
1 Introduction

Spectral characterization is an important subject in algebraic graph the-
ory. Some properties of a graph can be recognized from the spectrum of it.
For example, a graph is bipartite if and only if its eigenvalues are located
symmetrically to the origin [1, Theorem 8.8.2]. Another well-known result
is that a graph is regular if and only if its largest eigenvalue equal to its
average valency [2, Lemma 3.2.1]. See Lemma 2.2 below. Spectral charac-
terization of strongly regular graphs can also be done [3, Theorem 8.6.37].
Here we are interested in the question: Is a graph with the same spectrum
of a distance-regular graph distance-regular? That is, for a graph, is the
distance-regularity determined by its spectrum? The answer is no and there
exist many counterexamples. See Remark 4.4. But furthermore, by im-
posing some restrictions on the conditions of the distance-regular graphs we
consider, such as distance-regular graphs with some special given intersection
parameters, the answer can be yes. In [8], by assuming the odd cycles in a
given distance-regular graph have length greater than 2 times its diameter,
Huang and Liu proved a graph with the same spectrum of it is a distance-
regular graph too. In [5][6], the result is generalized that for two graphs with
the same spectrum, if the girth g satisfies g ≥ 2d− 1 in the known distance-
regular one, then the other is distance-regular too where d is the diameter of
G. In [4], by assuming cd−1 = 1 in one graph, the other cospectral graph is
shown to be distance-regular and have the same intersection parameters. In
this thesis, we present a uniform way to this line of study. As a consequence,
we can reprove the above mentioned results [3, Theorem 8.6.37],[4],[5],[6].
See Theorem 4.1, Corollary 4.2. Furthermore, we show that if two cospectral
graphs have the same average number of vertices in the t-subconstituent with
respect to a vertex for each t, then one is distance-regular implies the other
is distance-regualr. See Theorem 4.3 for details.
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2 Preliminary

Let G = (X, R) be a finite undirected, connected graph, without loops or
multiple edges, with vertex set X, edge set R, path length distance function
δ and diameter d := max{δ(x, y)|x, y ∈ X}. Sometimes we write diam(G)
to denote the diameter of G. By a subgraph of G, we mean a graph (∆, Ξ),
where ∆ is a non-empty subset of X and Ξ = {{xy}|x, y ∈ ∆, {xy} ∈ R}.
We refer to (∆, Ξ) as the subgraph induced on ∆ and, by abuse of notation,
we refer to this subgraph as ∆. For any x ∈ X and any integer i, set

Gi(x) := {y| y ∈ X, δ(x, y) = i}.

The valency k(x) of a vertex is the cardinality of G1(x). The graph G is said
to be regular with valency k whenever each vertex in X has valency k. For
any x ∈ X, for any integer i, and for any y ∈ Gi(x), set

B(x, y) := G1(y) ∩Gi+1(x),

A(x, y) := G1(y) ∩Gi(x),

C(x, y) := G1(y) ∩Gi−1(x).

For all x, y ∈ X with δ(x, y) = i, the numbers

ci := |C(x, y)|, ai := |A(x, y)|, bi := |B(x, y)|.

are said to be well-defined if they are independent of x and y. G is said
to be t-distance-regular whenever for all integers i (0 ≤ i ≤ t), ai−1, bi−1, ci

are all well-defined. A d-distance-regular graph is also called a distance-
regular graph. The constants ci, ai and bi (0 ≤ i ≤ d) are known as the
intersection numbers or intersection parameters of G. Note that the valency
k = b0, c0 = 0, c1 = 1, bd = 0 and

k = ci + ai + bi (0 ≤ i ≤ d).

Let ki(x) denotes the cardinality of Gi(x). For a distance-regular graph
G, we know that ki(x) is a constant for any x ∈ G for all i. We denote
this constant by ki. A graph is said to be strongly regular with parameters
(n, k, a, c) if it is regular with valency k, every pair of adjacent vertices has
a common neighbors, and every pair of distinct nonadjacent vertices has c
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common neighbors, where c > 0. We see that a strongly regular graph is a
distance-regular graph with diameter 2 with intersection parameters

c0 = 0, a0 = 0, b0 = k,
c1 = 1, a1 = a, b1 = k − a− 1,
c2 = c, a2 = k − c, b2 = 0.

For the adjacency matrix A of a graph G, we mean a symmetric (0, 1)−matrix
determined by G with rows and columns indexed by the vertices of G, and
with entries

Axy =

{
1, if x, y is adjacent,

0, otherwise.

Since the adjacency matrix A of a graph G is a real symmetric matrix, we
have that the eigenvalues of A are all real numbers. We represent the distinct
eigenvalues of A with their corresponding multiplicities by an array as follows:

(
θ0 θ1 · · · θd

m0 m1 · · · md

)

where θ0 > θ1 > · · · > θd. Note m0 + m1 + · · · + md = v where v is the
number of vertices in G. This array is said to be the spectrum of G. Two
graphs are said to be cospectral if they have the same spectrum.

The following Lemma follows immediately from linear algebra.

Lemma 2.1. Tr(An) =
d∑

i=0

miθ
n
i for any n ∈ N.

Lemma 2.2. Let G = (X,R) be a graph with v vertices and have average

valency k =
1

v

∑
x∈X

k(x). Let A be the adjacency matrix of G with eigenvalues

θ0 ≥ θ1 ≥ · · · ≥ θv. We have θ0 ≥ k , with equality if and only if G is regular.

Proof. Let β = {u1, u2, · · · , uv} be an orthonormal basis of Rv which are all
eigenvectors of A, and let θi be the corresponding eigenvalue of ui. Consider
the all-1 vector 1 in Rv. We can express 1 in terms of a linear combination

of β,that is, 1 =
v∑

i=1

aiui. We have that v = 1t1 =
v∑

i=1

a2
i , and

∑
x∈X

k(x) =
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vk = 1tA1 =
v∑

i=1

a2
i θi ≤

v∑
i=1

a2
i θ0 = vθ0, so k ≤ θ0. The equality holds if and

only if ai(θ0− θi) = 0 for all i (o ≤ i ≤ v), that is, A1 = θ01, i.e.,G is regular
with valency θ0.

Theorem 2.3. Let G = (X, R) be a graph with v vertices and has spectrum

(
θ0 θ1 · · · θd

m0 m1 · · · md

)

where θ0 > θ1 > · · · > θd. Then the following (i)-(ii) are equivalent.

(i)
d∑

i=0

miθ
2
i = vθ0

(ii) G is regular with valency θ0.

Proof. Observe (A2)xx = k(x) for all x ∈ X. Hence we have that
d∑

i=1

miθ
2
i =

Tr(A2) =
∑

x∈X

k(x) = vk.Then simply applying Lemma 2.2, we have that

(i)-(ii) are equivalent.

We quote a Theorem from [1, Lemma 8.12.1].

Theorem 2.4. If G is a graph with diameter d, then A(G) has at least d+1
distinct eigenvalues.
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3 t-distance-regular graphs

Let G = (X, E) and G′ = (X ′, E ′) be two connected graphs with the same
spectrum (

θ0 θ1 · · · θd

m0 m1 · · · md

)
.

Let t ≤ d be a positive integer. Suppose G is t-distance-regular. That is in G
the parameters ai, bi, and ci+1, (0 ≤ i ≤ t−1) are well-defined. Hence ki (0 ≤
i ≤ t) is well defined. Suppose G′ is (t− 1)-distance-regular , the parameters
a′i, b

′
i, and c′i+1, (0 ≤ i ≤ t − 2) are well-defined. Furthermore assume these

parameters are the same as the corresponding intersection parameters of G.
Hence k′i = ki (0 ≤ i ≤ t − 1). Let A, A′ denote the adjacency matrices of
G, G′ respectively.

Lemma 3.1.
∑

x∈X′

∑
y∈G′t−1(x)

a′t−1(x, y) = vkt−1at−1 , where v = |X| =
d∑

i=0

mi.

Proof. The number of closed walks of length 2t − 1 through x in G′ is
(A′2t−1)xx. These closed walks divide into 2 parts. One contains an edge
in the induced subgraph G′

t−1(x) and the other does not. The number of the
first part is

∑
y∈G′t−1(x)

a′t−1(x, y)(c2
t−1c

2
t−2 . . . c2

2).

Let K denote the number of remaining closed walks. Hence

K +
∑

y∈G′t−1(x)

a′t−1(x, y)(c2
t−1c

2
t−2 . . . c2

2) = (A′2t−1)xx. (3.1)

Note K can be expressed in terms of the known (and well-defined) intersec-
tion parameters. Then we know that

Tr(A′2t−1
) =

∑

x∈X′
(A′2t−1)xx

= vK +
∑

x∈X′

∑

y∈G′t−1(x)

a′t−1(x, y)(c2
t−1c

2
t−2 · · · c2

2). (3.2)
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Similarly,

Tr(A2t−1) = vK +
∑
x∈X

∑

y∈Gt−1(x)

at−1(c
2
t−1c

2
t−2 . . . c2

2)

= vK + vkt−1at−1(c
2
t−1c

2
t−2 . . . c2

2). (3.3)

Since A and A′ have the same spectrum, we know that

Tr(A′2t−1
) = Tr(A2t−1).

Thus by (3.2)-(3.3)

∑

x∈X′

∑

y∈G′t−1(x)

a′t−1(x, y) = vkt−1at−1.

Corollary 3.2. Suppose either a′t+1(x, y) ≥ at−1 or a′t−1(x, y) ≤ at−1 for any
x ∈ X ′, y ∈ G′

t−1(x). Then a′t−1 = at−1.

Proof. It’s trivial by Lemma 3.1.

Lemma 3.3.
∑

x∈X′

∑
z∈G′t(x)

c′t(x, z) = vkt−1bt−1 = vktct.

Proof. For each x ∈ X ′, by counting the number of edges between G′
t−1(x)

and G′
t(x) in two ways and Lemma 3.1,

∑

x∈X′

∑

z∈G′t(x)

c′t(x, z) =
∑
x∈X

∑

y∈G′t−1(x)

b′t−1(x, y)

=
∑

x∈X′

∑

y∈G′t−1(x)

(k1 − ct−1 − a′t−1(x, y))

= vkt−1(k1 − ct−1)−
∑
x∈X

∑

y∈G′t−1(x)

a′t−1(x, y)

= vkt−1(k1 − ct−1)− vkt−1at−1

= vkt−1bt−1

= vktct.
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Corollary 3.4. Let k′t denotes
1

v
times the cardinality of the set {(x, z)| x, z ∈

G′, d(x, z) = t}. Suppose either k′t ≥ kt and c′t(x, z) ≥ ct, or k′t ≤ kt and
c′t(x, z) ≤ ct for any x ∈ X, z ∈ G′

t(x). Then k′t = kt and c′t = ct.

Proof. It’s trivial by Lemma 3.3.

Lemma 3.5.

Tr(A′2t) = vC +
∑

x∈X′

∑

y∈G′t−1(x)

a′t−1(x, y)2(c2
t−1c

2
t−2 · · · c2

2)

+
∑

x∈X′

∑

z∈G′t(x)

c′t(x, z)2(c2
t−1c

2
t−2 · · · c2

2)

+ vkt−1at−1(c
2
t−1c

2
t−2 · · · c2

2)(at−2 + · · ·+ a1)

for some constant C determined by ai, bi, ci+1 (0 ≤ i ≤ t− 2).

Proof. For any vertex x of G′, we count the number of closed walks x =
x0, x1, · · · , x2t = x. There are 4 cases.

Case 1 : xt−1, xt, xt+1 ∈ G′
t−1(x). The number of closed walks in this case

can be expressed as∑
xt∈G′t−1(x)

a′t−1(x, xt)
2(c2

t−1c
2
t−2 . . . c2

2).

Case 2 : xt ∈ G′
t(x). The number of closed walks in this case can be ex-

pressed as∑
xt∈G′t(x)

c′t(x, xt)
2(c2

t−1c
2
t−2 . . . c2

2).

Case 3 : xt ∈ G′
t−1(x), |{xt−1, xt+1} ∩ G′

t−1(x)| = 1. The number of closed
walks in this case can be expressed as

∑
xt∈G′t−1(x)

a′t−1(x, xt)(c
2
t−1c

2
t−2 . . . c2

2)(at−2 + . . . + a1).

By simply apply Lemma 3.1, we know that this term equals

vkt−1at−1(c
2
t−1c

2
t−2 . . . c2

2)(at−2 + . . . + a1).
Case 4 : The remaining cases. The number of closed walks in this case can
be expressed as a known constant C.
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As before, we know the number of the closed walks of length 2t is
Tr(A′2t). Hence

Tr(A′2t) = vC +
∑

x∈X′

∑

y∈G′t−1(x)

a′t−1(x, y)2(c2
t−1c

2
t−2 · · · c2

2)

+
∑

x∈X′

∑

z∈G′t(x)

c′t(x, z)2(c2
t−1c

2
t−2 · · · c2

2)

+ vkt−1at−1(c
2
t−1c

2
t−2 · · · c2

2)(at−2 + · · ·+ a1).

Corollary 3.6. Let C be as in Lemma 3.5. Then

Tr(A2t) = vC + vkt−1a
2
t−1(c

2
t−1c

2
t−2 . . . c2

2)

+ vktc
2
t (c

2
t−1c

2
t−2 . . . c2

2)

+ vkt−1at−1(c
2
t−1c

2
t−2 . . . c2

2)(at−2 + . . . + a1).

Proof. We express Tr(A2t) by the way in Lemma 3.5.

Tr(A2t) = vC +
∑
x∈X

∑

y∈Gt−1(x)

at−1(x, y)2(c2
t−1c

2
t−2 · · · c2

2)

+
∑
x∈X

∑

z∈Gt(x)

ct(x, z)2(c2
t−1c

2
t−2 · · · c2

2)

+
∑
x∈X

∑

y∈Gt−1(x)

at−1(x, y)(c2
t−1c

2
t−2 · · · c2

2)(at−2 + · · ·+ a1).

Since the intersection parameters at−1, ct are well-defined and known in G,
we simply substitute the parameters in and get the result.

Lemma 3.7.

Tr(A′2t) ≥ vC + vkt−1a
2
t−1(c

2
t−1c

2
t−2 . . . c2

2)

+ vktct(c
2
t−1c

2
t−2 . . . c2

2)

+ vkt−1at−1(c
2
t−1c

2
t−2 . . . c2

2)(at−2 + . . . + a1). (3.4)

Furthermore, the following (i)-(ii) are equivalent.
(i) Equality holds in (3.4).
(ii) a′t−1(x, y) = at−1, c

′
t(x, z) = 1 for any x ∈ X ′, y ∈ G′

t−1(x), z ∈ G′
t(x).
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Proof. Applying Cauchy’s inequality and c′t(x, z)2 ≥ c′t(x, z) on the expres-
sion of Tr(A′2t) in Lemma 3.5, it follows that

Tr(A′2t) ≥ vC +
1

vkt−1

(
∑

x∈X′

∑

y∈G′t−1(x)

a′t−1(x, y)(ct−1ct−2 . . . c2))
2

+
∑

x∈X′

∑

z∈G′t(x)

c′t(x, z)(c2
t−1c

2
t−2 . . . c2

2)

+ vkt−1at−1(c
2
t−1c

2
t−2 . . . c2

2)(at−2 + . . . + a1)

= vC +
1

vkt−1

(vkt−1at−1(ct−1ct−2 . . . c2))
2

+ vkt−1bt−1(c
2
t−1c

2
t−2 . . . c2

2)

+ vkt−1at−1(c
2
t−1c

2
t−2 . . . c2

2)(at−2 + . . . + a1)

= vC + vkt−1a
2
t−1(c

2
t−1c

2
t−2 . . . c2

2)

+ vkt−1bt−1(c
2
t−1c

2
t−2 . . . c2

2)

+ vkt−1at−1(c
2
t−1c

2
t−2 . . . c2

2)(at−2 + . . . + a1).

The above equality holds if and only if a′t−1(x, y) = at−1 and c′t(x, z) = 1 for
any x, y, z with δ(x, y) = t− 1 and δ(x, z) = t.
The equivalence of (i)-(ii) is clear.

Lemma 3.8.

Tr(A′2t) ≥ vC + vkt−1a
2
t−1(c

2
t−1 · · · c2

2)

+
(vktctct−1 · · · c2)

2

vk′t
+ vkt−1at−1(c

2
t−1c

2
t−2 . . . c2

2)(at−2 + . . . + a1). (3.5)

Furthermore, the following (i)-(ii) are equivalent.
(i) Equality holds in (3.5), k′t = kt.
(ii) a′t−1(x, y) = at−1, c′t(x, z) = ct for any x ∈ X, y ∈ G′

t−1(x), z ∈ G′
t(x).

Proof. Applying Cauchy’s inequality on the expression of Tr(A′2t) in Lemma 3.5,
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it follows

Tr(A′2t) ≥ vC +
1

vkt−1

(
∑

x∈X′

∑

y∈G′t−1(x)

a′t−1(x, y)ct−1ct−2 . . . c2)
2

+
1

vk′t
(
∑

x∈X′

∑

z∈G′t(x)

c′t(x, z)ct−1ct−2 . . . c2)
2

+ vkt−1at−1(c
2
t−1c

2
t−2 . . . c2

2)(at−2 + . . . + a1).

= vC +
1

vkt−1

(vkt−1at−1ct−1ct−2 . . . c2)
2

+
(vktctct−1 · · · c2)

2

vk′t
+ vkt−1at−1(c

2
t−1c

2
t−2 . . . c2

2)(at−2 + . . . + a1).

(i)⇒(ii) is clear. (ii)⇒(i) is from the observation that the last term in the
above equation is Tr(A2t) which is equal to Tr(A′2t).

Lemma 3.9. Suppose ct = 1. Then a′t−1, b
′
t−1, c

′
t are well-defined, and are

the same as the corresponding ones in G .

Proof. Comparing to Collary 3.6 and using ct = 1, we find the equality in
Lemma 3.7 holds. Hence a′t−1, c

′
t are well-defined. Note b′t−1 = b0 − ct−1 −

a′t−1.
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4 Applications

Theorem 4.1. [4, Theorem 1] Let G = (X,E) and G′ = (X ′, E ′) be two
connected graphs with the same spectrum

(
θ0 θ1 · · · θd

m0 m1 · · · md

)
.

Suppose that G is distance-regular with intersection parameters ai, bi, ci for
0 ≤ i ≤ d. Suppose cj = 1 for 1 ≤ j ≤ d − 1. Then G′ is a distance-regular
graph with the same intersection parameters of G.

Proof. We first show a′i = ai, b
′
i = bi, c

′
i+1 = ci+1 = 1 (0 ≤ i ≤ d − 2)

by induction on i. a′0 = 0 = a0, c′1 = 1 = c1 are clear. b′0 = b0 is from
Theorem 2.3. Hence we have the case i = 0. Suppose this is true for i ≤ t−2.
The case i = t−1 is true from Lemma 3.9. So we have a′i = ai, b

′
i = bi, c

′
i+1 =

ci+1 = 1 (0 ≤ i ≤ d − 2). For the remaining parameters, we know k′i = ki

is well-defined for each 0 ≤ i ≤ d− 1. Note the diameter of G′ is at most d
by Lemma 2.4. Hence k′d = v − k0 − k1 · · · − kd−1 is well-defined. Then the
equality in Lemma 3.8 (iii) holds for t = d, so by Lemma 3.8 (ii) we have
a′d−1 = ad−1, c

′
d = cd. Note a′d = b0 − cd = ad.

Corollary 4.2. Let G be a strongly regular graph. Suppose that G′ is a graph
with the same spectrum of G. Then G′ is a strongly regular graph with the
same intersection parameters of G.

Proof. This is immediate from Theorem 4.1 since c1 = 1.

Theorem 4.3. Let G be a distance-regular graph. Suppose G′ is a graph with
the same spectrum of G. Furthermore, with refering to Corollary 3.4, suppose
k′t = kt. Then G′ is a distance-regular graph with the same intersection
parameters.

Proof. We show a′i = ai, b
′
i = bi, c′i+1 = ci+1 (0 ≤ i ≤ d − 1) by induction

on i. a′0 = a0, c′1 = 1 = c1 are clear. b′0 = b0 is from Theorem 2.3. Hence
we have the case i = 0. Suppose this is true for i ≤ t− 2. Since Lemma 3.8
(iii) holds, we have Lemma 3.8 (ii). Then a′t−1 = at−1 and c′t = ct. Note
b′t−1 = b0 − ct−1 − at−1.

Remark 4.4. [6, Example 2.] The Gosset graph Γ is the unique distance-
regular graph on 56 vertices with intersection array {27, 10, 1; 1, 10, 27}. No-
tice that in Γ, k0 = 1, k1 = 27, k2 = 27, k3 = 1. We have a graph Γ′ with
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diameter 2 which is obtained by taking some special kind of switching on Γ
such that in Γ′, k′0 = 1, k′1 = 27, k′2 = 28 where Γ and Γ′ are cospectral.
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