
國 立 陽 明 交 通 大 學

應 用 數 學 系

博 士 論 文

A general version of Kelmans transformation
and its applications on graphs and matrices

廣 義 凱 爾 曼 斯 轉 換

與 其 於 圖 與 矩 陣 之 應 用

研究生 ：高至芃

指導教授 ：翁志文 教授

中 華 民 國 一 百 一 十 一 年 六 月



A general version of Kelmans transformation
and its applications on graphs and matrices

廣 義 凱 爾 曼 斯 轉 換 與 其 於 圖 與 矩 陣 之 應 用

Student: Louis Kao Advisor: Chih-wen Weng

研究生: 高至芃　 指導教授：翁志文 教授

國 立 陽 明 交 通 大 學

應 用 數 學 系

博 士 論 文

A Thesis
Submitted to Department of Applied Mathematics

College of Science
National Yang Ming Chiao Tung University

in Partial Fulfillment of Requirements
for the Degree of Doctor
in Applied Mathematics

June 2022
Hsinchu, Taiwan, Republic of China

中 華 民 國 一 百 一 十 一 年 六 月



廣 義 凱 爾 曼 斯 轉 換
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摘要

簡單無向圖 G 的凱爾曼斯轉換是一個將點 b 的鄰居中不與

點 a 相鄰的點改為連接至點 a 所形成的新圖 Ga
b。我們定義了

廣義凱爾曼斯轉換，使其能夠被應用於非負矩陣上。我們證明

了非負矩陣之廣義凱爾曼斯轉換的最大實特徵值不小於原矩陣

的最大實特徵值。

混合圖是一種可同時包含有向邊與無向邊的簡單圖，因此其
鄰接矩陣是不一定對稱的非負矩陣。運用廣義凱爾曼斯轉換，
我們可以定義出混和圖 G 之凱爾曼斯轉換 Ga

b。在給定點數 n

與邊值 m 的混合圖所形成的集合 G(n,m) 中我們將大小關係
G ≤ Ga

b 拓展至一個偏序集 (G(n,m),≤)，並且給出此偏序集的
一些子偏序集和弱子偏序集中的極大元素與極小元素。
我們也研究了可以涵蓋傳統鄰接矩陣理論和無號拉普拉斯矩

陣理論的 Aα 矩陣理論。對於所有介於零和一之間的 α 值，我
們給出了 G(n,m) 中一個混合樹 T 的 α 圖譜半徑 ρα(T ) 的上
界：

ρα(T ) ≤
1

2

(
αn+

√
α2n2 − 4α2(n− 1) + 4(1− α)2(m− n+ 1)

)
並分別刻畫出那些有最大及最小 α 圖譜半徑的混合樹。
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在論文的最後部分我們使用了論文中提到的參數與工具，找
出一些關於圖的漢彌爾頓性的充分條件。首先，我們證明了除
了某些特定圖以外，只要 α 圖譜半徑足夠大就能保證一個圖為
漢彌爾頓圖。另外對於笛卡爾積圖 G1�G2，我們也給出兩組與
G1 和 G2 有關的條件去保證其漢彌爾頓性。我們可以完全決定

偏序集 G(n,m) 中哪些極大圖具有漢彌爾頓性。最後，我們證
明了在特定條件之下，圖 Pn�H 的漢彌爾頓性可藉由 Pn�Ha

b

的漢彌爾頓性獲得。

關鍵字: 凱爾曼斯轉換，混和圖，α 圖譜半徑，漢彌爾頓圖，

笛卡爾積。
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abstract

A Kelmans transformation of a simple undirected graph G is a new graph
Ga

b obtained from picking two vertices a, b in G and moving the edges incident
on b and not on a to be incident on a. We generalize this concept to nonneg-
ative matrices. With minor constraints, the first result of this thesis shows
that the largest real eigenvalue of a nonnegative matrix will not decrease after
a Kelmans transformation.

A mixed graph is a simple graph whose edges are either directed or undi-
rected, and hence has a nonnegative adjacency matrix which is not necessary
symmetric. The general version of the Kelmans transformation is applica-
ble on the adjacency matrix of a mixed graph and this helps us to define
the Kelmans transformation Ga

b of a mixed graph G. We extend the relation
G ≤ Ga

b into a partial order on the set G(n,m) of the isomorphism classes of
mixed graphs of order n and size m; then characterize the maximal/minimal
elements in some of the subposets and weak subposets of (G(n,m),≤).

We also apply the general version of the Kelmans transformation on the
researches of the spectral theory of Aα-matrices, which combines the spectral
theories of adjacency matrix and signless Laplacian matrix. In particular,
we show that for α ∈ [0, 1] and a mixed tree T of order n and size m, the
Aα-spectral radius ρα(T ) satisfies

ρα(T ) ≤
1

2

(
αn+

√
α2n2 − 4α2(n− 1) + 4(1− α)2(m− n+ 1)

)
.

Base on the knowledges and tools we introduced, we give new sufficient
conditions of the Hamiltonicity of graphs. First we prove that except some
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specific graphs, if the Aα-spectral radius of a graph is large enough, then
the graph is Hamiltonian. Next, conditions for the graphs G1 and G2 are
given to ensures that the Cartesian product graph G1�G2 is Hamiltonian.
The Hamiltonicity of the maximal graphs in G(n,m) is also characterized.
Finally, we show that with given constraints, the graph Pn�H is Hamiltonian
whenever the graph Pn�Ha

b is Hamiltonian.

Keywords: Kelmans transformation, mixed graphs, Aα-spectral radius, Hamiltonian

graphs, Cartesian product.
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1 Introduction

Extremal graph theory is a branch of graph theory that studies the properties of

graphs which are maximal or minimal in some prescribed parameters. For example, it

is an old and famous problem to characterize the graphs with largest/smallest spectral

radius within a specific family of graphs. The study of the adjacency matrix is called the

A-spectral theory and the study of the signless Laplacian matrix is called the Q-spectral

theory. In 2017, Nikiforov [33] introduced the theory of the Aα-matrix. The spectral

theory of the Aα-matrix merges the A- and Q-spectral theories.

Many tools are used in the study of extremal graph theory. A tool called “Kelmans

transformation” has been used frequently. Kelmans transformation of graphs reduces the

possibilities of candidates of graphs with desired properties [29]. However, although the

Kelmans transformation has been introduced [27] for about 40 years, it is only applied on

a specific type of matrices associated to a specific type of graphs. This thesis studies a

general version of the Kelmans transformation that applies to matrices.

1.1 Main results

In this section, we will state the main results of this thesis.

Let C = (cij) be a nonnegative square matrix of order n and the notation [n] denote

{1, 2, . . . , n}. For k ⊆ [n], let C[k] denote the principal submatrix of C restricted to the

entries in |k|× |k|. Fix a 2-subset {a, b} of [n], and assume that C is symmetric on {a, b},

that is

C[a, b] =

s t

t u


for some scalars s, t, u. The Kelmans transformation of C from b to a is the following

matrix of order n :
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Ca
b =



j a b

...
...

...

i · · · cij · · · cia + ti cib − ti
...

...
...

a · · · caj + sj · · · caa + k cab

b · · · cbj − sj · · · cba cbb − k


,

when ti, sj and k are nonnegative with some constraints. See Section 3.1 for details.

We prove the following theorem in Chapter 3.

• Theorem 3.1 : The largest real eigenvalue of C is no larger than the largest real

eigenvalue of Ca
b .

A mixed graph is a simple graph whose edges are either directed or undirected. When

C is the adjacency matrix of a mixed graph G, in Section 4.1 we show that Ca
b is unique

and is denoted by Ga
b . We show in Proposition 4.3 that the relation G ≤ Ga

b extends to a

partial order on the set G(n,m) of the isomorphism classes [G], where G is a mixed graph

of order n and size m. Let T (n,m) denote the subposet of G(n,m) restricting to mixed

trees. We determined the maximal elements of T (n,m) in Proposition 4.5 and use this

to show the following two theorems.

• Theorem 5.6 : If α ∈ [0, 1] and [T ] ∈ T (n,m), then the largest real eigenvalue

ρα(T ) of the Aα-matrix of T satisfies

ρα(T ) ≤
1

2

(
αn+

√
α2n2 − 4α2(n− 1) + 4(1− α)2(m− n+ 1)

)
.

Moreover, the mixed star of order n and size m with maximum out-degree n − 1

attains the above upper bound.

2



• Theorem 5.8 : Let [T ] ∈ T (n,m), and set k = ⌈ n
2n−m−1

⌉. Then

ρα(T ) ≥ ρα(Pk),

where Pk is a path of order k.

The Kelmans transformation of undirected graphs defined by A.K. Kelmans [27] is a

special case of our definition. Here we list our results related to the Kelmans transfor-

mation Ga
b from vertex b to a of a simple undirected graph G. Let UG(n,m) denote the

subposet of G(n, 2m) restricting to undirected graphs. A version of Kelmans transforma-

tion restricted on trees is considered in Chapter 4.4. Denoted by ∂G(a, b) the distance of

vertices a, b in G. Let UT (n) denote the subposet of UG(n, n−1) restricting to trees. We

prove the following proposition.

• Proposition 4.9 : Let [T ] ∈ UT (n). Then [T ] is minimal in UT (n) if and only if

the subgraph Tℓ of T induced by {v : ∂T (v, ℓ) ≤ 3} is a path for each leaf ℓ in T .

We consider another restricted version of the Kelmans transformation that each trans-

formation Ga
b is applied only when the distance between a, b is 2. Let (UG(n,m),≤2) de-

note the weak subposet of (UG(n,m),≤) restricting to the above version of the Kelmans

transformation. We show that the maximal elements in (UG(n,m),≤2) do not contain

six given induced subgraphs. The forbidden graphs are shown in Figure 5 in Chapter 4.4.

• Proposition 4.11 : Let [G] ∈ UG(n,m). Then [G] is maximal in (UG(n,m),≤2)

if and only if G is {P5, C5, K1 ∨ 2K2, K1 ∨ P4, P5, H1}-free.

Based on the knowledges and tools we introduced in the first five chapters on the

thesis, we give new sufficient conditions of the Hamiltonicity of graphs in Chapter 6.

The first one is a condition using Aα-spectral radius ρα(G) of a graph G.

3



• Proposition 6.9 : If G is a graph on n ≥ 3 vertices, G ̸= K1 ∨ (K1 ∪ Kn−2),

G ̸= K2 ∨K3, and the Aα-spectral radius ρα(G) satisfies{
ρα(G) > n− 1− 2α, if α ∈ [0, 1/2);

ρα(G) > n− 3 + 2α, if α ∈ [1/2, 1],

then G is Hamiltonian.

We prove the following theorem on the Cartesian product graph G1�G2.

• Theorem 6.11 : Let G1 be a traceable graph and G2 a connected graph with

maximum degree ∆(G2). Statements (a) and (b) are given as following:

(a) G2 has a perfect matching and G1 contains at least ∆(G2) vertices.

(b) G2 has a path factor and the order of G1 is an even integer which is at least

4∆(G2)− 2.

If one of (a),(b) holds, then the Cartesian product G1�G2 of G1 and G2 has a

Hamiltonian cycle.

It will be explained in Chapter 6 that after reordering the vertices, the adjacency

matrix of a maximal element in UG(n,m) is stepwise, i.e. ai(j+1) = 0 if aij = 0 for i ̸= j.

Let Mn be the n-by-n binary matrix with Mn(i, j) = 1 if and only if i ̸= j, i+ j ≤ n+ 2.

Then Mn is an example of stepwise adjacency matrix with n2+2n−3
2

1’s when n is odd, and
n2+2n−4

2
1’s when n is even.

Write A ≥ B when the matrix A − B is non-negative. An equivalent condition of

Hamiltonicity of maximal elements in UG(n,m) is given as follows in Chapter 6.

• Proposition 6.30 : Let [G] be a maximal element in UG(n,m) with a stepwise

adjacency matrix A. Then G is Hamiltonian if and only if A ≥Mn.

We use the knowledges of Kelmans transformation and Cartesian product graph to

deduce the following corollary.

4



• Corollary 6.34 : Let H be a connected bipartite graph. Let n be an even integer

and n ≥ 4∆(H) − 2. If there exist a, b ∈ V (H) such that Pn�Ha
b is Hamiltonian,

then Pn�H is Hamiltonian.

The contents of the following papers are included in this thesis :

1. L. Kao, C.-W. Weng, A note on the largest real eigenvalue of a nonnegative matrix,

Appl. Math. Sci. 15(12) (2021) 553–557.

2. L. Kao, C.-W. Weng, The relation between Hamiltonian and 1-tough properties of

the Cartesian product graphs, Graphs Combin. 37(3) (2021) 933-943.

3. L. Kao, Hamiltonian properties of Cartesian product graphs, Master Thesis, Na-

tional Chaio Tung University, (2016) ＜ https://hdl.handle.net/11296/q89fq7 ＞.
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2 Preliminaries

In this chapter, we recall some definitions, notations and results on which our study

is based.

2.1 Spectral theory

For a square matrix M over real numbers, the polynomial char(M) := det(λI−M) in

λ is called the characteristic polynomial of M , where det(λI −M) is the determinant of

λI−M . The following lemma is immediate from the definition of characteristic polynomial

of M .

Lemma 2.1. For an n× n nonnegative matrix M , if

M =

M1 M2

0 M3

 or

M1 0

M2 M3

 ,

where M1,M3 are square matrices, then char(M) = char(M1) · char(M2).

A submatrix of M restricted to the entries in R × L is a matrix obtained from M

by removing rows and columns which are not in R and L, respectively. If R = L, then

the submatrix is a principal submatrix, denoted by M [R]. For an n× n matrix M and a

partition Π = {π1, π2 . . . , πℓ} of {1, 2, . . . , n}, the ℓ× ℓ matrix Π(M) = (m′
ab), where

m′
ab =

1

|πa|
∑

i∈πa,j∈πb

mij (1 ≤ a, b ≤ ℓ),

is called the quotient matrix of M with respect to Π. That is, the entries m′
ab of Π(M) are

equal to the average row sum of the |πa|-by-|πb| submatrix of M restricted to the entries

in πa× πb. Furthermore, if
∑

j∈πb
mij = m′

ab for all 1 ≤ a, b ≤ ℓ and i ∈ πa, then Π(M) is

called the equitable quotient matrix of M with respect to Π. For instance, the matrix

M ′ =


2 1 0

3 0 2

0 1 1


6



is the equitable quotient matrix of

M =



0 1 1 1 0 0

1 0 1 1 0 0

1 1 0 1 0 0

1 1 1 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0


with respect to Π = {{1, 2, 3}, {4}, {5, 6}}.

The spectral radius ρ(M) of a square matrix M is defined to be the largest absolute

value of its eigenvalues. Perron-Forbenius theorem shows that the spectral radius of a

nonnegative square matrix is equal to its largest real eigenvalue. The following lemma is

useful on the calculating of spectral radius. See [2, 8, 41] for recent proofs.

Lemma 2.2. ([2, Theorem 2.5]) If Π(M) is an equitable quotient matrix of a nonnegative

matrix M , then ρ(M) = ρ(Π(M)).

For two matrices M,N of the same size, we use the notation M ≤ N if the matrix

N −M is nonnegative. The following is a well-known consequence of Perron–Frobenius

theorem [6, Theorem 2.2.1].

Lemma 2.3. If N is a nonnegative square matrix and M is a nonnegative matrix of the

same size with M ≤ N , or M is a nonnegative submatrix of N , then ρ(M) ≤ ρ(N).

2.2 Graphs

A graph G is a triple consisting of a vertex set V (G), an edge set E(G) and a relation

that associates with each edge two vertices (not necessary distinct), called its endpoints.

Based on different situations, the endpoints of an edge are either ordered or unordered. A

loop is an edge that associates with only one endpoint. Multiple edges are edges associating

7



with the same ordered/unordered pair of endpoints. A simple graph is a graph without

loops and multiple edges. The graphs throughout this thesis are all simple. If the pair of

the endpoints of an edge is an unordered pair {u, v}, then it is an undirected edge, denoted

by uv. We say that u is adjacent to v if uv is an edge. If the pair of the endpoints of an

edge is an ordered pair (u, v), then it is called a directed edge or an arc, denoted by −→uv.

The order of a graph G is defined to be the number of vertices of G. A graph G is

isomorphic to a graph H if there exists a bijection f between the vertex set of G and H

such that u, v are endpoints of an undirected edge in E(G) if and only if f(u), f(v) are

endpoints of an undirected edge in E(H); and (u, v) is an ordered pair of the endpoints

of a directed edge in E(G) if and only if (f(u), f(v)) is an ordered pair of the endpoints

of a directed edge in E(H). Let [G] denote the class of graphs that are isomorphic to G.

A subgraph of a graph G is a graph whose vertex set and edge set are subset of V (G)

and E(G), respectively. For convenience, sometimes we use the edge E(H) to denote the

subgraph H of G. An induced subgraph H of a graph G is a subgraph of G such that E(H)

contains all the edges of G that have endpoints in V (H). A graph G is called H-free if

H is a graph and G doesn’t contain an induced subgraph which is isomorphic to H. A

spanning subgraph H of G is a subgraph H of G with V (H) = V (G).

A graph is a mixed graph if for each pair of vertices u, v, at most one of −→uv,−→vu and uv

belongs to E(G). From now on, for simplicity uv is referred to as an edge and −→uv as an

arc. We define the size of a mixed graph G to be the number of arcs in E(G) plus twice

the number of undirected edges in E(G).

Matrices are nice tools to represent graphs. For a graph with finite order n with vertex

set V (G) and edge set E(G), the adjacency matrix A = (aij) is defined to be an n-by-n

binary matrix with rows and columns indexed by V (G) such that aij = 1 if and only if

ij ∈ E(G) or −→ij ∈ E(G). Notice that the adjacency matrix of a mixed graph is not always

symmetric and the size of a mixed graph is the number of 1’s in its adjacency matrix.

8



The eigenvalues of a graph is defined to be the eigenvalues of its adjacency matrix.

2.3 Undirected graphs

An undirected graph (or graph for short) is a mixed graph without arcs. The complete

graph of order n, denote as Kn, is a graph whose vertices are pairwisely adjacent. The

complement G of a graph G is a graph with vertex set V (G) and uv ∈ E(G) if and only

if uv ̸∈ E(G) for distinct u, v ∈ V (G).

Two vertices u, v ∈ V (G) are called connected if there exists a sequence u, v1, . . . , vk = v

of vertices in G such that every two consecutive vertices in the sequence are adjacent. If

u, v ∈ V (G) are connected, the smallest k above is called the distance of u and v, denoted

by ∂G(u, v). Write ∂G(u, v) =∞ if u, v are not connected.

We call a graph to be connected if its vertices are pairwisely connected. A discon-

nected graph G contains several connected subgraphs and a connected subgraph is called

a component of G if it is not a proper subgraph of any connected subgraph of G. The

number of components in G is denoted by c(G).

The diameter of G is defined to be maxa,b∈V (G) ∂(a, b). Note that the diameter of a

disconnected graph is ∞. The neighbor set NG(v) of vertex v in G is the set {u : u ∈

V (G), ∂G(u, v) = 1} and the closed neighbor set NG[v] is defined to be NG(v) ∪ {v}. The

degree degG(v) of vertex v in G is the number of neighbors of v in G, that is, |NG(v)|. A

vertex of degree 1 is called a leaf. The symbol ∂(u, v), N(v), N [v] and deg(v) may also

appear if the graph we discuss has no confusion.

A connected graph G with |V (G)| − 1 edges is a tree. A path of order n, denoted as

Pn, is a graph whose vertices can be ordered such that two vertices are adjacent if and

only if they are consecutive in the ordering. A path v1, v2, . . . , vn together with an edge

vnv1 is called a cycle. A graph G is bipartite if V (G) is the union of two disjoint vertex

sets X and Y , called partite sets of G, such that the subgraphs of G induced by X and
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Y contain no edges, respectively. The complete bipartite graph is a bipartite graph such

that two vertices are adjacent if they belong to different partite sets. Denote by Kn,m the

complete bipartite graph of partition sizes n and m. In particular, K1,n−1 is called a star

of order n.

The join of graphs G and H, denoted as G∨H, is the graph obtained from G and H

with vertex set V (G ∨ H) = V (G) ∪ V (H), and edge set E(G ∨ H) = E(G) ∪ E(H) ∪

{uv : u ∈ V (G), v ∈ V (H)}. The Cartesian product graph G1�G2 of graphs G1 and

G2 is a graph with vertex set V (G1�G2) = {vu | v ∈ V (G1), u ∈ V (G2)}, and edge set

E(G1�G2) = {vuvw | v ∈ V (G1), uw ∈ E(G2)} ∪ {vuwu | u ∈ V (G2), vw ∈ E(G1)}.

The underlying graph of a mixed graph G is the undirected graph obtained from G by

removing the directions of arcs. The distance ∂(a, b) for vertices a, b in G is their distance

in the underlying graph of G. The mixed tree, mixed path, mixed star are defined to be

the mixed graphs whose underlying graphs are tree, path, and star, respectively.

2.4 Hamiltonicity and toughness

A graph is Hamiltonian if it contains a spanning cycle, and is traceable if it contains

a spanning path.

For S ⊆ V (G), let G− S denote the subgraph of G induced on V (G)− S. To discuss

the Hamiltonicity of graphs, another measure of graphs is usually considered. A graph G

is t-tough if t is a rational number such that |S| ≥ t · c(G − S) for any cut set S of G,

i.e. S ⊆ V (G) such that G− S has c(G− S) components with c(G− S) ≥ 2. If G is not

complete, the largest t makes G to be t-tough is called the toughness of G, denoted by

τ(G). For convenience, we set τ(Kn) =∞.

Toughness is a non-decreasing (with respect to the number of edges) graph property.

Therefore, a Hamiltonian graph is 1-tough since it contains a spanning cycle which is

1-tough. However, not all 1-tough graphs are Hamiltonian. Figure 1 gives a 1-tough

10



Figure 1: A 1-tough non-Hamiltonian graph with 7 vertices.

non-Hamiltonian graph of order 7.

The idea of graph toughness was first introduced by V. Chvátal in his 1973’s seminal

paper [11]. He conjectured that there exists a real number t0 such that all t0-tough

graphs are Hamiltonian. This conjecture is still open. From papers [21] and [3], there are

examples of non-Hamiltonian graphs with toughness greater than 1.25 and 2, respectively.

On the other hand, for specific graph classes, there may exist a toughness bound to

ensure the Hamiltonicity. For instance, [23] shows that every 10-tough chordal graphs are

Hamiltonian.

Chvátal’s Conjecture holds trivially for bipartite graphs by choosing t0 = 1 + ε for

any ε > 0 since a bipartite graph has toughness at most 1. Hence the Hamiltonicity of a

1-tough bipartite graph deserves a further study. Contents related to Hamiltonicity are

discussed in Chapter 6.

2.5 Partially ordered set

A partially ordered set (or called poset) (P,≤P ) is a set P with a relation ≤P on P

satisfying:

• Reflexivity : x ≤P x for all x ∈ P .

• Antisymmetry : For all x, y ∈ P , if x ≤P y and y ≤P x then x = y.
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• Transitivity : For all x, y, z ∈ P , if x ≤P y and y ≤P z then x ≤P z.

When we call (Q,≤Q) a subposet of (P,≤P ), we mean that for x, y ∈ Q we have x ≤P y

in P if and only if x ≤Q y in Q. A weak subposet (Q,≤Q) of the poset (P,≤P ) is a poset

such that Q ⊆ P and if x ≤Q y then x ≤P y for x, y ∈ Q.
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3 Kelmans transformations on nonnegative matrix

The Kelmans transformation, or called “shift transformation”[4, 7] or “compression

operator”[24] is a transformation between undirected graphs, which is first defined by

A.K. Kelmans [27]. In this chapter, we introduce a general version of the Kelmans trans-

formation which is not limited on adjacency matrices of undirected graphs. The main

theorem of the contents of this Chapter is Theorem 3.1.

3.1 Kelmans transformation of a nonnegative matrix

Use the notation [n] = {1, 2, . . . , n}. Let C = (cij) be a nonnegative square matrix of

order n such that cab = cba for some a, b ∈ [n]. For every i, j ∈ [n]− {a, b}, choose ti and

sj such that max(0, cib− cia) ≤ ti ≤ cib and max(0, cbj − caj) ≤ sj ≤ cbj and choose k such

that max(0, cbb− caa) ≤ k ≤ cbb. We define a new matrix Ca
b of order n from C by shifting

the portion ti of cib to cia, the portion sj of cbj to caj and the portion k of cbb to caa such

that in the new matrix Ca
b = (c′ij) have c′ia ≥ c′ib and c′aj ≥ c′bj, where i, j ∈ [n] − {a, b}

and c′aa ≥ c′bb. The following is an illustration of Ca
b :

Ca
b =



j a b

...
...

...

i · · · cij · · · cia + ti cib − ti
...

...
...

a · · · caj + sj · · · caa + k cab

b · · · cbj − sj · · · cba cbb − k





cab = cba,

i, j ∈ [n]− {a, b},

max(0, cib − cia) ≤ ti ≤ cib,

max(0, cbj − caj) ≤ sj ≤ cbj,

max(0, cbb − caa) ≤ k ≤ cbb.

(1)

Formally, the matrix Ca
b = (c′ij) is defined from C = (cij) by setting

13



c′ij =



cij, if i, j ∈ [n]− {a, b} or (i, j) ∈ {(a, b), (b, a)};

cia + ti, if j = a and i ∈ [n]− {a, b};

cib − ti, if j = b and i ∈ [n]− {a, b};

caj + sj, if i = a and j ∈ [n]− {a, b};

cbj − sj, if i = b and j ∈ [n]− {a, b};

caa + k, if i = j = a;

cbb − k, if i = j = b.

In the above setting, if C = (cij) is the adjacency matrix of an undirected graph G of

order n (i.e., C is a symmetric binary matrix with zero diagonals), ti = max(0, cib − cia),

sj = max(0, cbj−caj) and k = 0 are uniquely determined, then the Kelmans transformation

C ′ of C from b to a, independent of ti, sj and k, is essentially the Kelmans transformation

of G defined by A.K. Kelmans [27]. The contents related to the Kelmans transformation

on undirected graphs will be further discussed in Chapter 4.4.

3.2 The largest real eigenvalue of a nonnegative matrix

It is well known that a nonnegative matrix has a real eigenvalue. P. Csikvári [13] proved

that the largest real eigenvalue will not be decreased after a Kelmans transformation of

an undirected graph. His method uses the Rayleigh quotient and can be directly extended

to any symmetric matrices. Here we give a generalization of this result to a nonnegative

matrix which is not necessary to be symmetric.

Theorem 3.1. Let C = (cij) denote a nonnegative square matrix of order n such that

cab = cba for some 1 ≤ a, b ≤ n. Choose k, ti, sj for i, j ∈ [n]− {a, b} that satisfying (1).

Let C ′ = Ca
b (ti; sj; k) be the Kelmans transformation from b to a with respect to (ti; sj; k).

Then the largest real eigenvalue of C is no greater than the largest real eigenvalue of C ′.

Before proving Theorem 3.1, we first observe that the symmetric condition for C on

{a, b} in Theorem 3.1 is necessary by the following counterexample.
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Example 3.2. Consider the 4× 4 matrices

C =


0 0 1 1

1 0 0 1

1 1 0 0

1 1 1 0


, C ′ =


0 0 1 1

1 0 1 0

1 1 0 0

1 1 1 0


.

The matrix C ′ is obtained from C by applying Kelmans transformation from 4 to 3 with

respect to t1 = 0, t2 = 1 and s1 = s2 = 0, while the matrix C is not symmetric on {3, 4}.

By direct computing, the largest real eigenvalue of C is closed to 2.234 which is strictly

greater than 2.148, the approximate of the largest real eigenvalue of C ′.

It is well-known that the largest real eigenvalue of a nonnegative matrix is associated

with a nonnegative eigenvector, called Perron vector. Moreover, if the matrix is irreducible

then its Perron vector is positive (e.g., [6, Theorem 2.2.1]). Our proof of Theorem 3.1

utilizes Perron vectors in a way inspired by [9].

Now we shall introduce a few basic properties of Kelmans transformation of nonneg-

ative matrices for later use. Recall that for a nonnegative square matrix M , ρ(M) is the

largest real eigenvalue of M .

Let In denote the identity matrix of order n and Eij denote the binary matrix of

order n which has a unique 1 in the position ij. Note that (In + Eij)
−1 = In − Eij and

((In + Eij)
−1)t = ((In + Eij)

t)−1.

Lemma 3.3. Let C = (cij) denote a nonnegative square matrix of order n such that C

is symmetric on {a, b} for some 1 ≤ a, b ≤ n. For every pair i, j ∈ [n] − {a, b}, choose

t′i, s
′
j such that max(0, cib − cia) ≤ t′i ≤ cib and max(0, cbj − caj) ≤ s′j ≤ cbj, and set

t′′i = cia − cib + ti and s′′j = caj − cbj + sj. Choose k′ such that max(0, cbb − caa) ≤ k′ ≤ cbb

and set k′′ = caa − cbb + k′. Then the following (i)-(iii) hold.
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(i) max(0, cia − cib) ≤ t′′i ≤ cia, max(0, caj − cbj) ≤ s′′j ≤ caj and max(0, caa − cbb) ≤

k′′ ≤ caa;

(ii) If C ′ (resp. C ′′) is the Kelmans transformation from b to a (resp. from a to b) with

respect to t′i,s′j and k′ (resp. with respect to t′′i ,s′′j and k′′′′), then ρ(C ′) = ρ(C ′′);

(iii) As the notation C ′ in (ii), we have (In+Eba)C(In+Eba)
t ≤ (In+Eba)C

′(In+Eba)
t.

Proof. (i) Since t′′i = cia − cib + t′i and

max(0, cia − cib) = cia − cib + max(0, cib − cia) ≤ cia − cib + t′i ≤ cia,

we have max(0, cia − cib) ≤ t′′i ≤ cia. Similarly, we have max(0, caj − cbj) ≤ s′′j ≤ caj and

max(0, caa − cbb) ≤ k′′ ≤ caa.

(ii) From the definition of C ′ = (c′ij) and C ′′ = (c′′ij), we know C ′′[b, a] = C ′[a, b],

C ′′[[n]− {a, b}] = C ′[[n]− {a, b}],

c′′ib =cib + t′′i = cib + cia − cib + ti = c′ia,

c′′ia =cia − (cia − cib + ti) = c′ib,

and similarly c′′bj = c′aj, c′′aj = c′bj for i, j ∈ [n] − {a, b}. This shows that C ′′ = P−1C ′P ,

where P = I − Eaa − Ebb + Eab + Eba. Thus ρ(C ′) = ρ(C ′′).

(iii) The Kelmans transformation from b to a moves a nonnegative portion of row b

of C to row a, but the multiplication of (In +Eba) from the left will add the whole row a

into the row b. Similarly for the column part. Hence (iii) follows.

3.3 The proof of Theorem 3.1

Let C and C ′ be as described in the assumption of Theorem 3.1. Recall that C is

symmetric on {a, b}, which means

C[a, b] =

s t

t u

 .
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To prove ρ(C) ≤ ρ(C ′) we might assume min(s, u) ≥ t, since if we know this and

min(s, u) < t then applying the matrix C + (t−min(s, u))In as the role of C and consid-

ering the corresponding Kelmans transformation C ′ + (t−min(s, u))In, we still have

ρ(C) = ρ(C + (t−min(s, u))In)− (t−min(s, u))

≤ ρ(C ′ + (t−min(s, u))In)− (t−min(s, u)) = ρ(C ′).

Let row vector wt = (wi) denote the left Perron vector for ρ(C) of C. We first assume

wa ≥ wb. Set vt = wtQ−1, where Q = In + Eba. Thus

vtQC = wtC = ρ(C)wt = ρ(C)vtQ. (2)

Note that v is nonnegative since vi = wi ≥ 0 for i ̸= a and va = wa − wb ≥ 0.

For ε > 0, let C ′ε = C ′ + εJn, where Jn is the matrix of order n with entries all 1’s.

By Lemma 3.3(iii) and using QC ′Qt ≤ QC ′εQt, we have

QCQt ≤ QC ′εQt. (3)

From the constriction of C ′ε and the assumption min(s, u) ≥ t in the beginning, the

matrix (Qt)−1C ′εQt is nonnegative. Let uε denote a right Perron vector for (Qt)−1C ′εQt.

Since C ′ε and (Qt)−1C ′εQt are similar, we have ρ(C ′ε) = ρ((Qt)−1C ′εQt) and

(Qt)−1C ′εQtuε = ρ(C ′ε)uε, which implies

C ′εQtuε = ρ(C ′ε)Qtuε. (4)

Because of the irreducibility of C ′ε, Qtuε > 0.

Multiplying the nonnegative vector uε from the right to both terms of (3) and applying

(4),

QCQtuε ≤ QC ′εQtuε = ρ(C ′ε)QQtuε. (5)

Multiplying the nonnegative row vector vt from the left to the first and last terms in (5)

and using (2), we have

ρ(C)vtQQtuε = vtQCQtuε ≤ ρ(C ′ε)vtQQtuε. (6)
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As wt = vtQ nonnegative and Qtuε positive, vtQQtuε is positive. Deleting the positive

term vtQQtuε from both sides of (6), we have ρ(C) ≤ ρ(C ′ε) for any ε > 0 and by

continuity

ρ(C) ≤ lim
ε→0+

ρ(C ′ε) = ρ(C ′).

Next assume wb ≥ wa. Let C ′′ denote the Kelmans transformation of C from a to b

with respect to cia−cib+ti and caj−cbj+sj. By the previous case, we have ρ(C) ≤ ρ(C ′′),

and by Lemma 3.3(ii), ρ(C ′′) = ρ(C ′). Hence ρ(C) ≤ ρ(C ′).
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4 Kelmans transformations on mixed graphs

In this chapter, the general Kelmans transformation is applied on mixed graphs. We

use the general Kelmans transformation to define poset structures on mixed graphs and

mixed trees.

4.1 Kelmans transformations on mixed graphs

As in the case of undirected graph, if C in Theorem 3.1 is the adjacency matrix of a

mixed graph G and assume that Ca
b is also an adjacency matrix of some mixed graph,

then ti, si ∈ {0, 1} and k = 0 are uniquely determined from C. We use Ga
b to denote the

mixed graph whose adjacency matrix is Ca
b and called Ga

b the Kelmans transformation of

mixed graph G from b to a. Notice that when the notation Ga
b appears, we always assume

that a, b ∈ V (G) are distinct and have no arc, i.e. −→ab /∈ E(G) and −→ba /∈ E(G).

For a mixed graph G, let N+
G (u) := {v :

−→uv ∈ E(G) or uv ∈ E(G)} be the set of out-

neighbors of u, N−
G (u) := {v :

−→vu ∈ E(G) or uv ∈ E(G)} be the set of in-neighbors of u,

and NG(u) := N+
G (u)∪N

−
G (u) be the set of neighbors of u. The number d+G(u) := |N+

G (u)|

is called the out-degree of u in G, and the number dG(u) := |N+
G (u)| + |N

−
G (u)| is called

the degree of u in G. The sequence d(G) := (dG(u))u∈V (G) in descending order is called

the degree sequence of G.

For the Kelmans transformation Ga
b of a mixed graph G,

N+
Ga

b
(a) = N+

G (a) ∪N+
G (b), N−

Ga
b
(a) = N−

G (a) ∪N−
G (b),

N+
Ga

b
(b)− {a} = N+

G (a) ∩N+
G (b), N−

Ga
b
(b)− {a} = N−

G (a) ∩N−
G (b).

Figure 2 shows how the Kelmans transformation on mixed graphs works.
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b a b a

G Ga
b

Figure 2: Kelmans transformation on mixed graph G.

Lemma 4.1. Let G be a mixed graph and distinct a, b ∈ V (G) have no arc. Then the

following (i)–(ii) hold.

(i) The involution f : V (Ga
b )→ V (Gb

a) defined by

f(x) =


a, if x = b;

b, if x = a;

x, otherwise

is a graph isomorphism from Ga
b to Gb

a.

(ii) In dictionary order, d(Ga
b ) ≥ d(G). Moreover, the following (a)–(c) are equivalent.

(a) d(Ga
b ) = d(G);

(b) G is isomorphic to Ga
b ;

(c) N+
G (a)−{b} ⊆ N+

G (b)−{a} and N−
G (a)−{b} ⊆ N−

G (b)−{a}; or N+
G (b)−{a} ⊆

N+
G (a)− {a} and N−

G (b)− {a} ⊆ N−
G (a)− {b}.

Proof. Excluding the two vertices a, b which are either with an undirected edges or without

any directed arcs by the assumption, we have the following three observations of neighbor

sets from the definition of Kelmans transformation on G from b to a. (1) the set of out-

neighbors (resp. in-neighbors) of b in Ga
b is the union of the set of out-neighbors (resp.

in-neighbors) of a in G and the set of out-neighbors (resp. in-neighbors) of b in G; (2) the
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set of out-neighbors (resp. in-neighbors) of a in Ga
b is the intersection of set of the out-

neighbors (resp. in-neighbors) of a in G and the set of out-neighbors (resp. in-neighbors)

of b in G; (3) the set of out-neighbors (resp. in-neighbors) of x ̸= a, b in Ga
b is the same

as that in G. From the above three observations, we find that vertices a, b, x in Ga
b play

the role of b, a, x respectively in Gb
a. This proves (i).

(ii) In the proof of (i), we also have dG(x) = dGa
b
(x) for x ∈ V (G)− {a, b} and in dictio-

nary order (dGa
b
(a), dGa

b
(b)) ≥ (max(dG(a), dG(b)),min(dG(a), dG(b))), together implying

d(Ga
b ) ≥ d(G). Next we prove that (a), (b) and (c) are equivalent.

((b) ⇒ (a)) This is clear.

((a) ⇒ (c)) Suppose d(Ga
b ) = d(G). From the proof of (ii) above, we know that

{dG(a), dG(b)} = {dGa
b
(a), dGa

b
(b)}. If dG(a) = dGa

b
(b) then dG(b) = dGa

b
(a) ≥ dGa

b
(b) =

dG(a), which implies N+
G (a) − {b} ⊆ N+

G (b) − {a} and N−
G (a) − {b} ⊆ N−

G (b) − {a}. If

dG(a) = dGa
b
(a) then dG(b) = dGa

b
(b), which implies N+

G (b) − {a} ⊆ N+
G (a) − {b} and

N−
G (b)− {a} ⊆ N−

G (a)− {b}.

((c) ⇒ (b)) If N+
G (a) − {b} ⊆ N+

G (b) − {a} and N−
G (a) − {b} ⊆ N−

G (b) − {a} then

G = Gb
a and the later is isomorphic to Ga

b by (i). If N+
G (b) − {a} ⊆ N+

G (a) − {b} and

N−
G (b)− {a} ⊆ N−

G (a)− {b} then G = Ga
b .

4.2 Poset of mixed graphs

For a mixed graph G of order n and size m, let [G] denote the set of mixed graphs

that are isomorphic to G. Let

G(n,m) := {[G] : G is a mixed graph of order n and size m}. (7)

We will define a reflexive and transitive relation ≤ in G(n,m) as follows.

Definition 4.2. Let ≤ be the relation in G(n,m) such that for all [G], [H] ∈ G(n,m),
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[G] ≤ [H] if and only if H is isomorphic to G, or H is isomorphic to a graph which is

obtained from G by a finite sequence of Kelmans transformations.

Proposition 4.3. (G(n,m),≤) is a partially ordered set (poset).

Proof. The relation ≤ is reflexive and transitive from its definition, so we only need to

prove the anti-symmetric property. Suppose [G] ≤ [H] and [H] ≤ [G], where [G], [H] ∈

G(n,m). Then d(G) ≤ d(H) ≤ d(G) by Lemma 4.1(ii). Hence d(G) = d(H). By

Lemma 4.1(ii)(a)⇒(b), we have [G] = [H].

4.3 Poset of mixed trees

Let n,m ∈ N with n− 1 ≤ m ≤ 2n− 2,

T (n,m) := {[T ] ∈ G(n,m) : T is a mixed tree}.

The set T (n,m) is not closed under Kelmans transformations. We need the following

lemma.

Lemma 4.4. Let [T ] ∈ T (n,m) with distinct a, b ∈ V (T ) having no arc. Then [T a
b ] ∈

T (n,m) if and only if ab ∈ E(T ) or ∂(a, b) = 2 and the unique vertex x ∈ V (T ) with

∂(a, x) = ∂(x, b) = 1 satisfying one of the conditions : (i) ax ∈ E(T ) is an undirected edge,

(ii) xb ∈ E(T ) is an undirected edge, (iii) −→ax,−→bx ∈ E(T ) are arcs or (iv) −→xa,−→xb ∈ E(T )

are arcs.

Proof. The assumption implies ∂(a, b) ≥ 1 and if ∂(a, b) = 1 then ab ∈ E(T ) is an

undirected edge. If ∂(a, b) = 2 and the necessary condition about x fails, then a, b belong

to different components of the underlying graph of T a
b , so T a

b is not a mixed tree. If

∂(a, b) ≥ 3 then the underlying graph of T a
b contains a cycle of order ∂(a, b), so T a

b is not

a mixed tree.

On the other hand, it is straightforward to observe that [T a
b ] ∈ T (n,m) when a, b

satisfy the conditions.
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We use the notation a−b, a−x−b, a−x→ b, a−x← b, a← x−b, a→ x−b, a→ x← b

and a ← x → b to denote the eight situations in the necessary condition of Lemma 4.4.

We give T (n,m) a poset structure by extending [T ] ≤ [T a
b ] for any [T ] ∈ T (n,m) and any

a, b ∈ V (T ) that satisfy one of the eight situations.

Proposition 4.5. Let [T ] ∈ T (n,m). Then [T ] is a maximal element in T (n,m) if and

only if T is a mixed star or T is a mixed tree without undirected edges (i.e. m = n − 1)

and whenever the subgraph a → x ← b or a ← x → b appears in T , one of a and b is a

leaf.

Proof. (⇐) If T is a mixed star, and one of a − b, a − x → b, a − x ← b, a ← x − b,

a → x − b, a → x ← b and a ← x → b appearing in T , then one of a or b is a leaf,

so Lemma 4.1(ii,c) with G = T holds, which implies that T a
b is isomorphic to T . If T is

a mixed tree without undirected edges, then we only need to consider a → x ← b and

a← x→ b in T . By the assumption a or b is a leaf and by the same reason as above, T a
b

is isomorphic to T . Hence in both cases, [T ] is a maximal element in T (n,m).

(⇒) Let [T ] be a maximal element in T (n,m) such that T is not a mixed star, so T has di-

ameter at least 3. Keeping in mind that the maximality of [T ] implies that Lemma 4.1(ii,c)

with G = T holds for a, b ∈ V (T ) satisfying the necessary conditions a − b, a − x → b,

a− x ← b, a ← x− b, a → x− b, a → x ← b or a ← x → b of Lemma 4.4, thus at least

one of a or b is a leaf. To exclude the situations a− b, a− x→ b, a− x← b, a← x− b

and a → x − b, on the contrary, suppose that T contains an undirected edge uv with

leaf u. Since the diameter of T is at least 3, we have another two vertices y, z ∈ V (T )

such that ∂(v, y) = ∂(y, z) = 1 and ∂(u, z) = 3. Since v, y are not leaves in T , they have

an arc, say v → y (similar for v ← y) in E(T ). Hence T u
y ∈ T (n,m) is well-defined,

v ∈ (N+
T (v) − {y}) − (NT (y) − {u}), and z ∈ NT (y) − NT (u), a contradiction to the

maximality of [T ]. Thus T has no undirected edges.

23



b a b a

G Ga
b

Figure 3: Kelmans transformation on an undirected graph G.

4.4 Kelmans transformations on undirected graphs

Recall that the Kelmans transformation on undirected graphs, defined by A.K. Kel-

mans [27], is a special case of our definition. In this chapter, we give some combinatorial

results about the Kelmans transformation on undirected graphs.

Let G be an undirected graph, then the Kelmans transformation Ga
b is an undirected

graph with vertex set V (G) and edge set E(G) ∪ {av : v ∈ NG(b)\NG(a)}\{bv : v ∈

NG(b)\NG(a)}. Equivalently, NGa
b
(b) = NG(b) ∩ NG[a], NGa

b
(a) = NG(b) ∪ NG(a)\{a}

and NGa
b
(v)\{a, b} = NG(v)\{a, b} for all v ̸= a, b. Figure 3 shows how the Kelmans

transformation works.

It has been proved in [13] that the spectral radius of a graph is non-decreasing after any

Kelmans transformation. In [24], the affects of Kelmans transformations on parameters

of graphs, including vertex connectivity, edge connectivity, toughness, edge toughness,

scattering number and binding number have been studied.

As shown in Figure 4, the Kelmans transformation Ga
b of a connected graph G is not

necessary connected. In graph theory, the properties of a disconnected graph is usually

combined by the properties from each of its components. Hence we focus on connected

graphs in the discussions of graphs. To keep the graph connected, we need the following

lemma :
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G

Ga
b

b a

b a

Figure 4: An example that Ga
b is not connected where G is connected.

Lemma 4.6. If G is connected and ∂G(b, a) ≤ 2, then Ga
b is connected.

Proof. Observe that the degree of each vertex is non-decreasing from G to Ga
b except

b. Let G be connected. Since degGa
b
(b) = |NG(b) ∩ NG(a)| ≥ 1 for ∂G(b, a) = 2 and

a ∈ NGa
b
(b) for ∂G(b, a) = 1, Ga

b is connected.

For an undirected graph G of order n with m edges, let [G] denote the set of undirected

graphs that are isomorphic to G. Let

UG(n,m) := {[G] : G is an undirected graph of order n with m edges}.

Define a reflexive and transitive relation ≤ in UG(n,m) as follows.

Definition 4.7. Let ≤ be the relation in UG(n,m) such that for all [G], [H] ∈ UG(n,m),

[G] ≤ [H] if and only if H is isomorphic to G, or H is isomorphic to a graph which is

obtained from G by a finite sequence of Kelmans transformations.

Since undirected graphs are also mixed graphs, from Proposition 4.3 we know that

(UG(n,m),≤) forms a subposet of (G(n, 2m),≤).
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Let

UT (n) := {[T ] : T is an undirected tree of order n}.

Then UT (n) = T (n, 2n− 2) and the following lemma is a straightforward consequence of

Lemma 4.4.

Lemma 4.8. Let [T ] ∈ UT (n). Then [T a
b ] ∈ UT (n) if and only if ab ∈ E(T ) or

∂(a, b) = 2.

We then give UT (n) a poset structure by extending [T ] ≤ [T a
b ] for any [T ] ∈ UT (n)

and any a, b ∈ V (T ) with ab ∈ E(T ) or ∂(a, b) = 2. In particular, Proposition 4.5 shows

that the maximal element of UT (n) is the star K1,n−1.

The following proposition gives the minimal elements of UT (n).

Proposition 4.9. Let [T ] ∈ UT (n). Then [T ] is minimal in UT (n) if and only if the

subgraph of T induced by {v : ∂T (v, ℓ) ≤ 3} is a path for each leaf ℓ in T .

Proof. (⇒) If the subgraph of T induced by {v : ∂T (v, ℓ) ≤ 3} is not a path for a leaf

ℓ ∈ V (T ), there are two cases for the unique neighbor u of ℓ : (i) degT (u) ≥ 3, (ii)

NT (u) = {ℓ, v} for some v ∈ V (T ) and degT (v) ≥ 3. In case (i), choose v ∈ NT (u)\{ℓ}

and let T ′ be a tree with V (T ′) = V (T ) and E(T ′) = E(T )∪{vℓ}\{vu}. Then [(T ′)uℓ ] = [T ]

and [T ′] ̸= [T ] by Lemma 4.1(ii). In case (ii), choose w ∈ NT (v)\{u} and let T ′ be a tree

with V (T ′) = V (T ) and E(T ′) = E(T )∪{wℓ}\{wv}. Then [(T ′)uℓ ] = [T ] where [T ′] ̸= [T ]

by Lemma 4.1(ii). Hence [T ] is not minimal in UT (n).

(⇐) If [T ] is not minimal in UT (n), then there exists another tree T ′ ∈ UT (n) such

that [T ′] ̸= [T ] = [(T ′)wu ] for some u,w ∈ V (T ′). By Lemma 4.8, ∂T ′(u,w) ∈ {1, 2}.

If u is a leaf in T ′, then NT ′(u)\{w} ⊆ NT ′(v) and hence [T ] = [(T ′)wu ] = [T ′] by

Lemma 4.1(ii), a contradiction. Since [(T ′)wu ] = [(T ′)uw] by Lemma 4.1(i), w is not a leaf

in T ′ either. Therefore, there exist a ∈ NT ′(u) and b ∈ NT ′(w) such that ∂T ′(a, w) =
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∂T ′(b, u) = ∂T ′(u,w) + 1. Let c = u if ∂T ′(u,w) = 1 and c be the unique vertex in

NT ′(u) ∩NT ′(w) if ∂T ′(u,w) = 2. Then a, b, c are distinct vertices in N(T ′)wu (w).

Notice that u is a leaf in (T ′)wu and the subgraph of (T ′)wu induced by {v : ∂(T ′)wu (v, u) ≤

3} is not a path since it contains the vertex v of degree at least 3. We get the proof.

From the view of Lemma 4.6, we consider a restricted version of Kelmans transforma-

tion, called distance-2 Kelmans transformation, which is a Kelmans transformation Ga
b

of G with ∂G(b, a) = 2. Let (UG(n,m),≤2) denote the weak subposet of (UG(n,m),≤)

restricting to the distance-2 Kelmans transformation.

We first recall a known result that characterizes the maximal graphs of UG(n,m).

Proposition 4.10 ([12]). The element [G] is maximal in (UG(n,m),≤) if and only if G

is {2K2, P4, C4}-free.

Let H1 be a graph with vertex set V (H1) = {v1, v2, v3, v4, v5} and edge set E(H1) =

{v1v2, v2v3, v3v4, v4v5, v3v5}. The following proposition is a characterization of maximal

graphs of the distance-2 Kelmans transformation.

Proposition 4.11. The element [G] is maximal in (UG(n,m),≤2) if and only if G is

{P5, C5, K1 ∨ 2K2, K1 ∨ P4, P5, H1}-free.

Proof. If G contains any of P5, C5, K1 ∨ 2K2, K1 ∨ P4, P5 and H1 as an induced sub-

graph, then there exist four vertices a, b, u, v ∈ V (G) with ∂G(a, b) = 2 such that

v ∈ NG(b)\NG(a) and u ∈ NG(a)\NG(b). Then [Ga
b ] ̸= [G] by Lemma 4.1(ii), so [G]

is not maximal in (UG(n,m),≤2).

If [G] is not maximal in (UG(n,m),≤2), then there exist a, b ∈ V (G) with ∂G(b, a) = 2

such that [Ga
b ] ̸= [G]. By Lemma 4.1(ii), NG(b)\NG(a) ̸= ∅ and NG(a)\NG(b) ̸= ∅. Let

x ∈ NG(b) ∩ NG(a), v ∈ NG(b)\NG(a) and u ∈ NG(a)\NG(b). Let H be the subgraph
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of G induced on vertices {u, v, x, a, b}, then H contains edges ax, bx, au, bv and doesn’t

contain edges ab, bu, av. Furthermore, there are eight possible cases for H between three

vertices {x, u, v} :

(i) All of xu, xv and uv are not edges of H.

(ii) xu ∈ E(H), xv ̸∈ E(H), uv ̸∈ E(H).

(iii) xv ∈ E(H), xu ̸∈ E(H), uv ̸∈ E(H).

(iv) uv ∈ E(H), xu ̸∈ E(H), xv ̸∈ E(H).

(v) xu ∈ E(H), xv ∈ E(H), uv ̸∈ E(H).

(vi) xu ∈ E(H), xv ̸∈ E(H), uv ∈ E(H).

(vii) xu ̸∈ E(H), xv ∈ E(H), uv ∈ E(H).

(viii) All of xu, xv and uv belongs to E(H).

In case (i), H ∼= P5. In case (ii), H ∼= C5. In case (iii),(iv), H ∼= H1. In case (v),

H ∼= K1 ∨ 2K2. In case (vi),(vii), H ∼= P5. In case (viii), H ∼= K1 ∨ P4. Therefore, G is

not {P5, C5, K1 ∨ 2K2, K1 ∨ P4, P5, H1}-free.
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P5 C5

K1 ∨ 2K2 K1 ∨ P4

H1 P5

Figure 5: Forbidden subgraphs of the maximal graphs in (UG(n,m),≤2).
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5 Aα-spectral radius

In this chapter, we will introduce the “Aα-matrix” and “Aα-spectral radius”, which

were first introduced by Nikiforov [33] in 2017. The main results of this chapter is The-

orem 5.6 and Theorem 5.8 that characterize the mixed trees with maximum/minimum

Aα-spectral radius, respectively.

Recall that the adjacency matrix A = (aij) of a mixed graph G is defined by aij = 1

if and only if ij ∈ E(G) or −→ij ∈ E(G). Define the out-degree matrix D+ = (d+ij) of G

to be a diagonal matrix of order |V (G)| such that d+ii = d+G(i). The signless Laplacian

matrix of a mixed graph is defined to be the sum of its adjacency matrix and its out-

degree matrix. For real number α ∈ [0, 1], the matrix Aα(G) of a mixed graph G is

defined to be αD++(1−α)A. The concepts of Aα-matrix of graphs were first introduced

by Nikiforov [33] in 2017 and then liu et al. [31] start to consider the Aα-matrix for

mixed graphs. Notice that when α = 0, the Aα-matrix of a mixed graph is its adjacency

matrix; when α = 1/2, the Aα-matrix is half the signless Laplacian matrix. Therefore, the

researches on Aα matrices are generalizations of the researches on adjacency matrices and

signless Laplacian matrices. Since Aα matrices are nonnegative and it is well known that

a nonnegative matrix has a real eigenvalue, let ρα(G) denote the largest real eigenvalue

ρ(Aα(G)) of the Aα matrix Aα(G) of G, and refer ρα(G) to as the Aα-spectral radius, or

α-index of G. For the previous studies on Aα-spectral radii of graphs and mixed graphs,

see [19, 20, 30, 35, 38, 40].

5.1 The Aα-matrix of a mixed graph

The following lemma tells that the Kelmans transformation of the Aα-matrix of a

mixed graph is equal to the Aα-matrix of the corresponding Kelmans transformation

mixed graph.

Lemma 5.1. Let α ∈ [0, 1], [G] ∈ G(n,m) with distinct vertices a, b ∈ V (G) having no
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arc, adjacency matrix A = (cij) and Aα-matrix Aα(G) of G. Set k := α|N+
G (b)−N+

G (a)|,

ti = (1−α)max(0, cib− cia) and si = (1−α)max(0, cbi− cai) for i ∈ V (G)−{a, b}. Then

the Kelmans transformation matrix Aα(G)ab of Aα(G) from b to a with respect to (ti; si; k)

is the Aα-matrix Aα(G
a
b ) of Ga

b , i.e.,

Aα(G)ab = Aα(G
a
b ).

Proof. We only need to check that the ij entries in matrices Aα(G)ab and Aα(G
a
b ) are equal

for one of i, j in {a, b}. Indeed they are equal from the setting listed in the order aa, bb,

ia, ib, aj and bj below:

αd+G(a) + k =αd+Ga
b
(a),

αd+G(b)− k =αd+Ga
b
(b),

(1− α)cia + ti =(1− α)(cia + max(0, cib − cia)),

(1− α)cib − ti =(1− α)(cib −max(0, cib − cia)),

(1− α)cia + sj =(1− α)(caj + max(0, cbj − caj),

(1− α)cib − sj =(1− α)(cbj −max(0, cbj − caj),

where i, j ∈ V (G)− {a, b}.

Proposition 5.2. If α ∈ [0, 1], and [G], [H] ∈ G(n,m) such that [G] ≤ [H], then ρα(G) ≤

ρα(H).

Proof. We might assume H = Ga
b by Lemma 4.3. Applying Theorem 3.1 and Lemma 5.1,

we have

ρα(G) = ρ(Aα(G)) ≤ ρ(Aα(G)ab ) = ρ(Aα(G
a
b )) = ρα(H).
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5.2 The upper bound of Aα-spectral radius

If an arc in a mixed tree T is deleted, then we have two mixed trees. Thus if the arcs

in a mixed tree T of order n and size m are all removed, then the remaining is a graph

without cycles with 2n−m− 1 components.

Lemma 5.3. If α ∈ [0, 1], [T ] ∈ T (n,m) and C1, C2, . . ., C2n−m−1 are the components

of the graph obtained from T by removing the arcs, then

char(Aα(T )) =
∏
i∈[t]

char(Aα(T )[Ci]),

where Aα(T )[Ci] is the principal submatrix of Aα(T ) restricted to Ci.

Proof. If −→ij ∈ E(T ) is deleted to obtain two mixed trees with vertex sets V and W ,

then besides −→ij there is no arc or edge between a vertex in V and a vertex in W . With

M = Aα(T ), M1 = M [V ], M2 = M [W ], we find that M satisfies the assumption of

Lemma 2.1. Hence char(M) = char(M1) × char(M2). We have the lemma by using

this process on M1 and M2, and repeating again until each matrix is corresponding to a

component of T .

Note that Aα(T )[Ci] in Lemma 5.3 is not the Aα-matrix of the component Ci of T .

Corollary 5.4. If α ∈ [0, 1] and [T ] ∈ T (n, n− 1), then

char(Aα(T )) =
∏
i∈[n]

(λ− αd+i ).

Proof. For [T ] ∈ T (n, n − 1), the graph obtained from T by removing the arcs is a Kn.

Then Aα(T )[{i}] is a 1× 1 matrix with entries αd+i and the result is straightforward from

Lemma 5.3.
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π1

π2

π4π3

Figure 6: The partition Π of the vertices of a mixed star.

Proposition 5.5. Let S be mixed star of order n, size m and maximum out-degree

m− n+ k + 1 for some 0 ≤ k ≤ 2n−m− 2. Then for α ∈ [0, 1], the Aα-spectral radius

ρα(S) of S is the maximal root of the following quadratic polynomial in λ:

(λ− α)(λ− α(m− n+ k + 1))− (1− α)2(m− n+ 1). (8)

Proof. Note that there are m− n + 1 edges in S. For convenience, assume that V (S) =

[n], the vertex 1 has the maximum degree n − 1, N+
S (1) = [m − n + k + 2] − {1} and

N−
S (1) = ([m− n+ 2]− {1}) ∪ {m− n+ k + 3,m− n+ k + 4, . . . , n}.

Set π1 = {1}, π2 = {2, 3, . . . ,m−n+2}, π3 = {m−n+3,m−n+4, . . . ,m−n+k+2},

and π4 = [n] − π1 − π2 − π3 as illustrated in Figure 6. With respect to the partition

Π = {π1, π2, π3, π4} of [m], the adjacency matrix A and the diagonal out-degree matrix

D+ of T have equitable quotient matrices

Π(A) =


0 m− n+ 1 k 0

1 0 0 0

0 0 0 0

1 0 0 0


and Π(D+) =


m− n+ k + 1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1


,
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respectively, which implies that the Aα-matrix of T has equitable quotient

Π(Aα) =


α(m− n+ k + 1) (1− α)(m− n+ 1) (1− α)k 0

1− α α 0 0

0 0 0 0

1− α 0 0 α


.

The characteristic polynomial of Π(Aα) is

λ(λ− α)((λ− α)(λ− α(m− n+ k + 1))− (1− α)2(m− n+ 1)),

and the zero in (8) is at least α. By Lemma 2.2, we complete the proof.

The following theorem is the main result of this section.

Theorem 5.6. If α ∈ [0, 1] and [T ] ∈ T (n,m), then

ρα(T ) ≤
1

2

(
αn+

√
α2n2 − 4α2(n− 1) + 4(1− α)2(m− n+ 1)

)
.

Moreover, the mixed star of order n and size m with maximum out-degree n − 1 attains

the upper bound.

Proof. By Proposition 5.2, it suffices to show that for each maximal element [T ] ∈ T (n,m)

characterized in Proposition 4.5, ρα(T ) is at most the upper bound appearing in Theo-

rem 5.6. Suppose T is a mixed star with maximal out-degree m − n + k + 1. Since the

largest root of the quadratic polynomial in (8) increases as lone as k increases, we might

assume k = 2n−m− 2, and find (8) becomes

λ2 − αnλ+ α2(n− 1)− (1− α)2(m− n+ 1),

which has largest root as the upper bound appearing in Theorem 5.6. For the remaining

elements [T ] ∈ T (n, n − 1), from Corollary 5.4 we know that the Aα-matrix of T has

characteristic polynomial
∏

i∈[n](λ−αd+i ), so ρα(T ) = α · (maxi∈[n] d
+
i ) ≤ α(n− 1), where

the equality holds when T is the mixed star with n − 1 leaves being out-neighbor of a

vertex. Moreover, α(n− 1) is equal to the upper bound when m = n− 1.
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5.3 The lower bound of Aα-spectral radius

The mixed tree with smallest Aα-spectral radius is more complicated to characterize.

We first state the result on trees.

The following theorem was proved in [35].

Theorem 5.7. ([35]) If T is a tree of order n and α ∈ [0, 1], then

ρα(T ) ≥ ρα(Pn).

The equality holds if and only if G = Pn.

The following theorem gives a lower bound of the Aα-spectral radius of mixed tree of

order n and size m.

Theorem 5.8. Let [T ] ∈ T (n,m), and set k = ⌈ n
2n−m−1

⌉, then

ρα(T ) ≥ ρα(Pk).

Proof. Let T be a mixed tree of order n and size m. Then the graph obtained from

T by removing the arcs has 2n − m − 1 components, and there exists a component of

order at least k = ⌈ n
2n−m−1

⌉. Let C1 be a component with maximum size t. Then

t ≥ k ≥ 2 and Aα(T )[C1] ≥ Aα(C1). Hence by Lemma 2.3, Lemma 5.3 and Theorem 5.7,

ρα(T ) ≥ ρ(Aα(T )[C1]) ≥ ρ(Aα(C1)) = ρα(Pt) ≥ ρα(Pk).

Here we construct a mixed tree to tell that the bound given in Theorem 5.8 may

not be reached for some cases. After removing the arcs from a mixed tree of order n

and size m, the resulting graph contains 2n − m − 1 components. Let the components

be paths with almost equal sizes. That is, the components are all isomorphic to paths

P⌈ n
2n−m−1

⌉ or P⌊ n
2n−m−1

⌋. Let the paths be ordered one-by-one in descending order with an

arc between each pair of consecutive paths from the last vertex of one path to the first

35



Figure 7: The mixed tree P(8,12).

vertex of another path. Denote the above mixed tree by P(n,m). An example of P(n,m)

where n = 8,m = 12 is given in Figure 7.

Let k = ⌈ n
2n−m−1

⌉. By Lemma 5.3, we deduce that for all m < 2n− 2, the Aα-spectral

radius ρα(P(n,m)) is equal to ρα(Mk), where Mk is the following k × k matrix :



α 1− α

1− α 2α 1− α

. . .
. . .

. . .

1− α 2α 1− α

1− α 2α


.

Since [P(n,m)] ∈ T (n,m), we know that

min
[T ]∈T (n,m)

ρα(T ) ≤ ρα(Mk).

Together with Theorem 5.8, we have

ρα(Pk) ≤ min
[T ]∈T (n,m)

ρα(T ) ≤ ρα(Mk).

However, we found that for some α ∈ (0, 1), both of ρα(Pk) and ρα(Mk) are not the

answer of min[T ]∈T (n,m) ρα(T ). For example, if α = 0.9, n = 8, m = 12, then k = ⌈8
3
⌉ = 3.

In this case, ρα(Pk) ≈ 1.8217 but this bound cannot be reached by any mixed tree of order

8 and size 12. Meanwhile, ρα(Mk) ≈ 1.9051. However, the mixed tree of order 8 and size

12 with smallest Aα-spectral radius is actually with Aα-spectral radius 1.9, which is given

in Figure 8.
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Figure 8: The mixed graph of order 8, size 12 and A0.9-spectral radius 1.9.

Figure 9: These mixed trees share the same Aα-spectral radius

Notice that the mixed trees with minimum Aα-spectral radius is difficult and in some

sense meaningless to characterize since the choice of the out-vertex of each arc doesn’t

change the Aα-spectral radius. Figure 9 gives 3 mixed trees that share a same Aα-spectral

radius.
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6 New sufficient conditions of Hamiltonicity

There are many earlier results giving sufficient conditions of Hamiltonicity, like Dirac’s

theorem [17], Ore theorem [36] and Chvátal’s theorem [10]. However, the requirements

of above theorems are too strong to reach, so people want to find new approaches for the

sufficient conditions of Hamiltonicity. In this chapter, three different approaches are used

to find new sufficient conditions of Hamiltonicity. The main results of this chapter are

given in Proposition 6.9, Theorem 6.11 and Corollary 6.34.

6.1 Spectral conditions

In 2010, Fiedler and Nikiforov gave the following result.

Theorem 6.1 ([18]). If G is a graph on n ≥ 3 vertices and with spectral radius ρ(G) >

n− 2, then G is Hamiltonian unless G = K1 ∨ (K1 ∪Kn−2).

Later in 2013, Yu and Fan gave a similar result which uses signless Laplacian spectral

radius. Let q(G) be the spectral radius of the signless Laplacian matrix of G.

Theorem 6.2 ([42]). If G is a graph on n ≥ 3 vertices and with signless Laplacian

spectral radius q(G) > 2(n− 2), then G is Hamiltonian unless G = K1 ∨ (K1 ∪Kn−2) or

G = K2 ∨K3.

We are going to generalize these results into the versions of Aα-spectral radius.

6.1.1 Conditions using Aα-spectral radius

There are several bounds of the Aα-spectral radius ρα(G), and here we give a corrected

version of an incorrect bound which is given in [28].

Lemma 6.3. Let n,m, δ,∆ denote the number of vertices, the number of edges, the

minimum degree and the maximum degree of a graph G, respectively. Then the Aα-spectral
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radius ρα(G) of G is at most

δ − 1 + α(∆− δ + 1) +
√
(δ − 1 + α(∆− δ + 1))2 + (4− 4α)(2m− (n− 1)δ)

2
,

for each 0 ≤ α ≤ 1.

Since δ ≥ 0 and ∆ ≤ n− 1, we have a simpler bound as follow.

Corollary 6.4.

ρα(G) ≤
−1 + αn+

√
(−1 + αn)2 + 8m(1− α)

2
.

The above bounds are connections between the Aα-spectral radius and the number

of edges in graphs. Here we introduce a classic result given by Ore [36] and Bondy [5],

independently.

Lemma 6.5. Let G be a graph on n ≥ 3 vertices and m edges. If

m ≥
(
n− 1

2

)
+ 1,

then G is Hamiltonian unless G = K1 ∨ (K1 ∪Kn−2) or G = K2 ∨K3.

The following proposition is a generalization of Theorem 6.1.

Proposition 6.6. If G is a graph on n ≥ 3 vertices and there exists 0 ≤ α ≤ 1 such that

ρα(G) > n− 2 + α,

then G is Hamiltonian unless G = K1 ∨ (K1 ∪Kn−2) or G = K2 ∨K3.

Proof. Let n ≥ 3 and ρα(G) > n− 2 + α. By Corollary 6.4, we have

n− 2 + α < ρα(G) ≤
−1 + αn+

√
(−1 + αn)2 + 8m(1− α)

2
.

Hence

(4− 4α)n2 + (−12 + 16α− 4α2)n+ (8− 12α + 4α2) < (8− 8α)m,
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so the number of edges in G satisfies

m >
1

2
(n2 + (−3 + α)n+ (2− α)) ≥ 1

2
(n2 − 3n+ 2) =

(
n− 1

2

)
.

By Lemma 6.5, G is Hamiltonian unless G = K1 ∨ (K1 ∪Kn−2) or G = K2 ∨K3.

To give a general version of Theorem 6.2, we first need to generalize a lemma which is

applied in the original proof of Theorem 6.2. Here we write down the proof given in [15]

for later use.

Lemma 6.7 ([15]). Let G be a graph of order n with m edges. Then

max{di +mi : vi ∈ V (G)} ≤ 2m

n− 1
+ n− 2,

where di is the degree of vi and mi is the average degree of the neighbors of vi.

Proof. Let vj = arg max{di + mi : vi ∈ V (G)}. Let T be the sum of the degrees of the

neighbors of vj, then

max{di +mi : vi ∈ V (G)} = dj +mj = dj +
T

dj
.

Furthermore,

2m = dj + T + (n− dj − 1)pj

where pj is the average degree of the vertices not adjacent to vj. Hence the inequality we

are going to prove is

dj +
T

dj
≤ dj + T + (n− dj − 1)pj

n− 1
+ n− 2,

which is equivalent to

(n− dj − 1)

(
n− 2 + pj −

T

dj

)
≥ 0.

If dj = n− 1, then the equality holds. If not, then dj ≤ n− 2 and there are two cases: (i)

0 ≤ pj < 1 (ii) pj ≥ 1. For (i), there exists an isolated vertex, which leads to T
dj
≤ n− 2
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and dj ≤ n − 2, the inequality holds. For (ii), since T
dj
≤ n − 1 and dj ≤ n − 2. The

inequality holds, too.

The following generalization of Lemma 6.7 has been partially proved in [22], and our

version is applicable for all 0 ≤ α ≤ 1.

Lemma 6.8. Let G be a graph of order n with m edges. Then{
ρα(G) ≤ 2m

n−1
α + n(1− α)− 1, if α ∈ [0, 1/2),

ρα(G) ≤ 2m
n−1

(1− α) + nα− 1, if α ∈ [1/2, 1].

Proof. Let di be the degree of vertex vi and mi be the average degree of the neighbors of

vi. Since the spectral radius of a symmetric matrix is no greater than its largest row sum,

we have ρα(G) ≤ max{αdi + (1−α)mi}. Let vj = arg max{αdi + (1−α)mi : vi ∈ V (G)}.

Let T be the sum of the degrees of the neighbor of vj. For 0 ≤ α < 1
2
, by Lemma 6.7,

αdj + (1− α)mj = α(dj +mj) + (1− 2α)mj

≤ α

(
2m

n− 1
+ n− 2

)
+ (1− 2α)mj

≤ α

(
2m

n− 1
+ n− 2

)
+ (1− 2α)(n− 1)

=
2m

n− 1
α + n(1− α)− 1.

For 1
2
≤ α ≤ 1, by Lemma 6.7,

αdj + (1− α)mj = (1− α)(dj +mj) + 2αdj

≤ (1− α)

(
2m

n− 1
+ n− 2

)
+ 2αdj

≤ (1− α)

(
2m

n− 1
+ n− 2

)
+ 2α(n− 1)

=
2m

n− 1
(1− α) + nα− 1.

The following proposition generalizes Theorem 6.2.
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Proposition 6.9. If G is a graph on n ≥ 3 vertices, G ̸= K1∨(K1∪Kn−2), G ̸= K2∨K3,

and there exists 0 ≤ α ≤ 1 such that the Aα-spectral radius ρα(G) satisfies{
ρα(G) > n− 1− 2α, if α ∈ [0, 1/2),

ρα(G) > n− 3 + 2α, if α ∈ [1/2, 1],

then G is Hamiltonian.

Proof. If ρα(G) > n− 1− 2α for some α ∈ [0, 1/2), by Lemma 6.8 we have

n− 1− 2α < ρα(G) ≤ 2m

n− 1
α + n(1− α)− 1,

which implies m >
(
n−1
2

)
and by Lemma 6.5, G is Hamiltonian unless G = K1∨(K1∪Kn−2)

or G = K2 ∨K3.

Similarly, if ρα(G) > n− 3 + 2α for some α ∈ [1/2, 1], by Lemma 6.8 we have

n− 3 + 2α < ρα(G) ≤ 2m

n− 1
(1− α) + nα− 1,

which also implies m >
(
n−1
2

)
and by Lemma 6.5, G is Hamiltonian unless G = K1 ∨

(K1 ∪Kn−2) or G = K2 ∨K3.

6.2 Graph structure conditions

In this section, we focus on the Cartesian product graphs. Recall that the definition

of Cartesian product is as follows.

Definition 6.10. The Cartesian product graph G1�G2 of graphs G1 and G2 is a graph

with vertex set

V (G1�G2) = {vu | v ∈ V (G1), u ∈ V (G2)},

and edge set

E(G1�G2) = {vuvw | v ∈ V (G1), uw ∈ E(G2)} ∪ {vuwu | u ∈ V (G2), vw ∈ E(G1)}.
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Parts of the results are also in the Master thesis [34] of the author. The tools we use

here are different from [34] and are more applicable.

Recall that the maximum degree of graph G is denoted as ∆(G). A path factor of

a graph is a spanning subgraph of the graph such that each component of the spanning

subgraph is isomorphic to a path with order at least two. If each component in a path

factor is isomorphic to P2, the path factor is called a perfect matching. The following

theorem is the main result of this section.

Theorem 6.11. Let G1 be a traceable graph and G2 a connected graph. Statements (a)

and (b) are given as following :

(a) G2 has a perfect matching and |V (G1)| ≥ ∆(G2).

(b) G2 has a path factor and |V (G1)| is an even integer with |V (G1)| ≥ 4∆(G2)− 2.

If one of (a),(b) holds, then G1�G2 has a Hamiltonian cycle.

Theorem 6.11 (a) and (b) will be proved in Theorem 6.21 and Theorem 6.24, respec-

tively.

6.2.1 Path factor of a bipartite graph

To introduce properties of a graph with a path factor, we need more notations. First,

we say a graph to have a {P2, P3}-factor if it has a spanning subgraph such that each

component is isomorphic to P2 or P3. Next, we use i(G) to denote the number of isolated

vertices of G.

A {P2, P3}-factor is a path factor, and a path with order at least 2 has a {P2, P3}-

factor. Therefore, the following lemma follows.

Lemma 6.12. A graph G has a path factor if and only if G has a {P2, P3}-factor.

The proposition below is from [1].
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Proposition 6.13 ([1]). A graph G has a path factor if and only if i(G− S) ≤ 2|S| for

all S ⊆ V (G).

Lemma 6.14. Let G be a graph. If δ(G) ≥ |V (G)|/3, then G has a path factor.

Proof. Suppose G has no path factor. Choose S ⊆ V (G) with |I| = i(G − S) > 2|S| by

Proposition 6.13, where I is the set of isolated vertices in G− S. As each vertex in I has

degree at most |S| in G, we have |S| < (|S| + |I|)/3 ≤ |V (G)|/3, a contradiction to the

assumption that δ(G) ≥ |V (G)|/3.

Restricted to bipartite graphs, the following proposition is a supplementary of Propo-

sition 6.13.

Proposition 6.15. If H is a bipartite graph that does not contain a path factor, then

there exists a vertex subset S that belongs to a single partite set of H with i(H−S) > 2|S|.

Proof. By Proposition 6.13 there exists S ′ ⊆ V (H) such that i(H − S ′) > 2|S ′|. Let H

have partite sets A,B and SA := S ′ ∩ A, SB := S ′ ∩ B. Note that an isolated vertex

in H − S ′ is either an isolated vertex in H − SA or an isolated vertex in H − SB. So

i(H−SA)+i(H−SB) = i(H−S ′) > 2|S ′| = 2|SA|+2|SB| which implies i(H−SA) > 2|SA|

or i(H − SB) > 2|SB|.

For convenience, assume

V (Pn) = {1, 2, . . . , n}, E(Pn) = {i(i+ 1) : i = 1, 2, . . . , n− 1}

in the rest part of this section.

Theorem 6.16. If H be a bipartite graph without path factors, then the Cartesian product

Pn�H is not 1-tough.
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Proof. By Proposition 6.15, there exists a vertex subset S in a single partite set of H

such that i(H − S) > 2|S|. Let I denote the set of isolated vertices in H − S and

jS := {js | s ∈ S}, jI := {ju | u ∈ I} for 1 ≤ j ≤ n. Let V (Pn�H) = X ∪ Y be a

bipartition of Pn�H with |X| ≤ |Y |. For the case |X| = |Y |, let Y be the partite set

which contains 1S. Note that 1I , 2S ⊆ X, 2I ⊆ Y , and 2|1S| = 2|S| < i(H − S) = |1I |. If

|X| < |Y |, then c(Pn�H−X) = |Y | > |X|, implying that Pn�H is not 1-tough. Suppose

|X| = |Y |. Set X ′ = (X ∪ 1S)− 1I and Y ′ = (Y ∪ 1I)− 1S. Now 1I , 2I ⊆ Y ′. Since 1u2u

is the only possible edge in Y ′ for each u ∈ I, we have c(Pn�H − X ′) ≥ |Y ′| − |1I | =

|Y | − |1S| > |X|+ |1S| − |1I | = |X ′|. Thus Pn�H is not 1-tough.

Considering the special case n = 1 in Theorem 6.16, we have the following corollary,

which is of independent interest.

Corollary 6.17. A 1-tough bipartite graph has a path factor.

6.2.2 Trees with perfect matchings

Results about the Hamiltonicity of Cartesian product graphs have been proved in

several papers. For instance, the papers [14],[16] and [39] have mentioned the following

result.

Theorem 6.18 ([39]). Let T be a tree. If n ≥ ∆(T ), then Cn�T is Hamiltonian.

Motivated by Theorem 6.18, we will prove the Hamiltonicity of Pn�T . Before doing

this we comment by the following lemma to show that the assumption n ≥ ∆(T ) in

Theorem 6.18 is necessary.

Lemma 6.19. Let G1 be a connected graph and T be a tree. If ∆(T ) > |V (G1)|, then the

Cartesian product G1�T is not 1-tough.
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Proof. Find v ∈ V (T ) with deg(v) = ∆(T ), choose S = {uv : u ∈ V (G1)} and note that

|S| = |V (G1)|. Now c(G1�T − S) = ∆(T ) > |V (G1)| = |S|, which means that G1�T is

not 1-tough.

Let G be a graph with path factor F . Let GF be the graph with vertex set F and

two components c1, c2 ∈ F are adjacent if there exist vertices u ∈ c1, v ∈ c2 such that

uv ∈ E(G). In particular, if T is a tree with path factor F then TF is a tree, deleting

a leaf c in TF yields a subtree of TF , and T − c is a subtree of T . Hence we have the

following lemma.

Lemma 6.20. For a tree T with a {P2, P3}-factor F , there exists a component c of F

such that T − c is a tree with a {P2, P3}-factor F − {c}.

For v ∈ V (T ) let Bv := {iv(i + 1)v | 1 ≤ i < n} ⊆ E(Pn�T ). Now for T = P2 and

V (T ) = {u,w}, the set {1u1w}∪Bu∪Bw∪{nunw} of edges in Pn�T forms a Hamiltonian

cycle, and call it the standard Hamiltonian cycle for Pn�P2. To avoid confusions, the

degree of vertex v in G will be denoted by degG(v). To prove Theorem 6.11(a), it is

sufficient to find a Hamiltonian cycle of Pn�T where n = |V (G1)| and T is a spanning

tree of G2 that contains perfect matching F of G2. Note that n ≥ ∆(G2) ≥ ∆(T ). For

the convenience of proof, we state a stronger version as follows.

Theorem 6.21. Let T be a tree with a perfect matching. If n ≥ ∆(T ), then there exists

a Hamiltonian cycle of Pn�T which contains exactly n − degT (v) of the edges from the

set Bv for any vertex v ∈ V (T ). In particular, Theorem 6.11 (a) is proved.

Proof. Apply induction on the number of vertices of T . For T = P2, the standard Hamil-

tonian cycle for Pn�P2 satisfies the requirement since |Bv| = n − 1 = n − degT (v) for

v ∈ V (P2).
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For a tree T with a perfect matching F . By Lemma 6.20, there exists a component

(an edge) c in F such that T − c is a tree with a perfect matching. Let u1 ∈ c and

u2 ∈ V (T − c) such that u1 and u2 are adjacent. Let H ′ be the standard Hamiltonian

cycles of Pn�c. Since the subtree T ′ = T−c of T has a perfect matching, |V (T ′)| < |V (T )|

and n ≥ ∆(T ) ≥ ∆(T ′), by the induction hypothesis, there is a Hamiltonian cycle H ′′ of

Pn�T ′ which contains exactly n−degT ′(v) edges from the set Bv for any vertex v ∈ V (T ′).

Since n− degT ′(u2) = n− (degT (u2)− 1) ≥ n−∆(T ) + 1 ≥ 1, there exists a j such that

ju2(j + 1)u2 ∈ H ′′. Now

H = H ′ ∪H ′′ ∪ {ju1ju2 , (j + 1)u1(j + 1)u2} − {ju1(j + 1)u1 , ju2(j + 1)u2}

is a Hamiltonian cycle of Pn�T .

To check that H satisfies the edge requirement, we only need to check those vertices

in T whose incident edges have been changed in the induction step, which are vertices u1

and u2. For u1, all the n− 1 edges of Bu1 are in the cycle H ′. We delete one of them, so

there are n − 2 = n − degT (u1) edges from Bu1 in H. For u2, there are n − degT ′(u2) =

n− (degT (u2)−1) edges from Bu2 in the cycle H ′′ by the induction hypothesis. We delete

one of them, so there are n − (degT (u2) − 1) − 1 = n − degT (u2) edges from Bu2 in H.

This completes the proof.

The paper [14] has proved that G1�G2 is Hamiltonian when G1 is traceable with

|V (G1)| an even integer no less than ∆(G2) − 1 and G2 contains an even 2-factor (i.e.

a spanning subgraph consisting of even cycles). Since an even 2-factor must contain a

1-factor, so Theorem 6.11(a) is a stronger result apart from the case |V (G1)| = ∆(G2)−1.

The following corollary concludes this section.

Corollary 6.22. Let T be a tree with a perfect matching and n be a positive integer. The

following three statements are equivalent:
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1v
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10u

10v
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Figure 10: Standard Hamiltonian cycle for P10�P3

(1) Pn�T is Hamiltonian.

(2) Pn�T is 1-tough.

(3) n ≥ ∆(T ).

Proof. (1)⇒ (2) is clear. (2)⇒ (3) is from Lemma 6.19. (3)⇒ (1) is from Theorem 6.21.

6.2.3 Graphs with path factors

Here we construct a Hamiltonian cycle of Pn�G where G is connected with a path

factor and n is an even integer with n ≥ 4∆(G)− 2. By Lemma 6.12, G has a {P2, P3}-

factor F . Let T be the spanning subtree of G that contains F . It suffices to find a

Hamiltonian cycle in Pn�T .

For v ∈ V (T ), let Lv = {iv(i + 1)v | i ≡ 0, 1, 3 (mod 4)}, Cv = {iv(i + 1)v | i ≡

0, 2 (mod 4)}, Rv = {iv(i + 1)v | i ≡ 1, 2, 3 (mod 4)} denote three special subsets of the

edge set Bv described in the last section. For G = P3 with V (G) = {u, v, w} and E(G) =

{uv, vw}, the set {1u1v}∪{nunv, nvnw}∪Lu∪Cv ∪Rw∪{iuiv : i ≡ 2, 3 (mod 4)}∪{iviw :

i ≡ 0, 1 (mod 4)} of edges forms a Hamiltonian cycle, and call it the standard Hamiltonian

cycle for Pn�P3. See Figure 10 for the standard Hamiltonian cycle for P10�P3.

By direct computation we have the following lemma.

Lemma 6.23. For even integer n, |Lv ∩Rv| ≥ |Rv ∩ Cv| ≥ |Lv ∩ Cv| = ⌈n−4
4
⌉.
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We define the type of a vertex v in T as follows. v has type B (resp. C) if v is in an

edge in F (resp. if v is the middle vertex in a path of length 3 in F ). For the two endpoints

of a path of length 3 in F , we arbitrarily assign one endpoint of type L and the other of

type R. Let δX = 1 if X ∈ {B,L,R} and δX = 2 if X = C. Note that δX = degc(v) for

c ∈ F and v ∈ c of type X. The following is a stronger version of Theorem 6.11(b).

Theorem 6.24. Let T be a connected graph with a {P2, P3}-factor F and n be an even

integer. If n ≥ 4∆(T ) − 2, then Pn�T contains a Hamiltonian cycle H such that for

any vertex v ∈ V (T ) of type X ∈ {B,L,C,R}, we have H ∩ Bv ⊆ Xv and |H ∩ Bv| =

|Xv| − degT (v) + δX . In particular, Theorem 6.11(b) holds.

Proof. We prove by induction on the number of vertices of T . For T = P2, any vertex v

of P2 has type B and the standard Hamiltonian cycle H1 of Pn�P2 satisfies |H1 ∩ Bv| =

n − 1 = |Bv| − degP2
(v) + 1 for vertex v ∈ P2. For T = P3, a vertex v of P3 has type

X ∈ {L,C,R} and the standard Hamiltonian cycle H2 of Pn�P3 satisfy |H2 ∩ Bv| =

|Xv| = |Xv| − degP3
(v) + δX .

Now assume |V (T )| ≥ 4. By Lemma 6.20, there exists a component c of F such that

T − c is a tree with the path factor F − {c}. Let u1 ∈ c and u2 ∈ V (T − c) such that u1

and u2 are adjacent. Assume u1 has type X and u2 has type Y . Let H ′ be the standard

Hamiltonian cycle of Pn�c and Pn�T − c contains a Hamiltonian cycle H ′′ that satisfies

H ′′ ∩ Bu2 ⊆ Yu2 and |H2 ∩ Bu2 | = |Yu2| − (degT (u2) − 1) + δY by induction hypothesis.

Referring to Lemma 6.23, we have |H2 ∩Bu2 ∩Xu2| ≥ |Yu2 ∩Xu2 | − (degT (u2)− 1)+ δY ≥

⌈n−4
4
⌉ − degT (u2) + 2 ≥ ⌈4∆(T )−6

4
⌉ − degT (u2) + 2 ≥ 1. Pick ju2(j + 1)u2 ∈ H2 ∩Bu2 ∩Xu2

and then ju1(j + 1)u1 ∈ Xu1 ⊆ H ′.

Now

H = H ′ ∪H ′′ ∪ {ju1ju2 , (j + 1)u1(j + 1)u2} − {ju1(j + 1)u1 , ju2(j + 1)u2}

is a Hamiltonian cycle of Pn�T .
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To check H satisfies the edge requirements, we only need to check for v ∈ {u1, u2}.

This follows from |H ∩ Xu1| = |H ′ ∩ Xu1| − 1 = |Xu1| − 1 = |Xu1| − degT (u1) + δX and

|H ∩ Yu2| = |H ′′ ∩ Yu2| − 1 = |Yu2| − (degT (u2)− 1) + δY − 1 = |Yu2| − degT (u2) + δY .

Similar to Corollary 6.22, another set of equivalent conditions on Hamiltonicity of

Cartesian product graphs is given as follows.

Corollary 6.25. Let H be a connected bipartite graph, n be an even integer and n ≥

4∆(H)− 2. The following three statements are equivalent :

(1) Pn�H is Hamiltonian.

(2) Pn�H is 1-tough.

(3) H has a path factor.

Proof. (1) ⇒ (2) is clear. (2) ⇒ (3) is from Theorem 6.16. (3) ⇒ (1) is from Theo-

rem 6.24.

To show that the assumption n ≥ 4∆(H) − 2 in Corollary 6.25 can not be replaced

by n ≥ ∆(H), we provide a 1-tough non-Hamiltonian graph Pn�T such that T is a tree

with a path factor and n = ∆(T ) + 1.

Let T1 be a tree with vertex set V (T1) = {1, 2, 3, 4, 5, 6, 7, 8} and edge set E(T1) =

{12, 23, 34, 45, 26, 37, 48}.

Proposition 6.26. The graph G = P4�T1 is 1-tough but not Hamiltonian.

Proof. If G is Hamiltonian, the edges incident to degree two vertices of G must contained

in each Hamiltonian cycle. Therefore the edges

1112, 1216, 1317, 1415, 1418, 1121, 1525, 1626, 1727, 1828,

3141, 3545, 3646, 3747, 3848, 4142, 4246, 4347, 4445, 4448
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(thick black edges in Figure 11(a)) are chosen. Since each of the vertices 12, 14, 42 and 44

is already incident to two chosen edges, the four edges 1213, 1314, 4243, 4344 (dotted edges

in Figure 11(b)) can not be chosen. Furthermore, this tells that the edges 1323, 3343 need

to be chosen as shown in Figure 11(b). At this time, at least one of 2223, 2324 can not be

chosen to complete the Hamiltonian cycle. Without loss of generality, says the edge 2223

(dashed edges in Figure 11(b)) has not been chosen. Now each of two internal disjoint

paths from 22 to 23 in the Hamiltonian cycle contains the edge 3233, a contradiction.

Hence G is not Hamiltonian.

Next we show that G is 1-tough. As G depicted in Figure 11(c), there exists a cycle C

of order 30 in G such that V (G− C) = {35, 45} and 3545 is an edge of G that is incident

to 3 vertices 25, 34, 44 of C. For a vertex set S, there are 3 cases for G − S to discuss :

The set S ∩{35, 45} is non-empty; The set S ∩{35, 45} is empty and {25, 34, 44} ⊆ S; The

set S ∩ {35, 45} is empty and {25, 34, 44} ̸⊆ S.

If the set S ∩ {35, 45} is non-empty, then c({35, 45} − (S ∩ {35, 45})) ≤ |S ∩ {35, 45}|.

On the other hand, c(S ∩ C) ≤ |C − (S ∩ C)| since C is 1-tough. Because G − S ⊆

(C − (S ∩C)) ∪ ({35, 45} − S ∩ {35, 45}), we conclude that c(G− S) ≤ c(C − (S ∩C)) +

c({35, 45}− (S ∩ {35, 45})) ≤ |S ∩C|+ |S ∩ {35, 45}| = |S| for all S such that S ∩ {35, 45}

is non-empty.

If the set S ∩ {35, 45} is empty and {25, 34, 44} ⊆ S, then the subgraph induced by

{35, 45} is a component of G − S. As depicted in Figure 11(d), the subgraph G1 of G

induced by V (G) − {35, 45, 25, 34, 44} contains a spanning tree such that all vertices has

degree at most 2 except an only one degree 3 vertex. This implies c(G1 − S ′) ≤ |S ′| + 2

for S ′ = S − {25, 34, 44}. Therefore, c(G− S) = c(G1 − S ′) + 1 ≤ |S ′|+ 3 = |S| for all S

such that the subgraph induced by {35, 45} is a component of G− S.

If the set S ∩ {35, 45} is empty and {25, 34, 44} ̸⊆ S, then S ⊆ C and the edge 3545 is

adjacent to some vertices of C − S. Therefore, c(G− S) ≤ c(C − S) for all such S. Since
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(a) Edges with degree 2 endpoints.

32 33

(b) Edges which need to be chosen.

45

35

25

34

44

(c) A cycle C and the edge 3545. (d) Graph G1 and its spanning tree.

Figure 11: The graph P4�T1 and its subgraphs.

the cycle C is 1-tough, c(C − S) ≤ |S|. Hence c(G− S) ≤ c(C − S) ≤ |S|.

In conclusion, c(G− S) ≤ |S| for all S ⊆ V (G) which means G is 1-tough.

6.2.4 More results on the Hamiltonicity of Cartesian product graphs

The well-known Petersen’s matching theorem [37] states that a connected 3-regular

graph with no cut-edges has a perfect matching, so together with Theorem 6.11(a) we

obtain the following corollary.
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Corollary 6.27. Let G1 be a traceable graph of order at least 3. If G2 is a connected

3-regular graph with no cut-edge, then G1�G2 has a Hamiltonian cycle.

We use Theorem 6.11(b) to obtain the following two Dirac-type results [17].

Corollary 6.28. Let G2 be a connected graph with 2δ(G2) ≥ ∆(G2) and G1 be a traceable

graph of even order. If |V (G1)| ≥ 4∆(G2)− 2, then G1�G2 has a Hamiltonian cycle.

Proof. Let S be a vertex subset of V (G2). Now the number of edges between S and the

set of isolated vertices of G2−S is at least i(G2−S)δ(G2) and is at most |S|∆(G2). Since

2δ(G2) ≥ ∆(G2), we have i(G2 − S) ≤ 2|S| for all S ⊆ V (G2). By Proposition 6.13, G2

has a path factor and by Theorem 6.11(b) we complete the proof.

Corollary 6.29. Let G2 be a connected graph with δ(G2) ≥ |V (G2)|/3 and G1 be a

traceable graph of even order. If |V (G1)| ≥ 4∆(G2)− 2, then G1�G2 has a Hamiltonian

cycle.

Proof. This is immediate by applying Lemma 6.14 to Theorem 6.11(b).

6.3 Conditions using Kelmans transformation

In this section, we focus on the Hamiltonicity of maximal graphs in UG(n,m) and the

Hamiltonicity of the Cartesian product graph of a path and a Kelmans transformation

graph. The main results are Proposition 6.30 and Corollary 6.34.

6.3.1 Hamiltonicity of Kelmans transformation graphs

In the Kelmans transformation Ga
b , the vertex a dominates the vertex b, which means

(NGa
b
(b)\{a}) ⊆ (NGa

b
(a)\{b}). From this property, it is easy to deduce that after reorder-

ing the matrix, the adjacency matrix of a maximal element in UG(n,m) is stepwise, i.e.
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ai(j+1) = 0 if aij = 0 for i ̸= j. For example, the star K1,n is maximal in UG(n+ 1, n) by

Proposition 4.5. After reordering the vertices, the adjacency matrix of K1,n is written as:

A(K1,n) =



0 1 1 · · · 1

1 0 0 · · · 0

1 0
. . .

...
...

...
... . . . 0 0

1 0 · · · 0 0


.

Stepwise matrices also help us to characterize Hamiltonian maximal graphs. Recall

that Mn is the n-by-n binary matrix with Mn(i, j) = 1 if and only if i ̸= j, i+ j ≤ n+ 2.

For example,

M6 =



0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 0 0 0

1 1 0 0 0 0


, M7 =



0 1 1 1 1 1 1

1 0 1 1 1 1 1

1 1 0 1 1 1 0

1 1 1 0 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 0


.

We have the following result.

Proposition 6.30. Let [G] be a maximal element in UG(n,m) with a stepwise adjacency

matrix A. Then G is Hamiltonian if and only if A ≥Mn.

Proof. Let Gn be the graph with adjacency matrix Mn. When n is even, Gn contains

a Hamiltonian cycle 1, n, 2, n − 1, 3, n − 2, . . . , n
2
, n
2
+ 1, 1. When n is odd, Gn contains

a Hamiltonian cycle 1, n, 2, n − 1, 3, n − 2, . . . , n+1
2

+ 1, n+1
2
, 1. If A ≥ Mn, then Gn is a

subgraph of G. Since Gn is Hamiltonian, the graph G is also Hamiltonian.

If A ̸≥Mn, then there exist i0 > j0 such that i0+ j0 ≤ n+2 and A(i, j) = 0 for all i, j

with i ≥ i0 and j ≥ j0. This tells that neighbor of i is a subset of {1, 2, . . . , j0−1}. Taking
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vertices {1, 2, . . . , j0−1} off from G, each of the vertices {i0, i0+1, . . . , n} becomes isolated.

The graph G−{1, 2, . . . , j0−1} contains at least |{i0, i0+1, . . . , n}|+1 components, which

are isolated vertices i0, i0 + 1, . . . , n and a component contains vertex j0. Since

|{1, 2, . . . , j0 − 1}| = j0 − 1 and |{i0, i0 + 1, . . . , n}| = n− i0 + 1,

the toughness τ(G) of G satisfies

τ(G) ≤ |{1, 2, . . . , j0 − 1}|
c(G− {1, 2, . . . , j0 − 1})

≤ j0 − 1

n− i0 + 2
≤ j0 − 1

j0
< 1.

Since G is not 1-tough, G is not Hamiltonian.

The following proposition tells that the “non-Hamiltonian” property is preserved by

a Kelmans transformation.

Proposition 6.31. If G contains two vertices a, b which are in a k-cycle C of Ga
b then

a and b are in a k-cycle C ′ of G. In particular, if G is non-Hamiltonian then Ga
b is

non-Hamiltonian.

Proof. Let u, v ∈ NC(a) be distinct. If u, v ∈ NG(a), then choose C ′ = C and the

proof is finished. Suppose u ̸∈ NG(a) and v ∈ NG(a). By the definition of Kelmans

transformation, we have u ̸= b, u ∈ NG(b), and u ̸∈ NC(b). We give C a direction from

a to u and back to a. Let x ∈ NC(b) be the vertex before b in this direction. Note that

x ∈ NC(a). Let C ′ be the cycle in G starting from a, following x, along the reversed

direction of C to u, then to b, and following the direction of C back to a. Then C ′ is a k-

cycle of G which contains b and a. The case u ∈ NG(a) and v ̸∈ NG(a) is similar. Suppose

for the last case u ̸∈ NG(a) and v ̸∈ NG(a). The above argument shows that u, v ∈ NG(b)

and for the vertices x, y ∈ NC(b) along the direction of C, we have x, y ∈ NG(a). Let C ′

be the cycle in G starting from a, following x, along the reversed direction of C to u, then
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to b, following v, along the reversed direction of C to y and then back to a. Then C ′ is a

k-cycle of G which contains b and a.

By Proposition 6.31, the Hamiltonicity of (G1�G2)
a
b is related to the Hamiltonicity

of G1�G2. However, (G1�G2)
a
b is not a Cartesian product graph in general. It is more

interesting to consider graphs like G1�(G2)
a
b . Contents about G1�(G2)

a
b will be discussed

in Section 6.3.2.

6.3.2 Cartesian product of a path with a Kelmans transformation graph

We have used the perfect matchings and path factors of a graph to construct Hamilto-

nian cycles in Theorem 6.11. The following two lemmas consider the existence of perfect

matchings and path factors of Kelmans transformation graphs.

Lemma 6.32. If G has no perfect matching, then Ga
b has no perfect matching for any

distinct a, b ∈ V (G).

Proof. Let M be a perfect matching of Ga
b . If ab ∈M , then the edges of M are all belong

to E(G). Hence M is also a perfect matching of G.

If ab ̸∈ M and bx, ay ∈ M . Then bx, ax ∈ E(G) by the definition of the Kelmans

transformation. If ay ∈ E(G), then M is a perfect matching of G. If ay ̸∈ E(G), then

by ∈ M by the definition of the Kelmans transformation, so M\{bx, ay} ∪ {by, ax} is a

perfect matching of G.

Lemma 6.33. If G has no path factor, then Ga
b has no path factor for any distinct

a, b ∈ V (G).

Proof. Let M be a path factor of Ga
b . If M is a subgraph of G, then there is noth-

ing to prove. If not, then there exists x ∈ NM(a)\NG(a). The definition of Kelmans

transformation implies that x ∈ NG(b). Let

M ′ = M ∪ {bx : x ∈ NM(b)\NG(b)}\{ax : x ∈ NM(a)\NG(a)}.
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Then degM ′(b) = degM(b) + |NM(a)\NG(a)|, degM ′(a) = degM(a) − |NM(a)\NG(a)| and

degM ′(w) = degM(w) for all w ̸= a, b.

Note that NM ′(b) ⊆ NG(a). If degM ′(b) > 2, then pick degM ′(b)−2 vertices y ∈ NM ′(b),

delete edges by from M ′ and add edges ay to obtain a spanning subgraph M ′′ of G with

each vertex of degree 1 or 2. If each component of M ′′ is a path, then M ′′ is a path factor

of G. If M ′′ contain cycles, delete an arbitrary edge from each of the cycles, we get a path

factor.

Corollary 6.34. Let H be a connected bipartite graph. Let n be an even integer and

n ≥ 4∆(H)− 2. If there exist a, b ∈ V (H) such that Pn�Ha
b is Hamiltonian, then Pn�H

is Hamiltonian.

Proof. If there exist a, b ∈ V (H) such that Pn�Ha
b is Hamiltonian, then by Corollary 6.25,

Ha
b has a path factor. By Lemma 6.33, H contains a path factor. Therefore, Pn�H is

Hamiltonian by Corollary 6.25.
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7 Concluding remarks

In this dissertation, we generalize the concept of Kelmans transformation to nonneg-

ative matrices. With minor constraints, we show that the largest real eigenvalue of a

nonnegative matrix will not decrease after a Kelmans transformation.

The general version of the Kelmans transformation is applicable on matrices related

to mixed graphs. We extend the relation G ≤ Ga
b into a partial order on the set G(n,m)

of the isomorphism classes of mixed graphs of order n and size m; then characterize the

maximal/minimal elements in some of the subposets and weak subposets of (G(n,m),≤).

We also apply the general version of the Kelmans transformation on the researches

of the spectral theory of Aα-matrices, which combines the spectral theories of adjacency

matrix and signless Laplacian matrix. For an application, we show that for α ∈ [0, 1] and

a mixed tree T of order n and size m, the Aα-spectral radius ρα(T ) satisfies

ρα(T ) ≤
1

2

(
αn+

√
α2n2 − 4α2(n− 1) + 4(1− α)2(m− n+ 1)

)
.

The methods we introduce is also applicable on other mixed graphs. To find the extremal

values of the Aα-spectral radius of mixed graphs is a direction of future works.

We also give new sufficient conditions of the Hamiltonicity of graphs. We prove that

except some specific graphs, if the Aα-spectral radius of a graph is large enough, then the

graph is Hamiltonian. However, the bounds we give in Proposition 6.6 and Proposition 6.9

are still improvable. For example, the following proposition gives a sufficient condition of

Hamiltonicity using the minimum degree and the spectral radius of a graph.

Proposition 7.1 ([32]). Let k ≥ 2, n ≥ k3 + k+4, and let G be a graph of order n, with

minimum degree δ(G) ≥ k. If

ρ(G) ≥ n− k − 1,

then G is Hamiltonian unless G = K1 ∨ (Kn−k−1 ∪Kk) or G = Kk ∨ (Kn−2k ∪Kk).
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Here we provide a problem to conclude this dissertation.

Problem 7.2. Does there exist a bound f(δ(G), α) such that a graph G of order n with

ρ(G) ≥ n− f(δ(G), α)

is Hamiltonian unless G belongs to some certain graph classes?
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