, p,m) = ρ(e, p,m).

Lemma 5.5.4. Suppose ec ≥ dp and dm+1 ≤ q′. Let s ≤ m + 1 be the least
number such that ds ≤ q′. Then we have the following.

(i) If q′(p̃− s+ 1) + dp − ec ≥ m, then ρ(GD) < G(e, p− 1, q′) ∈ C0(p, q, e).

(ii) If q′(p̃−s+1)+dp−ec ≤ q′, then ρ(GD) < ρ(GD̃) and GD̃ ∈ C(e, p−1, q),
where D̃ = (d1, d2, . . . , ds−1,

∑p
i=s di).

Proof. (i) Note that
s−1∑
i=1

(di − ds) ·
p∑

i=s

di

≥(m− dp + ec)(q′(p̃− s+ 1) + dp − ec) (5.5.2)

=mq′(p̃− s+ 1) + (ec − dp)(q
′(p̃− s+ 1) + dp − ec −m)

≥mq′(p̃−m) + (ec − dp)(q
′(p̃− s+ 1) + dp − ec −m)

≥mq′(p̃−m) = f(e, p− 1, q′).
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If the equality in (5.5.2) holds, then ds = q′ and D has at least three different
values. By Lemma 3.1.1, ρ(GD) < ρ(G(e, p − 1, q′)). Clearly G(e, p − 1, q′) ∈
C0(p, q, e).

(ii) Note that q′(p̃−s+1)+dp−ec =
∑p

i=s di. Then GD̃ ∈ C(e, p−1, q) and
GD̃ is not a complete bipartite graph. By Lemma 5.3.1, ρ(GD) < ρ(GD̃)
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Chapter 6

Conclusion

The following is a summary of this dissertation.

1. The extremal non-complete bipartite graph which has the maximum
spectral radius with e edges

• We show that bipartite graphs with e edges of the form Kp,q, K−
p′,q′

or K+
p′′,q′′ have larger spectral radii than the others in Corollary

3.3.3, and characterize the value ρ(G) of a bipartite graph G with
e edges in Figure 3.1.

• We also use the above properties to characterize the extremal non-
complete bipartite graph which has the maximum spectral radius
with e edges in Theorem 3.4.1.

• When e is even and neither e − 1 nor e + 1 is a prime, the two
graphs K−

p′,q′ and K+
p′′,q′′ are candidates to be extremal graph. We

determine which graph has larger spectral radius for e ≤ 100 in
Section 3.5.

2. The extremal bipartite graph which has the maximum spectral radius
with e edges and bi-order (p, q)

• We prove BFP conjecture for K(p, q, e) when e ∈ {st−1, st′+1 | s ≤
p, t ≤ q, t′ ≤ q − 1} in Theorem 3.6.1.
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• We give counter examples to BFP conjecture for K(p, q, e) when
q > p+ 2 and p ≥ 3 in Proposition 3.6.2.

• We prove weak BFP conjecture for C(p, q, e) in the cases e ≥ pq− q

with p ≤ q or p ≤ 5 in Theorem 5.2.3 and Theorem 5.2.4, respec-
tively.

• Weak BFP conjecture for C(p, q, e) is still open. To prove weak
BFP conjecture for C(p, q, e) in general, we use Lemma 5.3.1 and
Lemma 5.4.2 as tools and get some partial results. We show that if
a bipartite graph G ∈ C(p, q, e) satisfies some condition, then there
exists G♮ ∈ C0(p, q, e) such that ρ(G) ≤ ρ(G♮) with equality only if
G♮ ∈ C0(p, q, e) in Lemma 5.5.2, Lemma 5.5.3 and Lemma 5.5.4.

3. The method to find spectral bounds of a nonnegative matrix

• The most important theorem are Theorem 4.2.3 and Theorem 4.2.4.
They are the most general results in Chapter 4 but it is not so easy
to use them.

• From Theorem 4.2.3, Theorem 4.2.4 and some properties in Section
4.3, Section 4.4 and Section 4.6, we get Theorem 4.7.1 and Theorem
4.7.5 which are not so general but more convenient than the first
two.

• We can use above theorems to get many spectral bounds, for in-
stance Theorem 4.0.1, Theorem 4.5.2, Theorem 4.7.3, Theorem
4.8.1, Theorem 5.1.1 and Theorem 5.4.1.

• In Section 4.9, we give a lemma to help us to determine the setK :=

{b|v′′b > v′′ℓ } without computing the eigenvector v′′ = (v′′1 , . . . , v
′′
ℓ )

T .
This is used on characterising when the inequality in Theorem 4.7.1
or Theorem 4.7.5 is equality.

• Section 4.10 is about how to choose a C ′′ in Theorem 4.7.1 or The-
orem 4.7.5 to get a better spectral bound.
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