Cyclic Triples

Student: Yi-Ting Chen Advisor: Dr. Chih-Wen Weng
Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

Let \mathbb{C} denote the complex field and let d be a positive integer. We essentially determine all the triples A, B, C of $(d+1) \times(d+1)$ matrices over \mathbb{C} that satisfy $$
A^{d+1}=\alpha I, B^{d+1}=\beta I, C^{d+1}=\gamma I, B A=q A B, C B=q B C, A C=q C A
$$

for some nonzero complex numbers α, β, γ, and a primitive root q of unity of order $d+1$.

Contents

Abstract (in English) i
Contents ii
1 Introduction 1
2 Cyclic pairs 2
3 Proof of Theorem 1.3 7
4 Remarks 11

1 Introduction

Let \mathbb{C} denote the complex field and let $M a t_{d+1}(\mathbb{C})$ denote the set of $(d+1) \times(d+1)$ matrices over \mathbb{C} with the index set $\{0,1, \ldots, d\}$.

Definition 1.1. Let A denote a matrix in $\operatorname{Mat}_{d+1}(\mathbb{C})$. We say A is left-cyclic whenever each of the entries $A_{i, i-1}$ and $A_{0 d}$ is nonzero for $i=1,2, \ldots, d$ and all other entries of A are zero ; or A is right-cyclic whenever its transpose is left-cyclic. We say a square matrix is cyclic whenever it is left-cyclic or right-cyclic.

Definition 1.2. Let \mathbf{V} denote a vector space over \mathbb{C} with finite dimension. Let $A: \mathbf{V} \longrightarrow \mathbf{V}, B: \mathbf{V} \longrightarrow \mathbf{V}$, and $C: \mathbf{V} \longrightarrow \mathbf{V}$ denote linear transformations which satisfy $(i)-(i i i)$ below.
(i) There exists a basis for \mathbf{V} with respect to which the matrix representing A is left-cyclic, the matrix representing B is diagonal, and the matrix representing C is right-cyclic.
(ii) There exists a basis for \mathbf{V} with respect to which the matrix representing A is right-cyclic, the matrix representing B is left-cyclic, and the matrix representing C is diagonal.
(iii) There exists a basis for \mathbf{V} with respect to which the matrix representing A is diagonal, the matrix representing B is right-cyclic, and the matrix representing C is left-cyclic.

We call such a triple (A, B, C) a cyclic triple on \mathbf{V}.
The following is our main result.
Theorem 1.3. Let \mathbf{V} denote a vector space over \mathbb{C} with dimension $d+1$. Let A : $\mathbf{V} \longrightarrow \mathbf{V}, B: \mathbf{V} \longrightarrow \mathbf{V}$, and $C: \mathbf{V} \longrightarrow \mathbf{V}$ denote linear transformations. We prove the following are equivalent.
(i) (A, B, C) is a cyclic triple on \mathbf{V}.
(ii) There exist three nonzero complex numbers α, β, γ and a primitive root q of unity of order $d+1$ such that

$$
A^{d+1}=\alpha I, B^{d+1}=\beta I, C^{d+1}=\gamma I, B A=q A B, C B=q B C, A C=q C A .
$$

(iii) There exists a basis $v_{0}, v_{1}, \ldots, v_{d}$ for \mathbf{V} with respect to which the matrices representing A (resp. B,C) is left-cyclic (resp. diagonal, right-cyclic) with the following forms,

$$
A: \eta\left(\begin{array}{ccccc}
0 & & & & 1 \\
q^{-2} & 0 & & & \\
& q^{-4} & \ddots & & \\
& & \ddots & 0 & \\
0 & & & q^{-2 d} & 0
\end{array}\right)
$$

$$
\left(\text { resp. } B: \xi\left(\begin{array}{ccccc}
1 & & & & 0 \\
& q & & & \\
& & \ddots & & \\
& & & q^{d-1} & \\
0 & & & & q^{d}
\end{array}\right), C: \zeta\left(\begin{array}{ccccc}
0 & q & & & 0 \\
& 0 & q^{2} & & \\
& & \ddots & \ddots & \\
& & & 0 & q^{d} \\
1 & & & & 0
\end{array}\right)\right.
$$

for some nonzero complex numbers η, ξ, ζ, and a primitive root q of unity of order $d+1$.

2 Cyclic pairs

To prove Theorem 1.3 we need some previous results in [1, 3]. For the thesis to be self-contained, these results are stated in this section and the proofs are given in slightly different ways.

Lemma 2.1. Cyclic matrices are diagonalizable with distinct nonzero eigenvalues.
Proof. For any left-cyclic matrix

$$
A=\left(\begin{array}{ccccc}
0 & & & & a_{0} \\
a_{1} & 0 & & & \\
& a_{2} & \ddots & & \\
& & \ddots & 0 & \\
0 & & & a_{d} & 0
\end{array}\right)
$$

the characteristic polynomial of A is

$$
f(x)=x^{d+1}-\prod_{i=0}^{d} a_{i}
$$

Since $a_{0}, a_{1}, \ldots, a_{d}$ are not zeros, $f(x)$ has $d+1$ distinct roots. Hence A has $d+1$ distinct eigenvalues. This implies A is diagonalizable with nonzero eigenvalues. For any right-cyclic matrix A, since A^{T} is left-cyclic and A have the same characteristic polynomial with A^{T}, A is also diagonalizable with nonzero eigenvalues. We complete the proof.

Definition 2.2. Let \mathbf{V} denote a vector space over \mathbb{C} with finite positive dimension. By a cyclic pair on \mathbf{V} we mean an ordered pair of linear transformations $A: \mathbf{V} \longrightarrow \mathbf{V}$ and $B: \mathbf{V} \longrightarrow \mathbf{V}$ that satisfy conditions (1), (2) below.
(i) There exists a basis for \mathbf{V} with respect to which the matrix representing A is diagonal and the matrix representing B is cyclic.
(ii) There exists a basis for \mathbf{V} with respect to which the matrix representing B is diagonal and the matrix representing A is cyclic.

Lemma 2.3. Suppose

$$
A=\left(\begin{array}{ccccc}
0 & & & & \alpha \\
1 & 0 & & & \\
0 & 1 & \ddots & & \\
& & \ddots & 0 & \\
& & & 1 & 0
\end{array}\right) \quad(\alpha \neq 0)
$$

is a left-cyclic matrix and $\theta \neq 0$ is an eigenvalue of A. Let u be an eigenvector corresponding to θ. Then

$$
\theta^{d+1}=\alpha \text { and } u=\left(\begin{array}{c}
u_{0} \\
u_{0} \theta^{-1} \\
u_{0} \theta^{-2} \\
\vdots \\
u_{0} \theta^{-d}
\end{array}\right)
$$

for some nonzero scalar $u_{0} \in \mathbb{C}$.
Proof. Since the characteristic polynomial of A is $x^{d+1}-\alpha$, it is obvious that

$$
\theta^{d+1}=\alpha
$$

Suppose

$$
u=\left(\begin{array}{c}
u_{0} \\
u_{1} \\
u_{2} \\
\vdots \\
u_{d}
\end{array}\right) .
$$

Observe

$$
A u=\left(\begin{array}{ccccc}
0 & & & & \alpha \\
1 & 0 & & & \\
0 & 1 & \ddots & & \\
& & \ddots & 0 & \\
& & & 1 & 0
\end{array}\right)\left(\begin{array}{c}
u_{0} \\
u_{1} \\
u_{2} \\
\vdots \\
u_{d}
\end{array}\right)=\left(\begin{array}{c}
\alpha u_{d} \\
u_{0} \\
u_{1} \\
\vdots \\
u_{d-1}
\end{array}\right)=\left(\begin{array}{c}
\theta u_{0} \\
\theta u_{1} \\
\theta u_{2} \\
\vdots \\
\theta u_{d}
\end{array}\right)
$$

since $A u=\theta u$. Hence $u_{i}=\theta u_{i+1}$ for $i=0,1, \ldots, d-1$ and $u_{d}=(\theta / \alpha) u_{0}=\theta^{-d} u_{0}$. Then $u_{i}=u_{0} \theta^{-i} \quad(1 \leq i \leq d)$. Note that $u_{0} \neq 0$ since $u \neq 0$ and $\theta \neq 0$. Hence the proof is completed.

Theorem 2.4. Let \mathbf{V} denote a vector space over \mathbb{C} with dimension $d+1$. Let A : $\mathbf{V} \rightarrow \mathbf{V}$ and $B: \mathbf{V} \rightarrow \mathbf{V}$ denote linear transformations. Then the following (i)-(iii) are equivalent.
(i) (A, B) is a cyclic pair on \mathbf{V}.
(ii) There exist two nonzero complex numbers α and β such that

$$
A^{d+1}=\alpha I, \quad B^{d+1}=\beta I, \quad B A=q A B,
$$

where q is a primitive root of unity of order $d+1$.
(iii) There exists a basis $v_{0}, v_{1}, \ldots, v_{d}$ for \mathbf{V} with respect to which the matrices representing A and B have the following forms,

$$
A:\left(\begin{array}{ccccc}
0 & & & & \alpha \\
1 & 0 & & & \\
0 & 1 & \ddots & & \\
& & \ddots & 0 & \\
& & & 1 & 0
\end{array}\right), \quad B:\left(\begin{array}{lllll}
\xi & & & & 0 \\
& \xi q & & & \\
& & \xi q^{2} & & \\
& & & \ddots & \\
0 & & & & \xi q^{d}
\end{array}\right)
$$

where $\alpha, \xi \in \mathbb{C}$ are nonzero scalars and $q \in \mathbb{C}$ is a primitive root of unity of order $d+1$.

Proof. $((i i i) \Longrightarrow(i i))$ By direct computation

$$
\begin{aligned}
A^{d+1} & =\left(\begin{array}{ccccc}
\alpha & & & & 0 \\
& \alpha & & & \\
& & \alpha & & \\
& & & \ddots & \\
0 & & & & \alpha
\end{array}\right)=\alpha I, \\
B^{d+1} & =\left(\begin{array}{cccccc}
\xi^{d+1} & & & & & 0 \\
& \xi^{d+1} & & & \\
& & & \xi^{d+1} & & \\
0 & & & & \ddots & \\
B A & =\left(\begin{array}{cccccc}
0 & & & & & \xi^{d+1}
\end{array}\right)=\beta I, \\
\xi q & 0 & & & & \alpha \xi \\
& \xi q^{2} & 0 & & & \\
& & \xi q^{3} & & & \\
& & & \ddots & \ddots & \\
0 & & & & \xi q^{d} & 0
\end{array}\right)
\end{aligned}
$$

and

$$
A B=\left(\begin{array}{cccccc}
0 & & & & & \alpha \xi q^{d} \\
\xi & 0 & & & & \\
& \xi q & 0 & & & \\
& & \xi q^{2} & & & \\
& & & \ddots & \ddots & \\
0 & & & & \xi q^{d-1} & 0
\end{array}\right)
$$

Therefore $A^{d+1}=\alpha I, B^{d+1}=\beta I$, and $B A=q A B$, where $\beta=\xi^{d+1}$.
$((i i) \Longrightarrow(i))$ Since \mathbf{V} is over the complex field \mathbb{C}, there exists an eigenvalue ξ for B. Let v_{0} be an eigenvector of B with respect to eigenvalue ξ, that is, $B v_{0}=\xi v_{0}$ with $v_{0} \neq 0$. Consider vectors $v_{0}, A v_{0}, A^{2} v_{0}, \ldots, A^{d} v_{0}$.
Claim. $\left\{v_{0}, A v_{0}, A^{2} v_{0}, \ldots, A^{d} v_{0}\right\}$ is a basis of eigenvectors of B.
Set $u_{i}=A^{i} v_{0}$ for $i=0,1, \ldots, d$. Note that $u_{i} \neq 0$ since A is invertible. Observe $B u_{i}=B A^{i} v_{0}=q^{i} A^{i} B v_{0}=\xi q^{i} A^{i} v_{0}=\xi q^{i} u_{i}$, since $B A=q A B$. Hence u_{i} are distinct eigenvectors of B with respect to distinct eigenvalues $\xi q^{i}(0 \leq i \leq d)$, and $\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{d}\right\}$ is a basis of eigenvectors of B. This proves the claim.

For the basis $\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{d}\right\}$,

$$
A u_{i}=A^{i+1} v_{0}=u_{i+1} \quad(0 \leq i \leq d-1)
$$

and

$$
A u_{d}=A^{d+1} v_{0}=\alpha v_{0}=\alpha u_{0} \quad\left(A^{d+1}=\alpha I\right)
$$

Hence with respect to the basis $\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{d}\right\}$, the matrices representing A and B are

$$
A:\left(\begin{array}{ccccc}
0 & & & & \alpha \\
1 & 0 & & & \\
& 1 & \ddots & & \\
& & \ddots & 0 & \\
0 & & & 1 & 0
\end{array}\right), \quad B:\left(\begin{array}{lllll}
\xi & & & & 0 \\
& \xi q & & & \\
& & \xi q^{2} & & \\
& & & \ddots & \\
0 & & & & \xi q^{d}
\end{array}\right) .
$$

Similarly, there exists a basis for \mathbf{V} which the matrices represent B and A as follows.

$$
B:\left(\begin{array}{ccccc}
0 & & & & \beta \\
1 & 0 & & & \\
& 1 & \ddots & & \\
& & \ddots & 0 & \\
0 & & & 1 & 0
\end{array}\right), \quad A:\left(\begin{array}{llll}
\eta & & & 0 \\
& \eta q^{-1} & & \\
& & \ddots & \\
0 & & & \eta q^{-d}
\end{array}\right),
$$

for some $\eta \in \mathbb{C}$, since $B^{d+1}=\beta I$ and $A B=q^{-1} B A$. Therefore, (A, B) is a cyclic pair.
$((i) \Longrightarrow(i i i))$ Since (A, B) is a cyclic pair, there exists a basis $\left\{u_{0}, u_{1}, \ldots, u_{d}\right\}$ such that the matrices representing A is cyclic and B is diagonal. Without loss of generality, we suppose the matrix representing A, B as follows.(exchange the ordered basis to $u_{d}, u_{d-1}, \ldots, u_{0}$ as A is right-cyclic)

$$
A:\left(\begin{array}{ccccc}
0 & & & & a_{0} \\
a_{1} & 0 & & & \\
& a_{2} & 0 & & \\
& & \ddots & \ddots & \\
0 & & & a_{d} & 0
\end{array}\right), \quad B:\left(\begin{array}{ccccc}
b_{0} & & & & 0 \\
& b_{1} & & & \\
& & b_{2} & & \\
& & & \ddots & \\
0 & & & & b_{d}
\end{array}\right) .
$$

So we know that

$$
\begin{equation*}
A u_{i}=a_{i+1} u_{i+1} \quad(0 \leq i \leq d-1) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A u_{d}=a_{0} u_{0} \tag{2.2}
\end{equation*}
$$

Set

$$
\begin{equation*}
v_{0}=u_{0} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{i}=a_{1} a_{2} \ldots a_{i} u_{i} \quad(1 \leq i \leq d) . \tag{2.4}
\end{equation*}
$$

So by (2.1) - (2.4),

$$
A v_{i}=v_{i+1}(0 \leq i \leq d-1)
$$

and

$$
A v_{d}=a_{d \ldots} a_{1} a_{0} v_{0}
$$

Therefore, for the new basis $\left\{v_{0}, v_{1}, \ldots v_{d}\right\}$, the matrices represent A and B as follows,

$$
\begin{aligned}
A & :\left(\begin{array}{ccccc}
0 & & & & \alpha \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & \ddots & \ddots & \\
0 & & & 1 & 0
\end{array}\right), \quad\left(\alpha=a_{0} \ldots a_{d}\right) \\
B & :\left(\begin{array}{lllll}
b_{0} & & & & 0 \\
& b_{1} & & & \\
& & b_{2} & & \\
& & & \ddots & \\
0 & & & & b_{d}
\end{array}\right) . \quad \text { (eigenvector invariant) }
\end{aligned}
$$

Similarly there exists a basis $\left\{w_{0}, w_{1}, \ldots, w_{d}\right\}$ of \mathbf{V} such that the matrix representing A is diagonal and the matrix representing B as

$$
\left(\begin{array}{ccccc}
0 & & & & \beta \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & \ddots & \ddots & \\
0 & & & 1 & 0
\end{array}\right)
$$

for some $\beta \in \mathbb{C}$. Note that w_{0}, w_{1} are eigenvectors of A. Let θ_{0}, θ_{1} be the corresponding eigenvalues. Then there exists $c_{0} \in \mathbb{C}$ such that

$$
w_{0}:\left(\begin{array}{c}
c_{0} \\
c_{0} \theta_{0}^{-1} \\
c_{0} \theta_{0}^{-2} \\
\vdots \\
c_{0} \theta_{0}^{-d}
\end{array}\right)
$$

with respect to basis $v_{0}, v_{1}, \ldots, v_{d}$ by lemma 2.3. Namely,

$$
\begin{equation*}
w_{0}=c_{0} v_{0}+c_{0} \theta_{0}^{-1} v_{1}+c_{0} \theta_{0}^{-2} v_{2}+\ldots+c_{0} \theta_{0}^{-d} v_{d} \tag{2.5}
\end{equation*}
$$

In the same way, there exists $c_{1} \in \mathbb{C}$ such that

$$
\begin{equation*}
w_{1}=c_{1} v_{0}+c_{1} \theta_{1}^{-1} v_{1}+c_{1} \theta_{1}^{-2} v_{2}+\ldots+c_{1} \theta_{1}^{-d} v_{d} \tag{2.6}
\end{equation*}
$$

By (2.5),

$$
\begin{align*}
B w_{0} & =c_{0} B v_{0}+c_{0} \theta_{0}^{-1} B v_{1}+c_{0} \theta_{0}^{-2} B v_{2}+\ldots+c_{0} \theta_{0}^{-d} B v_{d} \tag{2.7}\\
& =c_{0} b_{0} v_{0}+c_{0} \theta_{0}^{-1} b_{1} v_{1}+c_{0} \theta_{0}^{-2} b_{2} v_{2}+\ldots+c_{0} \theta_{0}^{-d} b_{d} v_{d} \tag{2.8}
\end{align*}
$$

Compare coefficients in (2.6) and (2.8), since $B w_{0}=w_{1}$, we get

$$
\begin{aligned}
& b_{0}=\frac{c_{1}}{c_{0}}, \\
& b_{1}=\frac{c_{1}}{c_{0}} \frac{\theta_{0}}{\theta_{1}}, \\
& b_{2}=\frac{c_{1}}{c_{0}}\left(\frac{\theta_{0}}{\theta_{1}}\right)^{2}, \\
& \vdots \\
& b_{d}=\frac{c_{1}}{c_{0}}\left(\frac{\theta_{0}}{\theta_{1}}\right)^{d} .
\end{aligned}
$$

Note that $b_{0}, b_{1}, \ldots, b_{d}$ is a geometric sequence with common ratio $q=\theta_{0} / \theta_{1}$. Hence $b_{j}=\xi q^{j}$ for $i=1,2, \ldots, d$ with $\xi=b_{0}$. Observe $q^{d+1}=\theta_{0}^{d+1} / \theta_{1}^{d+1}=1$ by lemma 2.1. Further, $q^{i} \neq q^{j}$ for $1 \leq i, j \leq d$, otherwise $b_{i}=b_{j}$, a contradiction to lemma 2.1. It implies that q is a primitive root of unity of order $d+1$. Therefore, for the basis $\left\{v_{0}, v_{1}, \ldots, v_{d}\right\}$, the matrices representing A and B are as follows.

$$
A:\left(\begin{array}{ccccc}
0 & & & & \alpha \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & \ddots & \ddots & \\
0 & & & 1 & 0
\end{array}\right), B:\left(\begin{array}{ccccc}
\xi & & & & 0 \\
& \xi q & & & \\
& & \xi q^{2} & & \\
& & & \ddots & \\
0 & & & & \xi q^{d}
\end{array}\right) .
$$

3 Proof of Theorem 1.3

Proof. $((i i) \Longrightarrow(i))$ It suffices to show that the condition (i) in Definition 1.2 is true, since (ii) and (iii) can be obtained similarly. Consider that $A^{d+1}=\alpha I, B^{d+1}=$ $\beta I, B A=q A B$. According to Theorem 2.4, let v be an eigenvector of B corresponding to eigenvalue ξ and form a basis $\left\{v, A v, A^{2} v, \ldots, A^{d} v\right\}$ for \mathbf{V} such that the matrix representing A (resp. B) is left-cyclic (resp. diagonal) as follows

$$
A:\left(\begin{array}{ccccc}
0 & & & & \alpha \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & \ddots & \ddots & \\
0 & & & 1 & 0
\end{array}\right), B:\left(\begin{array}{lllll}
\xi & & & & 0 \\
& \xi q & & & \\
& & \xi q^{2} & & \\
& & & \ddots & \\
0 & & & & \xi q^{d}
\end{array}\right) .
$$

Similarly, let $v, C v, C^{2} v, \ldots, C^{d} v$ form another basis for \mathbf{V} such that the matrices representing C (resp. B) is left-cyclic (resp. diagonal) as follows

$$
C:\left(\begin{array}{ccccc}
0 & & & & \gamma \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & \ddots & \ddots & \\
0 & & & 1 & 0
\end{array}\right), B:\left(\begin{array}{lllll}
\xi & & & & 0 \\
& \xi q^{-1} & & & \\
& & \xi q^{-2} & & \\
& & & \ddots & \\
0 & & & & \xi q^{-d}
\end{array}\right)
$$

since $B^{d+1}=\beta I, C^{d+1}=\gamma I, C B=q B C$, namely, $B C=q^{-1} C B$. Observe

$$
\xi q^{i}=\xi q^{-(d+1-i)} \quad(1 \leq i \leq d)
$$

We know that $A^{i} v$ and $C^{d+1-i} v$ are the same eigenvector of B corresponding eigenvalue ξq^{i}. Hence

$$
A^{i} v=c_{d+1-i} C^{d+1-i} v \quad(1 \leq i \leq d)
$$

where c_{i} is nonzero complex number. Note that the basis

$$
\left\{v, A v, \ldots, A^{i} v, \ldots, A^{d} v\right\}
$$

is regarded as

$$
\left\{v, c_{d} C^{d} v, \ldots, c_{d+1-i} C^{d+1-i} v, \ldots, c_{1} C v\right\}
$$

Hence for the basis $\left\{v, A v, A^{2} v, \ldots, A^{d} v\right\}$, the matrix representing C is right-cyclic as follows

$$
C:\left(\begin{array}{ccccc}
0 & c_{d} \gamma & & & 0 \\
& 0 & c_{d-1} c_{d}^{-1} & & \\
& & 0 & \ddots & \\
& & & \ddots & c_{1} c_{2}^{-1} \\
c_{1}^{-1} & & & & 0
\end{array}\right) .
$$

Now we find the basis $\left\{v, A v, A^{2} v, \ldots, A^{d} v\right\}$ such that the matrices representing A (resp. B, C) is left cyclic (resp. diagonal, right-cyclic) .

Hence (A, B, C) is a cyclic triple.
$((i) \Longrightarrow(i i))$ By Theorem 2.4, it is obvious that there exists three nonzero complex numbers α, β and γ such that $A^{d+1}=\alpha I, B^{d+1}=\beta I$, and $C^{d+1}=\gamma I$. By the condition (i) in Definition 1.2, there exists a basis $\left\{u_{0}, u_{1}, \ldots, u_{d}\right\}$ such that the matrices representing A (resp. B, C) is left-cyclic (resp. diagonal, right-cyclic) as
follows

$$
\begin{aligned}
& A:\left(\begin{array}{cccccc}
0 & & & & a_{0} \\
a_{1} & 0 & & & \\
& a_{2} & \ddots & & \\
& & \ddots & 0 & \\
0 & & & a_{d} & 0
\end{array}\right), \\
& \text { (resp. B : }\left(\begin{array}{ccccc}
b_{0} & & & & 0 \\
& b_{1} & & & \\
& & b_{2} & & \\
& & & \ddots & \\
0 & & & & b_{d}
\end{array}\right) \text {, } \\
& \left.C \quad:\left(\begin{array}{ccccc}
0 & c_{1} & & & 0 \\
& 0 & c_{2} & & \\
& & 0 & \ddots & \\
& & & \ddots & c_{d} \\
c_{0} & & & & 0
\end{array}\right)\right) .
\end{aligned}
$$

Set

$$
v_{0}=u_{0} \text { and } v_{i}=a_{1} a_{2} \ldots a_{i} u_{i} \text { for } i=1,2, \ldots, d .
$$

For the basis $\left\{v_{0}, v_{1}, \ldots, v_{d}\right\}$, the matrix representing C (resp. B, A) is right-cyclic (resp. left-cyclic, diagonal) as

$$
C:\left(\begin{array}{ccccc}
0 & x_{1} & & & 0 \\
& 0 & x_{2} & & \\
& & 0 & \ddots & \\
& & & \ddots & x_{d} \\
x_{0} & & & & 0
\end{array}\right)
$$

(resp.

$$
\left.A:\left(\begin{array}{ccccc}
0 & & & & \alpha \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & \ddots & \ddots & \\
0 & & & 1 & 0
\end{array}\right), \quad B:\left(\begin{array}{ccccc}
\xi & & & & 0 \\
& \xi q & & & \\
& & \xi q^{2} & & \\
& & & \ddots & \\
0 & & & & \xi q^{d}
\end{array}\right)\right),
$$

with $\alpha=a_{0} a_{1} \ldots a_{d}, \xi \neq 0$, and q is a primitive root of unity of order $d+1$. We know that $B A=q A B$, and by direct computation
$C B:\left(\begin{array}{ccccc}0 & x_{1} \xi q & & & 0 \\ & 0 & x_{2} \xi q^{2} & & \\ & & 0 & \ddots & \\ & & & \ddots & x_{d} \xi q^{d} \\ x_{0} \xi & & & & 0\end{array}\right)$,

$$
B C:\left(\begin{array}{ccccc}
0 & x_{1} \xi & & & 0 \\
& 0 & x_{2} \xi q & & \\
& & 0 & \ddots & \\
& & & \ddots & x_{d} \xi q^{d-1} \\
x_{0} \xi q^{d} & & & & 0
\end{array}\right)
$$

Hence we have

$$
\begin{equation*}
B A=q A B, C B=q B C . \tag{3.1}
\end{equation*}
$$

Similarly, by condition (ii) in Definition 1.2 we have

$$
\begin{equation*}
A C=q^{\prime} C A, C B=q^{\prime} B C, \tag{3.2}
\end{equation*}
$$

where q^{\prime} is a primitive root of unity of order $d+1$. $\mathrm{By}(3.1)$ and (3.2), $C B=q B C=$ $q^{\prime} B C$. It implies $q=q^{\prime}$, so that $B A=q A B, C B=q B C, A C=q C A$.
$((i i i) \Longrightarrow(i i))$ By direct computation, $A^{d+1}=\alpha I, B^{d+1}=\beta I, C^{d+1}=\gamma I$, where $\alpha=\eta^{d+1}, \beta=\xi^{d+1}, \gamma=\zeta^{d+1}$, and then
$B A: \eta \xi\left(\begin{array}{ccccc}0 & & & & 1 \\ q^{-1} & 0 & & & \\ & q^{-2} & \ddots & & \\ & & \ddots & 0 & \\ 0 & & & q^{-d} & 0\end{array}\right), \quad A B: \eta \xi\left(\begin{array}{ccccc}0 & & & & q^{-1} \\ q^{-2} & 0 & & & \\ & q^{-3} & \ddots & & \\ & & \ddots & 0 & \\ 0 & & & q^{-(d+1)} & 0\end{array}\right)$,
$C B: \zeta \xi\left(\begin{array}{ccccc}0 & q^{2} & & & 0 \\ & 0 & q^{4} & & \\ & & \ddots & \ddots & \\ & & & 0 & q^{2 d} \\ 1 & & & & 0\end{array}\right) \quad, \quad B C: \zeta \xi\left(\begin{array}{ccccc}0 & q & & & 0 \\ & 0 & q^{3} & & \\ & & \ddots & \ddots & \\ & & & 0 & q^{2 d-1} \\ q^{d} & & & & 0\end{array}\right)$,
$A C: \eta \zeta\left(\begin{array}{ccccc}1 & & & & 0 \\ & q^{-1} & & & \\ & & \ddots & & \\ & & & q^{-d+1} & \\ 0 & & & & q^{-d}\end{array}\right), C A: \eta \zeta\left(\begin{array}{ccccc}q^{-1} & & & & 0 \\ & q^{-2} & & & \\ & & \ddots & & \\ & & & q^{-d} & \\ 0 & & & & 1\end{array}\right)$.

Hence $B A=q A B, C B=q B C, A C=q C A$.
$((i)$ and $(i i) \Longrightarrow(i i i))$ Let v be the eigenvector of B with corresponding eigenvalue ξ, and let η be an eigenvalue of A. Then for the basis $v, \eta^{-1} q^{2} A v, \eta^{-2} q^{2+4} A^{2} v$, $\ldots, \eta^{-d} q^{2+4+\ldots+2 d} A^{d} v$, where q is the primitive root of unity of order $d+1$ that satisfies (ii), the matrices representing A (resp. B) is left-cyclic (resp. diagonal) as follows

$$
A: \eta\left(\begin{array}{ccccc}
0 & & & & 1 \\
q^{-2} & 0 & & & \\
& q^{-4} & \ddots & & \\
& & \ddots & 0 & \\
0 & & & q^{-2 d} & 0
\end{array}\right)\left(\text { rep. } B: \xi\left(\begin{array}{ccccc}
1 & & & & 0 \\
& q & & & \\
& & \ddots & & \\
& & & q^{d-1} & \\
0 & & & & q^{d}
\end{array}\right)\right. \text {), }
$$

and the matrix representing C is right-cyclic as

$$
C:\left(\begin{array}{cccccc}
0 & c_{1} & & & & 0 \\
& 0 & c_{2} & & & \\
& & 0 & \ddots & & \\
& & & \ddots & c_{d} & \\
c_{0} & & & & 0
\end{array}\right)
$$

Hence

$$
A C:\left(\begin{array}{ccccc}
c_{0} & & & & 0 \\
& q^{-2} c_{1} & & & \\
& & q^{-4} c_{2} & & \\
& & & \ddots & \\
0 & & & & q^{-2 d} c_{d}
\end{array}\right), C A:\left(\begin{array}{ccccc}
q^{-2} c_{1} & & & & \\
& q^{-4} c_{2} & & & \\
& & \ddots & & \\
& & & q^{-2 d} c_{d} & \\
0 & & & & c_{0}
\end{array}\right) .
$$

We find $c_{i+1}=q c_{i}$ for $i=0,1, \ldots, d-1$ and $c_{0}=q c_{d}$, since $A C=q C A$. Hence the matrix representing C is as follows

$$
C:\left(\begin{array}{cccccc}
0 & q c_{0} & & & & 0 \\
& 0 & q^{2} c_{0} & & & \\
& & 0 & \ddots & \\
& & & \ddots & q^{d} c_{0} \\
c_{0} & & & & 0
\end{array}\right)=\zeta\left(\begin{array}{ccccc}
0 & q & & & 0 \\
& 0 & q^{2} & & \\
& & \ddots & \ddots & \\
& & & 0 & q^{d} \\
1 & & & & 0
\end{array}\right),
$$

where $\zeta=c_{0}$. The proof is completed.

4 Remarks

The study of a pair or a triple of linear transformations with specified combinatorial properties was first appeared in [4] with the motivation from the study of P - and Q-polynomial schemes. Also see [5] for a survey on this topic. These are related to the representation theory of some algebra defined from relations. See [2] for reference. To finish the thesis we propose the following conjecture.

Conjecture 4.1. Let \mathbf{V} denote a vector space over \mathbb{C} with dimension $d+1$. Let $A: \mathbf{V} \longrightarrow \mathbf{V}, B: \mathbf{V} \longrightarrow \mathbf{V}$, and $C: \mathbf{V} \longrightarrow \mathbf{V}$ denote linear transformations. The following (i) and (ii) are equivalent.
(i) $(A, B),(B, C),(C, A)$ are cyclic pairs.
(ii) (A, B, C) is a cyclic triple.

References

[1] Hung-Jia Chen, The Weakly Cylic Pairs of Linear Transformations, National Chiao Tung University, master thesis, 2004.
[2] Carter, Flath, Saito, the classical and quantum 6-j symbols, Princeton University Press, 1995.
[3] Jheng-Lin Pan, A Cyclic Pair of Linear Transformations, National Chiao Tung University, master thesis, 2004.
[4] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl., 330, 149-203, 1999.
[5] P. Terwilliger, Introduction to Leonard pairs, OPSFA Rome 2001, J. Comput. Appl. Math., 153(2), 463-475, 2003.

