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The Alpha-Index of a Graph
Student : Hsuan-Chih Wang Advisor: Dr. Chih-Wen Weng

Department of Applied Mathematics
National Yang Ming Chiao Tung University

Abstract

Given 0 < v < 1, the A,-matrix of a graph G is the matrix defined by A,(G) = aD(G)+
(1 — @)A(G), where A(G) and D(G) are the adjacency matrix and the degree matrix of G,
respectively. The largest eigenvalue of A, (G) is called the a-index of G. In this thesis, we
focus on determining the graph with the maximum a-index among G(n, m), the set of graphs
of order n and size m, for small values of cr. We prove that if 2m = c¢(c — 1) + 2t with
1<t<c—1,and 0 < o < C(CH—M, then (G is the only graph with the maximum -
index among G(n, m). Here, G is the graph obtained from the complete graph K, of order ¢

by adding a new vertex v, adding ¢ edges, each incident on v and a vertex in /., and adding

n — ¢ — 1 isolated vertices.
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Chapter 1. Introduction

All graphs considered in this thesis are finite, undirected, and simple. Let GG be a graph with
vertex set V' (G) and edge set F(G). The cardinalities of V' (G) and E(G) are called the order
and the size of GG, respectively. The degree of a vertex v is the number of edges incident to v. If
V(G) = {vy1, v, ...,0v,}, then the adjacency matrix of G is defined as an n X n matrix whose
(i, 7)-entry is 1 if v; and v; are adjacent and 0 otherwise. The degree matrix of G is a diagonal
matrix whose (7, 7)-entry is equal to the degree of v;.

In 2017, Nikiforov [5] introduced the study of the A,-matrix of G, defined by A,(G) =
aD(G)+(1—a)A(G) for 0 < a < 1. This matrix generalizes adjacency and degree matrices,
providing a flexible tool for spectral graph analysis. The a-index of G, denoted by p,,(G) is the
largest eigenvalue of A, (G). We will discuss some details in Chapter 2.

The problem of determining the graph with the maximal a-index among graphs of a given
condition has attracted considerable interest. In 2017, Nikiforov [6] solved this problem for
trees of order n and 0 < « < 1. In 2022, Zhai, Lin, and Zhao [8] solved the case where o« = %
for graphs of order n and size m = n + k with 4 < k < n — 3. In 2023, Chang and Tam [1]
generalized this result to all o € [3, 1).

In this thesis, we focus on the problem of determining the maximal c-index for graphs of
a given order and size for small values of «. The case of &« = 0 was solved by Rowlinson in

1987 [7], who proved the following theorem.

Theorem 1.1. [7] If2m = c(c — 1) + 2t, where 1 < t < ¢ — 1 and G is a graph with the

maximal index among all the graphs in G(n, m), then G = G,.

Here, G(n, m) denotes the set of all graphs with order n and size m, and G| is the graph in
G(n, m) obtained from a complete graph K. of order ¢ by adding a vertex v and t edges, each
incident on v and a vertex in K., and adding n — ¢ — 1 isolated vertices. We will discuss more

details of the graph (G in Section 4.1.



Since p,(G) is a continuous function in c, it makes sense that the result of Theorem 1.1
might also work for small values of a.. In this thesis, we extend Rowlinson’s result to the

. 1 .
a-index for 0 < o < FESIETE

Theorem 1.2. If0 < a < m, 2m = c(c — 1) + 2t, where 1 <t < c—1andGisa

graph with the maximal o-index among all the graphs in G(n, m), then G = G,,.

The thesis is organized as follows: In Chapter 2, we provide the necessary background
on graph theory and spectral graph theory. Key concepts and theorems, including the Perron-
Frobenius theorem, are introduced to set the stage for the subsequent chapters. In Chapter 3,
we explore the properties of the A,-matrix, establishing upper bounds for the spectral radius.
In Chapter 4, we focus on the maximal a-index problem for graphs with a given order and size

when « is small and prove Theorem 1.2.



Chapter 2. Preliminaries

2.1 Perron-Frobenius Theorem

Let C be a real square matrix. The spectral radius of C'is defined by
p(C) := max{|\| : \is an eigenvalue of C'}.

We denote the largest real eigenvalue of C' by p,.(C). If C has no real eigenvalue, define
pr(C) = oco. Note that if C' is symmetric, then p(C') = p,(C'). A square matrix C'is said to be

reducible if there is a permutation matrix P such that

C 0
pcpt=|"" :
Cia Oy
where (' and Cy, are square matrices. A matrix is said to be irreducible if it is not reducible.

The well-known Perron-Frobenius theorem plays an important role in spectral theory. Here we

state a few parts of the theorem that we need in this thesis.

Theorem 2.1. [4, Page553] If C' is a nonnegative square matrix, then the following (i)—(v)
hold.

(i) The spectral radius p(C') is an eigenvalue of C.

(ii) There exist a nonnegative left eigenvector x and a nonnegative right eigenvector y corre-

sponding to p(C'). If C' is irreducible, then x and y can be chosen to be positive.
(iii) If C is irreducible, the eigenvalue p(C') is simple (has algebraic multiplicity one).

(iv) Ifthere exists a positive column vector v and a nonnegative number \ such that Cv < v,

then p(C) < \.



(v) If there exists a positive column vector v and a nonnegative number X\ such that Cv > v,

then p(C') > A\

The above nonnegative right eigenvector of length 1 corresponding to p(C') is called the
Perron vector of C'. A well-known consequence of the Perron-Frobenius theorem is stated as

follows.

Lemma 2.2. [4, Page553] If C = (c;;) and C" = (c};) are square matrices of the same size,
and 0 < C < C', which means 0 < ¢;; < c;jfor all i, j, then p(C) < p(C"). Moreover, if C"
is irreducible, then p(C') = p(C") if and only if C' = C".

The following is a well-known property for symmetric matrices.

Lemma 2.3. [4, Page234] If C'is a real symmetric matrix and v is a column vector of length

1, then p(C) > v Cv, with equality holds if and only if v is an eigenvector of p(C).

2.2 The A,-matrix of a graph

Let G be a graph with vertex set V' (G) and edge set E(G). Let A(G) be the adjacency
matrix and D(G) the diagonal matrix of the degrees of G. For 0 < « < 1, the A,-matrix of
G is the matrix defined by A,(G) = aD(G) + (1 — a)A(G). Note that A,(G) and A(G)
have the same i-th row-sum r;. The spectral radius of A, (G) is called the a-index of G, and is
denoted by p,(G). Note that the a-index of G is independent to the order of the vertex set of

G, and for 0 < «a < 1, the A,-matrix of G is irreducible if and only if GG is connected.

Example 2.4. Consider a path graph G = P, which is one of the simplest forms of a graph.
After a suitable arrangement of the vertex set, the adjacency matrix and the diagonal matrix of

the degrees of (G are

010 1 00
AG)=1|1 0 1|, DG =020
010 001
For o = 0.5, the A, matrix is computed as:
0.5 05 0
Aps(G) =05 x D(G)+(1-05)x A(G)=[05 1 0.5
0 0.5 05



The matrices A(G) and A, (G) have the same row-sums 7y = 1, 7 = 2 and r3 = 1. Since

A, (G) has three eigenvalues: 0, 0.5, and 1.5, the a-index of G is p,(G) = 1.5.

2.3 Spectral bounds from matrix partitions

Let II = {my,...,m} be a partition of the set [n] := {1,2,...,n} and let C' = (¢;;) be an
n X n matrix. Define an ¢ X ¢ matrix I1(C') := (pas), which is called the quotient matrix of C'

with respect to II, to be the matrix whose (a, b)- entry is

22 i

1€ JET

1

7l

Pab =

If poy = > jem, Cij forevery 1 < a,b < (,1 € 7,, then the partition IT of [n] is also called an

equitable partition of C.

Example 2.5. Given the matrix

O = = O NN
N R = O N W
— NN OO R OO

O O O N O O
N W = O O =
Tt W = = N =

Let IT; = {{1,2},{3},{4,5,6}} and I, = {{1,2},{3,4},{5,6}} be two partitions of [6].

Then the corresponding quotient matrices are

In this case, the partition II; is an equitable partition of C'.

A vector (1, Xa, ..., x,) is called rooted if x; > x, > 0for1 <i<n—1 AnnXxn
matrix M is called rooted if there is a constant d such that the first n — 1 columns and the
row-sum vector of M + d1,, are rooted. Note that the entries in the diagonal and the last column
of a rooted matrix M are not necessarily nonnegative. Here we use p,(M) instead of p(M)

to denote the largest real eigenvalue of M. It is difficult to compute the a-index of a graph



of large order since it is hard to find the eigenvalues of a matrix of large size. The following
lemmas related to a quotient matrix from some partition of a matrix will help us simplifying a

large A,-matrix and estimate the a-index of a large order graph G.

Lemma 2.6. [3] If M = (my;) is an n X n rooted matrix, then p,(M) exists and M has
a rooted eigenvector x for p.(M). Moreover, for any eigenvalue \ with a rooted eigenvector

= (21, 2,...,%,)" of M, the following (i), (ii) hold.
(i) If the row vector (M1, Mya, . . ., My(n_1)) IS positive, then T is positive.

(ii) If x is positive and the row-sum r; > 1, for some 1 <1 < n — 1, then r; > x,.

Lemma 2.7. [3]If M is an nxXn rooted matrix and 11 = {m, ..., m} is an equitable partition

of M™ with m; = {n}, then p,(M) = p,(II(MT)).

Lemma 2.8. [3] Let M = (my) be an { x { rooted matrix. If C = (c;;) isann X n

nonnegative matrix and there exists a partition 11 = (w1, 7y, . . ., 7,) of [n] such that

n y4
max E Cij < Mgy and Mmax g Cij < E Mae
< 1€Tq <

JETY 7j=1 c=1

forl1 <a</land1 < b < {—1, then p(C) < p.(M). Moreover, if C is irreducible,
x = (x1,...,%) is a rooted eigenvector of M for p,(M), then p(C) = p.(M) if and only if

the following (1), (i%) hold.
(i) Ifz >0, then 3.0 ci; = Yooy Mycfor 1 < a < Landi € m,

(i) D em, Cij = Mapfor 1 <a < 0,1 <b <L —1,i€m,withx, > x4



Chapter 3. A, -index of graphs with given

order and size

Recall that G(n,m) is the set of all graphs with order n and size m. Let p,(n, m) denote

the maximum «a-index among the graphs in G(n, m).

3.1 The shape of G € G(n, m) with p,(G) = p,(n, m)
We give some lemmas to restrict the shape of graphs in G(n, m) with a-index p,(n, m).

Lemma 3.1. Let 0 < o < 1. If G € G(n,m) attains the maximum o-index, then G is

connected except for isolated vertices.

Proof. Let G € G(n,m) be a graph such that p,(G) = p.(n,m), and H is a component
of G such that p,(G) = p,(H). On the contrary, suppose there is an edge not in H. This
happens only if there are at least two vertices not in /. Add a new isolated vertex x to H to
form a graph H, and add an edge incident on x and the vertex in [ with the largest degree to
form a graph Hy. Then A, (H) = A,(H;) < An(Hs). If a # 1, then A, (H,) is irreducible
and p,(H) < po(Hy) by Lemma 2.2. If « = 1 then po(H) = po(H,) — 1. Notice that
po(Hs) < p(H3) < pa(n,m), where H3 € G(n, m) is obtained from H, by adding more
vertices and edges to H, if necessary. Putting together, p,(n,m) = p.(G) = po(H) <

pa(Hs) < po(n,m), a contradiction. O

Let G*(n, m) be the set of graphs whose vertex set {vy, ..., v,} can be arranged so that if
viv; € E(G), then vy, € E(G) forl < k < jand k # i. If G € G*(n,m), we always

arrange the vertex set of GG in this way.

Lemma 3.2. Let 0 < o < 1. If G € G(n,m) satisfies po(G) = pa(n,m), then G €
G*(n,m).



Proof. Let G € G(n,m) with p,(G) = po(n, m). By Lemma 3.1, G is connected except for

n—/{ isolated vertices. Let the vertex set {vy, . .., v, } of G be arranged such that the eigenvector
of Au(G)isx = (x1,...,1,)" withx; > --- > 1z, is Perron vector of the largest connected
component of G and z,,; = --- = x,, = 0. On the contrary, suppose there exist 1 < ¢ < ¢

and 1 < k < j with k # ¢ such that v;v; € E(G) and v;u, ¢ E(G). Let G' € G(n,m) be
the graph obtained from G by deleting v;v; and adding v;v;. Then 27 A, (G)z = p.(G) by
definition, and 27 A, (G")z < p,(G’) by Lemma 2.3. Thus

Pa(G) = pa(G) = 2" (Aa(G') — Au(G))z = (1 — @) (2w — 2a525) + a2} — 27) > 0.
Since po(G) = pa(n, m), we have p,(G') = po(G), implying p,(G")z = A,(G")x, and
pa(G )z = (Aa(G)2)r = (pa(G)2)k + axy+ (1 = a)z; 2 pa(G)z +k+ 25 > pa(G)2r,

a contradiction. Hence G € G*(n, m). O

3.2 Upper bounds of a-indices

The following is a known upper bound of a-indices for G € G(n,m) with given a maxi-

mum degree A(G) and minimum degree 6(G).

Lemma 3.3. [2]Let0 < a < 1. If G € G(n, m) is connected with maximum degree /\ and

minimum degree 0, then

aA+ (1= a)(0 = 1) + @A+ (1= )5 = 1))’ + 41— a) 2m — (n— 1)8)

pa(G) < 5

Moreover, the equality holds if and only if G is regular, or o« = 0 and every vertex in G has

degree n — 1 or J.

We shall investigate other upper bounds of c-indices by employing Lemma 2.8. Throughout
this section, fix a graph G € G*(n,m) and 0 < o < 1. Let (74,72, ...,7,) denote the row-
sum vector of the adjacency matrix A(G). Find an integer d € [n— 1] such that s := rg,; < d.
Such d exists since d = n— 1 isachoice. Let IT = {{1}, {2}, ..., {d}, {d+1,d+2,...,n}}
be a partition of [n] into d + 1 classes. Applying Lemma 2.8 with the above II, £ = d + 1, the



(d+1) x (d+ 1) matrix

1), rl—arl—(lh—oz)(d—l)

(1 - O‘)Jsx(dfs)
+(C¥(T1 + 1) — 1).[5

re—ar; — (1 —a)(d—1)

M = Tep1 —arg; — (1 —a)(d—1)
(1 = a)Jia—s)x(d—s) ,

‘l’(a(rerl + 1) - 1)-[dfs

ri—arg; — (1 —a)(d—1)

l—a -+ 1-« 0 -0 as

(3.1
and C' = A,, where I, is the s X s identity matrix and J;,; is the s X t all one’s matrix, we

have the following lemma.
Lemma 3.4. p,(G) < p.(M).

To find p,(M ), we consider the partition I1; = {{1,2,...,s},{s+1,...,d}, {d+ 1}}
of [d + 1] into two classes if s = d or s = 0 and into three classes if 0 < s < d. We shall
consider only 0 < s < d and the case s = d or s = () is more easily. Observe that I1; is an

equitable partition of M”. By Lemma 2.7, we have p,(M) = p,(II;(M7")), and

(1—a)(s—1)+an (1 —a)(d—s) -«
I,(M") = s(1—a) l-a)d—s—1)+ars, 0 |, (32
Ao, ba as
where
Ay = Z(rl —ar;— (1 —a)(d—1)), by = Z (ri —argy — (1 —a)(d—1)). (3.3)

Notice that when o« = 1, we have

(8] 0 0
(M) =10 74 0], (3.4)
ay b1 S

and p,(IT;(M™)) = r,. By Lemma 3.4 and Lemma 2.7, we have the following Theorem.

Theorem 3.5. p,(G) < p,.(I1;(M7T)).



3.3 Graphs with p,(G) = p,(II;(M1))

Let G € G*(n,m) and M be the matrix in (3.1) obtained from G. We will investigate
the neccessary and sufficient conditions on G when the equality p,(G) = p,(I1;(M7T)) holds,
where IT; = {{1,2,...,sh {s+1,...,dL {d+1}},0 < s <rgy; < d,and II;(M7") is in

(3.2). Let (ry, 7o, ..., r,) denote the row-sum vector of A, (G).
Theorem 3.6. If o« = 1, then p,(G) = p, (I, (M7)) holds for any G € G*(n,m).

Proof. If a = 1, then A, (G) is a diagonal matrix whose (7, 7)-entry is r; forall 0 < ¢ < n.
Thus p,(G) = r1. By (3.4) we have p,.(II;(MT)) = r,. Hence, p,(G) = p,(IL(MT)). O

Now, consider the case 0 < o < 1. Since the number of vertices in the only nontrivial
component of G is 11 + 1, A,(G)[r; + 1] is irreducible and p,(G) = p(A.(G)[r1 + 1)),
where A, (G)[r1 + 1] is the principle submatrix of A,(G) restricted to the first 7; + 1 rows
and columns. Note that M is equal to the matrix in (3.1) obtained from A, (G)[r; + 1] with
I ={{1},{2},...,{d},{d + 1,d+2,...,7 + 1}}. We will find out the necessary and
sufficient condition of p(A.(G)[r1 + 1]) = p.(M) by Lemma 2.6 and Lemma 2.8. Let
x = (x1,,...,74.1)" be arooted eigenvector of M, which exists by Lemma 2.6. To apply

Lemma 2.6(i1) and Lemma 2.8(i) in our later proof, we provide the following lemma to show

that z > 0.
Lemma3.7. If0 < a<1,s>0andu = (uy,...,us1)" is a rooted eigenvector of M, then
u > 0.
Proof. Letu = (uy,...,uqs1) be arooted eigenvector of M. Suppose 14, = 0, then
0=1ug.1 = asugy; + (1 — ) z:uZ
i=1

This implies u; = -+ - = u, = 0, so

d+1

0=1wu =aru + (1 —Q)Zui.
i=2

Hence, u; = O forall 1 < < d + 1. This is a contradiction. So u4,7 > 0 and u > 0 since u

1s rooted. O]

10



Theorem 3.8. If0 < a < 1 and 0 < s < d, then p,(G) = p,.(IL,(M™)) if and only if one of
the following holds.

(i) i =---=rgyandr; =sforalls+1 <1 <r; + 1.
(ii) 7= =rgre1=-=rg=d—1landr;=sforalld+1<i<r +1

Proof. Since p,(G) = p(AL(G)[r1 + 1]) and p, (M) = p,(IT;(M?™)), it is sufficient to show
that p(A,(G)[r1 + 1]) = p.(M) if and only if one of () or (7¢) holds. To prove the necessity,
assume p(A,(G)[r1 + 1]) = p,(M). Applying Lemma 2.8(i), we have r; = r4.; = s for
alli € Iy = {d+1,d+2,...r, + 1}. Since A,(G)[r; + 1] is symmetric, we have
ry = - -- = r,. There are two cases.

Casel: 1, = s.

Thenr; = sforalls+1 <7 <d. Thusry =---r;andr; = sforalls +1 <7 <r;+1,(»1)
holds.

Case2: 1, > s.

Then z,,; > 2441 by Lemma 2.6(ii). Applying Lemma 2.8(ii), since IT; = {i} for 1 <1i < d,
we have a;(s11) = M4y = 1 —aforl <7 < d,i # s+ 1. This implies ryy = d — 1.
The symmetry of A,(G) then implies r; > s and thus x; > 4, forall s +2 < i < d by
Lemma 2.6(ii). Applying Lemma 2.8(ii) again, we have a;; = m;; foralls +1 <,5 < d. In
particular, ar; = a; = my; = ary; = a(d— 1) foralls +1 < i < d. Thusr, = ---r,,
g1 =:+=rqg=d—1landr; = sforalld+ 1 <1 < r;+ 1, (ii) holds.

To prove the sufficiency, first assume that (i) holds. Then

(1 — ) Jyxs
(1 - a)!]sx(r1+1—s)
A (G)ri + 1] = +(a(r; +1) = 1)1, ,
(1 - Oé)J('rl—s—l—s)Xs ‘ O53]7“1—4—1—5
l—a)(rnp—d+1
(1), (1—a)( ! )
(1 - Q)Jsx(d—s)

Hatr+1) = DL (1—a)(ry—d+1)

M = (1-—a)(s—d+1)
(1 — @) J(a-s)x(d-s) .

+a(s+1) — 1)1,

(1—a)(s—d+1)
l—a - 1—a 0 - 0 as

11



Note that in this case x5 = - - -

= x441. Thus the conditions (i) and (ii) in Lemma 2.8 both

hold, and so we have p(A,(G)[r1 + 1]) = p.(M). Assume (ii) holds, then

Ao(G)ri+1] =

The conditions (i) and (ii) in Lemma 2.8 also hold in this case. Hence p(A,(G)[r1 + 1]) =

pr(M).

(1 — a)Joxs
+(a(r; +1) = 1)1

(]- - a)JsX(d—s)

(1 - a)JsX(rl-i-l—d)

(]- - Oé><](dfs)><s

(1 — @) Ja—s)x(d—s)
+(Oéd — ].)]d,S

O(d—s)x (r1+1—d)

(1 — ) Jyxs
+(a(r+1) = 1)1,

(1 - @)J(nﬂfd)m

Oy +1-d)x (d—s)

(1 - a)JsX(d—s)

(1—a)(ri—d+1)

(1—a)(ry—d+1)

asl, 114

0
1_Oé<]7s>< -5
(1= )t (1 = a)Ja-s9)x(a-s)
+((l/d—1)]'d75

0

l -« -« 0 --- 0 s

12




Chapter 4. The a-index for small o

In this chapter, assume G' € G*(n, m), where 2m = c¢(c — 1) + 2t with 1 <t < c¢— 1.

Let (11,79, ..., 7,) be the row-sum vector of the adjacency matrix A(G).
Lemmad.l. 1 <r.; <c-—1.

Proof. If r..1 > c, then

c+1

2m=clc—1)+2t <clc—1)+2(c—1)<clc+1) < Zri < 2m,
i=1
acontradiction. If .y = 0,then2m = """, r; =3¢ 1 < c(c—1) < c(c—1)+2t = 2m,
a contradiction. [l

By Lemma 4.1, we choose d = c for the construction of the matrix M in (3.1) and s = 7.4

to apply po(G) < p.(M) in Lemma 3.4

4.1 The graph G

Let G be the graph in G*(n, m) obtained from the complete graph K, of order ¢ by adding
a new vertex v, adding ¢ edges, each incident on v and a vertex in K, and addingn —c — 1
isolated vertices. Hence G has row-sums ry = --- =1, = ¢, 744y = --» =7, = ¢ — 1,
Tey1 =t and 7oy = -+ - =1, = 0. Let I, (M) be the matrix in (3.2) obtained from this Gj.

By Theorem 3.8(ii) with d = c and s = t, we have

pa(Go) = p,(IL (MY)). (4.1)

Given a graph G € G*(n,m), and let IT;,(M7) be the matrix in (3.2) obtain from G.
We will investigate the following problem: Whether or not if G # Gy, then p,(IT;(M7T)) <

13



pr(IL (M{)). If this is true, by theorem 3.5 and (4.1) we have p,(G) < p.(II;(MT)) <
pr(I1i(Mg)) = pa(Go) for G # G.

First, consider the case « = 1. Then p,(G) = r; = p.(II;(M7T)) by Theorem 3.6
and p, (I, (M) = pa(Gy) = c. The statement does not hold in this case. In fact, since
Ter1 > 1 by Lemma 4.1 and A, (G) is symmetric, we have ; > ¢ and thus p,(IT;(M7T)) >
pr(IL (M) for all G # G,

If0 < a < 1,since Ay (K,) @ O1x1 < Au(Go)[e + 1] < Ay (K1), by Lemma 2.2 we
have ¢ — 1 < po(Gy) < c. To estimate p,(G) more accurately, we apply Lemma 3.3 to the

ele=1)+2t
2

only nontrivial component of Gy, which has order ¢ + 1, size . The maximum degree

A and the minimum degree ¢ of this graph is equal to ¢ and ¢, respectively. Hence

pa(Gg) Sac+(1_a>(t_1>+\/(ac+(1_a>(2t_1))2+4(1—Oé)(C(C—l)—i—Qt—ct))

_ac+t 1-a)t—1)++/(ac+ (1 —a)2c—t+1))2-8(1—a)(c—1)
5 .

And we have

ac+(1—a)2c—t+1)—/(ac+ (1 —a)2c—t+1))2—8(1 —a)(c—1)

¢ — pa(Go) > 5
_ 8(1 —a)(c—1t)
2(ac+ (1 —a)(2c—t+1)+/(ac+ (1 —a)(2c —t +1))2 = 8(1 — a)(c — 1))
S 8(1—a)(c—1)
“4d(ac+ (1 —a)(2c—t+1))
Z(l—a(c—t). 42)
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4.2 The shape of the characteristic polynomial of T1;(M/ 1)

Let IT; (M T) be the matrix in (3.2) obtained from . The characteristic polynomial of
I, (M7T) is given by

fe(w) =det(xl — I, (MT))
—(1-a)(s—1)—an (1—a)(c—s) 1—a
—det s(1—a) z—(1—a)c—s—1)—ary, 0
(g, ba r —as
=" — ((c = 2)(1 —a) + als + 11 +741))2?

+ (a(1 — a)s(ec —2) + a®s(ry +ro1) + a(l —a)(c— s — 1)y
+a(l—a)(s—Dregy +a?rre —ao(1—a) — (1 —a)?(c—1))x
+an(1—a)((1—a)(c—s—1)+ary,) +a(l —a)*s*(c — s)

— (1 —a)?sby, —as(a(l —a)(c—s—1)r; +a(l —a)(s — 1)r.g

+a?rre + (1 —a)*(s —1)(c—s—1)). 4.3)

In this section, we will prove that if 0 < o < <2, then fg() is increasing in the interval

(c —1, oo). First, we need some inequalities. Referrmg to the notation in (3.3),

ay < i(l —a)(ri—c+1)=(1-a)ay,

=1

and
bo < Y (1—a)(ri—c+1)=(1—a)b.
i=s+1
Since A, (G) is symmetric and s = 7,1, all row-sums 7,79, ...,7, > c. This means that

ao represents the number of off-diagonal entries with value (1 — «) between the (¢ + 1)-th
column and the n-th column of A,(G). The symmetry of A,(G) implies ag = >_7" , 7;.
Thus we have

c

2a0+60:2(n—c+1)+Zri:2m—c(c—1):2t. (4.4)

=1 i=c+1
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Sincer; > sfors+1<1<c¢t<c—1,and s < 1, the value aq has a bound

2 —by A+ (c—1—m)
2 2
§2<C_1)+(C;S)(C_S_1) < 0(02—1).

Qo

4.5)

The following Lemma helps us to study the shape of fg(z) for small .
Lemma 4.2. If0 < o < &2, then f(x) is increasing in the interval (¢ — 1, 00).

Proof. To show that fg(x) is increasing in (¢ — 1, 00), we check the derivative f'(x) > 0 for

x > ¢ — 1. We do this by providing the following two inequalities.
1. fb(x) > fi.(c—1)forx >c—1.
2. ft(e—=1)>0.

Since ry + 7541 + 5 < 2m, forx > ¢ — 1 we have

fo(@) = fale—1)
32 —(c—1)) =2z —c+1D)((c—2)1 —a)+a(s+7r +7e1))
>3x+c—1)(z—c+1)=2(x—c+1)(c—24+ a2 —c+2m))

(33:+3(c—1)—(c—2)—Czl)(:c—(c—l))>O.

v

Sinces<c—1,1-—a<1landa, < 0(02_1), f&(c — 1) can be estimate by

fole=1)=3(c—12=2(c—1D(c—2+als—c+2+r +7r.1))
+a(l — a)s(c—2) + a®s(r + r51) + a(l —a)(c— s — 1)ry
+a(l —a)(s — Dreq +a?rire — ao(1 —a) — (1 —a)*(c—1)

>(c+1)(c—1)—as(1—a)— (1 —a)(c—1)—(c—1)2a(l + 7 + 7o)

S(et 1)(c—1) = (1— a)2(ae +c— 1) — (c — 1)L (2m)

4m
(c—1)* 2C(C_l)_c(c—l) (e=1)? _—

>c(e—1) —ag — 5 5

]

Since p,(IT1;(M™)) is the largest root of fg and po(Gy) > ¢ — 1, by Lemma 4.2, if 0 <
« S el and fG(poc(GO)> > 0’ then pa(GO) > pr(Hl(MT))

8m
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4.3 ThecaseG#Goandoé&Sm

In this section, assume G' # G and 0 < a < -

m. We will show fg(pa(Go)) > 0.

The following lemma enhances Lemma 4.1.
Lemmad43. 1 <s<c—2

Proof If s = ¢ — 1, then c(c — 1) + 2t = 2m > S 7 > ¢(c — 1) + 2(c — 1), implying
t=c—l,andry =19 1.1 =C,T.=7¢y1 =¢c— 1,100 ="+--=1, =0, acontradiction

to G # Go. O

Let II; (M) be the matrices in (3.2) obtained from Gy. Denote p,(Gy) easily by p for

convenience. Let fg, () be the characteristic polynomial of II; (M{"). Then by (4.3),

fao(2) =2 + (—ac — at —a — c + 2)2”
+ (Pt +a’t+ac® +act—at —a—c—t+ 1)z

— ot + alet — 20°%t* — act + 3at® + ot +ct — 17 —t,
and p is the largest root of fg, () by (4.1). The value of fs(p) can be computed as

fa(p) =fa(p) = faolp)

o’ (cris + ¢s — 1irg1S — 118° — 118 4 118 — Tep1S — )

+ 0% (A€ — AaTsi1 — A0S — Qo — by + Pt — cri8 — crp
—csp —2¢s —ctp —ct — cp + Trep1p + 1180 + 2r5p + 118
+71p — Ts418” + Ts1S + Top1p + 28p + 25 + 22 — tp + p)

+ @ (=2a0C + AuTsi1 + 2008 + Qap + 200 + 2bys — Ep + crip
+esp+cs —ctp +ct 4+ 2cp” + 2cp — 11Sp — T1p° — T1p A Tei1Sp
—Ta1p = Tap — sp° —2sp— 5 =32 +tp’ +tp—t—p° —p)

+ AaC — UgS — Aop — o — bys — ct + 12 +tp + t. (4.6)

We first compute (4.6) for some special cases in the following two lemmas.

Lemma 4.4. Ifc = 3 and s = t, then fg(p) > 0.
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Proof. In this case, by Lemma 4.3, we have s = 1, and thus t = 1. The A,-matrix of G| is

3¢ l1l—a 1—a 1—«
l—-a 20 1-—« 0
Ay (Go) = D On—1)x (n—4)-
l—-a 1—a 2« 0

1l -« 0 0 o

Since G # Gy, 2m = ¢(c — 1) + 2t = 8, and 7, = s = 1, the row sum of A,(G) should be

rm=4,ro=rs=ry,=1r5=1,andrg =--- =r, = 0. Thus,

aa:Z(Ti—arl—(l—oz)(c—l)) =2 — 2,

by = Z(n —ar.— (1 —a)(c—1)) = =2+ 2a.

=2

By (4.2), we have 3 — p > (I_O‘Z(C_t) = 2(13_0‘). Since @ < m = -and2 < p < 3, by

(4.6), we have

fa(p) =a*(—4p+8) +a(3p—9) +3—p

>—40” —3a+3—p
1 1 35

Lemmad.s. Ifs=t+ landr., o =0, then fg(p) > 0.

Proof. By Lemma4.3,1 < s < ¢ — 2. There are two cases.
Casel: s=t+1=c— 2.

Inthiscase, 71 =1y = =7 90 =CTe | =T¢="Te11 =C— 2,

(ri—ari—(1—a)(c—=1))=(1—-a)(c—2),

S
Q
I
. Q
Ngh
o
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Hence by (4.6)
falp) = (¢ = p)(1 = 2a) > 0.

Case2:s=t+1<c¢c—3.

Inthiscase, 1 = =11 =¢, o= =r.9o=c—Lr. 1 =r.=c—2,

t+1

Ay = Z(rl —ar;—(1—a)(c=1))=(1—a)(t+1),
i=1
Hence by (4.6)
fa(p) = a*(=c* +cp+c—2t+p) +alep —c+2t — p* —p) +c—p.

Sincec—lgpgcandc—pz%C(C_t),wehave

fap) >a* (=2t + ¢ — 1) + a(2t — 3c) + L ai<c —Y)
—a?(c—1) +a(l —a)2t — a(2c—t) + - ; t

(c+1)(t+2) —2¢

erDitry Y

1
> —2ac+ — >
c

We change some variables to simplified (4.6) for other cases. Letp = ¢ — ryq —

g=p+1—c,u=r —c+1. Thena, = ay— asu,b, = by + a(c— s)p, and fe(p) can be

rewrite as fo(p) = g + h, where

g=1>—s(ag+by) — (ap — t)q — a(rip(s + q) + 2t* — 2s(ag + by)).
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and

h =a® (t2 — s(ag + by) + agp + scq + sp(r1 + ¢) + (sup — t) — pp(ry + 1)
—s*(p+u) —t(p+gc—t —1)))
+ o (qao + qp(c — s) + qs(u = 1) + pp + p(p® — ao — s¢) + s*(p + u)
+rssp+tlc+qgp—t—1)). 4.8)

For the remaining cases, we will prove fg(p) > 0 by showing ¢ > 0 and h > 0.
Lemma 4.6. h > 0.
Proof. Because s + ag + by < 2ag + by = 2t, we have s(ag + by) < t%. Since p > 0,

O<g<l,u>landag>s>1,

h >a(pp + p(p° — ag — sc) + rop15p — app(ri + 1))
+a(l —a)(s*(p+u) +tlc+qp—t—1))

>a(pp + p(p* — ag — s¢) + re15p — app(r; + 1)). 4.9)

By (4.5), we have

2(0—1)+(c—5)(c—s—1)+2sc: (c+2)(c—1)+s(s—|—1)'

ap + sc < 5

(4.10)

By Lemma 4.3, 1 < s < ¢ — 2. There are two cases.
Casel: s < c—4.

In this case, since ¢ — 1 < p, by (4.10) we have

(c+2)(c—=1)+ (c—4)(c—3)

ag + sc < 5

=(c—1P—c+4<(c—1)?<p”

Since a < C(Cil) < 2ml+2 < rﬁ&-l’ we have pp — app(r; + 1) > 0. Thus by (4.9),

h > a(p(p® — ag — sc) + rep1sp + (pp + —app(r; + 1))) > 0.

Case2:s=c—2ors=c— 3.

20



In this case, since ¢ — 1 < p, by (4.10) we have

(c+2)(c—1)+(c—2)(c—1)

ag + sc < 5

=clc=1) <plp+1)=p"+p,

_ . 1 1 1
andp=c—1741 —1 <2 Since v < oD < ST < TCEEIE We have

rer18p — app(ry +1) > p—2ap(ry + 1) > 0.

Thus by (4.9),

h > a(p(p® + p — ag — sc) + (ry5p — app(ry + 1)) > 0.

Lemma 4.7. g > 0 except for the following two cases.
(i) s=t+1landr. .o = 0.
(ii) c =3 and s = 1.

Proof. Define a function g, by
gi(r,y) =t =22t —y) — (y —t)g — a(y + ¢ — x)c(z + 1) + 2(* — 2(2t — y))).
Since 2a¢ + by = 2t, p < ¢, and r; < ag + ¢ — s, we have

g =t* — s(ag + by) — (ag — t)q — a(rip(s + q) + 2t> — 2s(ag + by))
>t* — 5(2t — ag) — (ag — t)qg — a(ag + ¢ — s)c(s + 1) + 2(1* — s(2t — ay)))
=g1(s,ao).

To find out the shape of g; (x, y) and estimate the value of ¢, (s, ag), we compute the partial

derivatives

091

o =z —q—a(c(z+1) + 22), (4.11)
79, =l—alc+2)>1—a(c+2)>0 (4.12)
oxdy - ' '
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It follows from (4.12) that %—gyl is increasing with respect to x. Since s > 1 and , for all y we

have

091 (s, ) 220

(Ly)=1—q—a(2c+2)

dy Oy
Z(1—04)(0—15) a2+ 2)
c
c—t 2c+ 3

S T der D+ 2)

>0

c
Ccle+1)(t+2)
Case 1: s < t.
Let go(x) be a function defined by

g(z) = 2>+ 2q — a((t — z + 1) + 227).

Since ¢ > 0, < , for z > 1 we have

I S
3c(c+1)

6c(c+ 1)z — & — 4a

/ :2 . 2 4
gy () r+q—a(c’+4z) > Y

Since ag > s,t — s > 1 in this case, by (4.14) and (4.15) we have

91(s,a0) >g1(s, s)

=(t =)+ (t—s)g —a(c*(s + 1) +2(t — 5)%)

=gt —5) > go(1) = 1+ ¢ — a(c’t + 2)
At +2

2= s nary Y

Case2: s >t + 2.

Since ¢ < Land o < ——=

1
ey < - forr < —2we have

gy(z) =22+ q — a(c® + 4z) < x — dax < 0.

22
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Since ag > s,t — s < —2, by (4.14) and (4.16) we have

91(s; a0) Zg1(s, )
=(t —5)*+(t = 5)g — a(c*(s + 1) + 2(t — 5)*)
=ga(t — 5) > g2(—2) =4 —2¢ — a(P(t + 3) + 8)

c(t+3)+8
22 e D+ )

> 0.

Case 3: s =t and ¢ # 3.

By Lemma 4.3, ¢ > 4 in this case. Let g3(x) be a function defined by

l1—a)(c—=x
g(z)=x—1+ ( )c( ) —ale(c+ 1)(z+1) 4 22).
Since a < m, we have
, 1 1
g3(@) =1 =~ +a- —alc(c+1) +2)
c—1 c¢le+1)+2
c 3c(c+1)
2¢2 —c—5
=—>0. 4.17
3e(c 1 1) (+17)
Since s = ay = t implies G = (|, a contradiction, we have ag > t + 1 in this case.

1—q=c—p< =0 by (4.2), hence by (4.14) and (4.17) we have

91(8,a0) =g1(t, a0) > gi(t,t + 1)
=t —q—oa(c(c+1)(t+1)+2t)

c—1 c—1
>gs(t) > gs(1) > —a(2c(c+1)+2+

>3(c— D(e+1)—2¢(c+1)—3

)

C

- 3c(e+1)
?—2c—6
Zm > 0.
Cased: s=t+ landr., > 1.
Let g4(x) be a function defined by
2(1 — a)(c— )

94(20) =+

. —ale(c+ 1) (z+2)+ 2z +4).

23



. 1
Since a < et We have

gh(x) =1 — % + a% —a(ele+1) +2)
3(c=2)(c+1)—clc+1)—2
~ 3c(c+1)
_2¢® —4c—8
~ 3c(e+1)

> 0. (4.18)

Since in this case ag = > . >t+2,andby(42)1 —g=c—p < w , by (4.14)

i=c+1
and (4.18) we have

g1(s,a0) =g1(t + 1,a0) > g1(t + 1, + 2)

=x+2—-2¢—oa((c+1)c(t+2)+2t+4)
21— a)(c—1)

>g4(t) > 94(1) =1+ — a(3c(c+1) +6)
>30(c+ 1)+6(c—1)(c+1)—3c(c+1)—8

- 3e(c+1)

>6(c —1)(c+1) -8
- 3c(c+1)

> 0.

]

Combining Lemma 4.4, Lemma 4.5, Lemma 4.6, and Lemma 4.7, we conclude the follow-

ing lemma.

Lemma 4.8. If G # Gyand 0 < o < ;), then fo(p) > 0.

c(e+1)(t+2

4.4 The proof of Theorem 1.2

Let G be a graph in G(n, m) with p,(G) = p.(n,m). By Lemma 3.2, we might assume
G € G*(n,m). On the contrary, suppose G' # G. Let (1,72, ..., 7,) be the row-sum vector
of A,(G), and choose d = cand s = r.y;. By Lemma 4.3, 1 < s < ¢— 2. This implies ¢ > 3.
Let M be the matrix defined in (3.1). By Theorem 3.5, we have p,(G) < p,.(IT;(M7T)), where
I, = {{1,2,...,s}h, {s+1,...,¢}, {c+ 1}} of [¢ + 1]. Let fo(z) be the characteristic
polynomial of IT; (M7). Since 0 < a < ;), by Lemma 4.8 we have fg(p.(Go)) > 0.

c(e+1)(t+2

Since for ¢ > 3,
1 1 c—1

< < < :

~ 3c(c+1) — 6m ~ 8m
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the function fo(x) is increasing in the interval (¢ — 1,00) by Lemma 4.2. Since p,(Gq) >
¢ — 1 and p,(IT;(M7)) is the largest root of fo(x), we have p,(II,(M7)) < p.(Gy). Hence,
Pa(G) < pa(Go

~—

< pa(n, m), a contradiction. Hence, G = G. O
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