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Hamiltonicity and Toughness of Strong Product Graphs

Student: Chen, Min-Ru Advisor: Dr. Weng, Chih-Wen

Department of Applied Mathematics
National Yang Ming Chiao Tung University

Abstract

In this thesis, we investigate the Hamiltonian properties of strong product graphs. Specifi-
cally, with a mild restriction on n, we prove that P, X GG is Hamiltonian if and only if G contains
a{Ki1, K12, K3, Ky 4}-factor, where P, and K ; are the path graph of order n and star graph
of order ¢ + 1, respectively. Additionally, we explore the relationship between toughness and
the existence of Hamiltonian cycles. In particular, we demonstrate that P, X G is Hamiltonian
if it is g—tough. Moreover, we show that if G is a tree with a { K ;, K 3}-factor, then P, X G
is Hamiltonian if and only if P, X G is 1-tough. In addition, we introduce a new concept for
a family of graphs called Hamiltonian toughness and show that the Hamiltonian toughness for
the family of graphs P, X G is exactly %
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Chapter 1

Introduction

In the realm of graph theory, the quest for understanding and unraveling the intricate struc-
tures of graphs has been a persistent endeavor. Among the myriad of graph-theoretic problems,
the exploration of Hamiltonian cycles stands as a cornerstone, offering profound insights into the
connectivity and traversal properties of graphs. The Hamiltonian cycle problem garnered con-
siderable attention due to its fundamental nature and wide-ranging applications in diverse fields
such as computer science [3, 6], circuit design [14], transportation [13], and DNA sequencing
[2] etc. The well-known Dirac’s theorem and Ore’s theorem provide sufficient conditions of the
existence of a Hamiltonian cycle. However, these theorems hinge on assumptions that demand
a high degree of connectivity within the graph structure, rendering them applicable only under
restrictive conditions.

In [7], Chvatal introduces the concept of toughness and applies it to establish a necessary
condition for a graph containing Hamiltonian cycles. Specifically, he proved that every Hamil-
tonian graph is 1-tough. This technique will be used to furnish a criterion for identifying graphs
devoid of Hamiltonian cycles. Furthermore, Chvatal conjectured that there exists a real number
t such that every t-tough graph is Hamiltonian. However, Chvatal’s conjecture remains unre-
solved. As noted in [5], there are examples of 2-tough graphs that are not Hamiltonian. Con-
versely, for certain specific classes of graphs, there may exist a toughness bound that guarantees
Hamiltonicity. For instance, [9] demonstrates that every 10-tough chordal graph is Hamiltonian.
Motivated by Chvatal’s conjecture, we introduce a new concept called Hamiltonian toughness
for a family of graphs, defined as the infimum of ¢ such that every ¢-tough graph in the family
is Hamiltonian. Applying this definition, the work of Kabela and Kaiser [9] indicates that the
Hamiltonian toughness for the family of chordal graphs is at most 10. In addition, under specific

constraints, [12] proves that the Hamiltonian toughness for the family of the Cartesian product



of a path and a graph is exactly 1.

In general, the task of determining whether or not a graph contains a Hamiltonian cycle has
been proven to be an NP-complete problem. Consequently, several researchers have endeav-
ored to formulate a concise equivalence condition for the existence of Hamiltonian cycles within
specific classes of graphs, aiming to mitigate the computational complexity associated with this
fundamental problem. For example, Kao presents an equivalent statement regarding the exis-
tence of a Hamiltonian cycle on the Cartesian product of a path and a graph [12]. Additionally,
in [4], Batagelj explores analogous cases concerning the Cartesian product of a cycle and a
graph. Motivated by these investigations, we mainly focus on the strong product of a path and a
graph in this thesis. Strong product graphs generate a new topology that inherits properties from
both of its constituent graphs. This amalgamation allows researchers to explore novel structural
characteristics and behaviors, offering insights into diverse fields such as network design [17]
and chemistry [8].

In this thesis, we provide an equivalent condition for the graph G so that the strong product

of a path and G is Hamiltonian. More precisely, we prove the following theorem.

Theorem 1.1. Let G be a connected graph and n > 5(A(G) + 2). Then P, R G is Hamiltonian
if and only if G has a { K 1, K1 2, K1 3, K1 4 }-factor, where P, denotes the path graph of order
n, K, denotes the star graph of order t + 1, A(G) denotes the maximum degree of G, and
P, X G denotes the strong product of P,, and G.

We also prove that the graphs of the form P, X G are Hamiltonian if they are %—tough.
Under certain conditions, we obtain even stronger results, showing that 1-tough is equivalent to

Hamiltonicity. Specifically, we present the following results.

Corollary 1.2. Let G be a connected graph and n > %(A(G) +2). IfP,XGis %-tough, then

P, X G is Hamiltonian.

Corollary 1.3. Let T be a tree with a { K, 1, K, 3 }-factor and n be a positive integer. Then the

following statements are equivalent.

(i) P, X T is Hamiltonian.



(ii) P, X T is 1-tough.
(iii) n > A(T).

Our results thereby support Chvatal’s conjecture within this particular class of graphs, offer-
ing new insights into the relationship between graph toughness and the existence of Hamiltonian

cycles. Furthermore, we explore the Hamiltonian toughness for a specific class of graphs.

Theorem 1.4. Let G = {P, X G | n > 3(A(G) + 2)} be a family of graphs. Then Ht(G) = 3

2’

where Ht(G) denotes the Hamiltonian toughness of G

Our approach bears resemblance to that of Kao and Weng [12]. While ensuring the exis-
tence of the Hamiltonian cycle, we employ a constructive method for proof. Conversely, in
establishing non-existence, we leverage the concept of graph factors. Particularly, we capital-
ize on the notion of a component factor, a spanning subgraph with specified components. In
this area, numerous results have been established by Tutte [15, 16] and Kano [1, 10, 11]. For
example, in [1], Amahashi and Kano characterize the equivalent conditions of the existence of
certain star factors and tree factors. We also utilize this result in proving the non-existence of
the Hamiltonian cycle.

The remaining parts of this thesis are organized as follows. Section 2 introduces some basic
notations and definitions. Section 3 provides preliminaries of some known results concerning
graph factors, which is a crucial concept of our results. Section 4 presents our primary research
outcomes concerning the existence of Hamiltonian cycles within the strong product of a path
and a graph. Section 5 discusses the toughness of such strong product graphs and provides the

exact value of Hamiltonian toughness for this family of graphs.



Chapter 2

Notation

In this section, we give the notations and definitions that will be used in this thesis.

Let G be a simple graph with vertex set V' (G) and edge set £(G). The number |V (G)| is
called the order of G and the number | F(G)| is called the size of G. Let ¢(G) denote the number
of connected components of G. For a vertex v € V/(G) and a subset S C V(G), we use Ng(v)
and Ng(S) to denote the set of neighbor of v in G and the set of vertices adjacent to at least
one of vertex of S, respectively. The number | N (v)| is called the degree of v, denoted by
deg,(v). Sometimes, we abbreviate deg,(v) and N (v) as deg(v) and N(v), respectively. We
use A(G) = max,cy () degg(v) and 6(G) = min,ey () degq (v) to denote the maximum degree
and minimum degree of G, respectively. A vertex of degree 0 is called an isolated vertex, and

a vertex of degree 1 is called a leaf. We denote /() the number of isolated vertices in G. A

path of length n in G is a sequence of distinct vertices (vg, vy, . . . , U, ) such that v;v;., € E(G)
fori =0,1,...,n — 1. A cycle of length n in G is a sequence of vertices (vg, V1, ..., Vn_1,V0)
such that v;v;1; € E(G) fori = 0,1,...,n — 2 and v, vy, . .., v, are distinct. Sometimes,

we use the edge set E(C) = {v;v;41 | 1 =0,1,...,n — 2} U {v,_1v} for the above cycle C.
A Hamiltonian cycle is a cycle that contains all the vertices of G. We say G is Hamiltonian if
it has a Hamiltonian cycle. Following the conventions, we use P, C,,, K,,, and K, ,, to denote
the path graph of order n, the cycle graph of order n, the complete graph of order n, and the
complete bipartite graph with partitions of size m and n, respectively. A star graph of order n
is a complete bipartite graph K ,,_;.

A graph H isasubgraph of Gif V(H) C V(G)and E(H) C E(G). A spanning subgraph
of GG is a subgraph of G if it contains all the vertices of G. Let S C V(G) be a subset of
vertices of . The induced subgraph G[S] is the graph whose vertex set is S and edge set
E ={uv € E(G) | u,v € S}. Weuse G — S to denote the subgraph of G induced by V(G) \ S.



Let H be a subgraph of G. Fore; € E(H) and e; € E(G) \ E(H), we denote by H — e, and
H + e, the edge-induced subgraphs of G’ whose edge sets are E(H) \ {e1} and E(H) U {ez},
respectively.

Let GG be a connected graph. A vertex set S C V(G) is called a vertex cut if ¢(G — S) > 2.
For a real number ¢, G is said to be ¢t-tough if |S| > t - ¢(G — S) for any vertex cut S. If G is
not complete, we define the toughness of GG, denoted by #(G), to be the maximum value ¢ for
which G is t-tough. For convenience, we define ¢(K,,) = oco. Next, we define the Hamiltonian

toughness for a family of graphs.

Definition 2.1. Let G be a family of graphs. The Hamiltonian toughness of G, denoted as Ht(G),
is defined to be

inf{t | every t-tough graph G € G is Hamiltonian}.

Notice that this definition is equivalent to

sup{t(G) | G € G is not Hamiltonian}.

If every graph G € G is Hamiltonian, then we vacuously define Ht(G) = 1.

From the definition above, it is obvious that Ht(G) > 1 for any G. In addition, we have that
Ht(G) < Ht(H) it G C H.

In this thesis, we discuss a type of graphs called strong product, which is defined as follows:

Definition 2.2. The strong product of two graphs G; and G, is a graph, denoted by G; X Go,
with vertex

V(Gl X Gg) = V(G1> X V(Gg),
where V(G1) x V(G2) = {v, | v € V(Gy), u € V(G2)}, and edge set
E(G1 R Gy) ={v,v, | v e V(Gy), uw € E(Gs)}

U{v,w, | u € V(Gsy), vw € E(Gy)}

U{v,w, | vw € E(Gy), ux € E(Gs)}.



Let G be a graph and {G1, Gy, ..., G, } be a set of graphs. A {G1,Gs,..., G, }-subgraph
of GG is a subgraph H of GG such that each component of H is isomorphic to one of the graphs in
{G1,Ga,...,G,}. A{G1,Gs,...,G,}-factor of G is a spanning {G1, G, . .., G, }-subgraph
of G. A{G1,Gs,...,G,}-subgraph H of G is said to be maximum if G hasno {G1, Go, ..., G, }-
subgraph H' such that |V (H')| > |V (H)].

Let G be a graph and H be its subgraph. An H-alternating path of G is a path whose edges
are alternately in £/(H ) and notin E(H). It can either start from an edge in £(H ) or an edge not
in E(H). Foru € V(G), we denote by A(u) the set of vertices w of G such that there exists an
H-alternating path from u to w. Notice here that the set A(u) depends on H, but we abbreviate
the notation without explicitly mentioning H. Furthermore, we define two subsets O A(u) and
EA(u) of A(u) to be the sets of vertices w of G such that there exists an H-alternating path
from u to w of odd length and even length, respectively. For convenience, let v € A(u) and

u ¢ EA(u). In the following, we give an example of the above definition.

Figure 2.1

Example 2.3. Let G be the graph in Figure 2.1 and H be a subgraph of G where V(H) =
V(G) \ {u} and the edges of H are labeled in red. Then (u,a,e,b,i,c) and (g,b,m,n,c, k)
are H-alternating paths. We also have that A(u) = {a,b,c,d,e, f,g,h,i,7,k, {,u}, EA(u) =
{d,e, f,q,h,i,j,k, L}, and OA(u) = {a, b, c}.



Chapter 3

Preliminary

In this section, we give some known results on the Hamiltonian cycle.
Proposition 3.1. [7] If a graph G has a Hamiltonian cycle, then G is 1-tough.

Proof. Letn be the order of G. Notice that a cycle graph C,, is 1-tough. Thatis, ¢(C,,—S) < ||
for any nonempty subset S of V' (C),). If G contains a Hamiltonian cycle, then G can be obtained
by adding edges on C,,. Thus, we have that ¢(G — S) < ¢(C,, — 8) < |S] for any nonempty
subset S of V(G). Hence, G is 1-tough. O

This result gives an important necessary condition for a graph being Hamiltonian.
Next, we will characterize the relationship between the existence of a particular star factor

and the number of isolated vertices in any induced subgraph.

Proposition 3.2. [1] Let G be agraph andt > 2 be an integer. Then G hasa{K,1, K1 2,...,K1:}-
factor if and only if i(G — S) < t|S| for every S C V(G).

To prove Proposition 3.2, we use the standard technique of alternating paths. Note that this
result is proposed by Amahashi and Kano [1]. For the completeness of the thesis, we provide the

proof here. First, we prove some properties of the alternating paths of a { K1, Ky 2,..., K1:}-

subgraph.

Lemma 3.3. [1] Fort > 2, let G be a graph having no {K, 1, K, ..., K\ }-factors and let

H be a maximum {K, 1, Ky 5, ..., Ky }-subgraph of G. If u is a vertex of G not contained in

H, then the following statements hold:

(i) If ux1y1x9Ys - - - Ty, is an H-alternating path, then deg,,(x;) = t and degy, (y;) = 1 for

every i.

(ii) A(u) \ {u} C V(H), and A(u) is a disjoint union of {u}, EA(u), and OA(u).



(iii) We have |EA(u)| = t|OA(u)|.

(iv) If a vertex w of G is adjacent in G to some vertices of EA(u), then w is contained in

OA(u). Thatis, No(EA(u)) C OA(u).

Proof. Notice that x;y; € E(H) and y;x;41 ¢ E(H) for all 7. We first prove deg(z;) = t and
deg(y1) = 1. If degy(y1) = 1 and degy;(x1) < t, then H + uxy isa {Ky11, Ki9,..., K14}-
subgraph with vertex set V' (H) U {u}, which contradicts to H is maximum. If deg, (y;) > 1,
then degy (1) = 1 and H + uxy — zyy; is a {K; 1, Ky 9, ..., K;}-subgraph with vertex set
V(H) U {u}, a contradiction. Hence, we have deg,,(x;) = ¢ and deg,(y;) = 1. Similarly, if
degy (y2) = 1 and degy, (x2) < t, then we obtain a contradiction by considering H + y,xo —
z1y1 + uxy. If degy (yo) > 1, then degy, (x2) = 1 and H — x9ys + Y122 — 21y1 + uzy produces
alarger { K11, K19, ..., K, }-subgraph. We can repeat this process to prove deg,, (x;) = ¢ and
degy (y;) = 1 for all i.

It is immediate that A(u) \ {u} C V(H). Furthermore, from the definition, it is clear that

A(u) = {u} U EA(u) UOA(u).

By (i), we have degy(xz) = ¢ for z € OA(u) and degy(y) = 1 fory € EA(u). Hence,
EA(u) NOA(u) =0Dast > 2.

For each vertex x € OA(u), by (i), we have deg, () = t. Then there exist exactly ¢
vertices adjacent to = in H. Notice that these ¢ vertices are in F'A(u). Conversely, each vertex
y € FA(u) has degree 1 in H. Therefore, y must be adjacent to exactly one vertex in OA(u).
Thus, we have |[EA(u)| = t|OA(u)|.

Suppose that a vertex w € Ng(EA(u)) is adjacent to a vertex v € EA(u). Let uzyy, - - - 20
be an H-alternating path of even length. Notice that x;v € E(H) and degy(v) = 1. If w is
not in the path, then uzyy; - - - z;vw is an H-alternating path of odd length and w € O A(u). If
w = z; for some j, thenw € OA(u) asz; € OA(u). Ifw = y; for some j, then uzyy; - - - x;y,v
is an H-alternating path of odd length, which implies v € O A(u). However, from (ii), we must

have EA(u) N OA(u) = 0, which is a contradiction. O



Now, we shall prove Proposition 3.2.

Proof of Proposition 3.2. Suppose that Ghasa {K; 1, K1 ,..., K }-factor F'. Let Hy, ..., H,
be the components of F'. Notice that for each component H;, we must have i(H; — 5") < t|.5’|

for any S C V(H;). Then, for any S C V(G), we have

i(G—8) <i(F—S8)=> i(H;— (SNV(H;)) <Y SNV (H))| =tS].
j=1 j=1
Conversely, suppose that G has no {K; 1, K1, ..., K }-factor. Let H be a maximum { K] 1,
Kis,...,K;}-subgraph of G and u € V(G) \ V(H). By Lemma 3.3(iv), every vertex in
EA(u) is isolated in G — OA(u), and it is clear that u is also an isolated vertex in G — O A(u).

By Lemma 3.3(ii1), it follows that
i(G—O0A(u)) > |FA(u) U {u}| = t|OA(u)| + 1 > t|OA(u)|.

This completes the proof. ]



Chapter 4

Strong product of a path and a graph

In this section, we discuss the Hamiltonian property of P, X where G is a connected graph.

For convenience, we assume
V(P,) =11,2,...,n}, and
EP)={i:+1)]|i=1,2,...,n—1}.

Forv € V(G), we define
B, ={i,(i+1),|i=12,...,n—1} C BE(P,RG).

We first leverage Chvatal’s result, presented as Proposition 3.1, to establish a condition for
the non-existence of Hamiltonian cycles in strong product graphs. Using this proposition, we

derive the following theorem.

Theorem 4.1. Let G and H be connected graphs. Let S C V(G) and S" C V(H) with ¢(G —
S) =rand c(H — S") = t. Suppose that one of the following statements (i)-(iii) holds. Then

G X H is not 1-tough. In particular, G X H is not Hamiltonian.
i) 15| |V (H)| <.
(ip) [S']-[V(G)] < t.
(@i) [S|-|V(H)[+[5"] - [V(G)] = |S]-|9"] <rt.

Proof. Suppose that statement (i) holds. Consider the set

S =S8 % V(H)CV(GK H).

10



Observe that

(GRH)— S = (G- S)RH,

so we have ¢ (GX H) — S;) = r with |S;| = |S| - |V(H)| < r. By definition, G X H is
not 1-tough. Notice that statement (ii) is the same as statement (i) by considering the product
HXAG.

Now, suppose that statement (iii) holds. Let

S =S x V(H)US x V(G) CV(GKR H).

Then we have

(GRH)—S,=(G-S)R(H - 5.

Thus, we have that c((GX H) — Sy) = rt with |Se| = |S|- [V (H)|+|5'|-|[V(G)|—|S|-|S| < rt.
Hence, it follows that G X H is not 1-tough. [

For a tree 7', if we delete a vertex with maximum degree, then we obtain A(7") connected

components. Hence, by Theorem 4.1, we have the following results.

Corollary 4.2. Let G be a connected graph and T be a tree. If A(T) > |V(G)|, then G R T is

not Hamiltonian.

Corollary 4.3. Let Ty and Ty be trees. If |V (T1)| + |V (12)| — 1 < A(T1)A(T3), then Ty R Ty

is not Hamiltonian.

By Corollary 4.2, we know that P, X T' can be Hamiltonian only when n > A(7'). Next,

we give another constraint of P, X GG being Hamiltonian by using Proposition 3.2.

Theorem 4.4. If G is a graph that does not contain a { K 1, K1 2, K1 3, K1 4}-factor and H is

a graph with 6(H) = 1, then H X G is not Hamiltonian.

Proof. Letx € V(H)beavertex withdeg,, (z) = landy € V(H) be its neighbor. Suppose that
H X G contains a Hamiltonian cycle C. Then deg(v) = 2 forallv € V(H X G). Since G does

notcontaina { K 1, K1 2, K 3, K 4 }-factor, by Proposition 3.2, there exists S C V(&) such that

11



i(G—S) > 4]S|. Let I be the set of isolated verticesin G—S and zg = {2, | s € S} C V(HXG)

for z € V/(H). Observe that for each u € I, we have Ng(u) C S and

NH&G(xu> g {yu} U xrs U Ys.

This means that for each v € I, x, must be adjacent in C' to at least one of the vertices in
rg Uyg. Notice that | /| = i(G — S) > 4]S| = 2|xs Uyg|, by pigeonhole principle, there exists
avertex z € rg U ygs such that deg(z) > 3, which is a contradiction. Therefore, H XI G has no

Hamiltonian cycle. [
Theorem 4.4 is generalized as follows.

Theorem 4.5. Let H be a graph and S’ C V(H). Let I’ be the set of isolated vertices in H — S’
and Sy C S’ be the set of vertices in S” with only one neighbor in I'. Assume that 2|I'| —2|S’| +
|S1]| > O andlett = {%1 > 2. If G does not contain a { Ky 1, K1 o, . . ., K1+ }-factor,

then H X G is not Hamiltonian.

Proof. The idea of the proof is similar to Theorem 4.4. Since G does not contain a { K 1, K o,
..., K +}-factor, by Proposition 3.2, there exists S C V(G) such that i(G — S) > t|S|. Let
I C V(@) be the set of isolated vertices in G — S. Suppose H X G has a Hamiltonian cycle C.

Then we have

Z deg () = 2|1 x I|.

T, €1 XTI
Notice that

Nume(I' x I) CI'x SUS' x SU S’ x I.

Since each y € S; has only one neighbor in ', it follows that each y, € S; x I has only one

neighbor in I’ x I. Hence, there are at most

o' x S| +2[S" x S| +2|(S'\ S1) x I| + Sy x I

12



edges in C' between I’ x [ and I’ x SU S’ x SU S’ x I. This means

o x I| < 2JI' x S| +2|S" x S|+ 2|(S"\ S1) x I| + Sy x 1.

By rearranging the above formula, we have

QI =215 + [S]) ] < 21"+ 2[5 |S].

However, this will lead to

/ ' ' '
|| 2|1 + 2|5 <{ 211" + 2157 |—‘:t,

t< L <
S| = 2/I"] — 2|8 + |S1| — | 21| — 2|5 + |5,

which is a contradiction. Therefore, H X (G is not Hamiltonian. Il

Notice that Theorem 4.4 is just a special case of Theorem 4.5 with |I'| = |S'| = |S1| = 1.

Next, we discuss the Hamiltonicity of P, X G. Since §(F,) = 1 for all n > 2, by Theo-
rem 4.4, it follows that P, X G has no Hamiltonian cycle if G does not containa { K 1, K 2, K 3,
K, 4 }-factor. Now, a natural question to ask is that whether or not P, X G contains a Hamiltonian
cycle provided that G has a { K 1, K 3, K; 3, K1 4 }-factor. First, we construct a Hamiltonian
cycle for P, X K 3, P, X K 9, P, X K 3, and P, X K 4.

In our construction, we want as more edges of the cycle contained in F,, where u is the vertex

in K o or K; 4 with maximum degree. Thus, we consider the following results.

Lemma 4.6. Suppose V(K;2) = {u,v,w} with deg(u) = 2. If C is a Hamiltonian cycle of

P, X K, 5, then C does not contain a path of order 5 in E,,.

Proof. Suppose that C' contains a path of order 5 in E,, says (7 — 2)u, (7 — D)us Ju> (J + 1),

(7 + 2),. Notice that

NPnﬁKLQ(jv) = {<.7 - 1)1}7 (] + 1)1)7 (] - 1)u7ju7 (] + 1)u}7
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and

NPn®K1,2<jw) = {(] - 1)w’ (] + 1>w7 (] - 1)uajua (.] + 1)u}‘

Since (j — 1)u, ju, and (j + 1), has degree 2 with the 4 edges in F,, C' must also contains two

paths (j — 1)y, Ju, (j+1)v, and (j — 1)y, juw, (j+1)w. Now, observe that the three sets of vertices

{(j - 1)v7jv7 (] + 1)1}}7 {(] - 2)1“ (] - 1)U7ju7 (] + 1>u7 (J + 2)u}7 {(] - 1)w7jwa (] + 1)IU}

cut P, X K, into 2 components. Since 3 is odd, it is impossible that a Hamiltonian cycle

contains all these edges. Therefore, C' does not contain a path of order 5 in £,,. [
By the same technique, we have a similar result for K 4.

Lemma 4.7. Suppose V(K 4) = {u,v,w, z,y} with deg(u) = 4. If C is a Hamiltonian cycle

of P, X K 4, then C does not contain a path of order 5 in E,,.

Based on Lemma 4.6 and Lemma 4.7, we construct the Hamiltonian cycle for P, X K 5 and
P, X K, 4 with 3 consecutive edges in I, where u is the vertex in K 5 and K 4 with maximum

degree.
Construction 4.8. The Hamiltonian cycles we choose are as follows

* Let V(K1) = {u,v}. Then

Eu U EU U {1u1va nunv}

forms a Hamiltonian cycle for P, X K ;.
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* Let V(K 2) = {u,v,w} with deg(u) = 2 and

E={i,(i+1),]7=0,2,3(mod4),i <n—1}
U{i,(i+1),]i=0,1,2,4,5,6,7 (mod 8)}
U {iw(i+ 1)y |i=0,1,2,3,4,5,6 (mod 8)}
U{iu(i+1),|i=2(mod8),i <n}
U {iu(i — 1), | i =5 (mod 8),i < n}
U{iu(i+ 1)y | =6 (mod8),i < n}
U{in(i—=1)y |t =1(mod8),1 <i <n}

U {11y, 1,14} € B(P, R K1 ,).

Then, the following set forms a Hamiltonian cycle for P, X K 5.

(

EU{(n = 1)y, nymy, gl b if n =0 (mod 8)

EU{(n—=1)u(n — 1)y, nuny, nun,} ifn =1 (mod 8)

E U {nny, nyng ifn = 2 (mod 8)
EU{n,n,} if n =3 (mod 8)
EU{(n — 1)yny, nyny, g ifn =4 (mod 8)

EU{(n—=1)u(n = 1)y, nyny,nyny,}t  ifn =5 (mod 8)

E U{n.n,, nyn,} if n =6 (mod 8)

EuU{n,n,} if n =7 (mod 8)
\
* Let V(K13) = {u,v,w, x} with deg(u) = 3. Then

{iy(i+1),|1=2,3,....n—=2}UE,UE,UE,

U{]-u]-v; 1u1wa 2u]-aca (’I’L - ]-)unun Ny Ny, nunx}

forms a Hamiltonian cycle for P, X K] 3.
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* Let V(K1 4) = {u,v,w, z,y} with deg(u) = 4 and

E={i,(i+1)y|i=0,1,3(mod4),2 <i<n—2}

U {in(i+ 1)y |i=0,1,2,3,5,6,7 (mod 8),i < n — 2}

U{in(i+1)y |i=1,2,3,4,5,6,7 (mod 8),i < n — 2}

U {iu(i+1), | i =3 (mod8),i <n— 1}

U {iu(i —1), | i =6 (mod 8),i < n — 1}

U{iw(i+ 1)y | i=7(mod8),i <n—1}

U{in(i— 1)y | i=2(mod8),2 <i<n—1}

U {2u1x7 1u1y7 2u1va ]-u]-w7 (7’L - 1)1}”1}7 (TL - 1)wnw7 NyNg s My Ny (TL - 1)uny7 (TL -

UE,UE, C E(P,X K 4)

Then, the following set forms a Hamiltonian cycle for P, X K 4.

(

EU{(n—=2),(n—
EU{(n=2).(n—
EU{(n—2)u(n—
EU{(n—2)(n—
EU{(n—2),(n—
EU{(n—2)u(n—
EU{(n—2).(n—

\EU {(n —2),(n —

Do, (n = 2)u(n = Lw}
2w, (0 = 2)u(n — 1), }
D, (n = 2)u(n = 1)u}
2)w, (0= 2)w(n = D, (2= 2)o(n = 1)}
Do, (0= 2)w(n — 1w}
2)u, (1= 2)w(n — 1w}
Do, (n = 2)w(n = 1w}

2)va (TL - 2)v(n - 1)1)7 (n - 2)11)(” - 1)11}}

Below, We give an example of the Hamiltonian cycle we construct.

IXXXIXIXXIXA]

Figure 4.1: Py X K 4
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if n =0 (mod 8)
if n =1 (mod 8)
if n =2 (mod 8)
if n = 3 (mod 8)
if n = 4 (mod 8)
if n =5 (mod 8)
if n = 6 (mod 8)

if n =7 (mod 8)

D)uny



\

Figure 4.2: Py X K 5

XXX
X

Figure 4.3: Po X K 3

X

Figure 4.4: Py X K 4

Lemma 4.9. Let T be a tree that has a {G1, G5, ..., Gy }-factor F with at least 2 components.
Then there exists a component L of F such that T — V(L) is a tree with a {G1,Gs, ..., Gy}-
factor F — V(L).

Proof. We consider a graph H whose vertex set consists of the components of /. Two com-
ponents Ly, L, of F' are adjacent if there exist vertices u; € V(L;) and us € V' (Ls) such that
uug € E(T). Tt is clear that H is connected and a cycle in H will yield a cycle in 7. Hence,
H must be a tree. Let L be a leaf of H. Then deleting the corresponding component L in F’
gives a {G1, G, ..., Gy }-subgraph of T'. Therefore, F'— V(L) is a {G1, G, . .., Gy }-factor of
T —-V(L). O]

Now, we prove our main result of the existence of the Hamiltonian cycle of P, X G where

G is a graph containing { K 1, K1 2, K 3, K1 4 }-factor.
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Theorem 4.10. Let T' be a tree with a {K; 1, K1 3}-factor. If n > A(T), then there exists a
Hamiltonian cycle of P, W T which contains exactly n — deg,(v) of edges from the set E, for
anyv € V(T).

Proof. The proof is by induction on |V(T')|. If T' = K, or T' = K 3, then the Hamiltonian
cycles of P, X K ; and P, X K 3 in Construction 4.8 satisfies the requirements.

Now, suppose T has a { K1 1, K 3 }-factor F' with more than one component. By Lemma 4.9,
there exists a component L of F' such that 7" = T — V(L) is a tree with a { K 1, K 3 }-factor
F—V(L). Letuy € V(L)andus € V(T") withuyuy € E(T). Notice that A(T") < A(T) < n.
Since |V(T")| < |V(T)|, by induction hypothesis, it follows that P,, XI 7" has a Hamiltonian
cycle C’ which contains exactly n — deg, (v) of edges from the set E, for any v € V(7"). Since

uy ¢ V(T"), we have

deg . (ug) = degp(ug) =1 < A(T)—1<n-—1.

Hence, C’ must contain at least one edge from F,,, namely, j,, (j+1),. Furthermore, since L is
a K ; or K, 3, we have a Hamiltonian cycle C' of P, XL by Construction 4.8. Observe that in our
construction, C' contain at least one of the edge in {(j — 1), Juy s Juy (F+ 1wy (G4 1), (+2)u, }-
Let ¢, (¢ 4 1),, be the edge in C where ¢ is one of the j — 1, 7, 7 + 1. Then we can construct a

new Hamiltonian cycle C' of P, ) T with edges

E(C) = E(C") U E(C) U {juslurs (7 + Vg (0 D} \ {Gua(F + Vg luy (€ + L)y }-

Finally, the remaining part is to verify C' satisfies the requirements of containing exactly
n — deg,(v) of edges from E, for any v € V(T'). From the induction hypothesis, we know that
for any v # uq, us meets the requirements. For u, C contains n — deg; (u1) —1 = n—degy(u;)
edges from E,, . Similarly, C' contains n — deg,, (us) — 1 = deg,(us) edges from E,,. This

completes the proof. O

Theorem 4.11. Let T be a tree with a { K1 1, K1 2, K1 3, K1 4}-factor. If n > %(A(T) +2), then

18



there exists a Hamiltonian cycle of P,, XT" which contains at least %n — deg,(v) of edges from

the set E, for any v € V(T).

Proof. The proof is similar to Theorem 4.10 and is also by induction on |V(7T)|. If T =
K11, K9, K3, or Ky 4, then the Hamiltonian cycles in Construction 4.8 satisfies the require-

ments. Notice that for K 5, the Hamiltonian cycle contains

Sp—2, n=0(mod4)
Sp—1, n=1(mod4)
Sp—32, n=2(mod4)
3p—2, n=3(mod4)

edges in £, where u € V(K 3) with degy  (u) = 2. Meanwhile, for K 4, the Hamiltonian

cycle contains

Sp—2%, n=2(mod4)

Sp—23, n=23(mod4)

\

edges in £, where u € V/(Ky.4) with degy ,(u) = 4.

Now, suppose that 7" has a { K 1, K 2, K1 3, K1 4 }-factor F* with more than one component.
By Lemma 4.9, there exists a component L of F' such that 77 = T — V(L) is a tree with
{K11, K12, K13, Ky 4}-factor F — V(L). Letu; € V(c) and uy € V(T") with wyus € E(T).
It is clear that n > 3 A(T”) + 2 since A(T”) < A(T). By induction hypothesis, P,, X 7" has a
Hamiltonian cycle C” which contains at least %n — deg;/ (v) of edges from the set E, for any
v e V(T"). Since uy ¢ V(T"), we have deg (ug) = degp(uz) — 1 < A(T) — 1 and

3 3 4
Z—ln — degT,(UQ) > Z_l X §<A(T> + 2) — degT,(ug) > 3.
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This means that C’ must contain at least 4 edges of F,,. By excluding the first and last two edges,
C" must contain at least one edge from £, \ { 14,24, (7 —2)uy (n—1)4,, (n—1)4,74, }, denoted
as Ju, (j+1)u, with j # 1, n—2, n—1. Moreover, by Construction 4.8, there exists a Hamiltonian
cycle C of P, X L containing at least one of (7 — 1), Juys Juy (7 + Duys (J + 1wy (5 + 2)4, - Let
Ly, (€ + 1), be the edge in C' where ¢ is one of the j — 1, j,j + 1. As same in Theorem 4.10,

we can construct a new Hamiltonian cycle C of P, X T with edges
E(C) = E(C")UE(C) U {juslurs (G + D€+ Vg \ {Gua (G + Dz luy (€ + Dy J-

Now, we shall ensure that C' contains at least %n — deg;(v) edges from the set F, for any
v € V(T). This is true for any v # uq,us from the induction hypothesis. Furthermore, C
contains at least 2n —deg; (u1) =1 = 3n —degy(u;) and 3n —deg; (uz) — 1 = 3n — degy; (us)

edges from F,, and E,,, respectively. This completes the proof. [

Notice that we can replace the tree 7" in Theorem 4.10 and Theorem 4.11 by a connected
graph, then the existence of the Hamiltonian cycle is still valid since every connected graphs
contain a spanning tree. Therefore, Theorem 1.1 is a direct consequence of Theorem 4.4 and
Theorem 4.11.

Finally, we give a counterexample to show that the condition in Theorem 4.11 cannot be

relaxed to n > A(T') as in Theorem 4.10.

Figure 4.5: A graph with maximum degree 5

Theorem 4.12. Let G be the graph in Figure 4.5. Then Ps X G does not contain a Hamiltonian

cycle.

20



Proof. Let H = PsXG and suppose that H has a Hamiltonian cycle C. Observe that Ny (1,) =
{14,24,24} and Ny (5,) = {54, 4w, 40} for &« = v,w,z,y. This implies that for each o =
v, w, z,y, the vertex 1, and 5, must be adjacent to at least one of the 1,,2, and 4,,5, in C,
respectively. Hence, 1,,2,,4,, 5, cannot have other neighbors in C' since there are already 8
neighbors for them. By a similar statements, it follows that 1, 2, and 4,, 5, can only be adjacent
to 15 and 55 in C for 5 = b,c¢,d, e, respectively. Let A = V(P5) x {u,v,w,z,y} C E(H)
and B = V(P5) x {a,b,c,d,e} C E(H). Then 3,3, is the only remaining edge to connect A
and B. However, we must have at least two edges to connect A and B for a Hamiltonian cycle,

which is a contradiction. Therefore, H is not Hamiltonian. ]
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Chapter 5
Toughness of the strong product of a path

and a graph

In this section, we discuss the toughness of P, X G.

Theorem 5.1. Let G be a graph and n. > 2 be an integer. If P,, X G is 3-tough, then G contain
a {K1,17 K172; K173, K174}'_fa0t01’:

Proof. The proofis by contradiction. Suppose that G does not containa { Ky 1, K 2, K13, K1 4}-
factor. By Proposition 3.2, there exists S C V(G) such that i(G' — S) > 4|S|. Let I be the set

of isolated vertices in G — S. Now, we consider the set
S =({1,2} x S)U ({2} x I) CV(P, K G).

Hence, | 5’| = 2|S|+|I| < 2|I|. Observe that each vertex in {1} x [ is isolated in (P, X G) — 5"

’ 3
Hence, (P, X G) — S5’ has at least | /| components. Since % < % < 3, it follows that

P, X G is not %-tough. ]
By this Theorem, we can easily prove Corollary 1.2.

Proof of Corollary 1.2. From Theorem 5.1, if P, X G is g—tough, then G must contains a { K7 1,

K5, Ky 3, K 4 }-factor. By Theorem 4.11, it follows that P,, X G is Hamiltonian. ]

Proof of Corollary 1.3. (i) = (ii) is from Proposition 3.1. (ii) = (iii) is from Theorem 4.1. (iii)

= (1) is from Theorem 4.10. [

Now, we consider the graphs of the form P, X G where G is a connected graph and n >
3(A(G) + 2). We have proved that t(P,, X G) > 2 implies that P, X G is Hamiltonian. On

the other hand, Chvatal’s result demonstrates that ¢(P, X G) < 1 implies that P, X G is not
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Hamiltonian. The only remaining case is the graphs with toughness between 1 and % Observe
that P, X P, is Hamiltonian and has toughness exactly 1. We are now interested in determining
whether there exists a graph G such that P,, X GG is not Hamiltonian, but its toughness is close
to 3.

Below, we discuss the toughness and Hamiltonicity of the graph P, X K, 441. For con-
venience, let X, Y be the two parts of vertex of Ky 4,41 where | X| = k and |Y| = 4k + 1.

Furthermore, for each ¢ = 1,2, ..., n, we define three subsets of V (P, X K}, 45,4+1)
Vi={i} x V(Kyaes1), Xi={i}xX, Y,={i}xY.

Lemma 5.2. Let n, k be positive integers. Then the graph P, X Ky, 41,11 is not Hamiltonian.

Proof. 1t is clear that K 4+, does not contain a { K4, Ko, K3, K; 4}-factor. By Theo-

rem 4.4, P, X K}, 4541 1s not Hamiltonian. ]

Lemma 5.3. Let n, k be positive integers withn > 3. Then t(P, X K, 4511) < %.

Proof. Consider the set

S - X1 U ‘/2 Q V(Pn & Kk,4k+1)-

Notice that |S| = 6k +1and ¢(P, X Ky 4511 —S) = Y|+ 1 = 4k + 2. By definition, it follows
that t(Pn X Kk,4k+1) < Skt O

— 4k+2°

Now, we shall prove that t( P, X K}, 4541) > ?“’z—i;. Notice that from our definition of tough-
IS|

c(G-S)°

ness, we have ¢(G) = min where S is a vertex cut of G. We first prove the following

lemma.

Lemma 5.4. Let n, k be positive integers withn > 3 and G = P, X K}, 411 If S is a vertex

|S]

ZG-g) among all the vertex cuts, then either V; N S = ()

cut that attains the minimum value of

or X; C Sforeachit=1,2,... n.

Proof. Suppose on the contrary that S; # () and X; S where S; = V; N S. Letz € X; \ S.

We have the following two cases.
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Case 1: V; € S. Lety € Y; \ S. Since zy € E(G — S) and Ng({z,y}) = N (S;), the

deletion of S; in GG will not affect the number of components. That is,

(G = 85) = (G = (S\5)).

15\54 S whi
G-\ < which

Furthermore, we have |S \ S;| < |S] since S; # 0. It follows that - 57’

is a contradiction.

Case2: Y; C S. Notice thatY; 1,Y; ;1 C Ng_g(x) (only Y;,; fori = 1 and Y;_; fori = n).
Therefore, the deletion of S in GG yields at most 2k more components than that of the deletion
of S'\ S;. That is,

c(G—=9)<c(G=(S\S;))+ 2k.

Furthermore, since Y; C S, we have that | S| > |S \ 5;| + 4k + 1. If S\ S, is not a vertex cut,

then we have ¢(G — S) < 2k + 1. This implies that C(é“q_' ) > %ﬁ > g, which contradicts to

Lemma 5.3. If S'\ S; is still a vertex cut, then by Lemma 5.3, it follows that

6k + 1 9] IS\ Si| + 4k + 1
> > y
h+2 = o(G—95) ~cG—(S\S) + 2k

5 >
2
By rearranging the formula, we obtain

1S\ Si| - ¢(G — S) < |8} - ¢(G — (S\ i) + 2Kk[S| — (4k + 1) - ¢(G — )

<|5]- (G =(S\ 5i)).

[S\Si|
G—(5\54))

|S]

G-3) which is a contradiction. H

This implies that i <

Lemma 5.5. Let n, k be positive integers withn > 3 and G = P, X K}, 4+1. Let S be a vertex

5]
c(G-S)

cut of G that attains the minimum value of among all the vertex cuts. For everyy € Y,

we have that 1,,,n, ¢ S. Moreover, ifi, € S, then (i — 1),, (i + 1), ¢ S.

Proof. We only prove that 1, ¢ S for every y € Y, and n, ¢ S can be shown analogously.
Suppose on the contrary that 1, € S for some y € Y. By Lemma 5.4, we have that X; C S.

Let S = S\ {1,}. Then Ng_g(1,) C {2,} U X,. If follows that either Ng_g (1,) = 0 or
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G[Ng-s(1,)] is connected. This implies that ¢(G —S5) < ¢(G—.5"). Since |S'| = |S|—1 < |5],

we have that

$1 ]
(G—=25) " e(G=29)

which is a contradiction.
Next, we suppose that i,, (i + 1), € S forsomei € {2,...,n — 1} andy € Y. Let
S=25 \ {iy}. By Lemma 5.4, we have that X; C S and X;;; C S. Notice that N, ¢(i,) C

{(t —1),} U X, for i > 2. By a similar argument above, we can easily show that

$1 sl
oG —-5) cG=98)

which is a contradiction. O]

Lemma 5.6. Let k,n be integers with n > %. Then t(P, X Ky 4541) > %.

Proof. Let G = P, X K a1+1 and S be the vertex cut of G that attains the minimum value
of % among all the vertex cut. Let S; = V; N S for each . By Lemma 5.4, we have that
either S; = Jor X; C S; foreachi. Let R = {i | S; # 0}. If R = {1,2,...,n}, then the
number of components of G — S is at most 4k + 1 +m where m = |[S N (R x Y)|. This value
is derived from the fact that G — (R x X)) is a graph of 4k + 1 paths of length n and deleting
one vertex of this graph can yield at most one more component. By Lemma 5.5, we must have

< (4k + 1) [ %5 |. 1t follows that

S| o _mkt+m _ nk+ @R+ L“J _Ok+1
o(G—=8) T4k +1+m = dk+1+ 4k +1) [%52] ~ 4k +2

Note that the second inequality is obtained from the fact that nk > 4k + 1, and the last inequality
40k2+22k+3
holds for n > #F=5,
On the other hand, suppose that R C {1,2,...,n}. We define Ry, Rs, ..., R, as follows.

First, let each R; # () consists of consecutive integers in {0,n + 1} U R such that max(R;) <
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min(R;;,) —1forj=1,2,...,s —1and

URi={0n+1}UR

j=1
Then we delete 0 from Ry and n + 1 from R,. Let r; = |R;| and mj, = |S N (R; x {y})|
forj =1,2,...,sand y € Y. Furthermore, let «; be the number of y such that mj, # 0 and
m; = Y, cy Myy. By Lemma 5.5, we have thatm, < [%|,m, < [%],andm; < q {%J for
j=2,3,...,s—1. Observe that for the graph G — (R x X ), deleting one vertex from R, X Y or
R4 xY canyield at most one more component. Similarly, foreachj =2,3,...,s—1landy €Y,
deleting ¢ vertices from R; x {y} can yield at most ¢ — 1 more component. Furthermore, if we
delete at least one vertex from R; x {y} for every y € Y, then we obtain one more component.

Therefore, the total number of components in G — S'is at most
s—1
1+my+ Z (mj —aj+ l[aj:4k+1}) + my,
j=2

where 1 is the indicator function. Notice that | S| = 2;21 ik + m;. We claim that

rjk—l—mj >6]€+1

P, =
1+ m; — &y + l[aj:4k+1] — 4k + 2

J

forj=2,3,...,s — 1. Ifa; = 4k + 1, then

. rjk+mj
P24 my —4k— 1

It is clear that this value attains minimum when m; attains its maximum, i.e, m; = (4k +

1) Vj; IJ . It follows that

; ritl (6k+1)r;
rik 4+ (4k + 1) LJTJ B e 7 even
( ) 2 W , 7j odd.
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6k+1 > 6k+1

This value is larger than = > 775,

If a; < 4k + 1, then we must have 7; > 3 and «; > 1; otherwise,

o(G—8)=c(G—(S\ (Rj x V(Kkart1)))),

which contradicts to the definition of S. Similarly, P; has the minimum value when m; =

i+1
; P; J Hence, we have

) |l 2r;k+a;r; )
P > rik L 3 J oy —2(a; 1) » Ty even
i = =
=1
14+ s VJ J 2rk+a;(r;+1)
S a; (D) —2(a; =1 °'J odd.

6k+1

. . 3
This value is larger than 5 > 3=>.

L . rik+mq
By a similar argument, we can prove that P, = Tt 2

S+ when Ry # () and P, = 5kt > 84 when R, # (). By above, we have that
ST o > =1 Tk +m; Gk 41
o(G=8) 7 14ma+ 37, (my— oy + ljg,—apsyy) +my Ak +2

Finally, we prove Theorem 1.4
Proof of Theorem 1.4. By Lemma 5.3 and Lemma 5.6, we have that ¢(P, X Ky 41+1) = 2’;—15

for n > %ﬁk”’ In addition, by Lemma 5.2, P, X K}, 411 is not Hamiltonian. Notice that

P, X Ky 4141 € G for n large. Since

6k+1 3

lim
k—oo 4k + 2 )

there exists ¢-tough graph in G for any ¢ < % By the definition of Hamiltonian toughness, we
have that Ht(G) > 2.

On the other hand, by Corollary 1.2, every %-tough graph in G is Hamiltonian. Consequently,
Ht(G) < 3. O
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