1 Introduction

Spectral characterization is an important subject in algebraic graph theory. Some properties of a graph can be recognized from the spectrum of it. For example, a graph is bipartite if and only if its eigenvalues are located symmetrically to the origin [1, Theorem 8.8.2]. Another well-known result is that a graph is regular if and only if its largest eigenvalue equal to its average valency [2, Lemma 3.2.1]. See Lemma 2.2 below. Spectral characterization of strongly regular graphs can also be done [3, Theorem 8.6.37]. Here we are interested in the question: Is a graph with the same spectrum of a distance-regular graph distance-regular? That is, for a graph, is the distance-regularity determined by its spectrum? The answer is no and there exist many counterexamples. See Remark 4.4. But furthermore, by imposing some restrictions on the conditions of the distance-regular graphs we consider, such as distance-regular graphs with some special given intersection parameters, the answer can be yes. In [8], by assuming the odd cycles in a given distance-regular graph have length greater than 2 times its diameter, Huang and Liu proved a graph with the same spectrum of it is a distanceregular graph too. In [5][6], the result is generalized that for two graphs with the same spectrum, if the girth g satisfies $g \geq 2 d-1$ in the known distanceregular one, then the other is distance-regular too where d is the diameter of G. In [4], by assuming $c_{d-1}=1$ in one graph, the other cospectral graph is shown to be distance-regular and have the same intersection parameters. In this thesis, we present a uniform way to this line of study. As a consequence, we can reprove the above mentioned results [3, Theorem 8.6.37],[4],[5],[6]. See Theorem 4.1, Corollary 4.2. Furthermore, we show that if two cospectral graphs have the same average number of vertices in the t-subconstituent with respect to a vertex for each t, then one is distance-regular implies the other is distance-regualr. See Theorem 4.3 for details.

2 Preliminary

Let $G=(X, R)$ be a finite undirected, connected graph, without loops or multiple edges, with vertex set X, edge set R, path length distance function δ and diameter $d:=\max \{\delta(x, y) \mid x, y \in X\}$. Sometimes we write $\operatorname{diam}(G)$ to denote the diameter of G. By a subgraph of G, we mean a graph (Δ, Ξ), where Δ is a non-empty subset of X and $\Xi=\{\{x y\} \mid x, y \in \Delta,\{x y\} \in R\}$. We refer to (Δ, Ξ) as the subgraph induced on Δ and, by abuse of notation, we refer to this subgraph as Δ. For any $x \in X$ and any integer i, set

$$
G_{i}(x):=\{y \mid y \in X, \delta(x, y)=i\} .
$$

The valency $k(x)$ of a vertex is the cardinality of $G_{1}(x)$. The graph G is said to be regular with valency k whenever each vertex in X has valency k. For any $x \in X$, for any integer i, and for any $y \in G_{i}(x)$, set

$$
\begin{aligned}
B(x, y) & :=G_{1}(y) \cap G_{i+1}(x) \\
A(x, y) & :=G_{1}(y) \cap G_{i}(x), \\
C(x, y) & :=G_{1}(y) \cap G_{i-1}(x) .
\end{aligned}
$$

For all $x, y \in X$ with $\delta(x, y)=i$, the numbers

$$
c_{i}:=|C(x, y)|, \quad a_{i}:=|A(x, y)|, \quad b_{i}:=|B(x, y)| .
$$

are said to be well-defined if they are independent of x and $y . G$ is said to be t-distance-regular whenever for all integers $i(0 \leq i \leq t), a_{i-1}, b_{i-1}, c_{i}$ are all well-defined. A d-distance-regular graph is also called a distanceregular graph. The constants c_{i}, a_{i} and $b_{i}(0 \leq i \leq d)$ are known as the intersection numbers or intersection parameters of G. Note that the valency $k=b_{0}, c_{0}=0, c_{1}=1, b_{d}=0$ and

$$
k=c_{i}+a_{i}+b_{i} \quad(0 \leq i \leq d)
$$

Let $k_{i}(x)$ denotes the cardinality of $G_{i}(x)$. For a distance-regular graph G, we know that $k_{i}(x)$ is a constant for any $x \in G$ for all i. We denote this constant by k_{i}. A graph is said to be strongly regular with parameters (n, k, a, c) if it is regular with valency k, every pair of adjacent vertices has a common neighbors, and every pair of distinct nonadjacent vertices has c
common neighbors, where $c>0$. We see that a strongly regular graph is a distance-regular graph with diameter 2 with intersection parameters

$$
\begin{array}{lll}
c_{0}=0, & a_{0}=0, & b_{0}=k, \\
c_{1}=1, & a_{1}=a, & b_{1}=k-a-1, \\
c_{2}=c, & a_{2}=k-c, & b_{2}=0
\end{array}
$$

For the adjacency matrix A of a graph G, we mean a symmetric $(0,1)$-matrix determined by G with rows and columns indexed by the vertices of G, and with entries

$$
A_{x y}=\left\{\begin{array}{l}
1, \text { if } x, y \text { is adjacent } \\
0, \text { otherwise }
\end{array}\right.
$$

Since the adjacency matrix A of a graph G is a real symmetric matrix, we have that the eigenvalues of A are all real numbers. We represent the distinct eigenvalues of A with their corresponding multiplicities by an array as follows:

$$
\left(\begin{array}{cccc}
\theta_{0} & \theta_{1} & \cdots & \theta_{d} \\
m_{0} & m_{1} & \cdots & m_{d}
\end{array}\right)
$$

where $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Note $m_{0}+m_{1}+\cdots+m_{d}=v$ where v is the number of vertices in G. This array is said to be the spectrum of G. Two graphs are said to be cospectral if they have the same spectrum.

The following Lemma follows immediately from linear algebra.
Lemma 2.1. $\operatorname{Tr}\left(A^{n}\right)=\sum_{i=0}^{d} m_{i} \theta_{i}^{n}$ for any $n \in \mathbb{N}$.
Lemma 2.2. Let $G=(X, R)$ be a graph with v vertices and have average valency $\bar{k}=\frac{1}{v} \sum_{x \in X} k(x)$. Let A be the adjacency matrix of G with eigenvalues $\theta_{0} \geq \theta_{1} \geq \cdots \geq \theta_{v}$. We have $\theta_{0} \geq \bar{k}$, with equality if and only if G is regular.

Proof. Let $\beta=\left\{u_{1}, u_{2}, \cdots, u_{v}\right\}$ be an orthonormal basis of \mathbb{R}^{v} which are all eigenvectors of A, and let θ_{i} be the corresponding eigenvalue of u_{i}. Consider the all- 1 vector $\mathbf{1}$ in \mathbb{R}^{v}. We can express $\mathbf{1}$ in terms of a linear combination of β,that is, $\mathbf{1}=\sum_{i=1}^{v} a_{i} u_{i}$. We have that $v=\mathbf{1}^{t} \mathbf{1}=\sum_{i=1}^{v} a_{i}^{2}$, and $\sum_{x \in X} k(x)=$
$v \bar{k}=\mathbf{1}^{t} A \mathbf{1}=\sum_{i=1}^{v} a_{i}^{2} \theta_{i} \leq \sum_{i=1}^{v} a_{i}^{2} \theta_{0}=v \theta_{0}$, so $\bar{k} \leq \theta_{0}$. The equality holds if and only if $a_{i}\left(\theta_{0}-\theta_{i}\right)=0$ for all $i(o \leq i \leq v)$, that is, $A \mathbf{1}=\theta_{0} \mathbf{1}$, i.e., G is regular with valency θ_{0}.

Theorem 2.3. Let $G=(X, R)$ be a graph with v vertices and has spectrum

$$
\left(\begin{array}{cccc}
\theta_{0} & \theta_{1} & \cdots & \theta_{d} \\
m_{0} & m_{1} & \cdots & m_{d}
\end{array}\right)
$$

where $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Then the following (i)-(ii) are equivalent.
(i) $\sum_{i=0}^{d} m_{i} \theta_{i}^{2}=v \theta_{0}$
(ii) G is regular with valency θ_{0}.

Proof. Observe $\left(A^{2}\right)_{x x}=k(x)$ for all $x \in X$. Hence we have that $\sum_{i=1}^{d} m_{i} \theta_{i}^{2}=$ $\operatorname{Tr}\left(A^{2}\right)=\sum_{x \in X} k(x)=v \bar{k}$. Then simply applying Lemma 2.2, we have that (i)-(ii) are equivalent.

We quote a Theorem from [1, Lemma 8.12.1].
Theorem 2.4. If G is a graph with diameter d, then $A(G)$ has at least $d+1$ distinct eigenvalues.

3 t-distance-regular graphs

Let $G=(X, E)$ and $G^{\prime}=\left(X^{\prime}, E^{\prime}\right)$ be two connected graphs with the same spectrum

$$
\left(\begin{array}{cccc}
\theta_{0} & \theta_{1} & \cdots & \theta_{d} \\
m_{0} & m_{1} & \cdots & m_{d}
\end{array}\right)
$$

Let $t \leq d$ be a positive integer. Suppose G is t-distance-regular. That is in G the parameters a_{i}, b_{i}, and $c_{i+1},(0 \leq i \leq t-1)$ are well-defined. Hence $k_{i}(0 \leq$ $i \leq t)$ is well defined. Suppose G^{\prime} is $(t-1)$-distance-regular, the parameters $a_{i}^{\prime}, b_{i}^{\prime}$, and $c_{i+1}^{\prime},(0 \leq i \leq t-2)$ are well-defined. Furthermore assume these parameters are the same as the corresponding intersection parameters of G. Hence $k_{i}^{\prime}=k_{i}(0 \leq i \leq t-1)$. Let A, A^{\prime} denote the adjacency matrices of G, G^{\prime} respectively.

Lemma 3.1. $\sum_{x \in X^{\prime}} \sum_{y \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}(x, y)=v k_{t-1} a_{t-1} \quad$, where $v=|X|=\sum_{i=0}^{d} m_{i}$.
Proof. The number of closed walks of length $2 t-1$ through x in G^{\prime} is $\left(A^{\prime 2 t-1}\right)_{x x}$. These closed walks divide into 2 parts. One contains an edge in the induced subgraph $G_{t-1}^{\prime}(x)$ and the other does not. The number of the first part is

$$
\sum_{y \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}(x, y)\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)
$$

Let K denote the number of remaining closed walks. Hence

$$
\begin{equation*}
K+\sum_{y \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}(x, y)\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)=\left(A^{\prime 2 t-1}\right)_{x x} . \tag{3.1}
\end{equation*}
$$

Note K can be expressed in terms of the known (and well-defined) intersection parameters. Then we know that

$$
\begin{align*}
\operatorname{Tr}\left(A^{\prime 2 t-1}\right) & =\sum_{x \in X^{\prime}}\left(A^{\prime 2 t-1}\right)_{x x} \\
& =v K+\sum_{x \in X^{\prime}} \sum_{y \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}(x, y)\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right) . \tag{3.2}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\operatorname{Tr}\left(A^{2 t-1}\right) & =v K+\sum_{x \in X} \sum_{y \in G_{t-1}(x)} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) \\
& =v K+v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) . \tag{3.3}
\end{align*}
$$

Since A and A^{\prime} have the same spectrum, we know that

$$
\operatorname{Tr}\left(A^{2 t-1}\right)=\operatorname{Tr}\left(A^{2 t-1}\right)
$$

Thus by (3.2)-(3.3)

$$
\sum_{x \in X^{\prime}} \sum_{y \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}(x, y)=v k_{t-1} a_{t-1} .
$$

Corollary 3.2. Suppose either $a_{t+1}^{\prime}(x, y) \geq a_{t-1}$ or $a_{t-1}^{\prime}(x, y) \leq a_{t-1}$ for any $x \in X^{\prime}, y \in G_{t-1}^{\prime}(x)$. Then $a_{t-1}^{\prime}=a_{t-1}$.

Proof. It's trivial by Lemma 3.1.
Lemma 3.3. $\sum_{x \in X^{\prime}} \sum_{z \in G_{t}^{\prime}(x)} c_{t}^{\prime}(x, z)=v k_{t-1} b_{t-1}=v k_{t} c_{t}$.
Proof. For each $x \in X^{\prime}$, by counting the number of edges between $G_{t-1}^{\prime}(x)$ and $G_{t}^{\prime}(x)$ in two ways and Lemma 3.1,

$$
\begin{aligned}
\sum_{x \in X^{\prime}} \sum_{z \in G_{t}^{\prime}(x)} c_{t}^{\prime}(x, z) & =\sum_{x \in X} \sum_{y \in G_{t-1}^{\prime}(x)} b_{t-1}^{\prime}(x, y) \\
& =\sum_{x \in X^{\prime}} \sum_{y \in G_{t-1}^{\prime}(x)}\left(k_{1}-c_{t-1}-a_{t-1}^{\prime}(x, y)\right) \\
& =v k_{t-1}\left(k_{1}-c_{t-1}\right)-\sum_{x \in X} \sum_{y \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}(x, y) \\
& =v k_{t-1}\left(k_{1}-c_{t-1}\right)-v k_{t-1} a_{t-1} \\
& =v k_{t-1} b_{t-1} \\
& =v k_{t} c_{t} .
\end{aligned}
$$

Corollary 3.4. Let $\overline{k_{t}^{\prime}}$ denotes $\frac{1}{v}$ times the cardinality of the set $\{(x, z) \mid x, z \in$ $\left.G^{\prime}, d(x, z)=t\right\}$. Suppose either $\overline{k_{t}^{\prime}} \geq k_{t}$ and $c_{t}^{\prime}(x, z) \geq c_{t}$, or $\overline{k_{t}^{\prime}} \leq k_{t}$ and $c_{t}^{\prime}(x, z) \leq c_{t}$ for any $x \in X, z \in G_{t}^{\prime}(x)$. Then $\overline{k_{t}^{\prime}}=k_{t}$ and $c_{t}^{\prime}=c_{t}$.

Proof. It's trivial by Lemma 3.3.

Lemma 3.5.

$$
\begin{aligned}
\operatorname{Tr}\left(A^{\prime 2 t}\right)=v C & +\sum_{x \in X^{\prime}} \sum_{y \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}(x, y)^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right) \\
& +\sum_{x \in X^{\prime}} \sum_{z \in G_{t}^{\prime}(x)} c_{t}^{\prime}(x, z)^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right) \\
& +v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right)\left(a_{t-2}+\cdots+a_{1}\right)
\end{aligned}
$$

for some constant C determined by $a_{i}, b_{i}, c_{i+1} \quad(0 \leq i \leq t-2)$.
Proof. For any vertex x of G^{\prime}, we count the number of closed walks $x=$ $x_{0}, x_{1}, \cdots, x_{2 t}=x$. There are 4 cases.

Case 1: $x_{t-1}, x_{t}, x_{t+1} \in G_{t-1}^{\prime}(x)$. The number of closed walks in this case can be expressed as

$$
\sum_{x_{t} \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}\left(x, x_{t}\right)^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)
$$

Case 2: $x_{t} \in G_{t}^{\prime}(x)$. The number of closed walks in this case can be expressed as

$$
\sum_{x_{t} \in G_{t}^{\prime}(x)} c_{t}^{\prime}\left(x, x_{t}\right)^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) .
$$

Case 3: $x_{t} \in G_{t-1}^{\prime}(x),\left|\left\{x_{t-1}, x_{t+1}\right\} \cap G_{t-1}^{\prime}(x)\right|=1$. The number of closed walks in this case can be expressed as

$$
\sum_{x_{t} \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}\left(x, x_{t}\right)\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)\left(a_{t-2}+\ldots+a_{1}\right)
$$

By simply apply Lemma 3.1, we know that this term equals

$$
v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)\left(a_{t-2}+\ldots+a_{1}\right)
$$

Case 4: The remaining cases. The number of closed walks in this case can be expressed as a known constant C.

As before, we know the number of the closed walks of length $2 t$ is $\operatorname{Tr}\left(A^{\prime 2 t}\right)$. Hence

$$
\begin{aligned}
\operatorname{Tr}\left(A^{\prime 2 t}\right)=v C & +\sum_{x \in X^{\prime}} \sum_{y \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}(x, y)^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right) \\
& +\sum_{x \in X^{\prime}} \sum_{z \in G_{t}^{\prime}(x)} c_{t}^{\prime}(x, z)^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right) \\
& +v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right)\left(a_{t-2}+\cdots+a_{1}\right)
\end{aligned}
$$

Corollary 3.6. Let C be as in Lemma 3.5. Then

$$
\begin{aligned}
\operatorname{Tr}\left(A^{2 t}\right)=v C & +v k_{t-1} a_{t-1}^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) \\
& +v k_{t} c_{t}^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) \\
& +v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)\left(a_{t-2}+\ldots+a_{1}\right) .
\end{aligned}
$$

Proof. We express $\operatorname{Tr}\left(A^{2 t}\right)$ by the way in Lemma 3.5.

$$
\begin{aligned}
\operatorname{Tr}\left(A^{2 t}\right)=v C & +\sum_{x \in X} \sum_{y \in G_{t-1}(x)} a_{t-1}(x, y)^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right) \\
& +\sum_{x \in X} \sum_{z \in G_{t}(x)} c_{t}(x, z)^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right) \\
& +\sum_{x \in X} \sum_{y \in G_{t-1}(x)} a_{t-1}(x, y)\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right)\left(a_{t-2}+\cdots+a_{1}\right)
\end{aligned}
$$

Since the intersection parameters a_{t-1}, c_{t} are well-defined and known in G, we simply substitute the parameters in and get the result.

Lemma 3.7.

$$
\begin{align*}
\operatorname{Tr}\left(A^{\prime 2 t}\right) \geq v C & +v k_{t-1} a_{t-1}^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) \\
& +v k_{t} c_{t}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) \\
& +v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)\left(a_{t-2}+\ldots+a_{1}\right) . \tag{3.4}
\end{align*}
$$

Furthermore, the following (i)-(ii) are equivalent.
(i) Equality holds in (3.4).
(ii) $a_{t-1}^{\prime}(x, y)=a_{t-1}, c_{t}^{\prime}(x, z)=1$ for any $x \in X^{\prime}, y \in G_{t-1}^{\prime}(x), z \in G_{t}^{\prime}(x)$.

Proof. Applying Cauchy's inequality and $c_{t}^{\prime}(x, z)^{2} \geq c_{t}^{\prime}(x, z)$ on the expression of $\operatorname{Tr}\left(A^{\prime 2 t}\right)$ in Lemma 3.5, it follows that

$$
\begin{aligned}
\operatorname{Tr}\left(A^{\prime 2 t}\right) \geq v C & +\frac{1}{v k_{t-1}}\left(\sum_{x \in X^{\prime}} \sum_{y \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}(x, y)\left(c_{t-1} c_{t-2} \ldots c_{2}\right)\right)^{2} \\
& +\sum_{x \in X^{\prime}} \sum_{z \in G_{t}^{\prime}(x)} c_{t}^{\prime}(x, z)\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) \\
& +v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)\left(a_{t-2}+\ldots+a_{1}\right) \\
=v C & +\frac{1}{v k_{t-1}}\left(v k_{t-1} a_{t-1}\left(c_{t-1} c_{t-2} \ldots c_{2}\right)\right)^{2} \\
& +v k_{t-1} b_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) \\
& +v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)\left(a_{t-2}+\ldots+a_{1}\right) \\
=v C & +v k_{t-1} a_{t-1}^{2}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) \\
& +v k_{t-1} b_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right) \\
& +v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)\left(a_{t-2}+\ldots+a_{1}\right) .
\end{aligned}
$$

The above equality holds if and only if $a_{t-1}^{\prime}(x, y)=a_{t-1}$ and $c_{t}^{\prime}(x, z)=1$ for any x, y, z with $\delta(x, y)=t-1$ and $\delta(x, z)=t$.
The equivalence of (i)-(ii) is clear.

Lemma 3.8.

$$
\begin{align*}
\operatorname{Tr}\left(A^{\prime 2 t}\right) \geq v C & +v k_{t-1} a_{t-1}^{2}\left(c_{t-1}^{2} \cdots c_{2}^{2}\right) \\
& +\frac{\left(v k_{t} c_{t} c_{t-1} \cdots c_{2}\right)^{2}}{v \overline{k_{t}^{\prime}}} \\
& +v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \cdots c_{2}^{2}\right)\left(a_{t-2}+\ldots+a_{1}\right) \tag{3.5}
\end{align*}
$$

Furthermore, the following (i)-(ii) are equivalent.
(i) Equality holds in (3.5), $\overline{k_{t}^{\prime}}=k_{t}$.
(ii) $a_{t-1}^{\prime}(x, y)=a_{t-1}, c_{t}^{\prime}(x, z)=c_{t}$ for any $x \in X, y \in G_{t-1}^{\prime}(x), z \in G_{t}^{\prime}(x)$.

Proof. Applying Cauchy's inequality on the expression of $\operatorname{Tr}\left(A^{\prime 2 t}\right)$ in Lemma 3.5,
it follows

$$
\begin{aligned}
\operatorname{Tr}\left(A^{\prime 2 t}\right) \geq v C & +\frac{1}{v k_{t-1}}\left(\sum_{x \in X^{\prime}} \sum_{y \in G_{t-1}^{\prime}(x)} a_{t-1}^{\prime}(x, y) c_{t-1} c_{t-2} \ldots c_{2}\right)^{2} \\
& +\frac{1}{v \overline{k_{t}^{\prime}}}\left(\sum_{x \in X^{\prime}} \sum_{z \in G_{t}^{\prime}(x)} c_{t}^{\prime}(x, z) c_{t-1} c_{t-2} \ldots c_{2}\right)^{2} \\
& +v k_{t-1} a_{t-1}\left(c_{t-1} c_{t-2}^{2} \ldots c_{2}^{2}\right)\left(a_{t-2}+\ldots+a_{1}\right) . \\
=v C & +\frac{1}{v k_{t-1}}\left(v k_{t-1} a_{t-1} c_{t-1} c_{t-2} \ldots c_{2}\right)^{2} \\
& +\frac{\left(v k_{t} c_{t} c_{t-1} \cdots c_{2}\right)^{2}}{v \overline{k_{t}^{\prime}}} \\
& +v k_{t-1} a_{t-1}\left(c_{t-1}^{2} c_{t-2}^{2} \ldots c_{2}^{2}\right)\left(a_{t-2}+\ldots+a_{1}\right) .
\end{aligned}
$$

$(\mathrm{i}) \Rightarrow(\mathrm{ii})$ is clear. $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ is from the observation that the last term in the above equation is $\operatorname{Tr}\left(A^{2 t}\right)$ which is equal to $\operatorname{Tr}\left(A^{\prime 2 t}\right)$.

Lemma 3.9. Suppose $c_{t}=1$. Then $a_{t-1}^{\prime}, b_{t-1}^{\prime}, c_{t}^{\prime}$ are well-defined, and are the same as the corresponding ones in G.

Proof. Comparing to Collary 3.6 and using $c_{t}=1$, we find the equality in Lemma 3.7 holds. Hence $a_{t-1}^{\prime}, c_{t}^{\prime}$ are well-defined. Note $b_{t-1}^{\prime}=b_{0}-c_{t-1}-$ a_{t-1}^{\prime}.

4 Applications

Theorem 4.1. [4, Theorem 1] Let $G=(X, E)$ and $G^{\prime}=\left(X^{\prime}, E^{\prime}\right)$ be two connected graphs with the same spectrum

$$
\left(\begin{array}{cccc}
\theta_{0} & \theta_{1} & \cdots & \theta_{d} \\
m_{0} & m_{1} & \cdots & m_{d}
\end{array}\right) .
$$

Suppose that G is distance-regular with intersection parameters a_{i}, b_{i}, c_{i} for $0 \leq i \leq d$. Suppose $c_{j}=1$ for $1 \leq j \leq d-1$. Then G^{\prime} is a distance-regular graph with the same intersection parameters of G.
Proof. We first show $a_{i}^{\prime}=a_{i}, b_{i}^{\prime}=b_{i}, c_{i+1}^{\prime}=c_{i+1}=1 \quad(0 \leq i \leq d-2)$ by induction on i. $a_{0}^{\prime}=0=a_{0}, c_{1}^{\prime}=1=c_{1}$ are clear. $b_{0}^{\prime}=b_{0}$ is from Theorem 2.3. Hence we have the case $i=0$. Suppose this is true for $i \leq t-2$. The case $i=t-1$ is true from Lemma 3.9. So we have $a_{i}^{\prime}=a_{i}, b_{i}^{\prime}=b_{i}, c_{i+1}^{\prime}=$ $c_{i+1}=1 \quad(0 \leq i \leq d-2)$. For the remaining parameters, we know $k_{i}^{\prime}=k_{i}$ is well-defined for each $0 \leq i \leq d-1$. Note the diameter of G^{\prime} is at most d by Lemma 2.4. Hence $k_{d}^{\prime}=v-k_{0}-k_{1} \cdots-k_{d-1}$ is well-defined. Then the equality in Lemma 3.8 (iii) holds for $t=d$, so by Lemma 3.8 (ii) we have $a_{d-1}^{\prime}=a_{d-1}, c_{d}^{\prime}=c_{d}$. Note $a_{d}^{\prime}=b_{0}-c_{d}=a_{d}$.
Corollary 4.2. Let G be a strongly regular graph. Suppose that G^{\prime} is a graph with the same spectrum of G. Then G^{\prime} is a strongly regular graph with the same intersection parameters of G.

Proof. This is immediate from Theorem 4.1 since $c_{1}=1$.
Theorem 4.3. Let G be a distance-regular graph. Suppose G^{\prime} is a graph with the same spectrum of G. Furthermore, with refering to Corollary 3.4, suppose $\overline{k_{t}^{\prime}}=k_{t}$. Then G^{\prime} is a distance-regular graph with the same intersection parameters.

Proof. We show $a_{i}^{\prime}=a_{i}, b_{i}^{\prime}=b_{i}, c_{i+1}^{\prime}=c_{i+1} \quad(0 \leq i \leq d-1)$ by induction on i. $a_{0}^{\prime}=a_{0}, c_{1}^{\prime}=1=c_{1}$ are clear. $b_{0}^{\prime}=b_{0}$ is from Theorem 2.3. Hence we have the case $i=0$. Suppose this is true for $i \leq t-2$. Since Lemma 3.8 (iii) holds, we have Lemma 3.8 (ii). Then $a_{t-1}^{\prime}=a_{t-1}$ and $c_{t}^{\prime}=c_{t}$. Note $b_{t-1}^{\prime}=b_{0}-c_{t-1}-a_{t-1}$.

Remark 4.4. [6, Example 2.] The Gosset graph Γ is the unique distanceregular graph on 56 vertices with intersection array $\{27,10,1 ; 1,10,27\}$. Notice that in $\Gamma, k_{0}=1, k_{1}=27, k_{2}=27, k_{3}=1$. We have a graph Γ^{\prime} with
diameter 2 which is obtained by taking some special kind of switching on Γ such that in $\Gamma^{\prime}, k_{0}^{\prime}=1, k_{1}^{\prime}=27, k_{2}^{\prime}=28$ where Γ and Γ^{\prime} are cospectral.

References

[1] Chris Godsil and Gordon Royle. Algebraic Graph Theory. SpringerVerlag, New York, 2001
[2] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs. Springer-Verlag, Berlin, 1989.
[3] Duuglas B. West Introduction to Graph Theory. Prentice Hall
[4] Edwin R. Van Dam and Willem H. Haemers. Spectral Characterizations of Some Distance-Regular Graphs. Journal of Algebraic Combinatorics 15(2002), 189-202.
[5] A. E. Brouwer and W.H Haemers. The Gewirtz graph: An exercise in the theory of graph spectra. European J. Combin. 14(1993), 397-407.
[6] W.H Haemers. Distance-Regularity and the spectrum of graphs. Linear Alg. Appl. 236(1996), 265-278.
[7] T. Huang. Spectrul Characterization of Odd Graphs $O_{k}, k \leq 6$ Graphs and Combinatorics 10(1994), 235-240.
[8] T. Huang and C. Liu. Spectral characterization of some generalized odd graphs. Graphs and Combinatorics 15(1999), 195-209.

