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Chapter 1

Introduction

Algebraic methods provide many new and powerful ways in the study
of graph theory. These include the study of the group of homomorphisms
on graphs, the construction of graphs from a group, using the eigenvalue or
other linear algebraic techniques in the study of graph theory and the study
of polynomials associated with a graph. The purpose of this thesis is to col-
lect the known results in graph theory with algebraic techniques involved.
The thesis is organized as follows.

In chapter 2, we use the concept of group acting on a set to study a
graph. Here the group is usually the automorphism group of a given graph.
We then introduce vertex transitive graphs and Cayley graphs. We study
the edge connectivity, vertex connectivity, matchings, maximal cycles in a
connected vertex transitive graph. We show a connected vertex transitive
graph is a homomorphic image of some Cayley graph.

In chapter 3, we introduce the core of a graph. The core of a graph is the
smallest homomorphism image of the graph. We show the core of a vertex
transitive graph is vertex transitive. We give some sufficient conditions of a
core.

In chapter 4, we introduce the adjacency matrix of a graph. We study the
spectrum of an adjacency matrix. The classical Perron Frobenius Theorem
of symmetric matrices with nonnegative entries is included in this chapter.

In chapter 5, we generalize the concept of sets interlacing to eigenvalues
sequences interlacing and rational functions interlacing.

In chapter 6, we introduce the incidence matrix, the Laplacian, and more
general, the weighted Laplacian of a graph. The Laplacian is an important
matrix associated with a graph. We study the spectrum of the Laplacian.

1



2 CHAPTER 1. INTRODUCTION

We also show the number of spanning trees in a graph is determined by the
spectrum of its Laplacian. We give an upper bound of the second least eigen-
value of the Laplacian in terms of some combinatorial structure of a graph.

In chapter 7, we introduce the rank function and matroid. We study their
basic properties. We introduce the dual, the restriction and the contraction
of a matroid.

All of the results in this thesis are classical. We learn most of them from
[1]. We add more details in order to realize the content. For example, Exam-
ple 2.2, Example 2.5, Definition 2.6, Lemma 2.16, Example 2.17, Lemma 2.25,
Theorem 2.41, Lemma 2.42, Theorem 2.43, Lemma 2.44, Example 2.47, Ex-
ample 2.50, Lemma 3.6, Example 3.10, Lemma 3.11, Example 3.12, Theo-
rem 3.13, Lemma 3.14, Corollary 3.17, Example 3.21, Lemma 3.25, Exam-
ple 3.28, Lemma 3.26, Lemma 3.27, Lemma 3.34, Lemma 4.8, Lemma 4.10,
Lemma 4.11, Lemma 4.12, Lemma 4.13, Lemma 4.14, Lemma 4.15, Lemma
4.24, Definition 5.1, Example 5.2, Lemma 5.4, Theorem 5.7, Lemma 6.13,
Lemma 6.14, Lemma 6.21, Corollary 6.48, Lemma 7.2. We rewrite some of
the proofs for the readers easy to understand. For example, Theorem 2.13,
Theorem 2.18, Lemma 4.8, Theorem 4.25, Theorem 5.7, Theorem 6.10. Some
ideas come from [2], [3].



Chapter 2

Transitive Graphs

Throughout this thesis, let X = (X, R) be an undirected graph without loops
or multiple edges. We abuse the notation X as both the graph and the vertex
set of the graph. R = {xy | x, y ∈ X, x 6= y} is the edge set.

2.1 Cayley Graphs

Definition 2.1. Let X, X ′ be graphs. A function ϕ :X → X ′ is a homomor-
phism from X into X ′ if ϕ(x)ϕ(y) ∈ R′ for all x, y ∈ X with xy ∈ R.

Example 2.2. (1)

ƒÑ

2

1

2

1

is a homomorphism.

(2)

ƒÑ

1

22

1

is not a homomorphism.

3



4 CHAPTER 2. TRANSITIVE GRAPHS

(3)

ƒÑ α32

1

f(1) = f(2) = f(3) = α, f is not a homomorphism.

Definition 2.3. (1) ϕ:X → X ′ is an isomorphism if ϕ is bijection and
xy ∈ R if and only if ϕ(x)ϕ(y) ∈ R′.

(2) If ϕ : X → X is an isomorphism, we say ϕ is an automorphism on X.
We will use Aut(X) to denote the set of automorphisms on X.

Note 2.4. (Aut(X), ◦) is a group, where ◦ is the composition operation.

Example 2.5.

ƒÑ

2

1

2

1

f is not a isomorphism.

The concept of group action on a set is widely used in algebraic graph
theory. We give its definition below.

Definition 2.6. Let G be a group, and S be a set. We say G acts on S if
there exists a function · : G× S → S such that

(1) e · s = s;

(2) (g · h) · s = g · (h · s)
for all g, h∈ G and all s ∈ S, where e is the identity of G.

Note 2.7. (1) g ·s = t if and only if s = g−1 · t for all g ∈ G and s , t ∈ S.

(2) Define a relation on S by s ∼ t if and only if t = g · s for some g ∈ G.
Then ∼ is an equivalent relation, and ∼ defines a partition on S.

Definition 2.8. Let G be a group and S be a set. We say G acts transitively
on S if the partition defined from the equivalent relation ∼ has only one
element(orbit).
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Note 2.9. A group G acts transitively on a set S if for any s, t∈ S, there
exists g ∈ G such that g · s = t.

Definition 2.10. A graph X is vertex transitive if for any x, y ∈ X, there
exists ρ ∈ Aut(X) such that ρ(x) = y.

Note 2.11. If X is vertex transitive. Then X is regular (i.e. each vertex in
X has the same number of valency (neighbors)). We will use k to denote the
valency of X.

Definition 2.12. Fix n ∈ N. Define

Qn := {(a1, a2, a3, ..., an) | ai = 0 or 1}
R := {xy | x, y ∈ Qn differ in exactly one coordinate}.

The graph (Qn, R) is called the n-cube.

Theorem 2.13. The n-cube (Qn, R) is vertex transitive.

Proof. Pick any x, y ∈ Qn. Define a map ρ : Qn → Qn by

ρ(z) = y − x + z(mod 2)

where the operations +,− are the usual coordinatewise summation and sub-
traction. It is straightforward to check ρ ∈ Aut(X) and ρ(x) = y.

Definition 2.14. Let G be a group and 4 ⊆ G be a subset such that

(1) e /∈ 4,

(2) g ∈ 4 if and only if g−1 ∈ 4 for all g ∈ G.

Set X = G and R = {xy | x, y ∈ G and y = x · g for some g ∈ 4}. Then
(X, R) is called the Cayley graph of G with respect to C. We will write
X(G,4) for such a graph.

Note 2.15. (1) If G is abelian then X(G,4) is a simple undirected graph.

(2) x, y are adjacent in X(G,4) if and only if x−1y ∈ 4.

Lemma 2.16. Let X(G,4) be a Cayley graph. For each g ∈ G, define
φg : G → G by φg(h) = gh. Then φg ∈ Aut(X).
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Proof. Since X(G,4) is a Cayley graph, the vertex set X = G and the edge
set R = {sh | h, s ∈ G and h = sc, for some c ∈ 4}. Pick x, y ∈ G.
Observe

x ∼ y ⇔ x−1y ∈ 4
⇔ x−1g−1gy ∈ 4
⇔ (gx)−1gy ∈ 4
⇔ φg(x) ∼ φg(y).

Let φg(h) = φg(k). Then gh = gk. Hence g−1gh = g−1gk. Then h = k.
So φg is injective. Observe for any x ∈ G, there exists g−1x ∈ G such that
φg(g

−1x) = g−1gx = x. Hence φg is surjective. So φg ∈ Aut(X).

Example 2.17. Let Z2 = {0, 1}. Let G = Z2 × · · · × Z2(n copies) and 4 =
{a ∈ Z2×· · ·×Z2 | exactly one coordinate of a is 1}. Then Qn = X(G,4).

Generalizing the ideal of the proof of Theorem 2.13, we have the following
Theorem.

Theorem 2.18. The Cayley graph X(G,4) is vertex transitive.

Proof. Pick any x, y ∈ X = G. Define a map φyx−1 : G → G by φyx−1(z) =
yx−1z. Hence ρ ∈ Aut(X) by Lemma 2.16. Clearly, ρ(x) = y.

2.2 Edge Connectivity

Definition 2.19. Let A ⊆ X be a vertex subset. The edge subset ∂A :=
{xy ∈ R | |{x, y} ∩ A| = 1} is called the boundary of A.

Note 2.20. (1) ∂∅ = ∅.
(2) If X is connected then |∂(A)| ≥ 1 for any nonempty A ( X.

(3) |∂A|+ |∂B| ≥ |∂(A ∪B)|+ |∂(A ∩B)| for A, B ⊆ X.

Definition 2.21. κ1(X):=min
A 6=∅
A6=X

|∂A| is called the edge connectivity of X.

Note 2.22. (1) κ1(X) ≤ min
x∈X

deg(x).
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(2) κ1(X) = 0 if and only if X is disconnected.

Definition 2.23. A ⊆ X is an edge atom if |∂(A)| = κ1(X) and for any
B ⊆ X, |∂(B)| = κ1(X) implies |B| ≥ |A|.
Note 2.24. Suppose A ⊆ X is an edge atom and φ is an automorphism on
X. Then φ(A) is an edge atom.

Lemma 2.25. Suppose A is an edge atom. Then |A| ≤ |X|
2

.

Proof. Since κ1(X) = |∂(A)| = |∂(X − A)| , |A| ≤ |X − A|. Thus |A| ≤
|X|
2

.

Corollary 2.26. Suppose A,B are edge atoms of X. Then A = B or A∩B =
∅.
Proof. Suppose A ∩ B 6= ∅ . Then A ∪ B 6= X since |A|, |B| ≤ |X|

2
. Hence

|∂(A ∪ B)| ≥ κ1(X). By Note 2.20(3), |∂(A ∪ B)| + |∂(A ∩ B)| ≤ |∂A| +
|∂B| = 2κ1(X). Then |∂(A∩B)| ≤ κ1(X). This proves |A∩B| = |A| = |B|.
Hence A = B.

Theorem 2.27. Suppose X is a connected vertex transitive graph. Then
κ1(X) = k, where k is the valency of X. Furthermore, |∂(A)| > k for all
atoms A with 1 < |A| < |X|.
Proof. κ1(X) ≤ k is clear. Let A be an atom. If |A| = 1, then κ1(X) =
|∂(A)| = k. Suppose |A| ≥ 2. Observe ρ(A) is an atom for any ρ ∈ Aut(X)
by Lemma 2.24. Hence ρ(A) = A or ρ(A) ∩ A = ∅. By Corollary 2.26 we
claim A is regular as an induced subgraph. Pick 2 vertices x, y ∈ A. Choose a
function ρ ∈ Aut(X) such that ρ(x) = y. Hence ρ(A) = A by Corollary 2.26.
Then all the neighbors z in A of x are one to one corresponding to neighbors
ρ(z) in A of y. Let ` denote the valency of A. Notice that ` < k, since X is
connected. Observe |A| ≥ ` + 1. Hence

|∂(A)| = |A|(k − `)

≥ |A|(k − (|A| − 1))

= |A|((k + 1)− |A|)
≥ k.

Observe above equality holds if and only if |A| = 1 or |A| = X. We obtain
κ1(X) ≥ k. So κ1(X) = k.
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2.3 Vertex Connectivity

Definition 2.28. A vertex cutset in a graph X is a set of vertices whose
deletion increases the number of connected components of X.

Example 2.29. X:
1

2

3

4

κ1(X) = 2. Let A = {1, 2}, ∂A = {14, 23}. Let B = {1, 3}, B is a vertex
cutset.

Note 2.30. X has a vertex cutset if X is not a complete graph.

Definition 2.31. Let X be a connected graph with n vertices and let Kn be
the complete graph with n vertices. If X 6= Kn, then the vertex connectivity
of X is the minimum number of vertices in a vertex cutset, and will be
denoted by κ0(X). We define κ0(Kn)= n− 1.

Definition 2.32. Suppose A is a subset of vertices in X. Let N(A) denote
the vertices in X \ A with a neighbor in A and N [A] = A ∪N(A).

Note 2.33. (1) A ∪N(A) ∪N [A] = X.

(2) N(A) ⊇ N(N [A]).

(3) κ0(X) ≤ min
N [A]6=∅

A6=∅

|N(A)| if X is connected.

Definition 2.34. (1) A fragment of X is a subset A such that N [A] 6= ∅
and |N(A)| = κ0(X).

(2) An atom of X is a fragment with minimum number of vertices.
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Lemma 2.35. Let X be a connected graph on n vertices with κ0 = κ0(X).
Suppose A and B are fragments of X and A ∩ B 6= ∅. If |A| ≤ |N [B]|, then
A ∩B is a fragment.

Proof. We present the proof as a number of steps.

(a) |A ∪B| < n− κ0.

Observe

|A|+ |B| ≤ |N [B]|+ |B|
= n− |B| − |N(B)|+ |B|
= n− κ0.

Since A ∩B is nonempty, the claim follows.

(b) |N(A ∪B)| ≤ κ0.

We observe

|N(A ∪B)| ≤ |N(A)|+ |N(B)| − |N(A ∩B)|
≤ κ0 + κ0 − κ0

= κ0.

Hence the claim follows.

(c) N [A ∪B] 6= ∅.
From (a), (b) observe

|N [A ∪B]| = n− |A ∪B| − |N(A ∪B)|
> n− (n− κ0)− κ0

= 0.

Hence the claim follows.

(d) A ∪B is a fragment.

Clearly A ∪ B 6= ∅. Since N [A ∪B] 6= ∅, |N(A ∪ B)| ≥ κ0 is clear from the
definition of κ0. Hence |N(A ∪B)| = κ0 from (b).

(e) A ∩B is a fragment.
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By assumption, A ∩B 6= ∅. From (c) we observe

N [A ∩B] ⊆ N [A] ∩N [B] 6= X

Hence N [A ∩B] 6= ∅. Observe

|N(A ∩B)| ≤ |N(A ∪B)|
≤ |N(A)|+ |N(B)| − |N(A ∪B)|
= κ0 + κ0 − κ0

= κ0.

Hence |N(A ∩B)| = κ0.

Corollary 2.36. Let X be a connected graph. If A is an atom and B is a
fragment of X. Then A ⊆ B, A ⊆ N(B), or A ⊆ N [B].

Proof. Note |A| ≤ |B| and |A| ≤ |N [B]| since N [B] is a fragment. Observe

|A| ≤ |B| ≤ |N [N [B]]|. Hence by previous Lemma A ∩ B, A ∩ N [B] are
fragments if they are nonempty. Suppose A * B and A * N [B]. Then

A∩B = ∅ and A∩N [B] = ∅, otherwise we have a contradiction since A∩B,
A ∩N [B] are atoms with size less than |A|. Hence A ⊆ N(B).

Theorem 2.37. Let X be a vertex transitive graph with valency k ≥ 2. Then

κ0(X) ≥ 2

3
(k + 1).

Proof. If X is not connected, then all the connected components of X are the
same. We can assume X is connected. Let A be an atom in X. If ρ ∈ Aut(X),
then ρ(A) is an atom. Hence by Corollary 2.36, ρ(A) ⊆ A, ρ(A) ⊆ N(A)
or ρ(A) ⊆ N(A). Since X is vertex transitive, we can choose ρ ∈ Aut(X)
such that ρ(A) ⊆ N(A). For another ψ ∈ Aut(X) with ψ(A) ∈ N(A), either
ψ(A) = ρ(A) or ψ(A) ∩ ρ(A) = ∅. This proves |N(A)| = t|A| for some
positive integer t. We shall claim t ≥ 2. Suppose t = 1. Then |N(A)| = |A|
and N(A) = ρ(A). Hence N(A) is an atom. Then

|N(N(A))| = |N(A)| = |A|. (2.1)

Since N(N(A))∩A 6= ∅, we have A ⊆ N(N(A)) by previous Corollary. Hence
by equation(2.1), A = N(N(A)). This shows N [A] 6= ∅ , a contradiction to
A being an atom. Observe each vertex in A has valency k, and

k ≤ |A| − 1 + |N(A)|
= (t + 1)|A| − 1.
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Hence |A| ≥ k + 1

t + 1
. Then

κ0 = |N(A)| = t|A| ≥ t
k + 1

t + 1
≥ 2

3
(k + 1).

2.4 Matchings

Definition 2.38. (1) A matching M in a graph X is a set of edges such
that each pair of edges does not have a common vertex.

(2) A maximum matching is a matching with the maximum possible num-
ber of edges.

(3) A matching M that covers every vertex of X is called a perfect match-
ing.

Note 2.39. If X has a perfect matching then |X| is even.

Example 2.40. (1)
1

2

3

4

M = {12, 34} is a maximum matching and also a perfect matching.

(2)
1

2

3 4

5

M = {12, 34} is a maximum matching, but not a perfect matching.
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Theorem 2.41. Let X be a connected vertex transitive graph. Then |M | ≥
b|X|

2
c for any maximum matchings M of X.

Proof. It is suffices to prove for any distinct vertices u, v ∈ X, either u is
in an edge of M , or v is in an edge of M . We prove by induction on the
distance of δ(u, v). δ(u, v) = 1 is clear, otherwise we can add e = uv into M
a contradiction to M being maximum.

Suppose δ(u, v) ≥ 2. Choose x ∈ X such that δ(x, v) = 1 and δ(u, x) +
δ(x, v) = δ(u, v). Suppose u, v do not appear in any edges of M . Since
δ(u, x) < δ(u, v) and by induction, x is in an edge of M . Pick ρ ∈ Aut(X)
such that ρ(u) = x. Then M ′ := ρ(M) is a maximum matching and x is
not in an edge in M ′. Hence u is in an edge of M ′ by induction. We set
M 4M ′ := (M −M ′) ∪ (M ′ −M)(view as a subgraph of X). Observe each
vertex in M 4M ′ has degree 1 or 2, and deg(u) = deg(x) = 1 in M 4M ′.
Let P be a path in M4M ′ with u as its endpoint. Observe each second edge
from u in P is in M . Hence |P ∩M | = |P ∩M ′| or |P ∩M |+ 1 = |P ∩M ′|.
The latter is impossible, otherwise M4P = (M \P )∪ (P \M) is a matching
of size |M |+ 1 a contradiction. Thus M ′4P is a maximum matching and u
is not in an edge of M ′ 4 P . Then x is in an edge of M ′ 4 P by induction.
Hence x is in an edge of P , since x is not in an edge of M ′. Thus x is the
other endpoint of P . Since x is not in an edge of M ′, and x, v are adjacent,
we obtain that v is in an edge of M ′. Hence deg(v) = 1 in M4M ′. As above
arguments, we can find a path P ′ in M 4M ′ from v to x which x is in the
last edge of P ′. Since deg(u) = deg(v) = deg(x) = 1 and other vertices of P
and P ′ have degree 2, we have P = P ′ and u = v, a contradiction.

Lemma 2.42. Let e be an edge of X that is not contained in any maximum
matchings of X. Then for any φ ∈ Aut(X), φ(e) is not contained in any
maximum matchings of X.

Proof. Suppose φ(e) is contained in a maximum matching M . Since φ−1 ∈
Aut(X), we know that φ−1(M) is also a maximum matching. But e is con-
tained in φ−1(M) a contradiction.

Theorem 2.43. Let X be a connected vertex transitive graph. Then each
edge of X is in a maximum matching.

Proof. Let e be an edge that is not in any maximum matchings of X. For
e = xy, ρ(e) := ρ(x)ρ(y) is an edge in X for any ρ ∈ Aut(X). Let Y :=
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{ρ(e) | ρ ∈ Aut(X)}(view as a subgraph). Since X is vertex transitive, Y is
a spanning subgraph of X, and Y is transitive. We prove this theorem by
induction on |X|+ |R|.

Suppose Y = X, we pick a maximum matching M and an edge e′ ∈ M .
Then we choose ρ ∈ Aut(X) such that ρ(e) = e′. Hence e ∈ ρ−1(M).But
ρ−1(M) is a maximum matching a contradiction. Suppose Y 6= X and Y =
Y1 ∪ Y2 ∪ Y3 ∪ · · · ∪ Yt (union of connected components). Observe Yi is
isomorphic to Yj for any i, j. Suppose e ∈ Y1, by induction, there exists
a maximum matching M1 of Y1 containing e. We observe for ρj ∈ Aut(X)
with ρj(Y1) = Yj, ρj(M1) is a maximum matching of Yj. If M1 is perfect then
M1 ∪ ρ2(M1) ∪ · · · ∪ ρt(Mt) is perfect in Y (and then in X) a contradiction.

Suppose M1 misses exactly one vertex. Then so does ρj(M1) for j =
2, · · · , t. We define a new graph Z with t vertices {Y1, Y2, · · · , Yt} and Yi,
Yj are adjacent if and only if there exists yi ∈ Yi, yj ∈ Yj such that yi, yj

are adjacent in X. Note that Z is connected vertex transitive. We can find
a maximum matching of Z. Let YiYj be an edge in Z. We choose yi ∈ Yi,
yj ∈ Yj such that yi, yjare adjacent in X. Notice if there is one Yk not in the
matching, we pick any vertex yk in Yk. We collect the maximum matchings
in Yi that misses yi for each i = 1, · · · , t, together those yiyj appears in the
matching of Z. This will form a maximum matching of Y (then of X). This
contradicts the fact that each edge of Y is not in any maximum matching of
X.

2.5 Cycles

We show the maximal length of a cycle in a vertex transitive graph is at least√
3n, where n = |X| ≥ 3.

Lemma 2.44. Let G be a finite group and let G act on a finite set S. Fix
x ∈ S. Let Gx := {f | f ∈ G, f(x) = x}.

(1) Gx is a subgroup of G.

(2) Fix y ∈ S, and h ∈ G such that h(x) = y. Then {f | f ∈ G, f(x) =
y} = hGx.

(3) Suppose G acts transitively on S. Then |S| = |G|
|Gx| .
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(4) Let G ⊆ Aut(X) be a group, and C = {g ∈ G | x ∼ g(x)}. Suppose G
acts transitively on X. Then X is isomorphic to G/Gx, where G/Gx

is the graph with vertices being the left cosets of Gx and two left cosets
gGx, hGx have an edge if and only if g−1h ∈ C.

Proof. (1) For f , g ∈ Gx,

fg−1(x) = fg−1(g(x)) = f(x) = x.

Hence fg−1 ∈ Gx. This proves Gx is a subgroup of G.

(2) (a) {f | f ∈ G, f(x) = y} ⊆ hGx.
Pick f1 ∈ {f | f ∈ G, f(x) = y}. Observe h−1(y) = x. Hence

h−1f1(x) = h−1(y) = x.

Then h−1f1 ∈ Gx. Hence f1 ∈ hGx.

(b) hGx ⊆ {f | f ∈ G, f(x) = y}.
Pick f2 ∈ Gx. Then hf2(x) = h(x) = y. Hence h2f ∈ {f | f ∈
G, f(x) = y}

From (a), (b) {f | f ∈ G, f(x) = y} = hGx.

(3) From (2), there is a 1 − 1 correspondence between the set S and the
left cosets of Gx.

(4) Fix x ∈ X. Define φ : X → G/Gx by φ(y) = hGx, where y ∈ X and
h ∈ G satisfying h(x) = y. φ is well-defined since G acts transitively
on X, and by (2) and the fact from group theory that for all h′ ∈ hGx,
h′Gx = hGx. It is also clear from (2) that φ is one to one and onto.
Last, for any y, z ∈ X(say φ(y) = hGx and φ(z) = gGx),

y ∼ z (in X) ⇔ h(x) = y ∼ z = g(x) (in X)

⇔ g−1h(x) ∼ x (in X)

⇔ g−1h ∈ C

⇔ hGx ∼ gGx (in G/Gx).

Lemma 2.45. Let X be a vertex transitive graph and S be a subset of X
where c := min

g∈Aut(X)
|S ∩ g(S)|. Then |S| ≥

√
c|X|.
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Proof. Set G = Aut(X). Observe

c|G| ≤ |{(g, x) | g ∈ G, x ∈ S ∩ g(S)}|. (2.2)

Note that for each x ∈ S there are |S||Gx| g ∈ G such that g−1(x) ∈ S by
Lemma 2.44(2). Hence

|{(g, x) | g ∈ G, x ∈ S ∩ g(S)}| = |S|2|Gx|. (2.3)

From equations(2.2), (2.3), |S|2 ≥ c|G|
|Gx| . Since X is vertex transitive,

|G|
|Gx| =

|X| by Lemma 2.44(3). Hence |S|2 ≥ c|X| and the Lemma follows.

Lemma 2.46. Let X be a graph with κ0(X) ≥ 3. Then any two cycles of
maximum length intersect at least three vertices.

Proof. Let C1, C2 be two cycles of maximum length. Suppose C1, C2 intersect
less than three vertices. We divide the proof into 3 cases.
Case 1: C1, C2 intersect in two vertices s, t: Since X − {s, t} is connected,
we can find a path P from a vertex x ∈ C1−C2 to a vertex y ∈ C2−C1 such
that x, y are the only two vertices that P intersects C1 and C2. Without loss

of generality, assume the length of the path s
C1− x

P− y
C2− t is longer than the

path s
C1− t. Then

s
C1− x

P− y
C2− t

C1− s

is a cycle of length larger than C1, a contradiction.

Case 2: C1, C2 intersect in a unique vertex s : Since X − {s} is connected,
we can find x ∈ C1 − C2 and y ∈ C2 − C1 such that the distance δ(x, y) is
minimum among all such pairs. Find a shortest path P from x to y. Clearly,
P intersects C1 and C2 in x, y only. Now go from s to x by a longer path in
C1, then from x to y by P , then from y to s by a longer path in C2. This is
a cycle of length longer than the length of C1 a contradiction.

Case 3: Suppose C1, C2 have no common vertices. We need to find two
disjoint paths from C1 to C2. If we can do so, we can use these two paths as
”bridges” to construct a cycle of larger length in a similar way to previous
two cases and obtain a contradiction. Pick s ∈ C1 and t ∈ C2 such that
the distance δ(s, t) is the distance from C1 to C2. Let P be the shortest
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path from s to t. Clearly, P ∩ C1 = {s}, P ∩ C2 = {t}. The difficulty is to
find another path P ′ from another vertex s′ in C1 to another vertex t′ in C2,
and that P , P ′ have no common vertices. To prove the existence of P ′, we
quote a theorem that states that in a k-connected graph, every k +1 vertices
x0, x1, · · · , xk can form a fan. That means there are k paths from x0, to each
xi with x0 being the only common vertex. Now we apply this theorem to
find such P ′. Pick any s′ ∈ C1 − {s}. There are two disjoint paths P1, P2

from s′ to some vertices t1 and t2(respectively) in C2 − {t}. Replacing s′, t1,
t2 if possible, we can assume P1∩C1 = {s1}, P2∩C1 = {s2}, P1∩C2 = {t1},
P2 ∩ C2 = {t2}, P1 ∩ P2 − (C1 ∪ C2) = ∅, where s1, s2 6= s, t1, t2 6= t and
t1 6= t2. If P1 does not intersect P , then P = P1 and we are done. Hence
we assume P1 ∩ P 6= ∅. Similarly, we assume P2 ∩ P 6= ∅. We construct two
disjoint paths Q1, Q2 by using P , P1, P2. Q1 is the path starting from s
following the path P to the first vertex that P intersects P1 or P2(say P1),
and then following the path P1 to the end. With this Q1, we set Q2 = P2. It
is clear from the construction that Q1 ∩Q2 = ∅.

Example 2.47. The following graph X has vertex connectivity κ0(X) = 2.

1

5

6

3
4

2

Let C1 = {1, 2, 6, 4} and C2 = {1, 3, 6, 5}. Observe C1, C2 are cycles of
maximum length. But | C1 ∩ C2| = 2.

Theorem 2.48. Let X be a connected vertex transitive graph with n ≥ 3
vertices. Then X contains a cycle of length at least

√
3n.

Proof. We observe the valency of X is k and k ≥ 2 since |n| ≥ 3. If k = 2
then we find X is a cycle and the theorem follows since n ≥ √

3n. Suppose

k ≥ 3. Then by Theorem 2.37, κ0(X) ≥ 2

3
(k + 1) ≥ 8

3
, so κ0(X) ≥ 3. From

previous lemma we obtain |C∩g(C)| ≥ 3 for any cycle C of maximum length
and g ∈ Aut(X). By Lemma 2.45, |C| ≥

√
3|n|.
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2.6 Retract

In Theorem 2.18, we showed a Cayley graph is vertex transitive. In this
section, we show every vertex transitive graph is a retract of a Cayley graph.

Definition 2.49. A subgraph Y of X is a retract if there exists a homomor-
phism ρ from X to Y such that ρ(y) = y for all y ∈ Y . Then ρ is called a
retraction from X into Y .

Example 2.50. (1) X is a retract of X. Let I : X → X, I is a retraction.

(2)

4

5 6

1,4,7

3,6,9

ƒÑ

Y:

1

2 3

7

98

2,5,8

X:

Y is a retract of X.

(3)

1

3 2 3

1,4

2ƒÑ

X: Y:

4

f is a retraction.
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(4)

1

3 2 3,4

1

2ƒÑ

X: Y:

4

f is not a retraction.

Theorem 2.51. Any connected vertex transitive graph is isomorphic to a
retract of a Cayley graph.

Proof. Fix x ∈ X. Let C = {g ∈ Aut(X) | x ∼ g(x)}, and let G be the
subgroup of Aut(X) generated by C. Note that G acts on X transitively,
since the orbit containing x of the action of G is a regular graph with the
same valency as X and this will make the orbit is X. Let X ′ = X(G,C) be
the Cayley graph. Let H = Gx be the stablizer of x under the action of G.
Let Z = {g1H, g2H, · · · , gtH} be the left cosets of H, where gi are fix repre-
sentatives of these cosets. View Z as the induced subgraph {g1 · · · gt}of X ′.
We claim the map ψ : Z → X defined by ψ(gi) = gi(x) is an isomorphism.
ψ is a bijection since ψ is the standard one to one correspondence between
the left cosets of H and the vertices in X. Observe

gi ∼ gj in Z ⇔ g−1
i gj ∈ C

⇔ x ∼ g−1
i gj(x) (in X)

⇔ gi(x) ∼ gj(x)

⇔ ψ(gi) ∼ ψ(gj).

This prove the claim. We will identify Z and X, and to prove the theorem, it
remains to show that Z is a retract of X ′. Define φ : X ′ → Z by φ(w) = gi,
where w ∈ giH. Clearly φ(gi) = gi. Observe for w1 = gih1, w2 = gjh2 ∈ X ′,

w1 ∼ w2 (in X ′) ⇔ w−1
1 w2 ∈ C

⇔ h−1
1 g−1

i gjh2 ∈ C

⇔ x ∼ h−1
1 g−1

i gjh2(x) (in X)

⇔ x = h1(x) ∼ g−1
i gjh2h2(x) = g−1

i gj(x) (in X)

⇔ g−1
i gj ∈ C

⇔ φ(w1) = gi ∼ gj = φ(w2) (in Z).
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This completes the proof of the theorem.
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Chapter 3

Homomorphisms

3.1 Cores

Before giving our first definition in this chapter, we consider the following
remark first.

Remark 3.1. (1) φ : N2 → K2 is a bijective homomorphism, but φ is not
an isomorphism.

(2) Suppose |X| < ∞. Then any bijective homomorphism φ : X → X is
a isomorphism.

(3) Suppose |X| < ∞. Suppose φ : X → X ′, ψ : X ′ → X are bijective
homomorphisms. Then there is an isomorphism ϕ : X → X ′.

Definition 3.2. A graph X is a core if for any homomorphism ρ : X → X,
ρ ∈ Aut(X).

Example 3.3. (1) Kn is a core since Kn has no loop.

21
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(2)

1

2

3

4

1,3

2,4

ƒÑ

For f(1) = f(3) = 1 and f(2) = f(4) = 2, The cycle C4 of four vertices
is not a core.

Definition 3.4. χ(X) is the smallest positive integer n such that there is a
homomorphism ρ : X → Kn. χ(X) is called the chromatic number of X.

Definition 3.5. A subgraph Y of X is a core of X if

(1) Y is a core.

(2) There is a homomorphism from X to Y .

Lemma 3.6. A core of X is a retract of X.

Proof. Let Y be a core of X. Then there is a homomorphism f : X → Y .
The restriction of f into the domain Y is a homomorphism of Y into itself.
Since Y is a core, this restriction is an automorphism, so it has an inverse
(f ¹ Y )−1. Then (f ¹ Y )−1 ◦ f is the desired retraction map.

From Lemma 3.6, we immediately have the following Lemma.

Lemma 3.7. A core of X is an induced subgraph of X.

Proof. Obviously by previous Lemma.

Definition 3.8. A graph X is critical if χ(Y ) < χ(X) for any proper sub-
graph Y of X.

Note 3.9. For a subgraph Y of X, χ(Y ) ≤ χ(X).
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Example 3.10. For the following graphs K2 ⊆ C4 and homomorphism f :
C4 → K2.

1

2

3

4

1,3

2,4

ƒÑ

χ(C4) = χ(K2) = 2. Hence C4 is not critical.

Lemma 3.11. If X is critical then X is a core.

Proof. Suppose not. Let ρ : X → Y , Y  X be a homomorphism. Set
χ(Y ) = n and let ψ : Y → Kn be a homomorphism. Then ψ ◦ ρ : X → Kn

is a homomorphism. Hence χ(X) ≤ n = χ(Y ). Thus X is not critical, a
contradiction.

Example 3.12. (1)

12

4

3

6

5

,4,6

,3,5

X:

1

2

K2 is a core of X. Similarly, any edge is a core of X.

(2)

1

2 5

3 4

7

,7,8

,6

Y:X:

8

6

1

2

3 4

5

Y is a core of X.
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(3)

1 2

3

4

5 6

7

,6

,5 ,4,7

Y:X:

Z:

1,7

3

4

5 6

1

3 2

Hence Y is a core of X but Z is not a core of X.

Theorem 3.13. Any two cores of X are isomorphic.

Proof. Let Y , Y ′ ⊆ X be two cores of X and ϕ : X → Y , ψ : X → Y ′

are the corresponding homomorphisms. Then ψ ◦ ϕ ¹ Y ′ : Y ′ → Y ′ is a
homomorphism. Since Y ′ is a core, we know ψ ◦ ϕ ¹ Y ′ : Y ′ → Y ′ indeed
is an automorphism. Then ϕ ¹ Y ′ : Y ′ → Y is one to one. On the other
hand, since ϕ ◦ ψ ¹ Y : Y → Y is a homomorphism and Y is a core, we have
ϕ ◦ψ ¹ Y : Y → Y is an automorphism. This shows ϕ ¹ Y ′ : Y ′ → Y is onto.
Hence ϕ ¹ Y ′ : Y ′ → Y is a bijection. It is an isomorphism.

Lemma 3.14. Every graph has a core.

Proof. Let X be a graph. Set S = {Y ⊆ X | there exists a homomorphism f :
X → Y }. Pick Y ∈ S with least vertices. We claim Y ∈ S is a core. Let
ρ : X → Y be a homomorphism. Suppose Y is not a core. Let ψ : Y → Y be
a homomorphism which is not onto. Then ψ◦ρ : X → Y is a homomorphism
with image ψ ◦ ρ(X) ( Y , a contradiction to the choice of Y .

From Theorem 3.13 and Lemma 3.14, we have a conclusion: Every graph
X has a unique core (up to isomorphism). We denoted it by X•.

Theorem 3.15. Suppose X is vertex transitive. Then X• is vertex transitive.

Proof. Pick any x, y ∈ X•, choose f ∈ Aut(X) such that f(x) = y. Pick a
retraction g : X → X•. Then

g ◦ (f ¹ X•) : X• → X•

is a homomorphism. Observe X• is a core and g ◦ (f ¹ X•) ∈ Aut(X•). Note
g ◦ (f ¹ X•)(x) = g(f(x)) = g(y) = y. Hence X• is vertex transitive.
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Theorem 3.16. If X is a vertex transitive graph, then |X•| divides |X|.
Proof. Let f : X → X• be a homomorphism. We want to prove |f−1(y)|
is independent of y ∈ X•. We claim for any g ∈ Aut(X), for any y ∈ X•,
|f−1(y) ∩ g(X•)| = 1. Since f ◦ (g ¹ X•) : X• → X• is a homomorphism,
f ◦ (g ¹ X•) ∈ Aut(X•). Observe

1 = |f ◦ (g ¹ X•)−1(y)| = |(g ¹ X•)−1(f−1(y))|.

Thus |f−1(y) ∩ g(X•)| = 1, since g ¹ X• is one to one. This claim says for
each y ∈ X•, g ∈ Aut(X), there exists a unique pair (z, x) such that z ∈ X•,
x ∈ f−1(y) and g(z) = x. On the other hand by Lemma 2.44(2), for each pair
(z, x)such that z ∈ X•, x ∈ f−1(y) there are |Gx| elements g ∈ Aut(X) such
that g(z) = x, where Gx is the stablizer of X under the action of Aut(X). (i.e.
Gx = {f | f(x) = x, f ∈ Aut(X)}). Note |Gx| is independent of x. Hence

|Aut(X)| = |X•||f−1(y)||Gx|. Thus |f−1(y)| =
|Aut(X)|
|X•||Gx| is independent of

y.

Corollary 3.17. If X is a vertex transitive graph such that |X| is a prime
number and X has at least one edge, then X is a core.

Proof. From Theorem 3.16, we know |X•| divides |X|. So |X•| = 1 or |X|.
Observe |X•| 6= 1, since X has at least one edge. Hence |X•| = |X|. We
have X = X• by Lemma 3.7.

Corollary 3.18. If X is a vertex transitive graph with χ(X) = 3 and 3 - |X|,
then X has no triangle.

Proof. There exists a homomorphism f : X → K3 because χ(X) = 3. Sup-
pose X has a triangle. Then there is no Y ⊆ X such that |Y | ≤ 2 and there
exists a homomorphism g : X → Y . Hence K3 is a core of X. Hence 3
divides |X| and by Theorem 3.16 a contradiction.

3.2 Folding

Definition 3.19. Let X be a graph and Y ⊆ X is a induced subgraph. A
retraction f : X → Y is simple folding if

(1) |X| = |Y |+ 1,
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(2) If u, v ∈ X with f(u) = f(v) then u = v or ∂(u, v) = 2 (in X).

Note 3.20. We always assume Y ⊆ X, and f is a retraction.

Example 3.21.
X: Y:

1

2

3

4

3

1

2,4

ƒÑ

f is a simple folding.

Definition 3.22. Suppose Y is an induced subgraph of X. Then a retraction
f : X → Y is a folding, if either X = Y or there exist induced subgraphs
Y1, Y2, · · · , Yn = Y of X and simple foldings f1 : X → Y1, f2 : Y1 → Y2, · · · ,
fn : Yn−1 → Yn such that f = fn ◦ · · · ◦ f2 ◦ f1 for X is connected.

Lemma 3.23. Suppose Y is an induced subgraph of X and f : X → Y is a
retraction. Then f is a folding.

Proof. Induction on |X|−|Y |. If X = Y then f is a folding by the definition.
Suppose Y ( X. Pick y ∈ Y and x ∈ X \ Y such that x ∼ y. Define Y1 by
identifying x and f(x) in X, hence |Y1| = |X| − 1. Define f1 : X → Y1 by

f1(u) =

{
u, if u 6= x,

f(x), if u = x.
(3.1)

Then f1 : X → Y1 is a simple folding. Define f2 : Y1 → Y by f2(u) = f(u).
Then f = f2 ◦ f1. Observe f2 : Y1 → Y is a retraction and |Y1 − Y | =
|X − Y | − 1. By induction, f2 is a folding, hence f = f2 ◦ f1 is a folding.

Definition 3.24. A homomorphism f : X → Y is a local injection, if for
any y ∈ Y , and for any u, v ∈ f−1(y), u = v or ∂(u, v) ≥ 3.

Lemma 3.25. Let X be a connected graph and Y be a induced subgraph of
X. Suppose f : X → Y is a homomorphism. Then for any y1, y2 ∈ Y with
f(y1) = y1 and f(y2) = y2, we have ∂Y (y1, y2) = ∂X(y1, y2).

Proof. ∂Y (y1, y2) ≥ ∂X(y1, y2) since Y ⊆ X, and ∂Y (y1, y2) ≤ ∂X(y1, y2) since
f is a homomorphism. Hence ∂Y (y1, y2) = ∂X(y1, y2).
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Lemma 3.26. Suppose X be a graph and Y is a proper induced subgraph of
X. If f : X → Y is a folding, then f : X → Y is not a local injection.

Proof. Suppose f = ft ◦ · · · ◦ f2 ◦ f1 where fi are simple folding with fi :
Yi−1 → Yi. Pick y ∈ Y and u, v ∈ Yt−1 such that ∂Yt−1(u, v) = 2 and
ft(u) = ft(v) = y. Then f(u) = f(v) and ∂X(u, v) = ∂Yt−1(u, v) = 2.

Lemma 3.27. Let n be odd, Y be a graph. If φ : Cn → Y be a homomorphism
with Cn be a cycle of length n. Then Y contains an odd cycle.

Proof. Suppose Y does not contain odd cycles. Then Y is bipartite. Observe
φ(Cn) is a closed walk of odd length in Y , a contradiction.

Example 3.28.

4

5

1

2

3

ƒÑ

43

2, 5

1

A example with odd cycle.

Definition 3.29. For x, y, z ∈ X if x ∼ y ∼ z and x 6= z, then {x, y, z} is
called a 2-arc of X.

Theorem 3.30. If X is a connected graph and every 2-arc of X is in a
shortest odd cycle, then X is a core.

Proof. Suppose f : X → X• is a retraction and X• 6= X. Then f is a
folding. Hence f is not a local injection. Hence there exist u, v ∈ X with
∂(u, v) = 2 and f(u) = f(v). Observe u, v are contained in a shortest odd
cycle of C. And f(u), f(v) are contained in the odd cycle f(C) which has
the same length as C. This implies f(u) 6= f(v), a contradiction.

Example 3.31. (1)
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The length of shortest odd cycle is seven. By Theorem 3.30 the graph
is a core.

(2)

The length of shortest odd cycle is seven. By Theorem 3.30 the graph
is a core.

Definition 3.32. Let X, Y be graphs. A homomorphism f : X → Y is local
bijective(respectively isomorphic) if for any y ∈ Y , there exists x ∈ X such
that

(1) f(x) = y,

(2) f ¹ N [x] : N [x] → N [y] is bijective(respectively isomorphic) where
N [x] = N [{x}].

Example 3.33. (1)

ƒÑ

Y:X:

3,62,5

1,4

65

4
32

1

Observe f is local bijective and local isomorphic.

(2)

ƒÑ

Observe f is local bijective, but is not local isomorphic.
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Lemma 3.34. If X is a connected graph and f : X → Y is local isomorphic.
Then f : X → Y is isomorphic.

Proof. We only need to prove f is one to one. Suppose not. Pick x, y ∈ X
such that f(x) = f(y) and ∂(x, y) is minimum. Note ∂(x, y) ≥ 2. Let x, z,
· · · , y be the shortest path from x to y. Then f(x), f(z), · · · , f(y) = f(x)
is a cycle in Y . Hence f(y) ∼ f(z) in Y . Thus y ∼ z in X. Since f(y),
f(x) ∈ N(f(z)) and f(y) = f(x), we must have y = x by the assumption of
local isomorphism, a contradiction to ∂(x, y) ≥ 2.

Corollary 3.35. If Y is a tree, and f : X → Y is local bijective. Then X is
disjoint copies of Y .

Proof. Since for each y ∈ Y , N(y) contains no edges, f in fact is a local
isomorphism. Then the corollary follows from Lemma 3.34.
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Chapter 4

The Adjacency Matrix

4.1 Definition

Definition 4.1. The adjacency matrix A = A(X) of a graph X is the matrix
with rows and columns indexed by X such that

Axy =

{
1, if x ∼ y,

0, if x � y, (x, y ∈ X.)

Example 4.2. X:
1

2

3

4

For the graph X, the adjacency matrix A =




1 2 3 4

1 0 1 0 1
2 1 0 1 0
3 0 1 0 1
4 1 0 1 0


.

Definition 4.3. A walk of length r in X is a sequence of vertices x0, x1, x2

,· · · , xr such that xi ∼ xi+1 for i = 0, 1, · · · r − 1.

31
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Lemma 4.4. Let A = A(X) be the adjacency matrix of X. For x, y ∈ X
the number of walks of length r from x to y is (Ar)xy.

Proof. (Ar)xy =
∑

x1,x2,··· ,xr−1∈X

Axx1Ax1x2 · · ·Axr−1y = |{(x1, x2, · · · , xr−1) |

x ∼ x1 ∼ x2 ∼ · · · ∼ xr−1 ∼ y}|.

4.2 Spectrum

Definition 4.5. Let A = A(X) be the adjacency matrix of X. Then θ is
an eigenvalue of A if there exists a nonzero column vector U ∈ Cx such that
AU = θU . Then U is called an eigenvector of A associated with θ.

Note 4.6. An n×n symmetric matrix over R has n orthogonal eigenvectors
over R. The multiset of the eigenvalues of A(X) is called the spectrum of X.

Throughout this chapter, we assume the base field is R.

Example 4.7. Let X = Kn and we have the adjacency matrix A = A(X).
Observe A + I = J (J is all 1’s matrix). Hence we have rank(J) = 1 and
J has n− 1 orthogonal eigenvectors U1, U2, · · · , Un−1 associated with 0. Set

Un =




1
1
...
1


. So JUn = nUn. Then

AUi = (J − I)Ui =

{
−Ui, for i ≤ n− 1,

(n− 1)Un, for i = n.

Hence A has eigenvalues −1,−1, · · · ,−1(n− 1 times), n− 1.

Lemma 4.8. Let X be a regular graph with valency k. Then

(1) The valency k is an eigenvalue of A = A(X).

(2) For any eigenvalues θ of A, |θ| ≤ k.

(3) The multiplicity of k is the number of connected components in X.
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Proof. (1) Observe A




1
1
...
1


 =




k
k
...
k


 = k




1
1
...
1


. So k is an eigenvalue

of A.

(2) Suppose AU = θU for some U =




u1

u2
...

un


 6= 0 where n = |X|. Pick j

such that |uj| = max
i
|ui|. Hence

|θuj| = |(θU)j| = |(AU)j| = |
∑

i

Ajiui| ≤
∑

i

Aji|ui| ≤ k|uj|.

Hence |θ| ≤ k.

(3) If θ = k, then all of the above inequalities are equalities. This means
ui = uj if i ∼ j. If we replace the role of uj by uk for some k ∼ j and
keep doing this, we obtain that ui are all the same when i was in the
same connected components of X.

Throughout the end of this section, we fix a graph X and its adjacency
matrix A(X).

Definition 4.9. (1) The set of eigenvalues of A(X) is denoted by ev(X).

(2) For θ ∈ ev(X), let V(θ) denote the set of eigenvectors of A(X) corre-
sponding to θ. (V(θ) is a subspace of R).

(3) For θ ∈ ev(X), define a matrix Eθ : RX → RX such that Eθ is the
projection of RX into V(θ). Eθ is called the primitive idempotent of θ.

Lemma 4.10. E2
θ = Eθ.

Proof. For any U ∈ RX ,

E2
θU = Eθ(EθU) = EθU

since EθU ∈ V(θ).
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Lemma 4.11. For θ, η ∈ ev(X) with θ 6= η, then EθEη = 0.

Proof. For U ∈ RX , then EηU ∈ V(η). Since V(η) is orthogonal to V(θ),
Eθ(EηU) = 0.

Lemma 4.12. I =
∑

θ∈ev(X)

Eθ.

Proof. Pick U ∈ RX . Then U =
∑

τ∈ev(X)

Uτ , for some Uτ ∈ V(τ). Hence by

Lemma 4.10 and Lemma 4.11

∑

θ∈ev(X)

EθU =
∑

θ∈ev(X)

Eθ

∑

τ∈ev(X)

Uτ

=
∑

θ∈ev(X)

Eθ

∑

τ∈ev(X)

EτUτ =
∑

θ,τ

EθEτUτ

=
∑

θ∈ev(X)

EθUθ =
∑

θ∈ev(X)

Uθ = U.

Hence I =
∑

θ∈ev(X)

Eθ.

Lemma 4.13. A =
∑

θ∈ev(X)

θEθ.

Proof. Pick U ∈ RX . Suppose U =
∑

θ∈ev(X)

Uθ where Uθ ∈ V(θ). Then

AU =
∑

θ∈ev(X)

AUθ =
∑

θ∈ev(X)

θUθ =
∑

θ∈ev(X)

θEθUθ

=
∑

θ∈ev(X)

θEθ

∑

τ∈ev(X)

Uτ = (
∑

θ∈ev(X)

θEθ)U.

Hence A =
∑

θ∈ev(X)

θEθ

Lemma 4.14. For any polynomial f , f(A) =
∑

θ

f(θ)Eθ.
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Proof. For U ∈ V(θ), AU = θU ,

A2U = A(AU) = A(θU) = θ(AU) = θ2U.

So AnU = θnU. Hence f(A)U = f(θ)U.

For U ∈ RX we let U =
∑

θ∈ev(X)

Uθ. Hence

f(A)U =
∑

θ

f(A)Uθ =
∑

θ

f(θ)Uθ

=
∑

θ

f(θ)EθUθ =
∑

θ

f(θ)EθU.

Lemma 4.15. For θ ∈ ev(A), set Pθ(x) =
∏

η∈ev(A)
η 6=θ

(x − η). Then Eθ =

1

Pθ(θ)
Pθ(A). In particular, Eθ is a polynomial of A with degree |ev(A)| − 1.

Proof. Observe by Lemma 4.14

Pθ(A) =
∑

τ∈ev(A)

Pθ(τ)Eτ =
∑

τ∈ev(A)

(
∏

η 6=θ

τ − η)Eτ

= (
∏

η 6=θ

(θ − η))Eθ = Pθ(θ)Eθ.

Lemma 4.16. Suppose f(x), g(x) ∈ R[x] and g(θ) 6= 0 for all θ ∈ ev(A).
Then

f(A)

g(A)
=

∑

θ∈ev(A)

f(θ)

g(θ)
Eθ.

Proof. Observe the eigenvalues of g(A) are g(θ), where θ ∈ ev(A). (In fact,
A and g(A) have the same set of eigenvectors). Hence g(A) is invertible by
the assumption g(0) 6= 0. Observe by Lemma 4.14, Lemma 4.11

g(A)
∑

θ∈ev(A)

f(θ)

g(θ)
Eθ =

∑

θ∈ev(A)

g(θ)Eθ

∑

θ∈ev(A)

f(θ)

g(θ)
Eθ

=
∑

θ∈ev(A)

f(θ)E2
θ =

∑

θ∈ev(A)

f(θ)Eθ

= f(A).
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Hence
f(A)

g(A)
=

∑

θ∈ev(A)

f(θ)

g(θ)
Eθ.

Lemma 4.17. {Eθ | θ ∈ ev(A)} are linear independent.

Proof. Suppose
∑

θ∈ev(A)

cθEθ = 0. Then for any nonzero Uτ ∈ V(τ),

(
∑

θ∈ev(A)

cθEθ)Uτ = 0.

Hence

(
∑

θ∈ev(A)

cθEθ)Uτ = cτEτUτ = cτUτ = 0.

Hence cτ = 0 for all τ ∈ ev(A).

From Lemma 4.10∼Lemma 4.17, we can conclude

〈A〉 = 〈{Eθ | θ ∈ ev(A)}〉 = Span{Eθ | θ ∈ ev(A)}

where 〈A〉 is the algebra generated by A. Hence dimR〈A〉 = |ev(A)|.

Theorem 4.18. Let X be the graph with diameter d. Then |ev(A)| ≥ d + 1.

Proof. Suppose |ev(A)| ≤ d. Then I, A, A2, · · · , Ad−1 span Eθ for all
θ ∈ ev(A). Hence they span Ad. That is Ad = c0I + c1A + · · ·+ cd−1A

d−1 for
ci ∈ R. Pick x, y ∈ X with ∂(x, y) = d. Then

0 6= (Ad)xy = (c0I + c1A + · · ·+ cd−1A
d−1)xy = 0

a contradiction. Hence |ev(A)| ≥ d + 1.

Corollary 4.19. The path Pn of length n− 1 has n distinct eigenvalues.

Proof. Let A = A(Pn). Then |ev(A)| ≤ n since A is an n × n matrix.
|ev(A)| ≥ n from Theorem 4.18. Hence |ev(A)| = n.
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4.3 Perron Frobenius Theorem

Lemma 4.20. Let C be an n×n symmetric matrix. Assume all eigenvalues
of C are nonnegative. Then C = DtD for some n× n matrix D.

Proof. Observe

C = P t




θ1 0 0 · · · 0
0 θ2 0 · · · 0
...

...
. . .

...
...

0 0 . . . . . . θn


 P

= P t




√
θ1 0 0 · · · 0
0

√
θ2 0 · · · 0

...
...

. . .
...

...
0 0 . . . . . .

√
θn







√
θ1 0 0 · · · 0
0

√
θ2 0 · · · 0

...
...

. . .
...

...
0 0 . . . . . .

√
θn


 P

= DtD

where D =




√
θ1 0 0 · · · 0
0

√
θ2 0 · · · 0

...
...

. . .
...

...
0 0 . . . . . .

√
θn


 P , and θi are eigenvalues with

nonnegative values.

Definition 4.21. Let C be a symmetric matrix with rows and columns
indexed by X. C is bipartite(resp. reducible) if there exists Y1, Y2 ⊆ X such
that

(1) Y1 ∪ Y2 = X;

(2) Y1 ∩ Y2 = ∅;
(3) Y1, Y2 6= ∅;
(4) Cxy = 0 if x, y ∈ Y1 or x, y ∈ Y2(resp. Cxy = 0 if either x ∈ Y1, y ∈ Y2,

or x ∈ Y2, y ∈ Y1).

Lemma 4.22. Let C be a bipartite symmetric matrix and let θ be an eigen-
value of C. Then −θ is also an eigenvalue of C and the multiplicity of θ is
equal to the multiplicity of −θ in C.
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Proof. Suppose (
O B
Bt O

)(
U1

U2

)
= θ

(
U1

U2

)
.

Then BU2 = θU1 and BtU1 = θU2. Observe

(
O B
Bt O

)(
U1

−U2

)
=

( −BU2

BtU1

)
=

( −θU1

θU2

)
= −θ

(
U1

−U2

)
.

Note 4.23. If C is bipartite, then C2 is reducible.

Lemma 4.24. Let C be an irreducible n× n symmetric matrix with positive
entries. If C2 is reducible, then C is bipartite.

Proof. Let X be the graph associated with C. Let Y , Z be a partition of the
vertex set of X such that C2

ij = 0 if i ∈ Y and j ∈ Z. This means that two
ends of each walk of length 2 must in the same set Y or in the same set Z.
Observe there is an edge connecting Y and Z, since X is connected(this is
from the irreducible of C). It is not too difficult from above comments that
there is no edges and loops in Y and in Z. Hence X is bipartite and then C
is bipartite.

Theorem 4.25. (Perron Frobenius Theorem)
Let C be an n × n symmetric irreducible matrix with nonnegative entries.
Let θ1 be the largest eigenvalue of C and θr is the smallest eigenvalue of C.
Suppose that V is an eigenvector of C corresponding to θ1. Then

(1) All entries of V have the same sign (no zero entries).

(2) θ1 has multiplicity 1.

(3) θr ≥ −θ1.

(4) θr = θ1 if and only if C is bipartite.

Proof. (1) Observe θ1I −C has nonnegative eigenvalues. Hence θ1I −C =
P tP for some matrix P by Lemma 4.20. Observe

||PV ||2 = (PV )t(PV ) = V tP tPV = V t(θ1I−C)V = V tθ1IV−V tθ1V = 0.
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Hence PV = 0. i.e.
n∑

x=1

vxPx = 0, where Px is the xth column of P .

Set S = {x | vx > 0}, we assume S 6= ∅(otherwise use −V instead of

V ). Set W =
∑
x∈S

Pxvx and observe W = −
∑

y/∈S

Pyvy. For x ∈ S,

〈Px,W 〉 = 〈Px,−
∑

y/∈S

Pyvy〉 = −
∑

y/∈S

vy〈Px, Py〉 = −
∑

y/∈S

vy(θ1I−C)xy ≤ 0.

Observe

0 ≤ 〈W,W 〉 = 〈
∑
x∈S

vxPx,W 〉 =
∑
x∈S

vx〈Px, W 〉 ≤ 0.

Hence W = 0. For y /∈ S,

0 = 〈Py,W 〉 = 〈Py,
∑
x∈S

vxPx〉 =
∑
x∈S

vx〈Py, Px〉 =
∑
x∈S

vx(θ1I − C)yx.

Since (θ1I − C)yx ≤ 0 and vx > 0, we have Cyx = 0 for y /∈ S, x ∈ S.
Hence C is reducible, a contradiction.

(2) Suppose θ1 has multiplicity at least 2. Let V(θ1) be the eigenspace of C

corresponding to θ1. Then dim(V(θ1)) ≥ 2. Since dim(spanR




1
0
...
0




⊥

) =

n− 1, V(θ1)∩ spanR{




1
0
...
0




⊥

} 6= ∅. Hence there exists nonzero vector

of the form




0
∗
...
∗


 in V2(θ1), a contradiction to (1).

(3) We consider two cases.
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Case 1: C2 is reducible by Lemma 4.24. Hence C is bipartite. Thus the
eigenvalues of C are symmetry to the origin. Hence θr ≥ −θ1.

Case 2: C2 is irreducible. Observe C2V = θ2
1V. Hence V is an eigenvector

of C2 corresponding to θ2
1. Let U be an eigenvector of C. Suppose

θr < −θ1. Then θ2
r is the maximal eigenvalue of C2 with corre-

sponding eigenvector U . By (1), the entries of U have the same
sign. But U is orthogonal to V , a contradiction. Hence θr ≥ −θ1.

(4) (⇒)Suppose θr = θ1. Then θ2
r = θ2

1 are eigenvalues of C2 with mul-
tiplicity at least 2. By (2), C2 is reducible. Hence C is bipartite by
Lemma 4.24.
(⇐)Obvious from Lemma 4.22.



Chapter 5

Interlacing

5.1 Interlacing of sets

Definition 5.1. Let S = {η1 ≥ η2 ≥ · · · ≥ ηm} and T = {θ1 ≥ θ2 ≥
· · · ≥ θn} are multisets of R, where n ≥ m. We say S interlaces T if
θi ≥ ηi ≥ θn−m+i for all i = 1, 2, · · · , m.

Example 5.2. (1) Let S = {5, 3, 1}, T = {5, 5, 4, 3, 2, 1}. Hence S inter-
laces T .

(2) Let S = {2.5, 1}, T = {3, 3, 2, 1}. Hence S interlaces T .

Note 5.3. If S ⊆ T , then S interlaces T .

Lemma 5.4. Suppose S, T , U are multisubsets of R.

(1) Suppose S interlaces T . Then S interlaces S ∪ T .

(2) S interlaces T if and only if S ∪ U interlaces T ∪ U .

(3) Let f(x), g(x) be real polynomials. Suppose

f(x)

g(x)
=

∑
s∈S

1

x− s

for some finite set S ⊆ R. Then the zero’s of f(x) interlace the zero’s
of g(x).

41
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Proof. (1) We claim that ”interlacing” is a transitive relation. Let S in-
terlaces T , and T interlaces U . We show then S interlaces U . Let
S = {η1 ≥ η2 ≥ · · · ≥ ηm}, T = {θ1 ≥ θ2 ≥ · · · ≥ θn}, U = {γ1 ≥ γ2 ≥
· · · ≥ γp} where p ≥ n ≥ m. By the definition, we have

θi ≥ ηi ≥ θn−m+i (1 ≤ i ≤ m),

γi ≥ θi ≥ γp−n+i (1 ≤ i ≤ n).

Hence γn−m+i ≥ θn−m+i ≥ γp−m+i ≥ γp−n+i, (1 ≤ i ≤ m). Hence we
obtain γi ≥ θi ≥ ηi ≥ θn−m+i ≥ γp−m+i, (1 ≤ i ≤ m). Hence S
interlaces U . This proves ”interlacing” is a transitive relation. Observe
S interlaces T , and T interlaces T ∪ U . Hence the result follows.

(2) To prove this, we can assume that U = {u} has only one element. By
a small perturbation on u, we can assume u ∈ S ∪ T . Now (2) follows.

(3) By deleting the common linear factors in f(x), g(x), and using (2), we
can assume f(x) and g(x) have no common linear factors. From the

right hand side, we know g(x) =
∏
s∈S

(x − s) has degree n = |S| and

f(x) has degree at most n− 1. Hence g(x) has n zero’s, and f(x) has
at most n− 1 zero’s. Since

d

dx

f(x)

g(x)
=

∑
s∈S

−1

(x− s)2
< 0,

the graph of y = f(x)
g(x)

decreases. Hence f(x) has exactly n − 1 zeros

and they appear between two consecutive zeros of g(x).

Definition 5.5. The interlacing is tight if for each i = 1, 2, · · · ,m, one of
the equality holds.

Example 5.6. (1) {4, 3, 2, 1} interlace {4, 3, 3, 3, 2, 1} tightly.

(2) {4, 3, 2, 1} interlace {4, 4, 2, 2, 1}. This interlacing is not tight.
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5.2 Interlacing of eigenvalues

Theorem 5.7. Let A be an n × n real symmetric matrix. Suppose P is an
n×m matrix satisfying P tP = Im×m and B = P tAP when n ≥ m. Then

(1) The eigenvalues of B interlace the eigenvalues of A.

(2) If the interlacing is tight, then AP = PB.

Proof. (1) Let θ1 ≥ θ2 ≥ · · · ≥ θn be eigenvalues of A with correspond-
ing orthogonal eigenvectors U1, U2, · · · , Un. Let η1 ≥ η2 ≥ · · · ≥
ηm be eigenvalues of B with corresponding orthogonal eigenvectors
V1, V2, · · · , Vm. Set Ui = span{U1, U2, · · · , Ui} and Vj = span{V1, V2, · · · , Vj}.
Observe

dim(P tUi−1) ≤ dim(Ui−1) ≤ i− 1.

Hence

dim((P tUi−1)
⊥ ∩ Vi) = dim(P tUi−1)

⊥ + dim(Vi)− dim((P tUi−1)
⊥ + Vi)

≥ (m− i + 1) + i−m = 1.

Pick a nonzero vector Y ∈ (P tUi−1)
⊥ ∩ Vi. Observe Y tBY ≥ ηiY

tY
since Y ∈ Vi. Observe

Y ∈ (P tUi−1)
⊥ ⇔ 〈Y, P tU〉 = 0 for all U ∈ Ui−1

⇔ 〈PY, U〉 = 0 for all U ∈ Ui−1

⇔ PY ∈ U⊥i−1 = span{Ui, Ui+1, · · · , Un}

Hence (PY )tA(PY ) ≤ θi(PY )t(PY ). Observe PY 6= 0 and

θi ≥ (PY )tA(PY )

(PY )t(PY )
=

Y tP tAPY

Y tP tPY
=

Y tBY

Y tY
≥ ηi.

If we use −A, −B to replace A, B, we obtain −θn−i ≥ −ηm−i for
i = 0, 1, 2, · · · ,m− 1. This is ηi ≥ θn−m+i for i = 1, 2, · · · ,m.

(2) In the proof of (1), the equality holds if and only if PY is an eigenvector
of A corresponding to θi for an eigenvector Y of B corresponding to ηi.
Suppose θi = ηi (1 ≤ i ≤ k) and ηi = θn−m+i (k+1 ≤ i ≤ m) for some k
(1 ≤ k ≤ m). Let Y1, Y2, · · · , Ym be the eigenvectors of B corresponding
to η1, η2, · · · , ηm such that PY1, PY2, · · · , PYm be the eigenvectors of
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A corresponding to θ1, θ2, · · · , θk, θn−m+k+1, θn−m+k+2, · · · , θn. So for
1 ≤ i ≤ m

PBYi = ηiPYi

APYi = θjPYi = ηiPYi,

where

j =

{
i, if i ≤ k,

n−m + i, else.

Hence PB = AP .

Definition 5.8. Let A be an n×n matrix. Then B is a principle submatrix
of A if B is obtained by deleting some rows and columns with the same
indices from A.

Example 5.9. Let

A =




1 2 3
4 5 6
7 8 9


 .

Then (1), (5), (9),

(
1 2
4 5

)
,

(
5 6
8 9

)
,

(
1 3
7 9

)
and A are all the principle

submatrices of A. Observe

(
1 3
4 6

)
is not a principle submatrix of A since

it is obtained by deleting row 3 and column 2 from A.

Corollary 5.10. Let A be an n × n real symmetric matrix. Suppose B is
an m×m principle submatrix of A. Then the eigenvalues of B interlace the
eigenvalues of A.

Proof. By reordering the indices, we can assume that B appears in the upper

left corner of A. Then B = P tAP for n×m matrix P =

(
I
O

)
. Hence the

result follows from Theorem 5.7.

Corollary 5.11. Let X be a graph and fix a vertex x ∈ X. Suppose θ is
an eigenvalue of X with multiplicity m > 1. Then θ is an eigenvalue of the
graph induced on X − x with multiplicity at least m− 1 and at most m + 1.



5.3. EQUITABLE PARTITION OF A GRAPH 45

Proof. Let A be the adjacency matrix of X and B be the adjacency matrix of
X−x. Observe A is a real symmetric matrix and B is a principal submatrix of
A. By Corollary 5.10, we know the eigenvalues of B interlace the eigenvalues
of A. Since θ is an eigenvalue of A with multiplicity m, the result follows.

5.3 Equitable partition of a graph

Definition 5.12. Let X be a graph, and let π = {C1, C2, · · · , Cr} be a
partition of X. Then π is equitable if for all i, j ∈ {1, 2, · · · , r}, there exists
a number bij such that for all x ∈ Ci we have |N(x) ∩ Cj| = bij.

Definition 5.13. Suppose π is equitable. Then X/π is a weighted digraph

where X/π = {C1, C2, · · · , Cr} and define Ci
bij→ Cj if bij 6= 0. Let A =

A(X/π) be the adjacency matrix. That is, A is an r × r matrix such that
Aij = bij.

Definition 5.14. Let π = {C1, C2, · · · , Cr} be a partition of X. The char-
acteristic matrix of π is an |X| × |π| matrix P such that

Pxi =

{
1, if x ∈ Ci,

0, otherwise.

Example 5.15.

4

2

7

8

653

1

For this graph, let C1 = {1, 2, 4, 5, 7, 8} and C2 = {3, 6}. Then b11 = 1,
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b12 = 1, b21 = 3, b22 = 0, A(X/π) =

(
1 1
3 0

)
and

P =




C1 C2

1 1 0
2 1 0
3 0 1
4 1 0
5 1 0
6 0 1
7 1 0
8 1 0




.

Note 5.16. (1) The columns of P is linear independent.

(2) Observe

(P tP )ij =
∑
x∈X

P t
ixPxj =

∑
x∈X

PxiPxj =

{
0, i 6= j,

|Ci|, i = j.

Hence P tP is an invertible diagonal matrix.

Lemma 5.17. Let π be an equitable partition of X with characteristic ma-
trix P . Then A(X)P = PA(X/π). (Equivalently, (P tP )−1P tA(X)P =
A(X/π)).

Proof. Suppose π = {C1, C2, · · · , Cr} and x ∈ Ci. Observe

(A(X)P )xj =
∑
y∈X

A(X)xyPyj = bij,

and

(PA(X/π))xj =
r∑

k=1

PxkA(X/π)kj =
r∑

k=1

Pxkbkj = bij.

Hence A(X)P = PA(X/π).

Corollary 5.18. Let π be an equitable partition of X. Then the minimal
polynomial of A(X/π) divides the minimal polynomial of A(X).
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Proof. Let A = A(X), B = A(X/π). From Lemma 5.17, we know AP = PB.
Observe A2P = APB = PBB = PB2. In general, AnP = PBn holds for
all n ∈ N. Hence f(A)P = Pf(B) for any polynomials f(x). Suppose g(x)
is the minimal polynomial of A. Then g(A) = 0, and g(A)P = Pg(B) = 0.
Since the columns of P are linear independent, we have g(B) = 0. Then g(x)
is a multiple of the minimal polynomial of B = A(X/π).

Theorem 5.19. The characteristic polynomial of B divides the characteristic
polynomial of A where A = A(X), B = A(X/π).

Proof. Let P be the characteristic matrix of the partition π of X. Set T =(
P Q

)
for some n× (n− r) matrix Q such that T is invertible. Then

AT = A
(

P Q
)

=
(

AP AQ
)

=
(

PB AQ
)

=
(

P Q
) (

B C
O D

)
= T

(
B C
O D

)

for some matrices C, D of size r × (n − r), (n − r) × (n − r) respectively.

Then T−1AT =

(
B C
O D

)
. Hence

det(xI − A) = det(T−1) det(xI − A) det(T )

= det(T−1(xI − A)T ) = det(xI − T−1AT )

= det(xI −
(

B C
O D

)

= det(

(
xI −B C

O xI −D

)
) = det(xI −B) det(xI −D).

Hence det(xI −B) divides det(xI − A).

Note 5.20. (1) The set of eigenvalues of A(X/π) is a subset of the set of
eigenvalue of A.

(2) θ is an eigenvalue of A(X/π) with multiplicity t. Then θ is an eigen-
value of A with multiplicity at least t.
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Example 5.21. Petersen Graph X:

10

9

8

7
6

5

43

2

1

Let π = {{1}, {2, 5, 6}, {3, 4, 7, 8, 9, 10}}. Then A(X/π) =




0 3 0
1 0 2
0 1 2


 .

We obtain det(xI − A(X/π)) = (x − 1)(x − 3)(x + 2). Hence 1, 3, −2 are
eigenvalues of Pertersen Graph.

Theorem 5.22. Let G act on X with orbits C1, C2, · · · , Cr. Then π =
{C1, C2, · · · , Cr} is an equitable partition of X.

Proof. Pick x, y ∈ Ci. Choose g ∈ G such that y = g(x). Then |N(x)∩Cj| =
|g(N(x) ∩ Cj)| = |N(y) ∩ Cj|.
Example 5.23. Petersen Graph X:

10

9

8

7
6

5

43

2

1

Let G = {e, σ, σ2, σ3, σ4}, where σ = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10). Then G acts
on X with orbits π = {C1, C2}, where C1 = {1, 2, 3, 4, 5}, C2 = {6, 7, 8, 9, 10}.
Since A(X/π) =

(
2 1
1 2

)
, we obtain det(xI − A(X/π)) = (x− 3)(x− 1).

5.4 Interlacing of rational functions

Lemma 5.24. Let A be an n × n real symmetric matrix and z ∈ Rn is
nonzero. Set φ(x) = zt(xI − A)−1z and ψ(x) = 1− zt(xI − A)−1z. Then



5.4. INTERLACING OF RATIONAL FUNCTIONS 49

(1) φ′(x) > 0, ψ′(x) < 0 if φ(x), ψ(x) are defined.

(2) Every root of φ(x) (resp. ψ(x)) has multiplicity 1.

(3) Every pole of φ(x) (resp. ψ(x)) is simple.

(4) The roots of φ(x) (resp. ψ(x)) interlace the poles of φ(x).

Proof. (1) Observe

φ(x) = zt(xI − A)−1z = zt(
∑

θ∈ev(A)

(x− θ)−1Eθ)z

=
∑

θ∈ev(A)

ztEθz

x− θ
.

Hence

φ′(x) = −
∑

θ∈ev(A)

ztEθz

(x− θ)2
< 0.

And ψ′(x) = (1− φ(x))′ = −φ′(x) > 0.

(2) From (1), we have φ′(x) 6= 0, ψ′(x) 6= 0. Hence they have no repeated
roots.

(3) Obviously from φ(x) =
∑

θ∈ev(A)

ztEθz

x− θ
. Hence every pole of φ(x) is 1.

Similar for ψ(x) = 1− φ(x).

(4) Observe φ(x) is decreasing by 1, lim
x→x

φ(x) = 0, lim
x→−x

φ(x) = 0. Hence

after deleting the common factors of φ(x), the roots of φ(x) interlace
the poles of φ(x). Hence the roots of φ(x) interlace the poles of φ(x).
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Chapter 6

The Laplacian of a Graph

6.1 Laplacian and incidence matrix of a graph

Definition 6.1. Let X be a graph (not necessary simple). An orientation
Xσ of X is a digraph that assigns each edge e a directed edge σ(e).

Definition 6.2. Let Xσ be an orientation of X. The incidence matrix D of
Xσ is an n × m matrix where n = |X|, m = |R| such that for x ∈ X and
e = yz ∈ Xσ,

Dxe =





1, if x = z, (x is the head of e)

−1, if x = y, (x is the tail of e)

0, if x 6= y, x 6= z.

Note 6.3. Each column of D has exactly one 1 entry and −1 entry.

Example 6.4.

32

1

e e

e

1 3

2

For this graph, D =




e1 e2 e3

1 −1 0 1
2 1 −1 0
3 0 1 −1


.

51
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Lemma 6.5. Let X be a graph with an orientation Xσ and let D be the
incidence matrix of Xσ. Then DDt = 4(X) − A(X) where 4(X) is a
diagonal matrix with (4(X))yy the degree of y. Such Q := DDt is called the
Laplacian of X.

Proof. Pick x, y ∈ X. Observe

(DDt)xy =
∑
e∈Xσ

DxeD
t
ey =

∑
e∈Xσ

DxeDye

=





deg(x), if x = y,

−1, if x 6= y, x ∼ y,

0, if x 6= y, x � y.

= 4(X)− A(X).

Example 6.6.
1

2

3

4

e

ee

e
4

32

1

For this graph, D =




e1 e2 e3 e4

1 1 0 0 −1
2 −1 1 0 0
3 0 −1 1 0
4 0 0 −1 1


 and

Q(X) = DDt =




2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


 .

Note 6.7. (1) Q(X) is symmetric.

(2) Q(X) is independent of the orientation σ.
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(3) Q(X)




1
1
...
1


 = 0, and Dt




1
1
...
1


 = 0

Lemma 6.8. Let Q := Q(X) be the Laplacian of X. Then all eigenvalues
of Q are nonnegative.

Proof. Let λ be an eigenvalue of Q with eigenvector x. Then Qx = DDtx =
λx. Observe xtDDtx = xtλx. Hence ||Dtx||2 = λ||x||2. The result follows.

Lemma 6.9. For any matrix D, the nullspace of DDt equals the nullspace
of Dt.

Proof. Observe nullspace(Dt)⊆ nullspace(DDt). Suppose DDtU = 0. Hence
U tDDtU = 0. Hence ||DtU ||2 = 0. Hence DtU = 0. Hence nullspace(Dt) ⊇
nullspace(Q). Hence the result follows.

Theorem 6.10. Suppose X has c connected components. Then 0 is an
eigenvalue of Q with multiplicity c.

Proof. Suppose X = X1∪X2∪· · ·∪Xc, where Xi are connected components.
We claim the nullspace of Dt has dimension c. For 1 ≤ i ≤ c, let Ui be a
column vector such that

Ui(x) =

{
1, if x ∈ Xi,

0, if x /∈ Xi.

Then DtUi = 0. In fact, DtU = 0 for U ∈ span{U1, U2, · · · , Uc}. Hence
the nullspace of Dt has dimension at least c. On the other hand, suppose
DtU = 0 for some vector U . Then by the construction of D, U(x) = U(y)
for x ∼ y. Hence U(x) = U(y) for any x, y in the same component. Then
U ∈ span{U1, · · · , Uc}. Hence the nullspace of Dt has dimension c. The
theorem follows from this and Lemma 6.9.

Lemma 6.11. Let X be a regular graph of order n with valency k, and
θ1 ≥ θ2 ≥ · · · ≥ θn be eigenvalues of A(X). Suppose λ1 ≤ λ2 ≤ · · · ≤ λn are
eigenvalues of Q(X). Then λ1 = 0 and λi = k − θi for i = 1, 2, · · · , n.

Proof. Q = 4(X) − A(X) = kI − A(X) since X is k-regular. Thus every
eigenvector of A with eigenvalue θi is an eigenvector of Q with eigenvalue
k − θi. λ1 = 0 by Theorem 6.10.
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Definition 6.12. The complement X of a graph X is the graph with vertex
set X and edge set R = {e = xy | x 6= y, e /∈ E}.
Lemma 6.13. Let X be a graph. Then Q(X) + Q(X) = Q(Kn) where
n = |X|.
Proof. Observe

Q(X) = 4(X)− A(X),

Q(X) = 4(X)− A(X).

Hence

Q(X) + Q(X) = 4(X) +4(X)− (A(X) + A(X))

= (n− 1)I − (J − I) = nI − J

= Q(Kn).

Lemma 6.14. Let X be a graph with n vertices. Then λi(X) = n−λn−i+2(X)
for 2 ≤ i ≤ n.

Proof. Let U1, U2, · · · , Un be orthogonal eigenvectors of Q(X) corresponding

to λ1(X), λ2(X), · · · , λn(X) respectively, and U1 =




1
1
...
1


. Observe

Q(X)Ui = (Q(Kn)−Q(X))Ui = (nI − J −Q(X))Ui

= (n− λi(X))Ui,

since JUi = 0 for 2 ≤ i ≤ n.

Corollary 6.15. Let X be a graph with n vertices. Then

(1) λi(X) ≤ n.

(2) {i | λi(X) = n} = c(X) − 1 where c(X) is the number of connected
components in X.

Proof. This is clear from Theorem 6.10 and Lemma 6.14.
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Lemma 6.16. Let U be a column vector. Then U tQU =
∑
xy∈R

(Ux − Uy)
2.

Proof. Observe

U tQU = U tDDtU = (DtU)t(DtU) = ||DtU ||2
=

∑
e∈R

(DtU)2
e =

∑
e∈R

(
∑
x∈X

Dt
exUx)

2

=
∑
e∈R

(
∑
x∈X

DxeUx)
2 =

∑
e=xy∈R

(Ux − Uy)
2.

6.2 The number of spanning trees of a graph

Definition 6.17. A tree is a connected simple graph without cycles.

Definition 6.18. Let X be a graph. A spanning tree T of X is a subgraph
of X that is a tree and contains all vertices of X.

Definition 6.19. Let X be a multigraph and e = uv is an edge in X.
Then X\e is the graph with vertex set X and edge set R\{e}. X/e is the
multigraph obtained by identifying the vertices u and v and deleting the edge
e. X/e is the graph obtained by contracting the edge e.

Example 6.20. X:
e

Then X \ e:

And X/e:

Lemma 6.21. Let X be a multigraph. Let τ(X) denote the number of span-
ning tree in X. Then

τ(X) = τ(X\e) + τ(X/e).
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Proof. Pick an edge e. Then every spanning tree either contains e or does
not contain e. Observe τ(X\e) counts the number of spanning trees in X
that do not contain the edge e, and τ(X/e) counts the number of spanning
trees in X that contain the edge e. The result follows.

Definition 6.22. Let M be a square matrix and S is a subset of its index
set. Then M [S] denote the submatrix of M obtained by deleting the rows
and columns indexed by S.

Note 6.23. Let Q = Q(X) be the Laplacian of X and uv be an edge in X.
Then Q[u, v] = Q(X/e)[v].

Theorem 6.24. Let Q = Q(X) be the Laplacian of a graph X. Then for
any u ∈ X, det(Q[u]) = τ(X).

Proof. We prove this theorem by induction on the number of edges of X. Fix
an edge e = uv. Observe Q[u] = Q(X\e)[u]+E, where E is the (n−1)×(n−1)
matrix with Evv = 1 and all other entries equal to 0. Then

det(Q[u]) = det(Q(X\e)[u]) + det(Q[u, v])

= det(Q(X\e)[u]) + det(Q(X/e)[v]).

By induction, det(Q(X\e)[u]) = τ(X\e) and det(Q(X/e)[v]) = τ(X/e).
Hence the result follows.

Corollary 6.25. The number of spanning trees of Kn is nn−2.

Proof. Observe Q(Kn) = (n− 1)I − A(Kn) = (n− 1)I − (J − I) = nI − J .
Hence Q(Kn)[1] = nI−J with size (n−1)× (n−1). Observe the eigenvalues
of J are 0, 0, 0, 0, · · · , 0, ( n − 2 times ), n − 1 and then the eigenvalues
of Q(Kn)[1] = n, n, n, n, · · · , ( n − 2 times ), 1. Hence det(Q(Kn)[1]) =
nn−2.

Definition 6.26. Let M be an n × n matrix. The adjugate of M ( adjM)
is a n× n matrix such that (adjM)ij = (−1)i+j det(M [j; i]) where M [j; i] is
the submatrix of M that deletes row j and column i.

Note 6.27. (1) M · adj(M) = det(M) · I.

(2) If det(M) 6= 0 then M · adj(M)

det(M)
= I.
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(3) (adj(Q))uu = τ(X) for all u ∈ X.

Example 6.28. Let M =




1 2 1
3 1 1
1 2 2


. Then adj(M) =




0 −2 1
−5 1 2

5 0 −5




and M · adj(M) =



−5 0 0

0 −5 0
0 0 −5


 = det(M) · I.

Theorem 6.29. Let X be a graph and Q be its Laplacian. Then adj(Q) =
τ(X)J .

Proof. We consider two cases.

Case1: X is not connected. Observe 0 is an eigenvalue of Q(X) with multi-
plicity at least 2 by Theorem 6.10. Hence rank(Q(X)) ≤ n − 2. Let
Q[i; j] be the submatrix of Q obtained by deleting the row i and the
column j of Q. Hence rank(Q[i; j]) ≤ n− 2. Since the size of Q[i; j] is
(n− 1)× (n− 1). Hence det(Q[i; j]) = 0. Then adj(Q) = 0 = τ(X)J .
Note τ(X) = 0 since X has no spanning tree.

Case2: X is connected. From Theorem 6.10, 0 is an eigenvalue of Q and all
eigenvectors corresponding to 0 has the form

c




1
1
...
1


 .

Observe Qadj(Q) = det(Q)I = 0·adj(Q). Hence each column of adj(Q)
is an eigenvector of Q corresponding to 0. Then adj(Q) has the form




t1 t2 . . . tn
t1 t2 . . . tn
...

...
. . .

...
t1 t2 . . . tn


 .

But the diagonals of Q are all the same number τ(X) by Note 6.27(3).
Hence adj(Q) = τ(X)J .
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Theorem 6.30. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of Q(X). Then

τ(X) =
1

n
λ2λ3 · · ·λn.

Proof. The result clearly follows if X is not connected. So we consider X is
connected. Observe the characteristic polynomial of the Laplacian of X is

det(xI −Q) = (x− λ1)(x− λ2) · · · (x− λn)

= x(x− λ2) · · · (x− λn)

= (−1)n−1(λ2 · · ·λn)x + · · · .

and on the other hands,

det(xI −Q) =
∑

u

det(−Q[u])x + · · ·

= n(−1)n−1τ(X)x + · · · .

Hence the result follows from comparing the coefficients.

6.3 The representation of a graph and its en-

ergy

Definition 6.31. A representation ρ of a graph X in Rk is a map ρ from X
into Rk.

Suppose |X| = n and identify x ∈ X to be a column vector x =
(0, · · · , 0, 1, 0, · · · , 0)t with xth position is 1. A representation ρ : X → Rk

is linear if ρ(X) = LX for some k × n matrix L. Let w : R → R>0 be a
function that gives each edge e of X a weight w(e).

Definition 6.32. Let ρ : X → Rk be representation. Then

E(ρ) :=
∑

e=uv∈R

w(e)||ρ(u)− ρ(v)||2

is called the energy of ρ with respect to the weight function w.
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Lemma 6.33. Let X be a graph and ρ(X) = LX be a representation of X in
Rk. Fix an orientation Xσ of X with incidence matrix D. Then for e = uv,
||ρ(u)− ρ(v)||2 = ((LD)tLD)ee.

Proof. Observe

((LD)tLD)ee =
∑

f∈{1,2,··· ,k}
(LD)t

ef (LD)fe =
∑

f∈{1,2,··· ,k}
(LD)2

fe

=
∑

f∈{1,2,··· ,k}
(
∑
x∈X

LfxDxe)
2 =

∑

f∈{1,2,··· ,k}
(Lfu − Lfv)

2

=
∑

f∈{1,2,··· ,k}
((ρ(u)− ρ(v))f )

2 = ||ρ(u)− ρ(v)||2.

Suppose |R| = m. The weight matrix W of w is m×m diagonal (indexed
by e ∈ R) such that Wee = w(e).

Lemma 6.34. As notation above, E(ρ) = trace(W (LD)tLD).

Proof. Observe

trace(W (LD)tLD) =
∑
e∈R

(W (LD)tLD)ee =
∑
e∈R

Wee((LD)t(LD))ee

=
∑

e=uv∈R

w(e)||ρ(u)− ρ(v)||2 = E(ρ).

We recall some facts in linear algebra.

Note 6.35. Let M be an n× n matrix.

(1) trace(M) = M11 + M22 + · · ·+ Mnn.

(2) trace(MM ′) = trace(M ′M).

Theorem 6.36. Let X be a graph. Suppose ρ : X → Rk represented by an
k×n matrix L. Let W be a weight matrix. Then E(ρ) = trace(LDW (LD)t)
for any incident matrix D of any orientation Xσ of X.

Proof. From Note 6.35 and Lemma 6.34, we have

E(ρ) = trace(W (LD)tLD) = trace(LDW (LD)t).
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6.4 Weighted Laplacian

Lemma 6.37. Let X be a graph with a weight matrix W and an orientation
Xσ and let D be the incidence matrix of Xσ. Set Q := DWDt. Then

Qxy =





0, if x � y, x 6= y,

−w(e), if e = xy,∑
z∼x

w(zx), if x = y.

In particular, Q is independent of the orientation σ. Such Q := DWDt is
called the weighted Laplacian of X.

Proof. Observe

Qxy = (DWDt)xy =
∑
e∈R

DxeWeeD
t
ey

=





0, if x � y, x 6= y,

−w(e), if e = xy,∑
z∼x

w(zx), if x = y.

Note 6.38. (1) Q = DWDt =

D




√
w(1) 0 0 · · · 0
...

...
. . .

...
...

0 0 . . . . . .
√

w(m)







√
w(1) 0 0 · · · 0
...

...
. . .

...
...

0 0 . . . . . .
√

w(m)


 Dt

=

D




√
w(1) 0 0 · · · 0
...

...
. . .

...
...

0 0 . . . . . .
√

w(m)


 (D




√
w(1) 0 0 · · · 0
...

...
. . .

...
...

0 0 . . . . . .
√

w(m)


)t.

We use the notation

√
W :=




√
w(1) 0 0 · · · 0
...

...
. . .

...
...

0 0 . . . . . .
√

w(m)


 .
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(2) Q




1
...
...
1


 = 0 by Note 6.7(3).

(3) If Q′ is an n× n matrix satisfying

(i) Q′
xy < 0 if x 6= y, x ∼ y,

(ii) Q′
xy = 0 if x 6= y, x � y,

(iii) Q′




1
...
1
...
1




= 0

Then Q′ is a weighted Laplacian for some weight function w. In fact,
this W satisfies Wxy = −Q′

xy for x ∼ y.

Lemma 6.39. Let X be a graph of n vertices. Let Q be a weighted Laplacian
of X with eigenvalues λ1 ≤ λ2 ≤ · · ·λn. Let c denote the number of connected
components in X. Then

(1) λ1 ≥ 0,

(2) c = max{i | λi = 0}. In particular, λ1 = 0.

Proof. (1) Observe λ1 is an eigenvalue of Q and Q = DWDt = D
√

W
√

WDt.
Then Q = (D

√
W )(D

√
W )t. Let U1 be the eigenvector of Q corre-

sponding to λ1. Then λ1U1 = QU1 = (D
√

W )(D
√

W )tU1. Hence

U t
1λ1U1 = U t

1(D
√

W )(D
√

W )tU1.

Hence ||(D√W )tU1||2 = λ1||U1||2. Hence λ1 is nonnegative, the result
follows.

(2) The proof is similar to Theorem 6.10.

Definition 6.40. A representation ρ : X → Rk is balanced if
∑
x∈X

ρ(x) = 0.



62 CHAPTER 6. THE LAPLACIAN OF A GRAPH

Definition 6.41. A linear representation ρ : X → Rk is orthonormal if
LLt = Ik×k where L is an k × n matrix that represents ρ.

Note 6.42. k ≤ n.

Example 6.43.
(1,-1,1) (1,1,1)

(-1,-1,1) (-1,1,1)

(-1,-1,-1)

(1,-1,-1) (1,1,-1)

(-1,1,-1)

For above representation of a cube in R3, we have

L =




1 1 1 −1 1 −1 −1 −1
1 −1 1 1 −1 1 −1 −1
1 1 −1 −1 −1 1 1 −1


 ,

L(1, 1, 1, 1, 1, 1, 1, 1)t = 0

and

LLt =




8 0 0
0 8 0
0 0 8


 .

Hence the representation
1

2
√

2
L is balanced and orthonormal.

Theorem 6.44. Let Q be the weighted Laplacian for the weight matrix W of
X and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are eigenvalues of Q. Let ρ be an orthonormal
representation ρ : X → Rk. Then E(ρ) ≥ λ2 + · · · + λk, where E(ρ) is
the energy of ρ with respect to W . Furthermore, there is an orthonormal
representation of X into Rk such that above equality holds.

Proof. Let L be the k × n matrix represented ρ. Observe by Theorem 5.7
and

E(ρ) = trace(LDW (LD)t)

= trace(LQLt)

= sum of eigenvalues of LQLt

≥ λ1 + λ2 + · · ·+ λk

= λ2 + · · ·+ λk.
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Set

U1 =
1√
n




1
...
1


 .

Let U1, U2, · · · , Uk be orthonormal eigenvectors of Q corresponding to eigen-
values λ1, · · · , λk respectively. Set

Lt =
(

U1 U2 · · · Uk

)
.

Then LLt = I and

trace(LQLt) = trace(




U t
1

U t
2
...

U t
k


 Q(U1U2 · · ·Uk))

= trace(




U t
1

U t
2
...

U t
k


 (λ1U1 λ2U2 · · · λkUk))

= trace




λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 . . . . . . λk




= λ1 + λ2 + · · ·+ λk = λ2 + · · ·+ λk.

Corollary 6.45. Let Q be the weighted Laplacian for the weight matrix W
of X and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are eigenvalues of Q. Let ρ : X → Rk

be an orthonormal balanced representation. Then E(ρ) ≥ λ2 + · · · + λk+1.
Furthermore, there is an orthonormal balanced representation of X into Rk

such that above equality holds.

Proof. Let L represent ρ. Observe

L




1
...
1


 = 0
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since ρ is balanced. Set

L′ =




1√
n

· · · 1√
n

L


 .

Observe L′ is orthonormal from X → Rk+1. Observe E(L′) = E(ρ). Hence
by Theorem 6.44,

E(ρ) = E(L′) ≥ λ2 + · · ·+ λk+1.

Similarly, we can obtain the equality.

6.5 The second least eigenvalue

Throughout this section, let X be a graph with n vertices, Q be the Laplacian
of X and λ1(X) ≤ λ2(X) ≤ · · ·λn(X) be the eigenvalues of Q(X).

Definition 6.46. Let X be a graph. Then S is a subgraph of X if S ⊆ X
and R(S) ⊆ R(X).

Theorem 6.47. Let X be a graph. Suppose that S is a subset of X. Then
λ2(X) ≤ λ2(X\S) + |S|.

Proof. Observe U tQ(X)U ≥ λ2(X)||U ||2 for any U orthogonal to the all 1’s
column vector. Pick U ∈ RX such that

(1) Ux = 0, if x ∈ S,

(2) W = U ¹ (X\S) is an eigenvector of Q(X\S) corresponding to λ2(X\S)
and orthogonal to the all 1’s column vector,

(3) ||U || = 1.
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Then from above and by Lemma 6.16,

λ2(X) ≤ U tQ(X)U

=
∑
xy∈R

(Ux − Uy)
2

=
∑

xy∈R(X\S)

(Ux − Uy)
2 +

∑
x∈S

∑
xy∈R
y/∈S

U2
y

=
∑

xy∈R(X\S)

(Wx −Wy)
2 + |S|

= W tQ(X\S)W + |S|
= λ2(X\S)||W ||2 + |S|,

where ||W || = ||U || = 1. Hence λ2(X) ≤ λ2(X\S) + |S|.

Corollary 6.48. Let X be a graph. Suppose X is not complete. Then
λ2(X) ≤ κ0(X) where κ0(X) is the vertex connectivity of X.

Proof. We can find a subset S ⊆ X such that |S| = κ0(X) and X\S is
disconnected. Then λ2(X\S) = 0. Hence

λ2(X) ≤ λ2(X\S) + |S| = 0 + |S| = κ0(X).

Corollary 6.49. λ2(T ) ≤ 1 for any tree T with at least three vertices.

Proof. It is clear by Corollary 6.48 since κ0(T ) = 1 for any tree T .

Note 6.50. For any graph, λ2(X) ≤ κ0(X) ≤ κ1(X) ≤ δ(X) where δ(X) is
the minimal degree of X.

Note 6.51. For any graph X, the Laplacian of Q(X) has |rank(Q(X)) −
rank(Q(X\e))| ≤ |rank(Q(X)−Q(X\S))| ≤ 2.

Lemma 6.52. Let X be a graph and e = uv be an edge of X. Then

λ2(X\e) ≤ λ2(X) ≤ λ2(X\e) + 2.
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Proof. For any z ∈ RX ,

ztQ(X)z =
∑
i∼j

i,j∈X

(zi − zj)
2 =

∑
i∼j

i,j∈X\e

(zi − zj)
2 + (zu − zv)

2

= ztQ(X\e)z + (zu − zv)
2

by Lemma 6.16. Let z = U2(X\e) be the eigenvector of Q(X\e) correspond-
ing to λ2(X\e) and orthogonal to the all 1’s column vector. Then

λ2(X)||z||2 ≤ ztQ(X)z (6.1)

= ztQ(X\e)z + (zu − zv)
2

= λ2(X\e)||z||2 + (zu − zv)
2

≤ λ2(X\e)||z||2 + 2(z2
u + z2

v) (6.2)

≤ λ2(X\e)||z||2 + 2||z||2. (6.3)

Hence λ2(X) ≤ λ2(X\e) + 2. Let z = U2(X) be the eigenvector of Q(X)
corresponding to λ2(X) and orthogonal to the all 1’s column vector. Then

λ2(X)||z||2 = ztQ(X)z

= ztQ(X\e)z + (zu − zv)
2

≥ λ2(X\e)||z||2 + (zu − zv)
2

≥ λ2(X\e)||z||2.
Hence λ2(X) ≥ λ2(X\e).
Lemma 6.53. Let X be a graph. Then for any proper nonempty subset
S ( X

λ2(X) ≤ n|∂S|
|S|(n− |S|)

where n = |X| and ∂S is the boundary of S.

Proof. Set Z be a column vector and

Zx =

{
n− |S|, for x ∈ S,

−|S|, otherwise.

Observe (1, 1, · · · , 1)Z = (n− |S|)|S| − |S|(n− |S|) = 0. Hence

λ2(X)||Z||t ≤ ZtQ(X)Z =
∑
uv∈R

(Zu − Zv)
2 = |∂S|n2.
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Note that

||Z||2 = (n− |S|)2|S|+ (n− |S|)|S|2
= (n− |S|)|S|(n− |S|+ |S|) = n(n− |S|)|S|.

Hence

λ2(X) ≤ n|∂S|
|S|(n− |S|) .

Definition 6.54. φ(X) := min
S(X
S 6=∅

|∂S|
|S| is called the conductance of a graph X.

Corollary 6.55. For a graph X, λ2(X) ≤ 2φ(X).

Proof. Note that ∂S = ∂S. The Corollary is from previous Lemma.

6.6 Interlacing of eigenvalues

Lemma 6.56. Let C, D be s× t, t× s matrices respectively. Then det(I −
CD) = det(I −DC).

Proof. Let

X =

(
I C
D I

)
, Y =

(
I O
−D I

)
.

Observe

det(XY ) = det(

(
I − CD C

O I

)
)

= det(I − CD) det(I) = det(I − CD).

Similarly, det(Y X) = det(I − DC). Since det(XY ) = det(Y X), det(I −
CD) = det(I −DC).

Theorem 6.57. Let X be a graph with a fixed edge e. Then

{
λi(X\e) ≤ λi(X) ≤ λi+1(X\e), for i = 1, 2, · · · , n− 1,

λn(X\e) ≤ λn(X).
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Proof. Suppose e = uv, and u, v are the first two vertices of X. Set

Z =




1
−1
0
...
0




.

Observe

ZZt =




1 −1 0 · · · 0
−1 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




.

By the construction of Q(X), we obtain Q(X) = Q(X\e) + ZZt. Observe

λI−Q(X) = λI−Q(X\e)−ZZt = (λI−Q(X\e))(I−(λI−Q(X\e))−1ZZt).

Hence by Lemma 6.56 with C = (λI −Q(X\e))−1Z, D = Zt,

det(λI −Q(X)) = det(λI −Q(X\e)) det(I − (λI −Q(X\e))−1ZZt)

= det(λI −Q(X\e)) det(1− Zt(λI −Q(X\e))−1Z).

Then

det(λI −Q(X))

det(λI −Q(X\e)) = det(I − Zt(λI −Q(X\e))−1Z)

= 1− Zt(λI −Q(X\e))−1Z.

Hence the roots of det(λI −Q(X)) interlaces the roots of det(λI −Q(X\e))
by Lemma 5.24(4). Hence the results follow.



Chapter 7

Matroids

7.1 Rank functions

Definition 7.1. Let Ω be a finite set. A rank function on Ω is a function
rk : P(Ω) → N ∪ {0} such that

(1) If A and B are subsets of Ω and A ⊆ B, then rk(A) ≤ rk(B);

(2) For all subsets A and B of Ω,

rk(A ∩B) + rk(A ∪B) ≤ rk(A) + rk(B);

(3) If A ⊆ Ω, then rk(A) ≤ |A|,
where P(A) is the set of all subsets of A.

Lemma 7.2. Fix an m×n matrix D and let Ω = {1, 2, · · · , n}. For A ⊆ Ω,
rk(A) := the dimension of the subspace in Rm spanned by those columns of
D indexed by A. Then rk is a rank function on Ω.

Proof. The first and third conditions are clear. We check the second con-
dition. Let D1, · · · , Dn be the columns of D. Set V = Spana∈ADa, W =
Spanb∈BDb. Observe rk(A∩B) ≤ dim(V ∩W ) and rk(A∪B) = dim(V +W ).
Hence

rk(A ∩B) + rk(A ∪B) ≤ dim(V ∩W ) + dim(V + W )

= dim(V ) + dim(W ) = rank(A) + rank(B).

69
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Definition 7.3. Let Ω be a finite set with a rank function rk. Then M :=
(Ω, rk) is called a matroid.

Definition 7.4. Let M := (Ω, rk) be a matroid. Then A ⊆ Ω is independent
if rk(A) = |A|. A ⊆ Ω is dependent if rk(A) < |A|. A basis of M is a
maximal independent subset of Ω.

Example 7.5. Let Ω = {1, 2, · · · , n} be a finite set and rk(A) := |A| for any
A ⊆ Ω. Then for any subset A ⊆ Ω is independent. {1, 2, · · · , n} is a basis.

Example 7.6. Let Ω = {1, 2, · · · , n} be a finite set and rk(B) = 0 for all
B ⊆ Ω. Hence ∅ is the only independent set and ∅ is a basis.

Theorem 7.7. Let (Ω, rk) be a matroid and A ⊆ Ω. Suppose B ⊆ A is a
maximal independent set in A. Then rk(B) = rk(A) = |B|.
Proof. We prove the theorem by induction on |A − B|. If A = B, then
rk(A) = rk(B) = |B| is clear. In general, suppose B ( A. Pick x ∈ A− B.
Consider C := B ∪ {x} and D := A− {x}. Then

rk(C ∩D) + rk(C ∪D) ≤ rk(C) + rk(D).

Observe B = C ∩D and A = C ∪D. Hence

rk(A) + rk(B) ≤ rk(C) + rk(D). (7.1)

Note
rk(C) ≤ |C| = |B|+ 1

and
|B| = rk(B) ≤ rk(C).

Observe C is dependent since B ( C. Hence rk(C) < |B| + 1. Hence
rk(C) = |B| = rk(B). Thus we obtain rk(A) ≤ rk(D) by equation(7.1).
Hence rk(A) = rk(D). Observe B ⊆ D is a maximal independent set in D
and |D − B| < |A − B|. By induction, rk(B) = rk(D). Hence rk(B) =
rk(A).

Corollary 7.8. Let M = (Ω, rk) is a matroid. Then all bases of M have the
same size rk(Ω).

Proof. This is obvious by above Theorem.
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Lemma 7.9. Let (Ω, rk) be a matroid. Then

rk(A) + |A| ≤ rk(B) + |B|

for any A ⊆ B ⊆ Ω.

Proof. Observe

rk(A) + |A| = rk(B ∪ (B − A)) + |A|
≤ rk(B) + rk(B − A) + |A|
≤ rk(B) + |B − A|+ |A| = rk(B) + |B|.

7.2 The dual

Definition 7.10. Let M := (Ω, rk) be a matroid. Define rk⊥ : P(Ω) →
N ∪ {∅} by

rk⊥(A) = rk(A) + |A| − rk(Ω).

rk⊥ is called the dual of rk.

Note 7.11. rk⊥(∅) = rk(Ω) + |∅| − rk(Ω) = 0.

Lemma 7.12. Let M := (Ω, rk) be a matroid. Then (rk⊥)⊥ = rk.

Proof. Choose any subset A ⊆ Ω. Observe

(rk⊥)⊥(A) = rk⊥(A) + |A| − rk⊥(Ω)

= (rk(A) + |A| − rk(Ω)) + |A| − (rk(Ω) + |Ω| − rk(Ω))

= rk(A)

Theorem 7.13. Let M = (Ω, rk) be a matroid. Then (Ω, rk⊥) is a matroid.
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Proof. We check three conditions in Definition 7.1. The first condition is
clear by Lemma 7.9. Choose two subsets A, B ⊆ Ω. Observe

rk⊥(A ∩B) + rk⊥(A ∪B) = (rk(A ∩B) + |A ∩B| − rk(Ω))

+(rk(A ∪B) + |A ∪B| − rk(Ω))

= (rk(A ∪B) + |A ∩B| − rk(Ω))

+(rk(A ∩B) + |A ∪B| − rk(Ω))

≤ rk(A) + rk(B) + |A|+ |B| − rk(Ω)− rk(Ω)

= rk⊥(A) + rk⊥(B).

Hence the second condition holds. Observe

rk⊥(A) = rk(A) + |A| − rk(Ω) ≤ |A|.

Hence the third condition holds.

Definition 7.14. Let M := (Ω, rk) be a matroid. Then M⊥ := (Ω, rk⊥) is
called the dual matroid of M .

Lemma 7.15. The bases of M⊥ are the complements of the bases of M .

Proof. Let A be a basis of M . Then rk(A) = |A| = rk(Ω). Observe

rk⊥(A) = rk(A) + |A| − rk(Ω)

= |A|+ |A| − rk(Ω) = |Ω| − rk(Ω) + rk(∅) = rk⊥(Ω).

We also showed in the second equality, rk⊥(A) = |A|. Hence A is a basis in
M⊥.

7.3 The restriction and contraction

Definition 7.16. Let M = (Ω, rk) be a matroid and T ⊆ Ω. Then M ¹
T := (T, rk ¹ P(T )) is called the restriction of M into T .

Lemma 7.17. Let M = (Ω, rk) be a matroid. Then M ¹ T is a matroid.

Proof. Let A ⊆ B ⊆ T and ϕ = rk ¹ P(T ). Then ϕ(A) = rk(A) ≤
rk(B) = ϕ(B). Hence the first condition holds. Similarly the second and
third conditions hold. Hence the result follows.
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Definition 7.18. Let M = (Ω, rk) be a matroid and T ⊆ Ω. Define M/T :=
(T , rk/T ) where rk/T : P(T ) → N∪ {∅} such that rk/T (A) := rk(T ∪A)−
rk(T ). Then M/T is called the contraction of T on M .

Lemma 7.19. Let M = (Ω, rk) be a matroid and T ⊆ Ω. Then rk/T is a
rank function on T and (M/T )⊥ = M⊥ ¹ T .

Proof. Define ψ : P(T ) → N∪{∅} by ψ(A) = rk/T (T −A)+ |A|− rk/T (T ).
Observe

ψ(A) = rk((T − A) ∪ T )− rk(T ) + |A| − (rk(T ∪ T )− rk(T ))

= rk(A) + |A| − rk(Ω) = rk⊥(A)

for all A ⊆ T . Hence ψ = rk⊥ ¹ P(T ) is a rank function on T . Observe
ψ⊥ = rk/T . Hence rk/T = (rk⊥ ¹ P(T ))⊥ is a rank function.

Note 7.20. We proved rk/T = (rk⊥ ¹ P(T ))⊥.

Example 7.21. Let

D =




1 1 1
1 1 1
1 1 1


 .

Let Ω = {1, 2, 3} and T = {1}, T = {2, 3}. Define

rk(A) =

{
1, if A 6= ∅,
0, if A = ∅.

Observe
rk/T (A) = rk(T ∪ A)− rk(T ) = 1− 1 = 0

for all A ⊆ T . Hence for any A ⊆ T ,

rk⊥(A) = rk(A) + |A| − rk(Ω) = 1 + |A| − 1 = |A|,
and

(rk⊥ ¹ P(T ))⊥(A) = rk⊥ ¹ P(T )(T − A) + |A| − rk⊥ ¹ P(T )(T )

= |T − A|+ |A| − |T | = 0.

Hence rk/T = (rk⊥ ¹ P(T ))⊥.
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