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圖的阿爾發指標之研究

學生：王璿智 指導教授：翁志文 博士

國立陽明交通大學應用數學系碩士班碩士班

摘 要

給定 0 ≤ α ≤ 1，一個圖 G的 Aα-矩陣定義為 Aα(G) = αD(G) + (1− α)A(G)，

其中 A(G) 和 D(G) 分別是 G 的鄰接矩陣和度數矩陣。 Aα(G) 的最大特徵值稱

為 G 的阿爾發指標。在本論文中，我們探討當 α 較小時，在 G(n,m)（即點數為

n 且邊數為 m 的圖的集合）中，哪個圖擁有最大的阿爾發指標。我們證明，如果

2m = c(c−1)+2t，其中 c和 t滿足 1 ≤ t ≤ c−1，並且 α滿足 0 ≤ α ≤ 1
c(c+1)(t+2)

，

那麼在 G(n,m)中，只有圖 G0擁有最大的阿爾發指標。圖 G0是從點數為 c的完全圖

Kc 中通過添加一個新頂點 v、添加 t條邊（每條邊都連接 v和 Kc 中的一個頂點）、

以及添加 n− c− 1個孤立頂點所得到的圖。

關鍵字：譜半徑，阿爾發矩陣，阿爾發指標，矩陣分割
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The Alpha-Index of a Graph

Student : Hsuan-Chih Wang Advisor: Dr. Chih-Wen Weng

Department of Applied Mathematics
National Yang Ming Chiao Tung University

Abstract

Given 0 ≤ α ≤ 1, the Aα-matrix of a graph G is the matrix defined by Aα(G) = αD(G)+

(1 − α)A(G), where A(G) and D(G) are the adjacency matrix and the degree matrix of G,

respectively. The largest eigenvalue of Aα(G) is called the α-index of G. In this thesis, we

focus on determining the graph with the maximum α-index among G(n,m), the set of graphs

of order n and size m, for small values of α. We prove that if 2m = c(c − 1) + 2t with

1 ≤ t ≤ c − 1, and 0 ≤ α ≤ 1
c(c+1)(t+2)

, then G0 is the only graph with the maximum α-

index among G(n,m). Here, G0 is the graph obtained from the complete graph Kc of order c

by adding a new vertex v, adding t edges, each incident on v and a vertex in Kc, and adding

n− c− 1 isolated vertices.

Keywords: spectral radius, Aα-matrix, α-index, matrix partition

ii



Contents

Chinese Abstract ..................................................................................................................... i

English Abstract...................................................................................................................... ii

Contents .................................................................................................................................. iii

1 Introduction....................................................................................................................... 1

2 Preliminaries ..................................................................................................................... 3

2.1 Perron-Frobenius Theorem ...................................................................................... 3

2.2 The Aα-matrix of a graph ........................................................................................ 4

2.3 Spectral bounds from matrix partitions.................................................................... 5

3 Aα-index of graphs with given order and size .................................................................. 7

3.1 The shape of G ∈ G(n,m) with ρα(G) = ρα(n,m) ............................................. 7

3.2 Upper bounds of α-indices ...................................................................................... 8

3.3 Graphs with ρα(G) = ρr(Π1(M
T )) ....................................................................... 10

4 The α-index for small α.................................................................................................... 13

4.1 The graph G0 ........................................................................................................... 13

4.2 The shape of the characteristic polynomial of Π1(M
T ).......................................... 15

4.3 The case G ̸= G0 and 0 ≤ α ≤ 1
c(c+1)(t+2)

............................................................. 17

4.4 The proof of Theorem 1.2........................................................................................ 24

References............................................................................................................................... 26

iii



Chapter 1. Introduction

All graphs considered in this thesis are finite, undirected, and simple. Let G be a graph with

vertex set V (G) and edge set E(G). The cardinalities of V (G) and E(G) are called the order

and the size of G, respectively. The degree of a vertex v is the number of edges incident to v. If

V (G) = {v1, v2, . . . , vn}, then the adjacency matrix of G is defined as an n×n matrix whose

(i, j)-entry is 1 if vi and vj are adjacent and 0 otherwise. The degree matrix of G is a diagonal

matrix whose (i, i)-entry is equal to the degree of vi.

In 2017, Nikiforov [5] introduced the study of the Aα-matrix of G, defined by Aα(G) =

αD(G)+(1−α)A(G) for 0 ≤ α ≤ 1. This matrix generalizes adjacency and degree matrices,

providing a flexible tool for spectral graph analysis. The α-index of G, denoted by ρα(G) is the

largest eigenvalue of Aα(G). We will discuss some details in Chapter 2.

The problem of determining the graph with the maximal α-index among graphs of a given

condition has attracted considerable interest. In 2017, Nikiforov [6] solved this problem for

trees of order n and 0 ≤ α ≤ 1. In 2022, Zhai, Lin, and Zhao [8] solved the case where α = 1
2
,

for graphs of order n and size m = n + k with 4 ≤ k ≤ n − 3. In 2023, Chang and Tam [1]

generalized this result to all α ∈ [1
2
, 1).

In this thesis, we focus on the problem of determining the maximal α-index for graphs of

a given order and size for small values of α. The case of α = 0 was solved by Rowlinson in

1987 [7], who proved the following theorem.

Theorem 1.1. [7] If 2m = c(c − 1) + 2t, where 1 ≤ t ≤ c − 1 and G is a graph with the

maximal index among all the graphs in G(n,m), then G = G0.

Here, G(n,m) denotes the set of all graphs with order n and size m, and G0 is the graph in

G(n,m) obtained from a complete graph Kc of order c by adding a vertex v and t edges, each

incident on v and a vertex in Kc, and adding n− c− 1 isolated vertices. We will discuss more

details of the graph G0 in Section 4.1.
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Since ρα(G) is a continuous function in α, it makes sense that the result of Theorem 1.1

might also work for small values of α. In this thesis, we extend Rowlinson’s result to the

α-index for 0 ≤ α ≤ 1
c(c+1)(t+2)

:

Theorem 1.2. If 0 ≤ α ≤ 1
c(c+1)(t+2)

, 2m = c(c − 1) + 2t, where 1 ≤ t ≤ c − 1 and G is a

graph with the maximal α-index among all the graphs in G(n,m), then G = G0.

The thesis is organized as follows: In Chapter 2, we provide the necessary background

on graph theory and spectral graph theory. Key concepts and theorems, including the Perron-

Frobenius theorem, are introduced to set the stage for the subsequent chapters. In Chapter 3,

we explore the properties of the Aα-matrix, establishing upper bounds for the spectral radius.

In Chapter 4, we focus on the maximal α-index problem for graphs with a given order and size

when α is small and prove Theorem 1.2.
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Chapter 2. Preliminaries

2.1 Perron-Frobenius Theorem

Let C be a real square matrix. The spectral radius of C is defined by

ρ(C) := max{|λ| : λ is an eigenvalue of C}.

We denote the largest real eigenvalue of C by ρr(C). If C has no real eigenvalue, define

ρr(C) = ∞. Note that if C is symmetric, then ρ(C) = ρr(C). A square matrix C is said to be

reducible if there is a permutation matrix P such that

PCP−1 =

(
C11 0

C12 C22

)
,

where C11 and C22 are square matrices. A matrix is said to be irreducible if it is not reducible.

The well-known Perron-Frobenius theorem plays an important role in spectral theory. Here we

state a few parts of the theorem that we need in this thesis.

Theorem 2.1. [4, Page553] If C is a nonnegative square matrix, then the following (i)–(v)

hold.

(i) The spectral radius ρ(C) is an eigenvalue of C .

(ii) There exist a nonnegative left eigenvector x and a nonnegative right eigenvector y corre-

sponding to ρ(C). If C is irreducible, then x and y can be chosen to be positive.

(iii) If C is irreducible, the eigenvalue ρ(C) is simple (has algebraic multiplicity one).

(iv) If there exists a positive column vector v and a nonnegative number λ such that Cv ≤ λv,

then ρ(C) ≤ λ.

3



(v) If there exists a positive column vector v and a nonnegative number λ such that Cv ≥ λv,

then ρ(C) ≥ λ.

The above nonnegative right eigenvector of length 1 corresponding to ρ(C) is called the

Perron vector of C . A well-known consequence of the Perron-Frobenius theorem is stated as

follows.

Lemma 2.2. [4, Page553] If C = (cij) and C ′ = (c′ij) are square matrices of the same size,

and 0 ≤ C ≤ C ′, which means 0 ≤ cij ≤ c′ij for all i, j, then ρ(C) ≤ ρ(C ′). Moreover, if C ′

is irreducible, then ρ(C) = ρ(C ′) if and only if C = C ′.

The following is a well-known property for symmetric matrices.

Lemma 2.3. [4, Page234] If C is a real symmetric matrix and v is a column vector of length

1, then ρ(C) ≥ vTCv, with equality holds if and only if v is an eigenvector of ρ(C).

2.2 The Aα-matrix of a graph

Let G be a graph with vertex set V (G) and edge set E(G). Let A(G) be the adjacency

matrix and D(G) the diagonal matrix of the degrees of G. For 0 ≤ α ≤ 1, the Aα-matrix of

G is the matrix defined by Aα(G) = αD(G) + (1 − α)A(G). Note that Aα(G) and A(G)

have the same i-th row-sum ri. The spectral radius of Aα(G) is called the α-index of G, and is

denoted by ρα(G). Note that the α-index of G is independent to the order of the vertex set of

G, and for 0 ≤ α < 1, the Aα-matrix of G is irreducible if and only if G is connected.

Example 2.4. Consider a path graph G = P3, which is one of the simplest forms of a graph.

After a suitable arrangement of the vertex set, the adjacency matrix and the diagonal matrix of

the degrees of G are

A(G) =

0 1 0

1 0 1

0 1 0

 , D(G) =

1 0 0

0 2 0

0 0 1

 .

For α = 0.5, the Aα matrix is computed as:

A0.5(G) = 0.5×D(G) + (1− 0.5)× A(G) =

0.5 0.5 0

0.5 1 0.5

0 0.5 0.5

 .
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The matrices A(G) and Aα(G) have the same row-sums r1 = 1, r2 = 2 and r3 = 1. Since

Aα(G) has three eigenvalues: 0, 0.5, and 1.5, the α-index of G is ρα(G) = 1.5.

2.3 Spectral bounds from matrix partitions

Let Π = {π1, . . . , πℓ} be a partition of the set [n] := {1, 2, . . . , n} and let C = (cij) be an

n× n matrix. Define an ℓ× ℓ matrix Π(C) := (pab), which is called the quotient matrix of C

with respect to Π, to be the matrix whose (a, b)- entry is

pab =
1

|πa|
∑
i∈πa

∑
j∈πb

cij.

If pab =
∑

j∈πb
cij for every 1 ≤ a, b ≤ ℓ, i ∈ πa, then the partition Π of [n] is also called an

equitable partition of C .

Example 2.5. Given the matrix

C =



1 3 0 1 1 0

2 2 0 0 2 0

0 0 2 0 1 1

1 1 0 4 4 0

1 1 0 3 3 2

0 2 0 2 5 1


Let Π1 = {{1, 2}, {3}, {4, 5, 6}} and Π2 = {{1, 2}, {3, 4}, {5, 6}} be two partitions of [6].

Then the corresponding quotient matrices are

Π1(C) =

4 0 2

0 2 1

2 0 8

 , Π2(C) =

4 0.5 1.5

1 3 3

2 2.5 5.5

 .

In this case, the partition Π1 is an equitable partition of C .

A vector (x1, x2, . . . , xn) is called rooted if xi ≥ xn ≥ 0 for 1 ≤ i ≤ n − 1. An n × n

matrix M is called rooted if there is a constant d such that the first n − 1 columns and the

row-sum vector of M+dIn are rooted. Note that the entries in the diagonal and the last column

of a rooted matrix M are not necessarily nonnegative. Here we use ρr(M) instead of ρ(M)

to denote the largest real eigenvalue of M . It is difficult to compute the α-index of a graph
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of large order since it is hard to find the eigenvalues of a matrix of large size. The following

lemmas related to a quotient matrix from some partition of a matrix will help us simplifying a

large Aα-matrix and estimate the α-index of a large order graph G.

Lemma 2.6. [3] If M = (mij) is an n × n rooted matrix, then ρr(M) exists and M has

a rooted eigenvector x for ρr(M). Moreover, for any eigenvalue λ with a rooted eigenvector

x = (x1, x2, . . . , xn)
T of M , the following (i), (ii) hold.

(i) If the row vector (mn1,mn2, . . . ,mn(n−1)) is positive, then x is positive.

(ii) If x is positive and the row-sum ri > rn for some 1 ≤ i ≤ n− 1, then xi > xn.

Lemma 2.7. [3] If M is an n×n rooted matrix and Π = {π1, . . . , πℓ} is an equitable partition

of MT with πℓ = {n}, then ρr(M) = ρr(Π(M
T )).

Lemma 2.8. [3] Let M = (mab) be an ℓ × ℓ rooted matrix. If C = (cij) is an n × n

nonnegative matrix and there exists a partition Π = (π1, π2, . . . , πℓ) of [n] such that

max
i∈πa

∑
j∈πb

cij ≤ mab and max
i∈πa

n∑
j=1

cij ≤
ℓ∑

c=1

mac

for 1 ≤ a ≤ ℓ and 1 ≤ b ≤ ℓ − 1, then ρ(C) ≤ ρr(M). Moreover, if C is irreducible,

x = (x1, . . . , xℓ) is a rooted eigenvector of M for ρr(M), then ρ(C) = ρr(M) if and only if

the following (i), (ii) hold.

(i) If x > 0, then
∑n

j=1 cij =
∑ℓ

c=1 mac for 1 ≤ a ≤ ℓ and i ∈ πa.

(ii)
∑

j∈πb
cij = mab for 1 ≤ a ≤ ℓ, 1 ≤ b ≤ ℓ− 1, i ∈ πa with xb > xℓ.
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Chapter 3. Aα-index of graphs with given

order and size

Recall that G(n,m) is the set of all graphs with order n and size m. Let ρα(n,m) denote

the maximum α-index among the graphs in G(n,m).

3.1 The shape of G ∈ G(n,m) with ρα(G) = ρα(n,m)

We give some lemmas to restrict the shape of graphs in G(n,m) with α-index ρα(n,m).

Lemma 3.1. Let 0 ≤ α ≤ 1. If G ∈ G(n,m) attains the maximum α-index, then G is

connected except for isolated vertices.

Proof. Let G ∈ G(n,m) be a graph such that ρα(G) = ρα(n,m), and H is a component

of G such that ρα(G) = ρα(H). On the contrary, suppose there is an edge not in H . This

happens only if there are at least two vertices not in H . Add a new isolated vertex x to H to

form a graph H1, and add an edge incident on x and the vertex in H with the largest degree to

form a graph H2. Then Aα(H) = Aα(H1) < Aα(H2). If α ̸= 1, then Aα(H2) is irreducible

and ρα(H) < ρα(H2) by Lemma 2.2. If α = 1 then ρ0(H) = ρ0(H2) − 1. Notice that

ρα(H2) ≤ ρ(H3) ≤ ρα(n,m), where H3 ∈ G(n,m) is obtained from H2 by adding more

vertices and edges to H2 if necessary. Putting together, ρα(n,m) = ρα(G) = ρα(H) <

ρα(H2) ≤ ρα(n,m), a contradiction.

Let G∗(n,m) be the set of graphs whose vertex set {v1, . . . , vn} can be arranged so that if

vivj ∈ E(G), then vivk ∈ E(G) for 1 ≤ k ≤ j and k ̸= i. If G ∈ G∗(n,m), we always

arrange the vertex set of G in this way.

Lemma 3.2. Let 0 ≤ α ≤ 1. If G ∈ G(n,m) satisfies ρα(G) = ρα(n,m), then G ∈

G∗(n,m).
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Proof. Let G ∈ G(n,m) with ρα(G) = ρα(n,m). By Lemma 3.1, G is connected except for

n−ℓ isolated vertices. Let the vertex set {v1, . . . , vn} ofG be arranged such that the eigenvector

of Aα(G) is x = (x1, . . . , xn)
T with x1 ≥ · · · ≥ xℓ is Perron vector of the largest connected

component of G and xℓ+1 = · · · = xn = 0. On the contrary, suppose there exist 1 ≤ i ≤ ℓ

and 1 ≤ k ≤ j with k ̸= i such that vivj ∈ E(G) and vivk /∈ E(G). Let G′ ∈ G(n,m) be

the graph obtained from G by deleting vivj and adding vivk. Then xTAα(G)x = ρα(G) by

definition, and xTAα(G
′)x ≤ ρα(G

′) by Lemma 2.3. Thus

ρα(G
′)− ρα(G) ≥ xT (Aα(G

′)− Aα(G))x = (1− α)(2xixk − 2xixj) + α(x2
k − x2

j) ≥ 0.

Since ρα(G) = ρα(n,m), we have ρα(G′) = ρα(G), implying ρα(G
′)x = Aα(G

′)x, and

ρα(G
′)xk = (Aα(G

′)x)k = (ρα(G)x)k +αxk +(1−α)xi ≥ ρα(G)x+ k+ xi > ρα(G
′)xk,

a contradiction. Hence G ∈ G∗(n,m).

3.2 Upper bounds of α-indices

The following is a known upper bound of α-indices for G ∈ G(n,m) with given a maxi-

mum degree ∆(G) and minimum degree δ(G).

Lemma 3.3. [2] Let 0 ≤ α < 1. If G ∈ G(n,m) is connected with maximum degree ∆ and

minimum degree δ, then

ρα(G) ≤ α∆+ (1− α)(δ − 1) +
√
(α∆+ (1− α)(δ − 1))2 + 4(1− α)(2m− (n− 1)δ)

2
.

Moreover, the equality holds if and only if G is regular, or α = 0 and every vertex in G has

degree n− 1 or δ.

We shall investigate other upper bounds of α-indices by employing Lemma 2.8. Throughout

this section, fix a graph G ∈ G∗(n,m) and 0 ≤ α ≤ 1. Let (r1, r2, . . . , rn) denote the row-

sum vector of the adjacency matrix A(G). Find an integer d ∈ [n−1] such that s := rd+1 ≤ d.

Such d exists since d = n−1 is a choice. Let Π = {{1}, {2}, . . . , {d}, {d+1, d+2, . . . , n}}

be a partition of [n] into d+ 1 classes. Applying Lemma 2.8 with the above Π, ℓ = d+ 1, the

8



(d+ 1)× (d+ 1) matrix

M =



(1− α)Js×s

+(α(r1 + 1)− 1)Is
(1− α)Js×(d−s)

r1 − αr1 − (1− α)(d− 1)
...

rs − αr1 − (1− α)(d− 1)

(1− α)J(d−s)×s

(1− α)J(d−s)×(d−s)

+(α(rs+1 + 1)− 1)Id−s

rs+1 − αrs+1 − (1− α)(d− 1)
...

rd − αrs+1 − (1− α)(d− 1)

1− α · · · 1− α 0 · · · 0 αs


(3.1)

and C = Aα, where Is is the s × s identity matrix and Js×t is the s × t all one’s matrix, we

have the following lemma.

Lemma 3.4. ρα(G) ≤ ρr(M).

To find ρr(M), we consider the partition Π1 = {{1, 2, . . . , s}, {s + 1, . . . , d}, {d + 1}}

of [d + 1] into two classes if s = d or s = 0 and into three classes if 0 < s < d. We shall

consider only 0 < s < d and the case s = d or s = 0 is more easily. Observe that Π1 is an

equitable partition of MT . By Lemma 2.7, we have ρr(M) = ρr(Π1(M
T )), and

Π1(M
T ) =


(1− α)(s− 1) + αr1 (1− α)(d− s) 1− α

s(1− α) (1− α)(d− s− 1) + αrs+1 0

aα bα αs

 , (3.2)

where

aα :=
s∑

i=1

(ri − αr1 − (1− α)(d− 1)), bα :=
d∑

i=s+1

(ri − αrs+1 − (1− α)(d− 1)). (3.3)

Notice that when α = 1, we have

Π1(M
T ) =

r1 0 0

0 rs+1 0

a1 b1 s

 , (3.4)

and ρr(Π1(M
T )) = r1. By Lemma 3.4 and Lemma 2.7, we have the following Theorem.

Theorem 3.5. ρα(G) ≤ ρr(Π1(M
T )).
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3.3 Graphs with ρα(G) = ρr(Π1(M
T ))

Let G ∈ G∗(n,m) and M be the matrix in (3.1) obtained from G. We will investigate

the neccessary and sufficient conditions on G when the equality ρα(G) = ρr(Π1(M
T )) holds,

where Π1 = {{1, 2, . . . , s}, {s+ 1, . . . , d}, {d+ 1}}, 0 < s < rd+1 < d, and Π1(M
T ) is in

(3.2). Let (r1, r2, . . . , rn) denote the row-sum vector of Aα(G).

Theorem 3.6. If α = 1, then ρα(G) = ρr(Π1(M
T )) holds for any G ∈ G∗(n,m).

Proof. If α = 1, then Aα(G) is a diagonal matrix whose (i, i)-entry is ri for all 0 ≤ i ≤ n.

Thus ρα(G) = r1. By (3.4) we have ρr(Π1(M
T )) = r1. Hence, ρα(G) = ρr(Π1(M

T )).

Now, consider the case 0 ≤ α < 1. Since the number of vertices in the only nontrivial

component of G is r1 + 1, Aα(G)[r1 + 1] is irreducible and ρα(G) = ρ(Aα(G)[r1 + 1]),

where Aα(G)[r1 + 1] is the principle submatrix of Aα(G) restricted to the first r1 + 1 rows

and columns. Note that M is equal to the matrix in (3.1) obtained from Aα(G)[r1 + 1] with

Π = {{1}, {2}, . . . , {d}, {d + 1, d + 2, . . . , r1 + 1}}. We will find out the necessary and

sufficient condition of ρ(Aα(G)[r1 + 1]) = ρr(M) by Lemma 2.6 and Lemma 2.8. Let

x = (x1, x2, . . . , xd+1)
T be a rooted eigenvector of M , which exists by Lemma 2.6. To apply

Lemma 2.6(ii) and Lemma 2.8(i) in our later proof, we provide the following lemma to show

that x > 0.

Lemma 3.7. If 0 ≤ α < 1, s > 0 and u = (u1, . . . , ud+1)
T is a rooted eigenvector of M, then

u > 0.

Proof. Let u = (u1, . . . , ud+1) be a rooted eigenvector of M . Suppose ud+1 = 0, then

0 = ud+1 = αsud+1 + (1− α)
s∑

i=1

ui.

This implies u1 = · · · = us = 0, so

0 = u1 = αr1u1 + (1− α)
d+1∑
i=2

ui.

Hence, ui = 0 for all 1 ≤ i ≤ d + 1. This is a contradiction. So ud+1 > 0 and u > 0 since u

is rooted.
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Theorem 3.8. If 0 ≤ α < 1 and 0 < s < d, then ρα(G) = ρr(Π1(M
T )) if and only if one of

the following holds.

(i) r1 = · · · = rs and ri = s for all s+ 1 ≤ i ≤ r1 + 1.

(ii) r1 = · · · = rs, rs+1 = · · · = rd = d− 1 and ri = s for all d+ 1 ≤ i ≤ r1 + 1

Proof. Since ρα(G) = ρ(Aα(G)[r1 + 1]) and ρr(M) = ρr(Π1(M
T )), it is sufficient to show

that ρ(Aα(G)[r1 + 1]) = ρr(M) if and only if one of (i) or (ii) holds. To prove the necessity,

assume ρ(Aα(G)[r1 + 1]) = ρr(M). Applying Lemma 2.8(i), we have ri = rd+1 = s for

all i ∈ Πd+1 = {d + 1, d + 2, . . . r1 + 1}. Since Aα(G)[r1 + 1] is symmetric, we have

r1 = · · · = rs. There are two cases.

Case 1: rs+1 = s.

Then ri = s for all s+ 1 ≤ i ≤ d. Thus r1 = · · · rs and ri = s for all s+ 1 ≤ i ≤ r1 + 1, (i)

holds.

Case 2: rs+1 > s.

Then xs+1 > xd+1 by Lemma 2.6(ii). Applying Lemma 2.8(ii), since Πi = {i} for 1 ≤ i ≤ d,

we have ai(s+1) = mi(s+1) = 1 − α for 1 ≤ i ≤ d, i ̸= s + 1. This implies rs+1 = d − 1.

The symmetry of Aα(G) then implies ri > s and thus xi > xd+1 for all s + 2 ≤ i ≤ d by

Lemma 2.6(ii). Applying Lemma 2.8(ii) again, we have aij = mij for all s+ 1 ≤ i, j ≤ d. In

particular, αri = aii = mii = αrs+1 = α(d − 1) for all s + 1 ≤ i ≤ d. Thus r1 = · · · rs,

rs+1 = · · · = rd = d− 1 and ri = s for all d+ 1 ≤ i ≤ r1 + 1, (ii) holds.

To prove the sufficiency, first assume that (i) holds. Then

Aα(G)[r1 + 1] =


(1− α)Js×s

+(α(r1 + 1)− 1)Is
(1− α)Js×(r1+1−s)

(1− α)J(r1+1−s)×s αsIr1+1−s

 ,

M =



(1− α)Js×s

+(α(r1 + 1)− 1)Is
(1− α)Js×(d−s)

(1− α)(r1 − d+ 1)
...

(1− α)(r1 − d+ 1)

(1− α)J(d−s)×s

(1− α)J(d−s)×(d−s)

+(α(s+ 1)− 1)Id−s

(1− α)(s− d+ 1)
...

(1− α)(s− d+ 1)

1− α · · · 1− α 0 · · · 0 αs


.

11



Note that in this case xs+1 = · · · = xd+1. Thus the conditions (i) and (ii) in Lemma 2.8 both

hold, and so we have ρ(Aα(G)[r1 + 1]) = ρr(M). Assume (ii) holds, then

Aα(G)[r1 +1] =



(1− α)Js×s

+(α(r1 + 1)− 1)Is
(1− α)Js×(d−s) (1− α)Js×(r1+1−d)

(1− α)J(d−s)×s

(1− α)J(d−s)×(d−s)

+(αd− 1)Id−s

O(d−s)×(r1+1−d)

(1− α)J(r1+1−d)×s O(r1+1−d)×(d−s) αsIr1+1−d


.

M =



(1− α)Js×s

+(α(r1 + 1)− 1)Is
(1− α)Js×(d−s)

(1− α)(r1 − d+ 1)
...

(1− α)(r1 − d+ 1)

(1− α)J(d−s)×s

(1− α)J(d−s)×(d−s)

+(αd− 1)Id−s

0
...

0

1− α · · · 1− α 0 · · · 0 αs


.

The conditions (i) and (ii) in Lemma 2.8 also hold in this case. Hence ρ(Aα(G)[r1 + 1]) =

ρr(M).
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Chapter 4. The α-index for small α

In this chapter, assume G ∈ G∗(n,m), where 2m = c(c − 1) + 2t with 1 ≤ t ≤ c − 1.

Let (r1, r2, . . . , rn) be the row-sum vector of the adjacency matrix A(G).

Lemma 4.1. 1 ≤ rc+1 ≤ c− 1.

Proof. If rc+1 ≥ c, then

2m = c(c− 1) + 2t ≤ c(c− 1) + 2(c− 1) < c(c+ 1) ≤
c+1∑
i=1

ri ≤ 2m,

a contradiction. If rc+1 = 0, then 2m =
∑n

i=1 ri =
∑c

i=1 ri ≤ c(c−1) < c(c−1)+2t = 2m,

a contradiction.

By Lemma 4.1, we choose d = c for the construction of the matrix M in (3.1) and s = rc+1

to apply ρα(G) ≤ ρr(M) in Lemma 3.4

4.1 The graph G0

Let G0 be the graph in G∗(n,m) obtained from the complete graph Kc of order c by adding

a new vertex v, adding t edges, each incident on v and a vertex in Kc, and adding n − c − 1

isolated vertices. Hence G0 has row-sums r1 = · · · = rt = c, rt+1 = · · · = rc = c − 1,

rc+1 = t, and rc+2 = · · · = rn = 0. Let Π1(M
T
0 ) be the matrix in (3.2) obtained from this G0.

By Theorem 3.8(ii) with d = c and s = t, we have

ρα(G0) = ρr(Π1(M
T
0 )). (4.1)

Given a graph G ∈ G∗(n,m), and let Π1(M
T ) be the matrix in (3.2) obtain from G.

We will investigate the following problem: Whether or not if G ̸= G0, then ρr(Π1(M
T )) <

13



ρr(Π1(M
T
0 )). If this is true, by theorem 3.5 and (4.1) we have ρα(G) ≤ ρr(Π1(M

T )) <

ρr(Π1(M
T
0 )) = ρα(G0) for G ̸= G0.

First, consider the case α = 1. Then ρα(G) = r1 = ρr(Π1(M
T )) by Theorem 3.6

and ρr(Π1(M
T
0 )) = ρα(G0) = c. The statement does not hold in this case. In fact, since

rc+1 ≥ 1 by Lemma 4.1 and Aα(G) is symmetric, we have r1 ≥ c and thus ρr(Π1(M
T )) ≥

ρr(Π1(M
T
0 )) for all G ̸= G0.

If 0 ≤ α < 1, since Aα(Kc) ⊕ O1×1 < Aα(G0)[c + 1] < Aα(Kc+1), by Lemma 2.2 we

have c − 1 < ρα(G0) < c. To estimate ρα(G0) more accurately, we apply Lemma 3.3 to the

only nontrivial component of G0, which has order c + 1, size c(c−1)+2t

2
. The maximum degree

∆ and the minimum degree δ of this graph is equal to c and t, respectively. Hence

ρα(G0) ≤
αc+ (1− α)(t− 1) +

√
(αc+ (1− α)(t− 1))2 + 4(1− α)(c(c− 1) + 2t− ct))

2

=
αc+ (1− α)(t− 1) +

√
(αc+ (1− α)(2c− t+ 1))2 − 8(1− α)(c− t)

2
.

And we have

c− ρα(G0) ≥
αc+ (1− α)(2c− t+ 1)−

√
(αc+ (1− α)(2c− t+ 1))2 − 8(1− α)(c− t)

2

=
8(1− α)(c− t)

2(αc+ (1− α)(2c− t+ 1) +
√
(αc+ (1− α)(2c− t+ 1))2 − 8(1− α)(c− t))

≥ 8(1− α)(c− t)

4(αc+ (1− α)(2c− t+ 1))

≥(1− α)(c− t)

c
. (4.2)
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4.2 The shape of the characteristic polynomial of Π1(M
T )

Let Π1(M
T ) be the matrix in (3.2) obtained from G. The characteristic polynomial of

Π1(M
T ) is given by

fG(x) =det(xI − Π1(M
T ))

=det


x− (1− α)(s− 1)− αr1 (1− α)(c− s) 1− α

s(1− α) x− (1− α)(c− s− 1)− αrs+1 0

aα bα x− αs


=x3 − ((c− 2)(1− α) + α(s+ r1 + rs+1))x

2

+ (α(1− α)s(c− 2) + α2s(r1 + rs+1) + α(1− α)(c− s− 1)r1

+ α(1− α)(s− 1)rs+1 + α2r1rs+1 − aα(1− α)− (1− α)2(c− 1))x

+ aα(1− α)((1− α)(c− s− 1) + αrs+1) + α(1− α)2s2(c− s)

− (1− α)2sbα − αs(α(1− α)(c− s− 1)r1 + α(1− α)(s− 1)rs+1

+ α2r1rs+1 + (1− α)2(s− 1)(c− s− 1)). (4.3)

In this section, we will prove that if 0 ≤ α ≤ c−1
8m

, then fG(x) is increasing in the interval

(c− 1,∞). First, we need some inequalities. Referring to the notation in (3.3),

aα ≤
s∑

i=1

(1− α)(ri − c+ 1) = (1− α)a0,

and

bα ≤
c∑

i=s+1

(1− α)(ri − c+ 1) = (1− α)b0.

Since Aα(G) is symmetric and s = rc+1, all row-sums r1, r2, . . . , rs ≥ c. This means that

a0 represents the number of off-diagonal entries with value (1 − α) between the (c + 1)-th

column and the n-th column of Aα(G). The symmetry of Aα(G) implies a0 =
∑n

i=c+1 ri.

Thus we have

2a0 + b0 =
c∑

i=1

(ri − c+ 1) +
n∑

i=c+1

ri = 2m− c(c− 1) = 2t. (4.4)
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Since ri ≥ s for s+ 1 ≤ i ≤ c, t ≤ c− 1, and s ≤ 1, the value a0 has a bound

a0 =
2t− b0

2
=

2t+
∑c

i=s+1(c− 1− ri)

2

≤2(c− 1) + (c− s)(c− s− 1)

2
≤ c(c− 1)

2
. (4.5)

The following Lemma helps us to study the shape of fG(x) for small α.

Lemma 4.2. If 0 ≤ α ≤ c−1
8m

, then fG(x) is increasing in the interval (c− 1,∞).

Proof. To show that fG(x) is increasing in (c − 1,∞), we check the derivative f ′(x) > 0 for

x > c− 1. We do this by providing the following two inequalities.

1. f ′
G(x) > f ′

G(c− 1) for x > c− 1.

2. f ′
G(c− 1) ≥ 0.

Since r1 + rs+1 + s ≤ 2m, for x > c− 1 we have

f ′
G(x)− f ′

G(c− 1)

= 3(x2 − (c− 1)2)− 2(x− c+ 1)((c− 2)(1− α) + α(s+ r1 + rs+1))

≥ 3(x+ c− 1)(x− c+ 1)− 2(x− c+ 1)(c− 2 + α(2− c+ 2m))

≥ (3x+ 3(c− 1)− (c− 2)− c− 1

4
)(x− (c− 1)) > 0.

Since s ≤ c− 1, 1− α ≤ 1 and a0 ≤ c(c−1)

2
, f ′

G(c− 1) can be estimate by

f ′
G(c− 1) =3(c− 1)2 − 2(c− 1)(c− 2 + α(s− c+ 2 + r1 + rs+1))

+α(1− α)s(c− 2) + α2s(r1 + rs+1) + α(1− α)(c− s− 1)r1

+α(1− α)(s− 1)rs+1 + α2r1rs+1 − aα(1− α)− (1− α)2(c− 1)

≥(c+ 1)(c− 1)− aα(1− α)− (1− α)2(c− 1)− (c− 1)2α(1 + r1 + rs+1)

≥(c+ 1)(c− 1)− (1− α)2(a0 + c− 1)− (c− 1)
c− 1

4m
(2m)

≥c(c− 1)− a0 −
(c− 1)2

2
≥ c(c− 1)− c(c− 1)

2
− (c− 1)2

2
> 0.

Since ρr(Π1(M
T )) is the largest root of fG and ρα(G0) > c − 1, by Lemma 4.2, if 0 ≤

α ≤ c−1
8m

and fG(ρα(G0)) > 0, then ρα(G0) > ρr(Π1(M
T )).
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4.3 The case G ̸= G0 and 0 ≤ α ≤ 1
c(c+1)(t+2)

In this section, assume G ̸= G0 and 0 ≤ α ≤ 1
c(c+1)(t+2)

. We will show fG(ρα(G0)) > 0.

The following lemma enhances Lemma 4.1.

Lemma 4.3. 1 ≤ s ≤ c− 2.

Proof. If s = c − 1, then c(c − 1) + 2t = 2m ≥
∑c+1

i=1 ri ≥ c(c − 1) + 2(c − 1), implying

t = c− 1, and r1 = r2 · · · rc−1 = c, rc = rc+1 = c− 1, rc+2 = · · · = rn = 0, a contradiction

to G ̸= G0.

Let Π1(M
T
0 ) be the matrices in (3.2) obtained from G0. Denote ρα(G0) easily by ρ for

convenience. Let fG0
(x) be the characteristic polynomial of Π1(M

T
0 ). Then by (4.3),

fG0
(x) =x3 + (−αc− αt− α− c+ 2)x2

+ (α2ct+ α2t+ αc2 + αct− αt− α− c− t+ 1)x

− α2c2t+ α2ct− 2α2t2 − αct+ 3αt2 + αt+ ct− t2 − t,

and ρ is the largest root of fG0
(x) by (4.1). The value of fG(ρ) can be computed as

fG(ρ) =fG(ρ)− fG0
(ρ)

α3
(
cr1s+ cs− r1rs+1s− r1s

2 − r1s+ rs+1s
2 − rs+1s− s

)
+ α2

(
aαc− aαrs+1 − aαs− aα − bαs+ c2t− cr1s− cr1ρ

−csρ− 2cs− ctρ− ct− cρ+ r1rs+1ρ+ r1s
2 + 2r1sρ+ r1s

+r1ρ− rs+1s
2 + rs+1s+ rs+1ρ+ 2sρ+ 2s+ 2t2 − tρ+ ρ

)
+ α

(
−2aαc+ aαrs+1 + 2aαs+ aαρ+ 2aα + 2bαs− c2ρ+ cr1ρ

+csρ+ cs− ctρ+ ct+ 2cρ2 + 2cρ− r1sρ− r1ρ
2 − r1ρ+ rs+1sρ

−rs+1ρ
2 − rs+1ρ− sρ2 − 2sρ− s− 3t2 + tρ2 + tρ− t− ρ2 − ρ

)
+ aαc− aαs− aαρ− aα − bαs− ct+ t2 + tρ+ t. (4.6)

We first compute (4.6) for some special cases in the following two lemmas.

Lemma 4.4. If c = 3 and s = t, then fG(ρ) > 0.
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Proof. In this case, by Lemma 4.3, we have s = 1, and thus t = 1. The Aα-matrix of G0 is

Aα(G0) =


3α 1− α 1− α 1− α

1− α 2α 1− α 0

1− α 1− α 2α 0

1− α 0 0 α

⊕O(n−4)×(n−4).

Since G ̸= G0, 2m = c(c − 1) + 2t = 8, and r4 = s = 1, the row sum of Aα(G) should be

r1 = 4, r2 = r3 = r4 = r5 = 1, and r6 = · · · = rn = 0. Thus,

aα =
1∑

i=1

(ri − αr1 − (1− α)(c− 1)) = 2− 2α,

bα =
3∑

i=2

(ri − αrc−1 − (1− α)(c− 1)) = −2 + 2α.

By (4.2), we have 3− ρ ≥ (1−α)(c−t)

c
= 2(1−α)

3
. Since α ≤ 1

c(c+1)(t+2)
= 1

36
and 2 < ρ < 3, by

(4.6), we have

fG(ρ) =α2(−4ρ+ 8) + α(3ρ− 9) + 3− ρ

>− 4α2 − 3α + 3− ρ

≥− 1

324
− 1

12
+

35

54
> 0.

Lemma 4.5. If s = t+ 1 and rc+2 = 0, then fG(ρ) > 0.

Proof. By Lemma 4.3, 1 ≤ s ≤ c− 2. There are two cases.

Case 1: s = t+ 1 = c− 2.

In this case, r1 = r2 = · · · = rc−2 = c, rc−1 = rc = rc+1 = c− 2,

aα =
c−2∑
i=1

(ri − αr1 − (1− α)(c− 1)) = (1− α)(c− 2),

bα =
c∑

i=c−1

(ri − αrc−1 − (1− α)(c− 1)) = −2(1− α).
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Hence by (4.6)

fG(ρ) = (c− ρ)(1− 2α) > 0.

Case 2: s = t+ 1 ≤ c− 3.

In this case, r1 = · · · = rt+1 = c, rt+2 = · · · = rc−2 = c− 1, rc−1 = rc = c− 2,

aα =
t+1∑
i=1

(ri − αr1 − (1− α)(c− 1)) = (1− α)(t+ 1),

bα =
c∑

i=t+2

(ri − αrt+2 − (1− α)(c− 1)) = −2.

Hence by (4.6)

fG(ρ) = α2(−c2 + cρ+ c− 2t+ ρ) + α(cρ− c+ 2t− ρ2 − ρ) + c− ρ.

Since c− 1 ≤ ρ ≤ c and c− ρ ≥ (1−α)(c−t)

c
, we have

fG(ρ) >α2(−2t+ c− 1) + α(2t− 3c) +
(1− α)(c− t)

c

=α2(c− 1) + α(1− α)2t− α(2c− t) +
c− t

c

>− 2αc+
1

c
≥ (c+ 1)(t+ 2)− 2c

c(c+ 1)(t+ 2)
> 0

We change some variables to simplified (4.6) for other cases. Let p = c − rs+1 − 1,

q = ρ+ 1− c, u = r1 − c+ 1. Then aα = a0 − αsu, bα = b0 + α(c− s)p, and fG(ρ) can be

rewrite as fG(ρ) = g + h, where

g = t2 − s(a0 + b0)− (a0 − t)q − α(r1ρ(s+ q) + 2t2 − 2s(a0 + b0)). (4.7)
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and

h =α2
(
t2 − s(a0 + b0) + a0p+ scq + sp(r1 + c) + (suρ− t)− pρ(r1 + 1)

−s2(p+ u)− t(ρ+ qc− t− 1))
)

+ α
(
qa0 + qρ(c− s) + qs(u− 1) + pρ+ p(ρ2 − a0 − sc) + s2(p+ u)

+rs+1sρ+ t(c+ qρ− t− 1)) . (4.8)

For the remaining cases, we will prove fG(ρ) > 0 by showing g > 0 and h > 0.

Lemma 4.6. h > 0.

Proof. Because s + a0 + b0 ≤ 2a0 + b0 = 2t, we have s(a0 + b0) ≤ t2. Since p ≥ 0,

0 < q < 1, u ≥ 1 and a0 ≥ s ≥ 1,

h >α(pρ+ p(ρ2 − a0 − sc) + rs+1sρ− αpρ(r1 + 1))

+ α(1− α)(s2(p+ u) + t(c+ qρ− t− 1))

>α(pρ+ p(ρ2 − a0 − sc) + rs+1sρ− αpρ(r1 + 1)). (4.9)

By (4.5), we have

a0 + sc ≤ 2(c− 1) + (c− s)(c− s− 1) + 2sc

2
=

(c+ 2)(c− 1) + s(s+ 1)

2
. (4.10)

By Lemma 4.3, 1 ≤ s ≤ c− 2. There are two cases.

Case 1: s ≤ c− 4.

In this case, since c− 1 < ρ, by (4.10) we have

a0 + sc ≤ (c+ 2)(c− 1) + (c− 4)(c− 3)

2
= (c− 1)2 − c+ 4 ≤ (c− 1)2 < ρ2.

Since α ≤ 1
c(c+1)

≤ 1
2m+2

≤ 1
r1+1

, we have pρ− αpρ(r1 + 1) ≥ 0. Thus by (4.9),

h > α(p(ρ2 − a0 − sc) + rs+1sρ+ (pρ+−αpρ(r1 + 1))) ≥ 0.

Case 2: s = c− 2 or s = c− 3.

20



In this case, since c− 1 < ρ, by (4.10) we have

a0 + sc ≤ (c+ 2)(c− 1) + (c− 2)(c− 1)

2
= c(c− 1) < ρ(ρ+ 1) = ρ2 + ρ,

and p = c− rs+1 − 1 ≤ 2. Since α ≤ 1
c(c+1)

≤ 1
2m+2

≤ 1
2(r1+1)

, We have

rs+1sρ− αpρ(r1 + 1) ≥ ρ− 2αρ(r1 + 1) ≥ 0.

Thus by (4.9),

h > α(p(ρ2 + ρ− a0 − sc) + (rs+1sρ− αpρ(r1 + 1))) ≥ 0.

Lemma 4.7. g > 0 except for the following two cases.

(i) s = t+ 1 and rc+2 = 0.

(ii) c = 3 and s = t.

Proof. Define a function g1 by

g1(x, y) = t2 − x(2t− y)− (y − t)q − α((y + c− x)c(x+ 1) + 2(t2 − x(2t− y))).

Since 2a0 + b0 = 2t, ρ < c, and r1 ≤ a0 + c− s, we have

g =t2 − s(a0 + b0)− (a0 − t)q − α(r1ρ(s+ q) + 2t2 − 2s(a0 + b0))

≥t2 − s(2t− a0)− (a0 − t)q − α((a0 + c− s)c(s+ 1) + 2(t2 − s(2t− a0)))

=g1(s, a0).

To find out the shape of g1(x, y) and estimate the value of g1(s, a0), we compute the partial

derivatives

∂g1
∂y

=x− q − α(c(x+ 1) + 2x), (4.11)

∂2g1
∂x∂y

=1− α(c+ 2) ≥ 1− α(c+ 2) > 0. (4.12)
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It follows from (4.12) that ∂g1
∂y

is increasing with respect to x. Since s ≥ 1 and , for all y we

have

∂g1
∂y

(s, y) ≥∂g1
∂y

(1, y) = 1− q − α(2c+ 2)

≥(1− α)(c− t)

c
− α(2c+ 2)

≥c− t

c
− 2c+ 3

c(c+ 1)(t+ 2)
(4.13)

=
c

c(c+ 1)(t+ 2)
> 0 (4.14)

Case 1: s < t.

Let g2(x) be a function defined by

g2(x) = x2 + xq − α(c2(t− x+ 1) + 2x2).

Since q > 0, α ≤ 1
3c(c+1)

, for x ≥ 1 we have

g′2(x) = 2x+ q − α(c2 + 4x) >
6c(c+ 1)x− c2 − 4x

3c(c+ 1)
> 0. (4.15)

Since a0 ≥ s, t− s ≥ 1 in this case, by (4.14) and (4.15) we have

g1(s, a0) ≥g1(s, s)

=(t− s)2 + (t− s)q − α(c2(s+ 1) + 2(t− s)2)

=g2(t− s) ≥ g2(1) = 1 + q − α(c2t+ 2)

≥1− c2t+ 2

c(c+ 1)(t+ 2)
> 0.

Case 2: s ≥ t+ 2.

Since q < 1 and α ≤ 1
c(c+1)(t+2)

< 1
4
, for x ≤ −2 we have

g′2(x) = 2x+ q − α(c2 + 4x) < x− 4αx < 0. (4.16)
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Since a0 ≥ s, t− s ≤ −2, by (4.14) and (4.16) we have

g1(s, a0) ≥g1(s, s)

=(t− s)2 + (t− s)q − α(c2(s+ 1) + 2(t− s)2)

=g2(t− s) ≥ g2(−2) = 4− 2q − α(c2(t+ 3) + 8)

≥2− c2(t+ 3) + 8

c(c+ 1)(t+ 2)
> 0.

Case 3: s = t and c ̸= 3.

By Lemma 4.3, c ≥ 4 in this case. Let g3(x) be a function defined by

g3(x) = x− 1 +
(1− α)(c− x)

c
− α(c(c+ 1)(x+ 1) + 2x).

Since α ≤ 1
3c(c+1)

, we have

g′3(x) =1− 1

c
+ α

1

c
− α(c(c+ 1) + 2)

>
c− 1

c
− c(c+ 1) + 2

3c(c+ 1)

=
2c2 − c− 5

3c(c+ 1)
> 0. (4.17)

Since s = a0 = t implies G = G0, a contradiction, we have a0 ≥ t + 1 in this case.

1− q = c− ρ ≤ (1−α)(c−t)

c
by (4.2), hence by (4.14) and (4.17) we have

g1(s, a0) =g1(t, a0) ≥ g1(t, t+ 1)

=t− q − α(c(c+ 1)(t+ 1) + 2t)

≥g3(t) ≥ g3(1) ≥
c− 1

c
− α(2c(c+ 1) + 2 +

c− 1

c
)

≥3(c− 1)(c+ 1)− 2c(c+ 1)− 3

3c(c+ 1)

≥c2 − 2c− 6

3c(c+ 1)
> 0.

Case 4: s = t+ 1 and rc+2 ≥ 1.

Let g4(x) be a function defined by

g4(x) = x+
2(1− α)(c− x)

c
− α(c(c+ 1)(x+ 2) + 2x+ 4).
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Since α ≤ 1
3c(c+1)

, we have

g′4(x) =1− 2

c
+ α

2

c
− α(c(c+ 1) + 2)

>
3(c− 2)(c+ 1)− c(c+ 1)− 2

3c(c+ 1)

=
2c2 − 4c− 8

3c(c+ 1)
> 0. (4.18)

Since in this case a0 =
∑n

i=c+1 ≥ t + 2, and by (4.2) 1 − q = c − ρ ≤ (1−α)(c−t)

c
, by (4.14)

and (4.18) we have

g1(s, a0) =g1(t+ 1, a0) ≥ g1(t+ 1, t+ 2)

=x+ 2− 2q − α((c+ 1)c(t+ 2) + 2t+ 4)

≥g4(t) ≥ g4(1) = 1 +
2(1− α)(c− 1)

c
− α(3c(c+ 1) + 6)

≥3c(c+ 1) + 6(c− 1)(c+ 1)− 3c(c+ 1)− 8

3c(c+ 1)

≥6(c− 1)(c+ 1)− 8

3c(c+ 1)
> 0.

Combining Lemma 4.4, Lemma 4.5, Lemma 4.6, and Lemma 4.7, we conclude the follow-

ing lemma.

Lemma 4.8. If G ̸= G0 and 0 ≤ α ≤ 1
c(c+1)(t+2)

, then fG(ρ) > 0.

4.4 The proof of Theorem 1.2

Let G be a graph in G(n,m) with ρα(G) = ρα(n,m). By Lemma 3.2, we might assume

G ∈ G∗(n,m). On the contrary, suppose G ̸= G0. Let (r1, r2, . . . , rn) be the row-sum vector

of Aα(G), and choose d = c and s = rc+1. By Lemma 4.3, 1 ≤ s ≤ c−2. This implies c ≥ 3.

Let M be the matrix defined in (3.1). By Theorem 3.5, we have ρα(G) ≤ ρr(Π1(M
T )), where

Π1 = {{1, 2, . . . , s}, {s + 1, . . . , c}, {c + 1}} of [c + 1]. Let fG(x) be the characteristic

polynomial of Π1(M
T ). Since 0 ≤ α ≤ 1

c(c+1)(t+2)
, by Lemma 4.8 we have fG(ρα(G0)) > 0.

Since for c ≥ 3,

α ≤ 1

3c(c+ 1)
≤ 1

6m
≤ c− 1

8m
,
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the function fG(x) is increasing in the interval (c − 1,∞) by Lemma 4.2. Since ρα(G0) >

c − 1 and ρr(Π1(M
T )) is the largest root of fG(x), we have ρr(Π1(M

T )) < ρα(G0). Hence,

ρα(G) < ρα(G0) ≤ ρα(n,m), a contradiction. Hence, G = G0.
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