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Abstract

Let Γ denote a distance-regular graph with Q-polynomial property. Assume the diam-

eter D of Γ is at least 3 and the intersection numbers a1 = 0 and a2 �= 0. We show the

following (i)-(iii) are equivalent.

(i) Γ is Q-polynomial and contains no parallelograms of length 3.

(ii) Γ is Q-polynomial and contains no parallelograms of any length i for 3 ≤ i ≤ D.

(iii) Γ has classical parameters (D, b, α, β) for some real constants b, α, β with b < −1.

When (i)-(iii) hold, we show that Γ has 3-bounded property. Using this property we

prove that the intersection number c2 is either 1 or 2, and if c2 = 1 then (b, α, β) =

(−2,−2, ((−2)D+1 − 1)/3).
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Chapter 1

Introduction

Distance-regular graphs were introduced by Biggs as a combinatorial generalization of

distance-transitive graphs in 1970. They became a popular topic after that Desarte

studied P -polynomial schemes [5], which are exactly the distance-regular graphs, mo-

tivated by problems of coding theory in his thesis. After that, Leonard proved that the

dual eigenvalues of a Q-polynomial distance-regular graph satisfy a recurrence relation

and derived explicit formulae of the intersection numbers [12]. With these formulae

it sheds light on the classification of Q-polynomial distance-regular graphs, as also

stated in the book of Eiichi Bannai and Tatsuro Ito on Algebraic Combinatorics I :

Association Schemes [1].

Brouwer, Cohen, and Neumaier found that the intersection numbers of most known

families of distance-regular graphs could be described in terms of four parameters

(D, b, α, β) [3, p. ix, p193]. They invented the term classical to describe such graphs.

The class of distance-regular graphs which have classical parameters is a special case

of distance-regular graphs with the Q-polynomial property [3, Corollary 8.4.2]. Note

that the converse is not true, since an ordinary n-gon has the Q-polynomial property,

but does not have classical parameters [3, Table 6.6]. Many authors proved the con-

verse under various additional assumptions. Let Γ denote a distance-regular graph

with diameter D ≥ 3 (See Chapter 2 for formal definitions.). Indeed assume Γ is Q-

polynomial. Then Brouwer, Cohen, Neumaier in [3, Theorem 8.5.1] show that if Γ is

a near polygon, with the intersection number a1 �= 0, then Γ has classical parameters.

Weng generalizes this result with a weaker assumption, without kites of length 2 or 3 in

Γ, to replace the near polygon assumption [23, Lemma 2.4]. For the complement case
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a1 = 0, Weng shows that Γ has classical parameters if (i) Γ contains no parallelograms

of length 3 and no parallelograms of length 4; (ii) Γ has the intersection number a2 �= 0;

and (iii) Γ has diameter d ≥ 4 [25, Theorem 2.11]. We improve the above result by

showing Theorem 3.2.1 in chapter 3.

Many authors study distance-regular graph Γ with a1 = 0 and other additional

assumptions. For example, Miklavič assumes Γ is Q-polynomial and shows Γ is 1-

homogeneous [13]; Koolen and Moulton assume Γ has degree 8, 9 or 10 and show that

there are finitely many such graphs [11]; Jurǐsić, Koolen and Miklavič assume Γ has

an eigenvalue with multiplicity equal to the valency, a2 �= 0, and the diameter d ≥ 4

to show a4 = 0 and Γ is 1-homogeneous [10].

In this thesis we aim at distance-regular graphs which have classical parameters

(D, b, α, β) and intersection numbers a1 = 0 and a2 �= 0. Since b < −1 [14], our work is

a part of the classification of classical distance-regular graphs of negative type [27]. It

worths to mention that all classical distance-regular graphs with b = 1 are classified by

Y. Egawa, A. Neumaier and P. Terwilliger independently (See [3, p195] for details). Let

Γ be a distance-regular graph which has classical parameters (D, b, α, β) and a1 = 0,

a2 �= 0, and D ≥ 3. It was previously known that Γ has 2-bounded property [26, 19].

By applying this to a strongly regular subgraph of Γ, we find an upper bound of c2 in

terms of an expression of b in chapter 4. After that we prove the 3-bounded property

of Γ in chapter 5. Finally we use the 3-bounded property to conclude that c2 = 1 or 2.

The following preprints and papers are included in this thesis:

1. Y. Pan, M. Lu, and C. Weng, Triangle-free distance-regular graphs, J. Algebr.

Comb., 27(2008), 23-34.

2. Y. Pan and C. Weng, 3-bounded Property in a Triangle-free Distance-regular

Graph, European Journal of Combinatorics, 29(2008), 1634-1642.

3. Y. Pan and C. Weng, A note on triangle-free distance-regular graphs with a2 �= 0,

preprint (2007), submitted to Journal of Combinatorial Theory, Series B.

This thesis is organized as follows.
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In Chapter 2 we introduce definitions, terminologies and some results concerning

distance-regular graphs and block designs.

In Chapter 3 we discuss a combinatorial property of distance-regular graphs which

have classical parameters.

In Chapter 4 we work on distance-regular graphs with classical parameters and use

the multiplicity technique to find an upper bound of c2.

In Chapter 5 we prove the 3-bounded property of the distance-regular graphs.

In Chapter 6 we use the 3-bounded property and Fisher’s inequality to show the

upper bound c2 ≤ 2 of c2. This upper bound rules out almost all the graphs of our target

in the classification. Also we find that if c2 = 1, then (b, α, β) = (−2,−2, (−2)D+1−1
3

).
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Chapter 2

Preliminaries

In this chapter we review some definitions, basic concepts and some previous results

concerning distance-regular graphs and block designs. See Bannai and Ito [1] or Ter-

williger [20] for more background information of distance-regular graphs and van Lint

and Wilson [22] for block designs.

Let Γ=(X,R) denote a finite undirected, connected graph without loops or multiple

edges with vertex set X, edge set R, distance function ∂, and diameter D:=max{ ∂(x, y) |
x, y ∈ X}. By a pentagon, we mean a 5-tuple x1x2x3x4x5 consisting of vertices of Γ

such that ∂(xi, xi+1) = 1 for 1 ≤ i ≤ 4, ∂(x5, x1) = 1 and no other edges between two

distinct vertices.

For a vertex x ∈ X and an integer 0 ≤ i ≤ D, set Γi(x) := { z ∈ X | ∂(x, z) = i}.
The valency k(x) of a vertex x ∈ X is the cardinality of Γ1(x). The graph Γ is called

regular (with valency k) if each vertex in X has valency k.

An incidence structure is a triple (P, B, I), where P and B are two sets and I ⊆
P×B. The elements of P and B are called points and blocks respectively. If (p, B)∈ I,

then we say point p and block B are incident.

A t-(v, κ, λ) design is an incidence structure (P, B, I), where |P| = v, satisfying the

following conditions:

• For each block B ∈ B, there are exactly κ points incident with B.

• For two distinct blocks B and B′, there exists a point p incident with B, but p
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is not incident with B′.

• For any set T of t points, there are exactly λ blocks incident with all points of T .

It is easy to prove that the number of blocks incident with any fixed point p of

P is the same [22, Theorem 19.3] and is called the replication number of the design.

Actually the number is λ
(

v−1
t−1

)
/
(

k−1
t−1

)
.

2.1 Distance-regular Graphs

A graph Γ = (X, R) is said to be distance-regular whenever for all integers 0 ≤ h, i, j ≤
D, and all vertices x, y ∈ X with ∂(x, y) = h, the number

ph
ij = |Γi(x) ∩ Γj(y)|

is independent of x, y. The constants ph
ij are known as the intersection numbers of Γ.

Let Γ=(X, R) be a distance-regular graph. For two vertices x, y ∈ X with ∂(x, y) =

i, set

B(x, y) := Γ1(x) ∩ Γi+1(y),

C(x, y) := Γ1(x) ∩ Γi−1(y),

A(x, y) := Γ1(x) ∩ Γi(y).

Note that

|B(x, y)| = pi
1 i+1,

|C(x, y)| = pi
1 i−1,

|A(x, y)| = pi
1 i

are independent of x, y.

For convenience, set ci := pi
1 i−1 for 1 ≤ i ≤ D, ai := pi

1 i for 0 ≤ i ≤ D, bi := pi
1 i+1

for 0 ≤ i ≤ D − 1, ki := p0
i i for 0 ≤ i ≤ D, and set bD := 0, c0 := 0, k := b0. Note that

k is the valency of Γ. It follows immediately from the definition of ph
ij that bi �= 0 for

0 ≤ i ≤ D − 1 and ci �= 0 for 1 ≤ i ≤ D. Moreover

k = ai + bi + ci for 0 ≤ i ≤ D, (2.1.1)
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and

ki =
b0 · · · bi−1

c1 · · · ci

for 1 ≤ i ≤ D. (2.1.2)

A strongly regular graph is a distance-regular graph with diameter 2. We quote a

couple of Lemmas about strongly regular graphs which will be used in Chapter 4 and

Chapter 6.

Lemma 2.1.1. [22, Theorem 21.1] Suppose Ω is a strongly regular graph with inter-

section numbers ai, bi, ci, where 0 ≤ i ≤ 2. Let v = |Ω| and k = b0. Suppose that

r ≥ s are the eigenvalues other than k. Let f and g be the multiplicities of r and s

respectively. Then

f =
1

2
(v − 1 +

(v − 1)(c2 − a1) − 2k√
(c2 − a1)2 + 4(k − c2)

) (2.1.3)

and

g =
1

2
(v − 1 − (v − 1)(c2 − a1) − 2k√

(c2 − a1)2 + 4(k − c2)
) (2.1.4)

are nonnegative integers.

Proof. Let A be the adjacency matrix of Ω, J be the v by v all-one matrix, and j be

the v by 1 all-one vector. We have AJ = kJ , Aj = kj, and A2 = kI + a1A + c2(J −
I − A) by direct computation. Note that k is an eigenvalue of A with eigenvector j

whose multiplicity is one since Ω is connected. Suppose that x is an eigenvalue with

eigenvector orthogonal to j. Then

x2 + (c2 − a1)x + (c2 − k) = 0. (2.1.5)

Equation (2.1.5) has two solutions

r, s =
1

2
(a1 − c2 ±

√
(a1 − c2)2 + 4(k − c2) ). (2.1.6)

Since f and g are multiplicities of r and s respectively, we have the following two

equations.

1 + f + g = v (2.1.7)

and

0 = tr(A) = k + fr + gs. (2.1.8)
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Solving (2.1.7) and (2.1.8) for f, g by (2.1.6), we have (2.1.3) and (2.1.4). It is obvious

that f and g are nonnegative integers.

Lemma 2.1.2. [2, p. 276, Theorem 19] Let Ω be a strongly regular graph with valency

b0 = k, a1 = 0, and c2 = 1. Then k ∈ {2, 3, 7, 57}. �

Proof. Note that c1 = 1 and b1 = k−a1−c1 = k−1. Then v := |Ω| = 1+k1+k2 = 1+k2.

Substituting v, c2 and a1 into (2.1.3) we have

f =
1

2
( k2 +

k2 − 2k√
4k − 3

). (2.1.9)

Equation (2.1.9) implies k2 − 2k = 0 or 4k − 3 = s2 for some integer s since f is a

nonnegative integer. If k2 − 2k = 0 then k = 2. Suppose 4k − 3 = s2, then

k =
s2 + 3

4
. (2.1.10)

Substituting (2.1.10) into (2.1.9) yields

s5 + s4 + 6s3 − 2s2 + (9 − 32f)s = 15. (2.1.11)

Hence s is a factor of 15. The result follows from substituting s into k and deleting

the case k = 1.

Example 2.1.3. The Petersen graph shown in Figure 2.1 is a strongly regular graph

with intersection numbers a1 = 0, a2 = 2, c1 = c2 = 1, b0 = 3, b1 = 2.
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Figure 2.1: Petersen graph.

Example 2.1.4. [3, p. 285](Hermitian forms graph Her2(D)) Let U denote a finite

vector space of dimension D over the field GF (4). Let H denote the D2-dimensional
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vector space over GF (2) consisting of the Hermitian forms on U . Thus f ∈ H if and

only if f(u, v) is linear in v, and f(v, u) = f(u, v) for all u, v ∈ U . Pick f ∈ H. We

define

rk(f) = dim(U \ Rad(f)),

where

Rad(f) = {u ∈ U | f(u, v) = 0 for all v ∈ U}.

Set X = H, and xy ∈ R if and only if rk(x− y) = 1 for all x, y ∈ X. Then Γ = (X, R)

is a distance-regular graph with diameter D and intersection numbers

ci =
2i−1(2i − (−1)i)

3
(1 ≤ i ≤ D), (2.1.12)

bi =
22D − 22i

3
(0 ≤ i ≤ D). (2.1.13)

By (2.1.1), (2.1.12) and (2.1.13) we have

ai =
22i−1 + (−1)i2i−1 − 1

3
(1 ≤ i ≤ D). (2.1.14)

Note that a1 = 0 and a2 = 3. It was shown in [9] that Γ is the unique distance-

regular graph with intersection numbers satisfying (2.1.12) and (2.1.13).

Example 2.1.5. [3, p. 372](Gewirtz graph) Suppose (P, B, I) is a 3-(22, 6, 1) design,

where I = {(p, B) | p ∈ P, B ∈ B, and p ∈ B}. Fix an element p of P. Let

X = {B ∈ B | p �∈ B} and R = {B1B2 | B1, B2 ∈ X and B1 ∩ B2 = ∅}. Then

Γ = (X, R) is a distance-regular graph which is known as Gewirtz graph. It is a

strongly regular graph with intersection numbers a1 = 0, a2 = 8, c1 = 1, c2 = 2,

b0 = 10, and b1 = 9. It was shown in [6] and [7] that Γ is the unique strongly regular

graph with intersection numbers satisfying b0 = 10, b1 = 9, c1 = 1, and c2 = 2.

Example 2.1.6. [3, Theorem 11.4.2](Witt graph M23) Suppose (P, B, I) is a 5-(24, 8, 1)

design where I = {(p, B) | p ∈ P, B ∈ B, and p ∈ B}. Fix a point σ ∈ P, and let B′ be

the collection of 506 blocks in B missing σ. Then (P \ {σ}, B′) is a 4-(23, 8, 4) design.

Let X = B′ and R = {B1B2 | B1 ∩B2 = ∅ for distinct B1, B2 ∈ X}. Then Γ = (X, R)

is a distance-regular graph which is known as Witt graph M23. It has diameter D = 3

and intersection numbers a1 = 0, a2 = 2, a3 = 6, c1 = c2 = 1, c3 = 9, b0 = 15, b1 = 14

8



and b2 = 12. It was shown in [3, Theorem 11.4.2] that Γ is the unique distance-regular

graph of diameter 3 with intersection numbers satisfying b0 = 15, b1 = 14, b2 = 12,

c1 = c2 = 1, and c3 = 9.

Throughout this chapter we assume Γ=(X, R) is a distance-regular graph.

Definition 2.1.7. Pick an integer 2 ≤ i ≤ D. By a parallelogram of length i in Γ, we

mean a 4-tuple xyzw of vertices of X such that

∂(x, y) = ∂(z, w) = 1, ∂(x, z) = i,

∂(x, w) = ∂(y, w) = ∂(y, z) = i − 1.

For a parallelogram of length i, see Figure 2.2.

i − 1
�
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�

�
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��

1

�
�

�
�

�
��

i − 1

i − 1
�

�
�

�
�

��

1

� �

��

y z

wx

Figure 2.2: A parallelogram of length i.

2.2 D-bounded Distance-regular Graphs

Assume Γ = (X, R) is distance-regular with diameter D ≥ 3. Recall that a sequence

x, y, z of vertices of Γ is geodetic whenever

∂(x, y) + ∂(y, z) = ∂(x, z).

Definition 2.2.1. A sequence x, y, z of vertices of Γ is weak-geodetic whenever

∂(x, y) + ∂(y, z) ≤ ∂(x, z) + 1.

Definition 2.2.2. A subset Ω ⊆ X is weak-geodetically closed if for any weak-geodetic

sequence x, y, z of Γ,

x, z ∈ Ω =⇒ y ∈ Ω.
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Weak-geodetically closed subgraphs are called strongly closed subgraphs in [18]. We

refer the readers to [17, 4, 9, 19, 26, 8] for information on weak-geodetically closed

subgraphs.

We make one more definition which will be used later.

Definition 2.2.3. Let Ω be a subset of X, and pick any vertex x ∈ Ω. Ω is said to be

weak-geodetically closed with respect to x, whenever for all z ∈ Ω and for all y ∈ X,

x, y, z are weak-geodetic =⇒ y ∈ Ω. (2.2.1)

Note that Ω is weak-geodetically closed with respect to a vertex x ∈ Ω if and only

if

C(z, x) ⊆ Ω and A(z, x) ⊆ Ω for all z ∈ Ω

[26, Lemma 2.3]. Also Ω is weak-geodetically closed if and only if for any vertex x ∈ Ω,

Ω is weak-geodetically closed with respect to x. The following theorems will be used

later in this thesis.

Theorem 2.2.4. [26, Theorem 4.6] Let Γ be a distance-regular graph with diameter

D ≥ 3. Let Ω be a regular subgraph of Γ with valency γ and set d := min{i | γ ≤ ci+ai}.
Then the following (i),(ii) are equivalent.

(i) Ω is weak-geodetically closed with respect to at least one vertex x ∈ Ω.

(ii) Ω is weak-geodetically closed with diameter d.

In this case γ = cd + ad.

Suppose (i) and (ii) hold. Then Ω is distance-regular, with diameter d, and inter-

section numbers

ci(Ω) = ci(Γ), (2.2.2)

ai(Ω) = ai(Γ) (2.2.3)

for 0 ≤ i ≤ d.
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Lemma 2.2.5. ([19, Lemma 2.6]) Let Γ be a distance-regular graph with diameter 2,

and let x be a vertex of Γ. Suppose a2 �= 0. Then the subgraph induced on Γ2(x) is

connected of diameter at most 3. �

Definition 2.2.6. Γ is said to be i-bounded whenever for all x, y ∈ X with ∂(x, y) ≤ i,

there is a regular weak-geodetically closed subgraph of diameter ∂(x, y) containing x, y.

The properties of D-bounded distance-regular graphs were studied in [24], and these

properties were used in the classification of classical distance-regular graphs of negative

type [27].

Theorem 2.2.7. ([26, Proposition 6.7],[19, Theorem 1.1]) Let Γ be a distance-regular

graph with diameter D ≥ 3. Suppose a1 = 0, a2 �= 0 and Γ contains no parallelograms

of length 3. Then Γ is 2-bounded. �

Theorem 2.2.8. ([26, Lemma 6.9],[19, Lemma 4.1]) Let Γ be a distance-regular graph

with diameter D ≥ 3. Suppose a1 = 0, a2 �= 0 and Γ contains no parallelograms of any

length. Let x be a vertex of Γ, and let Ω be a weak-geodetically closed subgraph of Γ

with diameter 2. Suppose there exists an integer i and a vertex u ∈ Ω ∩ Γi−1(x), and

suppose Ω ∩ Γi+1(x) �= ∅. Then for all t ∈ Ω, we have ∂(x, t) = i − 1 + ∂(u, t). �

Theorem 2.2.9. ([24, Corollary 2.2]) Let Γ = (X, R) denote a distance-regular graph

with diameter D. Suppose that Γ is D-bounded. For two distinct vertices x, y ∈ X,

there exists a unique regular weak-geodetically closed subgraph Δ(x, y) containing x and

y with diameter ∂(x, y). Furthermore, Δ(x, y) is a distance-regular graph. �

Let Γ = (X, R) denote a distance-regular graph with diameter D. Suppose that Γ

is D-bounded. For two distinct vertices x, y ∈ X, we use Δ(x, y) to denote the unique

weak-geodetically closed subgraph containing x and y with diameter ∂(x, y).
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Theorem 2.2.10. ([24, Lemma 2.6]) Let Γ denote a distance-regular graph with di-

ameter D. Suppose that Γ is D-bounded. Then

bi > bi+1 (0 ≤ i ≤ D − 1). (2.2.4)

Proof. For 0 ≤ i ≤ D − 1, pick x, y with ∂(x, y) = i + 1. Then Δ(x, y) is a distance-

regular graph with diameter i+1 by Theorem 2.2.9. Note that bi(Δ(x, y)) = bi−bi+1 �=
0. The result follows immediately.

2.3 Q-polynomial Property

Let Γ = (X, R) denote a distance-regular graph with diameter D ≥ 3. Let R denote

the real number field. Let MatX(R) denote the algebra of all the matrices over R with

the rows and columns indexed by the elements of X. For 0 ≤ i ≤ D let Ai denote the

matrix in MatX(R), defined by the rule

(Ai)xy =

⎧⎪⎨
⎪⎩

1, if ∂(x, y) = i;

0, if ∂(x, y) �= i
for x, y ∈ X.

We call Ai the distance matrices of Γ. We have

A0 = I, (2.3.1)

A0 + A1 + · · · + AD = J (J = all 1′s matrix), (2.3.2)

At
i = Ai for 0 ≤ i ≤ D (At

i means the transpose of Ai), (2.3.3)

AiAj =
D∑

h=0

ph
ijAh for 0 ≤ i, j ≤ D, (2.3.4)

AiAj = AjAi for 0 ≤ i, j ≤ D. (2.3.5)

Let M denote the subspace of MatX(R) spanned by A0, A1, . . . , AD. Then M is a

commutative subalgebra of MatX(R), and is known as the Bose-Mesner algebra of Γ.

12



By [3, p. 59, 64], M has a second basis E0, E1, . . . , ED such that

E0 = |X|−1J, (2.3.6)

EiEj = δijEi for 0 ≤ i, j ≤ D, (2.3.7)

E0 + E1 + · · · + ED = I, (2.3.8)

Et
i = Ei for 0 ≤ i ≤ D. (2.3.9)

The E0, E1, . . . , ED are known as the primitive idempotents of Γ, and E0 is known as

the trivial idempotent. Let E denote any primitive idempotent of Γ. Then we have

E = |X|−1

D∑
i=0

θ∗i Ai (2.3.10)

for some θ∗0, θ
∗
1, . . . , θ

∗
D ∈ R, called the dual eigenvalues associated with E.

Set V = R|X| (column vectors), and view the coordinates of V as being indexed by

X. Then the Bose-Mesner algebra M acts on V by left multiplication. We call V the

standard module of Γ. For each vertex x ∈ X, set

x̂ = (0, 0, . . . , 0, 1, 0, . . . , 0)t, (2.3.11)

where the 1 is in coordinate x. Also, let 〈 , 〉 denote the dot product

〈u, v〉 = utv for u, v ∈ V. (2.3.12)

Then referring to the primitive idempotent E in (2.3.10), we compute from (2.3.9)-

(2.3.12) that for x, y ∈ X,

〈Ex̂, Eŷ〉 = |X|−1θ∗i , (2.3.13)

where i = ∂(x, y).

Let ◦ denote the entry-wise multiplication in MatX(R). Then

Ai ◦ Aj = δijAi for 0 ≤ i, j ≤ D,

so M is closed under ◦. Thus there exists qk
ij ∈ R for 0 ≤ i, j, k ≤ D such that

Ei ◦ Ej = |X|−1

D∑
k=0

qk
ijEk for 0 ≤ i, j ≤ D.
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Γ is said to be Q-polynomial with respect to the given ordering E0, E1,. . ., ED of

the primitive idempotents, if for all integers 0 ≤ h, i, j ≤ D, qh
ij = 0 (resp. qh

ij �= 0)

whenever one of h, i, j is greater than (resp. equal to) the sum of the other two. Let

E denote any primitive idempotent of Γ. Then Γ is said to be Q-polynomial with

respect to E whenever there exists an ordering E0, E1 = E,. . ., ED of the primitive

idempotents of Γ, with respect to which Γ is Q-polynomial. If Γ is Q-polynomial with

respect to E, then the associated dual eigenvalues are distinct [20, p. 384].

The following theorem about the Q-polynomial property will be used in this thesis.

Theorem 2.3.1. [21, Theorem 3.3] Let Γ be Q-polynomial with respect to a primitive

idempotent E, and let θ∗0, . . . , θ
∗
D denote the corresponding dual eigenvalues. Then the

following (i), (ii) hold.

(i) For all integers 1 ≤ h ≤ D, 0 ≤ i, j ≤ D and for all x, y ∈ X such that

∂(x, y) = h,

∑
z∈X

∂(x,z)=i
∂(y,z)=j

Eẑ −
∑
z∈X

∂(x,z)=j
∂(y,z)=i

Eẑ = ph
ij

θ∗i − θ∗j
θ∗0 − θ∗h

(Ex̂ − Eŷ). (2.3.14)

(ii) For an integer 3 ≤ i ≤ D,

θ∗i−2 − θ∗i−1 = σ(θ∗i−3 − θ∗i ) (2.3.15)

for an appropriate σ ∈ R \ {0}. �

2.4 Classical Parameters

A distance-regular graph Γ is said to have classical parameters (D, b, α, β) whenever

the intersection numbers of Γ satisfy

ci =

[
i

1

](
1 + α

[
i − 1

1

])
for 0 ≤ i ≤ D, (2.4.1)

bi =

([
D

1

]
−

[
i

1

])(
β − α

[
i

1

])
for 0 ≤ i ≤ D, (2.4.2)
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where [
i

1

]
:= 1 + b + b2 + · · · + bi−1. (2.4.3)

Suppose Γ has classical parameters (D, b, α, β). Combining (2.4.1)-(2.4.3) with

(2.1.1), we have

ai =

[
i

1

](
β − 1 + α

([
D

1

]
−

[
i

1

]
−

[
i − 1

1

]))

=

[
i

1

](
a1 + α

(
1 −

[
i

1

]
−

[
i − 1

1

]))
for 0 ≤ i ≤ D. (2.4.4)

Example 2.4.1. Petersen graph shown in Figure 2.1 is a distance-regular graph which

has classical parameters (D, b, α, β) with D = 2, b = −2, α = −2 and β = −3, which

satisfies a1 = 0, a2 �= 0 and 1 = c2 < b(b + 1) = 2.

Example 2.4.2. [9] Hermitian forms graph Her2(D) is a distance-regular graph with

classical parameters (D, b, α, β) with b = −2, α = −3 and β = −((−2)D + 1), which

satisfies a1 = 0, a2 �= 0 and c2 = b(b + 1) = 2.

Example 2.4.3. [22, p. 237] Gewirtz graph is a distance-regular graph which has

classical parameters (D, b, α, β) with D = 2, b = −3, α = −2, β = −5, which satisfies

a1 = 0, a2 �= 0 and 2 = c2 < b(b + 1) = 6.

Example 2.4.4. [3, Table 6.1] Witt graph M23 is a distance-regular graph which has

classical parameters (D, b, α, β) with D = 3, b = −2, α = −2, β = 5, which satisfies

a1 = 0, a2 �= 0 and 1 = c2 < b(b + 1) = 2.

We list the parameters of the above examples in the following table for summary.

name D b α β a1 a2 c2

Petersen graph 2 −2 −2 −3 0 2 1

Hermitian forms graph Her2(D) D −2 −3 −((−2)D + 1) 0 3 2

Gewirtz graph 2 −3 −2 −5 0 8 2

Witt graph M23 3 −2 −2 5 0 2 1
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The following theorem characterizes the distance-regular graphs with classical pa-

rameters in an algebraic way.

Theorem 2.4.5. ([21, Theorem 4.2]) Let Γ denote a distance-regular graph with di-

ameter D ≥ 3. Choose b ∈ R \ {0,−1}. Then the following (i)-(ii) are equivalent.

(i) Γ is Q-polynomial with associated dual eigenvalues θ∗0, θ
∗
1, . . . , θ

∗
D satisfying

θ∗i − θ∗0 = (θ∗1 − θ∗0)
[
i

1

]
b1−i for 1 ≤ i ≤ D. (2.4.5)

(ii) Γ has classical parameters (D, b, α, β) for some real constants α, β. �

2.5 Block Designs

In this section we introduce some results of block designs which will be used in the

proof of Theorem 6.2.1.

Lemma 2.5.1. Let (P, B, I) be a 2-(v, κ, λ) design. Suppose |B| = b and r is the

replication number. Then bκ = vr.

Proof. Counting in two ways the number of pairs (x, B) ∈ I, where x ∈ P and B ∈ B,

the equality follows immediately.

The following famous theorem is known as Fisher’s inequality.

Theorem 2.5.2. [22, Theorem 19.6] For a 2-(v, κ, λ) design with b blocks and v > κ

we have b ≥ v. �

Proof. Let r denote the replication number and N denote the v × b incidence matrix

of the design. Then

NN t = (r − λ)I + λJ, (2.5.1)

where J is the v × v all-one matrix. Note that J has eigenvalues v and 0 with multi-

plicities 1 and v − 1 respectively. Hence the eigenvalues of NN t are λv + (r − λ) and

r − λ with multiplicities 1 and v − 1 respectively. This implies

det(NN t) = (λv + r − λ)(r − λ)v−1, (2.5.2)
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where det(NN t) denotes the determinant of NN t. Observe that

r =
λ(v − 1)

k − 1
> λ. (2.5.3)

By (2.5.2) and (2.5.3), NN t is invertible and has rank v. Note that

rank(NN t) ≤ rank(N) ≤ min{v, b}.

The assertion of the theorem follows immediately.

Corollary 2.5.3. For a 2-(v, κ, λ) design with replication number r we have r ≥ κ.

Proof. This is immediate from Lemma 2.5.1 and Theorem 2.5.2.
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Chapter 3

A Combinatorial Characterization

of Distance-regular Graphs with

Classical Parameters

The following theorem was shown in [25, Theorem 2.11].

Theorem 3.0.4. [25, Theorem 2.11] Let Γ = (X, R) denote a distance-regular graph

with diameter D ≥ 4 and intersection numbers a1 = 0, a2 �= 0. Suppose Γ is Q-

polynomial and contains no parallelograms of length 3 and no parallelograms of length

4. Then Γ has classical parameters (D, b, α, β) with b < −1.

In this chapter we show the same result holds for the case D = 3. Theorem 3.2.1

is the main result of this chapter.

3.1 Counting 4-vertex Configurations

To prove Theorem 3.2.1, our main theorem in this chapter, we need a couple of lemmas.

The first lemma is essentially given in [13, Theorem 5.2(i)], a proof is given here for

completeness.

Lemma 3.1.1. [13, Theorem 5.2(i)] Let Γ denote a Q-polynomial distance-regular

graph with diameter D ≥ 3 and intersection number a1 = 0. Fix an integer i for
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2 ≤ i ≤ D and three vertices x, y, z such that

∂(x, y) = 1, ∂(y, z) = i − 1, ∂(x, z) = i.

Then the quantity

si(x, y, z) := |Γi−1(x) ∩ Γi−1(y) ∩ Γ1(z)| (3.1.1)

is equal to

ai−1

(θ∗0 − θ∗i−1)(θ
∗
2 − θ∗i ) − (θ∗1 − θ∗i−1)(θ

∗
1 − θ∗i )

(θ∗0 − θ∗i−1)(θ
∗
i−1 − θ∗i )

. (3.1.2)

In particular (3.1.1) is independent of the choice of the vertices x, y, z.

Proof. Let si(x, y, z) denote the expression in (3.1.1) and set

�i(x, y, z) = |Γi(x) ∩ Γi−1(y) ∩ Γ1(z)|.

Observe

si(x, y, z) + �i(x, y, z) = ai−1. (3.1.3)

By (2.3.14) we have

∑
w∈X

∂(y,w)=i−1
∂(z,w)=1

Eŵ −
∑
w∈X

∂(y,w)=1
∂(z,w)=i−1

Eŵ = ai−1

θ∗i−1 − θ∗1
θ∗0 − θ∗i−1

(Eŷ − Eẑ). (3.1.4)

Taking the inner product of (3.1.4) with x̂ using (2.3.13) and the assumption a1 = 0,

we obtain

si(x, y, z)θ∗i−1 + �i(x, y, z)θ∗i − ai−1θ
∗
2 = ai−1

θ∗i−1 − θ∗1
θ∗0 − θ∗i−1

(θ∗1 − θ∗i ). (3.1.5)

Solving si(x, y, z) by using (3.1.3) and (3.1.5), we get (3.1.2).

By Lemma 3.1.1, si(x, y, z) is a constant for any vertices x, y, z with ∂(x, y) = 1,

∂(y, z) = i− 1, ∂(x, z) = i. Let si denote the expression in (3.1.1). Note that si = 0 if

and only if Γ contains no parallelograms of length i.

Lemma 3.1.2. Let Γ denote a distance-regular graph which has classical parameters

(D, b, α, β). Suppose intersection numbers a1 = 0 and a2 �= 0. Then α < 0 and b < −1.
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Proof. Since a1 = 0 and a2 �= 0, from (2.4.3) and (2.4.4) we have

−α(b + 1)2 = a2 − (b + 1)a1 = a2 > 0. (3.1.6)

Hence

α < 0. (3.1.7)

By direct computation from (2.4.1), we get

(c2 − b)(b2 + b + 1) = c3 > 0. (3.1.8)

Since

b2 + b + 1 > 0,

(3.1.8) implies

c2 > b. (3.1.9)

Using (2.4.1) and (3.1.9), we get

α(1 + b) = c2 − b − 1 ≥ 0. (3.1.10)

Hence b < −1 by (3.1.7) and b �= −1.

3.2 Combinatorial Characterization

The following theorem characterizes the distance-regular graphs with classical parame-

ters and a1 = 0, a2 �= 0 in a combinatorial way.

Theorem 3.2.1. Let Γ denote a distance-regular graph with diameter D ≥ 3 and

intersection numbers a1 = 0, a2 �= 0. Then the following (i)-(iii) are equivalent.

(i) Γ is Q-polynomial and contains no parallelograms of length 3.

(ii) Γ is Q-polynomial and contains no parallelograms of any length i for 3 ≤ i ≤ D.

(iii) Γ has classical parameters (D, b, α, β) for some real constants b, α, β with b < −1.
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Proof. (ii)⇒(i) This is clear.

(iii)⇒(ii) Suppose Γ has classical parameters. Then Γ is Q-polynomial with asso-

ciated dual eigenvalues θ∗0, θ∗1, . . . , θ∗D satisfying

θ∗i − θ∗0 = (θ∗1 − θ∗0)
[
i

1

]
b1−i for 1 ≤ i ≤ D. (3.2.1)

We need to prove si = 0 for 3 ≤ i ≤ D. To compute si in (3.1.2), observe from (3.2.1)

that

θ∗i−1 − θ∗i = (θ∗0 − θ∗1)b
1−i for 1 ≤ i ≤ D. (3.2.2)

Summing (3.2.2) for consecutive i, we find

(θ∗1 − θ∗i ) = (θ∗0 − θ∗1)(b
−1 + b−2 + · · · + b1−i), (3.2.3)

(θ∗1 − θ∗i−1) = (θ∗0 − θ∗1)(b
−1 + b−2 + · · · + b2−i), (3.2.4)

(θ∗2 − θ∗i ) = (θ∗0 − θ∗1)(b
−2 + b−3 + · · · + b1−i), (3.2.5)

(θ∗0 − θ∗i−1) = (θ∗0 − θ∗1)(b
0 + b−1 + · · · + b2−i) (3.2.6)

for 3 ≤ i ≤ D. Evaluating (3.1.2) by using (3.2.2)-(3.2.6), we find si = 0 for 3 ≤ i ≤ D.

(i)⇒(iii) Observe s3 = 0. Then by setting i = 3 in (3.1.2) and using the assumption

a2 �= 0, we find

(θ∗0 − θ∗2)(θ
∗
2 − θ∗3) − (θ∗1 − θ∗2)(θ

∗
1 − θ∗3) = 0. (3.2.7)

Set

b :=
θ∗1 − θ∗0
θ∗2 − θ∗1

. (3.2.8)

Then

θ∗2 = θ∗0 +
(θ∗1 − θ∗0)(b + 1)

b
. (3.2.9)

Eliminating θ∗2, θ∗3 in (3.2.7) using (3.2.9) and (2.3.15), we have

−(θ∗1 − θ∗0)
2(σb2 + σb + σ − b)

σb2
= 0 (3.2.10)

for an appropriate σ ∈ R \ {0}. Since θ∗1 �= θ∗0,

σb2 + σb + σ − b = 0,
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and hence

σ−1 =
b2 + b + 1

b
. (3.2.11)

By Theorem 2.4.5, to prove that Γ has classical parameters, it suffices to prove that

θ∗i − θ∗0 = (θ∗1 − θ∗0)
[
i

1

]
b1−i for 1 ≤ i ≤ D. (3.2.12)

We prove (3.2.12) by induction on i. The case i = 1 is trivial and the case i = 2 is

from (3.2.9). Now suppose i ≥ 3. Then (2.3.15) implies

θ∗i = σ−1(θ∗i−1 − θ∗i−2) + θ∗i−3 for 3 ≤ i ≤ D. (3.2.13)

Evaluating (3.2.13) using (3.2.11) and the induction hypothesis, we find that θ∗i − θ∗0 is

as in (3.2.12). Therefore, Γ has classical parameters (D, b, α, β) for some scalars α, β.

Note that b < −1 from Lemma 3.1.2.
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Chapter 4

An Upper Bound of c2

In this chapter we assume that Γ has classical parameters and intersection numbers

a1 = 0, a2 �= 0 to obtain the following theorem.

Theorem 4.0.2. Let Γ denote a distance-regular graph with diameter D ≥ 3 and

intersection numbers a1 = 0, a2 �= 0. Suppose Γ has classical parameters (D, b, α, β).

Then each of

b(b + 1)2(b + 2)

c2

,
(b − 2)(b − 1)b(b + 1)

2 + 2b − c2

(4.0.1)

is an integer. Moreover

c2 ≤ b(b + 1). (4.0.2)

Note that the bound in (4.0.2) will be improved to c2 ≤ 2 in Chapter 6.

4.1 Results from Simple Computations

Theorem 4.1.1. [26, Proposition 6.7, Theorem 4.6] Let Γ = (X, R) denote a distance-

regular graph with diameter D ≥ 3. Assume that the intersection numbers a1 = 0 and

a2 �= 0. Suppose that Γ contains no parallelograms of length 3. Then for each pair

of vertices v, w ∈ X at distance ∂(v, w) = 2, there exists a weak-geodetically closed

subgraph Ω of diameter 2 in Γ containing v, w. Furthermore Ω is strongly regular with
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intersection numbers

ai(Ω) = ai(Γ), (4.1.1)

ci(Ω) = ci(Γ), (4.1.2)

bi(Ω) = a2(Γ) + c2(Γ) − ai(Ω) − ci(Ω) (4.1.3)

for 0 ≤ i ≤ 2. �

Corollary 4.1.2. Let Γ denote a distance-regular graph which has classical parameters

(D, b, α, β), where D ≥ 3. Assume Γ has intersection numbers a1 = 0 and a2 �= 0.

Then there exists a weak-geodetically closed subgraph Ω of diameter 2. Furthermore the

intersection numbers of Ω satisfy

b0(Ω) = (1 + b)(1 − αb), (4.1.4)

b1(Ω) = b(1 − α − αb), (4.1.5)

c2(Ω) = (1 + b)(1 + α), (4.1.6)

a2(Ω) = −(1 + b)2α, (4.1.7)

|Ω| =
(1 + b)(bα − 2)(bα − 1 − α)

(1 + α)
. (4.1.8)

Proof. Observe b < −1 by Lemma 3.1.2 and Γ contains no parallelograms of length 3 by

Theorem 3.2.1. Hence there exists a weak-geodetically closed subgraph Ω of diameter

2 by Theorem 2.2.7. By applying (2.4.1), (2.4.2) and (2.4.4) to (4.1.1)-(4.1.3), we have

(4.1.4)-(4.1.7) immediately. Observe that |Ω| = 1 + k(Ω) + k(Ω)b1(Ω)/c2(Ω). (4.1.8)

follows from this and (4.1.4)-(4.1.6).

Proposition 4.1.3. [26, Proposition 3.2] Let Γ denote a distance-regular graph with

diameter D ≥ 3. Suppose there exists a weak-geodetically closed subgraph Ω of Γ with

diameter 2. Then the intersection numbers of Γ satisfy the following inequality

a3 ≥ a2(c2 − 1) + a1. (4.1.9)

�
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Corollary 4.1.4. Let Γ denote a distance-regular graph which has classical parameters

(D, b, α, β), where D ≥ 3. Suppose the intersection numbers a1 = 0 and a2 �= 0. Then

c2 ≤ b2 + b + 2. (4.1.10)

Proof. Applying a1 = 0 in (2.4.4), we have a3 = −α(b2+b+1)(b+1)2. Then by applying

(4.1.9) using Lemma 3.1.2, (4.1.1), and (4.1.7), the result follows immediately.

4.2 Multiplicity Technique

We will improve the upper bound of c2 in (4.1.10). We need the following lemma.

Lemma 4.2.1. Let Γ denote a distance-regular graph which has classical parameters

(D, b, α, β), where D ≥ 3. Assume the intersection numbers a1 = 0 and a2 �= 0. Let

Ω be a weak-geodetically closed subgraph of diameter 2 in Γ. Let r > s denote the

nontrivial eigenvalues of the strongly regular graph Ω. Then the following (i), (ii) hold:

(i) The multiplicity of r is

f =
(bα − 1)(bα − 1 − α)(bα − 1 + α)

(α − 1)(α + 1)
. (4.2.1)

(ii) The multiplicity of s is

g =
−b(bα − 1)(bα − 2)

(α − 1)(α + 1)
. (4.2.2)

Proof. Let v=|Ω| and k be the valency of Ω. Note that c2(Ω) = (1 + b)(1 + α) by

(2.4.1), k(Ω) = (1 + b)(1− αb) by (4.1.4), and v = (1 + b)(bα− 2)(bα− 1− α)/(1 + α)

by (4.1.8). Now (4.2.1) and (4.2.2) follow from (2.1.3) and (2.1.4).

Corollary 4.2.2. Let Γ denote a distance-regular graph which has classical parameters

(D, b, α, β), where D ≥ 3. Assume Γ has intersection numbers a1 = 0 and a2 �= 0. Then

b(b + 1)2(b + 2)

c2

(4.2.3)
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and

(b − 2)(b − 1)b(b + 1)

2 + 2b − c2

(4.2.4)

are both integers.

Proof. Let f and g be as (4.2.1) and (4.2.2). Set ρ=α(1 + b) = c2 − 1 − b being an

integer. Then both

f + g − (1 − 3b2 − bρ + b2ρ − b3) =
2b + 5b2 + 4b3 + b4

1 + b + ρ
=

b(b + 1)2(b + 2)

c2

and

f − g − (1 − 3b2 − bρ + b2ρ + b3) =
2b − b2 − 2b3 + b4

−1 − b + ρ
=

(b − 2)(b − 1)b(b + 1)

c2 − 2 − 2b

are integers since f , g, b and ρ are integers.

Proposition 4.2.3. Let Γ denote a distance-regular graph which has classical parame-

ters (D, b, α, β), where D ≥ 3. Assume Γ has intersection numbers a1 = 0 and a2 �= 0.

Then c2 ≤ b(b + 1).

Proof. Recall c2 ≤ b2 + b + 2 by (4.1.10). First, suppose

c2 = b2 + b + 2. (4.2.5)

Then the integral condition (4.2.3) becomes

b2 + 3b +
−4b

b2 + b + 2
. (4.2.6)

Since 0 < −4b < b2 + b + 2 for b ≤ −5, we have −4 ≤ b ≤ −2. For b = −4 or −3,

expression (4.2.6) is not an integer. The remaining case b=−2 implies α = −5 by

(4.1.6), v = 28 by (4.1.8) and g = 6 by (4.2.2). This contradicts to v ≤ 1
2
g(g + 3) [22,

Theorem 21.4]. Hence c2 �= b2 + b + 2. Next suppose c2 = b2 + b + 1. Then (4.2.4)

becomes

−b2 + b + 1 +
1

b2 − b − 1
. (4.2.7)

It fails to be an integer since b < −1.

Proof of Theorem 4.0.2:

The results come from Corollary 4.2.2 and Proposition 4.2.3. �
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Chapter 5

3-bounded Property

Let Γ denote a distance-regular graph which has classical parameters (D, b, α, β) and

D ≥ 3. Assume the intersection numbers a1 = 0 and a2 �= 0. Note that Γ contains no

parallelograms of any length by Theorem 3.2.1. We have known that Γ is 2-bounded.

We shall prove that Γ is 3-bounded in this chapter.

5.1 Weak-geodetically Closed with respect to a Ver-

tex

First we give a definition.

Definition 5.1.1. For any vertex x ∈ X and any subset C ⊆ X, define

[x, C] := {v ∈ X | there exists z ∈ C, such that ∂(x, v) + ∂(v, z) = ∂(x, z)}.

Throughout this section, fix two vertices x, y ∈ X with ∂(x, y) = 3. Set

C := {z ∈ Γ3(x) | B(x, y) = B(x, z)}

and

Δ = [x, C]. (5.1.1)

We shall prove Δ is a regular weak-geodetically closed subgraph of diameter 3. Note

that the diameter of Δ is at least 3. If D = 3 then C = Γ3(x) and Δ = Γ is clearly a

regular weak-geodetically closed graph. Thereafter we assume D ≥ 4. By referring to

Theorem 2.2.4, we shall prove Δ is weak-geodetically closed with respect to x, and the

subgraph induced on Δ is regular with valency a3 + c3.
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Lemma 5.1.2. For adjacent vertices z, z′ ∈ Γi(x), where i ≤ D, we have B(x, z) =

B(x, z′).

Proof. By symmetry, it suffices to show B(x, z) ⊆ B(x, z′). Suppose contradictory

there exists w ∈ B(x, z) \ B(x, z′). Then ∂(w, z′) �= i + 1. Note that ∂(w, z′) ≤
∂(w, x)+∂(x, z′) = 1+ i and ∂(w, z′) ≥ ∂(w, z)−∂(z, z′) = i. This implies ∂(w, z′) = i

and wxz′z forms a parallelogram of length i + 1, a contradiction.

It is known that Γ is 2-bound by Theorem 2.2.7. For two vertices z, s in Γ with

∂(z, s) = 2, let Ω(z, s) denote the regular weak-geodetically closed subgraph containing

z, s of diameter 2.

Lemma 5.1.3. Suppose stuzw is a pentagon in Γ, where s, u ∈ Γ3(x) and z ∈ Γ2(x).

Pick v ∈ B(x, u). Then ∂(v, s) �= 2.

Proof. Suppose contradictory ∂(v, s) = 2. Note ∂(z, s) �= 1, since a1 = 0. Note that

z, w, s, t, u ∈ Ω(z, s). Then s ∈ Ω(z, s) ∩ Γ2(v) and u ∈ Ω(z, s) ∩ Γ4(v) �= ∅. Hence

∂(v, z) = ∂(v, s) + ∂(s, z) = 2 + 2 = 4 by Theorem 2.2.8. A contradiction occurs since

∂(v, x) = 1 and ∂(x, z) = 2.

Lemma 5.1.4. Suppose stuzw is a pentagon in Γ, where s, u ∈ Γ3(x) and z ∈ Γ2(x).

Then B(x, s) = B(x, u).

Proof. Since |B(x, s)| = |B(x, u)| = b3, it suffices to show B(x, u) ⊆ B(x, s).

By Lemma 5.1.3,

B(x, u) ⊆ Γ3(s) ∪ Γ4(s).

Suppose

|B(x, u) ∩ Γ3(s)| = m,

|B(x, u) ∩ Γ4(s)| = n.

Then

m + n = b3. (5.1.2)
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By Theorem 2.3.1,

∑
r∈B(x,u)

Er̂ −
∑

r′∈B(u,x)

Er̂′ = b3
θ∗1 − θ∗4
θ∗0 − θ∗3

(Ex̂ − Eû). (5.1.3)

Observe B(u, x) ⊆ Γ3(s), otherwise Ω(u, s) ∩ B(u, x) �= ∅ and this leads to ∂(x, s) = 4

by Theorem 2.2.8, which contradicts to ∂(x, s) = 3. Taking the inner product of s with

both side of (5.1.3) and evaluating the result using (2.3.13), we have

mθ∗3 + nθ∗4 − b3θ
∗
3 = b3

θ∗1 − θ∗4
θ∗0 − θ∗3

(θ∗3 − θ∗2). (5.1.4)

Solve (5.1.2) and (5.1.4) to obtain

n = b3
(θ∗2 − θ∗3)
(θ∗3 − θ∗4)

(θ∗1 − θ∗4)
(θ∗0 − θ∗3)

. (5.1.5)

Simplifying (5.1.5) using (2.4.5), we have n = b3 and then m = 0 by (5.1.2). This

implies B(x, u) ⊆ B(x, s) as required.

Lemma 5.1.5. Let z, u ∈ Δ. Suppose stuzw is a pentagon in Γ, where z, w ∈ Γ2(x)

and u ∈ Γ3(x). Then w ∈ Δ.

Proof. Observe Ω(z, s) ∩ Γ1(x) = ∅ and Ω(z, s) ∩ Γ4(x) = ∅ by Theorem 2.2.8. Hence

s, t ∈ Γ2(x) ∪ Γ3(x). Observe s ∈ Γ3(x), otherwise w, s ∈ Ω(x, z), and this implies u ∈
Ω(x, z), a contradiction to that the diameter of Ω(x, z) is 2. Hence B(x, s) = B(x, u)

by Lemma 5.1.4. Then s ∈ C and w ∈ Δ by construction.

Lemma 5.1.6. The subgraph Δ is weak-geodetically closed with respect to x.

Proof. Clearly C(z, x) ⊆ Δ for any z ∈ Δ. It suffices to show A(z, x) ⊆ Δ for any

z ∈ Δ. Suppose z ∈ Δ. We discuss case by case in the following. The case ∂(x, z) = 1

is trivial since a1 = 0. For the case ∂(x, z) = 3, we have B(x, y) = B(x, z) = B(x, w)

for any w ∈ A(z, x) by definition of Δ and Lemma 5.1.2. This implies A(z, x) ⊆ Δ by

the construction of Δ. For the remaining case ∂(x, z) = 2, fix w ∈ A(z, x) and we shall

prove w ∈ Δ. There exists u ∈ C such that z ∈ C(u, x). Observe that ∂(w, u) = 2

since a1 = 0. Choose s ∈ A(w, u) and t ∈ C(u, s). Then stuzw is a pentagon in Γ.

The result comes immediately from Lemma 5.1.5.
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5.2 3-bounded Property

Theorem 5.2.1. Let Γ denote a distance-regular graph which has classical parameters

(D, b, α, β) and D ≥ 3. Assume the intersection numbers a1 = 0 and a2 �= 0. Then Γ

is 3-bounded.

Proof. By Theorem 2.2.4 and Lemma 5.1.6, it suffices to show that Δ defined in (5.1.1)

is regular with valency a3+c3. Clearly from the construction and Lemma 5.1.6, |Γ1(z)∩
Δ| = a3+c3 for any z ∈ C. First we show |Γ1(x)∩Δ| = a3+c3. Note that y ∈ Δ∩Γ3(x)

by construction of Δ. For any z ∈ C(x, y) ∪ A(x, y),

∂(x, z) + ∂(z, y) ≤ ∂(x, y) + 1.

This implies z ∈ Δ by Definition 2.2.3 and Lemma 5.1.6. Hence C(x, y)∪A(x, y) ⊆ Δ.

Suppose B(x, y) ∩ Δ �= ∅. Choose t ∈ B(x, y) ∩ Δ. Then there exists y′ ∈ Γ3(x) ∩ Δ

such that t ∈ C(x, y′). Note that B(x, y) = B(x, y′). This leads to a contradiction to

t ∈ C(x, y′). Hence B(x, y) ∩ Δ = ∅ and Γ1(x) ∩ Δ = C(x, y) ∪A(x, y). Then we have

|Γ1(x) ∩ Δ| = a3 + c3.

Since each vertex in Δ appears in a sequence of vertices x = x0, x1, x2, x3 in Δ,

where ∂(x, xj) = j and ∂(xj−1, xj) = 1 for 1 ≤ j ≤ 3, it suffices to show

|Γ1(xi) ∩ Δ| = a3 + c3 (5.2.1)

for 1 ≤ i ≤ 2. For each integer 0 ≤ i ≤ 2, we show

|Γ1(xi) \ Δ| ≤ |Γ1(xi+1) \ Δ|

by counting the number of pairs (s, z) for s ∈ Γ1(xi)\Δ, z ∈ Γ1(xi+1)\Δ and ∂(s, z) = 2

in two ways. For a fixed z ∈ Γ1(xi+1) \ Δ, we have ∂(x, z) = i + 2 by Lemma 5.1.6,

so ∂(xi, z) = 2 and s ∈ A(xi, z). Hence the number of such pairs (s, z) is at most

|Γ1(xi+1) \ Δ|a2.

On the other hand, we show this number is exactly |Γ1(xi) \ Δ|a2. Fix an s ∈
Γ1(xi) \ Δ. Observe ∂(x, s) = i + 1 by Lemma 5.1.6. Observe ∂(xi+1, s) = 2 since

a1 = 0. Pick any z ∈ A(xi+1, s). We shall prove z �∈ Δ. Suppose contradictory z ∈ Δ

in the following arguments and choose any w ∈ C(s, z).
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Case 1: i = 0.

Observe ∂(x, z) = 2, ∂(x, s) = 1 and ∂(x, w) = 2. This forces s ∈ Δ by Lemma

5.1.6, a contradiction.

Case 2: i = 1.

Observe ∂(x, z) = 3, otherwise z ∈ Ω(x, x2) and this implies s ∈ Ω(x, x2) ⊆ Δ by

Lemma 2.2.5 and Lemma 5.1.6, a contradiction. This also implies s ∈ Δ by Definition

2.2.3 and Lemma 5.1.6, a contradiction.

Case 3: i = 2.

Observe ∂(x, z) = 2 or 3. Suppose ∂(x, z) = 2. Then B(x, x3) = B(x, s) by Lemma

5.1.4 (with x3 = u, x2 = t). Hence s ∈ Δ, a contradiction. So z ∈ Γ3(x). Note

∂(x, w) �= 2, 3, otherwise s ∈ Δ by Lemma 5.1.4 and Lemma 5.1.6 respectively. Hence

∂(x, w) = 4. Then by applying Ω = Ω(x2, w) in Theorem 2.2.8 we have ∂(x2, z) = 1, a

contradiction to a1 = 0.

From the above counting, we have

|Γ1(xi) \ Δ|a2 ≤ |Γ1(xi+1) \ Δ|a2 (5.2.2)

for 0 ≤ i ≤ 2. Eliminating a2 from (5.2.2), we find

|Γ1(xi) \ Δ| ≤ |Γ1(xi+1) \ Δ|, (5.2.3)

or equivalently

|Γ1(xi) ∩ Δ| ≥ |Γ1(xi+1) ∩ Δ| (5.2.4)

for 0 ≤ i ≤ 2. We have known previously |Γ1(x0)∩Δ| = |Γ1(x3)∩Δ| = a3 + c3. Hence

(5.2.1) follows from (5.2.4).

Remark 5.2.2. The 3-bounded property is enough to obtain the main result of this

thesis. The 4-bounded property seems to be much harder to prove.
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Chapter 6

A Constant Bound of c2

Let Γ = (X,R) be a distance-regular graph which has classical parameters (D, b, α, β)

with D ≥ 3. Assume the intersection numbers a1 = 0 and a2 �= 0. We shall show that

c2 ≤ 2, and if c2 = 1 then (b, α, β) = (−2,−2, ((−2)D+1 − 1)/3).

6.1 Preliminary Lemmas

Let Γ = (X, R) be a distance-regular graph with diameter D ≥ 3 and intersection

numbers ai, ci, bi for 0 ≤ i ≤ D. Assume that Γ is D-bounded. By Theorem 2.2.9, for

any x, y ∈ X with ∂(x, y) = t, there exists a unique weak-geodetically closed subgraph

Δ(x, y) containing x, y of diameter t, and Δ(x, y) is a distance-regular graph with the

intersection numbers

ai(Δ(x, y)) = ai, (6.1.1)

ci(Δ(x, y)) = ci, (6.1.2)

bi(Δ(x, y)) = bi − bt (6.1.3)

for 0 ≤ i ≤ t by Theorem 2.2.4 and (2.1.1). In particular, Δ(x, y) is a clique of size

1 + b0 − b1 = a1 + 2 when t = 1.

Lemma 6.1.1. [27, Lemma 4.10] Let Γ denote a distance-regular graph which has clas-

sical parameters (D, b, α, β). Let Δ denote a regular weak-geodetically closed subgraph
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of Γ. Then Δ is a distance-regular graph which has classical parameters (t, b, α, β′),

where t denotes the diameter of Δ, and β′ = β + α(
[
D
1

] − [
t
1

]
). �

Proof. By Theorem 2.2.4, Δ is distance-regular with intersection numbers

ci(Δ) = ci =

[
i

1

](
1 + α

[
i − 1

1

])
,

ai(Δ) = ai =

[
i

1

](
a1 + α

(
1 −

[
i

1

]
−

[
i − 1

1

]))
,

and

bi(Δ) = bi − bt =

([
D

1

]
−

[
i

1

])(
β − α

[
i

1

])
−

([
D

1

]
−

[
t

1

])(
β − α

[
t

1

])

=

([
t

1

]
−

[
i

1

])(
β + α

[
D

1

]
− α

[
t

1

]
− α

[
i

1

])

for 0 ≤ i ≤ t. Hence Δ has classical parameters (t, b, α, β′), where β′ = β+α
[
D
1

]−α
[

t
1

]
.

Lemma 6.1.2. Let Γ = (X, R) denote a D-bounded distance-regular graph with D ≥ 3.

Let Λ be a weak-geodetically closed subgraph of Γ with diameter s, where 0 ≤ s ≤ D−1.

Suppose x, y ∈ Λ with ∂(x, y) = s. Then the following (i)-(iii) hold.

(i) For any w ∈ X, let M(w) = {m − {w} | m ⊆ X is a clique of size a1 + 2

containing w}. Then M(w) is a partition of Γ1(w) with |M(w)| =
b0

a1 + 1
.

(ii) If z ∈ B(y, x), then Δ(x, z) ⊇ Λ and Δ(x, z) has diameter s + 1.

(iii) If Δ is a weak-geodetically closed subgraph of Γ with diameter s + 1 and contains

Λ, then Δ = Δ(x, z) for some z ∈ B(y, x).

Proof. Note that Λ = Δ(x, y) by Theorem 2.2.9.

(i) The 1-bounded property implies each edge is contained in a clique of size a1 +2.

Since there are b0 edges in Γ containing a fixed vertex w, we have (i).

(ii) Note that Δ(x, z) ∩ Λ is a weak-geodetically closed subgraph of Γ and y ∈
Δ(x, z) ∩ Λ since y ∈ C(z, x). This implies the diameter of Δ(x, z) ∩ Λ is s and we

have Δ(x, z) ∩ Λ = Λ by Theorem 2.2.9. Hence Δ(x, z) ⊇ Λ. The diameter of Δ(x, z)

is s + 1 since ∂(x, z) = s + 1.
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(iii) Suppose that Δ is a weak-geodetically closed subgraph of Γ with diameter s+1

and contains Λ. Note that x, y ∈ Δ. Choose z ∈ Δ and z ∈ B(y, x). Then Δ = Δ(x, z)

by (ii).

Lemma 6.1.3. Let Γ denote a D-bounded distance-regular graph with D ≥ 3. Let Λ,

Λ′ be two weak-geodetically closed subgraphs of Γ with diameter s, s + 3 respectively

and Λ ⊆ Λ′, where 0 ≤ s ≤ D − 3. Let P and B be the sets of weak-geodetically

closed subgraphs of Λ′ which contain Λ, with diameter s + 1 and s + 2 respectively. Let

I = {(p, B) | p ∈ P, B ∈ B, and p ⊆ B}. Then (P, B, I) is a 2-(v, κ, 1) design, where

v =
bs − bs+3

bs − bs+1

,

κ =
bs − bs+2

bs − bs+1

,

and the replication number

r =
bs+1 − bs+3

bs+1 − bs+2

.

Proof. Let x, y ∈ Λ with ∂(x, y) = s. Counting in two ways the number of pairs (�, Ω),

where � ⊆ Λ′ is a clique of size a1 + 2 containing y with � � Λ, and Ω ∈ P with � ⊆ Ω.

By Lemma 6.1.2,

bs(Λ
′)

(a1 + 1)
× 1 = |P| × bs(Ω)

(a1 + 1)
. (6.1.4)

Simplifying (6.1.4) by (6.1.3) we have

|P| =
bs(Λ

′)
bs(Ω)

=
bs − bs+3

bs − bs+1

.

Fix Δ ∈ B. Using the same technique as above, there are

bs − bs+2

bs − bs+1

distinct elements of P incident with Δ. Note that the number is independent of choice

of Δ.

Fix any distinct Ω′, Ω′′ ∈ P. Pick z ∈ B(y, x)∩Ω′. Then Ω′ = Δ(x, z) by Theorem

6.1.2. Pick w ∈ Ω′′
1(x) − Ω′. Note that w ∈ B(x, z). Then Δ(w, z) ∈ B containing

Ω′ and Ω′′. Suppose that Δ′ ∈ B is another block incident with Ω′ and Ω′′. Observe
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that Ω′, Ω′′ ⊆ Δ(w, z) ∩ Δ′ ⊆ Δ(w, z). This implies that the diameter of Δ(w, z) ∩ Δ′

is s + 1. We have Ω′ = Δ(w, z) ∩ Δ′ = Ω′′ by Theorem 2.2.9, which contradicts to

Ω′ �= Ω′′.

The replication number r =
bs+1 − bs+3

bs+1 − bs+2

can be computed by the same argument of

counting of |P|.

6.2 An Application of 3-bounded Property

Let Γ = (X,R) be a distance-regular graph which has classical parameters (D, b, α, β)

with D ≥ 3. Suppose the intersection numbers a1 = 0 and a2 �= 0. Then α < 0 and

b < −1 by Lemma 3.1.2. Now we are ready to prove the main theorem of this chapter.

Theorem 6.2.1. Let Γ denote a distance-regular graph which has classical parameters

(D, b, α, β) and D ≥ 3. Assume the intersection numbers a1 = 0 and a2 �= 0. Then

c2 ≤ 2.

Proof. It was shown in Theorem 5.2.1 that Γ is 3-bounded. Fix a vertex x ∈ X and

a weak-geodetically closed subgraph Δ containing x of diameter 3. By (6.1.1)-(6.1.3),

and Lemma 6.1.1 we find a1(Δ) = 0 and Δ has classical parameters (3, b, α, β′) where

β′ = β + α(
[
D
1

] − [
3
1

]
) . Note that

β′ = 1 + α − α(

[
3

1

]
) = 1 − αb − αb2 (6.2.1)

by applying a1(Δ) = 0 to (2.4.4). Let P denote the set of all maximal cliques containing

x in Δ, and B be the set of all weak-geodetically closed subgraphs of diameter 2

containing x in Δ. Let I = {(p, B) | p ∈ P, B ∈ B, and p ⊆ B}. Then (P,B, I) is a

2-(v, κ, 1) design by Lemma 6.1.3, where

κ =
b0(Δ) − b2(Δ)

b0(Δ) − b1(Δ)
= (1 + b)(1 − αb) (6.2.2)

and the replication number

r =
b1(Δ)

b1(Δ) − b2(Δ)
=

b(1 + b)(1 − αb − αb2 − α)

b(1 − αb − α)
(6.2.3)

35



by (2.4.2) and (6.2.1). Applying (6.2.2), (6.2.3), and Corollary 2.5.3 to the design, we

have

(1 + b)(1 − αb − αb2 − α)

(1 − αb − α)
≥ (1 + b)(1 − αb). (6.2.4)

Note that

(1 − αb − α) =
b1(Δ) − b2(Δ)

b
< 0 (6.2.5)

since b1(Δ)−b2(Δ) > 0 by Theorem 2.2.10 and b < −1. By (6.2.4), (6.2.5), and b < −1

we have

(1 − αb − αb2 − α) ≥ (1 − αb)(1 − αb − α). (6.2.6)

Simplifying (6.2.6) we have

αb(αb + α + b − 1) ≤ 0. (6.2.7)

Observe that αb > 0 since α < 0 and b < −1. Then

αb + α + b − 1 ≤ 0. (6.2.8)

Note that αb + α + b − 1 = c2 − 2 by (2.4.1) and hence c2 ≤ 2.

For the case c2 = 1, we have the following result.

Theorem 6.2.2. Let Γ denote a distance-regular graph which has classical parameters

(D, b, α, β) and D ≥ 3. Assume the intersection numbers a1 = 0, a2 �= 0 and c2 = 1.

Then (b, α, β) = (−2,−2, ((−2)D+1 − 1)/3).

Proof. Substituting a1 = 0 and c2 = 1 into (2.4.4), (2.4.1), and (2.4.3) we have

α =
−b

1 + b
, (6.2.9)

β =
bD+1 − 1

b2 − 1
. (6.2.10)

Let Ω ⊂ Δ be two weak-geodetically closed subgraphs of Γ with diameters 2 and

3 respectively. Note that Ω is a strongly regular graph with a1(Ω) = 0, c2(Ω) = 1 by

(6.1.1) and (6.1.2). Substituting this into (2.1.1) and (2.1.2) we have

|Ω| = 1 + k1(Ω) + k2(Ω) = 1 + (b0(Ω))2. (6.2.11)
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Hence we have

b0(Ω) = 2, 3, 7, 57 (6.2.12)

by Lemma 2.1.2. Note that

b0(Ω) = b0 − b2 = 1 + b + b2 (6.2.13)

by (6.1.3), (2.1.13), (6.2.9), and (6.2.10). Solving (6.2.12) with (6.2.13) for integer

b < −1 we have b = −2, −3, or −8. By (2.1.2), (6.1.2), and (6.1.3) we have

k3(Δ) =
(b0 − b3)(b1 − b3)(b2 − b3)

c1c2c3

. (6.2.14)

Evaluating (6.2.14) using (2.4.1)-(2.4.3), (6.2.9), and (6.2.10) we find

k3(Δ) =
b3(b2 + 1)(b2 + b + 1)(b3 + b2 + 2b + 1)

1 − b
. (6.2.15)

The number k3(Δ) is not an integer when b = −3 or −8. Hence b = −2 and α = −2,

β = ((−2)D+1 − 1)/3 by (6.2.9) and (6.2.10) respectively.

Example 6.2.3. [9] Hermitian forms graphs Her2(D) are the distance-regular graphs

which have classical parameters (D, b, α, β) with b = −2, α = −3, and β = −(−2)D−1,

which have a1 = 0, a2 �= 0, and c2 = (1 + α)(b + 1) = 2. This is the only known class

of examples that satisfies the assumptions of Theorem 6.2.1 with c2 = 2.

Example 6.2.4. [22, p. 237] Gewirtz graph is the distance-regular graph with inter-

section numbers a1 = 0, a2 = 8, and c2 = 2, which has classical parameters (D, b, α, β)

with D = 2, b = −3, α = −2, and β = −5. It is still open if there exists a class of

distance-regular graphs which have classical parameters (D,−3,−2, (−1 − (−3)D)/2)

for D ≥ 3.

Example 6.2.5. [3, Table 6.1] Witt graph M23 is the distance-regular graph which

has classical parameters (D, b, α, β) with D = 3, b = −2, α = −2, and β = 5, which

has a1 = 0, a2 = 2, and c2 = 1. This is the only known example that satisfies the

assumptions of Theorem 6.2.1 with c2 = 1.
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For summary, we list the parameters in the following table.

name a1 a2 c2 D b α β

Petersen graph 0 2 1 2 −2 −2 −3

Witt graph M23 0 2 1 3 −2 −2 5

?? 0 2 1 D ≥ 4 −2 −2 (−2)D+1−1
3

Hermitian forms graph Her2(D) 0 3 2 D −2 −3 −((−2)D + 1)

Gewirtz graph 0 8 2 2 −3 −2 −5

?? 0 8 2 D ≥ 3 −3 −2 −1−(−3)D

2

We close our thesis with two conjectures.

Conjecture 6.2.6. (With graph M23 does not grow.) There is no distance-regular

graph which has classical parameters (D,−2,−2,
(−2)D+1 − 1

3
) with D ≥ 4.

Conjecture 6.2.7. (Gewirtz graph does not grow.) There is no distance-regular graph

which has classical parameters (D,−3,−2,−1 + (−3)D

2
) with D ≥ 3.
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