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摘要 

 

令 X是個方陣，當主對角線正下方及第一列最後一行的元素都非零，

其他非對角線之元素皆為零，我們稱 X為廣義圈型。在有限維的向

量空間 V中，如果兩線性變換 A：V → V、B：V → V滿足下列條

件(1),(2)則我們稱(A,B)為一對廣義圈型線性變換， 

(1) V中存在一個基底可以使的 A的矩陣表示為對角矩陣，B的矩陣

表示為廣義圈型。 

(2) V中存在一個基底可以使的 B的矩陣表示為對角矩陣，A的矩陣

表示為廣義圈型。 

我們將會給一對廣義圈型線性變換存在的兩個必要條件。 
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Abstract 

Let X be a square matrix. We say X is weak cyclic when each of the entries 
in the lower diagonal and in the last column of the lower diagonal are 
nonzero and all the other nondiagonal entries of X are zero. Let V denote a 
vector space over C with finite positive dimension. By a weakly cyclic pair 

on V we mean an ordered pair of linear transformations A：V → V and B：

V → V that satisfies conditions (i), (ii) below. 

(i). There exists a basis for V with respect to which the matrix 
representing A is diagonal and the matrix representing B is weakly 
cyclic. 

(ii). There exists a basis for V with respect to which the matrix 
representing B is diagonal and the matrix representing A is weakly 
cyclic. 

We give two necessary conditions among the eigenvalues and the 
coefficients in some representing matrix of a weak cyclic pair. 
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1 Introduction

The study of a pair of linear transformations with specified properties oc-

curred in [1]−[18]. In [3], a pair of linear transformations called cyclic pair

is given. We generalize the idea of cyclic pairs to weakly cyclic pairs. See

Section 2 for formal definition.

We choose a nice basis such that the matrix forms of these two linear trans-

formations are simplified. Theorem 2.5 is the result. In Theorem 2.6, we find

two constraints on the entries of these two matrices. Together with previ-

ous result from [3], we can complete determine all the cyclic pairs. We also

characterized the cyclic pair by their multiplication rules.
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2 Weakly Cyclic Pair

Let C denote the field of complex numbers and let Matd+1(C) denote the

set of (d + 1)× (d + 1) matrices over C with index set {0, 1, · · · , d}.

Definition 2.1. For A ∈ Matd+1(C), We say A is weakly cyclic when each

of the entries A10, A21, · · · , Ad,d−1, A0d is nonzero and all other nondiagonal

entries of A are zero.

Lemma 2.2. Let A be a weakly cyclic matrix. The minimal polynomial of

A is the characteristic polynomial of A.

Proof. Using the nonzero coefficients A10, A21, ..., Ad,d−1, one can find for each

i (1 ≤ i ≤ d), Ai
i0 6= 0 and Aj

i0 = 0 (1 ≤ j < i). Hence Ai is not in the

span of I,A,A2,...,Ai−1 (1 ≤ i ≤ d). That implies I,A,A2,...,Ad are linear

independent. Since A is a (d + 1)× (d + 1) matrix, the minimal polynomial

of A has degree d + 1 .

Definition 2.3. Let V denote a vector space over C with finite positive

dimension. By a weakly cyclic pair on V we mean an ordered pair of linear

transformations A : V → V and B : V → V that satisfies conditions (i), (ii)

below.

(i) There exists a basis for V with respect to which the matrix representing

A is diagonal and the matrix representing B is weakly cyclic.

(ii) There exists a basis for V with respect to which the matrix representing

B is diagonal and the matrix representing A is weakly cyclic.
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Lemma 2.4. Let (A, B) be a weakly cyclic pair on V . Then the eigenvalues

of A (resp. B) are distinct.

Proof. By the above lemma the minimal polynomial of A is the characteristic

polynomial of A and by definition of weakly cyclic pair, A is diagonalizable.

So A has distinct eigenvalues.

Theorem 2.5. Let V denote a vector space over C with dimension d + 1.

Let A : V → V and B : V → V denote linear transformations. Then the

following are equivalent.

(i) (A,B) is a weakly cyclic pair on V .

(ii) There exists a basis v0, v1, ..., vd for V with respect to which the matrices

representing A and B have the following forms,

A :




a0 0 0 . . . 0 s
1 a1 0 . . . 0 0
0 1 a2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 ad




, B :




η0 0 0 . . . 0
0 η1 0 . . . 0
0 0 η2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ηd




,

and there exists a basis w0, w1, ..., wd for V with respect to which the

matrices representing A and B have the following forms,

A :




θ0 0 0 . . . 0
0 θ1 0 . . . 0
0 0 θ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . θd




, B :




b0 0 0 . . . 0 t
1 b1 0 . . . 0 0
0 1 b2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 bd




,

where s, t ∈ C are nonzero scalars, and θi are eigenvalues of A and ηi

are eigenvalues of B for 0 ≤ i ≤ d.
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Proof. (ii)→(i) This is clear. (i)→(ii) Suppose that (A,B) is a weakly cyclic

pair. Find a basis u0, u1, ..., ud such that the matrices representing A and B

are as follows.

A :




a0 0 0 . . . 0 c0

c1 a1 0 . . . 0 0
0 c2 a2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . cd ad




, B :




η0 0 0 . . . 0
0 η1 0 . . . 0
0 0 η2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ηd




, (2.1)

where ci are not zero (0 ≤ i ≤ d). So we know that

Aui = aiui + ci+1ui+1 (0 ≤ i ≤ d− 1) (2.2)

and

Aud = c0u0 + adud. (2.3)

Set

v0 = u0 (2.4)

and

vi = c1 · · · ciui (1 ≤ i ≤ d). (2.5)

So we have

Avi = aivi + vi+1 (0 ≤ i ≤ d− 1)
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and

Avd = c0c1 · · · cdu0 + advd.

On the other hand,

Bv0 = Bu0 = η0u0 = η0v0

and

Bvi = c1 · · · ciBui = ηic1 · · · ciui = ηivi (1 ≤ i ≤ d).

Hence in the basis v0, · · · , vd, the matrices representing A,B as follows.

A =




ao 0 0 . . . 0 s
1 a1 0 . . . 0 0
0 1 a2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 ad




, B =




η0 0 0 . . . 0
0 η1 0 . . . 0
0 0 η2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ηd




,

where s = c0 · · · cd 6= 0. Similarly there exists a basis w0, w1, · · · , wd of V

such that the matrix representing A,B as follows

A =




θ0 0 0 . . . 0
0 θ1 0 . . . 0
0 0 θ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . θd




, B =




b0 0 0 . . . 0 t
1 b1 0 . . . 0 0
0 1 b2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 bd




for some nonzero t ∈ C.

Theorem 2.6. As the notation in Theorem 2.5, suppose Theorem 2.5 (i)−
(ii) hold. Then
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(θi−aj+1)(ηj+1− bi−1) = (ηj− bi−1)(θi−1−aj+1) (1 ≤ i ≤ d, 0 ≤ j ≤ d−1).

(2.6)

(θj − ai)(ηi+1 − bj) = (θj−1 − ai)(ηi − bj) (0 ≤ i ≤ d− 1, 1 ≤ j ≤ d). (2.7)

Proof. Let v0, v1, · · · , vd and w0, w1, · · · , wd be the two bases described in

Theorem 2.5(ii). Suppose

wi =
d∑

j=0

cijvj (2.8)

for some cij ∈ C. So we have

Awi = θiwi =
d∑

j=0

cijθivj (0 ≤ i ≤ d) (2.9)

and

Awi =
d∑

j=0

cijAvj (2.10)

=
d−1∑
j=0

cij(ajvj + vj+1) + cid(sv0 + advd) (2.11)

= (ci0a0 + cids)v0 +
d∑

j=1

(cijaj + ci j−1)vj (0 ≤ i ≤ d). (2.12)

Comparing (2.9)− (2.12),

cijθi = cijaj + ci j−1 (1 ≤ j ≤ d, 0 ≤ i ≤ d),

ci0θi = ci0a0 + cids (0 ≤ i ≤ d).

Hence

cij(θi − aj) = ci j−1 (1 ≤ j ≤ d, 0 ≤ i ≤ d), (2.13)
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ci0(θi − a0) = cids (0 ≤ i ≤ d). (2.14)

Similarly

Bwi =
d∑

j=0

cijBvj =
d∑

j=0

cijηjvj (0 ≤ i ≤ d) (2.15)

and

Bwi = biwi + wi+1 (2.16)

= bi

d∑
j=0

cijvj +
d∑

j=0

ci+1 jvj (2.17)

=
d∑

j=0

(bicij + ci+1 j)vj. (0 ≤ i ≤ d− 1), (2.18)

Bwd = bdwd + twd =
d∑

j=0

(bdcdj + tc0j)vj. (2.19)

Comparing (2.15)− (2.19),

cijηj = bicij + ci+1 j (0 ≤ i ≤ d− 1, 0 ≤ j ≤ d),

cdjηj = bdcdj + c0jt (0 ≤ j ≤ d).

Thus

cij(ηj − bi) = ci+1 j (0 ≤ i ≤ d− 1, 0 ≤ j ≤ d). (2.20)

By (2.13)(2.20)

cij = ci j+1(θi − aj+1) (2.21)

= ci−1 j+1(θi − aj+1)(ηj+1 − bi−1)(0 ≤ j ≤ d− 1, 1 ≤ i ≤ d),

cij = ci−1 j(ηj − bi−1) (2.22)

= ci−1 j+1(ηj − bi−1)(θi−1 − aj+1)(1 ≤ i ≤ d, 0 ≤ j ≤ d− 1).

7



Fix i (0 ≤ i ≤ d). Observe cid 6= 0, otherwise cij = 0 by (2.13) and then

wi = 0 by (2.8). Observe ci0 6= 0, otherwise cid = 0 by (2.14) and since s 6= 0.

Hence cij 6= 0 by (2.13).

By above comments and by (2.21)-(2.22), we have for 1 ≤ i ≤ d, 0 ≤ j ≤
d− 1,

(θi − aj+1)(ηj+1 − bi−1) = (ηj − bi−1)(θi−1 − aj+1). (2.23)

By the same step with supposing

vi =
d∑

j=0

dijwj, (2.24)

we have for 0 ≤ i ≤ d− 1, 1 ≤ j ≤ d,

(θj − ai)(ηi+1− bj) = (θj−1− ai)(ηi− bj) (0 ≤ i ≤ d− 1, 1 ≤ j ≤ d). (2.25)
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3 Cyclic Pair

We consider a special case of weakly cyclic pair in this section.

Definition 3.1. Let V denote a vector space over C with finite positive

dimension. By a cyclic pair on V we mean an ordered pair of linear trans-

formations A : V → V and B : V → V that satisfy conditions (i), (ii)

below.

(i) There exists a basis for V with respect to which the matrix representing

A is diagonal and the matrix representing B is cyclic.

(ii) There exists a basis for V with respect to which the matrix representing

B is diagonal and the matrix representing A is cyclic.

Lemma 3.2. Cyclic matrices are diagonalizable with nonzero eigenvalues.

Proof. For any cyclic matrix

A =




0 0 0 . . . 0 a0

a1 0 0 . . . 0 0
0 a2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ad 0




,

the characteristic polynomial of A is

f(x) = xd+1 −
d∏

i=0

ai. (3.1)

Since a1, · · · , ad are not zeros, f(x) has d + 1 distinct roots. Hence A has

d + 1 distinct eigenvalues. This implies A is diagonalizable.
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Lemma 3.3. Suppose

A =




0 0 0 . . . 0 α
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0




(α 6= 0)

and θ is an eigenvalue of A. Let u be an eigenvector corresponding to θ.

Then θd+1 = α and

u =




u0

u0θ
−1

u0θ
−2

...
u0θ

−d




for some scalar u0 ∈ C.

Proof. Suppose

u =




u0

u1

u2
...

ud




and Au = θu for u0, u1, · · · , ud ∈ C. Then

Au = 0




αud

u0

u1
...

ud−1




= θ




u0

u1

u2
...

ud




.

Hence ui = θui+1 (0 ≤ i ≤ d− 1) and ud =
θ

α
u0. Then u0 = θdud =

θd+1

α
u0.

Note that u0 6= 0 since u 6= 0 and θ 6= 0. Hence θd+1 = α and ui = θ−iu0

(0 ≤ i ≤ d).
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Theorem 3.4. Let V denote a vector space over C with dimension d + 1.

Let A : V → V and B : V → V denote linear transformations. Then the

following (i)-(iii) are equivalent.

(i) (A,B) is a cyclic pair on V .

(ii) There exists a basis v0, v1, ..., vd for V with respect to which the matrices

representing A and B have the following forms,

A :




0 0 0 . . . 0 α
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0




, B :




β 0 0 . . . 0
0 βq 0 . . . 0
0 0 βq2 . . . 0
...

...
...

. . .
...

0 0 0 . . . βqd




,

where α, β ∈ C are nonzero scalars and q ∈ C is a primitive root of

unity of order d + 1.

(iii) There exists two nonzero complex numbers α, β such that Ad+1 = αI,Bd+1 =

βd+1I, BA = qAB, where q is a primitive root of unity of order d + 1.

Proof. (i)→(ii) Suppose that (A,B) is a cyclic pair. Find a basis u0, u1, ..., ud

such that the matrices representing A and B are as follows.

A :




0 0 0 . . . 0 a0

a1 0 0 . . . 0 0
0 a2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ad 0




, B :




b0 0 0 . . . 0
0 b1 0 . . . 0
0 0 b2 . . . 0
...

...
...

. . .
...

0 0 0 . . . bd




. (3.2)

So we know that
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Aui = ai+1ui+1 (0 ≤ i ≤ d− 1) (3.3)

and

Aud = a0u0. (3.4)

Set

v0 = u0 (3.5)

and

vi = a1 · · · aiui (1 ≤ i ≤ d). (3.6)

So by (3.3)—(3.6),

Avi = vi+1 (0 ≤ i ≤ d− 1)

and

Avd = ad · · · a1a0u0.

On the other hand,

Bv0 = Bu0 = b0u0 = b0v0

and

Bvi = a1 · · · aiBui = bia1 · · · aiui = bivi (1 ≤ i ≤ d).

12



Hence in the basis v0, · · · , vd, the matrices representing A,B as follows,

A =




0 0 0 . . . 0 α
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0




, B =




b0 0 0 . . . 0
0 b1 0 . . . 0
0 0 b2 . . . 0
...

...
...

. . .
...

0 0 0 . . . bd




,

where α = a0 · · · ad. Similarly there exists a basis w0, w1, · · · , wd of V , such

that the matrix representing A is diagonal and the matrix representing B is



0 0 0 . . . 0 γ
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0




, (3.7)

for some γ ∈ C. Note that for each i, wi is an eigenvector of A. Let θi be

the corresponding eigenvalue. Then by Lemma 3.3,

wi = ci

d∑
j=0

(θ−1
i )jvj (3.8)

for some scalar ci ∈ C. From (3.7), (3.8),

Bwd = γw0 = γc0

d∑
j=0

(θ−1
0 )jvj. (3.9)

On the other hand, by (3.2), (3.8),

Bwd = cd

d∑
j=0

(θ−1
d )jBvj = cd

d∑
j=0

(θ−1
d )jbjvj. (3.10)

Comparing coefficients in (3.9)—(3.10),

bj = γ
c0

cd

(
θd

θ0

)j. (3.11)
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Note that b0, · · · , bd is a geometric sequence with common ratio q =
θd

θ0

.

Hence bj = βqj where β = b0. Observe qd+1 = 1 by Lemma 3.3 and q is

primitive since b0, · · · , bd are distinct by Lemma 3.2.

(ii) → (iii) This is clear by direct computation.

(iii) → (i) Let v 6= 0 be an eigenvector to B with corresponding eigenvalue

θ. Note that θ 6= 0. Let vi = Aiv. Suppose for some c0, · · · , cd ∈ C,

c0v0 + c1v1 + c2v2 + · · ·+ cdvd = 0. (3.12)

Then

0 =
d∑

i=0

civi

=
d∑

i=0

ciA
iv.

Applying B and using the assumption BA = qAB, we obtain

0 = B

d∑
i=0

ciA
iv

=
d∑

i=0

ciq
iAiBv

= (
d∑

i=0

ciq
iAi)θv.

14



Hence
d∑

i=0

ciq
iAi = 0. (3.13)

Observe xd+1 − α is the minimal polynomial of A, since α 6= 0. Hence

c0 = c1 = · · · = cd = 0. We have shown v0, · · · , vd is a basis of V . Observe

Avi = vi+1, i < d, and Avd = AAdv = αIv = αv0. On the other hand,

Bvi = BAiv = qiAiBv = θqiAiv = θqivi. Hence with respect to the basis

v0, · · · , vd, the matrices representing A, B has the following forms,

A =




0 0 0 . . . 0 α
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0




, B =




θ 0 0 . . . 0
0 θq 0 . . . 0
0 0 θq2 . . . 0
...

...
...

. . .
...

0 0 0 . . . θqd




.
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