國立交通大學

應用數學系

碩士論文

組合編碼的簡介

A Survey on

Combinatorial Coding Theory

研 究 生：張景堯

指導教授：翁志文 教授

中華民国九十六年六月

組合編碼的簡介

A Survey On Combinatorial Coding Theory

研 究 生：張景堯 Student：Jin－yao Zhang
指導教授：翁志文 Advisor：Chih－Wen Weng

國 立 交 通 大 學

> 應 用 數 學 系

Submitted to Department of Applied Mathematics
College of Science
National Chiao Tung University
In Partial Fulfillment of the Requirements
For the Degree of
Master
In

Applied Mathematics

June 2007

Hsinchu，Taiwan，Republic of China

中華民國九十六年六月

組合編碼的簡介

國 立 交 通 大 學

應 用 數 學 系

中文摘要

我們研究比較有組合性質的碼，如 super imposed codes，Reed－Muller Codes，Punctured Reed－Muller Codes，Hexacode，Extended Golay Code和 Convolutional Codes 等。我們探討這些碼和投影空間（projective geometries），仿射空間（affine geometries），甚至一般的 ranked poset的關係。

A Survey on
 Combinatorial Coding Theory

Student: Jin-Yao Zhang
Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050
\title{ Advisor: Chih-Wen Weng }
Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

We study codes with more combinatorial properties involved than algebraic properties. These include super imposed codes, Reed-Muller Codes, Punctured Reed-Muller Codes, Hexacode, Extended Golay Code and Convolutional Codes, most of them are related to the incidence structure on the projective geometries, affine geometries, or some ranked posets.

謝誌

首先感謝我的指尊老師翁志文教授，花了很多的時間來指導我寫論文，從他的身上學習到一些如何思考想問題的方法，在造些過程中，讓我覺得自己處理事情的能力更進步了，除此之外，發覺老師的修養非常非常好，從没看過他發脾氣罵人，總是不厭其煩地幫助學生學習，是個很好的學習榜様，真的非常感謝他。

在論文的製造過程中，我也向筫多學長，同學和學弟求助的，其中包含了黄喻培，黄皜文，余國安…等人，經過他們的帮忙或是跟他們交流討論之後，我的思考變得更加明碓，把錯誤的想法修正，使得在弄這個論文會變得更得心應手。

在交大的求學過程中，我有修過的課程老師都很感谢，在應數所上的老師有翁志文，傅沍霖，黄大原，陳秋媛，黄光明，李榮耀，符麥克和王夏聲，讓我認識到更多的數學，最主要是學到思考數學的技巧和方法；還有在教程中心的老師有陳致嘉，方紫薇，彭心儀，顔貽隆，許韶玲，林珊如，孟泱如，陳昭秀和周倩，讓我了解在教育方面的東西，最主要的是讓我了解一些心理與輔導方面的知識。

在交大也打了三年的篮球校隊，在這様子競爭的環境之中，讓我的心理堅強了不少，除了感謝宋漙和陳忠強的技術指導，也感謝一些隊友彼此之間的想法交流討論，互相給予回瞶，一起進步。

其他要感謝的就是陳宏賓，黎冠成，李秉璋，羅元勳，蔡宗翰，周俊全，卜文強，張靖慰，陳聖怡，吴春慧，黄園芳，徐毅样…等同塆和朋友，常常支援我一些相關資源和支援，例如：電䐄，學生證，作業的交流討論…等。

總而言之，很感謝能來交大唸應數研究所，這三年讓我過得非常充實，整個人也變得更是成熟不少，不管其中過得快樂或是悲偅，到後來一切都會是很好的回憶；最後就感謝我的父母和家人，提供我經濟上的消費以及心霊上的支持，謝謝大家。

Contents

1 Introduction 1
2 Super imposed Codes 3
2.1 Definition 3
2.2 Disjunct matrices 4
2.3 Decoding 5
2.4 Remarks 7
3 Pooling spaces 8
3.1 Preliminaries 8
3.2 Definitions 11
3.3 The contractions of a graph 12
3.4 Finite fields 14
3.5 Projective and affine geometries 15
3.6 Codes on projective and affine geometries 22
3.7 Sperner's theorem and EKR theorem 23
3.8 Remarks 24
4 Reed-Muller Codes 26
4.1 Linear Codes 26
4.2 Reed-Muller Codes 27
4.3 Decoding 33
4.4 Recursive construction of RM(1,m) 38
4.5 Covering radius 39

Contents

5 Punctured Reed-Muller Codes 42
5.1 Definition 42
5.2 Cyclic Codes 44
5.3 Lucas Theorem 47
5.4 Evaluation $f(a)$ for $f \in \operatorname{PRM}(r, m)$ 49
5.5 The dimension of PRM(r;m) 53
5.6 Remarks 55
6 Hadamard matrices and bent functions 56
6.1 Hadamard matrices 56
6.2 Bent functions 60
7 Hexacode and Extended Binary Golay Code 66
7.1 Hexacode 66
7.2 Extended Binary Golay Code 70
7.3 Decoding in Extended Binary Golay Code 73
7.4 Remarks 75
8 Convolutional Codes 76
8.1 Definition 76
8.2 Convolutional Code 77
8.3 Elementary rows and columns operations on $\mathrm{G}(\mathrm{x})$ 78
8.4 Forney Sequence and Free Distance 93
8.5 Wyner-Ash Convolutional Code 96

1

Introduction

Definition 1.0.1. Let S denote a set of symbols. A subset $C \subseteq S^{n}$ is called a code of length n on S. The elements in C are called codewords. The number of codewords in C is called the size of C.

The thesis is about chapter 2 , chapter 3 , chapter 4 and chapter 5 . We introduce four conclusions of the relation between geometries and codes. The first conclusion is the relation between projective geometries and super imposed codes. The second conclusion is the relation between affine geometries and super imposed codes. The third conclusion is the relation between affine geometries and Reed-Muller codes. The last conclusion is the relation between projective geometries and punctured-Reed-Muller codes. The remaining chapters introduce the Hadamard matrices, bent functions, Hexacode, extended binary Golay code and convolutional codes.

To study codes with good properties is a fascinated work in mathematics and also has many real world applications, for examples, from wire or wireless communication, experimental designs, biological group testings etc. The propose of this thesis is to study codes with more combinatorial properties involved than algebraic properties. In fact, most of the codes introduced in the thesis are related to the projective spaces and affine spaces, or some ranked posets. All of the results in this thesis are classical.

We collect results in different places and describe them in uniform and more realizable ways. We provide examples for a definition, and list some codes explicitly, e.g. Hexacodes in Chapter 7. The thesis is organized as follows.

In chapter 2 , we define b^{d}-super-imposed codes and disjunct matrices, which can be used to construct error-tolerable designs for non-adaptive group testing, which has applications to the screening of DNA sequence, and the corresponding decoding algorithm is efficient. In chapter 3 we introduce a class of posets, called pooling spaces, which serves as the unified frame of the construction of many pooling designs. In chapter 4 and chapter 5, we introduce the Reed-Muller codes and punctured Reed-Muller codes respectively. These are classical codes but we give the connection of them with the posets in chapter 3. In the last three chapters, we introduce Hadamard matrices and bent functions, Hexacodes and Extended Binary Golay code, and convolutional codes respectively.

The following notations are used throughout the thesis.

Definition 1.0.2. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in S^{n}$, define the distance $\partial(x, y)$ to be the number of different positions in x, y. That is

$$
\partial(x, y):=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right| .
$$

Definition 1.0.3. For $C \subseteq S^{n}$, the minimum distance of C is defined by

$$
d(C):=\min \{\partial(x, y) \mid x \neq y \text { in } C\} .
$$

2

Super imposed Codes

Throughout this chapter, set $S=\{0,1\}$. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in S^{n}$, define the Boolean sum $x \cup y$ by

$$
(x \cup y)_{i}:=\left\{\begin{array}{ll}
0, & \text { if } x_{i}=y_{i}=0 ; \\
1, & \text { else }
\end{array} \quad \text { for } 1 \leq i \leq n .\right.
$$

2.1 Definition

Definition 2.1.1. A code $C \subseteq\{0,1\}^{n}$ is b^{d}-super-imposed if for any distinct codewords $x, x^{1}, x^{2}, \ldots, x^{b} \in C$, there are at least d positions with 1 values in the codeword x and 0 values in the Boolean sum $x^{1} \cup x^{2} \cup \cdots \cup x^{b}$.

We give an example as following.
Example 2.1.2. A code $C=\{(0,1,1),(1,1,0),(1,0,1)\}$ is a 1^{1}-super-imposed code. Suppose we choose $x=(0,1,1)$ and $x^{1}=(1,1,0)$. Then in the third position x has value 1 and x^{1} has value 0 . Similarly for other choices of distinct elements x and x^{1} in C.

Definition 2.1.3. Let $C=\left\{x^{1}, x^{2}, \ldots, x^{m}\right\} \subseteq\{0,1\}^{n}$ and $T \subseteq\{1,2, \ldots, m\}$. We define the output $o(T)$ of T with respect to C is $\bigcup_{i \in T} x^{i}$. In convention, define $o(\emptyset)=$ $(0,0, \ldots, 0)$.

Definition 2.1.4. Let C denote a b^{d}-super-imposed code with codewords of length n. Set

$$
\bigcup^{b} C:=\{o(T) \mid T \subseteq\{1,2, \ldots, m\} \text { with }|T| \leq b\}
$$

With the motivation from linear algebra. We give the following definition.

Definition 2.1.5. A code $C^{\prime} \subset\{0,1\}^{n}$ is a b-union code of dimension m if there exists a subset $C \subseteq C^{\prime}$ of size m such that $C^{\prime}=\bigcup^{b} C$ and C^{\prime} has size

$$
\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{b} .
$$

The set C is called a basis of $C^{\prime} . C^{\prime}$ is called the b-union code spanned by C.
Theorem 2.1.6. Let C denote a b^{d}-super-imposed code with codewords of length n and size m. Then $\bigcup^{b} C$ is an m-dimensional b-union code with the basis set C and minimum distance at least d.

Proof. Suppose $U \neq V$ are two subsets of $\{1,2, \ldots, m\}$ with size at most b. Then there exists $i \in(U-V) \cup(V-U)$. Without loss of generality, say $i \in U-V$. Since C is a b^{d}-super-imposed code, there are d positions with 1 values in x^{i} and 0 values in $\bigcup_{j \in V} x^{j}$. Then there are at least d positions with 1 values in $\bigcup_{j \in U} x^{j}$ and 0 values in $\bigcup_{j \in V} x^{j}$. Hence $\partial(o(U), o(V)) \geq d$.

2.2 Disjunct matrices

Sometimes it is convenient to describe a code by a matrix. So we give some definitions for the code as following.

Definition 2.2.1. An $n \times s$ 01-matrix is b^{d}-disjunct if the set of its columns forms a b^{d}-super-imposed code.

Definition 2.2.2. Suppose U, V be two families consisting of subsets of $\{1,2, \ldots, m\}$. The incidence matrix M between U and V is an $|U| \times|V|$ matrix with rows and columns indexed by U, V respectively such that

$$
M_{a b}:=\left\{\begin{array}{ll}
1, & \text { if } a \subseteq b ; \\
0, & \text { else }
\end{array} \quad \text { for } a \in U \text { and } b \in V\right.
$$

Theorem 2.2.3. Fix three integers $1 \leq u \leq v \leq m$. Let V be the family of all the v-subsets of $\{1,2, \ldots, m\}$, and let U be the family of all the u-subsets of $\{1,2, \ldots, m\}$. The incidence matrix between the U and V is u^{1}-disjunct and $(u-1)^{v-u+1}$-disjunct with size $\binom{m}{u} \times\binom{ m}{v}$.

Proof. For $x \in V$ and any other $x^{1}, x^{2}, \ldots, x^{u} \in V$, choose $a_{i} \in x-x^{i}$ for each $i=1,2, \ldots, u$. Choose $y \in U$ such that $\left\{a_{1}, a_{2}, \ldots, a_{u}\right\} \subseteq y \subset x$. Because $a_{i} \in y$ and $a_{i} \notin x^{i}, y \nsubseteq x^{i}$ for each $i=1,2, \ldots, u$. This proves that M is u^{1}-disjunct. As the above proof, there exists a $(u-1)$-subset w such that $w \subseteq x$ and $w \nsubseteq x^{i}$ for $i=1,2, \ldots, u-1$. Observe that there are $v-u+1$ elelments y with $w \subseteq y \subseteq x$. Because $w \subseteq y$ and $w \nsubseteq x^{i}, y \nsubseteq x^{i}$. This proves that M is $(u-1)^{v-u+1}$-disjunct.

2.3 Decoding

Given a b-union code and its basis C, we give an efficient way to determine how a codeword can be write as a boolean sum of elements in C.

Definition 2.3.1. For $x, y \in\{0,1\}^{n}$, define $x-y \in\{0,1\}^{n}$ by

$$
(x-y)_{i}:=\left\{\begin{array}{ll}
1, & \text { if } x_{i}=1 \text { and } y_{i}=0 ; \\
0, & \text { else }
\end{array} \quad \text { for all } 1 \leq i \leq n\right.
$$

and define $x \subseteq y$ if

$$
x_{i}=1 \longrightarrow y_{i}=1 \quad \text { for all } 1 \leq i \leq n .
$$

Theorem 2.3.2. Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\} \subseteq\{0,1\}^{n}$ be a b^{d}-super-imposed code, $T \subseteq\{1,2, \ldots, m\}$ with $|T| \leq b$ and $u \in\{0,1\}^{n}$. Set

$$
U:=\left\{j \mid j \in\{1,2, \ldots, m\}, \partial\left(C_{j} \dot{-} u, 0\right) \leq\left\lfloor\frac{d-1}{2}\right\rfloor\right\} .
$$

Then the following (1)-(2) hold.
(1) Suppose $\partial(o(T), u) \leq\left\lfloor\frac{d-1}{2}\right\rfloor$. Then $T=U$, hence $o(T)=o(U)$.
(2) Suppose $\partial(o(T), u) \leq d-1$ and $|U| \leq b$. Then $o(T)=u$ if and only if $o(U)=u$.

Proof. (1) $(T \subseteq U)$ Pick $j \in T$. Then $C_{j} \subseteq o(T)$. Hence

$$
\begin{aligned}
\partial\left(C_{j} \dot{-u}, 0\right) & \leq \partial(o(T) \dot{-} u, 0) \\
& \leq \partial(o(T), u) \\
& \leq\left\lfloor\frac{d-1}{2}\right\rfloor
\end{aligned}
$$

Hence $j \in U$.
$(T \supseteq U)$ Suppose $j \notin T$. Hence $\partial\left(C_{j}-o(T), 0\right) \geq d$ by the b^{d}-super-imposed assumption. Then

$$
\begin{aligned}
\partial\left(C_{j} \dot{-u}, 0\right) & \geq \partial\left(C_{j} \dot{-} o(T), 0\right)-\partial(o(T), u) \\
& \geq d-\left\lfloor\frac{d-1}{2}\right\rfloor \\
& >\frac{d-1}{2} .
\end{aligned}
$$

Hence $j \notin U$.
(2) Suppose $T \neq U$. Then $\partial(o(T), u)>\left\lfloor\frac{d-1}{2}\right\rfloor$ by (1). In particulur, $o(T) \neq u$. Because C is a b^{d}-super-imposed code with codewords of length n, then $\bigcup^{b} C$ has minimum distance at least d by Theorem 2.1.6. Hence $\partial(o(U), o(T)) \geq d$. Then

$$
\begin{aligned}
\partial(o(U), u) & \geq \partial(o(U), o(T))-\partial(o(T), u) \\
& \geq d-(d-1)=1 .
\end{aligned}
$$

Hence $o(U) \neq u$.

Suppose $u=o(T)$ in Theorem 2.3.2 is the codeword in the b-union code spanned by C. Then $u=o(U)$ is the way to write u as a boolean sum of elements in C. Some "errors" of the codewords are also allowed.

2.4 Remarks

b-super-imposed codes were introduced in 1964 by W. H. Kautz and R. C. Singleton [9], and the concept of b^{d}-super-imposed codes were introduced by A. J. Macula [12]. As stated in Section 2.2 a b^{d}-disjunct matrix is a b^{d}-super-imposed code in matrix language. The b^{d}-disjunct matrix can be used to construct an error-tolerable design for non-adaptive group testing, which has applications to the screening of DNA sequence, and the corresponding decoding algorithm is efficient. See [3], [6] for details. A b^{d}-disjunct matrix is also called a pooling design.

The constructions of b^{d}-disjunct matrices were given by many authors, e.g. [11], [12], [13], [4]. Theorem 2.2.3 is a special case of [7]. The algorithm in Theorem 2.3.2 was given in [6]. See [4] for more results of this line of study.

3

Pooling spaces

We constructed disjunct matrices from the lattice of subsets of a given set in Theorem 2.2.3. We generalize the idea to poset in this chapter.

3.1 Preliminaries

We now give the basic definitions and properties of a partially ordered set. The expert may want to skip the remaining of this section and go to the next section.

Let P denote a finite set. By a partial order on P, we mean a binary relation \leq on P such that
(i) $x \leq x \quad \forall x \in P$,
(ii) $x \leq y$ and $y \leq z \quad \longrightarrow \quad x \leq z \quad \forall x, y, z \in P$,
(iii) $x \leq y$ and $y \leq x \quad \longrightarrow \quad x=y \quad \forall x, y \in P$.

By a partially ordered set (or poset, for short), we mean a pair (P, \leq), where P is a finite set, and where \leq is a partial order on P. By abusing notation, we will suppress reference to \leq, and just write P instead of (P, \leq).

Let P denote a poset, with partial order \leq, and let x and y denote any elements in P. As usual, we write $x<y$ whenever $x \leq y$ and $x \neq y$, and write $x \nless y$ whenever $x<y$ is not true. We say y covers x whenever $x<y$, and there is no $z \in P$ such that $x<z<y$. A poset can be described by a diagram in which the elements are corresponding to dots, and y covers x whenever dot y is placed above dot x with an edge connecting them. See Fig. 1 for the diagram of the poset with five elements $\{0, w, x, y, z\}$, and w, x covers $0 ; y$ covers $w, x ; z$ covers w, x respectively. Note $0, w, y$ is a direct chain of length 2 .

Figure 1. A poset.

An element $x \in P$ is said to be minimal (resp. maximal) whenever there is no $y \in P$ such that $y<x$ (resp. $x<y$). Let $\min (P)($ resp. $\max (P))$ denote the set of all minimal (resp. maximal) elements in P. Whenever $\min (P)$ (resp. $\max (P)$) consists of a single element, we denote it by 0 (resp. 1), and we say P has the least element 0 (resp. the greatest element 1).

Throughout the chapter 2 we assume P is a poset with the least element 0 . By an atom in P, we mean an element in P that covers 0 . We let A_{P} denote the set of atoms in P. By a rank function on P, we mean a function rank from P to the set of nonnegative integers such that $\operatorname{rank}(0)=0$, and such that for all $x, y \in P, y$ covers x $\operatorname{implies} \operatorname{rank}(y)-\operatorname{rank}(x)=1$. Observe the rank function is unique if it exists. P is said to be ranked whenever P has a rank function. In this case, we set

$$
\operatorname{rank}(P):=\max \{\operatorname{rank}(x) \mid x \in P\},
$$

$$
P_{i}:=\{x \mid x \in P, \operatorname{rank}(x)=i\},
$$

and observe $P_{0}=\{0\}, P_{1}=A_{P}$. Observed P is ranked if and only if for any $x \in P$ every direct chain from 0 to x has the same length.

Let P denote any finite poset, and let S denote any subset of P. Then there is a unique partial order on S such that for all $x, y \in S, x \leq y$ in S if and only if $x \leq y$ in P. This partial order is said to be induced from P. By a subposet of P, we mean a subset of P, together with the partial order induced from P. Pick any $x, y \in P$ such that $x \leq y$. By the interval $[x, y]$, we mean the subposet

$$
[x, y]:=\{z \mid z \in P, x \leq z \leq y\}
$$

of P.
P is said to be atomic whenever for each element x of P, x is the join of atoms in the interval $[0, x]$. Suppose P is atomic and $x<y$ are two elements in P. Observe the atoms in the interval $[0, x]$ is a proper subset of atoms in the interval $[0, y]$.

Let P denote any poset, and S be a subset of P. Fix $z \in P$. Then z is said to be an upper bound (resp. lower bound) of S, if $z \geq x$ (resp. $z \leq x$) for all $x \in S$. Suppose the subposet of upper bounds (resp. lower bounds) of S has a unique minimal (resp. maximal) element. In this case we call this element the least upper bound or join (resp. the greatest lower bound or meet) of S. If $S=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ we write $x_{1} \vee x_{2} \vee \cdots \vee x_{t}$ for the join of S and $x_{1} \wedge x_{2} \wedge \cdots \wedge x_{t}$ for the meet of $S . P$ is said to be meet semi-lattice (resp. join semi-lattice) whenever P is nonempty, and $x \wedge y$ (resp. $x \vee y$) exists for all $x, y \in P$. A meet semi-lattice (resp. join semi-lattice) has a 0 (resp. 1). A meet and join semi-lattice is called a lattice.

Suppose P is a lattice. Then P is said to be upper semi-modular (resp. lower semi-modular) whenever for all $x, y \in P$,

$$
\left.\begin{array}{rl}
y \text { covers } x \wedge y & \longrightarrow
\end{array} x \vee y \text { covers } x\right] \text { (resp. } x \vee y \text { covers } x \quad \longrightarrow \quad y \text { covers } x \wedge y \text {). }
$$

P is said to be modular whenever P is upper semi-modular and lower semi-modular.

3.2 Definitions

Now we can give the main definition of the chapter as following.
Definition 3.2.1. Let P be a ranked poset. For any $w \in P$, define

$$
w^{+}=\{y \geq w \mid y \in P\} .
$$

P is said to be a pooling space whenever w^{+}is atomic for all $w \in P$.

In particular, a pooling space is atomic. It is immediate from the definition that if P is a pooling space, then so is w^{+}for any $w \in P$. The following theorem is a generalization of Theorem 2.2.3.

Theorem 3.2.2. Let P be a pooling space with rank $D \geq 1$. Fix an element $x \in P_{D}$ and fix an integer $b \quad(1 \leq b \leq D)$. Let $T \subseteq P_{D}$ be a subset such that $|T| \leq b$ and $x \notin T$. Then there exists an element $y \in[0, x] \cap P_{b}$ such that $y \not \leq z$ for all $z \in T$.

Proof. We prove the theorem by induction on D. If $D=1$ then $b=1$ and the theorem holds by setting $y=x$. In general, pick an element $z \in T$. Then $x \neq z$ by assumption. Since x is the least upper bound of $[0, x] \cap P_{1}$ and $x \not 又 z, z$ is not an upper bound of $[0, x] \cap P_{1}$. Hence we can pick an element $w \in[0, x] \cap P_{1}$ such that $w \not \leq z$. Then $T \cap w^{+}$has at most $b-1$ elements. In the pooling space w^{+}, the element x and the elements of $T \cap w^{+}$all have rank $D-1$, and the elements of $w^{+} \cap P_{b}$ have rank $b-1$. Hence by induction, we can choose $y \in[w, x] \cap P_{b}$ such that $y \not \leq u$ for all $u \in T \cap w^{+}$. Note that clearly $y \not \leq u$ for all $u \in T \backslash w^{+}$. This proves the theorem.

3.3 The contractions of a graph

Many examples of pooling spaces were given in [7]. These are related the Hamming matroid, the attenuated space, and six classical polar spaces. Among these examples there is a common property: each interval is modular. In this section we will construct pooling spaces without modular intervals. Throughout the section let G denote a simple connected graph on n vertices.

Definition 3.3.1. Let $P=P(G)$ denote the set of partitions A of the vertex set $V(G)$ such that the subgraph induced by each block of A is connected. For $A, B \in P$, define

$$
A \leq B \Longleftrightarrow A \text { is a refinment of } B
$$

The poset $(P(G), \leq)$ is called the poset of contractions of G.

Example 3.3.2. Let G denote a graph with the vertex set $\{w, x, y, z\}$ and edge set $\{\overline{w x}, \overline{x y}, \overline{y z}, \overline{z w}\}$, i.e. G is the 4 -cycle C_{4}. Then the poset $P(G)$ is as in Fig. 2. We delete the single element blocks in the notation of a partition. e.g. the notation 0 is used to denote the partition with four blocks $\{w\},\{x\},\{y\},\{z\}$, and $\overline{w x}$ is used to denote the partition with three blocks $\{w, x\},\{y\},\{z\}$. The poset is a lattice, but not a modular lattice. This is because the join of the elements $\overline{w x} \overline{y z}$ and $\overline{x y} \overline{z w}$ is $\overline{w x y z}$, which covers $\overline{w x} \overline{y z}$, but $\overline{x y} \overline{z w}$ does not covers the element 0 which is the meet of the elements $\overline{w x} \overline{y z}$ and $\overline{x y} \overline{z w}$. Observe the subposet induced on $\overline{w x}{ }^{+}$is $P\left(C_{3}\right)$, the poset of contractions of a triangle.

Figure 2. $P\left(C_{4}\right)$.
Lemma 3.3.3. $P(G)$ is a ranked poset of rank $n-1$. The rank i elements are those elements in $P(G)$ with $n-i$ blocks for $0 \leq i \leq n-1$.

Proof. For $D \in P(G)$ with $n-i$ blocks define the rank of D to be i, where $0 \leq i \leq$ $n-1$. We claim this is a rank function. Suppose that B covers A and $\operatorname{rank}(A)=i$. Since A is a proper refinement of $B, \operatorname{rank}(B) \geq i+1$ and there are two blocks in A that are contained in the same block of B. Let C be an element in $P(G)$ that glues these two blocks of A. Then $A<C \leq B$ and $\operatorname{rank}(C)=\operatorname{rank}(A)+1$. This shows $C=B$ and $\operatorname{rank}(B)=i+1$.

Theorem 3.3.4. $P(G)$ is a pooling space of rank $n-1$.
Proof. $P(G)$ is ranked by previous lemma. From previous lemma and the definition each atom in $\mathrm{P}(\mathrm{G})$ contains $n-1$ blocks, one block containing two adjacent vertices and each of the remaining $n-2$ blocks containing a single vertex. By identifying the atoms with the edges of G we find each element $A \in P(G)$ is the join of those edges contained in the subgraph of G induced by A. This shows that $P(G)$ is atomic. More generally, for $B \in P(G)$, the poset B^{+}is also atomic. This is because the subposet B^{+}is isomorphic to the poset $P\left(B_{G}\right)$ of contractions of B_{G}, where B_{G} is the graph with the vertex set B, and for two distinct blocks $x, y \in B x$ is adjacent to y whenever some vertex in x is adjacent to some vertex in y.

Remark 3.3.5. Let $G=K_{n}$ denote the complete graph on n vertices. Then the elements in $P=P\left(K_{n}\right)$ are all the partitions of the vertex set of $K_{n} . S(n, k):=\left|P_{k}\right|$ is called the Stirling number of the second kind. It is well known that $S(n, k)$ can be solved by the recurrence relation

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k) \quad \text { for } 1 \leq k \leq n-1
$$

with initial condition $S(n, 0)=0$ for $n \geq 1$, and $S(n, n)=1$ for $n \geq 0$. See [2, Section 8.2] for details.

3.4 Finite fields

Before going farther, we need some background on finite fields. Recall that a finite field F_{q} is a set of q elements containing 0,1 with two binary relations,$+ \cdot$, such that $\left(F_{q},+, 0\right)$ and $\left(F_{q}^{*}, \cdot, 1\right)$ are abelian groups, and,$+ \cdot$ satisfy distribute law, where $F_{q}^{*}:=F_{q}-\{0\}$.

We give some examples as following.
Example 3.4.1. $\{0,1,2,3\}$ is not a finite field under ususal,$+ \cdot(\bmod 4)$, since 2 does not have the multiplication inverse.

Example 3.4.2. $F_{4}=\{0,1, x, x+1\}$ is a finite field under,$+ \cdot\left(\bmod x^{2}+x+1\right)$.
It is well-known that the finite field F_{q} of q elements is unique up to isomorphism, and $q=p^{r}$ for some prime p. There are two ways to describe F_{q} :
(i) $F_{q}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{r-1} x^{r-1} \mid a_{i} \in Z_{p}\right\}$,
(ii) $F_{q}=\left\{0,1, \gamma, \gamma^{2}, \cdots, \gamma^{q-2}\right\}$.

The + defined in (i) is as usual, and \cdot is defined mod some irreducible polynomial $g(x) \in F_{q}[x]$ of degree r, e.g. $g(x)=x^{2}+x+1$ in Example 3.4.2. The \cdot defined in (ii) is as usual with the condition $\gamma^{q-1}=1$ and the + is defined $\bmod g(x) . \gamma$ is called a primitive element of F_{q}.

Example 3.4.3. $F_{4}=\{0,1, x, x+1\}=\left\{0,1, x, x^{2}\right\}\left(\bmod x^{2}+x+1\right)$.
Example 3.4.4. $F_{5}=\{0,1,2,3,4\}=\left\{0,1,2,2^{2}, 2^{3}\right\}(\bmod 5)$.
Note 3.4.5. F_{q} is the set of solutions of $x\left(x^{q-1}-1\right)=0$.

Note 3.4.6. Suppose $q=p^{r}$ for some prime p. Then F_{q} is a vector space over F_{p}.
Lemma 3.4.7. Suppose $T \subseteq F_{p^{m}}$ is a subspace over F_{p}. Then γT is a subspace over F_{p} for any $\gamma \in F_{p^{m}}$.

Proof. This is clear for $\gamma=0$. Suppose $\gamma \neq 0$, and suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ is a basis of T. Then $\gamma \alpha_{1}, \gamma \alpha_{2}, \ldots, \gamma \alpha_{k}$ is a basis of γT.

3.5 Projective and affine geometries

We introduce two more examples of pooling spaces in this section.

Definition 3.5.1. The projective geometry $\operatorname{PG}(n, q)$ is the poset consisting of all subspaces of F_{q}^{n} with order defined by inclusion. The elements in P_{i} are referred to the i-subspaces of F_{q}^{n} for $i=0,1,2, \cdots, n$.

The following is from linear algebra.
Note 3.5.2. $\operatorname{dim}(U+V)+\operatorname{dim}(U \cap V)=\operatorname{dim}(U)+\operatorname{dim}(V)$ for $U, V \in P G(n, q)$.
Definition 3.5.3. Consider the n-dimensional space F_{q}^{n} where q is a prime or a prime power. Let $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ denote the number of k-subspaces of F_{q}^{n}. In convention, define $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=0$, if $k>n$ or $k<0$.

We list a few properties for $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$.

Lemma 3.5.4.

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)} \text { for } 0 \leq k \leq n .
$$

Proof. We prove the statement by induction on k.

$$
\left[\begin{array}{l}
n \\
0
\end{array}\right]_{q}=1 \text { is clear since }\{0\} \text { is the only one subspace of dimension } 0 \text {, }
$$ and

$$
\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q}=\frac{q^{n}-1}{q-1}
$$

since there are $q^{n}-1$ nonzero vectors in F_{q}^{n} and each 1-subspace containing $q-1$ nonzero vectors.

In general, by counting the number of pairs (W, V), where $W \subseteq V$ are $(k-1)$ subspaces, k-subspaces respectively in two ways, we find

$$
\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{q}\left[\begin{array}{c}
n-k+1 \\
1
\end{array}\right]_{q}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
k-1
\end{array}\right]_{q}
$$

Hence

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} } & =\frac{\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{q}\left[\begin{array}{c}
n-k+1 \\
1
\end{array}\right]_{q}}{\left[\begin{array}{c}
k \\
k-1
\end{array}\right]_{q}} \\
& =\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)}
\end{aligned}
$$

by induction hypothesis.

Lemma 3.5.5.

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{q} \text { for } 0 \leq k \leq n
$$

Proof. By Lemma 3.5.4,

$$
\begin{aligned}
{\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{q} } & =\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{k+1}-1\right)}{\left(q^{n-k}-1\right)\left(q^{n-k-1}-1\right) \cdots(q-1)} \cdot \frac{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)} \\
& =\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(1^{k-1}-1\right) \cdots(q-1)} \\
& =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
\end{aligned}
$$

Lemma 3.5.6.

$$
\left[\begin{array}{c}
k \\
r
\end{array}\right]_{q}-\left[\begin{array}{c}
k-1 \\
r
\end{array}\right]_{q}=q^{k-r}\left[\begin{array}{c}
k-1 \\
r-1
\end{array}\right]_{q} \text { for } 0 \leq r<k
$$

Proof.

$$
\begin{aligned}
& {\left[\begin{array}{l}
k \\
r
\end{array}\right]_{q}-\left[\begin{array}{c}
k-1 \\
r
\end{array}\right]_{q} } \\
= & \frac{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots\left(q^{k-r+1}-1\right)}{\left(q^{r}-1\right)\left(q^{r-1}-1\right) \cdots(q-1)}-\frac{\left(q^{k-1}-1\right)\left(q^{k-2}-1\right) \cdots\left(q^{k-r}-1\right)}{\left(q^{r}-1\right)\left(q^{r-1}-1\right) \cdots(q-1)} \\
= & \frac{\left(q^{k}-1\right)-\left(q^{k-r}-1\right)}{q^{r}-1} \cdot \frac{\left(q^{k-1}-1\right) \cdots\left(q^{k-r+1}-1\right)}{\left(q^{r-1}-1\right) \cdots(q-1)} \\
= & q^{k-r}\left[\begin{array}{c}
k-1 \\
r-1
\end{array}\right]_{q} .
\end{aligned}
$$

The following theorem will be used in the next section to construct super-imposed codes.

Theorem 3.5.7. Fix integers $0 \leq r<k \leq n$. Let $A, A_{1}, A_{2}, \ldots, A_{b}$ be distinct k-subspaces of F_{q}^{n}. Then there are at least

$$
d:=q^{k-r}\left[\begin{array}{c}
k-1 \tag{3.5.1}\\
r-1
\end{array}\right]_{q}-(b-1) q^{k-r-1}\left[\begin{array}{c}
k-2 \\
r-1
\end{array}\right]_{q}
$$

r-subspaces of A which are not contained in each A_{i} for $i=1,2, \cdots, b$.
Proof. To obtain the maximum elements of r-subspaces in $A \cap A_{i}$, we assume $\operatorname{dim}(A \cap$ $\left.A_{i}\right)=k-1$ for all $i=1,2, \cdots, b$. If $A \cap A_{i} \neq A \cap A_{j}$, then $\left(A \cap A_{i}\right)+\left(A \cap A_{j}\right)=A$ and the dimension of $\left(A \cap A_{i}\right) \cap\left(A \cap A_{j}\right)$ is $k-2$. Hence there are at least

$$
\begin{aligned}
d & :=\left[\begin{array}{c}
k \\
r
\end{array}\right]_{q}-\left[\begin{array}{c}
k-1 \\
r
\end{array}\right]_{q}-(b-1)\left(\left[\begin{array}{c}
k-1 \\
r
\end{array}\right]_{q}-\left[\begin{array}{c}
k-2 \\
r
\end{array}\right]_{q}\right) \\
& =q^{k-r}\left[\begin{array}{c}
k-1 \\
r-1
\end{array}\right]_{q}-(b-1) q^{k-r-1}\left[\begin{array}{c}
k-2 \\
r-1
\end{array}\right]_{q}
\end{aligned}
$$

r-subspaces of A which are not contained in each A_{i} for $i=1,2, \cdots, b$.
Corollary 3.5.8. In Theorem 3.5.7. If $1<r \leq \frac{k}{2}$, then $b=q^{r}+1$ is the largest integer such that $d>0$. If $r=1$, then $b=q$ is the largest integer such that $d>0$.

Proof. Suppose $r>1$. Then $d>0 \Leftrightarrow$

$$
\begin{aligned}
b-1 & <q\left[\begin{array}{l}
k-1 \\
r-1
\end{array}\right]_{q}\left[\begin{array}{l}
k-2 \\
r-1
\end{array}\right]_{q} \\
& =q \cdot \frac{\left(q^{k-1}-1\right)\left(q^{k-2}-1\right) \cdots\left(q^{k-r+1}-1\right)}{\left(q^{k-2}-1\right)\left(q^{k-3}-1\right) \cdots\left(q^{k-r}-1\right)} \\
& =\frac{q\left(q^{k-1}-1\right)}{\left(q^{k-r}-1\right)} \\
& =\frac{q^{k}-q-q^{k}+q^{r}}{q^{k-r}-1}+q^{r} \\
& =\frac{q\left(q^{r-1}-1\right)}{q^{k-r}-1}+q^{r}
\end{aligned}
$$

Since

$$
\begin{gathered}
r \leq \frac{k}{2} \\
0<\frac{q\left(q^{r-1}-1\right)}{q^{k-r}-1}<1
\end{gathered}
$$

Hence $b \leq q^{r}+1$.
Suppose $r=1$. Then

$$
\begin{aligned}
d>0 & \Longleftrightarrow b-1<q \\
& \Longleftrightarrow b \leq q .
\end{aligned}
$$

Note 3.5.9. Since $\left\{\begin{array}{ll}b \leq q, & \mathrm{r}=1 ; \\ b \leq\left[\begin{array}{l}2 \\ 1\end{array}\right]_{q}=q+1, & \mathrm{r} \geq 2\end{array}\right.$, we can choose $A, A_{1}, A_{2}, \cdots, A_{b}$ such that $A \cap A_{i} \neq A \cap A_{j}$ for $i \neq j, \operatorname{dim}\left(A \cap A_{i}\right)=k-1$ for every $i=1,2, \cdots, b$ and their meet is a $(k-2)$-subspace. Then there are exactly $d r$-subspaces of A which are not contained in any A_{i} for $i=1,2, \cdots, b$ and d is defined in (3.5.1).

Now we consider the relation of projective geometry.
Definition 3.5.10. Let F_{q}^{n} denote an n-dimensional vector space over a finite field F_{q}, where q is the number of elements in the field. Let $P=P\left(F_{q}^{n}\right)$ denote the poset with element set

$$
P=\left\{u+W \mid u \in F_{q}^{n} \text { and } W \subseteq F_{q}^{n} \text { is a subspce }\right\} \cup\{\emptyset\},
$$

where \emptyset denote the empty set. The order is defined by inclusion. Note that P is a geometric lattice of rank $n+1$. P is called the affine geometry and is denoted by $A G(n, q)$. The elements in P_{i} are referred to the affine ($i-1$)-subspaces of F_{q}^{n} for $i=1,2, \cdots, n+1$. We say the affine subspaces $u+W$ and $v+W$ are parallel for $u, v \in F_{q}^{n}, W \subseteq F_{q}^{n}$ is a subspace.

We immediately have the following lemma.

Lemma 3.5.11. Suppose $u_{1}, u_{2} \in F_{q}^{n}$ and $W_{1}, W_{2} \subseteq F_{q}^{n}$ are subspaces. Then $u_{1}+$ $W_{1}=u_{2}+W_{2}$ if and only if $W_{1}=W_{2}$ and $u_{1}-u_{2} \in W_{1}$.

Now we have a similar version of Theorem 3.5.7

Lemma 3.5.12. Let A denote an affine k-subspaces of F_{q}^{n}. Then the number of affine r-subspaces contained in A is

$$
q^{k-r}\left[\begin{array}{l}
k \\
r
\end{array}\right]_{q}
$$

where $r<k$. These affine r-subspaces in A are partitioned into

$$
\left[\begin{array}{c}
k \\
r
\end{array}\right]_{q}
$$

classes, each class consisting of q^{k-r} parallel affine subspaces.

Theorem 3.5.13. Fix integers $1 \leq r<k \leq n$. Let $A, A_{1}, A_{2}, \ldots, A_{b}$ be distinct affine k-subspaces of F_{q}^{n}. Then there are at least

$$
d:=q^{k-r}\left[\begin{array}{l}
k \tag{3.5.2}\\
r
\end{array}\right]_{q}-b q^{k-r-1}\left[\begin{array}{c}
k-1 \\
r
\end{array}\right]_{q}
$$

affine r-subspaces contained in \bar{A} and not contained in any of A_{i} for $i=1,2, \cdots, b$.

Proof. There are

$$
q^{k-r}\left[\begin{array}{l}
k \\
r
\end{array}\right]_{q}
$$

affine r-subspaces contained in A, some of them in some affine subspace $A \cap A_{i}$ for each $i=1,2, \cdots, b$ to be deducted. $A \cap A_{i}$ takes maximal coverage of these affine r-subspaces when $A \cap A_{i}$ is an affine ($k-1$)-subspace, and in this situation the number of these affine r-subspaces is

$$
q^{(k-1)-r}\left[\begin{array}{c}
k-1 \\
r
\end{array}\right]_{q} .
$$

Corollary 3.5.14. In Theorem 3.5.13, if $0<r<\frac{k}{2}$, then $b=q^{r+1}$ is the largest integer such that $d>0$; if $r=0$, then $b=q-1$ is the largest integer such that $d>0$.

Proof. $d>0 \Longleftrightarrow$

$$
\begin{aligned}
b & <q\left[\begin{array}{l}
k \\
r
\end{array}\right]_{q} /\left[\begin{array}{c}
k-1 \\
r
\end{array}\right]_{q} \\
& =q \cdot \frac{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots\left(q^{k-r+1}-1\right)}{\left(q^{k-1}-1\right)\left(q^{k-2}-1\right) \cdots\left(q^{k-r}-1\right)} \\
& =\frac{q\left(q^{k}-1\right)}{\left(q^{k-r}-1\right)} \\
& =\frac{q^{k+1}-q-q^{k+1}+q^{r+1}}{q^{k-r}-1}+q^{r+1} \\
& =\frac{q\left(q^{r}-1\right)}{q^{k-r}-1}+q^{r+1}
\end{aligned}
$$

Since

$$
0<r<\frac{k}{2},
$$

Then

$$
\frac{q\left(q^{r}-1\right)}{q^{k-r}-1}<1
$$

Hence $0<b \leq q^{r+1}$.
Suppose $r=0$. Then

$$
\begin{aligned}
d>0 & \Longleftrightarrow b<q \\
& \Longleftrightarrow b \leq q-1
\end{aligned}
$$

Note 3.5.15. Since $\left\{\begin{array}{ll}b \leq q-1, & \mathrm{r}=0 ; \\ b \leq q, & \mathrm{r} \geq 1\end{array}\right.$ and $k \leq n$, we can choose A_{i} to be an affine k-subspace with the meet with A corresponding to each of the q parallel affine $(k-1)$-subspaces in A. Then there is exactly d affine r-subspaces contained in A and not contained in any of A_{i} for $i=1,2, \cdots, b$ and d is defined in (3.5.2).

3.6 Codes on projective and affine geometries

We are clearly to apply the results in the section 3.5 to construction of super-imposed codes as following.

Definition 3.6.1. Let $P_{q}(n, k, r)$ denote the incidence matrix of the set of r-subspaces and the set of k-subspaces in F_{q}^{n} for $1 \leq r \leq k \leq n$. The following corollary is immediate from Theorem 3.5.7, Corollary 3.5.8 and Note 3.5.9.

Corollary 3.6.2. The columns of $P_{q}(n, k, r)$ form a b^{d}-super-imposed code, but not $a b^{d+1}$-super-imposed code, where b is a positive integer satisfying

$$
\begin{cases}b \leq q, & r=1 \\ b \leq q+1, & r \geq 2\end{cases}
$$

$k \leq n$ and d is defined in (3.5.1).
Definition 3.6.3. Let $A_{q}(n+1, k+1, r+1)$ denote the incidence matrix for of the set of affine r-subspaces and the set of affine k-subspaces in $F_{q}^{n} 0 \leq r \leq k \leq n$. The following Corollary is immediate from Theorem 3.5.13, Corollary 3.5.14 and Note 3.5.15.

Corollary 3.6.4. The columns of $A_{q}(n+1, k+1, r+1)$ form a b^{d}-super-imposed code, but not a b^{d+1}-super-imposed code, when b is a positive integer satisfying

$$
\begin{cases}b \leq q-1, & r=0 \\ b \leq q, & r \geq 1\end{cases}
$$

$k \leq n$ and d is defined in (3.5.2).
We set $r=0$ and $b=q-1$ to obtain the following result.

Corollary 3.6.5. Let $A_{q}(3,2,1)$ be the incidence matrix of the set of affine 0 -subspaces and the set of affine 1-subspaces in F_{q}^{2}. Then the columns of $A_{q}(3,2,1)$ are $(q-1)^{1}$ -super-imposed code.

3.7 Sperner's theorem and EKR theorem

We list two interesting classical theorems in this section as following.

Theorem 3.7.1. (Sperner's Theorem)Let M be an $n \times s$ 1-disjunct matrix. Then

$$
s \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Proof. Let P be the poset consisting of subsets of $\{1,2, \cdots, n\}$ with order defined by inclusion. For each column x of M, identify x to the element $\left\{i \mid x_{i}=1\right\}$ of P. Then the set F of columns of M becomes an antichain in P. (i.e. $x \nsubseteq x^{\prime}$ for any $x \neq x^{\prime}$.) Set $\alpha_{k}:=|\{x \in F| | x \mid=k\}|$ for $k=0,1,2, \cdots, n$. Note $|F|=\sum_{k=0}^{n} \alpha_{k}$. Observe there are n ! maximal chains in P. Observe there are $k!(n-k)$! maximal chains containing a fixed $x \in P$ with $|x|=k$. Observe for any chain $L .|L \cap F| \leq 1$. By counting the pairs (x, L) where $x \in F, x \in L$ and L is a maximal chain. We find

$$
\sum_{k=0}^{n} \alpha_{k} k!(n-k)!\leq 1 \cdot n!
$$

Then

$$
\sum_{k=0}^{n} \alpha_{k}\binom{n}{k}^{-1} \leq 1
$$

Hence

$$
\sum_{k=0}^{n} \alpha_{k}\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}^{-1} \leq 1
$$

Thus,

$$
s=\sum_{k=0}^{n} \alpha_{k} \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Theorem 3.7.2. (EKR-Theorem) Let A be a collection of s distinct k-subsets of $\{1,2, \cdots, n\}$, where $k \leq \frac{n}{2}$, with the property that any two of the subsets have a
nonempty intersection. Then

$$
s \leq\binom{ n-1}{k-1}
$$

Proof. For a permutation σ of $\{1,2, \cdots, n\}$, and $T \in A$, define $\sigma(T):=\{\sigma(x) \mid x \in T\}$ and $A^{\sigma}:=\{\sigma(T) \mid T \in A\}$. Set $S_{i}:=\{i, i+1, \cdots, i+k-1\} \bmod n$ for $i=1,2, \cdots, n$ and $F:=\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$. Observe for each $S_{i} \in F$, there are $2 k-1 S_{j} \in F$ with $S_{i} \cap S_{j} \neq \emptyset$. These are $S_{i-(k-1)}, S_{i-(k-2)}, \cdots, S_{i}, S_{i+1}, \cdots, S_{i+k-1}$. Divide these into k boxes $\left\{S_{i-(k-1)}, S_{i+1}\right\},\left\{S_{i-k-2}, S_{i+2}\right\}, \cdots,\left\{S_{i-1}, S_{i+k-1}\right\},\left\{S_{i}\right\}$. Any two in the same boxes have empty intersection. Hence we can choose only one. From this observation we have $|A \cap F| \leq k$. Also $\left|A^{\sigma} \cap F\right| \leq k$ for any permutation σ. We count (S, T, σ) in two ways, where $S \in F, T \in A, \sigma$ is a permutation with $\sigma(T)=S, S \in A^{\sigma} \cap F$ and $T=\sigma^{-1}(S)$, in the orders S, T, σ and σ, S, T to find

$$
\begin{gathered}
n \cdot s \cdot k!(n-k)!\leq n!\cdot k \\
s \leq \frac{(n-1)!}{(k-1)!(n-k)!}=\binom{n-1}{k-1} .
\end{gathered}
$$

Hence

Definition 3.7.3. Let P be a ranked poset of rank n and $1 \leq k \leq n$ be an integer. We say P has the $k^{\text {th }} E K R$ property whenever any family $F \subseteq P_{k}$ such that for any $x, y \in F$ there exists $a \neq 0$ with $a \leq x$ and $a \leq y$, we always have $|F| \leq\left|w^{+} \cap P_{k}\right|$ for some $w \in P_{1}$.

Conjecture 3.7.4. EKR property holds on a geometric lattice.

3.8 Remarks

The name pooling spaces was given in [7]. Theorem 3.3.4 was proved in [8]. Theorem 3.5.7 was given in [4] with a minor correction. Theorem 3.5.13 was given in [8].

Theorem 3.7.1 and Theorem 3.7.2 are well known and have many different proofs. We follow the proofs from [10, Chapter 6].

4

Reed-Muller Codes

For the remaining of the thesis, we consider the codes defined with more algebraic aspect, but it turns out these codes also have combinatorial meaning.

4.1 Linear Codes

Definition 4.1.1. A code $C \subseteq F_{q}^{n}$ is a $[n, k, d]$-linear code (or $[n, k]$-linear code) if C is a subspace of F_{q}^{n} with dimension k and minimum distance d.

Definition 4.1.2. For any $x \in C$, the weight $w t(x)$ of x is the number of nonzero coordinates in x. The minimum weight $w t(C)$ of C is

$$
w t(C):=\min \{w(x) \mid x \in C, x \neq 0\} .
$$

In general the weight of an element in F_{q}^{n} depends on how the basis is chosen. In the above definition the weight is associated with the standard basis of F_{q}^{n}. We might choose different basis and define the weight differently. Because the distance of codewords have relation with the weight.

Note 4.1.3. The distance $\partial(x, y)$ between the codeword x and y is $w t(x-y)$ for any $x, y \in C$.

Note 4.1.4. We say C is a linear code if and only if $x-y \in C$ and $\alpha x \in C$ for any $x, y \in C$ and scalar α.

Note 4.1.5. If C is linear code, then the weight $w t(C)$ is equal to the minimum distance $d(C)$.

Note 4.1.6. The concept of weight of a code indeed depends on the chosen basis of vector space.

4.2 Reed-Muller Codes

At first, we give the definition of the codes considered in this chapter.

Definition 4.2.1. We define $R_{m}:=\left\{f \mid f: F_{2}^{m} \longrightarrow F_{2}\right.$ is a function $\}$, where R_{m} is called the Reed-Muller code of order m.

The following two notes are clear.

Note 4.2.2. The Reed-Muller code is a vector space under usual + , operations of functions.

Note 4.2.3. The Reed-Muller code of order m is a vector space over F_{2} of dimension 2^{m} and $\left|R_{m}\right|=2^{2^{m}}$.

We consider a few special functions in R_{m}.

Definition 4.2.4. For $1 \leq i \leq m$, we define $x_{i} \in R_{m}$ such that for any $u \in F_{2}^{m}$, $x_{i}(u)=1 \Longleftrightarrow u_{i}=1$, and define $1 \in R_{m}$ such that for any $u \in F_{2}^{m}, 1(u)=1$.

Definition 4.2.5. $x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} \in R_{m}$ is called a monomial of degree j where $1 \leq j \leq m$ and $1 \leq i_{1}, i_{2}, \cdots, i_{j} \leq m$ are distinct integers. 1 is called a monomial of degree 0 .

We identify $0,1,2, \cdots, 2^{m}-1$ with the elements in F_{2}^{m} by using binary expressions, e.q. $0=(0,0, \cdots, 0), 1=(1,0, \cdots, 0,0), 2=(0,1,0, \cdots, 0),, \cdots$. We choose a
standard basis $f_{0}, f_{1}, \cdots, f_{2^{m}-1}$ of R_{m}, where $f_{i}(j)=1$ if and only if $j=i$ for $0 \leq i \leq$ $2^{m}-1$. We use the standard basis to express the codeword $f \in R_{m}$, so the weight of f has the following meaning.

Note 4.2.6. Suppose the function $f \in R_{m}$. Then $f^{2}=f$ and the weight $w t(f)$ is equal to $\left|f^{-1}(1)\right|$.

We consider the weight of a monomial as following note.

Note 4.2.7. Suppose $f=x_{1} x_{2} \cdots x_{r}$. Then

$$
f^{-1}(1)=\left\{\left(1,1, \cdots, 1, a_{r+1}, a_{r+2}, \cdots, a_{m}\right) \mid a_{i}=0 \text { or } 1\right\}
$$

is a affine $(m-r)$-subspace of F_{2}^{m}. Hence $w t\left(x_{1} x_{2} \cdots x_{r}\right)=2^{m-r}$.
We find a basis of R_{m}.

Theorem 4.2.8. The set of monomials with degree less or equal m forms a basis of the Reed-Muller code of order m.
Proof. There are $\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{m}=2^{m}$ monomials and $\operatorname{dim}\left(R_{m}\right)=2^{m}$.
It suffice to show monomials span R_{m}. Suppose $f \in R_{m}$. Observe

$$
f=\sum_{a \in f^{-1}(1)} \prod_{j=1}^{m}\left(x_{j}+a_{j}+1\right) .
$$

Hence f is spanned by monomials.
We consider Reed-Muller codes in the light of monomials.

Definition 4.2.9. $R M(r, m):=\left\{f \in R_{m} \mid f\right.$ is spanned by monomials of degree $\left.\leq r\right\}$ where $r \leq m$. RM (r, m) is called the r-th Reed- Muller Code of order m. Let $w t_{m}$ denote the weight function on $R M(r, m)$.

From Theorem 4.2.8 and Definition 4.2.9, we have

Note 4.2.10. Since $R M(r, m)$ is a linear code with codewords of length 2^{m}, the dimension is $\operatorname{dim} R M(r, m)=\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{r}$.

Theorem 4.2.11. The minimum distance $d(R M(r, m))$ is equal to 2^{m-r}.

Proof. We have seen

$$
w t_{m}\left(x_{1} x_{2} \cdots x_{r}\right)=2^{m-r} .
$$

Hence $d(R M(r, m)) \leq 2^{m-r}$. We prove

$$
d(R M(r, m)) \geq 2^{m-r}
$$

by induction on m. Suppose $m=1$.
Case 1: $m=1, r=0 . f: F_{2}^{1} \longrightarrow F_{2}$ (no x_{i} appears) and $f=1$. Hence $f^{-1}(1)=F_{2}$. Then $w t_{1}(f)=\left|f^{-1}(1)\right|=2=2^{m-r}$.

Case 2: $m=1, r=1$. $f \neq 0$ has $w t_{1}(f) \geq 1=2^{m-r}$.

Suppose for any $0 \neq f \in R M(r, m)$, we have $w t_{m}(f) \geq 2^{m-r}$. Choose any $f \in R M(r, m+1)$. Say $f=g+x_{m+1} h$ where $g \in R M(r, m+1)$ without x_{m+1} and $h \in R M(r-1, m+1)$ without x_{m+1}.

Case 1: $g=h \neq 0$. Then $f=h\left(x_{m+1}\right)$ and

$$
w t_{m+1}(f)=w t_{m}(h) \geq 2^{m-(r-1)}=2^{m+1-r} .
$$

(Using h has at most $r-1$ variables).
Case 2: $g \neq h$. Then

$$
w t_{m+1}(f)=w t_{m}(g)+w t_{m}(g+h) .
$$

(To assign $x_{m+1}=0$ in $w t_{m}(g)$ and $x_{m+1}=1$ in $\left.w t_{m}(g+h)\right)$.

Case 2.1: $g=0$. Hence $h \neq 0$ and

$$
w t_{m+1}(f)=w t_{m}(h) \geq 2^{m-(r-1)}=2^{m+1-r} .
$$

Case 2.2: $g \neq 0$. Note $g+h \neq 0$, since $g \neq h$. Hence

$$
w t_{m+1}(f)=w t_{m}(g)+w t_{m}(g+h) \geq 2^{m-r}+2^{m-r}=2^{m+1-r}
$$

Next, our goal is to prove

$$
\begin{equation*}
w t_{m}\left(f_{S}\right)=2^{m-r} \Longleftrightarrow S \text { is affine }(m-r)-\text { subspace } \tag{*}
\end{equation*}
$$

where $S \subseteq F_{2}^{m}$, and

$$
f_{S}(x):= \begin{cases}1, & \text { if } x \in S \\ 0, & \text { else }\end{cases}
$$

f_{S} is called the characteristic function of S.
Remark 4.2.12. $R_{m}=\left\{f_{S} \mid S \subseteq F_{2}^{m}\right\}$.
One direction is easier.

Theorem 4.2.13. Suppose S is an affine $(m-r)$-subspace in F_{2}^{m}. Then $w t\left(f_{S}\right)=$ 2^{m-r} and $f_{S} \in R M(r, m)$.

Proof. Note $w t\left(f_{S}\right)=\left|f_{S}^{-1}(1)\right|=|S|=2^{m-r}$. Observe S is the solution space of a system of r linear independent equations in m variables. Hence there exist $a_{i j}, b_{i} \in F_{2}$ such that for $i=1,2, \cdots, r$ and $j=1,2, \cdots, m$ we have

$$
\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in S \Longleftrightarrow \sum_{j=1}^{m} a_{i j} x_{j}=b_{i} \text { for } i=1,2, \cdots, r
$$

Observe

$$
f_{S}=\prod_{i=1}^{r}\left[\left(\sum_{j=1}^{m} a_{i j} x_{j}\right)-b_{i}+1\right]
$$

and the degree of the monomial in the expansion of f_{S} is less or equal r.

To prove the other direction, we need some facts as following notes.
Note 4.2.14. An affine k-subspace is the union of 2 parallel affine $(k-1)$-subspaces by Lemma 3.5.12.

Note 4.2.15. We say the disjunct union $S_{1} \dot{\cup} S_{2}=S \subseteq F_{2}^{m}$ if and only if $f_{S}=f_{S_{1}}+f_{S_{2}}$.
Theorem 4.2.16. The vectors in $\left\{f_{S} \mid S\right.$ is a affine $(m-r)$-subspace of $\left.F_{2}^{m}\right\}$ span $R M(r, m)$.

Proof. It suffices to prove $x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}$ is spanned by the characteristic function of affine ($m-r$)-subspaces, where $t \leq r$. Observe $x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}=f_{T}$ for some affine ($m-t$)-subspace T and $f_{T}=f_{T_{1}}+f_{T_{2}}$ for some parallel affine ($m-(t+1)$)-subspaces T_{1}, T_{2}. Keeping doing this, we find $x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}$ is the sum of some characteristic functions of affine $(m-r)$-subspaces.

Definition 4.2.17. An affine $(m-1)$-subspace in F_{2}^{m} is called a hyperplane of F_{2}^{m}.
Theorem 4.2.18. Suppose $T \subseteq F_{2}^{m}$ with $|T|=2^{k}$. Suppose $|T \cap S|=0,2^{k-1}$ or 2^{k} for any hyperplane S of F_{2}^{m}. Then T is an affine k-subspace of F_{2}^{m}.

Proof. We prove this by induction on m and $m=2$ is clear. In general, we consider the following 3 cases.

Case 1: $T \subseteq S$ for some hyperplane S of F_{2}^{m}. Then $S \cong F_{2}^{m-1}$. Let H be a hyperplane of S. Then H is an affine $(m-2)$-subspace of F_{2}^{m}. We want to show that $|T \cap H|=0,2^{k-1}$ or 2^{k}. Observe there is an affine $(m-1)$-subspace S^{\prime} such that $S \cap S^{\prime}=H$. Hence $|T \cap H|=\left|T \cap S \cap S^{\prime}\right|=\left|T \cap S^{\prime}\right|=0,2^{k-1}$ or 2^{k} by assumption. By induction, T is an affine k-subspace in S and then in F_{2}^{m}.

Case 2: $T \cap S=\emptyset$ for some hyperplane S of F_{2}^{m}. Then $T \subseteq S^{\prime}$ for the hyperplane S^{\prime} of F_{2}^{m} parallel to S. So the result follows from Case 1.

Case 3: $|T \cap S|=2^{k-1}$ for all hyperplanes S of F_{2}^{m}. Observe the case $m=k$ is clear, so suppose $m \neq k$. Then on the one hand

$$
\sum_{S}|T \cap S|^{2}=\left[\begin{array}{c}
m \\
m-1
\end{array}\right]_{2} \cdot \frac{2^{m}}{2^{m-1}} \cdot 2^{2(k-1)}=\left(2^{m}-1\right) 2^{2 k-1}
$$

and on the other hand

$$
\begin{aligned}
\sum_{S}|T \cap S|^{2} & =\sum_{S}\left(\sum_{a \in T} f_{S}(a)\right)^{2} \\
& =\sum_{a \in T} \sum_{b \in T} \sum_{S} f_{S}(a) f_{S}(b) \\
& =\sum_{a \in T} \sum_{b \in T, b \neq a} \sum_{S} f_{S}(a) f_{S}(b)+\sum_{a \in T} \sum_{S} f_{S}(a)^{2} \\
& =|T|(|T|-1)\left[\begin{array}{c}
m-1 \\
1
\end{array}\right]_{2}+|T|\left[\begin{array}{c}
m \\
1
\end{array}\right]_{2} \\
& =2^{k}\left(2^{k}-1\right)\left(2^{m-1}-1\right)+2^{k}\left(2^{m}-1\right) \\
& =2^{k}\left[2^{k+m-1}-2^{m-1}-2^{k}+2^{m}\right]
\end{aligned}
$$

where the summations are over all hyperplanes S in F_{2}^{m}. Hence

$$
m=k
$$

a contradiction.
Now we can show the other direction in $(*)$.
Theorem 4.2.19. Let $f \in R M(r, m)$ be the minimum weight vector. Then $f=f_{S}$ for some affine $(m-r)$-subspace S in F_{2}^{m}.

Proof. By Theorem 4.2.11, wt $(f)=2^{m-r}$. Then $f=f_{S}$ for some $S \subseteq F_{2}^{m}$ with $|S|=2^{m-r}$. We want to show that S is an affine $(m-r)$-subspace. Let H be a hyperplane in F_{2}^{m}. We want to show

$$
|S \cap H|=0,2^{m-r-1} \text { or } 2^{m-r},
$$

and then apply Theorem 4.2 .18 to say S is an affine $(m-r)$-subspace. Observe $F_{2}^{m}=H \cup H^{\prime}$ where H^{\prime} is parallel to H. Observe $f_{H}, f_{H^{\prime}} \in R M(1, m)$ by Theorem
4.2.16 and $1=f_{H}+f_{H^{\prime}}$, since $H \cap H^{\prime}=\emptyset$. Hence $f f_{H}, f f_{H^{\prime}} \in R M(r+1, m)$. By Theorem 4.2.11,

$$
w t\left(f f_{H}\right)=0 \text { or } \geq 2^{m-(r+1)}
$$

and

$$
w t\left(f f_{H^{\prime}}\right)=0 \text { or } \geq 2^{m-(r+1)} .
$$

Since

$$
\begin{aligned}
2^{m-r} & =w t(f) \\
& =w t\left(f f_{H}+f f_{H^{\prime}}\right) \\
& =w t\left(f f_{H}\right)+w t\left(f f_{H^{\prime}}\right)
\end{aligned}
$$

We have $w t\left(f f_{H}\right)=0,2^{m-r-1}$ or 2^{m-r}. Hence

$$
|S \cap H|=0,2^{m-r-1} \text { or } 2^{m-r} .
$$

4.3 Decoding

We study the decoding of Reed-Muller codes in this section, we need the following notation.

Definition 4.3.1. $S_{\sigma}:=\left\{\left(c_{1}, c_{2}, \cdots, c_{m}\right) \mid c_{i}=1, i \in \sigma\right\}$ is an affine ($m-|\sigma|$)-subspace and $x_{\sigma}=\prod_{i \in \sigma} x_{i}$ is a monomial, where $\sigma \subseteq[m]=\{1,2, \cdots, m\}$. Hence

$$
S_{\sigma}=x_{\sigma}^{-1}(1) .
$$

Definition 4.3.2. $\bar{\sigma}=[m]-\sigma$ is called the complement of σ, where $\sigma \subseteq[m]$
We give an example as following.

Example 4.3.3. Suppose $m=6, \sigma=\{1,2,3\}$. Since $x_{\sigma}=x_{1} x_{2} x_{3}$ and $x_{\bar{\sigma}}=x_{4} x_{5} x_{6}$, we obtain $S_{\sigma}=\left\{(1,1,1, a, b, c) \mid a, b, c \in F_{2}\right\}$ and $S_{\bar{\sigma}}=\left\{(d, e, f, 1,1,1) \mid d, e, f \in F_{2}\right\}$.

By Definition 4.2.9, we have
Note 4.3.4. Suppose $f \in R M(r, m)$. Then $f=\sum_{|\sigma| \leq r, \sigma \subseteq[m]} f_{\sigma} x_{\sigma}$ for some $f_{\sigma} \in F_{2}$.
Lemma 4.3.5. Suppose $u \in F_{2}^{m}$ and $\tau=\left\{i \mid u_{i}=1\right\}$. Then for $\sigma, \rho \subseteq[m]$, we have

$$
\left|S_{\sigma} \cap\left(u+S_{\rho}\right)\right|= \begin{cases}2^{m-|\rho \cup \sigma|}, & \text { if } \sigma \cap \rho \cap \tau=\emptyset \\ 0, & \text { else }\end{cases}
$$

Proof. Observe

$$
u+S_{\rho}=\left\{\left(c_{1}, c_{2}, \cdots, c_{m}\right) \mid c_{i}=1 \text { if } i \in \rho \cap \bar{\tau}, c_{i}=0 \text { if } i \in \rho \cap \tau\right\}
$$

and

$$
S_{\sigma}=\left\{\left(c_{1}, c_{2}, \cdots, c_{m}\right) \mid c_{i}=1 \text { if } i \in \sigma\right\}
$$

Hence if $\sigma \cap \rho \cap \tau=\emptyset$, we have
$S_{\sigma} \cap\left(u+S_{\rho}\right)=\left\{\left(c_{1}, c_{2}, \cdots, c_{m}\right) \mid c_{i}=1\right.$ if $i \in \sigma \cup(\rho \cap \bar{\tau}), c_{i}=0$ if $\left.i \in \bar{\sigma} \cap \rho \cap \tau\right\}$.
Then

$$
\left|S_{\sigma} \cap\left(u+S_{\rho}\right)\right|=2^{m-|\rho \cup \sigma|}
$$

when

$$
\sigma \cap \rho \cap \tau=\emptyset
$$

Note

$$
\left|S_{\sigma} \cap\left(u+S_{\rho}\right)\right|=0
$$

when

$$
\sigma \cap \rho \cap \tau \neq \emptyset
$$

Since this is not trivial, we give two examples as following for improving the sense about Lemma 4.3.5.

Example 4.3.6. Suppose $u=0, m=5, \sigma=\{1,2\}$ and $\rho=\{3,4\}$. We obtain $S_{\sigma}=\left\{\left(1,1, c_{3}, c_{4}, c_{5}\right) \mid c_{i} \in F_{2}\right\}$ and $u+S_{\rho}=\left\{\left(c_{1}, c_{2}, 1,1, c_{5}\right) \mid c_{i} \in F_{2}\right\}$. Hence

$$
S_{\sigma} \cap\left(u+S_{\rho}\right)=\left\{\left(1,1,1,1, c_{5}\right) \mid c_{5} \in F_{2}\right\}
$$

has cardinality $2=2^{m-|\sigma \cup \rho|}$.
Example 4.3.7. Suppose $u=(1,0,0), m=3, \sigma=\{1,2\}$ and $\rho=\{1\}$. We obtain $S_{\sigma}=\left\{\left(1,1, c_{3}\right) \mid c_{3} \in F_{2}\right\}$ and $u+S_{\rho}=\left\{\left(0, c_{2}, c_{3}\right) \mid c_{2}, c_{3} \in F_{2}\right\}$. Hence

$$
S_{\sigma} \cap\left(u+S_{\rho}\right)=\emptyset .
$$

The following theorem is essentially a decoding of $R M(r, m)$. This will be clear later.

Theorem 4.3.8. Suppose $f=\sum_{|\rho| \leq r, \rho \subseteq[m]} f_{\rho} x_{\rho} \in R M(r, m)$ for $f_{\rho} \in F_{2}$. Fix $\sigma \subseteq[m]$ with $|\sigma|=r$. Then

$$
\begin{equation*}
f_{\sigma}=\sum_{w \in u+S_{\bar{\sigma}}} f(w) \text { for all } u \in F_{2}^{m} \text {. } \tag{*}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\sum_{w \in u+S_{\bar{\sigma}}} f(w) & =\sum_{w \in u+S_{\bar{\sigma}}} \sum_{|\rho| \leq r} f_{\rho} x_{\rho}(w) \\
& =\sum_{|\rho| \leq r} f_{\rho} \sum_{w \in u+S_{\bar{\sigma}}} x_{\rho}(w) \\
& =\sum_{|\rho| \leq r} f_{\rho}\left|S_{\rho} \cap\left(u+S_{\bar{\sigma}}\right)\right| \\
& =f_{\sigma},
\end{aligned}
$$

since $\left|S_{\rho} \cap\left(u+S_{\bar{\sigma}}\right)\right|$ is even except $\rho=\sigma$ by Lemma 4.3.5.
Note 4.3.9. The size of $u+S_{\bar{\sigma}}$ is $\left|\left\{u+S_{\bar{\sigma}} \mid u \in F_{2}^{m}\right\}\right|=\frac{2^{m}}{2^{m-|\bar{\sigma}|}}=\frac{2^{m}}{2^{r}}=2^{m-r}$ for the σ, u in Theorem 4.3.8. (*) contains 2^{m} equations, one for each $u \in F_{2}^{m}$. Some of them are identical. There are 2^{m-r} different equations.

Note 4.3.10. For $|\sigma|=r-1$, the Theorem 4.3.8 does not hold.
We show how Theorem 4.3.8 is used in the decoding process as following.
Application 4.3.11. (Encoding and Decoding Processes)

$$
\begin{aligned}
& f=\sum_{\substack{|\rho| \leq r, \rho \subseteq[m]}} f_{\rho} x_{\rho} \in R M(r, m) \quad \text { (original message) } \\
\longrightarrow & \left.\left(f(0), f(1), f(2), \cdots, f\left(2^{m}-1\right)\right) \quad \text { (encoding } f \text { into a string of } 0,1\right) \\
\longrightarrow & \left(f^{\prime}(0), f^{\prime}(1), f^{\prime}(2), \cdots, f^{\prime}\left(2^{m}-1\right)\right)
\end{aligned}
$$

(f is sending via a noisy channel to become f^{\prime})
$\longrightarrow \quad$ Compute $f_{\sigma}^{\prime}=\sum_{t \in u+S_{\bar{\sigma}}} f^{\prime}(t)$ for each $|\sigma|=r$ and each $u+S_{\bar{\sigma}}$.
There are 2^{m-r} such f_{σ}^{\prime} according to different cosets $u+S_{\bar{\sigma}}$,
and we use majority to determine f_{σ}
(Assume the number of errors $\leq\left\lfloor\frac{2^{m-r}-1}{2}\right\rfloor$ in the sending).
\longrightarrow Set new f as $f-\sum_{|\sigma|=r} f_{\sigma} x_{\sigma}$ and new f^{\prime} as $f^{\prime}-\sum_{|\sigma|=r} f_{\sigma} x_{\sigma}$ and go to the previous step to determine those f_{σ} for $|\sigma|=r-1$.

Keep doing this untill we get f_{\emptyset}.

We also present an example of the decoding process for improving the sense about the encoding and decoding processes.

Example 4.3.12. In $R M(1,3)$, suppose the receiving codeword

$$
\left(f^{\prime}(0), f^{\prime}(1), f^{\prime}(2), \cdots, f^{\prime}(7)\right)=(1,1,0,0,0,1,0,0)
$$

Assume the number of errors $\leq\left\lfloor\frac{2^{m-r}-1}{2}\right\rfloor=1$.
(i) We can find f_{σ} for $|\sigma|=1$ by the following steps.

Suppose $\sigma=\{1\}, \bar{\sigma}=\{2,3\}$. First step is to find all $u+S_{\{2,3\}}$ for $u \in F_{2}^{3}$. We find

$$
S_{\{2,3\}}=\{(0,1,1),(1,1,1)\}
$$

Then

$$
\begin{aligned}
\left\{u+S_{\{2,3\}} \mid u \in F_{2}^{3}\right\}= & \{\{(0,1,1),(1,1,1)\},\{(0,0,1),(1,0,1)\} \\
& ,\{(0,1,0),(1,1,0)\},\{(0,0,0),(1,0,0)\}\} \\
= & \{\{6,7\},\{4,5\},\{2,3\},\{0,1\}\}
\end{aligned}
$$

Second step is to compute the possible values of $f_{\{1\}}$ and use majority to determine $f_{\{1\}}$. Since

$$
f_{\{1\}}^{\prime}=\sum_{t \in u+S_{\{2,3\}}} f^{\prime}(t),
$$

the possible values of $f_{\{1\}}$ are

$$
\begin{aligned}
& f^{\prime}(6)+f^{\prime}(7)=0+0=0, f^{\prime}(4)+f^{\prime}(5)=0+1=1, \\
& f^{\prime}(2)+f^{\prime}(3)=0+0=0 \text { or } f^{\prime}(0)+f^{\prime}(1)=1+1=0
\end{aligned}
$$

Third step is to use majority to determine that

$$
f_{\{1\}}=0
$$

In the same way, we find that $f_{\{2\}}=1$ and $f_{\{3\}}=0$.
(ii) Since

$$
\begin{gathered}
f=\sum_{|\rho| \leq 1, \rho \subseteq[m]} f_{\rho} x_{\rho}, \\
f_{\emptyset}=f-f_{\{1\}} x_{1}-f_{\{2\}} x_{2}-f_{\{3\}} x_{3} \\
=f+x_{2} \in R M(0,3) .
\end{gathered}
$$

Hence the new receiving codeword

$$
\begin{aligned}
& \left(f^{\prime \prime}(0), f^{\prime \prime}(1), f^{\prime \prime}(2), \cdots, f^{\prime \prime}(7)\right) \\
= & (1,1,0,0,0,1,0,0)+(0,0,1,1,0,0,1,1) \\
= & (1,1,1,1,0,1,1,1) .
\end{aligned}
$$

(iii) Go to previous step to find f_{\emptyset}. Since $\sigma=\emptyset$, then

$$
\left\{u+S_{\bar{\sigma}} \mid u \in F_{2}^{3}\right\}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\}\},
$$

then the possible values of f_{\emptyset} are

$$
\begin{gathered}
f^{\prime \prime}(0)=1, f^{\prime \prime}(1)=1, f^{\prime \prime}(2)=1, f^{\prime \prime}(3)=1 \\
f^{\prime \prime}(4)=0, f^{\prime \prime}(5)=1, f^{\prime \prime}(6)=1 \text { or } f^{\prime \prime}(7)=1
\end{gathered}
$$

By using majority to determine that

$$
f_{\emptyset}=1
$$

Hence

$$
f=f_{\emptyset}+f_{\{1\}} x_{1}+f_{\{2\}} x_{2}+f_{\{3\}} x_{3}=1+x_{2},
$$

and

$$
(f(0), f(1), f(2), \cdots, f(7))=(1,1,0,0,1,1,0,0)
$$

the 5 th bit is error in the sending.

4.4 Recursive construction of $R M(1, m)$

We give another description of $R M(1, m)$ as appeared in [10, Chapter 18] in this section. We identity each function in $R M(1, m)$ with its coordinates in the standard basis.

Example 4.4.1. Suppose $R M(1,1)$ is the 1-th Reed-Muller code of order 1. Then

$$
\begin{aligned}
R M(1,1) & =\left\{0,1, x_{1}, 1+x_{1}\right\} \\
& =\{(0,0),(1,1),(0,1),(1,0)\} .
\end{aligned}
$$

Example 4.4.2. Suppose $R M(1,2)$ is the 1-th Reed-Muller code of order 2. Then

$$
\begin{aligned}
R M(1,2)= & \left\{0,1, x_{1}, 1+x_{1}, x_{2}, 1+x_{2}, x_{1}+x_{2}, 1+x_{1}+x_{2}\right\} \\
= & \{(0,0,0,0),(1,1,1,1),(0,1,0,1),(1,0,1,0), \\
& (0,0,1,1),(1,1,0,0),(0,1,1,0),(1,0,0,1)\} .
\end{aligned}
$$

Since we observe the rule between Example 4.4.1 and Example 4.4.2, we get the general rule is as following.

Example 4.4.3. Suppose $R M(1, m+1)$ is the 1-th Reed-Muller code of order $m+1$. Then

$$
\begin{aligned}
& R M(1, m+1) \\
= & \left\{f \mid f \text { does not have } x_{m+1}\right\} \cup\left\{f \mid f \text { has } x_{m+1}\right\} \\
= & \{(c, c) \mid c \in R M(1, m)\} \cup\{(c, \bar{c}) \mid c \in R M(1, m)\} \\
= & \{(d, d, d, d),(d, \bar{d}, d, \bar{d}),(d, d, \bar{d}, \bar{d}),(d, \bar{d}, \bar{d}, d) \mid d \in R M(1, m-1)\},
\end{aligned}
$$

where \bar{c} is a vector obtained from c by switching 0 and 1 .

4.5 Covering radius

We give the definition of covering radius of a code in this section and determine the lower bound of the covering radius of $R M(r, m)$.

Definition 4.5.1. For $C \subseteq F_{2}^{n}$, we define $d(x, C):=\min \{d(x, y) \mid y \in C\}$ where $x \in F_{2}^{n}$ and $\rho(C)=\max \left\{d(x, C) \mid x \in F_{2}^{n}\right\}$ is called the covering radius of C.

Example 4.5.2. Suppose $C=\{(0,0,0),(1,1,1)\}$. Then the covering radius of C is $\rho(C)=1$. The following notes show why the name covering radius is chosen.

Note 4.5.3. Suppose $\rho(C)$ is the covering radius of C. Then $\bigcup_{x \in C} B_{\rho(C)+1}(x)=F_{2}^{n}$ where $B_{i}(x):=\{y \mid d(x, y)<i\}$.

Note 4.5.4. The covering radius $\rho(C)$ is minimum i such that $\bigcup_{x \in C} B_{i+1}(x)=F_{2}^{n}$. Theorem 4.5.5. $\rho(R M(1, m)) \geq 2^{m-1}-2^{\left\lceil\frac{m}{2}\right\rceil-1}$.

Proof. Induction on m.

If $m=1$, then $2^{m-1}-2^{\left\lceil\frac{m}{2}\right\rceil-1}=1-1=0$ and clearly $\rho(R M(1,1)) \geq 0$.
If $m=2$, then $2^{m-1}-2^{\left\lceil\frac{m}{2}\right\rceil-1}=2-1=1$. Since $R M(1,2) \neq R M(2,2)$, we have $\rho(R M(1,2)) \geq 1$. In general, consider in $R M(1, m+1)$. Choose $u \in R_{m-1}$ such that

$$
d(u, R M(1, m-1)) \geq 2^{m-2}-2^{\left\lceil\frac{m-1}{2}\right\rceil-1} .
$$

Set $v=(u, u, u, \bar{u}) \in R_{m+1}$. It remains to show

$$
d(v, R M(1, m+1)) \geq 2^{m}-2^{\left[\frac{m+1}{2}\right\rceil-1} .
$$

There are 4 cases of codewords in $R M(1, m+1)$.
Case 1: $(c, c, c, c) \in R M(1, m+1)$ for $c \in R M(1, m-1)$.

$$
\begin{aligned}
& d(v,(c, c, c, c)) \\
= & 3 d(u, c)+d(\bar{u}, c) \\
= & 3 d(u, c)+2^{m-1}-d(u, c) \\
= & 2^{m-1}+2 d(u, c) \\
\geq & 2^{m-1}+2\left(2^{m-2}-2^{\left\lceil\frac{m-1}{2}\right\rceil-1}\right) \\
= & 2^{m}-2^{\left\lceil\frac{m-1}{2}\right\rceil} \\
= & 2^{m}-2^{\left\lceil\frac{m+1}{2}\right\rceil-1} .
\end{aligned}
$$

Case 2: $(c, c, \bar{c}, \bar{c}) \in R M(1, m+1)$ for $c \in R M(1, m-1)$.

$$
\begin{aligned}
& d(v,(c, c, \bar{c}, \bar{c})) \\
= & 2 d(u, c)+d(u, \bar{c})+d(\bar{u}, \bar{c}) \\
= & 3 d(u, c)+d(\bar{u}, c) \quad(\text { by } d(u, \bar{c})=d(\bar{u}, c) \text { and } d(\bar{u}, \bar{c})=d(u, c)) \\
\geq & 2^{m}-2^{\left\lceil\frac{m+1}{2}\right\rceil-1}
\end{aligned}
$$

as in the Case 1.

Similar for the remaining two cases $(c, \bar{c}, c, \bar{c}),(c, \bar{c}, \bar{c}, c) \in R M(1, m+1)$ for $c \in R M(1, m-1)$.

Here we announced that we will know $\rho(R M(1, m))$ when m is even in section 6.1.

5

Punctured Reed-Muller Codes

A punctured Reed-Muller code is a obtain from a Reed-Muller code by puncturing the first position of each codeword. Since we use different language to define it, this will not be clear at the first look.

5.1 Definition

Definition 5.1.1. Let $F_{2}[\lambda]$ denote the set of polynomials over F_{2} with a variable λ. Fix a primitive element $\gamma \in F_{2^{m}}^{*}:=F_{2^{m}}-\{0\}$. For $f \in F_{2}[\lambda]$, define

$$
T_{f}:=\left\{\gamma^{i} \mid \text { the coefficient of } \lambda^{i} \text { in } f(\lambda) \text { is } 1\right\} .
$$

$$
\begin{aligned}
\operatorname{PRM}(r, m):= & \operatorname{Span}\left\{f(\lambda) \in F_{2}[\lambda] \mid T_{f} \text { is an affine }(m-r)-\right.\text { subspace } \\
& \text { of } F_{2^{m}} \text { over } F_{2} \text { or } T_{f} \cup\{0\} \text { is an }(m-r)-\text { subspace } \\
& \text { of } \left.F_{2^{m}} \text { over } F_{2}\right\} /<\lambda^{2^{m}-1}-1>
\end{aligned}
$$

is called the r-th punctured Reed-Muller code of order m with codewords of length $2^{m}-1$. For $f(\lambda) \in P R M(r, m)$, the weight of f is defined by

$$
w t(f):=\mid\left\{i \mid \text { the coefficient of } \lambda^{i} \text { in } f \text { is } 1\right\} \mid .
$$

Of course, T_{f} depends on the choice of a primitive element $\gamma \in F_{2^{m}}$. We omit the mention of γ if no confusion occurs. We refer the reader to Theorem 4.2.16 for the name $\operatorname{PRM}(r, m)$ to be chosen. Here we give an example for correspondence relation between $R M(r, m)$ and $P R M(r, m)$.

Example 5.1.2. Suppose $F_{2^{3}}=\left\{0,1, \gamma, \gamma^{2}, \ldots, \gamma^{6}\right\}$, where γ is primitive element satisfying $\gamma^{3}+\gamma+1=0$. Then $\gamma^{3}=1+\gamma, \gamma^{4}=\gamma+\gamma^{2}, \gamma^{5}=1+\gamma+\gamma^{2}$, and $\gamma^{6}=1+\gamma^{2}$. This gives an one to one correspondence between $F_{2^{3}}^{*}$ and $F_{2}^{3}-\{0\}$. The following processes (a)-(e) provide an example of the map from $f \in R M(1,3)$ onto $f^{*} \in \operatorname{PRM}(1,3)$.
(a) $f=x_{1}+x_{2} \in R M(1,3)$;
(b)
$\left.\begin{array}{ccccccccccc}f= & (0, & 1, & 1, & 0, & 0, & 1, & 1, & 0\end{array}\right)$
(encoding f into a string of 0,1 as in Application 4.3.11, the positions are indexed correspondence to the binary number of F_{2}^{3}. The last row shows the way to index the positions by elements in $F_{2^{3}}^{*}$);
(c) $f^{*}=(1,1,0,0,1,1,0)$
(delete the first position)
(d)

$$
\begin{aligned}
& f^{*}=(1,1, \quad 0, \quad 0,1, \quad 0,1) \\
& \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
& 1 \begin{array}{llllllllll}
& \gamma & \gamma^{2} & \gamma^{3} & \gamma^{4} & \gamma^{5} & \gamma^{6}
\end{array}
\end{aligned}
$$

(reorder the string by the new index corresponding to $F_{2^{3}}^{*}$);
(e) $f^{*}=1+\lambda+\lambda^{4}+\lambda^{6}$
(write the string in polynomial form).

Observe

$$
\begin{aligned}
T_{f^{*}} & =\left\{1, \gamma, \gamma^{4}, \gamma^{6}\right\} \\
& =\left\{1, \gamma, \gamma+\gamma^{2}, 1+\gamma^{2}\right\} \\
& =\{(1,0,0),(0,1,0),(0,1,1),(1,0,1)\} \\
& =(1,0,0)+\{(0,0,0),(1,1,0),(1,1,1),(0,0,1)\}
\end{aligned}
$$

is an affine 2-subspace. Hence $f^{*} \in P R M(1,3)$.

In Example 5.1.2, we will have a complete correspondence between $R M(1,3)$ and $\operatorname{PRM}(1,3)$.

Lemma 5.1.3. The minimum distance $d(P R M(r, m))$ is equal to $2^{m-r}-1$.

Proof. This is immediate from Theorem 4.2.11 and Theorem 4.2.19.

5.2 Cyclic Codes

We will show a punctured Reed-Muller code is cyclic. First we need a definition as following.

Definition 5.2.1. A code $C \subseteq F_{2}^{n}$ is cyclic if

$$
\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C \Longrightarrow\left(c_{n-1}, c_{0}, c_{1}, \cdots, c_{n-2}\right) \in C
$$

We give four examples as following.

Example 5.2.2. $\{0\}$ is cyclic.

Example 5.2.3. $\{(0,0,0,0),(1,1,1,1)\} \subseteq F_{2}^{4}$ is cyclic.
Example 5.2.4. F_{2}^{n} is cyclic.
Example 5.2.5. $\{(0,0,0,0,0,0,0),(1,1,1,0,1,0,0),(0,1,1,1,0,1,0)$, $(0,0,1,1,1,0,1),(1,0,0,1,1,1,0),(0,1,0,0,1,1,1),(1,0,1,0,0,1,1)$, $(1,1,0,1,0,0,1)\}$ is cyclic. This code is not linear!

It is not easy to find a nontrivial code that are both linear and cyclic. We introduce a way by polynomials. Usually we identity an element $\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \in F_{2}^{n}$ with the polynomial $a_{0}+a_{1} \lambda+\cdots+a_{n-1} \lambda^{n-1}$.

Note 5.2.6. A linear code $C \subseteq F_{2}^{n}$ is cyclic if and only if $\lambda f(\lambda) \in C \bmod \left(\lambda^{n}-1\right)$ for any $f(\lambda) \in C$.

Lemma 5.2.7. A linear code $C \subseteq F_{2}^{n}$ is cyclic if and only if there exists a function $g(\lambda) \mid \lambda^{n}-1$ such that $C=\left\{g(\lambda) h(\lambda) \mid h(\lambda) \in F_{2}[\lambda], \operatorname{deg}(h(\lambda)) \leq n-\operatorname{deg}(g(\lambda))-1\right\}$.

We skip the proof of the above lemma. It can be found in any standard textbook of coding theory, for examples [14],[1]. Lemma 5.2.7 says a linear code $C \subseteq F_{2}^{n}$ is cyclic if and only if C is a principle idea ring in $F_{2}[\lambda] /\left\langle\lambda^{n}-1\right\rangle$.

Note 5.2.8. By Lemma 5.2.7, we obtain that $\operatorname{dim}(C)=n-\operatorname{deg}(g(\lambda))$.
Note 5.2.9. As the notation in Definition 5.1.1, $T_{\lambda f(\lambda)}=\gamma T_{f(\lambda)}$ and $T_{\lambda f(\lambda)} \cup\{0\}=$ $\gamma\left(T_{f(\lambda)} \cup\{0\}\right)$.

The following is the main theorem of the section.
Theorem 5.2.10. $P R M(r, m)$ is cyclic when the coordinates are indexed by

$$
1, \gamma, \gamma^{2}, \cdots, \gamma^{2^{m}-2}
$$

Proof. We need to prove

$$
f(\lambda) \in P R M(r, m) \Longrightarrow \lambda f(\lambda) \in P R M(r, m) \bmod \left(\lambda^{2^{m}-1}-1\right)
$$

It suffices to assume $T_{f(\lambda)}$ or $T_{f(\lambda)} \cup\{0\}$ is an affine $(m-r)$-subspace and show $\gamma T_{f(\lambda)}=T_{\lambda f(\lambda)}$ or $\gamma\left(T_{f(\lambda)} \cup\{0\}\right)=T_{\lambda f(\lambda)} \cup\{0\}$ is an $(m-r)$-subspace. This follows from Lemma 3.4.7.

Example 5.2.11. We complete the Example 5.1.2 by a table.

$R M(1,3)$	$R M(1,3)$	$P R M(1,3)$	$P R M(1,3)$
0	$(0,0,0,0,0,0,0,0)$	$(0,0,0,0,0,0,0)$	0
1	$(1,1,1,1,1,1,1,1)$	$(1,1,1,1,1,1,1)$	$1+\lambda+\cdots+\lambda^{6}$
$1+x_{3}$	$(1,1,1,1,0,0,0,0)$	$(1,1,0,1,0,0,0)$	$1+\lambda+\lambda^{3}$
$1+x_{1}$	$(1,0,1,0,1,0,1,0)$	$(0,1,1,0,1,0,0)$	$\lambda+\lambda^{2}+\lambda^{4}$
$1+x_{1}+x_{2}$	$(1,0,0,1,1,0,0,1)$	$(0,0,1,1,0,1,0)$	$\lambda^{2}+\lambda^{3}+\lambda^{5}$
$1+x_{1}+x_{2}+x_{3}$	$(1,0,0,1,0,1,1,0)$	$(0,0,0,1,1,0,1)$	$\lambda^{3}+\lambda^{4}+\lambda^{6}$
$1+x_{2}+x_{3}$	$(1,1,0,0,0,0,1,1)$	$(1,0,0,0,1,1,0)$	$1+\lambda^{4}+\lambda^{5}$
$1+x_{1}+x_{3}$	$(1,0,1,0,0,1,0,1)$	$(0,1,0,0,0,1,1)$	$\lambda+\lambda^{5}+\lambda^{6}$
$1+x_{2}$	$(1,1,0,0,1,1,0,0)$	$(1,0,1,0,0,0,1)$	$1+\lambda^{2}+\lambda^{6}$
x_{1}	$(0,1,0,1,0,1,0,1)$	$(1,0,0,1,0,1,1)$	$1+\lambda^{3}+\lambda^{5}+\lambda^{6}$
$x_{1}+x_{2}$	$(0,1,1,0,0,1,1,0)$	$(1,1,0,0,1,0,1)$	$1+\lambda+\lambda^{4}+\lambda^{6}$
$x_{1}+x_{2}+x_{3}$	$(0,1,1,0,1,0,0,1)$	$(1,1,1,0,0,1,0)$	$1+\lambda+\lambda^{2}+\lambda^{5}$
$x_{2}+x_{3}$	$(0,0,1,1,1,1,0,0)$	$(0,1,1,1,0,0,1)$	$\lambda+\lambda^{2}+\lambda^{3}+\lambda^{6}$
$x_{1}+x_{3}$	$(0,1,0,1,1,0,1,0)$	$(1,0,1,1,1,0,0)$	$1+\lambda^{2}+\lambda^{3}+\lambda^{4}$
x_{2}	$(0,0,1,1,0,0,1,1)$	$(0,1,0,1,1,1,0)$	$\lambda+\lambda^{3}+\lambda^{4}+\lambda^{5}$
x_{3}	$(0,0,0,0,1,1,1,1)$	$(0,0,1,0,1,1,1)$	$\lambda^{2}+\lambda^{4}+\lambda^{5}+\lambda^{6}$

The codewords in the third column is obtained by truncating the codewords in the second column and then reordering the coordinates by the the way switching the positions $(3,4)$ and permuting positions $(4,6,5)$ as escribed in Example 5.1.1. Observe from the table that if we set $g(\lambda):=1+\lambda+\lambda^{3}$ then

$$
P R M(1,3)=\left\{g(\lambda) h(\lambda) \mid h(\lambda) \in F_{2}[\lambda], \operatorname{deg}(h(\lambda)) \leq 3\right\} .
$$

Note that $\operatorname{PRM}(1,3)$ does not decrease in number from $R M(1,3)$. This is true for any $P R M(r, m)$. However this is not easy to show.

5.3 Lucas Theorem

In the following two sections, we give some background information in order to find the dimension of $P R M(r, m)$ is section 5.5.

Lemma 5.3.1. (Lucas Theorem 1878) If p is a prime and $0 \leq a, b<p$ are integers, then for $n, k \in \mathbb{N}$

$$
\binom{n p+a}{k p+b}=\binom{n}{k}\binom{a}{b} \bmod p
$$

Proof. By binomial theorem,

$$
\begin{aligned}
\sum_{i=0}^{n p+a}\binom{n p+a}{i} \lambda^{i} & =(\lambda+1)^{n p+a} \\
& =(\lambda+1)^{n p}(\lambda+1)^{a} \\
& =\left(\sum_{i=0}^{p}\binom{p}{i} \lambda^{i}\right)^{n}(\lambda+1)^{a} \\
& \equiv\left(\lambda^{p}+1\right)^{n}(\lambda+1)^{a} \bmod p \\
& =\sum_{j=0}^{n}\binom{n}{j} \lambda^{p j} \sum_{s=0}^{a}\binom{a}{s} \lambda^{s} .
\end{aligned}
$$

Comparing the coefficients of $\lambda^{k p+b}$ in both sides, we find

$$
\binom{n p+a}{k p+b}=\binom{n}{k}\binom{a}{b} \bmod p
$$

Corollary 5.3.2. If p is a prime and $0 \leq n_{0}, k_{0}<p$ are integers, then

$$
\binom{n_{0}+n_{1} p+n_{2} p^{2}+\cdots n_{t} p^{t}}{k_{0}+k_{1} p+k_{2} p^{2}+\cdots k_{t} p^{t}}=\binom{n_{o}}{k_{0}}\binom{n_{1}}{k_{1}}\binom{n_{2}}{k_{2}} \cdots\binom{n_{t}}{k_{t}} \bmod p
$$

for $n_{i}, k_{i} \in \mathbb{N}$ and $i=0,1,2, \cdots, t$.

Proof. By Lemma 5.3.1, then

$$
\begin{aligned}
&\binom{n_{0}+n_{1} p+n_{2} p^{2}+\cdots n_{t} p^{t}}{k_{0}+k_{1} p+k_{2} p^{2}+\cdots k_{t} p^{t}}=\binom{n_{0}+\left(n_{1}+n_{2} p+\cdots+n_{t} p^{t-1}\right) p}{k_{0}+\left(k_{1}+k_{2} p+\cdots+k_{t} p^{t-1}\right) p} \\
& \equiv\binom{n_{0}}{k_{0}}\binom{n_{1}+n_{2} p+\cdots+n_{t} p^{t-1}}{k_{1}+k_{2} p+\cdots+k_{t} p^{t-1}} \bmod p \\
& \vdots \\
& \equiv\binom{n_{0}}{k_{0}}\binom{n_{1}}{k_{1}}\binom{n_{2}}{k_{2}} \cdots\binom{n_{t}}{k_{t}} \bmod p
\end{aligned}
$$

Note 5.3.3. By Corollary 5.3.2,

$$
\binom{n}{k}=\binom{n_{0}}{k_{0}}\binom{n_{1}}{k_{1}}\binom{n_{2}}{k_{2}} \ldots\binom{n_{t}}{k_{t}} \bmod 2
$$

for $n=\sum_{i=0}^{t} 2^{i} n_{i}$ and $k=\sum_{i=0}^{t} 2^{i} k_{i}$, where $n_{i}, k_{i} \in\{0,1\}$.
We give a summary as following.
Note 5.3.4. Suppose $n=\sum_{i=0}^{t} 2^{i} n_{i}$ and $k=\sum_{i=0}^{t} 2^{i} k_{i}$, where $n_{i}, k_{i} \in\{0,1\}$. Then the following (1) - (4) are equivalent by Note 5.3.3.
(1) $\binom{n}{k} \equiv 1 \bmod 2$.
(2) $\binom{n_{i}}{k_{i}} \equiv 1 \bmod 2$ for all $i=0,1,2, \cdots, t$
(3) $k_{i} \leq n_{i}\left(n_{i}-k_{i} \leq n_{i}\right)$ for all $i=0,1,2, \cdots, t$.
(4) There is no overflowing in compute $n=k+(n-k)$ in binary system.

More generally, we have the following.

Note 5.3.5. Suppose $n=j_{1}+j_{2}+\cdots+j_{k}$. Then $\frac{n!}{j_{1}!j_{2}!\cdots j_{k}!} \equiv 1 \bmod 2$ if and only if there is no overflowing in compute $n=j_{1}+j_{2}+\cdots+j_{k}$ in binary system.

Example 5.3.6. Let $k=(0,0,1,1,1,1,0)_{2}=4+8+16+32=60, n=(1,0,0,0,0,0,1)_{2}=$ $1+64=65$ and $n-k=(1,0,1,0,0,0,0)_{2}=1+4=5$. Since there is overflowing over the summation $n=k+(n-k)$ in binary system, we have $\binom{n}{k}=\binom{65}{60} \equiv 0$ $\bmod 2$.

5.4 Evaluation $f(a)$ for $f \in P R M(r, m)$

We give a theorem without proof. This is a generalization of Theorem 4.2.8.

Theorem 5.4.1. If $V=\left\{F \mid F: F_{q}^{k} \longrightarrow F_{q}\right.$ is a function $\}$, where $q=2^{m}$, then the set $\left\{x_{1}^{j_{1}} x_{2}^{j_{2}} \cdots x_{k}^{j_{k}} \mid 0 \leq j_{i} \leq q-1\right\}$ is a basis of V over F_{q}.

Definition 5.4.2. For each $s \in\left\{1,2,3, \cdots, 2^{m}-1\right\}$ and $k \leq m$, we define a polynomial function F_{S} in V as

$$
\left.F_{s}\left(x_{1}, x_{2}, \cdots, x_{k}\right):=\sum_{j_{1}+j_{2}+\ldots+j_{k}=s}^{j_{i} \geq 1} \left\lvert\, \begin{array}{c}
s \\
j_{1} j_{2} \cdots j_{k}
\end{array}\right.\right) x_{1}^{j_{1}} x_{2}^{j_{2}} \cdots x_{k}^{j_{k}},
$$

where $\binom{s}{j_{1} j_{2} \cdots j_{k}}=\frac{s!}{j_{1}!j_{2}!\cdots j_{k}!}=\left\{\begin{array}{cc}1, & \text { if }\binom{s}{j_{1} j_{2} \cdots j_{k}} \\ 0, & \text { else }\end{array}\right)$ is odd;
Note 5.4.3. $F_{s}\left(x_{1}, x_{2}, \cdots, x_{k}\right) \neq\left(x_{1}+x_{2}+\cdots+x_{k}\right)^{s}$.
Lemma 5.4.4. $F_{s}\left(x_{1}, x_{2}, \cdots, x_{k}\right)=0$ if and only if there are at most $(k-1) 1$'s in the binary expression of s.

Proof. (\Longrightarrow) Since $\left\{x_{1}^{j_{1}} x_{2}^{j_{2}} \cdots x_{k}^{j_{k}} \mid 0 \leq j_{i} \leq 2^{m}-1\right\}$ is a linear independent set over $F_{2^{m}}$ and then over F_{2}, we find $\frac{s!}{j_{1}!j_{2}!\cdots j_{k}!}=0$ in F_{2} for all $j_{1}+j_{2}+\cdots+j_{k}=s$.

Hence the binary expression of s has at most $k-1$ 1's by Note 5.3.5.
(\Longleftarrow) By Note 5.3.5, s can not be written as the sum of k positive integers without overflowing in the binary expression. Hence each coefficient $\binom{s}{j_{1} j_{2} \cdots j_{k}} \equiv 0$ in $(*)$. Hence $F_{s}\left(x_{1}, x_{2}, \cdots x_{k}\right)=0$.

Lemma 5.4.5. $F_{s}\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\sum\left(b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{k} x_{k}\right)^{s}$, where the summation is over all $b=\left(b_{1}, b_{2}, \cdots, b_{k}\right) \in F_{2}^{k}$.

Proof. We prove by induction on k. For $k=1$, observe $F_{s}\left(x_{1}\right)=x_{1}^{s}$ and

$$
\sum_{b_{1} \in F_{2}}\left(b_{1} x_{1}\right)^{s}=x_{1}^{s} .
$$

Before showing the general case we do the case $k=2$ first for clarity. Observe

$$
\begin{aligned}
F_{s}\left(x_{1}, x_{2}\right) & =\binom{s}{1} x_{1} x_{2}^{s-1}+\binom{s}{2} x_{1}^{2} x_{2}^{s-2}+\cdots+\binom{s}{s-1} x_{1}^{s-1} x_{2} \\
& =\sum_{i=1}^{s-1}\binom{s}{i} x_{1}^{i} x_{2}^{s-i}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{\left(b_{1}, b_{2}\right) \in F_{2}^{2}}\left(b_{1} x_{1}+b_{2} x_{2}\right)^{s} \\
= & \sum_{b_{2} \in F_{2}}\left(b_{2} x_{2}\right)^{s}+\sum_{b_{2} \in F_{2}}\left(x_{1}+b_{2} x_{2}\right)^{s} \quad\left(\text { according to } b_{1}=0 \text { or } 1\right) \\
= & \sum_{b_{2} \in F_{2}}\left(b_{2} x_{2}\right)^{s}+\sum_{b_{2} \in F_{2}} \sum_{i=0}^{s}\binom{s}{i} x_{1}^{i}\left(b_{2} x_{2}\right)^{s-i} \\
= & x_{2}^{s}+\left(\sum_{i=1}^{s-1}\left[\sum_{b_{2} \in F_{2}} b_{2}^{s-i}\right]\binom{s}{i} x_{1}^{i} x_{2}^{s-i}\right)+x_{2}^{s}+\sum_{b_{2} \in F_{2}} x_{1}^{s} \\
= & \sum_{i=1}^{s-1}\left[\sum_{b_{2} \in F_{2}} b_{2}^{s-i}\right]\binom{s}{i} x_{1}^{i} x_{2}^{s-i} \\
= & \sum_{i=1}^{s-1}\binom{s}{i} x_{1}^{i} x_{2}^{s-i} .
\end{aligned}
$$

In general,

$$
\begin{aligned}
& \sum_{b_{\in} F_{2}^{k}}\left(b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{k} x_{k}\right)^{s} \\
& =\sum_{\left(b_{2}, b_{3}, \cdots, b_{k}\right) \in F_{2}^{k-1}}\left(b_{2} x_{2}+b_{3} x_{3}+\cdots+b_{k} x_{k}\right)^{s} \\
& +\sum_{\left(b_{2}, b_{3}, \cdots, b_{k}\right) \in F_{2}^{k-1}}\left(x_{1}+b_{2} x_{2}+b_{3} x_{3}+\cdots+b_{k} x_{k}\right)^{s} \\
& =\sum_{j_{1}=1}^{s-1} \sum_{\left(b_{1}, b_{2}, \cdots, b_{k}\right) \in F_{2}^{k-1}}\binom{s}{j_{1}} x_{1}^{j_{1}}\left(b_{2} x_{2}+b_{3} x_{3}+\cdots+b_{k} x_{k}\right)^{s-j_{1}} \\
& \text { (the term is } 0 \text { when } j_{1}=0 \text {, or } s \text {) } \\
& =\sum_{j_{1}=1}^{s-1}\binom{s}{j_{1}} x_{1}^{j_{1}} F_{s-j_{1}}\left(x_{2}, x_{3}, \cdots, x_{k}\right) \quad \text { (by induction) } \\
& =\sum_{j_{1}=1}^{s-1}\binom{s}{j_{1}} x^{j_{1}} \sum_{j_{2}+j_{3}+\cdots+j_{k}=s-j_{1}} \frac{\left(s-j_{1}\right)!}{j_{2}!j_{3}!\cdots j_{k}!} x_{2}^{j_{2}} x_{3}^{j_{3}} \cdots x_{k}^{j_{k}} \\
& =F_{s}\left(x_{1}, x_{2}, \cdots, x_{k}\right) \text {. }
\end{aligned}
$$

Lemma 5.4.6. Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k} \in F_{2^{m}}$ be linear dependent vectors over F_{2}. Then

$$
F_{s}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)=0
$$

for $s \in\left\{1,2, \cdots, 2^{m}-1\right\}$.
Proof. Suppose $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ are linear dependent over F_{2}. We say $\alpha_{k}=\sum_{i=1}^{k-1} a_{i} \alpha_{i}$ for
some $a_{i} \in F_{2}$. Then

$$
\begin{aligned}
& F_{s}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right) \\
= & \sum_{b \in F_{2}^{k}}\left(b_{1} \alpha_{1}+b_{2} \alpha_{2}+\cdots+b_{k} \alpha_{k}\right)^{s} \\
= & \sum_{\left(b_{1}, b_{2}, \cdots, b_{k-1}\right) \in F_{2}^{k-1}}\left(b_{1} \alpha_{1}+b_{2} \alpha_{2}+\cdots+b_{k-1} \alpha_{k-1}\right)^{s} \\
+ & \sum_{\left(b_{1}, b_{2}, \cdots, b_{k-1}\right) \in F_{2}^{k-1}}\left[\left(a_{1}+b_{1}\right) \alpha_{1}+\left(a_{2}+b_{2}\right) \alpha_{2}+\cdots+\left(a_{k-1}+b_{k-1}\right) \alpha_{k-1}\right]^{s} \\
= & 2 F_{s}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k-1}\right) \\
= & 0 .
\end{aligned}
$$

Lemma 5.4.7. Suppose $f(\lambda) \in P R M(r, m)$ such that $T_{f} \cup\{0\} \subseteq F_{2^{m}}$ is a subspace of dimension $k:=m-r$ over F_{2}. Then

$$
f\left(\gamma^{s}\right)=F_{s}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)
$$

where γ is a primitive element of $F_{2}^{m}, 1 \leq s \leq 2^{m}-1$ and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ is a basis of $T_{f} \cup\{0\}$ over F_{2}.

Proof. Suppose $f=\lambda^{d_{1}}+\lambda^{d_{2}}+\cdots+\lambda^{d_{2} k_{-1}}$. Then $T_{f} \cup\{0\}=\left\{\gamma^{d_{1}}, \gamma^{d_{2}}, \ldots, \gamma^{d_{2} k_{-1}}, 0\right\}$ run through all possible linear combinations of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$. Then by Lemma 5.4.5,

$$
\begin{aligned}
f\left(\gamma^{s}\right) & =\left(\gamma^{s}\right)^{d_{1}}+\left(\gamma^{s}\right)^{d_{2}}+\cdots+\left(\gamma^{s}\right)^{d_{2^{k}-1}}+0 \\
& =\sum_{b \in F_{2^{k}}}\left(b_{1} \alpha_{1}+b_{2} \alpha_{2}+\cdots+b_{k} \alpha_{k}\right)^{s} \\
& =F_{s}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right) .
\end{aligned}
$$

Corollary 5.4.8. Let $\gamma \in F_{2^{m}}$ be a primitive element and $1 \leq s \leq 2^{m}-1$. Then $f\left(\gamma^{s}\right)=0$ for all $f \in P R M(r, m)$ with $T_{f} \cup\{0\}$ is a subspace of dimension $k=m-r$ over F_{2} if and only if there are at most $(k-1) 1^{\prime} s$ in the binary expression of s.

Proof. ($\Longleftarrow)$ This is clear from Lemma 5.4.4 and Lemma 5.4.7.
(\Longrightarrow) By Lemma 5.4.4, it suffices to show $F_{s}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)=0$ for any $\alpha_{1}, \alpha_{2}, \cdots \alpha_{k} \in$ $F_{2^{m}}$. But the result is clear from Lemma 5.4.6 and Lemma 5.4.7.

5.5 The dimension of $P R M(r, m)$

Theorem 5.5.1.

$\operatorname{PRM}(r, m)=\operatorname{span}\left\{f(\lambda) \mid T_{f} \cup\{0\}\right.$ is an $(m-r)-$ subspace over $\left.F_{2}\right\} /<\lambda^{2^{m}-1}-1>$ and

$$
\operatorname{dim}(P R M(r, m))=\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{r} .
$$

Proof. Set

$$
C=\operatorname{span}\left\{f(\lambda) \mid T_{f} \cup\{0\} \text { is an }(m-r)-\text { subspace of } F_{2}^{m} \text { over } F_{2}\right\}
$$

Clearly $C \subseteq P R M(r, m)$ by Definition 5.1.1. We have known that the $P R M(r, m)$ is essentially the codewords obtained by puncturing the first coordinate of the codewords in $R M(r, m)$. Hence

$$
\operatorname{dim}(P R M(r, m)) \leq \operatorname{dim}(R M(r, m))=\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{r}
$$

To prove the theorem, it suffices to prove

$$
\operatorname{dim}(C) \geq\binom{ m}{0}+\binom{m}{1}+\cdots+\binom{m}{r}
$$

Similar to the proof of Theorem 5.2.10, we find C is cyclic. Hence

$$
C=\{g(\lambda) h(\lambda) \mid \operatorname{deg}(h(\lambda)) \leq \operatorname{dim}(C)-1)\},
$$

where $g(\lambda) \mid \lambda^{2^{m}-1}-1$. Since C is cyclic, we always can find a polynomial of degree $2^{m}-2$ in C. Hence $\operatorname{dim}(C) \geq 2^{m}-1-\operatorname{deg}(g(\lambda))$. We need to prove

$$
\operatorname{deg}(g(\lambda)) \leq 2^{m}-1-\left[\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{r}\right] .
$$

This is equivalent to prove $\lambda^{2^{m}-1}-1$ has at least

$$
\ell:=\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{r}
$$

zero roots which are not zero roots of $g(\lambda)$. We need to check the number of γ^{s} with $g\left(\gamma^{s}\right) \neq 0$ is at least ℓ. Since $g(\lambda) \in C$ it suffices to show that there are at least ℓ elements of the form γ^{s} with $f\left(\gamma^{s}\right) \neq 0$ for any $f \in C$ such that $T_{f} \cup\{0\}$ is an $(m-r)$-subspace of F_{2}^{m} over F_{2}. By Corollary 5.4.8, if the binary expression of s contains at least $m-r$ 1's then we must have $f\left(\gamma^{s}\right) \neq 0$. The proof is finished since number of such s is

$$
\binom{m}{m-r}+\binom{m}{m-r+1}+\cdots+\binom{m}{m}=\binom{m}{r}+\binom{m}{r-1}+\cdots+\binom{m}{0} .
$$

To end this section, we give some observations which are the main part of the thesis.

Note 5.5.2. The map $a \rightarrow\{0, a\}$ gives a $1-1$ correspondence between $F_{2}^{m}-\{0\}$ and the 1-subspaces of F_{2}^{m}.

Note 5.5.3. From Theorem 5.5.1 and Note 5.5.2, $P R M(r, m)$ can be realized as the span of the columns of the incidence matrix of 1 -subspaces and $(m-r)$-subspaces of F_{2}^{m}.

Note 5.5.4. By Theorem 4.2.16, $R M(r, m)$ can be realized as the span of the columns of the incidence matrix of affine 0 -subspaces(points) and affine $(m-r)$-subspaces of F_{2}^{m}.

The following definition generalize $P R M(r, m)$ and $R M(r, m)$.
Definition 5.5.5. The projective geometric codes of order k over $F_{q^{m}}$ is spanned by the columns of the incidence matrix of 1-subspaces of $F_{q^{m}}$ and k-subspaces of $F_{q^{m}}$.

The Euclidean geometric codes of order k over F_{q}^{m} is spanned by the columns of the incidence matrix of points in F_{q}^{m} and affine k-subspaces of F_{q}^{m}.

By the above definition, $P R M(r, m)$ is a projective geometric code of order $m-r$ over $F_{2^{m}}^{*}$ and $R M(r, m)$ is an Euclidean geometric code of order $m-r$ over F_{2}^{m}.

5.6 Remarks

In view of Section 3.5 and Note 5.5.3, Note 5.5.4, it is interesting to ask what the linear span of a super-imposed code can be, and how to find a super-imposed subcode of a given linear code?

6

Hadamard matrices and bent functions

We introduce Hadamard matrices and bent functions in this chapter and show their links.

6.1 Hadamard matrices

Recall: $R_{m}:=\left\{f \mid f: F_{2}^{m} \longrightarrow F_{2}\right.$ is a function $\}$.
Definition 6.1.1. For $f \in R_{m}$, we define the function $F: F_{2}^{m} \longrightarrow \mathbb{R}$ by $F(u)=$ $\sum_{v \in F_{2}^{m}}(-1)^{u \circ v+f(v)}$ where $u \circ v:=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{m} v_{m}$ and $f(v) \in\{0,1\}$ is viewed as real numbers. F is called the Hadamard transform of \hat{f}, where $\hat{f}(v)=(-1)^{f(v)}$ for all $v \in F_{2}^{m}$.

Hence f has value in F_{2}, \hat{f} has value in $\{-1,1\}$ and F has value in \mathbb{R}.
Note 6.1.2. In matrix forms, $H_{m}=\left[(-1)^{u \circ v}\right]_{2^{m} \times 2^{m}}$ and $\hat{f}=\left[(-1)^{f(v)}\right]_{2^{m} \times 1}$ $\Longrightarrow F=H_{m} \hat{f}$ is a matrix of size $2^{m} \times 1$.

Note 6.1.3. H_{m} is symmetric.

We give the first three H_{m}.
Example 6.1.4. $H_{1}=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)_{2 \times 2}$
Example 6.1.5. $H_{2}=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)_{4 \times 4}=H_{1} \otimes H_{1}$.
Example 6.1.6.

$$
\begin{aligned}
H_{3} & =\left(\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right)_{8 \times 8} \\
& =H_{2} \otimes H_{1} \\
& =H_{1} \otimes H_{2} \\
& =H_{1} \otimes H_{1} \otimes H_{1} .
\end{aligned}
$$

Definition 6.1.7. An $n \times n$ matrix H is a Hadamard matrix if $H^{t} H=n I$.

Lemma 6.1.8. H_{m} is a Hadamard matrix.

Proof.

$$
\begin{aligned}
\left(H_{m}^{t} H_{m}\right)_{u v} & =\sum_{w \in F_{2}^{m}}\left(H_{m}^{t}\right)_{u w}\left(H_{m}\right)_{w v} \\
& =\sum_{w \in F_{2}^{m}}\left(H_{m}\right)_{w u}\left(H_{m}\right)_{w v} \\
& =\sum_{w \in F_{2}^{m}}(-1)^{w \circ(u+v)} \\
& = \begin{cases}2^{m}, & \text { if } u=v ; \\
0, & \text { if } u \neq v,\end{cases}
\end{aligned}
$$

where $u, v \in F_{2}^{m}$.
We use the Hadamard transform of \hat{f} to determine the distance from f to $R M(1, m)$.
Theorem 6.1.9. $d(f, R M(1, m))=\min \left\{\left.\frac{2^{m} \pm F(u)}{2} \right\rvert\, u \in F_{2}^{m}\right\}$ for all $f \in R_{m}$.
Proof. Suppose a is the number of $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $f-\left(u_{1} x_{1}+u_{2} x_{2}+\cdots+\right.$ $\left.u_{m} x_{m}\right)=1$ and b is the number of $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $f-\left(u_{1} x_{1}+u_{2} x_{2}+\cdots+\right.$ $\left.u_{m} x_{m}\right)=0$, where $u_{i}, x_{i} \in F_{2}$ for $i \leq i \leq m$. Note $a+b=2^{m}$. Observe for any $u=\left(u_{1}, u_{2}, \cdots, u_{m}\right) \in F_{2}^{m}$,

$$
\begin{aligned}
& d\left(f, u_{1} x_{1}+u_{2} x_{2}+\cdots+u_{m} x_{m}\right) \\
= & d\left(f-\left(u_{1} x_{1}+u_{2} x_{2}+\cdots+u_{m} x_{m}\right), 0\right) \\
= & a \\
= & \frac{a+2^{m}-b}{2} \\
= & \frac{2^{m}-\sum_{\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in F_{2}^{m}}(-1)^{f-\left(u_{1} x_{1}+u_{2} x_{2}+\cdots+u_{m} x_{m}\right)}}{2} \\
= & \frac{2^{m}-F(u)}{2},
\end{aligned}
$$

and

$$
\begin{aligned}
& d\left(f, 1+u_{1} x_{1}+u_{2} x_{2}+\cdots+u_{m} x_{m}\right) \\
= & 2^{m}-d\left(f, u_{1} x_{1}+u_{2} x_{2}+\cdots+u_{m} x_{m}\right) \\
= & \frac{2^{m}+F(u)}{2} .
\end{aligned}
$$

The theorem follows from this.
Theorem 6.1.10. $\rho(R M(1, m)) \leq 2^{m-1}-2^{\frac{m}{2}-1}$ and equality holds if and only if there exists $f \in R_{m}$ with $|F(u)|=\frac{m}{2}$ for all $u \in F_{2}^{m}$.

Proof. Fix $f \in R_{m}$. Then

$$
\begin{aligned}
\sum_{u \in F_{2}^{m}} F(u)^{2} & =F^{t} F \quad(\text { in matrix form }) \\
& =\left(H_{m} \hat{f}\right)^{t}\left(H_{m} \hat{f}\right) \\
& =(\hat{f})^{t} H_{m}^{t} H_{m} \hat{f} \\
& =2^{m} \hat{f}^{t} \hat{f} \\
& =2^{m} \sum_{u \in F_{2 m}^{m}}(-1)^{2 f(u)} \\
& =2^{2 m} .
\end{aligned}
$$

Hence there exists $u \in F_{2}^{m}$ such that $F(u)^{2} \geq 2^{m}$. Hence $|F(u)| \geq 2^{\frac{m}{2}}$. Thus, $d(f, R M(1, m)) \leq \frac{2^{m}-2^{\frac{m}{2}}}{2}$ by Theorem 6.1.9. Hence

$$
\rho(R M(1, m))=\max \left\{d(f, R M(1, m)) \mid f \in R_{m}\right\} \leq 2^{m-1}-2^{\frac{m}{2}-1} .
$$

The remaining is clear.

Corollary 6.1.11. $\rho(R M(1, m))=2^{m-1}-2^{\frac{m}{2}-1}$ where m is even.

Proof. This is clear from Theorem 4.5.5 and Theorem 6.1.10.

6.2 Bent functions

We introduce bent functions in this section and study their properties.
Definition 6.2.1. $f \in R_{m}$ is a bent function if $d(f, R M(1, m))=2^{m-1}-2^{\frac{m}{2}-1}$.
From Theorem 6.1.10, we have the following two properties.
Note 6.2.2. $f \in R_{m}$ is a bent function if and only if $|F(u)|=2^{\frac{m}{2}}$ for all $u \in F_{2}^{m}$.
Note 6.2.3. f is the farthest from the linear functions if $f \in R_{m}$ is a bent function.

Note 6.2.4. By Corollary 6.1.11, we obtain $\rho(R M(1,2))=1$.
We give an example as following.
Example 6.2.5. Consider the codewords of $R M(1,2)$ in Example 4.4.2. We obtain $0=(0,0,0,0), 1=(1,1,1,1), x_{1}=(0,1,0,1), x_{2}=(0,0,1,1), 1+x_{1}=(1,0,1,0)$, $1+x_{2}=(1,1,0,0), x_{1}+x_{2}=(0,1,1,0)$ and $1+x_{1}+x_{2}=(1,0,0,1)$. Any $f \in$ $R_{2}-R M(1,2)$ is a bent function in R_{2}.

The following theorem characterizes bent functions by using Hadamard matrices.

Theorem 6.2.6. $f \in R_{m}$ is bent if and only if the $2^{m} \times 2^{m}$ matrix K with rows and columns indexed by F_{2}^{m} and uv-entry $K_{u v}:=(-1)^{f(u+v)}$ is a Hadamard matrix.

Proof. Observe

$$
\begin{align*}
& \left(K^{t} K\right)_{u v} \\
= & \sum_{w \in F_{2}^{m}} K_{u w}^{t} K_{w v} \\
= & \sum_{w \in F_{2}^{m}}(-1)^{f(u+w)} \cdot(-1)^{f(w+v)} \\
= & \sum_{w \in F_{2}^{m}} \widehat{f}(u+w) \widehat{f}(w+v) \\
= & \frac{1}{2^{2 m}} \sum_{w \in F_{2}^{m}}\left(H_{m} F\right)_{u+w} \cdot\left(H_{m} F\right)_{w+v}\left(F=H_{m} \widehat{f} \text { and } H_{m} H_{m}=2^{m} I\right) \\
= & \frac{1}{2^{2 m}} \sum_{w \in F_{2}^{m}}\left(\sum_{x \in F_{2}^{m}}\left(H_{m}\right)_{u+w, x} F_{x}\right)\left(\sum_{y \in F_{2}^{m}}\left(H_{m}\right)_{w+v, y} F_{y}\right) \\
= & \frac{1}{2^{2 m}} \sum_{w \in F_{2}^{m}}\left(\sum_{x \in F_{2}^{m}}(-1)^{(u+w) \circ x} F_{x}\right)\left(\sum_{y \in F_{2}^{m}}(-1)^{(w+v) \circ y} F_{y}\right) \\
= & \frac{1}{2^{2 m}} \sum_{x \in F_{2}^{m}} \sum_{y \in F_{2}^{m}}\left(\sum_{w \in F_{2}^{m}}(-1)^{w \circ(x+y)}\right)(-1)^{u \circ x+v \circ y} F_{x} F_{y} \\
= & \frac{2^{m}}{2^{2 m}} \sum_{x \in F_{2}^{m}}(-1)^{(u+v) \circ}\left|F_{x}\right|^{2}, \tag{6.2.1}
\end{align*}
$$

where $u, v \in F_{2}^{m}$.
(\Longrightarrow) Suppose f is a bent function. Then $|F(x)|^{2}=2^{m}$ for all $x \in F_{2}^{m}$. Hence by 6.2.1

$$
\begin{aligned}
& \left(K^{t} K\right)_{u v} \\
= & \sum_{x \in F_{2}^{m}}(-1)^{(u+v) \circ x} \\
= & \begin{cases}2^{m}, & u=v \\
0, & u \neq v,\end{cases}
\end{aligned}
$$

where $u, v \in F_{2}^{m}$.
(\Longleftarrow) By Lemma 6.1.8, we obtain $K^{t} K=2^{m} I$. Setting $u=0$ in 6.2.1, we find

$$
\begin{aligned}
\left(K^{t} K\right)_{0 v} & =\frac{1}{2^{m}} \sum_{x \in F_{2}^{m}}(-1)^{v o x}\left|F_{x}\right|^{2} \\
& =\frac{1}{2^{m}} \sum_{x \in F_{2}^{m}}\left(H_{m}\right)_{v x} T_{x} \\
& =\frac{1}{2^{m}}\left(H_{m} T\right)_{v}
\end{aligned}
$$

where T is a column vector with columns indexed by F_{2}^{m} and entry $\left|F_{x}\right|^{2}$ for each $x \in F_{2}^{m}$. Then

$$
T=2^{m} H_{m}^{-1}\left(\begin{array}{c}
2^{m} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)_{2^{m} \times 1}=H_{m}\left(\begin{array}{c}
2^{m} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)_{2^{m} \times 1}=\left(\begin{array}{c}
2^{m} \\
2^{m} \\
\vdots \\
2^{m}
\end{array}\right)_{2^{m \times 1}}
$$

since the first column in H_{m} has all 1's entries. Hence $\left|F_{x}\right|^{2}=2^{m}$ for all $x \in F_{2}^{m}$. Then $\left|F_{x}\right|=2^{\frac{m}{2}}$ for all $x \in F_{2}^{m}$. By Note 6.2.2, f is a bent function.

Our next goal is to prove that if $f \in R_{m}$ is a bent function, then $\operatorname{deg}(f) \leq \frac{m}{2}$ with only exception $m=2$.

Lemma 6.2.7. Suppose $f\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in R_{m}$ and $g\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in R_{n}$ are bent functions. Then

$$
k\left(x_{1}, x_{2}, \cdots, x_{m}, y_{1}, y_{2}, \cdots, y_{n}\right):=f\left(x_{1}, x_{2}, \cdots, x_{m}\right)+g\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in R_{m+n}
$$ is a bent function.

Proof. View $w \in F_{2}^{m+n}$ as $w=\left(w_{1}, w_{2}\right)$ where $w_{1} \in F_{2}^{m}$ and $w_{2} \in F_{2}^{n}$. Then

$$
\begin{aligned}
K(w) & :=\sum_{v=\left(v_{1}, v_{2}\right) \in F_{2}^{m+n}}(-1)^{w \circ v+k(v)} \\
& =\sum_{v_{1} \in F_{2}^{m}, v_{2} \in F_{2}^{n}}(-1)^{w_{1} \circ v_{1}+w_{2} \circ v_{2}+f\left(v_{1}\right)+g\left(v_{2}\right)} \\
& =\left(\sum_{v_{1} \in F_{2}^{m}}(-1)^{w_{1} \circ v_{1}+f\left(v_{1}\right)}\right)\left(\sum_{v_{2} \in F_{2}^{n}}(-1)^{w_{2} \circ v_{2}+g\left(v_{2}\right)}\right) \\
& =F\left(w_{1}\right) G\left(w_{2}\right) \\
& =\left(\pm 2^{\frac{m}{2}}\right)\left(\pm 2^{\frac{n}{2}}\right) \\
& = \pm 2^{\frac{m+n}{2}}
\end{aligned}
$$

for all $w \in F_{2}^{m+n}$. Hence k is a bent function.
Definition 6.2.8. For a linear code $C \subseteq F_{2}^{m}$, we define
$C^{\perp}:=\left\{\left(t_{1}, t_{2}, \cdots, t_{m}\right) \mid t_{1} c_{1}+t_{2} c_{2}+\cdots+t_{m} c_{m}=0\right.$ for any $\left.c=\left(c_{1}, c_{2}, \cdots, c_{m}\right) \in C\right\}$.

The following is from linear algebra.
Note 6.2.9. $\operatorname{dim}\left(C^{\perp}\right)=m-\operatorname{dim}(C)$ for $C \subseteq F_{2}^{m}$.
We give an example that $C \cap C^{\perp} \neq \emptyset$.
Example 6.2.10. Suppose $C=\{(0,0),(1,1)\} \subseteq F_{2}^{2}$. Then $C^{\perp}=\{(0,0),(1,1)\} \subseteq F_{2}^{2}$.
Theorem 6.2.11. Suppose $C \subseteq F_{2}^{m}$ is a subspace. Then

$$
\sum_{u \in C} F(u)=|C| \sum_{v \in C^{\perp}}(-1)^{f(v)} .
$$

Proof. It is clear for the case $C=\{0\}$. Suppose $C \neq 0$ and fix $v \notin C^{\perp}$. Define an onto function $t_{v}: C \longrightarrow F_{2}$ by $t_{v}(u)=u \circ v$. Then t_{v} is linear and $\operatorname{dim}\left(\operatorname{ker}\left(t_{v}\right)\right)=\operatorname{dim}(C)-$ 1. (In fact, $C / \operatorname{ker}\left(t_{v}\right) \cong F_{2}$.) Thus $\left|t_{v}^{-1}(0)\right|=\left|t_{v}^{-1}(1)\right|=2^{|C|-1}$. So, $\sum_{u \in C}(-1)^{u \circ v}=0$.

Now

$$
\begin{aligned}
\sum_{u \in C} F(u) & =\sum_{u \in C} \sum_{v \in F_{2}^{m}}(-1)^{u o v+f(v)} \\
& =\sum_{v \in F_{2}^{m}} \sum_{u \in C}(-1)^{u o v+f(v)} \\
& =\sum_{v \in C^{\perp}} \sum_{u \in C}(-1)^{u o v+f(v)}+\sum_{v \notin C^{\perp}} \sum_{u \in C}(-1)^{u o v+f(v)} \\
& =\sum_{v \in C^{\perp}}(-1)^{f(v)}|C|+\sum_{v \notin C^{\perp}}(-1)^{f(v)}\left(\sum_{u \in C}(-1)^{u o v}\right) \\
& =|C| \sum_{v \in C^{\perp}}(-1)^{f(v)} .
\end{aligned}
$$

The following Lemma is a similar version of Theorem 4.3.8.
Lemma 6.2.12. Suppose $f=\sum_{\rho \subseteq[m]} f_{\rho} x_{\rho} \in R_{m}$ for some $f_{\rho} \in F_{2}$. Then

$$
f_{\sigma}=\sum_{w \in(1,1, \cdots, 1)+S_{\bar{\sigma}}} f(w)
$$

for any $\sigma \subseteq[m]$ with $|\sigma| \leq \operatorname{deg}(f)$.
Proof. If $\operatorname{deg}(f)=|\sigma|$, then we have shown in Theorem 4.3.8,

$$
f_{\sigma}=\sum_{w \in(1,1, \cdots, 1)+S_{\bar{\sigma}}} f(w) .
$$

Observe

$$
\begin{aligned}
& w \in(1,1, \cdots, 1)+S_{\bar{\sigma}} \\
\Longleftrightarrow & w_{i}=0 \text { for } i \notin \sigma \\
\Longrightarrow & x_{\rho}(w)=0 \text { for any }|\rho|>|\sigma|
\end{aligned}
$$

Hence the statement is true for any σ with $|\sigma| \leq \operatorname{deg}(f)$.
Theorem 6.2.13. If $f \in R_{m}$ is a bent function, then $f \in R M\left(\frac{m}{2}, m\right)$, where $m>2$ is even.

Proof. Suppose $f=\sum_{\rho \subseteq[m]} f_{\rho} x_{\rho}$ for $f_{\rho} \in F_{2}$. Let $\sigma \subseteq\{1,2, \cdots, m\}$ with $|\sigma|>\frac{m}{2}$. We want to show $f_{\sigma}=0$ with referring to notation in Definition 4.3.1, set $C=$ $(1,1, \cdots, 1)+S_{\bar{\sigma}}$. Observe $C \subseteq F_{2}^{m}$ is a subspace, $|C|=2^{|\sigma|}$ and $\left|C^{\perp}\right|=2^{m-|\sigma|}$. Note $F(u)=C_{u} 2^{\frac{m}{2}}$ for some $C_{u} \in\{-1,1\}$, since f is a bent function write $(-1)^{t(u)}=C_{u}$ or equivalently $C_{u}=1-2 t(u)$, where $t(u) \in F_{2}$. Then by Lemma 6.2.12 and Theorem 6.2.11,

$$
\begin{aligned}
f_{\sigma} & =\sum_{u \in C} f(u) \\
& =\sum_{u \in C} \frac{1-(-1)^{f(u)}}{2} \\
& =\frac{|C|}{2}-\frac{1}{2} \sum_{u \in C}(-1)^{f(u)} \\
& =\frac{|C|}{2}-\frac{1}{2\left|C^{\perp}\right|} \sum_{u \in C^{\perp}} F(u) \\
& =\frac{|C|}{2}-\frac{1}{2\left|C^{\perp}\right|} \sum_{u \in C^{\perp}} C_{u} 2^{\frac{m}{2}} \\
& =2^{|\sigma|-1}-2^{\frac{m}{2}-1}+2^{|\sigma|-\frac{m}{2}} \sum_{u \in C^{\perp}} t(u) \\
& =0 .
\end{aligned}
$$

7

Hexacode and Extended Binary
 Golay Code

7.1 Hexacode

In this section, we fix a finite field $F_{4}=\{0,1, x, 1+x\}$ where the multiplication is modulo $x^{2}+x+1$.

Definition 7.1.1. The map $-: F_{4} \longrightarrow F_{4}$ is defined by

$$
\overline{0}=0, \overline{1}=1, \bar{x}=x+1, \overline{x+1}=x
$$

and - is called the conjugate map in F_{4}.
The conjugate has similar properties as in \mathbb{C}.
Note 7.1.2. $a \cdot \bar{a} \in F_{2}, \overline{a b}=\bar{a} \cdot \bar{b}, \overline{a+b}=\bar{a}+\bar{b}$ and $\overline{\bar{a}}=a$ for any $a, b \in F_{4}$.
Definition 7.1.3. For any $\left(u_{1}, u_{2}, \cdots, u_{n}\right) \in F_{4}^{n},\left(v_{1}, v_{2}, \cdots, v_{n}\right) \in F_{4}^{n}$,

$$
u \bullet v:=u_{1} \overline{v_{1}}+u_{2} \overline{v_{2}}+\cdots+u_{n} \overline{v_{n}}
$$

is called the Hermition inner product of u and v.

Definition 7.1.4.

$$
H C=\operatorname{span}\{(1,0,0,1, x, \bar{x}),(0,1,0,1, \bar{x}, x),(0,0,1,1,1,1)\} \subseteq F_{4}^{6}
$$

is called the Hexacode over F_{4}.

Note 7.1.5. The length of $H C$ is 6 and the dimension of $H C$ is 3 and $H C^{\perp}=H C$.
Lemma 7.1.6. The minimum distance $d(H C)$ is 4 .
Proof. Since $H C^{\perp}=H C$, we obtain

$$
H C=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \left\lvert\,\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
\bar{x} & x & 1 \\
x & \bar{x} & 1
\end{array}\right)_{6 \times 3}=0\right.\right\} .
$$

Hence
$d(H C)=$ the minimum $w t(w)$ where $0 \neq w \in H C$
$=$ the least number of rows in $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ \bar{x} & x & 1 \\ x & \bar{x} & 1\end{array}\right)_{6 \times 3} \quad$ that are linear dependent
$=4$.

Note 7.1.7. $H C$ is $[6,3,4]$-linear code over F_{4}. Hence $d=n-k+1$.

Definition 7.1.8. An $[n, k, d]$-linear code with $d=n-k+1$ is called a maximum distance separable code. (MDS code.)

Note 7.1.9. Let $P H C$ be the code obtained by puncturing a coordinate of $H C$. Then $P H C$ is $[5,3,3]$-linear code.

Note 7.1.10. An $[n, k, d]-$ linear code over F_{q} is perfect if

$$
q^{k} \sum_{i=0}^{\left\lfloor\frac{d-1}{2}\right\rfloor}\binom{n}{i}(q-1)^{i}=q^{n}
$$

Note 7.1.11. By direct computation we have that $P H C$ is perfect.

Type (i)	Type (i)	Type (i)
$(0,1,0,1, \bar{x}, x)$	$(0, x, 0, x, 1, \bar{x})$	($0, \bar{x}, 0, \bar{x}, x, 1)$
$(0,1, \bar{x}, x, 0,1)$	$(0, x, 1, \bar{x}, 0, x)$	($0, \bar{x}, x, 1,0, \bar{x}$)
$(\bar{x}, x, 0,1,0,1)$	$(1, \bar{x}, 0, x, 0, x)$	$(x, 1,0, \bar{x}, 0, \bar{x})$
$(0,1,1,0, x, \bar{x})$	($0, x, x, 0, \bar{x}, 1)$	($0, \bar{x}, \bar{x}, 0,1, x)$
$(0,1, x, \bar{x}, 1,0)$	($0, x, \bar{x}, 1, x, 0)$	($0, \bar{x}, 1, x, \bar{x}, 0)$
$(\bar{x}, x, 1,0,1,0)$	$(1, \bar{x}, x, 0, x, 0)$	$(x, 1, \bar{x}, 0, \bar{x}, 0)$
$(1,0,0,1, x, \bar{x})$	$(x, 0,0, x, \bar{x}, 1)$	$(\bar{x}, 0,0, \bar{x}, 1, x)$
$(1,0, \bar{x}, x, 1,0)$	$(x, 0,1, \bar{x}, x, 0)$	$(\bar{x}, 0, x, 1, \bar{x}, 0)$
$(x, \bar{x}, 0,1,1,0)$	$(\bar{x}, 1,0, x, x, 0)$	$(1, x, 0, \bar{x}, \bar{x}, 0)$
$(1,0,1,0, \bar{x}, x)$	$(x, 0, x, 0,1, \bar{x})$	$(\bar{x}, 0, \bar{x}, 0, x, 1)$
$(1,0, x, \bar{x}, 0,1)$	$(x, 0, \bar{x}, 1,0, x)$	$\bar{x})$
$(x, \bar{x}, 1,0,0,1)$	$(\bar{x}, 1, x, 0,0, x)$	$(1, x, \bar{x}, 0,0, \bar{x})$
Type (ii)	Typ	Type (ii)
$(\bar{x}, x, \bar{x}, x, \bar{x}, x)$	$(1, \bar{x}, 1, \bar{x}, 1, \bar{x})$	($x, 1, x, 1, x, 1$)
$(\bar{x}, x, x, \bar{x}, x, \bar{x})$	$(1, \bar{x}, \bar{x}, 1, \bar{x}, 1)$	($x, 1,1, x, 1, x$)
$(x, \bar{x}, \bar{x}, x, x, \bar{x})$	$(\bar{x}, 1,1, \bar{x}, \bar{x}, 1)$	($1, x, x, 1,1, x)$
$(x, \bar{x}, x, \bar{x}, \bar{x}, x)$	$(\bar{x}, 1, \bar{x}, 1,1, \bar{x})$	($1, x, 1, x, x, 1)$
Type (iii)	Type (iii)	Type (iii)
(0, $0,1,1,1,1)$	$(0,0, x, x, x, x)$	$(0,0, \bar{x}, \bar{x}, \bar{x}, \bar{x})$
$(1,1,0,0,1,1)$	$(x, x, 0,0, x, x)$	$(\bar{x}, \bar{x}, 0,0, \bar{x}, \bar{x})$
$(1,1,1,1,0,0)$	$(x, x, x, x, 0,0)$	$(\bar{x}, \bar{x}, \bar{x}, \bar{x}, 0,0)$
Type (iv)	Type (iv)	Type (iv)
$(1,1, x, x, \bar{x}, \bar{x})$	$(x, x, \bar{x}, \bar{x}, 1,1)$	$(\bar{x}, \bar{x}, 1,1, x, x)$
$(1,1, \bar{x}, \bar{x}, x, x)$	$(x, x, 1,1, \bar{x}, \bar{x})$	$(\bar{x}, \bar{x}, x, x, 1,1)$

Table 7.1 List all nonzero elements of Hexacode.

Type	Representative	Number of codewords
(i)	$(0,1,0,1, \bar{x}, x)$	36
$(i i)$	$(\bar{x}, x, \bar{x}, x, \bar{x}, x)$	12
$(i i i)$	$(0,0,1,1,1,1)$	9
$(i v)$	$(1,1, x, x, \bar{x}, \bar{x})$	6

We divide the coordinates of each codeword into three blocks I, II, III, where block I (resp. II) (resp. III) contains coordinates 1,2 (resp. 3, 4) (resp. 5, 6), like

$$
\left(\frac{a, b}{\mathrm{I}}, \frac{c, d}{\mathrm{II}}, \frac{e, f}{\mathrm{III}}\right) .
$$

The codewords in each type are preserved by (a) a nonzreo scalor multiplication; (b) the permutation of blocks I, II, III, (c) the switch of the two coordinates in each of two blocks. Hence the number of type (i) codewords is 36 , the number of type (ii) codewords is 12 , the number of type (iii) codewords is 9 and the number of type (iv) codewords is 6 .

Example 7.1.12. If $\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}\right) \in H C$, then

$$
\left(x c_{1}, x c_{2}, x c_{3}, x c_{4}, x c_{5}, x c_{6}\right),\left(c_{3}, c_{4}, c_{1}, c_{2}, c_{5}, c_{6}\right),\left(c_{1}, c_{2}, c_{4}, c_{3}, c_{6}, c_{5}\right)
$$

all have the same type as $\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}\right)$ in $H C$.

7.2 Extended Binary Golay Code

We use Hexacode to define the extended binary Golay code in this section.
Definition 7.2.1. For a vector $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right) \in F_{2}^{n}$, the parity of u is $\sum_{i=1}^{n} u_{i} \in$ F_{2}.

Definition 7.2.2. Let $F_{2}^{4 \times 6}$ denoted the set of 4×6 matrices over F_{2}.

$$
\begin{aligned}
E B G C:=\left\{A \in F_{2}^{4 \times 6} \quad \mid\right. & (0,1, x, \bar{x}) A \in H C \text { and each column of } A \\
& \text { has the same parity as the first row }\}
\end{aligned}
$$

is called the Extended Binary Golay code. Parity (A), the parity of the first row of A, is called the parity of A over F_{2}.

Example 7.2.3. Suppose the matrix

$$
A=\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)_{4 \times 6}
$$

over $F_{2}^{4 \times 6}$. Then $(0,1, x, \bar{x}) A=(0,1,0,1, \bar{x}, x)$ is the type (i) of $H C$ and $\operatorname{parity}(A)=1$ over F_{2}. Hence $A \in E B G C$.

The following property will be used later.

Note 7.2.4. Suppose

$$
(0,1, x, \bar{x})\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=y
$$

for some $y \in\{0,1, x, \bar{x}\}$. The number of solution of such $(a, b, c, d) \in F_{2}^{4}$ has 2 with odd parity and 2 with even parity over F_{2}.

Example 7.2.5. Suppose $y=0$ in Note 7.2.4. Then

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

has even parity and

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)
$$

has odd parity over F_{2}.
Theorem 7.2.6. The $E B G C$ is $[24,12,8]$-linear code over F_{2}.
Proof. Clearly the codewords of $E B G C$ has length $24=4 \times 6$. We prove

$$
\operatorname{dim}(E B G C)=12
$$

by showing $|E B G C|=2^{12}$. Note $|H C|=64=2^{6}$. First, we count those $A \in E B G C$ with even parity over F_{2}. For each $u \in H C$, to determine A with $(0,1, x, \bar{x}) A=u$ and $\operatorname{Parity}(A)=0$, there are two choices for each of the first 5 columns of A by Note 7.2.4, however there is only one choice for the last column to have parity 0 in the first row. Hence there are 2^{11} such $A \in E B G C$ with $\operatorname{parity}(A)=0$. Similarly for the number of $A \in E B G C$ with $\operatorname{Parity}(A)=1$. Hence

$$
|E B G C|=2^{12}
$$

Claim: $d(E B G C)=8$. Fix $A \in E B G C$ with $A \neq 0$.
Case 1: $\operatorname{Parity}(A)=0$ and $(0,1, x, \bar{x}) A \neq 0$: Since $H C$ is $[6,3,4]$-linear code, by $d(H C)=w t((0,1, x, \bar{x}) A) \geq 4$. And since the column of A has even weight, $w t(A) \geq 4 \times 2=8$.

Case 2: $\operatorname{Parity}(A)=0$ and $(0,1, x, \bar{x}) A=0$: Observe since the columns of A has even weight and $(0,1, x, \bar{x}) A=0$, there is at least one column of A is $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$. But the first row of A has even parity. Then A has at least 2 such columns. Hence $w t(A) \geq 8$.

Case 3: $\operatorname{Parity}(A)=1$ and $(0,1, x, \bar{x}) A \neq 0$: Suppose $w t(A)<8$. Since $\operatorname{parity}(A)=1$, there are at most two kinds of weights of the columns in A, one has weight 1 and the other has weight 3 . In fact every column has weight 1 , since we assume $w t(A)<8$. Note that $w t((0,1, x, \bar{x}) A) \geq 4$ by Note 7.1.7. Hence the first row of A has weight 1 . This implies $w t((0,1, x, \bar{x}) A)=5$. But there is no Hexacodeword of weight 5 from Table 7.1. Then $w t(A) \geq 8$.

Case 4: $\operatorname{Parity}(A)=1$ and $(0,1, x, \bar{x}) A=0$: Each column has weight at least 1 and the parity of the first row of A is 1 such that there is at least a column of weight 3 . Hence A has weight at least 8 .

7.3 Decoding in Extended Binary Golay Code

Note 7.3.1. Suppose $(0,1, x, \bar{x})\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right)=(0,1, x, \bar{x})\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right)$ and $\sum_{i=1}^{4} a_{i}=\sum_{i=1}^{4} b_{i}$ in F_{2}.
Then $a_{i}=b_{i}$ for all i or $a_{i}=\overline{b_{i}}$ for all i in F_{2}.

Note 7.3.2. With restriction to any 3 positions in the basis of $H C$, the 3 vectors are still linear independent.

Note 7.3.3. We know each Hexacodeword from its three positions.
Suppose we receive a codeword A and assume at most 3 errors in A where $A \in E B G C$.

Decoding Algorithm

(1) Compute the parity on each column of A.

Case 1: At least 4 columns with the same parity. Then these columns have correct parity and they might still have errors in these columns.

Case 1.1: There are 4 columns with the same parity. Go to (2).
Case 2: 3 columns with odd parity and 3 columns with even parity. Guess any one of the parity. Go to (2).
(2) Project the columns you think are correct in A into a partition of a Hexacodeword. Since a Hexacodeword is unique determined by its three positions, this partition will determine the complete Hexacodeword, possible with some correction. If there is no such Hexacodeword in Table 7.1, then we have wrong guess in Case 2, so we guess again the parity and do the process (2) again.
(3) Use the Hexacodeword obtained in (2) to determine the correct A by using the correct parity information.
Example 7.3.4. Receive $A=\left(\begin{array}{llllll}1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1\end{array}\right)_{4 \times 6}$, and assume at most 3 errors in A. We do the following.
(1) Guess those columns with odd parity are with correct parity.
(2) Observe $(0,1, x, \bar{x})^{*}\left(\begin{array}{llllll}* & * & 0 & * \\ * & 0 & * & 0 & 0 & * \\ * & 0 & * & 1 & 0 & * \\ * & 1 & * & 0 & 1 & *\end{array}\right)_{4 \times 6}=(*, \bar{x}, *, x, \bar{x}, *)$ is contained in type (i)
of $H C$ in Table 7.1. Suppose the Hexacodeword is $(0, \bar{x}, 1, x, \bar{x}, 0)$.
(3) Hence $A=\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0\end{array}\right)_{4 \times 6}$, but the first row has parity 0 . Hence guess Wrongly, so we reguess again.
(1) Guess those columns with even parity are with correct parity.
(2) Observe $(0,1, x, \bar{x})\left(\begin{array}{llllll}1 & * & 1 & * & * & 1 \\ 0 & * & 1 & * & * & 0 \\ 1 & * & 0 & * & * & 0 \\ 0 & * & 0 & * & * & 1\end{array}\right)_{4 \times 6}=(\bar{x}, *, 1, *, *, \bar{x})$ is contained in type (i)
of $H C$ in Table 7.1. Then the Hexacodeword is $(\bar{x}, 0,1, x, 0, \bar{x})$.
(3) Hence $A=\left(\begin{array}{llllll}1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)_{4 \times 6}$ is correct by checking the parity.

Note 7.3.5. Under at most 3 errors in the codeword A assumption, the decoding algorithm will find the exact codeword A. The reason is the minimum distance of $E B G C$ is 8 .

7.4 Remarks

The definition of extended binary Golay code is not standard. We refer the reader to standard text books [14],[1] of coding theory for the definition.

8

Convolutional Codes

A convolutional code is a code over rational functions. This will be clear after we see some definitions and notations.

8.1 Definition

Definition 8.1.1.

$$
F_{q}[x]:=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid a_{i} \in F_{q}, n \in \mathbb{N} \cup\{0\}\right\}
$$

is the set of polynomials over F_{q}.

Definition 8.1.2.

$$
F_{q}(x):=\left\{f(x) / g(x) \mid f(x), g(x) \in F_{q}[x] \text { and } g(x) \neq 0\right\}
$$

is the set of rational functions over F_{q}. Note that $F_{q}(x)$ is a field.

Definition 8.1.3.

$$
F_{q}((x)):=\left\{\sum_{i=M}^{\infty} a_{i} x^{i} \mid a_{i} \in F_{q} \text { and } M \in \mathbb{Z}\right\}
$$

is the set of formal power series.

Note 8.1.4. $F_{q}(x) \subsetneq F_{q}((x)) . F_{q}(x) \neq F_{q}((x))$ since they have different cardinality.

Example 8.1.5.

$$
\begin{aligned}
\frac{1}{x^{5}\left(1-x^{2}\right)} & =x^{-5}\left(1+x^{2}+x^{4}+\cdots\right) \\
& =x^{-5}+x^{-3}+x^{-1}+x+x^{3}+\cdots
\end{aligned}
$$

8.2 Convolutional Code

We give the definition of convolutional code now.

Definition 8.2.1. A subspace $C V \subseteq F_{q}(x)^{n}$ with dimension k over $F_{q}(x)$ is called an $[n, k]$ - convolutional code.

Although a codeword is an element in $F_{q}(x)^{n}$, we prefer the basis of $C V$ is chosen from $F_{q}[x]^{n}$.

Definition 8.2.2. $G(x) \in F_{q}[x]^{k \times n}$ is a polynomial generating matrix $(P G M)$ of $C V$ if the rows of $G(x)$ span $C V$.

Lemma 8.2.3. Let $C V \subseteq F_{q}(x)^{n}$ be a $k-$ subspace. Then there exists a basis

$$
G_{1}(x), G_{2}(x), \cdots, G_{k}(x) \in F_{q}[x]^{n}
$$

of $C V$.
Proof. Let

$$
\begin{gathered}
\left(g_{11}(x) / h_{11}(x), g_{12}(x) / h_{12}(x), \cdots, g_{1 n}(x) / h_{1 n}(x)\right), \\
\left(g_{21}(x) / h_{21}(x), g_{22}(x) / h_{22}(x), \cdots, g_{2 n}(x) / h_{2 n}(x)\right), \\
\vdots \\
\left(g_{k 1}(x) / h_{k 1}(x) g_{k 2}(x) / h_{k 2}(x), \cdots, g_{k n}(x) / h_{k n}(x)\right)
\end{gathered}
$$

$\in F_{q}(x)^{n}$ be a basis of $C V$, where $g_{i j}(x), h_{i j}(x) \in F_{q}[x]$. Let $h(x)$ be the least common multiple of $h_{i j}(x)$. Set $G_{i j}=h(x) \cdot \frac{g_{i j}(x)}{h_{i j}(x)}$. Then

$$
G_{i}(x):=\left(G_{i 1}(x), G_{i 2}(x), \cdots, G_{i n}(x)\right) \in F_{q}[x]^{n},
$$

and $G_{1}(x), G_{2}(x), \cdots, G_{k}(x) \in F_{q}[x]^{n}$ is a basis of $C V$.
Observe $C V=\left\{S(x) G(x) \mid S(x) \in F_{q}(x)^{k}\right\}$. So we want $G(x)$ as "simple" as possible. The following identification is used when we want to apply $C V$ to real world application.

Note 8.2.4. $F_{q}[x]^{k} \cong F_{q}^{k}[x]$.
Example 8.2.5. Suppose $k=3$. Then

$$
\left(1+x, 1+x^{2}, x+x^{3}\right)=(1,1,0)+(1,0,1) x+(0,1,0) x^{2}+(0,0,1) x^{3}
$$

8.3 Elementary rows and columns operations on

$$
G(x)
$$

Three elementary rows and columns operations (ERCO's) are as following:
(a) Interchange two columns(rows).

$$
\Longrightarrow \operatorname{det}\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)=-1
$$

(b) Add a polynomial $f(x) \in F_{q}[x]$ multiple a column(row) to another column(row).

$$
\Longrightarrow \operatorname{det}\left(\left(\begin{array}{cc}
1 & 0 \\
f(x) & 1
\end{array}\right)\right)=1
$$

(c) Multiple a column(row) by a nonzero element $\alpha \in F_{q}$

$$
\Longrightarrow \operatorname{det}\left(\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)\right)=\alpha .
$$

The matrices corresponding to $E R C O$'s are called elementary matrices. In the 2×2 cases, there are matrices of the forms $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ f(x) & 1\end{array}\right),\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)$, where $f(x) \in F_{q}[x]$ and $\alpha \in F_{q}$. The determinant of a elementary matrix is an element in F_{q}.

Definition 8.3.1. An $t \times t$ matrix $U(x)$ over $F_{q}[x]$ is unimodular if $0 \neq \operatorname{det}(U(x)) \in$ F_{q}.

We will show that each unimodular matrix is the product of elementary matrices.
Theorem 8.3.2. (Smith normal form theorem(SNF)) Let $G(x)$ be an $k \times n$ matrix over $F_{q}[x]$. Then $G(x)$ can be reduced to

$$
\left(\begin{array}{ccccc}
d_{1}(x) & & & & \\
& d_{2}(x) & & 0 & \\
& & \ddots & & \\
& & & d_{s}(x) & \\
& & 0 & & \\
& & & \ddots & \\
& & & & 0
\end{array}\right)_{k \times n}
$$

by ERCO's where $d_{1}(x)\left|d_{2}(x)\right| \cdots \mid d_{s}(x)$ are monic polynomial over F_{q}. The sequence $d_{1}(x), d_{2}(x), \cdots, d_{s}(x)$ is called the sequence of invariant factors of $G(x)$.
Proof. Suppose $G(x)=\left(\begin{array}{cccc}G_{11}(x) & G_{12}(x) & \cdots & G_{1 n}(x) \\ G_{21}(x) & G_{22}(x) & \cdots & G_{2 n}(x) \\ \vdots & & \\ G_{k 1}(x) & G_{k 2}(x) & \cdots & G_{k n}(x)\end{array}\right)_{k \times n}$. We do the following.
(a) Using rows interchanging and column interchanging, we assume $G_{11}(x)$ has minimal degree.
(b) Reduce the degree of $G_{1 i}(x)$ for $i \geq 2$ by adding a polynomial multiple of the first column to the i th column. Go to (a) until $G_{1 i}(x)=0$ for $i \geq 2$.
(c) Similar to (a) $\sim(\mathrm{b})$, we do until $G_{j 1}(x)=0$ for $j \geq 2$.
(d) After (c), it could be $G_{1 i}(x) \neq 0$. So do (a),(b),(c) again and again, until $G_{1 i}(x)=0$ and $G_{j 1}(x)=0$ for all $i, j \geq 2$.
(e) If $G_{11}(x) \nmid G_{i j}(x)$ for some i, j, then we add the first column to j th column and then add a polynomial multiple of the first row to decrease the degree of $G_{i j}(x)$ below the degree of $G_{11}(x)$. Repeat doing (a) $\sim(\mathrm{e})$ until $G_{11}(x) \mid G_{i j}(x)$ and $G_{11}(x)$ is monic.
(f) Do (a) $\sim(\mathrm{e})$ in the submatrix $G^{\prime}(x)$ where

$$
G(x)=\left(\begin{array}{cccc}
G_{11}(x) & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & G^{\prime}(x) & \\
0 & &
\end{array}\right)_{k \times n}
$$

Example 8.3.3. Suppose $G(x)=\left(\begin{array}{cc}x & x^{2} \\ x^{3} & x^{4}\end{array}\right)_{2 \times 2}$. Then $d_{1}(x)=x$ and $d_{2}(x)=0$.
Corollary 8.3.4. An unimodular matrix is a product of elementary matrices.

Proof. Let $U(x)$ be an $t \times t$ unimodular matrix. Then

$$
U(x)=E(x)\left(\begin{array}{cccc}
d_{1}(x) & & & 0 \\
& d_{2}(x) & & \\
& & \ddots & \\
0 & & & d_{t}(x)
\end{array}\right)_{t \times t} F(x)
$$

where $E(x), F(x)$ are product of elementary matrices. Hence

$$
\operatorname{det}(U(x))=\operatorname{det}(E(x)) \operatorname{det}(F(x)) d_{1}(x) d_{2}(x) \cdots d_{t}(x) \in F_{q}-\{0\}
$$

Thus

$$
d_{i}=d_{i}(x) \in F_{q}-\{0\} \text { for } i=1,2, \cdots, t
$$

and
$U(x)=E(x)\left(\begin{array}{ccccc}d_{1} & & & & 0 \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ 0 & & & & 1\end{array}\right)_{t \times t}\left(\begin{array}{lllll}1 & & & & 0 \\ & d_{2} & & & \\ & & 1 & & \\ & & & \ddots & \\ 0 & & & & 1\end{array}\right)_{t \times t} \ldots\left(\begin{array}{lllll}1 & & & & 0 \\ & 1 & & & \\ & & \ddots & \\ & & & 1 & \\ 0 & & & & d_{t}\end{array}\right)_{t \times t} F(x)$.

We need more notations of matrices.

Definition 8.3.5. Let A be an $n \times m$ matrix, $\alpha \subseteq[n]$ and $\beta \subseteq[m]$. We define $A[\alpha \mid \beta]$ to be the submatrix of A with size $|\alpha| \times|\beta|$, the rows in α and columns in β of A being chosen.

Example 8.3.6. Suppose $A=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 6 & 1 & 7 & 8 \\ 3 & 1 & 0 & 1 & 2\end{array}\right)_{3 \times 5}$. Then

$$
A[\{1,3\} \mid\{2,4,5\}]=\left(\begin{array}{lll}
2 & 4 & 5 \\
1 & 1 & 2
\end{array}\right)_{2 \times 3}
$$

Definition 8.3.7. Similarly to the Definition 8.3.5, we define $(a)-(e)$ as the following.
(a) $A[-\mid \beta]:=A[[n] \mid \beta]$.
(b) $A[\alpha \mid-]:=A[\alpha \mid[m]]$.
(c) $A(\alpha \mid \beta):=A[\bar{\alpha} \mid \bar{\beta}]$.
(d) $A(\alpha \mid \beta]:=A[\bar{\alpha} \mid \beta]$.
(e) $A[\alpha \mid \beta):=A[\alpha \mid \bar{\beta}]$.

We quote a theorem without proof.
Theorem 8.3.8. (Cauchy Binet Theorem) Let A, B be the matrices of size $n \times m$ and $m \times t$, respectively. Then

$$
\operatorname{det}(A B[\alpha \mid \beta])=\sum_{w \subseteq[m],|w|=|\alpha|}(\operatorname{det} A[\alpha \mid w])(\operatorname{det} B[w \mid \beta])
$$

when $\alpha \subseteq[n], \beta \subseteq[t]$ with $|\alpha|=|\beta|$.
Note 8.3.9. We give two special cases of Cauchy Binet Theorem.
(a) Suppose $\alpha=\{i\}$ and $\beta=\{j\}$. Then $(A B)_{i j}=\sum_{k=1}^{m} A_{i k} B_{k j}$.
(b) Suppose $\alpha=[n], \beta=[t]$ and $n=t=m$. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Definition 8.3.10. $\operatorname{det} A[\alpha \mid \beta]$ is called an $|\alpha|$-minor when $|\alpha|=|\beta|$.
Example 8.3.11. Suppose $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)_{2 \times 2}$. Then $1,2,3,4$ are 1-minors and -2 is 2-minor.

Corollary 8.3.12. Let $G(x)$ be an $k \times n$ matrix over $F_{q}[x]$. Then the invariant factors $d_{1}(x), d_{2}(x), \cdots, d_{s}(x)$ of $G(x)$ are unique. In fact,

$$
d_{i}(x)=\frac{k_{i}(x)}{k_{i-1}(x)}
$$

for $i=1,2, \cdots, s$ where $k_{0}(x):=1$ and $k_{i}(x):=$ the greatest common divisor of i-minors of $G(x)$.

Proof. Suppose $G(x)=E(x) D(x) F(x)$ where

$$
D(x)=\left(\begin{array}{cccccc}
d_{1}(x) & & & & & \\
& d_{2}(x) & & & 0 & \\
& & \ddots & & & \\
& & & d_{s}(x) & & \\
& & & & 0 & \\
& 0 & & & & \ddots \\
& & & & & \\
& & & & &
\end{array}\right)_{k \times n}
$$

in smith normal form and $E(x), F(x)$ are unimodular. By Theorem 8.3.8, $k_{i}^{D}(x) \mid$ $k_{i}(x)$ where $k_{i}^{D}(x)$ is the greatest common divisor of i-minors of $D(x)$. Note $D(x)=$ $E(x)^{-1} G(x) F(x)^{-1}$ and $E(x)^{-1}, F(x)^{-1}$ are polynomial matrices. Hence again,

$$
k_{i}(x) \mid k_{i}^{D}(x)
$$

Thus for $1 \leq i \leq s$,

$$
k_{i}(x)=k_{i}^{D}(x)=d_{1}(x) d_{2}(x) \cdots d_{i}(x) .
$$

Then for $1 \leq i \leq s$,

$$
d_{i}(x)=\frac{k_{i}(x)}{k_{i-1}(x)} .
$$

We see an example as following.

Example 8.3.13.

$$
\text { Suppose } A(x)=\left(\begin{array}{ccc}
x & x^{2} & x^{3} \\
x & 1 & x^{2} \\
x^{2} & x & x^{3}
\end{array}\right)_{3 \times 3} .
$$

$k_{1}(x)=\operatorname{gcd}\left\{x, x^{2}, x^{3}, x, 1, x^{2}, x^{2}, x, x^{3}\right\}=1$,
$k_{2}(x)=\operatorname{gcd}\left\{x-x^{3}, x^{3}-x^{4}, x^{4}-x^{3}, x^{2}-x^{4}, x^{4}-x^{5}, x^{5}-x^{4}, 0\right\}=x-1$,
$k_{3}(x)=x^{4}-x^{6}-x^{5}-x^{5}-x^{6}-x^{4}=0$.
Then $d_{1}(x)=\frac{1}{1}=1, d_{2}(x)=\frac{x-1}{1}=x-1, d_{3}(x)=\frac{0}{x-1}=0$. Hence, $1, x-1$ are invariant factors.

In the following, we introduce some $P G M$ of a $C V$ code which has good properties.
Definition 8.3.14. Let $G(x)$ be a $k \times n P G M$ of some $C V$. Then the maximum degree of k-minors of $G(x)$ is called internal degree of $G(x)$.

Example 8.3.15. Suppose $G(x)=\left(1+x^{2}, 1+x+x^{2}\right)$. Then

$$
\operatorname{int} \operatorname{deg}(G(x))=\max \left\{\operatorname{deg}\left(1+x^{2}\right), \operatorname{deg}\left(1+x+x^{2}\right)\right\}=2 \text {. }
$$

Example 8.3.16. Suppose $G(x)=\left(\begin{array}{ccc}1 & 0 & 1+x \\ 0 & 1 & x\end{array}\right)_{2 \times 3}$. Then

$$
\text { int } \operatorname{deg}(G(x))=\max \{\operatorname{deg}(1), \operatorname{deg}(x), \operatorname{deg}(-x-1)\}=1
$$

Definition 8.3.17. A $P G M G(x)$ is basic in $C V$ if $G(x)$ has the smallest internal degree among all $P G M$ of $C V$.

Before giving the characterization of basic $P G M$, we need some background from linear algebra.

Definition 8.3.18. Let A be an $n \times n$ matrix. Then $\operatorname{adj}(A)$ is an $n \times n$ matrix defined by $(\operatorname{adj}(A))_{i j}:=(-1)^{i+j} A(\{j\} \mid\{i\})$.

Example 8.3.19. Suppose $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)_{2 \times 2}$. Then $\operatorname{adj}(A)=\left(\begin{array}{cc}4 & -3 \\ -2 & 1\end{array}\right)_{2 \times 2}$.
Note 8.3.20. (Cramer's Rule) $A \cdot \operatorname{adj}(A) \equiv \operatorname{adj}(A) \cdot A=\operatorname{det}(A) \cdot I$.

Example 8.3.21.

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)\left(\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right)=\left(\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right) \\
& =\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right)=\operatorname{det}\left(\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)\right) \cdot I_{2} .
\end{aligned}
$$

Theorem 8.3.22. Suppose $G(x)$ is an $k \times n P G M$ of $C V \subseteq F_{q}(x)^{n}$. Then the following are equivalent.
(a) $G(x)$ is basis.
(b) Invariant factor of $G(x)$ are all 1's.
(c) gcd of k-minors of $G(x)$ is 1 .
(d) $\operatorname{rank}(G(\alpha))=k$ for any α in the algebraic closure $\overline{F_{q}}$.
(e) $G(x)$ has right inverse over $F_{q}[x]$.
$(f)($ predicable rule $) y(x)=z(x) G(x)$, where $y(x) \in F_{q}[x]^{k \times n}$ and $z(x) \in F_{q}(x)^{k \times k}$ $\Longrightarrow z(x) \in F_{q}[x]^{k \times k}$.
(g) $G(x)$ can be extended to an $n \times n$ unimodular matrix by adding more rows.

Proof.

$$
(a) \Longrightarrow(b) \operatorname{In} S N F \text { Theorem, }
$$

$$
\begin{aligned}
& G(x) \\
& =E(x) D(x) F(x)
\end{aligned}
$$

$$
\begin{aligned}
& =E(x)\left(\begin{array}{ccc}
d_{1}(x) & & 0 \\
& d_{2}(x) & \\
& & \ddots
\end{array}\right)
\end{aligned}
$$

where $F(x)=\binom{F_{1}(x)}{F_{2}(x)}$ and $F_{1}(x), F_{2}(x)$ are matrices over $F_{q}[x]$ of size $k \times n$, $(n-k) \times n$ respectively. Then

$$
F_{1}(x)=\left(\begin{array}{cccc}
d_{1}(x)^{-1} & & & 0 \\
& d_{1}(x)^{-1} & & \\
& & \ddots & \\
0 & & & d_{k}(x)^{-1}
\end{array}\right)_{k \times k} E(x)^{-1} G(x)
$$

is a $P G M$ of $C V$ with internal degree

$$
\operatorname{int} \operatorname{deg}(G(x))-\operatorname{deg}\left(d_{1}(x) d_{2}(x) \cdots d_{k}(x)\right)
$$

Since $G(x)$ is basic, $d_{1}(x)=d_{2}(x)=\cdots=d_{k}(x)=1$.
$(b) \Longrightarrow(c)$ Let $k_{i}(x)$ be the $g c d$ of i-minors of $G(x)$ and recall from Corollary 8.3.12, $d_{i}(x)=\frac{k_{i}(x)}{k_{i-1}(x)}$. Since $d_{i}(x)=1$ for all $i, k_{i}(x)=1$ for all i. In particular $k_{k}(x)=1$.
$(c) \Longrightarrow(e)$ Let $m_{1}(x), m_{2}(x), \cdots, m_{t}(x)$ be the k-minors of $G(x)$, where $t=$ $\binom{n}{k}$. By (c) we can pick $a_{i}(x) \in F_{q}[x]$ such that

$$
\sum_{i=1}^{t} a_{i}(x) m_{i}(x)=1
$$

By using Cramer's Rule to a $k \times k$ invertible submatrix of $G(x)$, for each i, there exists $H_{i}(x) \in F_{q}[x]^{n \times k}$ (filled with 0 for those rows outside the k rows in considering) such that

$$
G(x) H_{i}(x)=m_{i}(x) I_{k}
$$

Set $H(x)=\sum_{i=1}^{t} a_{i}(x) H_{i}(x)$. Then

$$
G(x) H(x)=\sum_{i=1}^{t} a_{i}(x) G(x) H_{i}(x)=\left(\sum_{i=1}^{t} a_{i}(x) m_{i}(x)\right) I_{k}=I_{k} .
$$

$(e) \Longrightarrow(f)$ Suppose $G(x) H(x)=I_{k}$ and $y(x)=z(x) G(x)$. Then

$$
z(x)=z(x) \cdot I_{k}=z(x) G(x) H(x)=y(x) H(x) \in F_{q}[x]^{k \times k} .
$$

$(f) \Longrightarrow(a)$ Suppose $G^{\prime}(x)$ is another $P G M$ of $C V$. Then $G^{\prime}(x)=z(x) G(x)$ for some $z(x) \in F_{q}(x)^{k \times k}$. Then $z(x) \in F_{q}[x]^{k \times k}$ by (f). Hence by Cauchy Binet Theorem, $\operatorname{int} \operatorname{deg}\left(G^{\prime}(x)\right) \geq \operatorname{int} \operatorname{deg}(G(x))$.
$(c) \Longrightarrow(d)$ Pick $\alpha \in \overline{F_{q}}$. Let $P(x) \in F_{q}[x]$ be the minimal polynomial of α. Then by assumption (c),

$$
P(x) \nmid \operatorname{det}(G(x)[-\mid \beta])
$$

for some $\beta \subseteq[n]$ with $|\beta|=k$. Hence

$$
\operatorname{det}(G(\alpha)[-\mid \beta]) \neq 0
$$

Then $\operatorname{rank}(G(\alpha)) \geq k$. Thus $\operatorname{rank}(G(\alpha))=k$.
$(d) \Longrightarrow(c)$ Suppose $g c d$ of k-minors is $P(x) \neq 1$. Then

$$
G(x) \xrightarrow{E R C O^{\prime} s}\left(\begin{array}{ccccc}
d_{1}(x) & & & 0 & \\
& d_{2}(x) & & & \\
& & \ddots & & 0 \\
0 & & & d_{k}(x) &
\end{array}\right)
$$

where $d_{k}(x) \neq 1$. Pick $\alpha \in \overline{F_{q}}$ such that $d_{k}(\alpha)=0$. Then
$\operatorname{rank}(G(\alpha))=\operatorname{rank}\left(\begin{array}{cccc}d_{1}(\alpha) & & 0 \\ & d_{2}(\alpha) & 0 & \\ & & \ddots & \\ & & & d_{k}(\alpha)\end{array}\right) \leq k-1$. We get a con-
tradiction.
$(b) \Longrightarrow(g)$

$$
\begin{aligned}
G(x) & =E(x) D(x) F(x) \\
& =E(x)\left(I_{k} 0\right)\binom{F_{1}(x)}{F_{2}(x)} \\
& =E(x) F_{1}(x),
\end{aligned}
$$

where

$$
F(x)=\binom{F_{1}(x)}{F_{2}(x)}
$$

and $F_{1}(x), F_{2}(x)$ are matrices over $F_{q}[x]$ of size $k \times n,(n-k) \times n$ respectively.

Set $G^{\prime}(x)=\binom{G(x)}{F_{2}(x)}$. Observe

$$
\begin{aligned}
G^{\prime}(x) & =\binom{E(x) F_{1}(x)}{F_{2}(x)} \\
& =\left(\begin{array}{cc}
E(x) & 0 \\
0 & I_{n-k}
\end{array}\right) F(x)
\end{aligned}
$$

is unimodular.
$(g) \Longrightarrow(b)$ Suppose $G^{\prime}(x)=\binom{G(x)}{*}$ is unimodular. Then $G(x)=I_{k}\left(I_{k} 0\right) G^{\prime}(x)$. Hence invariant factors of $G(x)$ are all 1's.

We will introduce another $P G M$ of a $C V$ code with good property.

Definition 8.3.23.

(a) The degree of a row is the maximal degree among all entries.
(b) The external degree $\operatorname{deg}(G(x))$ of $G(x) \in F_{q}[x]^{k \times n}$ is the sum of degrees of the rows of $G(x)$.
(c) $G(x)$ is reduced if $\operatorname{deg}(E(x) G(x)) \geq \operatorname{deg}(G(x))$ for any unimodular $k \times k$ matrix $E(x)$.

Note 8.3.24. $G(x)$ is reduced if the external degree of $G(x)$ can not be reduced by elementary rows operations ($E R O$'s).

Example 8.3.25. Suppose $G(x)=\left(1+x^{2} 1+x+x^{2}\right)_{1 \times 2}$. Observe the internal degree and external degree are equal to 2 .

Example 8.3.26. Suppose $G(x)=\left(\begin{array}{ccc}1 & 0 & x+1 \\ 0 & 1 & x\end{array}\right)_{2 \times 3}$. Observe the internal degree is equal to 1 and the external degree is equal to 2 . Note $G(x)$ is not reduced, since

$$
G(x)=\left(\begin{array}{ccc}
1 & 0 & x+1 \\
0 & 1 & x
\end{array}\right)_{2 \times 3} \xrightarrow{E R O^{\prime} s}\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & x
\end{array}\right){ }_{2 \times 3},
$$

and $\operatorname{deg}\left(\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & x\end{array}\right)_{2 \times 3}\right)=1<2$.
Definition 8.3.27. Let $G(x) \in F_{q}[x]^{k \times n}$ be a $P G M$ of $C V$. Let $e_{1}, e_{2}, \cdots, e_{k}$ be the degrees of rows $1,2, \cdots, k$ respectively in $G(x)$. By interchanging rows of $G(x)$, we assume $e_{1} \leq e_{2} \leq \cdots \leq e_{k}$. The leading coefficients matrix $\bar{G} \in F_{q}^{k \times n}$ is a matrix with $i j$-entry

$$
\bar{G}_{i j}:=\text { coefficients of } x^{e_{i}} \text { in } G_{i j}(x),
$$

where $G_{i j}(x)$ is the $i j$-entry of $G(x)$.

Example 8.3.28.

$$
\begin{gathered}
\\
G(x)=\left(\begin{array}{ccc}
1+x & 2 & 1+x^{2} \\
x & 2+x^{3} & x^{2}+x^{3}
\end{array}\right)_{2 \times 3} \\
\Longrightarrow \\
e_{1}=2 \text { and } e_{2}=3, \bar{G}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)_{2 \times 3}
\end{gathered}
$$

Note 8.3.29.

(a) The coefficient of $x^{e_{1}+e_{2}+\cdots+e_{k}}$ of $\operatorname{det}(G(x)[-\mid \beta])$ is $\operatorname{det}(\bar{G}[-\mid \beta])$.
(b) Internal degree of $G(x) \leq$ External degree of $G(x)$.

Theorem 8.3.30. Let $G(x)$ be a $k \times n P G M$ of $C V \subseteq F_{q}(x)^{n}$. Then the following are equivalent.
(a) $G(x)$ is reduced.
(b) $\operatorname{rank}(\bar{G})=k$.
(c)ext $\operatorname{deg}(G(x))=\operatorname{int} \operatorname{deg}(G(x))$.
(d) For every nonzero $z(x) \in F_{q}[x]^{k}, \operatorname{deg}(z(x) G(x))=\max e_{j}+\operatorname{deg}\left(z_{j}(x)\right)$ where the maximum is taking for all $1 \leq j \leq k$ such that $z_{j}(x) \neq 0$, the j-th entry of $z(x)$.

Proof. $\quad(a) \Longrightarrow(b)$ Suppose $\operatorname{rank}(\bar{G})<k$. Then there exists a nonzero vector $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right) \in F_{q}^{k}$ such that $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right) \bar{G}=0$. Suppose t is the largest integer such that $\alpha_{t} \neq 0$, and suppose $G(x)=\left(\begin{array}{c}G_{1}(x) \\ G_{2}(x) \\ \vdots \\ G_{k}(x)\end{array}\right)_{k \times n}$, where $\operatorname{deg}\left(G_{i}(x)\right)=$ e_{i} and $e_{1} \leq e_{2} \leq \cdots \leq e_{k}$. Set

$$
G_{t}^{\prime}(x):=\alpha_{1} G_{1}(x) x^{e_{t}-e_{1}}+\alpha_{2} G_{2}(x) x^{e_{t}-e_{2}}+\cdots+\alpha_{t} G_{t}(x) \in F_{q}[x]^{n} .
$$

Note that $\operatorname{deg}\left(G_{t}^{\prime}(x)\right)<\operatorname{deg}\left(G_{t}(x)\right)$. Hence

$$
\operatorname{ext} \operatorname{deg}\left(\begin{array}{c}
G_{1}(x) \\
\vdots \\
G_{t-1}(x) \\
G_{t}^{\prime}(x) \\
G_{t+1}(x) \\
\vdots \\
G_{k}(x)
\end{array}\right)<\operatorname{ext} \operatorname{deg}(G(x))
$$

a contradiction to $G(x)$ being reduced.
$(b) \Longrightarrow(c)$ Choose $\alpha \subseteq[n]$ with $|\alpha|=k$ such that

$$
\operatorname{det}(\bar{G}[-\mid \alpha]) \neq 0
$$

the coefficient of $x^{e_{1}+e_{2}+\cdots+e_{k}}$ in $\operatorname{det}(G(x)[-\mid \alpha])$. Hence

$$
\text { int } \operatorname{deg}(G(x)) \geq \text { ext } \operatorname{deg}(G(x))
$$

Thus, int $\operatorname{deg}(G(x))=$ ext $\operatorname{deg}(G(x))$.
$(c) \Longrightarrow(a)$ Let $E(x)$ be a $k \times k$ unimodular matrix.

$$
\begin{aligned}
\operatorname{ext} \operatorname{deg}(E(x) G(x)) & \geq \operatorname{int} \operatorname{deg}(E(x) G(x)) \\
& =\operatorname{int} \operatorname{deg}(G(x)) \\
& =\operatorname{ext} \operatorname{deg}(G(x))
\end{aligned}
$$

$(b) \Longleftrightarrow(d)$

$$
\begin{align*}
\operatorname{deg}(z(x) G(x)) & =\operatorname{deg}\left(z_{1}(x) G_{1}(x)+z_{2}(x) G_{2}(x)+\cdots+z_{k}(x) G_{k}(x)\right) \\
& \leq \max \operatorname{deg}\left(z_{j}(x) G_{j}(x)\right) \tag{8.3.1}\\
& =\operatorname{deg}\left(z_{t}(x) G_{t}(x)\right) \text { for some } t \in[k] .
\end{align*}
$$

Set $d:=\operatorname{deg}\left(z_{t}(x) G_{t}(x)\right)$ and α_{i} is the coefficient of $x^{d-e_{i}}$ in $z_{i}(x)$. Note that $\alpha_{t} \neq 0$ is the leading coefficient of $z_{t}(x)$, and $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right) \bar{G}$ is the coefficient row of x^{d} in $z(x) G(x)$. Hence
(b) holds
$\Longleftrightarrow\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right) \bar{G} \neq 0$ for any $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right) \neq 0$
$\Longleftrightarrow \operatorname{deg}(z(x) G(x))=d$
\Longleftrightarrow Equality holds in (8.3.1).

Definition 8.3.31. A $P G M G(x)$ of $C V$ is minimal if it has minimal external degree among all $P G M$ of $C V$.

We now introduce the third good $P G M$.

Theorem 8.3.32. APGM $G(x)$ is minimal in $C V$ if and only if $G(x)$ is reduced and basic.

Proof. (\Longleftarrow) Let $G_{0}(x)$ be a $P G M$ of $C V$. Then

$$
\begin{aligned}
\operatorname{ext} \operatorname{deg}\left(G_{0}(x)\right) & \geq \operatorname{int} \operatorname{deg}\left(G_{0}(x)\right) \\
& \geq \operatorname{int} \operatorname{deg}(G(x)) \quad \text { (since } G(x) \text { is basic) } \\
& =\operatorname{ext} \operatorname{deg}(G(x)) . \quad \text { (by Theorem 8.3.30(c)) }
\end{aligned}
$$

$(\Longrightarrow) G(x)$ is clearly reduced. Suppose a basic $P G M$ in $C V$ has internal degree m_{0}. Choose a basic $P G M G_{0}(x)$ with the least external degree among all $P G M$ with internal degree m_{0}.

Claim: $G_{0}(x)$ is reduced in $C V$.
Let $E(x)$ be a $k \times k$ unimodular matrix. Since

$$
\operatorname{int} \operatorname{deg}\left(E(x) G_{0}(x)\right)=\operatorname{int} \operatorname{deg}\left(G_{0}(x)\right)=m_{0}
$$

we have

$$
\operatorname{ext} \operatorname{deg}\left(E(x) G_{0}(x)\right) \geq \operatorname{ext} \operatorname{deg}\left(G_{0}(x)\right)
$$

This shows $G_{0}(x)$ is reduced.

$$
\begin{aligned}
m_{0} & =\operatorname{int} \operatorname{deg}\left(G_{0}(x)\right) \\
& \leq \operatorname{int} \operatorname{deg}(G(x)) \\
& \leq \operatorname{ext} \operatorname{deg}(G(x)) \\
& \leq \operatorname{ext} \operatorname{deg}\left(G_{0}(x)\right) \quad \text { (since } G(x) \text { is minimal) } \\
& =\operatorname{int} \operatorname{deg}\left(G_{0}(x)\right) \quad\left(\text { since } G_{0}(x)\right. \text { is reduced) } \\
& =m_{0} .
\end{aligned}
$$

Then int $\operatorname{deg}(G(x))=m_{0}$. So $G(x)$ is basic.

Example 8.3.33. Suppose $G(x)=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1+x & x & 1\end{array}\right)_{2 \times 4}$. Then with $C V=$ row space of $G(x)$ over $F_{2}(x)$, we have $e_{1}=0$ and $e_{2}=1$, ext $\operatorname{deg}(G(x))=e_{1}+e_{2}=1$, and $\operatorname{det}(G(x)[-\mid \alpha])=1+x, x, 1,-1,-x, 1-x$ for any α with $|\alpha|=2$. Hence int $\operatorname{deg}((G(x))=1$ is the gcd of 2-minors of $G(x)$. Hence $G(x)$ is basic by Theorem 8.3.22, and is reduced by Theorem 8.3.30. Then $G(x)$ is minimal by Theorem 8.3.32.

Definition 8.3.34. A degree of a $C V$ is the smallest possible internal degree of its PGM's.

Corollary 8.3.35. A degree of $C V$ is the smallest external degree of its $P G M$.

8.4 Forney Sequence and Free Distance

Theorem 8.4.1. The sequence of row degrees in increasing order are the same for all minimal $P G M^{\prime} s$ of $C V$.

Proof. Let $G(x), G^{\prime}(x)$ be minimal $P G M^{\prime}$ s with degree sequence $\left\{e_{i}\right\},\left\{f_{i}\right\}$ respectively for $i=1,2, \cdots, k$ in increasing order.

Claim: $e_{i} \leq f_{i}$ for all $i=1,2, \cdots, k$.
To the contrary, let t be the smallest integer such that $f_{t}<e_{t}$. Note that

$$
G^{\prime}(x)=z(x) G(x)
$$

for some $z(x) \in F_{q}(x)^{k \times k}$. In fact, $z(x) \in F_{q}[x]^{k \times k}$ by Theorem 8.3.22 (f) since $G(x)$ is basic and $G^{\prime}(x) \in F_{q}[x]^{k \times n}$. Suppose $z(x)=\left(z_{i j}(x)\right)_{k \times k}$. Since $G(x)$ is reduced,

$$
f_{j}=\max e_{i}+\operatorname{deg}\left(z_{j i}(x)\right)
$$

for $1 \leq j \leq k$ where the maximum is taking over all i with $z_{j i}(x) \neq 0$ by Theorem 8.3.30 (d). Then

$$
z_{i j}(x)=0
$$

if $i \geq t$ and $j \leq t$ (if $z_{j i}(x) \neq 0$, then $f_{j} \geq e_{i} \geq e_{t}>f_{t}$ is a contradiction). Then the first t rows of $G^{\prime}(x)$ are spanned by the first $t-1$ rows. This is a contradiction to $G^{\prime}(x)$ being a $P G M$. Similarly, $f_{i} \leq e_{i}$ for all i. Then $f_{i}=e_{i}$ for all i.

Definition 8.4.2. The sequence of row degrees of a minimal $P G M^{\prime}$'s of $C V$ in increasing order is called the Forney sequence of $C V$ and e_{k} is called the memory of $C V$.

Definition 8.4.3. Fix $L \in \mathbb{N} \cup\{0\}$.

$$
(C V)_{L}:=\left\{f(x) \in C V \cap F_{q}[x]^{n} \mid \operatorname{deg}(f(x)) \leq L\right\}
$$

Note that $(C V)_{L}$ is a linear code over F_{q} with codewords of length $(L+1) n$.
Definition 8.4.4. Let δ_{L} be the dimension of $(C V)_{L}$.
Theorem 8.4.5. Let $C V$ be a convolutional code with Forney sequence $e_{1} \leq e_{2} \leq \cdots \leq e_{k}$. Then
(a) $\delta_{L}=\sum_{i=1}^{k} \max \left\{L+1-e_{i}, 0\right\}$.
(b) $\sum_{L=0}^{\infty} \delta_{L} x^{L}=\frac{x^{e_{1}}+x^{e_{2}}+\cdots+x^{e^{k}}}{(1-x)^{2}}$.

Proof.
(a) Observe by Theorem 8.3.30 (d),

$$
\begin{aligned}
(C V)_{L} & =(C V)_{L} \cap F_{q}[x]^{n} \\
& =\left\{z(x) G(x) \in F_{q}[x]^{n} \mid z(x) \in F_{q}[x]^{k} \text { with } \operatorname{deg}(z(x) G(x)) \leq L\right\} \\
& =\left\{z(x) G(x) \in F_{q}[x]^{n} \mid z(x) \in F_{q}[x]^{k} \text { with } \max _{1 \leq i \leq k} e_{i}+\operatorname{deg}\left(z_{i}(x)\right) \leq L\right\}
\end{aligned}
$$

where $G(x)$ is a minimal $P G M$ with Forney sequence $e_{1}, e_{2}, \cdots, e_{k}$. Hence

$$
\operatorname{dim}\left((C V)_{L}\right)=\sum_{i=1}^{k} \max \left\{L+1-e_{i}, 0\right\}
$$

$$
\text { (b) } \begin{aligned}
& \frac{x^{e_{1}}+x^{e_{2}}+\cdots+x^{e^{k}}}{(1-x)^{2}} \\
= & \left(x^{e_{1}}+x^{e_{2}}+\cdots+x^{e_{k}}\right)\left(1+x+x^{2}+\cdots\right)\left(1+x+x^{2}+\cdots\right) \\
& =\sum_{L=0}^{\infty}\left(\sum_{i=1}^{k} \max \left\{L+1-e_{i}, 0\right\}\right) x^{L} \\
& =\sum_{L=0}^{\infty} \delta_{L} x^{L} .
\end{aligned}
$$

Definition 8.4.6. For $f(x) \in C V \cap F_{q}[x]^{n}, w t(f(x))$ is the sum of the number of nonzero coefficients in each position.

Example 8.4.7. $w t\left(2+x, x^{4}+x^{5}+x^{6}\right)=2+3=5$.
We now give the free distance of a $C V$ code.
Definition 8.4.8. $d_{\text {free }}(C V):=\min w t(f)$ for all $f(x) \in C V \cap F_{q}[x]^{n}$.

Lemma 8.4.9.

$$
d_{\text {free }}(C V) \leq \min _{L \geq 0} \max _{C}\left\{d(C) \mid C \text { is a }\left[(L+1) n, \delta_{L}\right]-\text { linear code over } F_{q}\right\}
$$

Proof. Observe $d_{\text {free }}(C V)=\min d\left((C V)_{L}\right)$, taking for all $L \geq 0$, and $(C V)_{L}$ is a $\left[(L+1) n, \delta_{L}\right]$-linear code. Hence, we have proved the lemma.
Example 8.4.10. Suppose $G(x)=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1+x & x & 1\end{array}\right)_{2 \times 4}$ and $C V$ is the row space of $G(x)$ over $F_{2}(x)$. Note that $G(x)$ is minimal. Hence $e_{1}=0, e_{2}=1$ and

$$
\begin{aligned}
\sum_{L=0}^{\infty} \delta_{L} x^{L} & =(1+x)\left(1+x+x^{2}+\cdots\right)\left(1+x+x^{2}+\cdots\right) \\
& =\sum_{L=0}^{\infty}((L+1)+L) x^{L} \\
& =\sum_{L=0}^{\infty}(2 L+1) x^{L}
\end{aligned}
$$

Thus $\delta_{L}=2 L+1$. Since $\delta_{0}=1,(C V)_{0}=\{(0,0,0,0),(1,1,1,1)\}$ is a $[4,1]-$ code over F_{2} with $d\left((C V)_{0}\right)=4$. Thus, $d_{\text {free }}(C V) \leq 4$ by Lemma 8.4.9

8.5 Wyner-Ash Convolutional Code

We consider a special $C V$ in this section.

Definition 8.5.1.

$$
\left.\begin{array}{rl}
& \tag{8.5.1}\\
G(x) & =\left(\begin{array}{ccccc}
1 & & & & 0 \\
\\
& 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1+x \\
0 & & & 1 & 1+x+x^{2} \\
& \\
& \in\left(F_{2}[x]\right)^{\left(2^{m}-1\right) \times 2^{m}}
\end{array} x^{2}+\cdots+x^{m}\right.
\end{array}\right)_{\left(2^{m}-1\right) \times 2^{m}}
$$

where the last column contains the polynomials of degrees at most m and at least 1 with the constant term 1 . Let $W A C V_{m}$ denote the row space of $G(x)$ over $F_{2}(x)$. Then $W A C V_{m}$ is called the m th Wyner-Ash convolutional code.

Lemma 8.5.2. $G(x)$ in (8.5.1) is basic.
Proof. This is clear from Theorem 8.3.22 since the determinant of the first $2^{m}-1$ columns is a $\left(2^{m}-1\right)$-minors with value 1 .

Lemma 8.5.3. $\operatorname{deg}\left(W A C V_{m}\right)=m$.
Proof. This is because of int $\operatorname{deg}(G(x))=m$ and $G(x)$ is basic.
It is clear that $G(x)$ is not minimal. The following example gives a minimal $P G M$ of $W A C V_{2}$

Example 8.5.4. For $m=2$. Suppose

$$
\begin{aligned}
& G(x)=\left(\begin{array}{llcc}
1 & 0 & 0 & 1+x \\
0 & 1 & 0 & 1+x^{2} \\
0 & 0 & 1 & 1+x+x^{2}
\end{array}\right)_{3 \times 4} \\
& \xrightarrow{E R O^{\prime} s}\left(\begin{array}{cccc}
1 & 0 & 0 & 1+x \\
-x & 1 & 0 & 1+x \\
-x & 0 & 1 & 1
\end{array}\right)_{3 \times 4} \\
& \xrightarrow{E R O^{\prime} s}\left(\begin{array}{cccc}
1 & 0 & 0 & 1+x \\
0 & 1 & 1 & x \\
-x & 0 & 1 & 1
\end{array}\right)_{3 \times 4} \\
& \xrightarrow{E R O^{\prime} s}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & x \\
x & 0 & 1 & 1
\end{array}\right)_{3 \times 4}
\end{aligned}
$$

Since
$\operatorname{ext} \operatorname{deg}\left(\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & x \\ x & 0 & 1 & 1\end{array}\right)\right)=0+1+1=2=\operatorname{int} \operatorname{deg}(G(x))=\operatorname{int} \operatorname{deg}\left(\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & x \\ x & 0 & 1 & 1\end{array}\right)\right)$,
$\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & x \\ x & 0 & 1 & 1\end{array}\right)$ is reduced by Theorem 8.3.30. $\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & x \\ x & 0 & 1 & 1\end{array}\right)$ is basic by Lemma
8.5.2. Then $\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & x \\ x & 0 & 1 & 1\end{array}\right)$ is minimal by Theorem 8.3.32.

We determine the free distance of $W A C V_{m}$.

Lemma 8.5.5. $d_{\text {free }}\left(W A C V_{m}\right)=3$.

Proof. $d_{\text {free }}\left(W A C V_{m}\right) \leq 3$ is clear from the first row of $G(x)$ in (8.5.1). Suppose $d_{\text {free }}\left(W A C V_{m}\right) \leq 2$. Say that $z(x) G(x)$ has weight ≤ 2, where $z(x) \in\left(F_{2}(x) 2^{2^{m}-1}\right.$. Then $z(x) \in\left(F_{2}[x]\right)^{2^{m}-1}$ by Theorem 8.3.22 (f) and since $G(x)$ is basic.

Case 1: If $z(x)$ has only one nonzero entry. Then $z(x) G(x)$ is a polynomial multiple of a row of $G(x)$. Hence $w t(z(x) G(x)) \geq 3$, a contradiction.

Case 2: If $z(x)$ has at least 3 nonzero entries. This is similar to Case 1.
Case 3: If $z(x)$ has exactly 2 nonzero entries $z_{i}(x), z_{j}(x)$ where $i<j$. Then

$$
z(x) G(x)=\left(\begin{array}{c}
0 \\
z_{i}(x) \\
0 \\
z_{j}(x) \\
0 \\
z_{i}(x) g_{i 2 m}(x)+z_{j}(x) g_{j 2^{m}}(x)
\end{array}\right)
$$

Note that $z_{i}(x) g_{i 2^{m}}(x)+z_{j}(x) g_{j 2^{m}}(x)=0$. Since $z(x) G(x)$ has weight at most 2 .
Note that $z_{i}(x)=x^{a}$ and $z_{j}(x)=x^{b}$ for some nonnegative integers a, b. Hence

$$
g_{i 2^{m}}(x) x^{a}+g_{j 2^{m}}(x) x^{b}=0 .
$$

Evaluating the lowest degree term, we find $x^{a}+x^{b}=0$. Hence $a=b$ and $x^{a}\left(g_{i 2^{m}}(x)+g_{j 2^{m}}(x)\right)=0$. Thus $g_{i 2^{m}}(x)=g_{j 2^{m}}(x)$, a contradiction.

Lemma 8.5.6. Every $\left[2^{m}, 2^{m}-m\right]$-linear code over F_{2} has minimal distance ≤ 2.
Proof. Let C be a $\left[2^{m}, 2^{m}-m\right]$-linear code over F_{2}. Let H be a $m \times 2^{m}$ matrix over F_{2} with the rows chosen from a basis of C^{\perp}. Then

$$
C=\left\{\left(a_{1}, a_{2}, \cdots, a_{2^{m}}\right) \mid H \cdot\left(a_{1}, a_{2}, \cdots, a_{2^{m}}\right)^{t}=0\right\}
$$

Observe

$$
\begin{aligned}
d(C) & =\text { the minimal number of linear dependent columns in } H . \\
& \leq 2,
\end{aligned}
$$

since either there are 2 same columns or the zero vector is a column of H.

Theorem 8.5.7. The Forney sequence of $W A C V_{m}$ is $0,0, \cdots, 0,1,1, \cdots, 1$, where the number of $0^{\prime} s$ is $2^{m}-1-m$ and the number of $1^{\prime} s$ is m.

Proof. Note that $e_{1}+e_{2}+\cdots+e_{2^{m}-1}=\operatorname{deg}\left(W A C V_{m}\right)=m$. We have done if we know all e_{i} at most 1. Suppose some $e_{i} \geq 2$. Then at least $2^{m}-m e_{i}$ are 0 . Recall that $\delta_{L}=\sum_{i=1}^{2^{m}-1} \max \left\{L+1-e_{i}, 0\right\}$. Hence

$$
\delta_{0}=\sum_{i=1}^{2^{m}-1} \max \left\{1-e_{i}, 0\right\} \geq 2^{m}-m
$$

By Lemma 8.5.6 every $\left[2^{m}, \delta_{0}\right]$ - linear code over F_{2} has minimum distance ≤ 2. Now by Lemma 8.4.9,

$$
\begin{aligned}
3=d_{\text {free }}\left(W A C V_{m}\right) & \leq d\left(W A C V_{m}\right)_{0} \\
& \leq 2
\end{aligned}
$$

where C runs from all $\left[2^{m}, \delta_{0}\right]$ - linear code, a contradiction.

Bibliography

[1] Richard E. Blahut, Algebraic Codes for Data Transmission, Cambridge University Press, Cambridge, 2003.
[2] R. A. Brualdi, Introductory Combinatorics, $4^{\text {th }}$ Ed., Pearson Prentics Hall, New Jersey, 2004.
[3] D. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications, $2^{\text {nd }}$ Ed., World Scientific, Singapore, 2000.
[4] A. G. D'yachkov, F. K. Hwang, A. J. Macula, P. A. Vilenkin, C. Weng, A Construction of Pooling Designs with Some Happy Surprises, Journal of Computational Biology, 12(8), 1127-1134, 2005.
[5] P. Erdös, P. Frankl and D. Füredi, Families of finite sets in which no set is covered by the union of r others. Israel J. Math. 51:79-89, 1985.
[6] T. Huang and C. Weng, A note on decoding of superimposed codes, Journal of Combinatorial Optimization, 7, 381-384, 2003.
[7] T. Huang and C. Weng, Pooling spaces and non-adaptive designs. Discrete Mathematics 282:163-169, 2004.
[8] H. Huang, Y. Huang and C. Weng, More on Pooling Spaces, preprint.
[9] W. H. Kautz and R. C. Singleton. Nonadaptive binary superimposed codes. IEEE Trans. Inform. Theory, 10:363-377, 1964.
[10] J. H. van Lint and R. M. Wilson, A Course in Combinatorics. Cambridge, Victoria, 1992.
[11] A, J. Macula, A simple construction of d-disjunct matrices with certain constant weights. Discrete Math. 162:311-312, 1996.
[12] A. J. Macula, Error-correcting nonadaptive group testing with d^{e}-disjunct matrices. Discrete Appl. Math. 80:217-222, 1997.
[13] H. Ngo and D. Du, New Constructions of Non-Adaptive and Error-Tolerance Pooling Designs, Discrete Math., 243:161-170, 2002.
[14] Vera Pless, Introduction to the Theory of Error-Correcting Codes John Wiley \& Sons, Inc, New York, 1998.

