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強乘積圖的漢米爾頓性和強韌性

學生：陳泯儒 指導教授：翁志文 博士

國立陽明交通大學 應用數學系

摘 要

在本論文中，我們研究了強乘積圖的漢米爾頓性質。具體來說，在 n 的些許限

制下，我們證明了 Pn ⊠ G是漢米爾頓圖若且唯若圖 G含有 {K1,1, K1,2, K1,3, K1,4}-因

子，此文 Pn 和 K1,t 分別是點數為 n的路徑圖和點數為 t + 1的星圖。此外，我們探

討了圖的強韌性與漢米爾頓迴圈的存在性之間的關係。特別地，我們證明了若一個圖

Pn ⊠ G是 3
2
-強韌的，那麼它是漢米爾頓圖。此外，我們還證明了如果 G是一個包含

{K1,1, K1,3}-因子的樹狀圖，Pn ⊠G是漢米爾頓圖若且唯若 Pn ⊠G是 1-強韌的。此外，

我們介紹一個圖族新概念，稱為漢米爾頓強韌性，並證明圖族 Pn ⊠G的漢米爾頓強韌

性恰好為 3
2
。

關鍵詞: 漢米爾頓迴圈、強乘積圖、因子、強韌性。
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Hamiltonicity and Toughness of Strong Product Graphs

Student: Chen, Min-Ru Advisor: Dr. Weng, Chih-Wen

Department of Applied Mathematics
National Yang Ming Chiao Tung University

Abstract

In this thesis, we investigate the Hamiltonian properties of strong product graphs. Specifi-

cally, with a mild restriction on n, we prove that Pn⊠G is Hamiltonian if and only ifG contains

a {K1,1, K1,2, K1,3, K1,4}-factor, where Pn andK1,t are the path graph of order n and star graph

of order t + 1, respectively. Additionally, we explore the relationship between toughness and

the existence of Hamiltonian cycles. In particular, we demonstrate that Pn ⊠G is Hamiltonian

if it is 3
2
-tough. Moreover, we show that if G is a tree with a {K1,1, K1,3}-factor, then Pn ⊠ G

is Hamiltonian if and only if Pn ⊠ G is 1-tough. In addition, we introduce a new concept for

a family of graphs called Hamiltonian toughness and show that the Hamiltonian toughness for

the family of graphs Pn ⊠G is exactly 3
2
.

Keyword: Hamiltonian cycle, strong product, factor, toughness
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Chapter 1

Introduction

In the realm of graph theory, the quest for understanding and unraveling the intricate struc-

tures of graphs has been a persistent endeavor. Among the myriad of graph-theoretic problems,

the exploration of Hamiltonian cycles stands as a cornerstone, offering profound insights into the

connectivity and traversal properties of graphs. The Hamiltonian cycle problem garnered con-

siderable attention due to its fundamental nature and wide-ranging applications in diverse fields

such as computer science [3, 6], circuit design [14], transportation [13], and DNA sequencing

[2] etc. The well-known Dirac’s theorem and Ore’s theorem provide sufficient conditions of the

existence of a Hamiltonian cycle. However, these theorems hinge on assumptions that demand

a high degree of connectivity within the graph structure, rendering them applicable only under

restrictive conditions.

In [7], Chvatal introduces the concept of toughness and applies it to establish a necessary

condition for a graph containing Hamiltonian cycles. Specifically, he proved that every Hamil-

tonian graph is 1-tough. This technique will be used to furnish a criterion for identifying graphs

devoid of Hamiltonian cycles. Furthermore, Chvatal conjectured that there exists a real number

t such that every t-tough graph is Hamiltonian. However, Chvátal’s conjecture remains unre-

solved. As noted in [5], there are examples of 2-tough graphs that are not Hamiltonian. Con-

versely, for certain specific classes of graphs, there may exist a toughness bound that guarantees

Hamiltonicity. For instance, [9] demonstrates that every 10-tough chordal graph is Hamiltonian.

Motivated by Chvatal’s conjecture, we introduce a new concept called Hamiltonian toughness

for a family of graphs, defined as the infimum of t such that every t-tough graph in the family

is Hamiltonian. Applying this definition, the work of Kabela and Kaiser [9] indicates that the

Hamiltonian toughness for the family of chordal graphs is at most 10. In addition, under specific

constraints, [12] proves that the Hamiltonian toughness for the family of the Cartesian product
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of a path and a graph is exactly 1.

In general, the task of determining whether or not a graph contains a Hamiltonian cycle has

been proven to be an NP-complete problem. Consequently, several researchers have endeav-

ored to formulate a concise equivalence condition for the existence of Hamiltonian cycles within

specific classes of graphs, aiming to mitigate the computational complexity associated with this

fundamental problem. For example, Kao presents an equivalent statement regarding the exis-

tence of a Hamiltonian cycle on the Cartesian product of a path and a graph [12]. Additionally,

in [4], Batagelj explores analogous cases concerning the Cartesian product of a cycle and a

graph. Motivated by these investigations, we mainly focus on the strong product of a path and a

graph in this thesis. Strong product graphs generate a new topology that inherits properties from

both of its constituent graphs. This amalgamation allows researchers to explore novel structural

characteristics and behaviors, offering insights into diverse fields such as network design [17]

and chemistry [8].

In this thesis, we provide an equivalent condition for the graph G so that the strong product

of a path and G is Hamiltonian. More precisely, we prove the following theorem.

Theorem 1.1. LetG be a connected graph and n > 4
3
(∆(G)+2). Then Pn⊠G is Hamiltonian

if and only if G has a {K1,1, K1,2, K1,3, K1,4}-factor, where Pn denotes the path graph of order

n, K1,t denotes the star graph of order t + 1, ∆(G) denotes the maximum degree of G, and

Pn ⊠G denotes the strong product of Pn and G.

We also prove that the graphs of the form Pn ⊠ G are Hamiltonian if they are 3
2
-tough.

Under certain conditions, we obtain even stronger results, showing that 1-tough is equivalent to

Hamiltonicity. Specifically, we present the following results.

Corollary 1.2. Let G be a connected graph and n > 4
3
(∆(G) + 2). If Pn ⊠G is 3

2
-tough, then

Pn ⊠G is Hamiltonian.

Corollary 1.3. Let T be a tree with a {K1,1, K1,3}-factor and n be a positive integer. Then the

following statements are equivalent.

(i) Pn ⊠ T is Hamiltonian.
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(ii) Pn ⊠ T is 1-tough.

(iii) n ≥ ∆(T ).

Our results thereby support Chvátal’s conjecture within this particular class of graphs, offer-

ing new insights into the relationship between graph toughness and the existence of Hamiltonian

cycles. Furthermore, we explore the Hamiltonian toughness for a specific class of graphs.

Theorem 1.4. Let G = {Pn ⊠G | n > 4
3
(∆(G) + 2)} be a family of graphs. Then Ht(G) = 3

2
,

where Ht(G) denotes the Hamiltonian toughness of G

Our approach bears resemblance to that of Kao and Weng [12]. While ensuring the exis-

tence of the Hamiltonian cycle, we employ a constructive method for proof. Conversely, in

establishing non-existence, we leverage the concept of graph factors. Particularly, we capital-

ize on the notion of a component factor, a spanning subgraph with specified components. In

this area, numerous results have been established by Tutte [15, 16] and Kano [1, 10, 11]. For

example, in [1], Amahashi and Kano characterize the equivalent conditions of the existence of

certain star factors and tree factors. We also utilize this result in proving the non-existence of

the Hamiltonian cycle.

The remaining parts of this thesis are organized as follows. Section 2 introduces some basic

notations and definitions. Section 3 provides preliminaries of some known results concerning

graph factors, which is a crucial concept of our results. Section 4 presents our primary research

outcomes concerning the existence of Hamiltonian cycles within the strong product of a path

and a graph. Section 5 discusses the toughness of such strong product graphs and provides the

exact value of Hamiltonian toughness for this family of graphs.
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Chapter 2

Notation

In this section, we give the notations and definitions that will be used in this thesis.

Let G be a simple graph with vertex set V (G) and edge set E(G). The number |V (G)| is

called the order ofG and the number |E(G)| is called the size of G. Let c(G) denote the number

of connected components of G. For a vertex v ∈ V (G) and a subset S ⊆ V (G), we use NG(v)

and NG(S) to denote the set of neighbor of v in G and the set of vertices adjacent to at least

one of vertex of S, respectively. The number |NG(v)| is called the degree of v, denoted by

degG(v). Sometimes, we abbreviate degG(v) and NG(v) as deg(v) and N(v), respectively. We

use∆(G) = maxv∈V (G) degG(v) and δ(G) = minv∈V (G) degG(v) to denote themaximum degree

and minimum degree of G, respectively. A vertex of degree 0 is called an isolated vertex, and

a vertex of degree 1 is called a leaf. We denote i(G) the number of isolated vertices in G. A

path of length n in G is a sequence of distinct vertices (v0, v1, . . . , vn) such that vivi+1 ∈ E(G)

for i = 0, 1, . . . , n− 1. A cycle of length n in G is a sequence of vertices (v0, v1, . . . , vn−1, v0)

such that vivi+1 ∈ E(G) for i = 0, 1, . . . , n − 2 and v0, v1, . . . , vn−1 are distinct. Sometimes,

we use the edge set E(C) = {vivi+1 | i = 0, 1, . . . , n − 2} ∪ {vn−1v0} for the above cycle C.

A Hamiltonian cycle is a cycle that contains all the vertices of G. We say G is Hamiltonian if

it has a Hamiltonian cycle. Following the conventions, we use Pn, Cn,Kn, andKm,n to denote

the path graph of order n, the cycle graph of order n, the complete graph of order n, and the

complete bipartite graph with partitions of size m and n, respectively. A star graph of order n

is a complete bipartite graphK1,n−1.

A graphH is a subgraph ofG if V (H) ⊆ V (G) andE(H) ⊆ E(G). A spanning subgraph

of G is a subgraph of G if it contains all the vertices of G. Let S ⊆ V (G) be a subset of

vertices of G. The induced subgraph G[S] is the graph whose vertex set is S and edge set

E = {uv ∈ E(G) | u, v ∈ S}. We useG−S to denote the subgraph ofG induced by V (G)\S.
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Let H be a subgraph of G. For e1 ∈ E(H) and e2 ∈ E(G) \ E(H), we denote by H − e1 and

H + e2 the edge-induced subgraphs of G whose edge sets are E(H) \ {e1} and E(H) ∪ {e2},

respectively.

LetG be a connected graph. A vertex set S ⊆ V (G) is called a vertex cut if c(G−S) ≥ 2.

For a real number t, G is said to be t-tough if |S| ≥ t · c(G − S) for any vertex cut S. If G is

not complete, we define the toughness of G, denoted by t(G), to be the maximum value t for

which G is t-tough. For convenience, we define t(Kn) = ∞. Next, we define the Hamiltonian

toughness for a family of graphs.

Definition 2.1. Let G be a family of graphs. The Hamiltonian toughness of G, denoted as Ht(G),

is defined to be

inf{t | every t-tough graph G ∈ G is Hamiltonian}.

Notice that this definition is equivalent to

sup{t(G) | G ∈ G is not Hamiltonian}.

If every graph G ∈ G is Hamiltonian, then we vacuously define Ht(G) = 1.

From the definition above, it is obvious that Ht(G) ≥ 1 for any G. In addition, we have that

Ht(G) ≤ Ht(H) if G ⊆ H.

In this thesis, we discuss a type of graphs called strong product, which is defined as follows:

Definition 2.2. The strong product of two graphs G1 and G2 is a graph, denoted by G1 ⊠ G2,

with vertex

V (G1 ⊠G2) = V (G1)× V (G2),

where V (G1)× V (G2) = {vu | v ∈ V (G1), u ∈ V (G2)}, and edge set

E(G1 ⊠G2) ={vuvw | v ∈ V (G1), uw ∈ E(G2)}

∪ {vuwu | u ∈ V (G2), vw ∈ E(G1)}

∪ {vuwx | vw ∈ E(G1), ux ∈ E(G2)}.
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Let G be a graph and {G1, G2, . . . , Gn} be a set of graphs. A {G1, G2, . . . , Gn}-subgraph

ofG is a subgraphH ofG such that each component ofH is isomorphic to one of the graphs in

{G1, G2, . . . , Gn}. A {G1, G2, . . . , Gn}-factor of G is a spanning {G1, G2, . . . , Gn}-subgraph

ofG. A {G1, G2, . . . , Gn}-subgraphH ofG is said to bemaximum ifG has no {G1, G2, . . . , Gn}-

subgraph H ′ such that |V (H ′)| > |V (H)|.

LetG be a graph andH be its subgraph. AnH-alternating path ofG is a path whose edges

are alternately inE(H) and not inE(H). It can either start from an edge inE(H) or an edge not

in E(H). For u ∈ V (G), we denote by A(u) the set of vertices w of G such that there exists an

H-alternating path from u to w. Notice here that the set A(u) depends onH , but we abbreviate

the notation without explicitly mentioning H . Furthermore, we define two subsets OA(u) and

EA(u) of A(u) to be the sets of vertices w of G such that there exists an H-alternating path

from u to w of odd length and even length, respectively. For convenience, let u ∈ A(u) and

u /∈ EA(u). In the following, we give an example of the above definition.

u

d

a

e
b

g h

i

f

m n

c
ℓ

j

k

Figure 2.1

Example 2.3. Let G be the graph in Figure 2.1 and H be a subgraph of G where V (H) =

V (G) \ {u} and the edges of H are labeled in red. Then (u, a, e, b, i, c) and (g, b,m, n, c, k)

are H-alternating paths. We also have that A(u) = {a, b, c, d, e, f, g, h, i, j, k, ℓ, u}, EA(u) =

{d, e, f, g, h, i, j, k, ℓ}, and OA(u) = {a, b, c}.
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Chapter 3

Preliminary

In this section, we give some known results on the Hamiltonian cycle.

Proposition 3.1. [7] If a graph G has a Hamiltonian cycle, then G is 1-tough.

Proof. Let n be the order ofG. Notice that a cycle graphCn is 1-tough. That is, c(Cn−S) ≤ |S|

for any nonempty subset S of V (Cn). IfG contains a Hamiltonian cycle, thenG can be obtained

by adding edges on Cn. Thus, we have that c(G − S) ≤ c(Cn − S) ≤ |S| for any nonempty

subset S of V (G). Hence, G is 1-tough.

This result gives an important necessary condition for a graph being Hamiltonian.

Next, we will characterize the relationship between the existence of a particular star factor

and the number of isolated vertices in any induced subgraph.

Proposition 3.2. [1]LetG be a graph and t ≥ 2 be an integer. ThenG has a {K1,1, K1,2, . . . , K1,t}-

factor if and only if i(G− S) ≤ t|S| for every S ⊆ V (G).

To prove Proposition 3.2, we use the standard technique of alternating paths. Note that this

result is proposed by Amahashi and Kano [1]. For the completeness of the thesis, we provide the

proof here. First, we prove some properties of the alternating paths of a {K1,1, K1,2, . . . , K1,t}-

subgraph.

Lemma 3.3. [1] For t ≥ 2, let G be a graph having no {K1,1, K1,2, . . . , K1,t}-factors and let

H be a maximum {K1,1, K1,2, . . . , K1,t}-subgraph of G. If u is a vertex of G not contained in

H , then the following statements hold:

(i) If ux1y1x2y2 · · · xryr is an H-alternating path, then degH(xi) = t and degH(yi) = 1 for

every i.

(ii) A(u) \ {u} ⊆ V (H), and A(u) is a disjoint union of {u}, EA(u), and OA(u).

7



(iii) We have |EA(u)| = t|OA(u)|.

(iv) If a vertex w of G is adjacent in G to some vertices of EA(u), then w is contained in

OA(u). That is, NG(EA(u)) ⊆ OA(u).

Proof. Notice that xiyi ∈ E(H) and yixi+1 /∈ E(H) for all i. We first prove deg(x1) = t and

deg(y1) = 1. If degH(y1) = 1 and degH(x1) < t, then H + ux1 is a {K1,1, K1,2, . . . , K1,t}-

subgraph with vertex set V (H) ∪ {u}, which contradicts to H is maximum. If degH(y1) > 1,

then degH(x1) = 1 and H + ux1 − x1y1 is a {K1,1, K1,2, . . . , K1,t}-subgraph with vertex set

V (H) ∪ {u}, a contradiction. Hence, we have degH(x1) = t and degH(y1) = 1. Similarly, if

degH(y2) = 1 and degH(x2) < t, then we obtain a contradiction by considering H + y1x2 −

x1y1 + ux1. If degH(y2) > 1, then degH(x2) = 1 andH − x2y2 + y1x2 − x1y1 + ux1 produces

a larger {K1,1, K1,2, . . . , K1,t}-subgraph. We can repeat this process to prove degH(xi) = t and

degH(yi) = 1 for all i.

It is immediate that A(u) \ {u} ⊆ V (H). Furthermore, from the definition, it is clear that

A(u) = {u} ∪ EA(u) ∪OA(u).

By (i), we have degH(x) = t for x ∈ OA(u) and degH(y) = 1 for y ∈ EA(u). Hence,

EA(u) ∩OA(u) = ∅ as t ≥ 2.

For each vertex x ∈ OA(u), by (i), we have degH(x) = t. Then there exist exactly t

vertices adjacent to x in H . Notice that these t vertices are in EA(u). Conversely, each vertex

y ∈ EA(u) has degree 1 in H . Therefore, y must be adjacent to exactly one vertex in OA(u).

Thus, we have |EA(u)| = t|OA(u)|.

Suppose that a vertexw ∈ NG(EA(u)) is adjacent to a vertex v ∈ EA(u). Let ux1y1 · · · xtv

be an H-alternating path of even length. Notice that xtv ∈ E(H) and degH(v) = 1. If w is

not in the path, then ux1y1 · · · xtvw is an H-alternating path of odd length and w ∈ OA(u). If

w = xj for some j, thenw ∈ OA(u) as xj ∈ OA(u). Ifw = yj for some j, then ux1y1 · · · xjyjv

is anH-alternating path of odd length, which implies v ∈ OA(u). However, from (ii), we must

have EA(u) ∩OA(u) = ∅, which is a contradiction.

8



Now, we shall prove Proposition 3.2.

Proof of Proposition 3.2. Suppose thatG has a {K1,1, K1,2, . . . , K1,t}-factorF . LetH1, . . . , Hr

be the components of F . Notice that for each component Hj , we must have i(Hj − S ′) ≤ t|S ′|

for any S ′ ⊆ V (Hj). Then, for any S ⊆ V (G), we have

i(G− S) ≤ i(F − S) =
r∑

j=1

i(Hj − (S ∩ V (Hj))) ≤
r∑

j=1

t|S ∩ V (Hj)| = t|S|.

Conversely, suppose that G has no {K1,1, K1,2, . . . , K1,t}-factor. Let H be a maximum {K1,1,

K1,2, . . . , K1,t}-subgraph of G and u ∈ V (G) \ V (H). By Lemma 3.3(iv), every vertex in

EA(u) is isolated in G−OA(u), and it is clear that u is also an isolated vertex in G−OA(u).

By Lemma 3.3(iii), it follows that

i(G−OA(u)) ≥ |EA(u) ∪ {u}| = t|OA(u)|+ 1 > t|OA(u)|.

This completes the proof.
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Chapter 4

Strong product of a path and a graph

In this section, we discuss the Hamiltonian property of Pn⊠GwhereG is a connected graph.

For convenience, we assume

V (Pn) = {1, 2, . . . , n}, and

E(Pn) = {i(i+ 1) | i = 1, 2, . . . , n− 1}.

For v ∈ V (G), we define

Ev = {iv(i+ 1)v | i = 1, 2, . . . , n− 1} ⊆ E(Pn ⊠G).

We first leverage Chvátal’s result, presented as Proposition 3.1, to establish a condition for

the non-existence of Hamiltonian cycles in strong product graphs. Using this proposition, we

derive the following theorem.

Theorem 4.1. Let G and H be connected graphs. Let S ⊆ V (G) and S ′ ⊆ V (H) with c(G−

S) = r and c(H − S ′) = t. Suppose that one of the following statements (i)-(iii) holds. Then

G⊠H is not 1-tough. In particular, G⊠H is not Hamiltonian.

(i) |S| · |V (H)| < r.

(ii) |S ′| · |V (G)| < t.

(iii) |S| · |V (H)|+ |S ′| · |V (G)| − |S| · |S ′| < rt.

Proof. Suppose that statement (i) holds. Consider the set

S1 = S × V (H) ⊆ V (G⊠H).

10



Observe that

(G⊠H)− S1 = (G− S)⊠H,

so we have c ((G⊠H)− S1) = r with |S1| = |S| · |V (H)| < r. By definition, G ⊠ H is

not 1-tough. Notice that statement (ii) is the same as statement (i) by considering the product

H ⊠G.

Now, suppose that statement (iii) holds. Let

S2 = S × V (H) ∪ S ′ × V (G) ⊆ V (G⊠H).

Then we have

(G⊠H)− S2 = (G− S)⊠ (H − S ′).

Thus, we have that c((G⊠H)−S2) = rtwith |S2| = |S|·|V (H)|+|S ′|·|V (G)|−|S|·|S ′| < rt.

Hence, it follows that G⊠H is not 1-tough.

For a tree T , if we delete a vertex with maximum degree, then we obtain ∆(T ) connected

components. Hence, by Theorem 4.1, we have the following results.

Corollary 4.2. Let G be a connected graph and T be a tree. If ∆(T ) > |V (G)|, then G⊠ T is

not Hamiltonian.

Corollary 4.3. Let T1 and T2 be trees. If |V (T1)| + |V (T2)| − 1 < ∆(T1)∆(T2), then T1 ⊠ T2

is not Hamiltonian.

By Corollary 4.2, we know that Pn ⊠ T can be Hamiltonian only when n ≥ ∆(T ). Next,

we give another constraint of Pn ⊠G being Hamiltonian by using Proposition 3.2.

Theorem 4.4. If G is a graph that does not contain a {K1,1, K1,2, K1,3, K1,4}-factor and H is

a graph with δ(H) = 1, then H ⊠G is not Hamiltonian.

Proof. Let x ∈ V (H) be a vertexwith degH(x) = 1 and y ∈ V (H) be its neighbor. Suppose that

H⊠G contains a Hamiltonian cycle C. Then degC(v) = 2 for all v ∈ V (H⊠G). SinceG does

not contain a {K1,1, K1,2, K1,3, K1,4}-factor, by Proposition 3.2, there existsS ⊆ V (G) such that

11



i(G−S) > 4|S|. Let I be the set of isolated vertices inG−S and zS = {zs | s ∈ S} ⊆ V (H⊠G)

for z ∈ V (H). Observe that for each u ∈ I , we have NG(u) ⊆ S and

NH⊠G(xu) ⊆ {yu} ∪ xS ∪ yS.

This means that for each u ∈ I , xu must be adjacent in C to at least one of the vertices in

xS ∪ yS . Notice that |I| = i(G− S) > 4|S| = 2|xS ∪ yS|, by pigeonhole principle, there exists

a vertex z ∈ xS ∪ yS such that degC(z) ≥ 3, which is a contradiction. Therefore,H ⊠G has no

Hamiltonian cycle.

Theorem 4.4 is generalized as follows.

Theorem 4.5. LetH be a graph and S ′ ⊆ V (H). Let I ′ be the set of isolated vertices inH−S ′

and S1 ⊆ S ′ be the set of vertices in S ′ with only one neighbor in I ′. Assume that 2|I ′|−2|S ′|+

|S1| > 0 and let t =
⌈

2|I′|+2|S′|
2|I′|−2|S′|+|S1|

⌉
≥ 2. IfG does not contain a {K1,1, K1,2, . . . , K1,t}-factor,

then H ⊠G is not Hamiltonian.

Proof. The idea of the proof is similar to Theorem 4.4. Since G does not contain a {K1,1, K1,2,

. . . , K1,t}-factor, by Proposition 3.2, there exists S ⊆ V (G) such that i(G − S) > t|S|. Let

I ⊆ V (G) be the set of isolated vertices in G− S. SupposeH ⊠G has a Hamiltonian cycle C.

Then we have ∑
xu∈I′×I

degC(xu) = 2|I ′ × I|.

Notice that

NH⊠G(I
′ × I) ⊆ I ′ × S ∪ S ′ × S ∪ S ′ × I.

Since each y ∈ S1 has only one neighbor in I ′, it follows that each yu ∈ S1 × I has only one

neighbor in I ′ × I . Hence, there are at most

2|I ′ × S|+ 2|S ′ × S|+ 2|(S ′ \ S1)× I|+ |S1 × I|
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edges in C between I ′ × I and I ′ × S ∪ S ′ × S ∪ S ′ × I . This means

2|I ′ × I| ≤ 2|I ′ × S|+ 2|S ′ × S|+ 2|(S ′ \ S1)× I|+ |S1 × I|.

By rearranging the above formula, we have

(2|I ′| − 2|S ′|+ |S1|) |I| ≤ (2|I ′|+ 2|S ′|) |S|.

However, this will lead to

t <
|I|
|S|

≤ 2|I ′|+ 2|S ′|
2|I ′| − 2|S ′|+ |S1|

≤
⌈

2|I ′|+ 2|S ′|
2|I ′| − 2|S ′|+ |S1|

⌉
= t,

which is a contradiction. Therefore, H ⊠G is not Hamiltonian.

Notice that Theorem 4.4 is just a special case of Theorem 4.5 with |I ′| = |S ′| = |S1| = 1.

Next, we discuss the Hamiltonicity of Pn ⊠ G. Since δ(Pn) = 1 for all n ≥ 2, by Theo-

rem 4.4, it follows thatPn⊠G has noHamiltonian cycle ifG does not contain a {K1,1, K1,2, K1,3,

K1,4}-factor. Now, a natural question to ask is that whether or notPn⊠G contains a Hamiltonian

cycle provided that G has a {K1,1, K1,2, K1,3, K1,4}-factor. First, we construct a Hamiltonian

cycle for Pn ⊠K1,1, Pn ⊠K1,2, Pn ⊠K1,3, and Pn ⊠K1,4.

In our construction, we want as more edges of the cycle contained inEu where u is the vertex

inK1,2 or K1,4 with maximum degree. Thus, we consider the following results.

Lemma 4.6. Suppose V (K1,2) = {u, v, w} with deg(u) = 2. If C is a Hamiltonian cycle of

Pn ⊠K1,2, then C does not contain a path of order 5 in Eu.

Proof. Suppose that C contains a path of order 5 in Eu, says (j − 2)u, (j − 1)u, ju, (j + 1)u,

(j + 2)u. Notice that

NPn⊠K1,2(jv) = {(j − 1)v, (j + 1)v, (j − 1)u, ju, (j + 1)u},
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and

NPn⊠K1,2(jw) = {(j − 1)w, (j + 1)w, (j − 1)u, ju, (j + 1)u}.

Since (j − 1)u, ju, and (j + 1)u has degree 2 with the 4 edges in Eu, C must also contains two

paths (j−1)v, jv, (j+1)v, and (j−1)w, jw, (j+1)w. Now, observe that the three sets of vertices

{(j − 1)v, jv, (j + 1)v}, {(j − 2)u, (j − 1)u, ju, (j + 1)u, (j + 2)u}, {(j − 1)w, jw, (j + 1)w}

cut Pn ⊠ K1,2 into 2 components. Since 3 is odd, it is impossible that a Hamiltonian cycle

contains all these edges. Therefore, C does not contain a path of order 5 in Eu.

By the same technique, we have a similar result forK1,4.

Lemma 4.7. Suppose V (K1,4) = {u, v, w, x, y} with deg(u) = 4. If C is a Hamiltonian cycle

of Pn ⊠K1,4, then C does not contain a path of order 5 in Eu.

Based on Lemma 4.6 and Lemma 4.7, we construct the Hamiltonian cycle for Pn⊠K1,2 and

Pn⊠K1,4 with 3 consecutive edges in Eu where u is the vertex inK1,2 andK1,4 with maximum

degree.

Construction 4.8. The Hamiltonian cycles we choose are as follows

• Let V (K1,1) = {u, v}. Then

Eu ∪ Ev ∪ {1u1v, nunv}

forms a Hamiltonian cycle for Pn ⊠K1,1.
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• Let V (K1,2) = {u, v, w} with deg(u) = 2 and

E ={iu(i+ 1)u | i ≡ 0, 2, 3 (mod 4), i < n− 1}

∪ {iv(i+ 1)v | i ≡ 0, 1, 2, 4, 5, 6, 7 (mod 8)}

∪ {iw(i+ 1)w | i ≡ 0, 1, 2, 3, 4, 5, 6 (mod 8)}

∪ {iu(i+ 1)v | i ≡ 2 (mod 8), i < n}

∪ {iu(i− 1)v | i ≡ 5 (mod 8), i < n}

∪ {iu(i+ 1)w | i ≡ 6 (mod 8), i < n}

∪ {iu(i− 1)w | i ≡ 1 (mod 8), 1 < i < n}

∪ {1u1v, 1u1w} ⊆ E(Pn ⊠K1,2).

Then, the following set forms a Hamiltonian cycle for Pn ⊠K1,2.



E ∪ {(n− 1)unw, nunv, nunw} if n ≡ 0 (mod 8)

E ∪ {(n− 1)u(n− 1)w, nunv, nunw} if n ≡ 1 (mod 8)

E ∪ {nunv, nunw} if n ≡ 2 (mod 8)

E ∪ {nunw} if n ≡ 3 (mod 8)

E ∪ {(n− 1)unv, nunv, nunw} if n ≡ 4 (mod 8)

E ∪ {(n− 1)u(n− 1)v, nunv, nunw} if n ≡ 5 (mod 8)

E ∪ {nunv, nunw} if n ≡ 6 (mod 8)

E ∪ {nunv} if n ≡ 7 (mod 8)

• Let V (K1,3) = {u, v, w, x} with deg(u) = 3. Then

{iu(i+ 1)u | i = 2, 3, . . . , n− 2} ∪ Ev ∪ Ew ∪ Ex

∪{1u1v, 1u1w, 2u1x, (n− 1)unw, nunv, nunx}

forms a Hamiltonian cycle for Pn ⊠K1,3.
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• Let V (K1,4) = {u, v, w, x, y} with deg(u) = 4 and

E ={iu(i+ 1)u | i ≡ 0, 1, 3 (mod 4), 2 < i < n− 2}

∪ {iv(i+ 1)v | i ≡ 0, 1, 2, 3, 5, 6, 7 (mod 8), i < n− 2}

∪ {iw(i+ 1)w | i ≡ 1, 2, 3, 4, 5, 6, 7 (mod 8), i < n− 2}

∪ {iu(i+ 1)v | i ≡ 3 (mod 8), i < n− 1}

∪ {iu(i− 1)v | i ≡ 6 (mod 8), i < n− 1}

∪ {iu(i+ 1)w | i ≡ 7 (mod 8), i < n− 1}

∪ {iu(i− 1)w | i ≡ 2 (mod 8), 2 < i < n− 1}

∪ {2u1x, 1u1y, 2u1v, 1u1w, (n− 1)vnv, (n− 1)wnw, nunx, nunw, (n− 1)uny, (n− 1)unv}

∪ Ex ∪ Ey ⊆ E(Pn ⊠K1,4)

Then, the following set forms a Hamiltonian cycle for Pn ⊠K1,4.



E ∪ {(n− 2)v(n− 1)v, (n− 2)w(n− 1)w} if n ≡ 0 (mod 8)

E ∪ {(n− 2)u(n− 2)w, (n− 2)v(n− 1)v} if n ≡ 1 (mod 8)

E ∪ {(n− 2)u(n− 1)w, (n− 2)v(n− 1)v} if n ≡ 2 (mod 8)

E ∪ {(n− 2)u(n− 2)w, (n− 2)w(n− 1)w, (n− 2)v(n− 1)v} if n ≡ 3 (mod 8)

E ∪ {(n− 2)v(n− 1)v, (n− 2)w(n− 1)w} if n ≡ 4 (mod 8)

E ∪ {(n− 2)u(n− 2)v, (n− 2)w(n− 1)w} if n ≡ 5 (mod 8)

E ∪ {(n− 2)u(n− 1)v, (n− 2)w(n− 1)w} if n ≡ 6 (mod 8)

E ∪ {(n− 2)u(n− 2)v, (n− 2)v(n− 1)v, (n− 2)w(n− 1)w} if n ≡ 7 (mod 8)

Below, We give an example of the Hamiltonian cycle we construct.

Figure 4.1: P10 ⊠K1,1
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Figure 4.2: P10 ⊠K1,2

Figure 4.3: P10 ⊠K1,3

Figure 4.4: P10 ⊠K1,4

Lemma 4.9. Let T be a tree that has a {G1, G2, . . . , Gk}-factor F with at least 2 components.

Then there exists a component L of F such that T − V (L) is a tree with a {G1, G2, . . . , Gk}-

factor F − V (L).

Proof. We consider a graph H whose vertex set consists of the components of F . Two com-

ponents L1, L2 of F are adjacent if there exist vertices u1 ∈ V (L1) and u2 ∈ V (L2) such that

u1u2 ∈ E(T ). It is clear that H is connected and a cycle in H will yield a cycle in T . Hence,

H must be a tree. Let L be a leaf of H . Then deleting the corresponding component L in F

gives a {G1, G2, . . . , Gk}-subgraph of T . Therefore, F −V (L) is a {G1, G2, . . . , Gk}-factor of

T − V (L).

Now, we prove our main result of the existence of the Hamiltonian cycle of Pn ⊠ G where

G is a graph containing {K1,1, K1,2, K1,3, K1,4}-factor.
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Theorem 4.10. Let T be a tree with a {K1,1, K1,3}-factor. If n ≥ ∆(T ), then there exists a

Hamiltonian cycle of Pn ⊠ T which contains exactly n − degT (v) of edges from the set Ev for

any v ∈ V (T ).

Proof. The proof is by induction on |V (T )|. If T = K1,1 or T = K1,3, then the Hamiltonian

cycles of Pn ⊠K1,1 and Pn ⊠K1,3 in Construction 4.8 satisfies the requirements.

Now, suppose T has a {K1,1, K1,3}-factorF with more than one component. By Lemma 4.9,

there exists a component L of F such that T ′ = T − V (L) is a tree with a {K1,1, K1,3}-factor

F−V (L). Let u1 ∈ V (L) and u2 ∈ V (T ′)with u1u2 ∈ E(T ). Notice that∆(T ′) ≤ ∆(T ) ≤ n.

Since |V (T ′)| < |V (T )|, by induction hypothesis, it follows that Pn ⊠ T ′ has a Hamiltonian

cycleC ′ which contains exactly n−degT ′(v) of edges from the setEv for any v ∈ V (T ′). Since

u1 /∈ V (T ′), we have

degT ′(u2) = degT (u2)− 1 ≤ ∆(T )− 1 ≤ n− 1.

Hence,C ′ must contain at least one edge fromEu2 , namely, ju2(j+1)u2 . Furthermore, sinceL is

aK1,1 orK1,3, we have a Hamiltonian cycleC ofPn⊠L by Construction 4.8. Observe that in our

construction,C contain at least one of the edge in {(j−1)u1ju1 , ju1(j+1)u1 , (j+1)u1(j+2)u1}.

Let ℓu1(ℓ+ 1)u1 be the edge in C where ℓ is one of the j − 1, j, j + 1. Then we can construct a

new Hamiltonian cycle Ĉ of Pn ⊠ T with edges

E(Ĉ) = E(C ′) ∪ E(C) ∪ {ju2ℓu1 , (j + 1)u2(ℓ+ 1)u1} \ {ju2(j + 1)u2 , ℓu1(ℓ+ 1)u1}.

Finally, the remaining part is to verify Ĉ satisfies the requirements of containing exactly

n− degT (v) of edges from Ev for any v ∈ V (T ). From the induction hypothesis, we know that

for any v ̸= u1, u2 meets the requirements. For u1, Ĉ contains n−degL(u1)−1 = n−degT (u1)

edges from Eu1 . Similarly, Ĉ contains n − degT ′(u2) − 1 = degT (u2) edges from Eu2 . This

completes the proof.

Theorem 4.11. Let T be a tree with a {K1,1, K1,2, K1,3, K1,4}-factor. If n > 4
3
(∆(T )+ 2), then
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there exists a Hamiltonian cycle of Pn ⊠ T which contains at least 3
4
n− degT (v) of edges from

the set Ev for any v ∈ V (T ).

Proof. The proof is similar to Theorem 4.10 and is also by induction on |V (T )|. If T =

K1,1, K1,2, K1,3, or K1,4, then the Hamiltonian cycles in Construction 4.8 satisfies the require-

ments. Notice that forK1,2, the Hamiltonian cycle contains



3
4
n− 2, n ≡ 0 (mod 4)

3
4
n− 7

4
, n ≡ 1 (mod 4)

3
4
n− 3

2
, n ≡ 2 (mod 4)

3
4
n− 5

4
, n ≡ 3 (mod 4)

edges in Eu where u ∈ V (K1,2) with degK1,2
(u) = 2. Meanwhile, for K1,4, the Hamiltonian

cycle contains 

3
4
n− 3, n ≡ 0 (mod 4)

3
4
n− 15

4
, n ≡ 1 (mod 4)

3
4
n− 7

2
, n ≡ 2 (mod 4)

3
4
n− 13

4
, n ≡ 3 (mod 4)

edges in Eu where u ∈ V (K1,4) with degK1,4
(u) = 4.

Now, suppose that T has a {K1,1, K1,2, K1,3, K1,4}-factor F with more than one component.

By Lemma 4.9, there exists a component L of F such that T ′ = T − V (L) is a tree with

{K1,1, K1,2, K1,3, K1,4}-factor F − V (L). Let u1 ∈ V (c) and u2 ∈ V (T ′) with u1u2 ∈ E(T ).

It is clear that n ≥ 4
3
∆(T ′) + 2 since ∆(T ′) ≤ ∆(T ). By induction hypothesis, Pn ⊠ T ′ has a

Hamiltonian cycle C ′ which contains at least 3
4
n − degT ′(v) of edges from the set Ev for any

v ∈ V (T ′). Since u1 /∈ V (T ′), we have degT ′(u2) = degT (u2)− 1 ≤ ∆(T )− 1 and

3

4
n− degT ′(u2) >

3

4
× 4

3
(∆(T ) + 2)− degT ′(u2) ≥ 3.
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Thismeans thatC ′must contain at least 4 edges ofEu2 . By excluding the first and last two edges,

C ′ must contain at least one edge fromEu2 \{1u22u2 , (n−2)u2(n−1)u2 , (n−1)u2nu2}, denoted

as ju2(j+1)u2 with j ̸= 1, n−2, n−1. Moreover, by Construction 4.8, there exists a Hamiltonian

cycle C of Pn ⊠ L containing at least one of (j − 1)u1ju1 , ju1(j + 1)u1 , (j + 1)u1(j + 2)u1 . Let

ℓu1(ℓ + 1)u1 be the edge in C where ℓ is one of the j − 1, j, j + 1. As same in Theorem 4.10,

we can construct a new Hamiltonian cycle Ĉ of Pn ⊠ T with edges

E(Ĉ) = E(C ′) ∪ E(C) ∪ {ju2ℓu1 , (j + 1)u2(ℓ+ 1)u1} \ {ju2(j + 1)u2 , ℓu1(ℓ+ 1)u1}.

Now, we shall ensure that C contains at least 3
4
n − degT (v) edges from the set Ev for any

v ∈ V (T ). This is true for any v ̸= u1, u2 from the induction hypothesis. Furthermore, Ĉ

contains at least 3
4
n−degL(u1)−1 = 3

4
n−degT (u1) and 3

4
n−degT ′(u2)−1 = 3

4
n−degT (u2)

edges from Eu1 and Eu2 , respectively. This completes the proof.

Notice that we can replace the tree T in Theorem 4.10 and Theorem 4.11 by a connected

graph, then the existence of the Hamiltonian cycle is still valid since every connected graphs

contain a spanning tree. Therefore, Theorem 1.1 is a direct consequence of Theorem 4.4 and

Theorem 4.11.

Finally, we give a counterexample to show that the condition in Theorem 4.11 cannot be

relaxed to n ≥ ∆(T ) as in Theorem 4.10.

u

v

w

x

y

a

b

c

d

e

Figure 4.5: A graph with maximum degree 5

Theorem 4.12. LetG be the graph in Figure 4.5. Then P5⊠G does not contain a Hamiltonian

cycle.
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Proof. LetH = P5⊠G and suppose thatH has a Hamiltonian cycleC. Observe thatNH(1α) =

{1u, 2u, 2α} and NH(5α) = {5u, 4u, 4α} for α = v, w, x, y. This implies that for each α =

v, w, x, y, the vertex 1α and 5α must be adjacent to at least one of the 1u, 2u and 4u, 5u in C,

respectively. Hence, 1u, 2u, 4u, 5u cannot have other neighbors in C since there are already 8

neighbors for them. By a similar statements, it follows that 1a, 2a and 4a, 5a can only be adjacent

to 1β and 5β in C for β = b, c, d, e, respectively. Let A = V (P5) × {u, v, w, x, y} ⊆ E(H)

and B = V (P5) × {a, b, c, d, e} ⊆ E(H). Then 3u3a is the only remaining edge to connect A

and B. However, we must have at least two edges to connect A and B for a Hamiltonian cycle,

which is a contradiction. Therefore, H is not Hamiltonian.
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Chapter 5

Toughness of the strong product of a path

and a graph

In this section, we discuss the toughness of Pn ⊠G.

Theorem 5.1. Let G be a graph and n ≥ 2 be an integer. If Pn ⊠G is 3
2
-tough, then G contain

a {K1,1, K1,2, K1,3, K1,4}-factor.

Proof. The proof is by contradiction. Suppose thatG does not contain a {K1,1, K1,2, K1,3, K1,4}-

factor. By Proposition 3.2, there exists S ⊆ V (G) such that i(G − S) > 4|S|. Let I be the set

of isolated vertices in G− S. Now, we consider the set

S ′ = ({1, 2} × S) ∪ ({2} × I) ⊆ V (Pn ⊠G).

Hence, |S ′| = 2|S|+ |I| < 3
2
|I|. Observe that each vertex in {1}×I is isolated in (Pn⊠G)−S ′.

Hence, (Pn ⊠G)− S ′ has at least |I| components. Since |S′|
c(Pn⊠G−S′)

<
3
2
|I|
|I| < 3

2
, it follows that

Pn ⊠G is not 3
2
-tough.

By this Theorem, we can easily prove Corollary 1.2.

Proof of Corollary 1.2. From Theorem 5.1, if Pn⊠G is 3
2
-tough, thenGmust contains a {K1,1,

K1,2, K1,3, K1,4}-factor. By Theorem 4.11, it follows that Pn ⊠G is Hamiltonian.

Proof of Corollary 1.3. (i)⇒ (ii) is from Proposition 3.1. (ii)⇒ (iii) is from Theorem 4.1. (iii)

⇒ (i) is from Theorem 4.10.

Now, we consider the graphs of the form Pn ⊠ G where G is a connected graph and n >

4
3
(∆(G) + 2). We have proved that t(Pn ⊠ G) ≥ 3

2
implies that Pn ⊠ G is Hamiltonian. On

the other hand, Chvatal’s result demonstrates that t(Pn ⊠ G) < 1 implies that Pn ⊠ G is not
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Hamiltonian. The only remaining case is the graphs with toughness between 1 and 3
2
. Observe

that Pn ⊠P2 is Hamiltonian and has toughness exactly 1. We are now interested in determining

whether there exists a graph G such that Pn ⊠ G is not Hamiltonian, but its toughness is close

to 3
2
.

Below, we discuss the toughness and Hamiltonicity of the graph Pn ⊠ Kk,4k+1. For con-

venience, let X,Y be the two parts of vertex of Kk,4k+1 where |X| = k and |Y | = 4k + 1.

Furthermore, for each i = 1, 2, . . . , n, we define three subsets of V (Pn ⊠Kk,4k+1)

Vi = {i} × V (Kk,4k+1), Xi = {i} ×X, Yi = {i} × Y.

Lemma 5.2. Let n, k be positive integers. Then the graph Pn ⊠Kk,4k+1 is not Hamiltonian.

Proof. It is clear that Kk,4k+1 does not contain a {K1,1, K1,2, K1,3, K1,4}-factor. By Theo-

rem 4.4, Pn ⊠Kk,4k+1 is not Hamiltonian.

Lemma 5.3. Let n, k be positive integers with n ≥ 3. Then t(Pn ⊠Kk,4k+1) ≤ 6k+1
4k+2

.

Proof. Consider the set

S = X1 ∪ V2 ⊆ V (Pn ⊠Kk,4k+1).

Notice that |S| = 6k+1 and c(Pn⊠Kk,4k+1−S) = |Y1|+1 = 4k+2. By definition, it follows

that t(Pn ⊠Kk,4k+1) ≤ 6k+1
4k+2

.

Now, we shall prove that t(Pn⊠Kk,4k+1) ≥ 6k+1
4k+2

. Notice that from our definition of tough-

ness, we have t(G) = min |S|
c(G−S)

, where S is a vertex cut of G. We first prove the following

lemma.

Lemma 5.4. Let n, k be positive integers with n ≥ 3 and G = Pn ⊠Kk,4k+1. If S is a vertex

cut that attains the minimum value of |S|
c(G−S)

among all the vertex cuts, then either Vi ∩ S = ∅

or Xi ⊆ S for each i = 1, 2, . . . , n.

Proof. Suppose on the contrary that Si ̸= ∅ and Xi ̸⊆ S where Si = Vi ∩ S. Let x ∈ Xi \ S.

We have the following two cases.
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Case 1: Yi ̸⊆ S. Let y ∈ Yi \ S. Since xy ∈ E(G − S) and NG({x, y}) = NG(Si), the

deletion of Si in G will not affect the number of components. That is,

c(G− S) = c(G− (S \ Si)).

Furthermore, we have |S \ Si| < |S| since Si ̸= ∅. It follows that |S\Si|
c(G−(S\Si))

< |S|
c(G−S)

, which

is a contradiction.

Case 2: Yi ⊆ S. Notice that Yi−1, Yi+1 ⊆ NG−S(x) (only Yi+1 for i = 1 and Yi−1 for i = n).

Therefore, the deletion of S in G yields at most 2k more components than that of the deletion

of S \ Si. That is,

c(G− S) ≤ c(G− (S \ Si)) + 2k.

Furthermore, since Yi ⊆ S, we have that |S| ≥ |S \ Si| + 4k + 1. If S \ Si is not a vertex cut,

then we have c(G − S) ≤ 2k + 1. This implies that |S|
c(G−S)

≥ 4k+1
2k+1

≥ 5
3
, which contradicts to

Lemma 5.3. If S \ Si is still a vertex cut, then by Lemma 5.3, it follows that

3

2
>

6k + 1

4k + 2
≥ |S|

c(G− S)
≥ |S \ Si|+ 4k + 1

c(G− (S \ Si)) + 2k
.

By rearranging the formula, we obtain

|S \ Si| · c(G− S) ≤ |S| · c(G− (S \ Si)) + 2k|S| − (4k + 1) · c(G− S)

< |S| · c(G− (S \ Si)).

This implies that |S\Si|
c(G−(S\Si))

< |S|
c(G−S)

, which is a contradiction.

Lemma 5.5. Let n, k be positive integers with n ≥ 3 and G = Pn ⊠Kk,4k+1. Let S be a vertex

cut of G that attains the minimum value of |S|
c(G−S)

among all the vertex cuts. For every y ∈ Y ,

we have that 1y, ny /∈ S. Moreover, if iy ∈ S, then (i− 1)y, (i+ 1)y /∈ S.

Proof. We only prove that 1y /∈ S for every y ∈ Y , and ny /∈ S can be shown analogously.

Suppose on the contrary that 1y ∈ S for some y ∈ Y . By Lemma 5.4, we have that X1 ⊆ S.

Let S ′ = S \ {1y}. Then NG−S′(1y) ⊆ {2y} ∪ X2. If follows that either NG−S′(1y) = ∅ or
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G[NG−S′(1y)] is connected. This implies that c(G−S) ≤ c(G−S ′). Since |S ′| = |S|−1 < |S|,

we have that
|S ′|

c(G− S ′)
<

|S|
c(G− S)

,

which is a contradiction.

Next, we suppose that iy, (i + 1)y ∈ S for some i ∈ {2, . . . , n − 1} and y ∈ Y . Let

Ŝ = S \ {iy}. By Lemma 5.4, we have that Xi ⊆ S and Xi+1 ⊆ S. Notice that NG−Ŝ(iy) ⊆

{(i− 1)y} ∪Xi−1 for i ≥ 2. By a similar argument above, we can easily show that

|Ŝ|
c(G− Ŝ)

<
|S|

c(G− S)
,

which is a contradiction.

Lemma 5.6. Let k, n be integers with n ≥ 40k2+22k+3
6k+1

. Then t(Pn ⊠Kk,4k+1) ≥ 6k+1
4k+2

.

Proof. Let G = Pn ⊠ Kk,4k+1 and S be the vertex cut of G that attains the minimum value

of |S|
c(G−S)

among all the vertex cut. Let Si = Vi ∩ S for each i. By Lemma 5.4, we have that

either Si = ∅ or Xi ⊆ Si for each i. Let R = {i | Si ̸= ∅}. If R = {1, 2, . . . , n}, then the

number of components of G− S is at most 4k + 1 +m wherem = |S ∩ (R× Y )|. This value

is derived from the fact that G − (R × X) is a graph of 4k + 1 paths of length n and deleting

one vertex of this graph can yield at most one more component. By Lemma 5.5, we must have

m ≤ (4k + 1)
⌊
n−1
2

⌋
. It follows that

|S|
c(G− S)

≥ nk +m

4k + 1 +m
≥

nk + (4k + 1)
⌊
n−1
2

⌋
4k + 1 + (4k + 1)

⌊
n−1
2

⌋ ≥ 6k + 1

4k + 2
.

Note that the second inequality is obtained from the fact that nk > 4k+1, and the last inequality

holds for n ≥ 40k2+22k+3
6k+1

.

On the other hand, suppose that R ⊊ {1, 2, . . . , n}. We define R1, R2, . . ., Rs as follows.

First, let each Ri ̸= ∅ consists of consecutive integers in {0, n + 1} ∪ R such that max(Rj) <
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min(Rj+1)− 1 for j = 1, 2, . . . , s− 1 and

s∪
j=1

Rj = {0, n+ 1} ∪R.

Then we delete 0 from R1 and n + 1 from Rs. Let rj = |Rj| and mjy = |S ∩ (Rj × {y})|

for j = 1, 2, . . . , s and y ∈ Y . Furthermore, let αj be the number of y such that mjy ̸= 0 and

mj =
∑

y∈Y mjy. By Lemma 5.5, we have thatm1 ≤
⌊
r1
2

⌋
,ms ≤

⌊
rs
2

⌋
, andmj ≤ αj

⌊
rj+1

2

⌋
for

j = 2, 3, . . . , s−1. Observe that for the graphG−(R×X), deleting one vertex fromR1×Y or

Rs×Y can yield at most one more component. Similarly, for each j = 2, 3, . . . , s−1 and y ∈ Y ,

deleting q vertices from Rj × {y} can yield at most q− 1 more component. Furthermore, if we

delete at least one vertex from Rj × {y} for every y ∈ Y , then we obtain one more component.

Therefore, the total number of components in G− S is at most

1 +m1 +
s−1∑
j=2

(
mj − αj + 1[αj=4k+1]

)
+ms,

where 1 is the indicator function. Notice that |S| =
∑s

j=1 rjk +mj . We claim that

Pj :=
rjk +mj

1 +mj − αj + 1[αj=4k+1]

≥ 6k + 1

4k + 2

for j = 2, 3, . . . , s− 1. If αj = 4k + 1, then

Pj =
rjk +mj

2 +mj − 4k − 1
.

It is clear that this value attains minimum when mj attains its maximum, i.e, mj = (4k +

1)
⌊
rj+1

2

⌋
. It follows that

Pj ≥
rjk + (4k + 1)

⌊
rj+1

2

⌋
2 + (4k + 1)

⌊
rj−1

2

⌋ =


(6k+1)rj

(4k+1)rj−(8k−2)
, rj even

(6k+1)rj+(4k+1)

(4k+1)rj−(4k−3)
, rj odd.
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This value is larger than 6k+1
4k+1

> 6k+1
4k+2

.

If αj < 4k + 1, then we must have rj ≥ 3 and αj ≥ 1; otherwise,

c(G− S) = c(G− (S \ (Rj × V (Kk,4k+1)))),

which contradicts to the definition of S. Similarly, Pj has the minimum value when mj =

αj

⌊
rj+1

2

⌋
. Hence, we have

Pj ≥
rjk + αj

⌊
rj+1

2

⌋
1 + αj

⌊
rj−1

2

⌋ =


2rjk+αjrj

αjrj−2(αj−1)
, rj even

2rjk+αj(rj+1)

αj(rj+1)−2(αj−1)
, rj odd.

This value is larger than 3
2
> 6k+1

4k+2
. By a similar argument, we can prove that P1 := r1k+m1

1+m1
≥

6k+1
4k+2

when R1 ̸= ∅ and Ps :=
rsk+ms

1+ms
≥ 6k+1

4k+2
when Rs ̸= ∅. By above, we have that

|S|
c(G− S)

≥
∑s

j=1 rjk +mj

1 +m1 +
∑s−1

j=2

(
mj − αj + 1[αj=4k+1]

)
+ms

≥ 6k + 1

4k + 2
.

Finally, we prove Theorem 1.4

Proof of Theorem 1.4. By Lemma 5.3 and Lemma 5.6, we have that t(Pn ⊠ Kk,4k+1) = 6k+1
4k+2

for n ≥ 40k2+22k+3
6k+1

. In addition, by Lemma 5.2, Pn ⊠Kk,4k+1 is not Hamiltonian. Notice that

Pn ⊠Kk,4k+1 ∈ G for n large. Since

lim
k→∞

6k + 1

4k + 2
=

3

2
,

there exists t-tough graph in G for any t < 3
2
. By the definition of Hamiltonian toughness, we

have that Ht(G) ≥ 3
2
.

On the other hand, by Corollary 1.2, every 3
2
-tough graph in G is Hamiltonian. Consequently,

Ht(G) ≤ 3
2
.
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