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Abstract

Kotlov, Lovász and Vempala in [1] offered a reformulation for the Colin de
Verdière graph invariant µ by introducing another graph invariant ν defined via
graph labellings. These two parameters are related by the equality µ(G)+ ν(G) =
|G| − 1 for G ̸= K2. In this paper we examine how these two invariants µ and
ν vary under some well-known graph operations, such as Cartesian products,
disjoint unions and graph joins.

First, we introduce ”almost one-directional” labelling to derive that for the
disjoint union of graphs {Gi}, max ν(Gi) ≤ ν(

∪
Gi) ≤ max ν(Gi) + 1. Also we

show a sufficient condition for the first equality to hold. This nearly character-
izes the behavior of ν under disjoint unions. As an application, we are able to
compute the exact value µ for complete multipartite graphs. The inequality also
provides us with some necessary conditions for a disconnected graph being ν-
minimal. Therefore, this also motivates us to look into how µ-maximal graphs
with separating cliques could be built up by smaller ones via clique sums. Using
the characterization of µ under clique sum proved by van der Holst, Lovász and
Schrijver in [4], we derive a criterion in judging whether a clique sum of two
µ-maximal graphs is µ-maximal. Lastly, we show that the growth rate of ν under
Cartesian products has a linear upper bound in the number of graphs while that
of µ has a exponential lower bound in the number of graphs.
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中文摘要

Kotlov、Lovász和 Vempala [1]以 graph labellings定義了一個圖不變量 ν 並以此
給出 Colin de Verdière圖不變量 µ的另一個等價定義。當 G ̸= K2 時，這兩個圖不
變量滿足等式 µ(G) + ν(G) = |G| − 1。這篇論文旨在探討 µ和 ν 在一些為人熟知
的圖運算下的行為，如 Cartesian products、disjoint unions和 graph joins。
首先我們引進 “almost one-directional” labelling來證明對於一系列的圖 {Gi}的

disjoint union，有不等式 max ν(Gi) ≤ ν(
∪
Gi) ≤ max ν(Gi) + 1。而且我們提供了

一個充分條件使得第一個等式成立。這近乎刻劃 ν 在 disjoint unions下的行為。作
為一個簡單的應用，我們能夠計算完全多部圖的 µ 值。除此之外，這個不等式
也提供一些判斷不連通圖是否為 ν-minimal graph 的必要條件。這也促使我們去
探討，要如何用小的 µ-maximal graphs 來生成一個給定的有 separating cliques 的
µ-maximal graph。藉由 van der Holst、Lovász和 Schrijver三人於 [4]中所刻劃的 µ
在 clique sum下的行為，我們給出一個判斷 µ-maximal graphs的 clique sum是否仍
是 µ-maximal的準則。最後我們證明 ν 在 Cartesian products下的成長速率有一個以
圖的片數為變數的線性成長的上界，而 µ則有一個指數成長的下界。
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1 Introduction

Throughout the text, all graphs G = (V, E) are finite, undirected, simple and loop-
less. All the matrices considered are over real numbers.

Given a connected graph G of order n, let A be the adjacency matrix of G. By Perron-
Frobenius Thoerem, we know the largest eigenvalue of A is of multiplicity 1. There-
fore, we are interested in the multiplicity of the second large eigenvalue of A. Indeed,
we consider the generalized adjacency matrices (with no constraints on the diagonal):

SG := {A ∈ R(n) | Aij > 0 if ij ∈ E and Aij = 0 if ij /∈ E, ∀i ̸= j },

where R(n) denotes the collection of all real symmetric matrices of order n. Again
by Perron-Frobenius Theorem, for a matrix A ∈ SG, the multiplicity of its largest
eigenvalue is 1. Thus, we want to know how large could the multiplicity of its second
large eigenvalue λ2 could be, i.e. to understand the value

max
A∈SG

multiplictiy of λ2(A).

For a given A ∈ SG, if we consider the matrix M := −A + λ2 I, then the original
problem is turned into understanding the corank of M. That is, if we let

OG := {M ∈ R(n) | Mij < 0 if ij ∈ E and Mij = 0 if ij /∈ E, ∀i ̸= j},

then the original problem is transferred to understanding max
M

corank(M) over all

matrices M ∈ OG with exactly one negative eigenvalue.

In 1990, Colin de Verdière [11] introduced an interesting graph invariant µ, consid-
ering the maximum corank of matrices in OG with exactly one negative eigenvalue,
subject to a nondegeneracy condition called the Strong Arnold Property. It turns out
that the invariant µ not only nicely describes topological properties of graphs, but
also links up with geometric graph representations. Before speaking more about µ,
we would like to provide its definition first. Our definition follows from the matrix
reformulation given by van der Holst, Lovász and Schrijver in [5].

Let G be a graph, not necessarily connected. For matrices A, B of the same size, let
A ◦ B denote their Schur product, where the (i, j)th entry of A ◦ B is AijBij.

Definition 1.1. ([2]) Let M, X ∈ R(n). Then X is said to fully annihilate M if

MX = M ◦ X = I ◦ X = O.

We say M possesses the Strong Arnold Property (SAP) if the only symmetric matrix
that fully annihilates M is the zero matrix.

Definition 1.2. A Colin de Verdière matrix for G is a matrix M ∈ OG which satisfies the
following conditions:

(M1) M has exactly one negative eigenvalue (counting multiplicity).

(M2) M possesses SAP.
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The Colin de Verdière graph invariant µ(G) is the maximum corank over all Colin de
Verdière matrices for G. If a Colin de Verdière matrix for G has corank µ(G), then it
is called a µ-optimal matrix for G.

Clearly, by (M1) for all graphs, we have µ(G) is less than |G|, the order of G.

Example 1.3. Let Kn denote the complete graph on n vertices. Observe that any
M ∈ OKn automatically satisfies SAP and −Jn ∈ OKn has corank n − 1, where Jn is
the n by n matrix with all entries equal to 1. Consequently, −Jn is a µ-optimal matrix
for Kn and µ(Kn) = n − 1. For n ≥ 2, SAP forces a µ-optimal matrix for Kn to have
exactly one zero in the diagonal and thus µ(Kn) = 1.

In general, SAP yields that for a non-edgeless graph G, µ(G) = max µ(Ci) over all
connected components Ci of G. Indeed, suppose a matrix M ∈ R(n) can be written
as a direct sum of two matrices, say M = M1 ⊕ M2, both M1 and M2 singular. For
i = 1, 2, pick a nonzero vector si in the kernel of Mi. Let s′1 = s1 ⊕ 0 and s′2 = 0 ⊕ s2.
Then s′1s′T2 + s′2s′T1 ∈ R(n) is nonzero and fully annihilates M. Conversely, if M2 is
invertible and M1 has SAP, then M has SAP. Suppose X ∈ R(n) fully annihilates

M1 ⊕ M2. Write X =

(
X1 XT

2
X2 X3

)
corresponding to the order of M1 and M2. The

nonsingularity of M2 forces X2 and X3 to be zero. Consequently, X1 is zero by the SAP
of M1. Thus X is zero and M has SAP. Also note that a symmetric matrix has rank 1 if
and only if it is of the form ±uuT for some vector u of appropriate size. Therefore, by
Perron-Frobenius Theorem, if a connected graph G of order n is not complete, then
all matrices in OG have corank at most n − 2. Together with the property of µ under
disjoint union and Example 1.3, we have that µ(G) ≤ |G| − 2 unless G is complete or
G = K2. Moreover, one can see that for graphs other than K1, due to Perron-Frobenius
Theorem and (M2), the condition (M1) can be replaced with

(M1’) M has at most one negative eigenvalue (counting multiplicity).

Colin de Verdière proved in [11] that µ is minor-monotone, that is if G′ is a minor of G
then µ(G′) ≤ µ(G). The proof is rather nontrivial, in which SAP plays an important
role. In view of Example 1.3, we have

µ(G) + 1 ≥ η(G) ≥ ω(G),

where ω(G) is the order of a maximum clique contained in G, and the Hadwiger
number η(G) is the order of a maximum clique minor in G. On the other hand, by
Graph Minor Theorem([6]), we know that there are only finitely many forbidden mi-
nors for graphs satisfying µ ≤ k for each nonnegative integer k. Denote the collection
by Fk. The amazing property of µ is that it is able to interpret topological proper-
ties of graphs via linear algebraic formulations. We list some results below. For a
complete proof, we refer one to the survey [5] for an overview.

µ(G) = 0 iff G = K1.(i)

µ(G) ≤ 1 iff G is a disjoint union of paths or equivalently F1 = {K1,3, K3}.(ii)

µ(G) ≤ 2 iff G is outplanar or equivalently F2 = {K2,3, K4}.(iii)

µ(G) ≤ 3 iff G is planar or equivalently F3 = {K3,3, K5}.(iv)

µ(G) ≤ 4 iff G is linkless embeddable or equivalently F4 = Petersen family.(v)
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In [1], Kotlov, Lovász and Vempala reformulated the definition of µ in terms of posi-
tive semidefinite matrix.

Theorem 1.4. ([5]) For G ̸= K2, the maximum corank among all A ∈ R(n) with properties
below is µ(G) + 1 :

(A1) for all i ̸= j, Aij < 1 if ij ∈ E(G), and Aij = 1 if ij /∈ E(G);

(A2) A is positive semidefinite;

(A3) A has the SAP with respect to G: if X ∈ R(n) such that Xij = 0 for i = j or ij ∈ E and
AX = O, then X = O.

In view of interests in large value of µ(G), they also defined a dual invariant of µ(G)
via graph vector representations. Consider a matrix A satisfying (A1)-(A3). There
exists an orthogonal matrix Q such that A = QTDQ for some diagonal matrix D
with diagonal nonnegative and decreasing. Writing D = D1/2D1/2, then we have
A = UTU, where U = D1/2Q. Therefore, we can view A as a gram matrix of vectors
in dimension d = rank(A) with Aij = uT

i uj, where ui ∈ Rd. Thus it leads to the
following definition.

Definition 1.5. ([1]) Let ν(G) be the smallest integer d such that a labelling i 7→ ui ∈
Rd with the following properties exists :

(U1) for all i ̸= j, uT
i uj < 1 if ij /∈ E(G), and uT

i uj = 1 if ij ∈ E(G);

(U2) if X ∈ R(n) satisfies Xij = 0 for i = j or ij /∈ E(G) and ∑j Xjiuj = 0 for each i,
then X = O.

The mapping i 7→ ui with property (U1) is called a gram labelling of G. A gram
labelling with property (U2) is said to be nondegenerate.

Remark 1.6. Let U be the matrix with ui being the ith column. Then the condition of
(U2) can be reformulated as

(U2’) if X ∈ R(n) satisfies Xij = 0 for i = j or ij /∈ E(G) and UX = O, then X = O.

Let G denote the complement graph of G. As a consequence of Theorem 1.4, we have

Theorem 1.7. ([1]) For G ̸= K2, ν(G) = n − µ(G)− 1 and ν(K2) = 1.

It follows from the minor-monotonicity of µ and the above identity that ν is decreas-
ing under taking subgraphs. However, ν is far from being minor-monotone as it was
shown in [1] that every graph G has a subdivision G′ such that ν(G′) ≤ 4. Neverthe-
less, there is an unexpected connection between µ and ν.

Theorem 1.8. ([1]) The inequality ν(G) ≤ µ(G) + 1 holds for all planar graphs G.

They further proposed the conjecture that the inequality shall hold in general, known
as the Graph Complement Conjecture, which remains unsolved. Also, they asked
whether µ = ν for graphs with nice properties, such as being vertex-transitive and
twin-free. We will show that the answer is negative for ν large. Indeed, we prove the
following
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Proposition 1.9. Let {Gi}i∈N be a family of non-edgeless graphs with bounded orders. Then

lim
r→∞

µ(□r
i=1Gi)

ν(□r
i=1Gi)

= ∞

In understanding the topological characterizations and obstructions for µ, we also
consider the following graphs.

Definition 1.10. We say a graph G is µ-maximal if G is a complete graph or µ(G+ e) >
µ(G) for any edge e ∈ E(G). We say G is ν-minimal if for any subgraph H of G,
ν(H) < ν(G) if H ̸= G.

Clearly, K2 is the only ν-minimal graph for ν = 1. It is also easy to verify that ν-
minimal graphs for ν = 2 are 3K2 and P4 (path on 4 vertices). In [1], they fully
characterize graphs for ν = 2. Consequently, ν-minimal graphs for ν = 3 are known;
the disconnected ones are Ck ∪ K2, k ≥ 5, the disjoint union of a cycle on k vertices
and an edge. It seems that K2 plays an important role in understanding the behavior
of ν under disjoint union. This observation leads to one of our main results proved
in section 3 that describes the behaviour of ν under disjoint union.

Theorem 1.11. Let G, G1, . . . , Gr be graphs such that ν(G) ≥ ν(Gi) for each i. Then

ν(G) ≤ ν(G ∪
r∪

i=1

Gi) ≤ ν(G) + 1.

Moreover, if ν(G ∪ K2) = ν(G) > 1 and for each Gi there exists a vertex vi such that
ν(Gi − vi) < ν(G), then the first equality holds.

As a direct consequence of Theorem 1.11, we can compute the exact value of µ for all
complete multipartite graphs. It has been shown in [5] that for p ≥ q,

µ(Kp,q) =

{
q if p < 3;
q + 1 if p ≥ 3;

One shall see later in section 3 that the values of µ for complete multipartite graphs
are almost only dependent on the order of a maximum coclique. Moreover, Theorem
1.11 provides some necessary conditions for disconnected graphs being ν-minimal
graphs. Thus, it motivates us to analyze those µ-maximal graphs that have separating
cliques, since their complements are ν-minimal and connected. In section 4, we will
show that all µ-maximal graphs can be built up from those with no separating cliques
via clique sum under certain criterion. In section 5, we investigate some inequalities
for µ and ν under Cartesian products and prove Proposition 1.9.

2 Notations and terminology

Let G = (V, E) be a graph of order n. For simplicity, sometimes G is used to denote
its vertex set if the context is clear. If vertices i, j ∈ V are adjacent, we denote it by
i ∼ j or ij ∈ E. The set of neighbors of S ⊂ V in G is

NG(S) := {u ∈ V − S|uv ∈ E for some v ∈ S}.
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For an edge subset F of E(K|G|), G + F := (V, E ∪ F). If F = {e}, then we simply
write G + F as G + e. A graph G′ = (V′, E′) is a subgraph of G, denoted by G′ ≤ G, if
V′ ⊂ V and E′ ⊂ E. Moreover, we say G′ is an induced subgraph of G if for i, j ∈ V′,
ij ∈ E′ if and only if ij ∈ E. Equivalently, G′ may be thought of as a graph obtained
from deleting the vertex set S = V − V′ in G. In this case, we write G′ as G[V′],
or simply V′ or G − S if the context is clear. If G′ is a graph obtained from G by a
series of vertex deletions, edge deletions, and edge contractions, then we say G′ is a
minor of G, denoted by G′ ⪯ G. A clique in G is a (induced) complete subgraph of
G; a coclique is an induced edgeless subgraph of G. A (connected) component of G is a
maximal connected induced subgraph of G. Throughout the context, Cn may denote
either a cycle on n vertices or a component of a graph. There shall be no confusion.
We write Jn and In for the all 1’s matrix and the identity matrix of order n respec-
tively. The boldfaced 1 is used to denote the vectors with all entries equal to 1. Zero
vectors are simply denoted by 0, and the zero matrices are written as O. Their orders
will not be specified unless needed.

Let G1 and G2 be graphs. Their union is G1 ∪ G2, where V(G1 ∪ G2) = V(G1)∪ V(G2)
and E(G1 ∪ G2) = E(G1) ∪ E(G2). Moreover, if V(G1) ∩ V(G2) is empty, then we say
the union is disjoint. Their Cartesian product is G1□G2, where V(G1□G2) = V(G1)×
V(G2) and (i, k)(j, l) ∈ E(G1□G2) if i = j and k ∼ l or i ∼ j and k = l. Their Kronecker
product is G1 × G2, where V(G1 × G2) = V(G1)× V(G2) and (i, k)(j, l) ∈ E(G1 × G2)
if i ∼ j and k ∼ l. Their strong product is G1 ⊠ G2 := G1□G2 ∪ G1 × G2 (identifying
the vertex sets). Their join is G1 ∨ G2, which is obtained from their disjoint union by
adding all edges between G1 and G2.

3 Characterizations of ν under disjoint union

In this section, all unions of graphs are disjoint.

This section is devoted to proving Theorem 1.11 and deriving some of its conse-
quences. Note that in a gram labelling, for an isolated vertex, we can always label
it with the zero vector, hence we may assume that each graph has no isolated ver-
tex from now on. The idea of the proof is rather simple. We use a disjoint edge
as a detector. If the original graph can be inserted with one disjoint edge without
increasing ν, then it is possible to insert arbitrarily many disjoint edges, hence those
graphs with ”almost one-directional” labellings without increasing ν. Now we give
the precise definition of ”almost one-directional” labelling.

Definition 3.1. A graph G is said to have a central gram labelling in Rd if ∃ u ∈ Rd

such that for each ϵ > 0, there exists a nondegenerate gram labelling i 7→ ui in Rd

for G satisfying |ui − u| < ϵ for all i ∈ G. The vector u is termed the associated central
vector.

In the above definition, one can view each vector ui as a function from positive real
numbers to Rd.

Example 3.2. Fix n ≥ 3. We’ve shown that µ(Kn) = 1. Consequently, Theorem 1.7
implies ν(Kn) = n − 2. Let u be a unit vector in Rn−2 and {u, u4, . . . , un} be an
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orthonormal basis of Rn−2. Take any nonzero real number α. Let vi be u if i ≤ 3 and
let vi be u + αui if i > 3. Then i 7→ vi is a nondegenerate gram labelling for Kn in
Rn−2. Indeed, if X ∈ R(n) has zero diagonal and for each i, ∑j Xjivj = 0. Then for
j > 3, as {u, u4, . . . , un} is orthonormal, we have Xji = 0 for all i. By the symmetry of
X, we have

X =

(
X′ O
O O

)
,

where X′ ∈ R(3) with zero diagonal. Now for i = 1, the condition 0 = ∑j Xj1vj =

(X′
21 + X′

31)u implies X′
21 = −X′

31. Similarly, X′
12 = −X′

32 and X′
13 = −X′

23. Again
by symmetry of X′, we have X′ = O, hence X = O. Therefore, Kn has a central
gram labelling in Rn−2 with u being the associated central vector as |α| can be taken
arbitrarily small.

Observe that if G has a central gram labelling in Rd, then since G is assumed to have
no isolated vertices, hence non-edgeless, the associated central vector u must have
norm 1. If not, then for each distinct i,j, we have

|uT
i uj − uTu| = |(ui − u)Tuj + uT(uj − u)|

≤ |(ui − u)||uj|+ |u||uj − u|
< ϵ(|u|+ |uj − u|+ |u|) < ϵ(2|u|+ ϵ),

which would yield uT
i uj ̸= 1 by taking ϵ sufficiently small, hence a contradiction.

Moreover, let v be any other unit vector in Rd, we may choose an orthogonal matrix
Q of order d that sends u to v. Now since Q is an isometry, the new labelling i 7→ Qui
is also a gram labelling for G in Rd. The nondegeneracy is preserved as one can
easily see via (U2’) that QUX = O if and only if UX = O. The associated central
vector of the new labelling is v. Consequently, G possessing central gram labelling is
independent of the choice of unit vectors.

We break the proof of Theorem 1.11 into three lemmas.

Lemma 3.3. For every graph, G and G ∨ K1 have central gram labellings in Rν(G)+1.

Proof. By vertex deletion, it suffices to show for G∨K1. Let i 7→ ui be a nondegenerate
gram labelling for G in Rν(G). Let M = maxi∈G |ui|. Now given ϵ > 0, take α ∈
(0, π/2) such that both (1 − cos α)2 + (M sin α)2 and (1 − sec α)2 are smaller than ϵ2.
Let s denote the added vertex. Then label each i ∈ G with vi = cos α ⊕ (sin α)ui and
s with vs = sec α ⊕ 0. For i ̸= j in G, we have

vT
i vj = cos2 α + (sin2 α)uT

i uj = 1 + (sin2 α)(uT
i uj − 1),

which is equal to 1 if i ∼ j and is less than 1 otherwise. Since sin α > 0 and i 7→ ui is
nondegenerate, by the choice of vs, it is easy to check that i 7→ vi is a nondegenerate
gram labelling for G ∨ K1. Indeed, let U and V be the matrices corresponding to the
labellings i 7→ ui and i 7→ vi respectively with s indexed 1. Suppose that there exists
X violating (U2’) for V. Then X takes the form

X =

(
0 yT

y X′

)
,

6



where y ∈ R|G| and X′ ∈ R(|G|) satisfying X′
ij = 0 for i = j or ij /∈ E(G). Then

O = VX =

(
sec α cos α · 1T

O sin α · U

)(
0 yT

y X′

)
=

(
cos α · 1Ty sec α · yT + cos α · 1TX′

sin α · Uy sin α · UX′

)
Then nondegeneracy of i 7→ ui implies that X′ = O and therefore y = 0. Thus X = O.
Moreover, for i ̸= s,

|1 ⊕ 0 − vi|2 = (1 − cos α)2 + (|ui| sin α)2 ≤ (1 − cos α)2 + (M sin α)2 < ϵ2,

and |1 ⊕ 0 − vs|2 = (1 − sec α)2 < ϵ2, that is 1 ⊕ 0 is the associated central vector.

Lemma 3.4. For d > 1, if G1 and G2 have central gram labellings in Rd, then so does their
union.

Proof. Given ϵ > 0, take 0 < δ < ϵ2/2 and pick two unit vectors u, v ∈ Rd such that
uTv = 1 − δ and thus |u − v| =

√
2δ. Choose ϵ1, ϵ2 > 0 such that ϵ1 + ϵ2 + ϵ1ϵ2 < δ

and ϵ2 < ϵ−
√

2δ. Let i 7→ ui and k 7→ vk be nondegenerate gram labellings of G1 and
G2 in Rd with associated central vectors u and v respectively such that |ui − u| < ϵ1,
|vk − v| < ϵ2 for each i, k. Then for each i, k we have

|uT
i vk − uTv| = |(ui − u)Tvk + uT(vk − v)|

≤ |ui − u||vk|+ |u||vk − v|
< ϵ1(1 + ϵ2) + ϵ2 < δ,

and consequently uT
i vk < uTv+ δ = 1. Moreover, for each k, |vk − u| ≤ |vk − v|+ |v−

u| < ϵ2 +
√

2δ < ϵ. Note that the nondegeneracy only needs to be checked on each
component. Thus the union of i 7→ ui and k 7→ vk is a nondegenerate gram labelling
for G1 ∪ G2 with the associated central vector u.

Lemma 3.5. Let G1 be a graph such that ν(G1 ∪ K2) = d. If a nonedgeless graph G2 has a
central gram labelling in Rd, then ν(G1 ∪ G2) = d.

Proof. Let i 7→ ui be a nondegenerate gram labelling for G1 ∪ K2 in Rd. Let s and s′

denote the vertices of K2. Since uT
s us′ = 1, we may assume |us| ≥ 1. Take v = us/|us|.

Let δ = mini∈G1(1 − uT
i v) and M = maxi∈G1 |ui|. By assumption we have δ > 0, and

take ϵ = δ/M. Let k 7→ vk be a nondegenerate gram labelling for G2 in Rd with the
associated central vector v such that |vk − v| < ϵ. Consequently for i ∈ G1, k ∈ G2,
we have

|uT
i vk − uT

i v| ≤ |ui||v − vk| < Mϵ = δ,

hence uT
i vk < uT

i v + δ ≤ 1. Therefore the union of i(∈ G1) 7→ ui and k 7→ vk is a
nondegenerate gram labelling for G1 ∪ G2.

Proof. (of Theorem 1.11) We may assume ν(G) ≥ 1. By Lemma 3.3, each graph has
a central gram labelling in Rν(G)+1. Thus the inequality holds by Lemma 3.4. Now
suppose ν(G ∪ K2) = ν(G) > 1 and for each Gi there exists a vertex vi such that
ν(Gi − vi) < ν(G). Let G′

i = (Gi − vi) ∨ K1, which has a central gram labelling in
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Rν(G) by Lemma 3.3. By Lemma 3.4 and 3.5, ν(G ∪ ∪r
i=1 G′

i) = ν(G). Since Gi ≤ G′
i ,

the result then follows from the monotonicity of ν under taking subgraphs.

The following proposition with H = Gi and n = ν(G) helps us to find the first
equality in Theorem 1.11.

Proposition 3.6. For a positive integer n > 1, if |H| ≤ n + 3 and its complement H is not
a subgraph of cycle Cn+3, then H has a vertex v such that ν(H − v) < n.

Proof. By monotonicity of ν under taking subgraphs, it suffices to show for H with
order n + 3 and whose complement aside from isolated vertices is a claw or a cycle
on less than n + 3 vertices. Let v be an isolated vertex in H. Then H = H′ ∨ {v},
where ν(H′) = n − 1 by Theorem 1.7 and characterization of µ = 2.

It is shown that for a graph G and a vertex v ∈ G, we have

Theorem 3.7. ([5]) µ(G) ≤ µ(G − v) + 1. Moreover, if v is connected to all other vertices
and G − v is not K2 or empty, then the equality holds.

Consequently, µ(G) + 2 ≥ µ(G ∨ K2) ≥ µ(G) + 1 and the second equality holds if G
is complete; together with Theorem 1.7 and 1.11, we can describe the behavior of µ
under graph join.

Corollary 3.8. Let G, G1, . . . , Gr be graphs distinct from K2 such that |G| − µ(G) ≥ |Gi| −
µ(Gi) for each i. Then

µ(G) +
r

∑
i=1

|Gi| ≥ µ(G ∨ G1 ∨ · · · ∨ Gr) ≥ µ(G) +
r

∑
i=1

|Gi| − 1.

Moreover, if µ(G ∨ K2) = µ(G) + 2 and |G| − µ(G) ≥ 3 and for each Gi there exists a
vertex vi such that |G| − µ(G) > |Gi − vi| − µ(Gi − vi), then the first equality holds.

As |G| ≥ µ(G) + 2 iff G ̸= K2 and is not complete, the corollary would imply the for-
mer result that for G1, G2 ̸= K2, µ(G1 ∨ G2) ≥ µ(G1) + µ(G2) + 1. Also we can fully
characterize the value of µ(G) for complete multipartite graphs, which is an immedi-
ate corollary of Lemma 3.4 and Example 3.2. For the convenience of descriptions, let
t ∈ N and n1 ≥ n2 ≥ . . . nt > 1 = nt+1 = . . . = nr be integers and set n = ∑r

i=1 ni.

Corollary 3.9. If n1 ≥ 4, then ν(
∪r

i=1 Kni) = n1 − 2.

Since ν-minimal graphs for ν = 2 are 3K2 and P4, we have that for complete multi-
partite graphs with n1 ≤ 3, ν(

∪r
i=1 Kni) equals 1 if t ≤ 2 and equals 2 if t > 2. As a

direct consequence of Theorem 1.7, we have

Corollary 3.10.

µ(Kn1,n2,...,nr) =


n − n1 + 1, if n1 ≥ 4, or if n1 = 3 and t ≤ 2;
n − 3, if n1 = 2 and t > 2;
n − n1, otherwise.

8



Let Kn −Kn1 denote the graph of order n obtained from Kn by deleting edges induced
on one of its subgraph Kn1 , where 1 < n1 < n. Consequently, for any graph G with
Kn1,n2,...,nr ≤ G ≤ Kn − Kn1 ,

µ(G) ∈
{

{n − n1 + 1}, if n1 ≥ 4, or if n1 = 3 and t ≤ 2;
{n − 2, n − 3}, otherwise (can be explicitly known via ν(G)).

Theorem 1.11 and Proposition 3.6 also give some basic characterizations for discon-
nected ν-minimal graphs. Note that Ck+2 ∨ K2 is a maximal planar graph on k + 4
vertices for all k ≥ 2, or equivalently, it is a µ-maximal graph for µ = 3 by characteri-
zations for µ. Thus Ck+2 ∪ K2 is a ν-minimal graph for ν = k by Theorem 1.7.

Corollary 3.11. If a ν-minimal graph for ν = k is disconnected and distinct from Ck+2 ∪ K2
then it takes one of the two forms:

∪r+1
i=1 Gi or K2 ∪

∪r
i=1 Gi, where each Gi is connected,

ν(Gi) = k − 1 and for every vertex v ∈ Gi, ν(Gi − v) = k − 1. In particular, |Gi| ≥ k + 3.

We do not know at most how many components does a ν-minimal graph have in
general. It would be informative to find another family of disconnected ν-minimal
graphs aside from Ck+2 ∪ K2 and Ck+3 ∪ K2, k ≥ 2, or to prove some necessary condi-
tions. Indeed, we would like to ask whether K2 is the only detector, that is

Conjecture 3.12. For i = 1, 2, if ν(Gi) = ν(Gi ∪ K2) = k, is ν(G1 ∪ G2) = k?

In classical extremal graph theory, it is asked whether for each graph G, e(G) :=
|E(G)| ≤ (η(G)− 1)|G| − (η(G)

2 ), which is known to be true only for η(G) ≤ 6 and
fail for η(G) > 6. For more on Hadwiger numbers, we refer one to the survey [7]
written by Seymour. McCarty in [8] proved that if one replaces η(G) with µ(G) + 1,
then the inequality holds for µ(G) ≤ 7 and she used this to show that the inequality
also holds for µ(G) ≥ n − 6. Note that e(G) = (|G|

2 )− e(G) and(
|G|
2

)
− µ(G)|G|+

(
µ(G) + 1

2

)
=

(|G| − µ(G)− 1)(|G| − µ(G))

2
.

Consequently by Theorem 1.7, the problem can be reformulated as

Conjecture 3.13. e(G) ≥ (v(G)+1
2 ) for all graphs G.

As just mentioned, the conjecture is proved for ν(G) ≤ 5 and |G| − 8 ≤ ν(G). Here
we provide a much simpler proof for ν(G) ≤ 5. Note that if G is a minimal counter
example to Conjecture 3.13, then |G| ≥ ν(G) + 9. Also, by Corollary 3.11, G must ei-
ther be connected or G = G′ ∪K2 for some connected graph G′. Thus e(G) ≥ ν(G)+ 8
if G is connected and e(G′) ≥ ν(G) + 6 if G = G′ ∪ K2. This shows that the conjecture
holds for ν ≤ 4. Now assume ν(G) = 5. By assumption of G, e(G) ≤ 14. Then in
both cases, G is planar and thus by Theorem 1.8, ν(G) ≤ 4, a contradiction.

We close this section by a minor result on the realizability question of µ-optimal
matrices for complete multipartite graphs.

Corollary 3.14. Each complete multipartite graph has a µ-optimal matrix with coefficients
in Q, hence in Z.
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Proof. We remark that the proof of Theorem 1.4 for µ(G) ≥ 2 is constructive. To be
more precise, given a matrix A satisfying (A1)-(A3) for G with corank µ(G) + 1, Kot-
lov, Lovász and Vempala shows that A − J is a µ-optimal matrix for G. By Corollary
3.10, complete multipartite graphs have µ ≥ 2 except for K2 and K1,2. Clearly, K2 and

K1,2 have µ-optimal matrices over Z (for K1,2, take M =

(
0 −1T

−1 O

)
). Thus we

restrict ourselves to complete multipartite graphs with µ(G) ≥ 2. Since J is a matrix
over Z, it suffices to construct a gram labelling in Qν(G) for G. The case ν(G) = 1 is
easy. For n1 ≤ 3 and ν(G) = 2, one can obtain a desired gram labelling by either using
Lemma 3.3 or doing vertex deletions from larger graphs. We show the construction
for those with n1 ≥ 4. Recall the central gram labellings constructed for complete
graphs in Example 3.2. For each clique component Ci in G, if |Ci| = 1, we label it
with the zero vector; otherwise, we associate each with a distinct unit vector being
the associated central vector and an extended orthonormal basis in Qν(G). Then we
choose 0 < αi ∈ Q sufficiently small such that for any two components, their union
of labellings satisfies (U1). Then the union of these labellings is the desired one.

4 Decomposing µ-maximal graphs with separating cliques

For a graph G = (V, E), a proper subset S ⊂ V separates G if G − S is disconnected.
Moreover, if S induces a clique in G, then it is called a separating clique of G. To
put it another way, we say G = (V, E) is a (pure) clique sum of G1 = (V1, E1) and
G2 = (V2, E2) along the clique S if V = V1 ∪ V2 with V1 ∩ V2 = S inducing cliques in
both G1 and G2, and E = E1 ∪ E2. That is, G is obtained from patching G1 and G2
together by identifying the set S (a bijection in between S in V1 and V2). The clique S
is always assumed to be a proper subset of both V1 and V2.

Definition 4.1. For a graph G, we say G is decomposable if G has a separating clique;
otherwise, G is indecomposable.

The goal of this section is to show that each decomposable µ-maximal graph can be
successively built up by the indecomposable ones via clique sums along cliques of
order not larger than µ with certain criterion. We need a crucial theorem that fully
describes the behavior of µ under clique sum. This criterion was discovered by van
der Holst, Lovász and Schrijver in [4] by the observation that Kt+3 − K3 is a clique
sum of 3 pieces of Kt+1 along Kt and that µ(Kt+3 − K3) = t + 1. This can be obtained
by Theorem 3.7 together with µ(K3) = 1 and Kt+3 − K3 = K3 ∨ Kt.

Theorem 4.2. ([4]) Let G be a clique sum of G1 and G2 along the clique S and t =
max{µ(G1), µ(G2)}. If µ(G) > t, then µ(G) = t + 1 and we can contract two or three
components of G − S so that the contracted vertices together with S form Kt+3 − K3 (remov-
ing a triangle in Kt+3).

To be more precise, the case µ(G) = t + 1 occurs if and only if s := |S| ≥ t = µ(G1) =
µ(G2) and one of the following occurs:

s = t and G − S has at least three components C such that NG(C) = S. In this
case, G1 and G2 both contain at least one and at most two such components;

(i)
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s = t + 1 and G − S has (exactly) two components C, C′ in such that NG(C) =
NG(C′) is of cardinality t. In this case, G1 and G2 both contain exactly one of
such components;

(ii)

We first prove a basic fact for µ-maximal graphs.

Proposition 4.3. A µ-maximal graph is connected.

Proof. Suppose G is a disconnected µ-maximal graph. Clearly, G is non-edgeless
by characterizations for µ = 1. Let G1 be a non-edgeless component of G and
G2 = G − G1. For i = 1, 2, we add a pendant vertex wi to a vertex vi of Gi (if Gi
is a union of path, then vi needs to be chosen of degree less than 2). Then let G′

be the clique sum of these two graphs by identifying w1 and w2 and contracting
w1 to v1. By minor-monotonicity of µ, Theorem 4.2 and characterizations of µ = 1,
µ(G′) ≤ µ(G) and G′ properly contains G, a contradiction.

We recall that Theorem 3.7 and minor-monotonicity of µ together say that adding
an edge or joining a vertex to a graph increase µ by at most 1. In the following
discussions, by adding an edge e to G, we are assuming e ∈ E(G).

Proposition 4.4. Suppose G is a clique sum of G1 and G2 along the clique S, and assume
that G is µ-maximal. Then µ(G) = max{µ(G1), µ(G2)} and the following holds:

If |S| < µ(G), then G1 and G2 are themselves µ-maximal. In particular, if µ(Gi) <
µ(G), then Gi is a complete graph.

(i)

If |S| ≥ µ(G), then there exist subgraphs G′
1, G′

2 of G and a clique S′ ⊂ S of order not
larger than µ(G), such that G is a clique sum of G′

1 and G′
2 along the clique S′.

(ii)

Proof. Let s = |S| and t = max{µ(G1), µ(G2)}. Suppose on the contrary that µ(G) >
t. Then µ(G1) = µ(G2) and s ∈ {t, t + 1}. If s = t + 1, then both G1 and G2 are not
complete; if s = t, then one of G1, G2 is not complete. Since if both are complete,
then G = Kt+2 − K2, contradicting the assumption that µ(G) = t + 1. Say G1 is not
complete. Add any edge e to G1. Then µ(G1 + e) ≤ t + 1 and by µ-maximality of
G, we have µ(G + e) = t + 2, but this would imply µ(G1 + e) = µ(G2) = t + 1, a
contradiction. Thus µ(G) = t.
Case s < t: Suppose there exists an edge e such that µ(G1 + e) ≤ t. By µ-maximality
of G, µ(G + e) = t + 1 implies s ≥ t, a contradiction. The proof is the same for G2.
Case s = t: If G1 and G2 are both µ-maximal, then we are done. Suppose say G1 is not
µ-maximal. Let e be any edge such that µ(G1 + e) = µ(G1). By µ-maximality of G,
we have µ(G + e) = t + 1. By Theorem 4.2, µ(G2) = t = µ(G1 + e) = µ(G1) and there
must exist a component C in G1 − S such that |NG1(C)| = t − 1 (so that after adding
e, there are three components, including C, whose neighbors are S). Let G′

1 be the
graph induced by C ∪ NG1(C) in G1 and let G′

2 = G − C. Then G is the clique sum of
G′

1 and G′
2 along NG1(C). By the previous case, G′

1 and G′
2 are µ-maximal, done.

Case s = t + 1: Let C be any component of G − S. Then |NG(C)| ≤ t. Let H1 be the
graph induced by C ∪ NG(C). Let H2 = G − C. Then G is the clique sum of H1 and
H2 along NG(C) and the result follows from previous cases.

The following consequence, directly derived from the proof of Proposition 4.4, will
be frequently used in the rest of the section.
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Corollary 4.5. Suppose G is a clique sum of G1 and G2 along the clique S, and assume that
G is µ-maximal. For a component C of G − S, the graph C ∪ NG(C) is µ-maximal.

Also, by Proposition 4.4, we see that to construct µ-maximal graphs via clique sum,
we can only patch against cliques of order at most µ. Now we prove the converse
to Proposition 4.4, that is, the criterion in judging whether the clique sum of two
µ-maximal graphs is still µ-maximal. We need an easy lemma.

Lemma 4.6. Let G be a µ-maximal graph and S be a clique in G of order not larger than
µ(G)− 1. For v ∈ G − S, let C be the component of G − S that contains v. If NG(C) ⊂
NG(v), then S = NG(C).

Proof. Let S′ = NG(C). Suppose on the contrary that S − S′ is nonempty and take
w ∈ S− S′. Let H be the clique sum of C∪ S′ and K|S′|+2 with V(K|S′|+2) = S′ ∪{v, w}
along S′ ∪ {v}. Note that by Theorem 4.2, µ(H) ∈ {µ(C ∪ S′), |S′|+ 1, |S′|+ 2}, which
is not larger than µ(G) as by assumption |S′| ≤ µ(G)− 2. We patch H with S along
S′ ∪{w} and patch the obtained graph with G −C along S, forming the graph G + vw
with µ(G + vw) ≤ µ(G), which contradicts the µ-maximality of G.

For the convenience of stating our result, we introduce the following definition.

Definition 4.7. A pair (G, S) consists of a µ-maximal graph G and a clique S in G of
order µ(G)− 1. We say a pair (G, S) has property (P) if S is not maximal in G and for
any vertex u ∈ G with S ⊂ NG(u), G − (S ∪ {u}) have two components C, C′ such
that NG(C) = NG(C′) = S ∪ {u}.

Proposition 4.8. Let G1 and G2 be µ-maximal graphs and G be a clique sum of G1 and G2
along the clique S. Let t = max{µ(G1), µ(G2)}. If s := |S| < t, then G is µ-maximal if and
only if one of the following is satisfied.

S is a maximal clique in G1 or G2;(i)

s = t − 1 and (G1, S) or (G2, S) has property (P).(ii)

Moreover, in both cases if µ(Gi) < t, then Gi is complete.

Proof. We first prove the necessity. The last assertion follows from (i) of Proposition
4.4. We show the proof only for the case s < t − 1 as the proof for the case s = t − 1
is exactly the same. Now suppose s < t − 1 and S is not maximal in either G1 or G2.
For i = 1, 2, let vi be a vertex in Gi with S ⊂ NGi(vi), and let G′

i be the clique sum of
Gi and Ks+2 with V(Ks+2) = S ∪ {vi, w} along S ∪ {vi}, where w is an added vertex.
We have µ(G′

i) ≤ t since |S ∪ {vi}| < t for i = 1, 2. Let G′ be the clique sum of G′
1

and G′
2 along the clique S ∪ {w} (as the same way G is patched). Let G′′ be the graph

obtained from G′ by contracting w to v1 via the edge v1w. Then G′′ = G+ v1v2 and we
have, by minor-monotonicty of µ, t ≥ µ(G′) ≥ µ(G′′) ≥ µ(G) = t, contradicting the
µ-maximality of G. For sufficiency, it suffices to show that for any vertices u ∈ G1 − S
and v ∈ G2 − S, we have µ(G + uv) > t. Suppose condition (i) is satisfied. Say
S is maximal in G1. Thus G1 is not complete and hence µ(G1) = t. Let C be the
component of G2 − S that contains v. By maximality of S, T := NG1(u) ∩ S ⊊ S. If
S′ := NG2(C) = S, take w ∈ S − T = S′ − T. Contract C to w in G1 ∪ C + uv and
form the new graph G′

1, which properly contains G1. Then we have µ(G + uv) ≥
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µ(G′
1) > µ(G1) = t. Otherwise, suppose S′ ⊊ S. Then G2 is not complete and thus

µ(G2) = t. Consequently, by Lemma 4.6, S′ ̸⊂ NG2(v). Note that G2 can be viewed as
the clique-sum of C ∪ S′ and G2 − C along S′. By Corollary 4.5, C ∪ S′ is µ-maximal.
As S′ ̸⊂ NG2(v), C ∪ S′ is not complete and therefore µ(C ∪ S′) = t. Let C′ be the
component of u in G1 − S′. Let T′ := NG2(v) ∩ S′ ⊊ S′. If S′′ := NG1(C

′) = S′

then similarly we have µ(G + uv) > µ(C ∪ S′) = t. Otherwise, suppose S′′ ⊊ S′.
Continue this process which will ultimately terminate as |S| is finite, and we are
done. Suppose condition (ii) is satified. Say (G1, S) has property (P). Let C be the
component of G2 − S that contains v. Suppose S′ := NG2(C) = S. If S ̸⊂ NG(u), then
as argued above, µ(G + uv) > µ(G1) = t and we are done. If S ⊆ NG(u), then by
assumption of G1, G + uv can be contracted to Kt+3 − K3, done. Otherwise, suppose
S′ ⊊ S. Then the rest of the argument is exactly the same as the case (i).

Proposition 4.9. Let G1 and G2 be µ-maximal graphs and G be a clique sum of G1 and G2
along the clique S. Suppose µ(G1) = t = µ(G2). If s := |S| = t, then G is µ-maximal if and
only if G − S has at most two components C, C′ such that NG(C) = NG(C′) = S.

Proof. The necessity follows from Theorem 4.2 and proposition 4.4. Conversely,
assume G − S has at most two such components. We first consider the case that
NG1(C) ⊊ S for every component C of G1 − S. Let C be a component of G1 − S
and S′ := NG1(C). Since |S′| < t, by Proposition 4.4, H := C ∪ S′ and G1 − C are
µ-maximal. By assumption, if S ⊂ G1 − C is complete, then G1 − C = S. It follows
by (i) of proposition 4.8 that µ(G1 − C) = t unless G1 − C = S (if this is the case,
then we’ve finished decomposing G1). Moreover, since S′ ⊊ S, by Proposition 4.8 and
assumption of G1, S′ is either maximal in H or |S′| = t − 1 and (H, S′) has property
(P). As C is arbitrary, by successively decomposing and patching up, we have that G
is µ-maximal by proposition 4.8. Now suppose G1 − S has exactly one component C1
such that NG1(C1) = S. Theorem 4.2 and assumption of G1 implies that H1 := G1 −C1
is µ-maximal. Indeed, if H1 is not µ-maximal, then there exists an edge e such that
µ(H1 + e) = µ(H1) ≤ t. Since G1 + e is the clique sum of C1 ∪ S and H1 + e along S.
Then by Theorem 4.2, µ(G1 + e) = max{µ(C1 ∪ S), µ(H1 + e)} ≤ µ(G1), contradicting
µ-maximality of G1. Also, by Corollary 4.5, C1 ∪ S is µ-maximal. By Theorem 4.2 and
assumption of G1, µ(H1) = t unless H1 = S. We show that C1 ∪ G2 is µ-maximal.
The assertion then follows by the previous case. For u ∈ C1 and v ∈ G2 − S, let C2 be
the component in G2 − S containing v. If NG2(C2) ⊊ S, then pick w ∈ S − NG2(C2).
Contracting C1 to w in C1 ∪ G2 + uv, we obtain G2 + vw which properly contains G2,
whence µ(C1 ∪ G2 + uv) > µ(G2) = t. If NG2(C2) = S, then C1 ∪ G2 + uv can be
contracted into Kt+2, hence µ(C1 ∪ G2 + uv) = t + 1.

Lemma 4.10. Let G be a µ-maximal graph with a clique S such that |S| = µ(G)+ 1. Suppose
for each component C of G − S, C ∪ NG(C) is complete. Then |NG(C)| = µ(G), whence
|C| = 1 for each component C. Consequently, for each v ∈ S, there is at most one vertex
v̂ ∈ G − S such that NG(v̂) = S − {v}. Conversely, if a graph satisfies the assertion, it is
µ-maximal.

Proof. Let C be a component of G − S, S′ := NG(C) and set GC := C ∪ S′, which is
by assumption complete. Let t = |S| = µ(G) + 1, m = |GC| ≤ t and s = |S′|. We
have to show s = t − 1. Suppose s < t − 2. Take a vertex u ∈ S − S′. If |C| = 1,
then m ≤ t − 2 and G is a proper subgraph of the clique sum of G − C and Km+1
with V(Km+1) = GC ∪ {u} along S′ ∪ {u}, whose µ by Theorem 4.2 is not larger than
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µ(G) since |S′ ∪ {u}| ≤ t− 2, contradicting µ-maximality of G. Thus |C| ≥ 2 and pick
w ∈ C. Consider the clique sum G′ of G − C and Km with V(Km) = GC ∪ {u} − {w}
along S′ ∪ {u}. Again by Theorem 4.2, since |S′ ∪ {u}| ≤ t− 2, we have µ(G′) ≤ t− 1.
Then consider the clique sum G′′ of G′ and GC along GC −{w}. Since |C| > 1, among
vertices in G′, only u shares the same neighbor set with {w}. Therefore by Theorem
4.2, µ(G′′) ≤ t − 1 and as |C| > 1, G′′ properly contains G, a contradiction. Now sup-
pose s = t − 2. Let S − S′ = {u1, u2}. By µ-maximality of G together with Theorem
4.2, Proposition 4.9 and the assumption of G, we may assume there exists a unique
vertex vi ∈ G − S such that NG(vi) = S′ ∪ {ui} for i = 1, 2. Let Gi = S′ ∪ {ui, vi} for
i = 1, 2. Take w ∈ C and let G′′′ = G1 ∪ G2 ∪ GC + wv2. We show that µ(G′′′) = t − 1.
Then by Theorem 4.2, the clique sum G′′′′ of G′′′ and G − C − {v1, v2} along S has
µ(G′′′′) = t − 1 since no vertices in G − S − C − {v1, v2} share the same neighbor
set with either v1 or v2. Now as G′′′′ properly contains G, we obtain a contradic-
tion. To show µ(G′′′) = t − 1, observe that G′′′ is the clique sum of {v1} ∪ S and
G2 ∪ GC + wv2 along S − {u1}. Note that µ(G2 ∪ GC + wv2) = µ(G2 ∪ GC) = t − 1
(by computing the ν value of their complements) and µ({v1} ∪ S) = t − 1. Since
G2 ∪ GC +wv2 − (S−{u1}) = C ∪{v2}+wv2 is connected, by Theorem 4.2, µ(G′′′) =
t − 1. This proves the assertion. The rest of the statement then follows from Theorem
4.2 and Proposition 4.9.

Figure. An example of graphs in Lemma 4.10, where S is the black K4 and for each
v ∈ S, there exists a unique grey vertex v̂ with NG(v̂) = S − {v}. Removing
any number of grey vertices also leads to a graph in Lemma 4.10.

Let G1 and G2 be µ-maximal graphs and G be a clique sum of G1 and G2 along the
clique S. Now the only undealt case is |S| = t = µ(G1) and µ(G2) = t − 1. Suppose
G is µ-maximal. Let C be a component of G2 − S. Then NG2(C) ⊊ S. Therefore,
by (i) of Proposition 4.4, we have C ∪ NG2(C) is complete. Thus by Lemma 4.10, for
each v ∈ S, there exists at most one vertex v̂ ∈ G2 − S such that NG2(v̂) = S − {v}.
Then by proposition 4.8, G is maximal if and only if for each v ∈ S such that v̂ exists,
(G1, S − {v}) has property (P).

The following proposition provides an insight into pairs (G, S) with property (P).

Proposition 4.11. Let (G, S) be a pair with property (P). Then there exists an indecomposable
µ-maximal subgraph H of G such that (H, S) form a pair with a unique vertex v ∈ H such
that S ⊂ NH(v).

Proof. For u ∈ G such that S ⊂ NG(u) and a component C of G − (S ∪ {u}) with
NG(C) = S ∪ {u}, define m(u,C) := |{v ∈ C|S ⊂ NG(v)}|. Let m = min{m(u,C)},
where the minimum is taken over all such (u, C). Choose u0, C0 such that m(u0,C0) =
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m. Suppose m > 0. Let C′
0 be the other component of G − (S ∪ {u0}) with NG(C′

0) =
S ∪ {u0}. Since m > 0, there exists u1 ∈ C′

0 such that S ⊂ NG(u1). Let C1 be
the component of G − (S ∪ {u1}) containing u0. Since u1 /∈ C0 is connected and
NG(C0) = NG(C′

0) = S ∪ {u0}, we have C0 ⊂ C1 and NG(C1) = S ∪ {u1}. Suppose
for each 1 ≤ i ≤ k, we’ve obtained a vertex ui with S ⊂ NG(ui) in G, all distinct,
and a connected component Ci of G − (S ∪ {ui}) containing ui−1 with NG(Ci) =
S ∪ {ui}. Moreover, Ci−1 ⊂ Ci for each 1 ≤ i ≤ k. Let C′

k be the other component of
G − (S ∪ {uk}) with NG(C′

k) = S ∪ {uk}. Since m > 0, C′
k has a vertex uk+1 such that

S ⊂ NG(uk+1). Let Ck+1 be the component of G − (S ∪ {uk+1}) containing uk. Since
uk+1 /∈ Ck is connected and NG(Ck) = NG(C′

k) = S ∪ {uk} we have Ck ⊂ Ck+1 and
NG(Ck+1) = S ∪ {uk+1}. Ultimately, we would obtain an infinite sequence of distinct
vertices in G, contradicting the finiteness of G. Thus m = 0, that is, there is no vertex
other than u0 which is the common neighbor of S in H := C0 ∪ S ∪ {u0}. Note that
by Corollary 4.5, H is µ-maximal with µ(H) = µ(G). If there exists a separating
clique S′ of H, then clearly by the choice of H, S′ ̸⊂ S ∪ {u0} and S ∪ {u0} ̸⊂ S′. Let
C′ be the component of H − S′ containing S ∪ {u0} − S′ and let H′ := C′ ∪ NH(C′).
Since C0 is connected and NG(C0) = S ∪ {u0}, C′

0 := H′ − S ∪ {u0} is connected and
NH(C′

0) = S ∪ {u0}. Again, by Corollary 4.5, H′ is µ-maximal with µ(H′) = µ(G).
Continue the process until there is no separating cliques and we would obtain the
desired graph.

Corollary 4.12. The existence of pairs (G, S) with property (P) is equivalent to the existence
of pairs (H, S), where H is indecomposable with a unique vertex v ∈ H satisfying S ⊂
NH(v).

Proof. By Proposition 4.11, it remains to show the converse. Suppose such pair (H, S)
exists. Let G be a clique sum of two pieces of H along S∪{v}. By Proposition 4.9, G is
µ-maximal with µ(G) = µ(H). Then since H is indecomposable, C := H − (S ∪ {v})
is connected with neighbor set S ∪ {v}. Thus (G, S) is a pair with property (P).

By characterizations of µ, for µ = 2, each vertex in a µ-maximal graph is of degree
at least 2. For µ = 3, every edge in a µ-maximal graph is contained in two distinct
K3(faces). Consequently, by Corollary 4.12, there exist no pairs (G, S) with property
(P) for µ ≤ 3. For µ ≥ 4, the existence of such a pair (G, S) is unknown. We suggest
that such pairs do not exist. Moreover, we would like to ask the following question.
If it is true, it would serve as a generalization of topological properties of graphs.

Question 4.13. Let S be a clique in an indecomposable µ-maximal graph G. Suppose
S is not maximal. Is it true that if |S| < µ(G), then there are at least two vertices u, v
such that S is contained in both NG(u) and NG(v)?

Now we prove a basic property of indecomposable µ-maximal graphs, which is an
easy consequence of the behavior of µ under ∆Y transformations. The ∆Y transfor-
mation works as follows: for a given graph, select a triangle of it, and add a new
vertex adjacent to all vertices of the triangle, and delete the edges of triangles. The
Y∆ transformation is the inverse action. That is, for a given graph, select a vertex v of
degree 3, and make its neighbors pairwise adjacent, and delete v.

Theorem 4.14. ([5]) Let G be a graph and if G′ arise from G by applying a ∆Y transformation
to a triangle. Then µ(G) ≤ µ(G′) and the equality holds if µ(G) ≥ 4.
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To put it another way, Theorem 4.14 says that µ is decreasing under Y∆ transfor-
mations on vertices of degree 3. Note that by the characterizations of µ, the only
indecomposable µ-maximal graphs for µ ≤ 2 are complete graphs.

Proposition 4.15. Let G be an indecomposable µ-maximal graph, not complete. If S is a
minimal separating set of G and |S| < µ(G), then G − S has at most |S| − 2 component.

Proof. Let C1, . . . , Cr denote the connected components of G − S. Note that since
S is minimal, NG(Ci) = S for all i. We show that if |S| ≤ 2 or r > |S| − 2, then
S must induce a clique in G contradicting the assumption of indecomposability of
G. Suppose |S| ≥ 3 and r > |S| − 2. For each component Ci, we will construct
a graph C′

i that contains Ci ∪ S as a subgraph, in which S induces a clique, and
µ(C′

i) ≤ µ(G). Patch up these C′
i along S as Ci ∪ S are patched and form the new

graph G′. Then we have, by Theorem 4.2, µ(G) ≥ µ(G′) and the µ-maximality of
G implies G′ = G, which proves the assertion. Now we show the construction for
i = 1. For 3 ≤ m ≤ |S| − 1, contract components Cm to any |S| − 3 distinct vertices in
S. By deleting edges if necessary, we may assume the other three vertices x, y, z in S
induces a coclique. Then contract C2 into a vertex w and, deleting edges if necessary,
we may assume w is adjacent to x, y, z only. Do a Y∆ operation to the claw, and
delete other components Cm for m > |S| − 1. We form the desired graph C′

1. The case
|S| = 1 is trivial and the case |S| = 2 is similarly proved, without the need of using
Y∆ transformations.

Corollary 4.16. Let G be an indecomposable µ-maximal graph, not complete. Then G is
4-connected.

Proof. If G is planar and S is a minimal separating set of cardinality 3, then G − S
have at most 2 components, since if not, then G would have a K3,3 minor. Similarly
argued as in proposition 4.15, we would obtain that S is a clique, a contradiction.
Then the assertion follows from proposition 4.15.

We would like to ask whether indecomposable µ-maximal graphs, not complete, are
µ(G)-connected or even weakly, do such graphs have minimum degree δ(G) ≥ µ(G).
Note that indecomposability is required for connectivity. Consider the graph G
whose complement is Ck ∪ K2, k ≥ 7. As mentioned in section 1, since Ck ∪ K2 is
ν-minimal for ν = 3 and has maximum coclique of order ⌊k/2⌋+ 1, G is µ-maximal
with µ(G) = k − 2 and ω(G) = ⌊k/2⌋ + 1 < k − 2. It follows by proposition 4.8
that for any clique sum of two pieces of G along any maximum clique is µ-maximal.
However, such graphs have vertex-connectivity at most ⌊k/2⌋+ 1.

It would be interesting to find methods (in terms of µ or ν) in deriving an indecom-
posable µ-maximal graph from one another. Note that the most trivial case is that if
G is indecomposable µ-maximal, then so is G ∨ K1 (In terms of ν and G, an isolated
vertex is added.) Another question is to find how small could a maximal clique be
for (indecomposable) µ-maximal graphs with given µ = k.

5 µ and ν under Cartesian products

In [3], Goldberg proved that µ(G□Km) ≥ µ(G) + µ(Km) for all connected graphs G
and positive integers m by explicit constructions of Colin de Verdière matrices for
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G□Km with specific corank. He further asked whether Km could be replaced with
any other connected graphs. By using both graph theoretic approaches and explicit
constructions, we prove that the statement holds for complete bipartite graphs and
graphs with µ ≤ 5.

Proposition 5.1. Let G, G1, G2 be connected graphs. The following holds

µ(G1□(G2 ∨ K1)) ≥ µ(G1□G2) + 1;(i)

µ(G□Km) ≥ µ(G) + m − 1;(ii)

if G2 can be obtained from G by doing several ∆Y operations on triangles, then µ(G1□G2) ≥
µ(G1□G).

(iii)

Proof. (i) Let v denote the added vertex to G2. By contracting v’s copy of G1 in
G1□(G2 ∨ K1) into a vertex, we obtain (G1□G2) ∨ K1. Then the result follows by
minor-monotonicity of µ and Theorem 3.7. (ii) Since G□K1 = G and Km = Km−1 ∨K1,
the result follows by repeatedly applying (i). (iii) By doing the same series of ∆Y
transformations on triangles in each copy of G in G1□G, we obtain a subgraph of
G1□G2. The result follows by minor-monotonicity of µ and Theorem 4.14.

For two matrices A, B, we denote their tensor product by A ⊗ B, where the (i, j)th
block of A ⊗ B is aijB.

Proposition 5.2. µ(G□K3,3) ≥ µ(G) + 4 for a connected graph G.

Proof. Let A be a µ-optimal matrix for G with the negative eigenvalue λ1(A) = −3.
By Perron-Frobenius theorem, we may choose a corresponding eigenvector ξ > 0.
Let B denote the adjacency matrix of K3,3. Let n = |G|. Then M = I6 ⊗ A − B ⊗ In +
3I6 ⊗ In ∈ OG□K3,3 has corank(M) = µ(G) + 4 and λ1(M) = −3. We show that M has
SAP and the result follows.

We first partition M into 6 × 6 blocks: M = [Mij], 1 ≤ i, j ≤ 6. Also we view {1, 2, 3}
and {4, 5, 6} as two cocliques of order 3 in K3,3. By the definition of M, we have:

Mij =


A + 3In if i = j
−In if i ∼ j
On if i ≁ j

(1)

Suppose X fully annihilates M. We have to show X = O. Similarly, we partition X
into 6 × 6 blocks: X = [Xij], 1 ≤ i, j ≤ 6. For any i, j, let [i, j] denote the (i, j)th block
of MX. Since MX = O, (j, l)th column of X can be expressed as 16 ⊗ ujl + vjl ⊗ ξ

where ujl ∈ ker(A) and vjl ∈ ker(B). Then lth column of ∑6
i=1 Xij is 6ujl. Hence

A ∑6
i=1 Xij = O. Also, by (1) we have

O = [i, j] =
6

∑
k=1

MikXkj = (A + 3In)Xij − ∑
k∼i

Xkj (2)

Let p, q, r be three vertices in K3,3 that form a coclique. By (2), we have

O = [p, j] + [q, j] + [r, j] = (A + 3I) ∑
i=p,q,r

Xij − 3 ∑
k∼p

Xkj (3)
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Using A ∑6
i=1 Xij = O and (3),

O = A(A + 3I) ∑
i=p,q,r

Xij − 3A ∑
k∼p

Xkj = (A2 + 6A) ∑
i=p,q,r

Xij = A ∑
i=p,q,r

Xij (4)

since A + 6I is nonsigular. Again by (2), we have

O = [p, j]− [q, j] = (A + 3I)(Xpj − Xqj) (5)

(4) and (5) together yield:

O = A(2[p, j]− [q, j]− [r, j]) = (A + 3I)(2AXpj − AXqj − AXrj) = 3(A + 3I)AXpj

As a consequence, AXpj = cpjξξT for some constant cpj. For each i, since A ◦ Xii = O
and In ◦ Xii = O, we have AXii is zero in diagonal. Then cii = 0 and thus Xii = O by
SAP of A. It follows that ujl is a constant multiple of ξ and hence ujl = 0 for each j, l.
As M ◦ X = O, we have Xij = O for i ∼ j. For i ≁ j, by (5), O = (A + 3I)(Xij − Xjj) =

(A + 3I)Xij, implying that Xij is a constant multiple of ξξT. That is, X = C ⊗ ξξT for
some C ∈ R(6), with B ◦ C = I6 ◦ C = O. On the other hand, O = MX = −BC ⊗ ξξT

implies that BC = O. Since −B is a µ-optimal matrix for K3,3, by SAP we have C = O
and thus X = O.

Theorem 5.3. If µ(G2) ≤ 5 or G2 is complete bipartite, then µ(G1□G2) ≥ µ(G1) + µ(G2)
for connected graphs G1, G2.

Proof. Note that if G ⪯ G2, then G1□G ⪯ G1□G2. Therefore by minor-monotonicity
of µ, it suffices to show for the set of forbidden minors. Also, graphs in {K2} ∪∪4

k=1 Fk, except for K3,3 and K3,3,1, can be obtained from complete graphs by per-
forming a series of ∆Y transformation on triangles. For G2 = Kp,q with p ≥ q ≥ 3,
K3,3 ∨ Kq−3 ⪯ Kq,q ≤ Kp,q. The result then follows by Proposition 5.1, 5.2 and the
characterizations of µ for µ ≤ 4.

Pendavingh[9] proved that for a connected graph G, e(G) ≥ (µ(G)+1
2 ) unless G = K3,3,

offering an optimal bound of µ in terms of the number of edges, which provides a
necessary condition to determine whether a graph is a forbidden minor for µ ≤ k.
For µ > 5, by Pendavingh’s bound and Theorem 4.14, any graph that can be obtained
from complete graphs by performing a series of ∆Y operations and Y∆ operations are
forbidden minors. Therefore by (iii) of Proposition 5.1, µ(G1□G2) ≥ µ(G1) + µ(G2)
holds for a large number of graphs with µ ≥ 6. However, there are forbidden minors
that can’t be obtained by ∆Y transformations on triangles, such as the complement
of icosahedron [9]. Note that the inequality in Theorem 5.3 could be worse for sparse
graphs. To show this, we need the following theorem, which is an easy consequence
of minor-monotonicity of µ and Theorem 4.2.

Theorem 5.4. ([5]) Let G be a graph with µ(G) ≥ 3. If G′ arise from G by subdividing an
edge, then µ(G) = µ(G′).

For n ≥ m ≥ 3, µ(K1,n) = µ(K1,m) = 2. Let G = K1,n□K1,m. Note that G can be
obtained from Kn,m ∨ K1 by subdividing each edge in Kn,m. By Theorem 5.4, we have
µ(G) = µ(Kn,m) + 1 = m + 2. As a consequence, we have the following results. Let
∆(G) denote the maximum degree of G.
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Proposition 5.5. For i = 1, 2, let Gi be a graph with ∆(Gi) ≥ 3 and let mi = max
G⪯Gi

∆(G).

Then µ(G1□G2) ≥ min{m1, m2}+ 2.

We say a subset S ⊆ V(G) is a connected dominating set if S induces a connected
graph in G and all vertices in G − S have a neighbor in S. Using Proposition 5.5, a
lower bound of µ under Cartesian products in terms of connected dominating set is
provided.

Corollary 5.6. Let G1 and G2 be connected graphs with maximum degree at least 3. Let Si
be a connected dominating set of Gi, i = 1, 2. Then µ(G1□G2) ≥ min{|G1| − |S1|, |G2| −
|S2|}+ 2.

Example 5.7. For d ≥ 3, [10] has provided a connected dominating set for the hy-
percube Qd := □dK2 of order 2d−2 + 2. Using Corollary 5.6, µ(Q2d) = µ(Qd□Qd) ≥
2d − 2d−2 = 3 · 2d−2. In general, µ(Qd) ≥ 3 · 2⌊d/2⌋−2.

Since G1□G2 is a subgraph of G1 ⊠ G2, µ(G1□G2) ≤ µ(G1 ⊠ G2). However, the bound
in Proposition 5.5 is also tight for the strong product of graphs. Let n ≥ m ≥ 3,
and G = K1,n ⊠ K1,m. Let G′ be the graph obtained from Kn,m by subdividing each
edge, adding a pendant vertex to the new vertex, doing a Y∆ transformation to the
claw. Since µ(Kn,m) = m + 1 ≥ 4, by Theorem 4.2, 4.14 and 5.4, µ(G′) = m + 1. Since
G = G′ ∨ K1, by Theorem 3.7, we have µ(G) = m + 2.

Proposition 5.8. µ(Km × Kn) ≥ (m − 1)(n − 1).

Proof. Assume n ≥ m. If m = 1, the inequality clearly holds. Since K2 ×K2 = 2K2, the
inequality holds. We may assume n ≥ 3, m ≥ 2. Let M = −(Jm − Im)⊗ (Jn − In) +
Im ⊗ In. Clearly, M is a discrete schrödinger operator for Km × Kn with spectrum
{1 − (m − 1)(n − 1)(1), 0((m−1)(n−1)), m(n−1), n(m−1)}. We show that M has SAP and
the result follows. We first partition M into m × m blocks: M = [Mij], 1 ≤ i, j ≤ m. By
the definition of M, we have:

Mij =

{
In if i = j
−Jn + In if i ̸= j (6)

Suppose X fully annihilates M. We have to show X = O. Similarly, we partition X
into m × m blocks: X = [Xij], 1 ≤ i, j ≤ m. Since X fully annihilates M, Xii is zero
in diagonal for all i, and Xij is diagonal for all i ̸= j. For any i, j, let [i, j] denote the
(i, j)th block of MX. As MX = O, we have

O = [i, j] =
m

∑
k=1

MikXkj (7)

Using (6), (7) is equivalent to

m

∑
k=1

Xkj = Jn ∑
k ̸=i

Xkj (8)

Summing (8) over i, then we obtain

m
m

∑
k=1

Xkj = (m − 1)Jn

m

∑
k=1

Xkj
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Let X′ = ∑m
k=1 Xkj. Dividing m − 1 on both sides, we have

JnX′ =
m

m − 1
X′

Since n ≥ 3, m
m−1 is not an eigenvalue of Jn. Thus, X′ = O which implies that Xjj = O.

Now for i ̸= j,
O = [i, j]− [j, j] = JnXij − JnXjj = JnXij

Since Xij is diagonal, Xij = 0 and therefore X = O.

Corollary 5.9. µ(G1 × G2) ≥ (ω(G1)− 1)(ω(G2)− 1)

Proof. Since Kω(G1)
× Kω(G2) is a subgraph of G1 × G2, the result follows from minor-

monotonicity of µ and Proposition 5.8.

Corollary 5.10. Assume G1, G2 non-edgeless. Then ν(G1□G2) ≤ |G1|+ |G2| − 2

Proof. By Theorem 1.7 and Proposition 5.8, we have

ν(G1□G2) ≤ ν(K|G1|□K|G2|) = |G1||G2| − µ(K|G1| × K|G2|)− 1 ≤ |G1|+ |G2| − 2.

Indeed, we can obtain a nondegenerate gram labelling for G1□G2 naively as con-
structed below.

Lemma 5.11. Let n = |G|. Given any real numbers {ci}n
i=1 larger than 1, there exists a

full-rank (hence nondegenerate) gram labelling i 7→ ui in Rn for G such that |ui| = ci for
each i.

Proof. It suffices to construct a gram matrix of rank n for G satisfying (A1) with
respect to G with (c2

1, c2
2, . . . , c2

n) in the diagonal. Let A be the adjacency matrix of G
and take m > 1 such that A + mI is positive definite. Note that the sum of positive
definite matrices is still positive definite. Let D be a diagonal matrix with positive
diagonal. Set B = A + D. Then write B = VTV for some full-rank square matrix V
of order n and let vi be the ith column of V. For α ∈ (0, π/2), consider the labelling
i 7→ ui := cos α ⊕ (sin α)vi. As shown in Lemma 3.3, this is a gram labelling for G2 in

Rn+1 with each ui of norm
√

1 + (Bii − 1) sin2 α. Choose α and D such that the norm
of ui is ci. Then its gram matrix is the desired one.

Proposition 5.12. Let G1, G2 be graphs. If i 7→ ui is a nondegenerate gram labelling of G1
in Rd such that |ui| = c > 1 for all i, then ν(G1□G2) ≤ d + |G2|.

Proof. Let n = |G2|. By Lemma 5.11, there exists a gram labelling k 7→ vk of G2 in Rn

such that {vk} spans Rn and |vk| = c for all k. Consider the labelling (i, k) 7→ w(i,k) :=
(c2 + 1)−1/2(ui ⊕ vk). We show that it is a nondegenerate gram labelling for G1□G2.
For each (i, k), (j, l),

wT
(i,k)w(j,l) = (c2 + 1)−1(uT

i uj + vT
k vl)

 = 2c2

c2+1 if (i, k) = (j, l)
= 1 if i = j, k ∼ l or i ∼ j, k = l
< 1 otherwise
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Suppose there exist X ∈ R(|G1||G2|) such that X is zero in the diagonal and X(i,k)(j,l) = 0
for (i, k)(j, l) /∈ E(G1□G2), satisfying that for each (i, k),

∑
i∼j

X(j,k)(i,k)w(j,k) + ∑
k∼l

X(i,l)(i,k)w(i,l) = 0.

As vk is not in the span of other vl, we have that X(i,l)(i,k) = 0 for each l. Therefore
the equation is independent of k and the nondegeneracy of i 7→ ui forces X = 0 and
we are done.

Observe that in the proof, each vector in the labelling for G1□G2 is of same norm
larger than 1. Therefore, we can repeatedly apply the procedure above, hence we
have

Corollary 5.13. ν(□d
i=1Gi) ≤ ∑d

i=1 |Gi|.

Now we can derive Proposition 1.9 as an easy consequence.

Proof. (of Theorem 1.9) Suppose {Gi}i∈N are non-edgeless graphs with orders less
than N. By Example 5.7, µ(Qd) ≥ C · 2d/2 for some positive constant C. Then for
d large, µ(G1□ · · ·□Gd) ≥ µ(Qd) ≥ C · 2d/2 ≫ dN ≥ ν(G1□ · · ·□Gd), whence the
assertion follows.

Now we can provide a family of examples for nice graphs with µ much larger than
ν using the previously obtained inequality. We first recall some definitions. Let
G = (V, E) be a connected graph. Two distinct vertices u, v ∈ V are said to be twins
if NG(u) − {v} = NG(v) − {u}. We say G is twin-free, if G has no twins. We say
G is vertex-transitive (resp. edge-transitive) if the automorphism group Aut(G) acts
transitively on V (resp. on E). The examples are constructed by the following fact.

Proposition 5.14. Let G be a connected vertex-transitive graph with |G| > 1. For d ≥ 2,
□dG is vertex-transitive. Moreover, □dG is edge-transitive if G is. Also, □dG is twin-free
unless G = K2 and d = 2.

Proof. For u ∈ □dG, write u = (u1, u2, . . . , ud). Given vertices u, v ∈ □dG, there exists
φi ∈Aut(G) such that φi(ui) = vi for each i. Then since φ1 × φ2 × · · · × φd ∈Aut(□dG)
and maps u to v, □dG is vertex-transitive. Moreover, assume G is edge-transitive. For
uv, u′v′ ∈ E(□dG), we have by definition that ui ∼ vi and u′

j ∼ v′j for some i, j and
that uk = vk, u′

l = v′l for k ̸= i, j ̸= l. By commutativity of Cartesian product and
previous discussion, we may assume i = j by permuting coordinates and all other
coordinates are equal. By edge-transitivity of G, there exists φ ∈Aut(G) that maps
uivi to u′

iv
′
i. As φ can be viewed as an automorphism acting only on ith coordinate

of □dG, and thus □dG is edge-transitive. Given vertices u, v ∈ □dG, by permuting,
we may assume 1 ≤ k ≤ d is the largest integer such that uk ̸= vk. If k < d, then
choose w ∈ NG(uk+1) and we have (u1, . . . , uk, w, uk+2, . . . , ud) ∈ N□dG(u)− N□dG(v);
suppose k = d and some vertex in {ui, vi}d

i=1 is of degree at least 2 in G. Again by
permuting and symmetry, we may assume |NG(u1)| ≥ 2. Take w ∈ NG(u1)− {v1}.
Then (w, u2, . . . , ud) ∈ N□dG(u)− N□dG(v). Suppose k = d and each ui,vi is of degree
1 in G. If G ̸= K2, then uivi /∈ E(G) for each i. Take w to be the neighbor of u1
in G and we have (w, u2, . . . , ud) ∈ N□dG(u)− N□dG(v). If G = K2 and d ≥ 3, then
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(v1, u2, u3, . . . , ud) ∈ N□dG(u)− N□dG(v). This shows that u, v are not twins.

Finally, we propose the following question, which is analogue to that of µ.

Question 5.15. Is ν(G1□G2) ≤ ν(G1) + ν(G2) + 2 for all graphs G1, G2?
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