1 Introduction

Spectral characterization is an important subject in algebraic graph theory. Some properties of a graph can be recognized from the spectrum of it. For example, a graph is bipartite if and only if its eigenvalues are located symmetrically to the origin [1, Theorem 8.8.2]. Another well-known result is that a graph is regular if and only if its largest eigenvalue equal to its average valency [2, Lemma 3.2.1]. See Lemma 2.2 below. Spectral characterization of strongly regular graphs can also be done [3, Theorem 8.6.37]. Here we are interested in the question: Is a graph with the same spectrum of a distance-regular graph distance-regular? That is, for a graph, is the distance-regularity determined by its spectrum? The answer is no and there exist many counterexamples. See Remark 4.4. But furthermore, by imposing some restrictions on the conditions of the distance-regular graphs we consider, such as distance-regular graphs with some special given intersection parameters, the answer can be yes. In [8], by assuming the odd cycles in a given distance-regular graph have length greater than 2 times its diameter, Huang and Liu proved a graph with the same spectrum of it is a distanceregular graph too. In [5][6], the result is generalized that for two graphs with the same spectrum, if the girth g satisfies $g \geq 2d-1$ in the known distanceregular one, then the other is distance-regular too where d is the diameter of G. In [4], by assuming $c_{d-1} = 1$ in one graph, the other cospectral graph is shown to be distance-regular and have the same intersection parameters. In this thesis, we present a uniform way to this line of study. As a consequence, we can reprove the above mentioned results [3, Theorem 8.6.37], [4], [5], [6]. See Theorem 4.1, Corollary 4.2. Furthermore, we show that if two cospectral graphs have the same average number of vertices in the t-subconstituent with respect to a vertex for each t, then one is distance-regular implies the other is distance-regualr. See Theorem 4.3 for details.

2 Preliminary

Let G = (X, R) be a finite undirected, connected graph, without loops or multiple edges, with vertex set X, edge set R, path length distance function δ and diameter $d := \max\{\delta(x, y) | x, y \in X\}$. Sometimes we write diam(G)to denote the diameter of G. By a subgraph of G, we mean a graph (Δ, Ξ) , where Δ is a non-empty subset of X and $\Xi = \{\{xy\} | x, y \in \Delta, \{xy\} \in R\}$. We refer to (Δ, Ξ) as the subgraph induced on Δ and, by abuse of notation, we refer to this subgraph as Δ . For any $x \in X$ and any integer *i*, set

$$G_i(x) := \{ y \mid y \in X, \delta(x, y) = i \}.$$

The valency k(x) of a vertex is the cardinality of $G_1(x)$. The graph G is said to be regular with valency k whenever each vertex in X has valency k. For any $x \in X$, for any integer i, and for any $y \in G_i(x)$, set

$$B(x,y) := G_1(y) \cap G_{i+1}(x), A(x,y) := G_1(y) \cap G_i(x), C(x,y) := G_1(y) \cap G_{i-1}(x).$$

For all $x, y \in X$ with $\delta(x, y) = i$, the numbers

$$c_i := |C(x, y)|, \quad a_i := |A(x, y)|, \quad b_i := |B(x, y)|.$$

are said to be *well-defined* if they are independent of x and y. G is said to be *t*-distance-regular whenever for all integers i $(0 \le i \le t)$, a_{i-1}, b_{i-1}, c_i are all well-defined. A d-distance-regular graph is also called a distanceregular graph. The constants c_i , a_i and b_i $(0 \le i \le d)$ are known as the intersection numbers or intersection parameters of G. Note that the valency $k = b_0$, $c_0 = 0$, $c_1 = 1$, $b_d = 0$ and

$$k = c_i + a_i + b_i \quad (0 \le i \le d).$$

Let $k_i(x)$ denotes the cardinality of $G_i(x)$. For a distance-regular graph G, we know that $k_i(x)$ is a constant for any $x \in G$ for all i. We denote this constant by k_i . A graph is said to be *strongly regular with parameters* (n, k, a, c) if it is regular with valency k, every pair of adjacent vertices has a common neighbors, and every pair of distinct nonadjacent vertices has c

common neighbors, where c > 0. We see that a strongly regular graph is a distance-regular graph with diameter 2 with intersection parameters

$$\begin{array}{ll} c_0=0, & a_0=0, & b_0=k, \\ c_1=1, & a_1=a, & b_1=k-a-1, \\ c_2=c, & a_2=k-c, & b_2=0. \end{array}$$

For the *adjacency matrix* A of a graph G, we mean a symmetric (0, 1)-matrix determined by G with rows and columns indexed by the vertices of G, and with entries

$$A_{xy} = \begin{cases} 1, \text{ if } x, y \text{ is adjacent,} \\ 0, \text{ otherwise.} \end{cases}$$

Since the adjacency matrix A of a graph G is a real symmetric matrix, we have that the eigenvalues of A are all real numbers. We represent the distinct eigenvalues of A with their corresponding multiplicities by an array as follows:

$$\left(\begin{array}{ccc} \theta_0 & \theta_1 & \cdots & \theta_d \\ m_0 & m_1 & \cdots & m_d \end{array}\right)$$

where $\theta_0 > \theta_1 > \cdots > \theta_d$. Note $m_0 + m_1 + \cdots + m_d = v$ where v is the number of vertices in G. This array is said to be the *spectrum* of G. Two graphs are said to be *cospectral* if they have the same spectrum.

The following Lemma follows immediately from linear algebra.

Lemma 2.1.
$$Tr(A^n) = \sum_{i=0}^d m_i \theta_i^n$$
 for any $n \in \mathbb{N}$

Lemma 2.2. Let G = (X, R) be a graph with v vertices and have average valency $\overline{k} = \frac{1}{v} \sum_{x \in X} k(x)$. Let A be the adjacency matrix of G with eigenvalues $\theta_0 \ge \theta_1 \ge \cdots \ge \theta_v$. We have $\theta_0 \ge \overline{k}$, with equality if and only if G is regular.

Proof. Let $\beta = \{u_1, u_2, \cdots, u_v\}$ be an orthonormal basis of \mathbb{R}^v which are all eigenvectors of A, and let θ_i be the corresponding eigenvalue of u_i . Consider the all-1 vector $\mathbf{1}$ in \mathbb{R}^v . We can express $\mathbf{1}$ in terms of a linear combination of β , that is, $\mathbf{1} = \sum_{i=1}^{v} a_i u_i$. We have that $v = \mathbf{1}^t \mathbf{1} = \sum_{i=1}^{v} a_i^2$, and $\sum_{x \in X} k(x) =$

 $v\overline{k} = \mathbf{1}^t A \mathbf{1} = \sum_{i=1}^v a_i^2 \theta_i \leq \sum_{i=1}^v a_i^2 \theta_0 = v \theta_0$, so $\overline{k} \leq \theta_0$. The equality holds if and only if $a_i(\theta_0 - \theta_i) = 0$ for all $i \ (o \leq i \leq v)$, that is, $A \mathbf{1} = \theta_0 \mathbf{1}$, i.e., G is regular with valency θ_0 .

Theorem 2.3. Let G = (X, R) be a graph with v vertices and has spectrum

$$\left(\begin{array}{ccc} \theta_0 & \theta_1 & \cdots & \theta_d \\ m_0 & m_1 & \cdots & m_d \end{array}\right)$$

where $\theta_0 > \theta_1 > \cdots > \theta_d$. Then the following (i)-(ii) are equivalent. (i) $\sum_{i=1}^{d} m_i \theta_i^2 = v \theta_0$

(i) $\sum_{i=0}^{d} m_i \theta_i^2 = v \theta_0$ (ii) G is regular with valency θ_0 .

Proof. Observe $(A^2)_{xx} = k(x)$ for all $x \in X$. Hence we have that $\sum_{i=1}^d m_i \theta_i^2 = Tr(A^2) = \sum_{x \in X} k(x) = v\overline{k}$. Then simply applying Lemma 2.2, we have that (i)-(ii) are equivalent.

We quote a Theorem from [1, Lemma 8.12.1].

Theorem 2.4. If G is a graph with diameter d, then A(G) has at least d+1 distinct eigenvalues.

3 t-distance-regular graphs

Let G = (X, E) and G' = (X', E') be two connected graphs with the same spectrum

$$\left(\begin{array}{ccc} \theta_0 & \theta_1 & \cdots & \theta_d \\ m_0 & m_1 & \cdots & m_d \end{array}\right).$$

Let $t \leq d$ be a positive integer. Suppose G is t-distance-regular. That is in G the parameters a_i, b_i , and $c_{i+1}, (0 \leq i \leq t-1)$ are well-defined. Hence $k_i (0 \leq i \leq t)$ is well defined. Suppose G' is (t-1)-distance-regular, the parameters a'_i, b'_i , and $c'_{i+1}, (0 \leq i \leq t-2)$ are well-defined. Furthermore assume these parameters are the same as the corresponding intersection parameters of G. Hence $k'_i = k_i (0 \leq i \leq t-1)$. Let A, A' denote the adjacency matrices of G, G' respectively.

Lemma 3.1.
$$\sum_{x \in X'} \sum_{y \in G'_{t-1}(x)} a'_{t-1}(x, y) = vk_{t-1}a_{t-1}$$
, where $v = |X| = \sum_{i=0}^{d} m_i$.

Proof. The number of closed walks of length 2t - 1 through x in G' is $(A'^{2t-1})_{xx}$. These closed walks divide into 2 parts. One contains an edge in the induced subgraph $G'_{t-1}(x)$ and the other does not. The number of the first part is

$$\sum_{y \in G'_{t-1}(x)} a'_{t-1}(x,y) (c_{t-1}^2 c_{t-2}^2 \dots c_2^2).$$

Let K denote the number of remaining closed walks. Hence

$$K + \sum_{y \in G'_{t-1}(x)} a'_{t-1}(x, y) (c^2_{t-1} c^2_{t-2} \dots c^2_2) = (A'^{2t-1})_{xx}.$$
 (3.1)

Note K can be expressed in terms of the known (and well-defined) intersection parameters. Then we know that

$$Tr(A'^{2t-1}) = \sum_{x \in X'} (A'^{2t-1})_{xx}$$

= $vK + \sum_{x \in X'} \sum_{y \in G'_{t-1}(x)} a'_{t-1}(x,y) (c^2_{t-1}c^2_{t-2} \cdots c^2_2).$ (3.2)

Similarly,

$$Tr(A^{2t-1}) = vK + \sum_{x \in X} \sum_{y \in G_{t-1}(x)} a_{t-1}(c_{t-1}^2 c_{t-2}^2 \dots c_2^2)$$

= $vK + vk_{t-1}a_{t-1}(c_{t-1}^2 c_{t-2}^2 \dots c_2^2).$ (3.3)

Since A and A' have the same spectrum, we know that

$$Tr(A'^{2t-1}) = Tr(A^{2t-1}).$$

Thus by (3.2)-(3.3)

$$\sum_{x \in X'} \sum_{y \in G'_{t-1}(x)} a'_{t-1}(x, y) = v k_{t-1} a_{t-1}.$$

Corollary 3.2. Suppose either $a'_{t+1}(x, y) \ge a_{t-1}$ or $a'_{t-1}(x, y) \le a_{t-1}$ for any $x \in X', y \in G'_{t-1}(x)$. Then $a'_{t-1} = a_{t-1}$.

Proof. It's trivial by Lemma 3.1.

Lemma 3.3.
$$\sum_{x \in X'} \sum_{z \in G'_t(x)} c'_t(x, z) = v k_{t-1} b_{t-1} = v k_t c_t.$$

Proof. For each $x \in X'$, by counting the number of edges between $G'_{t-1}(x)$ and $G'_t(x)$ in two ways and Lemma 3.1,

$$\begin{split} \sum_{x \in X'} \sum_{z \in G'_t(x)} c'_t(x, z) &= \sum_{x \in X} \sum_{y \in G'_{t-1}(x)} b'_{t-1}(x, y) \\ &= \sum_{x \in X'} \sum_{y \in G'_{t-1}(x)} \left(k_1 - c_{t-1} - a'_{t-1}(x, y) \right) \\ &= v k_{t-1} (k_1 - c_{t-1}) - \sum_{x \in X} \sum_{y \in G'_{t-1}(x)} a'_{t-1}(x, y) \\ &= v k_{t-1} (k_1 - c_{t-1}) - v k_{t-1} a_{t-1} \\ &= v k_{t-1} b_{t-1} \\ &= v k_t c_t. \end{split}$$

Corollary 3.4. Let $\overline{k'_t}$ denotes $\frac{1}{v}$ times the cardinality of the set $\{(x, z) | x, z \in G', d(x, z) = t\}$. Suppose either $\overline{k'_t} \ge k_t$ and $c'_t(x, z) \ge c_t$, or $\overline{k'_t} \le k_t$ and $c'_t(x, z) \le c_t$ for any $x \in X, z \in G'_t(x)$. Then $\overline{k'_t} = k_t$ and $c'_t = c_t$.

Proof. It's trivial by Lemma 3.3.

Lemma 3.5.

 x_t

$$Tr(A'^{2t}) = vC + \sum_{x \in X'} \sum_{y \in G'_{t-1}(x)} a'_{t-1}(x, y)^2 (c_{t-1}^2 c_{t-2}^2 \cdots c_2^2) + \sum_{x \in X'} \sum_{z \in G'_t(x)} c'_t(x, z)^2 (c_{t-1}^2 c_{t-2}^2 \cdots c_2^2) + vk_{t-1} a_{t-1} (c_{t-1}^2 c_{t-2}^2 \cdots c_2^2) (a_{t-2} + \cdots + a_1)$$

for some constant C determined by a_i, b_i, c_{i+1} $(0 \le i \le t-2)$.

Proof. For any vertex x of G', we count the number of closed walks $x = x_0, x_1, \dots, x_{2t} = x$. There are 4 cases.

Case 1 : $x_{t-1}, x_t, x_{t+1} \in G'_{t-1}(x)$. The number of closed walks in this case can be expressed as

$$\sum_{t \in G'_{t-1}(x)} a'_{t-1}(x, x_t)^2 (c_{t-1}^2 c_{t-2}^2 \dots c_2^2)$$

Case 2 : $x_t \in G'_t(x)$. The number of closed walks in this case can be expressed as

$$\sum_{x_t \in G'_t(x)} c'_t(x, x_t)^2 (c_{t-1}^2 c_{t-2}^2 \dots c_2^2).$$

Case 3 : $x_t \in G'_{t-1}(x), |\{x_{t-1}, x_{t+1}\} \cap G'_{t-1}(x)| = 1$. The number of closed walks in this case can be expressed as

$$\sum_{\in G'_{t-1}(x)} a'_{t-1}(x, x_t) (c_{t-1}^2 c_{t-2}^2 \dots c_2^2) (a_{t-2} + \dots + a_1).$$

By simply apply Lemma 3.1, we know that this term equals

 $vk_{t-1}a_{t-1}(c_{t-1}^2c_{t-2}^2\ldots c_2^2)(a_{t-2}+\ldots+a_1).$

Case 4 : The remaining cases. The number of closed walks in this case can be expressed as a known constant C.

As before, we know the number of the closed walks of length 2t is $Tr(A'^{2t})$. Hence

$$Tr(A'^{2t}) = vC + \sum_{x \in X'} \sum_{y \in G'_{t-1}(x)} a'_{t-1}(x, y)^2 (c_{t-1}^2 c_{t-2}^2 \cdots c_2^2) + \sum_{x \in X'} \sum_{z \in G'_t(x)} c'_t(x, z)^2 (c_{t-1}^2 c_{t-2}^2 \cdots c_2^2) + vk_{t-1} a_{t-1} (c_{t-1}^2 c_{t-2}^2 \cdots c_2^2) (a_{t-2} + \cdots + a_1).$$

Corollary 3.6. Let C be as in Lemma 3.5. Then

$$Tr(A^{2t}) = vC + vk_{t-1}a_{t-1}^2(c_{t-1}^2c_{t-2}^2\dots c_2^2) + vk_tc_t^2(c_{t-1}^2c_{t-2}^2\dots c_2^2) + vk_{t-1}a_{t-1}(c_{t-1}^2c_{t-2}^2\dots c_2^2)(a_{t-2} + \dots + a_1).$$

Proof. We express $Tr(A^{2t})$ by the way in Lemma 3.5.

$$Tr(A^{2t}) = vC + \sum_{x \in X} \sum_{y \in G_{t-1}(x)} a_{t-1}(x, y)^2 (c_{t-1}^2 c_{t-2}^2 \cdots c_2^2) + \sum_{x \in X} \sum_{z \in G_t(x)} c_t(x, z)^2 (c_{t-1}^2 c_{t-2}^2 \cdots c_2^2) + \sum_{x \in X} \sum_{y \in G_{t-1}(x)} a_{t-1}(x, y) (c_{t-1}^2 c_{t-2}^2 \cdots c_2^2) (a_{t-2} + \cdots + a_1).$$

Since the intersection parameters a_{t-1}, c_t are well-defined and known in G, we simply substitute the parameters in and get the result.

Lemma 3.7.

$$Tr(A'^{2t}) \ge vC + vk_{t-1}a_{t-1}^2(c_{t-1}^2c_{t-2}^2\dots c_2^2) + vk_tc_t(c_{t-1}^2c_{t-2}^2\dots c_2^2) + vk_{t-1}a_{t-1}(c_{t-1}^2c_{t-2}^2\dots c_2^2)(a_{t-2}+\dots+a_1).$$
(3.4)

Furthermore, the following (i)-(ii) are equivalent.

(i) Equality holds in (3.4). (ii) $a'_{t-1}(x, y) = a_{t-1}, c'_t(x, z) = 1$ for any $x \in X', y \in G'_{t-1}(x), z \in G'_t(x)$. *Proof.* Applying Cauchy's inequality and $c'_t(x,z)^2 \ge c'_t(x,z)$ on the expression of $Tr(A'^{2t})$ in Lemma 3.5, it follows that

$$Tr(A'^{2t}) \ge vC + \frac{1}{vk_{t-1}} \left(\sum_{x \in X'} \sum_{y \in G'_{t-1}(x)} a'_{t-1}(x,y)(c_{t-1}c_{t-2}\dots c_2)\right)^2 + \sum_{x \in X'} \sum_{z \in G'_t(x)} c'_t(x,z)(c^2_{t-1}c^2_{t-2}\dots c^2_2) + vk_{t-1}a_{t-1}(c^2_{t-1}c^2_{t-2}\dots c^2_2)(a_{t-2}+\dots+a_1) = vC + \frac{1}{vk_{t-1}} (vk_{t-1}a_{t-1}(c_{t-1}c_{t-2}\dots c_2))^2 + vk_{t-1}b_{t-1}(c^2_{t-1}c^2_{t-2}\dots c^2_2) + vk_{t-1}a_{t-1}(c^2_{t-1}c^2_{t-2}\dots c^2_2) + vk_{t-1}a_{t-1}(c^2_{t-1}c^2_{t-2}\dots c^2_2) + vk_{t-1}b_{t-1}(c^2_{t-1}c^2_{t-2}\dots c^2_2) + vk_{t-1}b_{t-1}(c^2_{t-1}c^2_{t-2}\dots c^2_2) + vk_{t-1}a_{t-1}(c^2_{t-1}c^2_{t-2}\dots c^2_2) + vk_{t-1}a_{t-1}(c^2_{t-1}c^2_{t-2}\dots c^2_2)(a_{t-2}+\dots+a_1).$$

The above equality holds if and only if $a'_{t-1}(x, y) = a_{t-1}$ and $c'_t(x, z) = 1$ for any x, y, z with $\delta(x, y) = t - 1$ and $\delta(x, z) = t$. The equivalence of (i)-(ii) is clear.

Lemma 3.8.

$$Tr(A'^{2t}) \ge vC + vk_{t-1}a_{t-1}^2(c_{t-1}^2 \cdots c_2^2) + \frac{(vk_tc_tc_{t-1} \cdots c_2)^2}{v\overline{k'_t}} + vk_{t-1}a_{t-1}(c_{t-1}^2c_{t-2}^2 \cdots c_2^2)(a_{t-2} + \dots + a_1). \quad (3.5)$$

Furthermore, the following (i)-(ii) are equivalent. (i) Equality holds in (3.5), $\overline{k'_t} = k_t$. (ii) $a'_{t-1}(x, y) = a_{t-1}$, $c'_t(x, z) = c_t$ for any $x \in X, y \in G'_{t-1}(x), z \in G'_t(x)$.

Proof. Applying Cauchy's inequality on the expression of $Tr(A^{\prime 2t})$ in Lemma 3.5,

it follows

$$Tr(A'^{2t}) \ge vC + \frac{1}{vk_{t-1}} \left(\sum_{x \in X'} \sum_{y \in G'_{t-1}(x)} a'_{t-1}(x, y)c_{t-1}c_{t-2} \dots c_2\right)^2 + \frac{1}{v\overline{k'_t}} \left(\sum_{x \in X'} \sum_{z \in G'_t(x)} c'_t(x, z)c_{t-1}c_{t-2} \dots c_2\right)^2 + vk_{t-1}a_{t-1}(c^2_{t-1}c^2_{t-2} \dots c^2_2)(a_{t-2} + \dots + a_1). = vC + \frac{1}{vk_{t-1}} (vk_{t-1}a_{t-1}c_{t-1}c_{t-2} \dots c_2)^2 + \frac{(vk_tc_tc_{t-1} \dots c_2)^2}{v\overline{k'_t}} + vk_{t-1}a_{t-1}(c^2_{t-1}c^2_{t-2} \dots c^2_2)(a_{t-2} + \dots + a_1).$$

 $(i) \Rightarrow (ii)$ is clear. $(ii) \Rightarrow (i)$ is from the observation that the last term in the above equation is $Tr(A^{2t})$ which is equal to $Tr(A'^{2t})$.

Lemma 3.9. Suppose $c_t = 1$. Then a'_{t-1}, b'_{t-1}, c'_t are well-defined, and are the same as the corresponding ones in G.

Proof. Comparing to Collary 3.6 and using $c_t = 1$, we find the equality in Lemma 3.7 holds. Hence a'_{t-1}, c'_t are well-defined. Note $b'_{t-1} = b_0 - c_{t-1} - a'_{t-1}$.

4 Applications

Theorem 4.1. [4, Theorem 1] Let G = (X, E) and G' = (X', E') be two connected graphs with the same spectrum

$$\left(\begin{array}{ccc} \theta_0 & \theta_1 & \cdots & \theta_d \\ m_0 & m_1 & \cdots & m_d \end{array}\right)$$

Suppose that G is distance-regular with intersection parameters a_i, b_i, c_i for $0 \le i \le d$. Suppose $c_j = 1$ for $1 \le j \le d - 1$. Then G' is a distance-regular graph with the same intersection parameters of G.

Proof. We first show $a'_i = a_i, b'_i = b_i, c'_{i+1} = c_{i+1} = 1$ $(0 \le i \le d-2)$ by induction on *i*. $a'_0 = 0 = a_0, c'_1 = 1 = c_1$ are clear. $b'_0 = b_0$ is from Theorem 2.3. Hence we have the case i = 0. Suppose this is true for $i \le t-2$. The case i = t-1 is true from Lemma 3.9. So we have $a'_i = a_i, b'_i = b_i, c'_{i+1} = c_{i+1} = 1$ $(0 \le i \le d-2)$. For the remaining parameters, we know $k'_i = k_i$ is well-defined for each $0 \le i \le d-1$. Note the diameter of G' is at most d by Lemma 2.4. Hence $k'_d = v - k_0 - k_1 \cdots - k_{d-1}$ is well-defined. Then the equality in Lemma 3.8 (ii) holds for t = d, so by Lemma 3.8 (ii) we have $a'_{d-1} = a_{d-1}, c'_d = c_d$. Note $a'_d = b_0 - c_d = a_d$.

Corollary 4.2. Let G be a strongly regular graph. Suppose that G' is a graph with the same spectrum of G. Then G' is a strongly regular graph with the same intersection parameters of G.

Proof. This is immediate from Theorem 4.1 since $c_1 = 1$.

Theorem 4.3. Let G be a distance-regular graph. Suppose G' is a graph with the same spectrum of G. Furthermore, with referring to Corollary 3.4, suppose $\overline{k'_t} = k_t$. Then G' is a distance-regular graph with the same intersection parameters.

Proof. We show $a'_i = a_i, b'_i = b_i, c'_{i+1} = c_{i+1}$ $(0 \le i \le d-1)$ by induction on *i*. $a'_0 = a_0, c'_1 = 1 = c_1$ are clear. $b'_0 = b_0$ is from Theorem 2.3. Hence we have the case i = 0. Suppose this is true for $i \le t-2$. Since Lemma 3.8 (iii) holds, we have Lemma 3.8 (ii). Then $a'_{t-1} = a_{t-1}$ and $c'_t = c_t$. Note $b'_{t-1} = b_0 - c_{t-1} - a_{t-1}$.

Remark 4.4. [6, Example 2.] The Gosset graph Γ is the unique distanceregular graph on 56 vertices with intersection array $\{27, 10, 1; 1, 10, 27\}$. Notice that in Γ , $k_0 = 1$, $k_1 = 27$, $k_2 = 27$, $k_3 = 1$. We have a graph Γ' with diameter 2 which is obtained by taking some special kind of switching on Γ such that in Γ' , $k'_0 = 1, k'_1 = 27, k'_2 = 28$ where Γ and Γ' are cospectral.

References

- Chris Godsil and Gordon Royle. Algebraic Graph Theory. Springer-Verlag, New York, 2001
- [2] A. E. Brouwer, A. M. Cohen, and A. Neumaier. *Distance-Regular Graphs.* Springer-Verlag, Berlin, 1989.
- [3] Duuglas B. West Introduction to Graph Theory. Prentice Hall
- [4] Edwin R. Van Dam and Willem H. Haemers. Spectral Characterizations of Some Distance-Regular Graphs. *Journal of Algebraic Combinatorics* 15(2002), 189-202.
- [5] A. E. Brouwer and W.H Haemers. The Gewirtz graph: An exercise in the theory of graph spectra. *European J. Combin.* 14(1993), 397-407.
- [6] W.H Haemers. Distance-Regularity and the spectrum of graphs. *Linear Alg. Appl.* 236(1996), 265-278.
- [7] T. Huang. Spectrul Characterization of Odd Graphs $O_k, k \leq 6$ Graphs and Combinatorics 10(1994), 235-240.
- [8] T. Huang and C. Liu. Spectral characterization of some generalized odd graphs. *Graphs and Combinatorics* 15(1999), 195-209.