國立交通大學應用數學系
碩 士 論 文

圖論上代數方法的探討

Algebraic Techniques in Graph Theory

研 究 生：李致維

指導老師：翁志文 教 授

中 華 民 國 九十三年六月

圖論上代數方法的探討

Algebraic Techniques in Graph Theory

研 究 生：李致維 Student：Chih－Wei Lee
指導老師：翁志文教授 Advisor：Dr．Chih－Wen Weng

國 立 交 通 大 學應用數學系
 碩 士 論 文

A Thesis
Submitted to Department of Applied Mathematics
College of Science
National Chiao Rung University
In partial Fulfillment of Requirement
For the Degree of Master
In
Applied Mathematics
June 2004
Hsinchu，Taiwan，Republic of China

中華民國九十三年六月

圖論上代數方法的探討

研 究 生：李致維 指導老師：翁志文 教授

國立交通大學

應用數學系

摘 要

代數方法在圖論上被廣泛的使用。如圖上的自同態群的研究，利用特徴值及線性代數的方法來探討圖的性質，以及與圖有關的多項式。這篇論文的目的主要是收集了已知的圖論上使用的代數方法

1896

中 華民國九十三年六月

Algebraic Techniques in Graph Theory

Student : Chih-Wei Lee

Advisor : Dr. Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University
Hsinchu 300, Taiwan, R.O.C.

Abstract

Algebraic methods provide many new and powerful ways in the study of graph theory. These include the study of the group of homomorphisms on graphs, the construction of graphs from a group, ûsing the eigenvalue or other linear algebraic techniques in the study of graph theory and the study of polynomials associated with a graph. The purpose of this thesis is to collect the known results in graph theory with algebraic techniques involved.

感謝我的指導教授翁志文老師，在這兩年的時間，悉心的教學以及論文的指導和修正，使得我能順利畢業。老師在做研究上細心驗證的精神，也讓我獲益良多。

非常感謝交大應數所的所有老師，老師們的教學熱誠以及對學生的關心，都讓我獲益良多。非常感謝黃光明老師，黃大原老師，傅横霖老師，陳秋媛老師等，在課業上，生活上的多方指導及照顧。

感謝郭君逸學長，張飛黃學長在課業上以及生活上的照顧，感謝抮君，正傑，昭芳，喻培，宏嘉，棨丰铝文，建瑋，貴弘，啟賢，文祥等同學，讓我的研究所生活增色不少

最後，感謝我的父母以及我的家人，一直給我支持，讓我能順利完成學業。

Contents

Abstract (in Chinese) i
Abstract (in English) ii
Contents iii
Chapter 1 Introduction 1
Chapter 2 Transitive Graphs 3
Chapter 3 Homomorphisms 21
Chapter 4 The Adjacency Matrix 31
Chapter 5 Interlacing 41
Chapter 6 The Laplacian of a Graph 51
Chapter 7 Matroids 69
Reference 75

Chapter 1

Introduction

Algebraic methods provide many new and powerful ways in the study of graph theory. These include the study of the group of homomorphisms on graphs, the construction of graphs from a group, using the eigenvalue or other linear algebraic techniques in the study of graph theory and the study of polynomials associated with a graph. The purpose of this thesis is to collect the known results in graph theory with algebraic techniques involved. The thesis is organized as follows.

In chapter 2, we use the concept of group acting on a set to study a graph. Here the group is usually the automorphism group of a given graph. We then introduce vertex transitive graphs and Cayley graphs. We study the edge connectivity, vertex connectivity, matchings, maximal cycles in a connected vertex transitive graph. We show a connected vertex transitive graph is a homomorphic image of some Cayley graph.

In chapter 3, we introduce the core of a graph. The core of a graph is the smallest homomorphism image of the graph. We show the core of a vertex transitive graph is vertex transitive. We give some sufficient conditions of a core.

In chapter 4, we introduce the adjacency matrix of a graph. We study the spectrum of an adjacency matrix. The classical Perron Frobenius Theorem of symmetric matrices with nonnegative entries is included in this chapter.

In chapter 5, we generalize the concept of sets interlacing to eigenvalues sequences interlacing and rational functions interlacing.

In chapter 6, we introduce the incidence matrix, the Laplacian, and more general, the weighted Laplacian of a graph. The Laplacian is an important matrix associated with a graph. We study the spectrum of the Laplacian.

We also show the number of spanning trees in a graph is determined by the spectrum of its Laplacian. We give an upper bound of the second least eigenvalue of the Laplacian in terms of some combinatorial structure of a graph.

In chapter 7, we introduce the rank function and matroid. We study their basic properties. We introduce the dual, the restriction and the contraction of a matroid.

All of the results in this thesis are classical. We learn most of them from [1]. We add more details in order to realize the content. For example, Example 2.2, Example 2.5, Definition 2.6, Lemma 2.16, Example 2.17, Lemma 2.25, Theorem 2.41, Lemma 2.42, Theorem 2.43, Lemma 2.44, Example 2.47, Example 2.50, Lemma 3.6, Example 3.10, Lemma 3.11, Example 3.12, Theorem 3.13, Lemma 3.14, Corollary 3.17, Example 3.21, Lemma 3.25, Example 3.28, Lemma 3.26, Lemma 3.27, Lemma 3.34, Lemma 4.8, Lemma 4.10, Lemma 4.11, Lemma 4.12, Lemma 4.13, Lemma 4.14, Lemma 4.15, Lemma 4.24, Definition 5.1, Example 5.2, Lemma 5.4, Theorem 5.7, Lemma 6.13, Lemma 6.14, Lemma 6.21, Corollary 6.48, Lemma 7.2. We rewrite some of the proofs for the readers easy to understand. For example, Theorem 2.13, Theorem 2.18, Lemma 4.8, Theorem 4.25, Theorem 5.7, Theorem 6.10. Some ideas come from [2],

Chapter 2

Transitive Graphs

Throughout this thesis, let $X=(X, R)$ be an undirected graph without loops or multiple edges. We abuse the notation X as both the graph and the vertex set of the graph. $R=\{x y \mid x, y \in X, x \neq y\}$ is the edge set.

2.1 Cayley Graphs

Definition 2.1. Let X, X^{\prime} begraphs. A function $\varphi: X \rightarrow X^{\prime}$ is a homomorphism from X into X^{\prime} if $\varphi(x) \varphi(y) \in R^{\prime}$ for all $x, y^{\prime} \in X$ with $x y \in R$.

Example 2.2. (1)

is a homomorphism.
(2)

is not a homomorphism.
(3)

$f(1)=f(2)=f(3)=\alpha, f$ is not a homomorphism.
Definition 2.3. (1) $\varphi: X \rightarrow X^{\prime}$ is an isomorphism if φ is bijection and $x y \in R$ if and only if $\varphi(x) \varphi(y) \in R^{\prime}$.
(2) If $\varphi: X \rightarrow X$ is an isomorphism, we say φ is an automorphism on X. We will use $\operatorname{Aut}(X)$ to denote the set of automorphisms on X.

Note 2.4. $(\operatorname{Aut}(X), \circ)$ is a group, where \circ is the composition operation.

Example 2.5.

f is not a isomorphism.
The concept of group action on a set is widely used in algebraic graph theory. We give its definition below.
Definition 2.6. Let G bea group, and S be a set. We say G acts on S if there exists a function $: G \times S \rightarrow S$ such that
(1) $e \cdot s=s$;
(2) $(g \cdot h) \cdot s=g \cdot(h \cdot s)$
for all $\mathrm{g}, \mathrm{h} \in G$ and all $s \in S$, where e is the identity of G.
Note 2.7. (1) $g \cdot s=t$ if and only if $s=g^{-1} \cdot t$ for all $g \in G$ and $s, t \in S$.
(2) Define a relation on S by $s \sim t$ if and only if $t=g \cdot s$ for some $g \in G$. Then \sim is an equivalent relation, and \sim defines a partition on S.

Definition 2.8. Let G be a group and S be a set. We say G acts transitively on S if the partition defined from the equivalent relation \sim has only one element(orbit).

Note 2.9. A group G acts transitively on a set S if for any $s, t \in S$, there exists $g \in G$ such that $g \cdot s=t$.

Definition 2.10. A graph X is vertex transitive if for any $x, y \in X$, there exists $\rho \in \operatorname{Aut}(X)$ such that $\rho(x)=y$.

Note 2.11. If X is vertex transitive. Then X is regular (i.e. each vertex in X has the same number of valency (neighbors)). We will use k to denote the valency of X.

Definition 2.12. Fix $n \in \mathbb{N}$. Define

$$
\begin{aligned}
Q_{n} & :=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right) \mid a_{i}=0 \text { or } 1\right\} \\
R & :=\left\{x y \mid x, y \in Q_{n} \text { differ in exactly one coordinate }\right\} .
\end{aligned}
$$

The graph $\left(Q_{n}, R\right)$ is called the n-cube.
Theorem 2.13. The n-cube $\left(Q_{n}, R\right)$ is vertex transitive.
Proof. Pick any $x, y \in Q_{n}$. Definê a map $\rho: Q_{n} \rightarrow Q_{n}$ by

$$
\rho(z)=y-x+z(\bmod 2)
$$

where the operations,+- are the usual coordinatewise summation and subtraction. It is straightforward to check $\rho \in \overline{A u t}(X)$ and $\rho(x)=y$.

Definition 2.14. Let G be a group and $\triangle \in G$ be a subset such that
(1) $e \notin \triangle$,
(2) $g \in \triangle$ if and only if $g^{-1} \in \triangle$ for all $g \in G$.

Set $X=G$ and $R=\{x y \mid x, y \in G$ and $y=x \cdot g$ for some $g \in \triangle\}$. Then (X, R) is called the Cayley graph of G with respect to C. We will write $X(G, \triangle)$ for such a graph.

Note 2.15. (1) If G is abelian then $X(G, \triangle)$ is a simple undirected graph.
(2) x, y are adjacent in $X(G, \triangle)$ if and only if $x^{-1} y \in \triangle$.

Lemma 2.16. Let $X(G, \triangle)$ be a Cayley graph. For each $g \in G$, define $\phi_{g}: G \rightarrow G$ by $\phi_{g}(h)=g h$. Then $\phi_{g} \in \operatorname{Aut}(X)$.

Proof. Since $X(G, \triangle)$ is a Cayley graph, the vertex set $X=G$ and the edge set $R=\{s h \mid h, s \in G$ and $h=s c$, for some $c \in \triangle\}$. Pick $x, y \in G$. Observe

$$
\begin{aligned}
x \sim y & \Leftrightarrow x^{-1} y \in \triangle \\
& \Leftrightarrow x^{-1} g^{-1} g y \in \triangle \\
& \Leftrightarrow \quad(g x)^{-1} g y \in \triangle \\
& \Leftrightarrow \phi_{g}(x) \sim \phi_{g}(y) .
\end{aligned}
$$

Let $\phi_{g}(h)=\phi_{g}(k)$. Then $g h=g k$. Hence $g^{-1} g h=g^{-1} g k$. Then $h=k$. So ϕ_{g} is injective. Observe for any $x \in G$, there exists $g^{-1} x \in G$ such that $\phi_{g}\left(g^{-1} x\right)=g^{-1} g x=x$. Hence ϕ_{g} is surjective. So $\phi_{g} \in \operatorname{Aut}(X)$.

Example 2.17. Let $\mathbb{Z}_{2}=\{0,1\}$. Let $G=\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ (n copies) and $\triangle=$ $\left\{a \in \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2} \mid\right.$ exactly one coordinate of a is 1$\}$. Then $Q_{n}=X(G, \triangle)$.

Generalizing the ideal of the proof of Theorem 2.13, we have the following Theorem.

Theorem 2.18. The Cayley graph $X(G, \triangle)$ is vertex transitive.
Proof. Pick any $x, y \in X=G$. Define a map $\phi_{y x^{-1}}: G \rightarrow G$ by $\phi_{y x^{-1}}(z)=$ $y x^{-1} z$. Hence $\rho \in A u^{t}(X)$ by Lemma 2.16. Clearly, $\rho(x)=y$.

2.2 Edge Connectivity

Definition 2.19. Let $A \subseteq X$ be a vertex subset. The edge subset $\partial A:=$ $\{x y \in R||\{x, y\} \cap A|=1\}$ is called the boundary of A.

Note 2.20. (1) $\partial \emptyset=\emptyset$.
(2) If X is connected then $|\partial(A)| \geq 1$ for any nonempty $A \subsetneq X$.
(3) $|\partial A|+|\partial B| \geq|\partial(A \cup B)|+|\partial(A \cap B)|$ for $A, B \subseteq X$.

Definition 2.21. $\kappa_{1}(X):=\min _{\substack{A \neq \emptyset \\ A \neq X}}|\partial A|$ is called the edge connectivity of X.
Note 2.22. (1) $\kappa_{1}(X) \leq \min _{x \in X} \operatorname{deg}(x)$.
(2) $\kappa_{1}(X)=0$ if and only if X is disconnected.

Definition 2.23. $A \subseteq X$ is an edge atom if $|\partial(A)|=\kappa_{1}(X)$ and for any $B \subseteq X,|\partial(B)|=\kappa_{1}(X)$ implies $|B| \geq|A|$.
Note 2.24. Suppose $A \subseteq X$ is an edge atom and ϕ is an automorphism on X. Then $\phi(A)$ is an edge atom.
Lemma 2.25. Suppose A is an edge atom. Then $|A| \leq \frac{|X|}{2}$.
Proof. Since $\kappa_{1}(X)=|\partial(A)|=|\partial(X-A)|,|A| \leq|X-A|$. Thus $|A| \leq$ $\frac{|X|}{2}$.
Corollary 2.26. Suppose A, B are edge atoms of X. Then $A=B$ or $A \cap B=$ \emptyset.

Proof. Suppose $A \cap B \neq \emptyset$. Then $A \cup B \neq X$ since $|A|,|B| \leq \frac{|X|}{2}$. Hence $|\partial(A \cup B)| \geq \kappa_{1}(X)$. By Note 2.20(3), $|\partial(A \cup B)|+|\partial(A \cap B)| \leq|\partial A|+$ $|\partial B|=2 \kappa_{1}(X)$. Then $|\partial(A \cap B)| \leq \kappa_{1}(X)$. This proves $|A \cap B|=|A|=|B|$. Hence $A=B$.

Theorem 2.27. Suppose X is a connected vertex transitive graph. Then $\kappa_{1}(X)=k$, where k is the vālency of X. Furthermore, $|\partial(A)|>k$ for all atoms A with $1<|A|<|X|$.

1896
Proof. $\kappa_{1}(X) \leq k$ is clear. Let A be an atom. If $|A|=1$, then $\kappa_{1}(X)=$ $|\partial(A)|=k$. Suppose $|A| \geq 2$. Observe $\rho(A)$ is an atom for any $\rho \in \operatorname{Aut}(X)$ by Lemma 2.24. Hence $\rho(A)=A$ or $\rho(A) \cap A=\emptyset$. By Corollary 2.26 we claim A is regular as an induced subgraph. Pick 2 vertices $x, y \in A$. Choose a function $\rho \in \operatorname{Aut}(X)$ such that $\rho(x)=y$. Hence $\rho(A)=A$ by Corollary 2.26. Then all the neighbors z in A of x are one to one corresponding to neighbors $\rho(z)$ in A of y. Let ℓ denote the valency of A. Notice that $\ell<k$, since X is connected. Observe $|A| \geq \ell+1$. Hence

$$
\begin{aligned}
|\partial(A)| & =|A|(k-\ell) \\
& \geq|A|(k-(|A|-1)) \\
& =|A|((k+1)-|A|) \\
& \geq k
\end{aligned}
$$

Observe above equality holds if and only if $|A|=1$ or $|A|=X$. We obtain $\kappa_{1}(X) \geq k$. So $\kappa_{1}(X)=k$.

2.3 Vertex Connectivity

Definition 2.28. A vertex cutset in a graph X is a set of vertices whose deletion increases the number of connected components of X.

Example 2.29. X :

$\kappa_{1}(X)=2$. Let $A=\{1,2\}, \partial A=\{14,23\}$. Let $B=\{1,3\}, B$ is a vertex cutset.

Note 2.30. X has a vertex cutset if \mathcal{X} is not a complete graph.
Definition 2.31. Let X be a connected graph with n vertices and let K_{n} be the complete graph with n vertices. If $X \neq K_{n}$, then the vertex connectivity of X is the minimum number of vertices in a vertex cutset, and will be denoted by $\kappa_{0}(X)$. We define $\kappa_{0}\left(K_{n}\right)=n-1$.

Definition 2.32. Suppose A is a subset of vertices in X. Let $N(A)$ denote the vertices in $X \backslash A$ with a neighbor in A and $N[A]=A \cup N(A)$.

Note 2.33. (1) $A \cup N(A) \cup \overline{N[A]}=X$.
(2) $N(A) \supseteq N(\overline{N[A]})$.
(3) $\kappa_{0}(X) \leq \min _{\substack{N[A] \neq \emptyset \\ A \neq \emptyset}}|N(A)|$ if X is connected.

Definition 2.34. (1) A fragment of X is a subset A such that $\overline{N[A]} \neq \emptyset$ and $|N(A)|=\kappa_{0}(X)$.
(2) An atom of X is a fragment with minimum number of vertices.

Lemma 2.35. Let X be a connected graph on n vertices with $\kappa_{0}=\kappa_{0}(X)$. Suppose A and B are fragments of X and $A \cap B \neq \emptyset$. If $|A| \leq|\overline{N[B]}|$, then $A \cap B$ is a fragment.

Proof. We present the proof as a number of steps.
(a) $|A \cup B|<n-\kappa_{0}$.

Observe

$$
\begin{aligned}
|A|+|B| & \leq|\overline{N[B]}|+|B| \\
& =n-|B|-|N(B)|+|B| \\
& =n-\kappa_{0} .
\end{aligned}
$$

Since $A \cap B$ is nonempty, the claim follows.
(b) $|N(A \cup B)| \leq \kappa_{0}$.

We observe

Hence the claim follows.

$$
\begin{aligned}
&|N(A \cup B)| \leq|N(A)|+|N(B)| \frac{2}{2}|N(A \cap B)| \\
& \leq \kappa_{0}+\kappa_{0} E \kappa_{0} \\
&=\kappa_{0} \cdot \\
& \text { aim follows. } \\
& \overline{B]} \neq \emptyset .
\end{aligned}
$$

(c) $\overline{N[A \cup B]} \neq \emptyset$.

From (a), (b) observe

$$
\begin{aligned}
|\overline{N[A \cup B]}| & =n-|A \cup B|-|N(A \cup B)| \\
& >n-\left(n-\kappa_{0}\right)-\kappa_{0} \\
& =0 .
\end{aligned}
$$

Hence the claim follows.
(d) $A \cup B$ is a fragment.

Clearly $A \cup B \neq \emptyset$. Since $\overline{N[A \cup B]} \neq \emptyset,|N(A \cup B)| \geq \kappa_{0}$ is clear from the definition of κ_{0}. Hence $|N(A \cup B)|=\kappa_{0}$ from (b).
(e) $A \cap B$ is a fragment.

By assumption, $A \cap B \neq \emptyset$. From (c) we observe

$$
N[A \cap B] \subseteq N[A] \cap N[B] \neq X
$$

Hence $\overline{N[A \cap B]} \neq \emptyset$. Observe

$$
\begin{aligned}
|N(A \cap B)| & \leq|N(A \cup B)| \\
& \leq|N(A)|+|N(B)|-|N(A \cup B)| \\
& =\kappa_{0}+\kappa_{0}-\kappa_{0} \\
& =\kappa_{0} .
\end{aligned}
$$

Hence $|N(A \cap B)|=\kappa_{0}$.
Corollary 2.36. Let X be a connected graph. If A is an atom and B is a fragment of X. Then $A \subseteq B, A \subseteq N(B)$, or $A \subseteq \overline{N[B]}$.
Proof. Note $|A| \leq|B|$ and $|A| \leq|\overline{N[B]}|$ since $\overline{N[B]}$ is a fragment. Observe $|A| \leq|B| \leq|\overline{N[\overline{N[B]}]}|$. Hence by previous Lemma $A \cap B, A \cap \overline{N[B]}$ are fragments if they are nonempty. Suppose $A \nsubseteq B$ and $A \nsubseteq \overline{N[B]}$. Then $A \cap B=\emptyset$ and $A \cap \overline{N[B]}=\emptyset$, othêrwise we have a contradiction since $A \cap B$, $A \cap \overline{N[B]}$ are atoms with size less, than $|A|$. Hence $A \subseteq N(B)$.
Theorem 2.37. Let X be a vertex transitive graph with valency $k \geq 2$. Then

$$
k_{0}(X) \geq \frac{2}{3}(k+1)
$$

Proof. If X is not connected, then all the connected components of X are the same. We can assume X is connected. Let A be an atom in X. If $\rho \in \operatorname{Aut}(X)$, then $\rho(A)$ is an atom. Hence by Corollary 2.36, $\rho(A) \subseteq A, \rho(A) \subseteq N(A)$ or $\rho(A) \subseteq \overline{N(A)}$. Since X is vertex transitive, we can choose $\rho \in \operatorname{Aut}(X)$ such that $\rho(A) \subseteq N(A)$. For another $\psi \in \operatorname{Aut}(X)$ with $\psi(A) \in N(A)$, either $\psi(A)=\rho(A)$ or $\psi(A) \cap \rho(A)=\emptyset$. This proves $|N(A)|=t|A|$ for some positive integer t. We shall claim $t \geq 2$. Suppose $t=1$. Then $|N(A)|=|A|$ and $N(A)=\rho(A)$. Hence $N(A)$ is an atom. Then

$$
\begin{equation*}
|N(N(A))|=|N(A)|=|A| . \tag{2.1}
\end{equation*}
$$

Since $N(N(A)) \cap A \neq \emptyset$, we have $A \subseteq N(N(A))$ by previous Corollary. Hence by equation(2.1), $A=N(N(A))$. This shows $\overline{N[A]} \neq \emptyset$, a contradiction to A being an atom. Observe each vertex in A has valency k, and

$$
\begin{aligned}
k & \leq|A|-1+|N(A)| \\
& =(t+1)|A|-1
\end{aligned}
$$

Hence $|A| \geq \frac{k+1}{t+1}$. Then

$$
\kappa_{0}=|N(A)|=t|A| \geq t \frac{k+1}{t+1} \geq \frac{2}{3}(k+1) .
$$

2.4 Matchings

Definition 2.38. (1) A matching M in a graph X is a set of edges such that each pair of edges does not have a common vertex.
(2) A maximum matching is a matching with the maximum possible number of edges.
(3) A matching M that covers every vertex of X is called a perfect matching.
Note 2.39. If X has a perfect mâtching then $|X|$ is even.
Example 2.40. (1)

$M=\{12,34\}$ is a maximum matching and also a perfect matching.
(2)

$M=\{12,34\}$ is a maximum matching, but not a perfect matching.

Theorem 2.41. Let X be a connected vertex transitive graph. Then $|M| \geq$ $\left\lfloor\frac{|X|}{2}\right\rfloor$ for any maximum matchings M of X.
Proof. It is suffices to prove for any distinct vertices $u, v \in X$, either u is in an edge of M, or v is in an edge of M. We prove by induction on the distance of $\delta(u, v) . \delta(u, v)=1$ is clear, otherwise we can add $e=u v$ into M a contradiction to M being maximum.

Suppose $\delta(u, v) \geq 2$. Choose $x \in X$ such that $\delta(x, v)=1$ and $\delta(u, x)+$ $\delta(x, v)=\delta(u, v)$. Suppose u, v do not appear in any edges of M. Since $\delta(u, x)<\delta(u, v)$ and by induction, x is in an edge of M. Pick $\rho \in \operatorname{Aut}(X)$ such that $\rho(u)=x$. Then $M^{\prime}:=\rho(M)$ is a maximum matching and x is not in an edge in M^{\prime}. Hence u is in an edge of M^{\prime} by induction. We set $M \triangle M^{\prime}:=\left(M-M^{\prime}\right) \cup\left(M^{\prime}-M\right)($ view as a subgraph of $X)$. Observe each vertex in $M \triangle M^{\prime}$ has degree 1 or 2 , and $\operatorname{deg}(u)=\operatorname{deg}(x)=1$ in $M \triangle M^{\prime}$. Let P be a path in $M \triangle M^{\prime}$ with u as its endpoint. Observe each second edge from u in P is in M. Hence $|P \cap M|=\left|P \cap M^{\prime}\right|$ or $|P \cap M|+1=\left|P \cap M^{\prime}\right|$. The latter is impossible, otherwise $M \triangle P=(M \backslash P) \cup(P \backslash M)$ is a matching of size $|M|+1$ a contradiction. Thus $M^{\prime} \triangle P$ is a maximum matching and u is not in an edge of $M^{\prime} \triangle P$. Then x is in an edge of $M^{\prime} \triangle P$ by induction. Hence x is in an edge of P, since x is not in an edge of M^{\prime}. Thus x is the other endpoint of P. Since x is not in an edge of M^{\prime}, and x, v are adjacent, we obtain that v is in an edge of M^{\prime}. Hence $\operatorname{deg}(v)=1$ in $M \triangle M^{\prime}$. As above arguments, we can find a path P^{\prime} in $M \triangle M^{\prime}$ from v to x which x is in the last edge of P^{\prime}. Since $\operatorname{deg}(u)=\operatorname{deg}(v)=\operatorname{deg}(x)=1$ and other vertices of P and P^{\prime} have degree 2, we have $P=P^{\prime}$ and $u=v$, a contradiction.

Lemma 2.42. Let e be an edge of X that is not contained in any maximum matchings of X. Then for any $\phi \in \operatorname{Aut}(X), \phi(e)$ is not contained in any maximum matchings of X.

Proof. Suppose $\phi(e)$ is contained in a maximum matching M. Since $\phi^{-1} \in$ $\operatorname{Aut}(X)$, we know that $\phi^{-1}(M)$ is also a maximum matching. But e is contained in $\phi^{-1}(M)$ a contradiction.

Theorem 2.43. Let X be a connected vertex transitive graph. Then each edge of X is in a maximum matching.

Proof. Let e be an edge that is not in any maximum matchings of X. For $e=x y, \rho(e):=\rho(x) \rho(y)$ is an edge in X for any $\rho \in \operatorname{Aut}(X)$. Let $Y:=$
$\{\rho(e) \mid \rho \in \operatorname{Aut}(X)\}$ (view as a subgraph). Since X is vertex transitive, Y is a spanning subgraph of X, and Y is transitive. We prove this theorem by induction on $|X|+|R|$.

Suppose $Y=X$, we pick a maximum matching M and an edge $e^{\prime} \in M$. Then we choose $\rho \in \operatorname{Aut}(X)$ such that $\rho(e)=e^{\prime}$. Hence $e \in \rho^{-1}(M)$. But $\rho^{-1}(M)$ is a maximum matching a contradiction. Suppose $Y \neq X$ and $Y=$ $Y_{1} \cup Y_{2} \cup Y_{3} \cup \cdots \cup Y_{t}$ (union of connected components). Observe Y_{i} is isomorphic to Y_{j} for any i, j. Suppose $e \in Y_{1}$, by induction, there exists a maximum matching M_{1} of Y_{1} containing e. We observe for $\rho_{j} \in \operatorname{Aut}(X)$ with $\rho_{j}\left(Y_{1}\right)=Y_{j}, \rho_{j}\left(M_{1}\right)$ is a maximum matching of Y_{j}. If M_{1} is perfect then $M_{1} \cup \rho_{2}\left(M_{1}\right) \cup \cdots \cup \rho_{t}\left(M_{t}\right)$ is perfect in Y (and then in X) a contradiction.

Suppose M_{1} misses exactly one vertex. Then so does $\rho_{j}\left(M_{1}\right)$ for $j=$ $2, \cdots, t$. We define a new graph Z with t vertices $\left\{Y_{1}, Y_{2}, \cdots, Y_{t}\right\}$ and Y_{i}, Y_{j} are adjacent if and only if there exists $y_{i} \in Y_{i}, y_{j} \in Y_{j}$ such that y_{i}, y_{j} are adjacent in X. Note that Z is connected vertex transitive. We can find a maximum matching of Z. Let $Y_{i} Y_{j}$ be an edge in Z. We choose $y_{i} \in Y_{i}$, $y_{j} \in Y_{j}$ such that y_{i}, y_{j} are adjacent in X_{n} Notice if there is one Y_{k} not in the matching, we pick any vertex y_{k} in Y_{k}. We collect the maximum matchings in Y_{i} that misses y_{i} for each $i \neq 1, \ldots, t$, together those $y_{i} y_{j}$ appears in the matching of Z. This will form maximum matching of $Y($ then of $X)$. This contradicts the fact that each edge of Y is not in any maximum matching of X.

1896

2.5 Cycles

We show the maximal length of a cycle in a vertex transitive graph is at least $\sqrt{3 n}$, where $n=|X| \geq 3$.

Lemma 2.44. Let G be a finite group and let G act on a finite set S. Fix $x \in S$. Let $G_{x}:=\{f \mid f \in G, f(x)=x\}$.
(1) G_{x} is a subgroup of G.
(2) Fix $y \in S$, and $h \in G$ such that $h(x)=y$. Then $\{f \mid f \in G, f(x)=$ $y\}=h G_{x}$.
(3) Suppose G acts transitively on S. Then $|S|=\frac{|G|}{\left|G_{x}\right|}$.
(4) Let $G \subseteq \operatorname{Aut}(X)$ be a group, and $C=\{g \in G \mid x \sim g(x)\}$. Suppose G acts transitively on X. Then X is isomorphic to G / G_{x}, where G / G_{x} is the graph with vertices being the left cosets of G_{x} and two left cosets $g G_{x}, h G_{x}$ have an edge if and only if $g^{-1} h \in C$.

Proof. (1) For $f, g \in G_{x}$,

$$
f g^{-1}(x)=f g^{-1}(g(x))=f(x)=x .
$$

Hence $f g^{-1} \in G_{x}$. This proves G_{x} is a subgroup of G.
(2) (a) $\{f \mid f \in G, f(x)=y\} \subseteq h G_{x}$.

Pick $f_{1} \in\{f \mid f \in G, f(x)=y\}$. Observe $h^{-1}(y)=x$. Hence

$$
h^{-1} f_{1}(x)=h^{-1}(y)=x .
$$

Then $h^{-1} f_{1} \in G_{x}$. Hence $f_{1} \in h G_{x}$.
(b) $h G_{x} \subseteq\{f \mid f \in G, f(x)=y\}$.

Pick $f_{2} \in G_{x}$. Then $h f_{2}(x)=h(x)=y$. Hence $h_{2} f \in\{f \mid f \in$ $G, f(x)=y\}$
From (a), (b) $\{f \mid f \in G \equiv f(x)=y\}=h G_{x}$.
(3) From (2), there is a $1-1$ correspondence between the set S and the left cosets of G_{x}. 1896
(4) Fix $x \in X$. Define $\phi_{i} X \rightarrow G / G_{x}$ by $\phi(y)=h G_{x}$, where $y \in X$ and $h \in G$ satisfying $h(x)=y$. ϕ is well-defined since G acts transitively on X, and by (2) and the fact from group theory that for all $h^{\prime} \in h G_{x}$, $h^{\prime} G_{x}=h G_{x}$. It is also clear from (2) that ϕ is one to one and onto. Last, for any $y, z \in X\left(\right.$ say $\phi(y)=h G_{x}$ and $\left.\phi(z)=g G_{x}\right)$,

$$
\begin{aligned}
y \sim z(\text { in } X) & \Leftrightarrow h(x)=y \sim z=g(x)(\text { in } X) \\
& \Leftrightarrow g^{-1} h(x) \sim x(\text { in } X) \\
& \Leftrightarrow g^{-1} h \in C \\
& \Leftrightarrow h G_{x} \sim g G_{x}\left(\text { in } G / G_{x}\right) .
\end{aligned}
$$

Lemma 2.45. Let X be a vertex transitive graph and S be a subset of X where $c:=\min _{g \in \operatorname{Aut}(X)}|S \cap g(S)|$. Then $|S| \geq \sqrt{c|X|}$.

Proof. Set $G=\operatorname{Aut}(X)$. Observe

$$
\begin{equation*}
c|G| \leq|\{(g, x) \mid g \in G, x \in S \cap g(S)\}| \tag{2.2}
\end{equation*}
$$

Note that for each $x \in S$ there are $|S|\left|G_{x}\right| g \in G$ such that $g^{-1}(x) \in S$ by Lemma 2.44(2). Hence

$$
\begin{equation*}
|\{(g, x) \mid g \in G, x \in S \cap g(S)\}|=|S|^{2}\left|G_{x}\right| \tag{2.3}
\end{equation*}
$$

From equations(2.2), (2.3), $|S|^{2} \geq \frac{c|G|}{\left|G_{x}\right|}$. Since X is vertex transitive, $\frac{|G|}{\left|G_{x}\right|}=$ $|X|$ by Lemma 2.44(3). Hence $|S|^{2} \geq c|X|$ and the Lemma follows.

Lemma 2.46. Let X be a graph with $\kappa_{0}(X) \geq 3$. Then any two cycles of maximum length intersect at least three vertices.

Proof. Let C_{1}, C_{2} be two cycles of maximum length. Suppose C_{1}, C_{2} intersect less than three vertices. We divide the proof into 3 cases.
Case 1: C_{1}, C_{2} intersect in two vertices $s, t \geqslant$, Since $X-\{s, t\}$ is connected, we can find a path P from a vertex $x \in C_{1}-C_{2}$ to a vertex $y \in C_{2}-C_{1}$ such that x, y are the only two vertices that P intersects C_{1} and C_{2}. Without loss of generality, assume the length of the path $s-x=\frac{C_{y}}{-}-t$ is longer than the path $s \stackrel{C_{1}}{-} t$. Then

is a cycle of length larger than C_{1}, a contradiction.
Case 2: C_{1}, C_{2} intersect in a unique vertex s : Since $X-\{s\}$ is connected, we can find $x \in C_{1}-C_{2}$ and $y \in C_{2}-C_{1}$ such that the distance $\delta(x, y)$ is minimum among all such pairs. Find a shortest path P from x to y. Clearly, P intersects C_{1} and C_{2} in x, y only. Now go from s to x by a longer path in C_{1}, then from x to y by P, then from y to s by a longer path in C_{2}. This is a cycle of length longer than the length of C_{1} a contradiction.

Case 3: Suppose C_{1}, C_{2} have no common vertices. We need to find two disjoint paths from C_{1} to C_{2}. If we can do so, we can use these two paths as "bridges" to construct a cycle of larger length in a similar way to previous two cases and obtain a contradiction. Pick $s \in C_{1}$ and $t \in C_{2}$ such that the distance $\delta(s, t)$ is the distance from C_{1} to C_{2}. Let P be the shortest
path from s to t. Clearly, $P \cap C_{1}=\{s\}, P \cap C_{2}=\{t\}$. The difficulty is to find another path P^{\prime} from another vertex s^{\prime} in C_{1} to another vertex t^{\prime} in C_{2}, and that P, P^{\prime} have no common vertices. To prove the existence of P^{\prime}, we quote a theorem that states that in a k-connected graph, every $k+1$ vertices $x_{0}, x_{1}, \cdots, x_{k}$ can form a fan. That means there are k paths from x_{0}, to each x_{i} with x_{0} being the only common vertex. Now we apply this theorem to find such P^{\prime}. Pick any $s^{\prime} \in C_{1}-\{s\}$. There are two disjoint paths P_{1}, P_{2} from s^{\prime} to some vertices t_{1} and t_{2} (respectively) in $C_{2}-\{t\}$. Replacing s^{\prime}, t_{1}, t_{2} if possible, we can assume $P_{1} \cap C_{1}=\left\{s_{1}\right\}, P_{2} \cap C_{1}=\left\{s_{2}\right\}, P_{1} \cap C_{2}=\left\{t_{1}\right\}$, $P_{2} \cap C_{2}=\left\{t_{2}\right\}, P_{1} \cap P_{2}-\left(C_{1} \cup C_{2}\right)=\emptyset$, where $s_{1}, s_{2} \neq s, t_{1}, t_{2} \neq t$ and $t_{1} \neq t_{2}$. If P_{1} does not intersect P, then $P=P_{1}$ and we are done. Hence we assume $P_{1} \cap P \neq \emptyset$. Similarly, we assume $P_{2} \cap P \neq \emptyset$. We construct two disjoint paths Q_{1}, Q_{2} by using $P, P_{1}, P_{2} . Q_{1}$ is the path starting from s following the path P to the first vertex that P intersects P_{1} or $P_{2}\left(\right.$ say $\left.P_{1}\right)$, and then following the path P_{1} to the end. With this Q_{1}, we set $Q_{2}=P_{2}$. It is clear from the construction that $Q_{1} \cap Q_{2}=\emptyset$.

Example 2.47. The following graph X has vertex connectivity $\kappa_{0}(X)=2$.

Let $C_{1}=\{1,2,6,4\}$ and $C_{2}=\{1,3,6,5\}$. Observe C_{1}, C_{2} are cycles of maximum length. But $\left|C_{1} \cap C_{2}\right|=2$.

Theorem 2.48. Let X be a connected vertex transitive graph with $n \geq 3$ vertices. Then X contains a cycle of length at least $\sqrt{3 n}$.

Proof. We observe the valency of X is k and $k \geq 2$ since $|n| \geq 3$. If $k=2$ then we find X is a cycle and the theorem follows since $n \geq \sqrt{3 n}$. Suppose $k \geq 3$. Then by Theorem 2.37, $\kappa_{0}(X) \geq \frac{2}{3}(k+1) \geq \frac{8}{3}$, so $\kappa_{0}(X) \geq 3$. From previous lemma we obtain $|C \cap g(C)| \geq 3$ for any cycle C of maximum length and $g \in \operatorname{Aut}(X)$. By Lemma 2.45, $|C| \geq \sqrt{3|n|}$.

2.6 Retract

In Theorem 2.18, we showed a Cayley graph is vertex transitive. In this section, we show every vertex transitive graph is a retract of a Cayley graph.

Definition 2.49. A subgraph Y of X is a retract if there exists a homomorphism ρ from X to Y such that $\rho(y)=y$ for all $y \in Y$. Then ρ is called a retraction from X into Y.

Example 2.50. (1) X is a retract of X. Let $I: X \rightarrow X, I$ is a retraction.
(2)

Y is a retract of X.
(3)

f is a retraction.
(4)

f is not a retraction.
Theorem 2.51. Any connected vertex transitive graph is isomorphic to a retract of a Cayley graph.
Proof. Fix $x \in X$. Let $C=\{g \in \operatorname{Aut}(X) \mid x \sim g(x)\}$, and let G be the subgroup of $\operatorname{Aut}(X)$ generated by C. Note that G acts on X transitively, since the orbit containing x of the action of G is a regular graph with the same valency as X and this will make the orbit is X. Let $X^{\prime}=X(G, C)$ be the Cayley graph. Let $H=G_{x}$ be the stablizer of x under the action of G. Let $Z=\left\{g_{1} H, g_{2} H, \cdots, g_{t} H\right\}$ be the left cosets of H, where g_{i} are fix representatives of these cosets. View Z as the induced subgraph $\left\{g_{1} \cdots g_{t}\right\}$ of X^{\prime}. We claim the map $\psi \leqslant Z \leftrightarrows X$ Edefined by $\psi\left(g_{i}\right)=g_{i}(x)$ is an isomorphism. ψ is a bijection since ψ is the standard one to one correspondence between the left cosets of H and the vertices in X. Observe

$$
\begin{aligned}
g_{i} \sim g_{j} \text { in } Z & \Leftrightarrow g_{i}^{-1} g_{j} \in C \\
& \Leftrightarrow x \sim g_{i}^{-1} g_{j}(x)(\text { in } X) \\
& \Leftrightarrow g_{i}(x) \sim g_{j}(x) \\
& \Leftrightarrow \psi\left(g_{i}\right) \sim \psi\left(g_{j}\right) .
\end{aligned}
$$

This prove the claim. We will identify Z and X, and to prove the theorem, it remains to show that Z is a retract of X^{\prime}. Define $\phi: X^{\prime} \rightarrow Z$ by $\phi(w)=g_{i}$, where $w \in g_{i} H$. Clearly $\phi\left(g_{i}\right)=g_{i}$. Observe for $w_{1}=g_{i} h_{1}, w_{2}=g_{j} h_{2} \in X^{\prime}$,

$$
\begin{aligned}
w_{1} \sim w_{2}\left(\text { in } X^{\prime}\right) & \Leftrightarrow w_{1}^{-1} w_{2} \in C \\
& \Leftrightarrow h_{1}^{-1} g_{i}^{-1} g_{j} h_{2} \in C \\
& \Leftrightarrow x \sim h_{1}^{-1} g_{i}^{-1} g_{j} h_{2}(x)(\text { in } X) \\
& \Leftrightarrow x=h_{1}(x) \sim g_{i}^{-1} g_{j} h_{2} h_{2}(x)=g_{i}^{-1} g_{j}(x)(\text { in } X) \\
& \Leftrightarrow g_{i}^{-1} g_{j} \in C \\
& \Leftrightarrow \phi\left(w_{1}\right)=g_{i} \sim g_{j}=\phi\left(w_{2}\right)(\text { in } Z) .
\end{aligned}
$$

2.6. RETRACT 19

This completes the proof of the theorem.

Chapter 3

Homomorphisms

3.1 Cores

Before giving our first definition in this chapter, we consider the following remark first.

Remark 3.1. (1) $\phi: N_{2} \rightarrow K_{2}$ is a bijective homomorphism, but ϕ is not an isomorphism.
(2) Suppose $|X|<\infty$. Then any bijective homomorphism $\phi: X \rightarrow X$ is a isomorphism.
(3) Suppose $|X|<\infty$. Suppose $\phi: X \rightarrow X^{\prime}, \psi: X^{\prime} \rightarrow X$ are bijective homomorphisms. Then there is an isomorphism $\varphi: X \rightarrow X^{\prime}$.

Definition 3.2. A graph X is a core if for any homomorphism $\rho: X \rightarrow X$, $\rho \in \operatorname{Aut}(X)$.

Example 3.3. (1) K_{n} is a core since K_{n} has no loop.
(2)

For $f(1)=f(3)=1$ and $f(2)=f(4)=2$, The cycle C_{4} of four vertices is not a core

Definition 3.4. $\chi(X)$ is the smallest positive integer n such that there is a homomorphism $\rho: X \rightarrow K_{n} . \chi(X)$ is called the chromatic number of X.

Definition 3.5. A subgraph $Y_{\text {of }} X$ is a core of X if
(1) Y is a core.
(2) There is a homomorphism from X to Y.

Lemma 3.6. A core of $X \leadsto$ is a retract of X.
Proof. Let Y be a core of X, Then there is a homomorphism $f: X \rightarrow Y$. The restriction of f into the domain Y is a homomorphism of Y into itself. Since Y is a core, this restriction is an automorphism, so it has an inverse $(f \upharpoonright Y)^{-1}$. Then $(f \upharpoonright Y)^{-1} \circ f$ is the desired retraction map.

From Lemma 3.6, we immediately have the following Lemma.
Lemma 3.7. A core of X is an induced subgraph of X.
Proof. Obviously by previous Lemma.
Definition 3.8. A graph X is critical if $\chi(Y)<\chi(X)$ for any proper subgraph Y of X.

Note 3.9. For a subgraph Y of $X, \chi(Y) \leq \chi(X)$.

Example 3.10. For the following graphs $K_{2} \subseteq C_{4}$ and homomorphism f : $C_{4} \rightarrow K_{2}$.

$\chi\left(C_{4}\right)=\chi\left(K_{2}\right)=2$. Hence C_{4} is not critical.
Lemma 3.11. If X is critical then X is a core.
Proof. Suppose not. Let $\rho: X \rightarrow Y, Y \nsubseteq X$ be a homomorphism. Set $\chi(Y)=n$ and let $\psi: Y \rightarrow K_{n}$ be a homomorphism. Then $\psi \circ \rho: X \rightarrow K_{n}$ is a homomorphism. Hence $\chi(X) \leq n=\chi(Y)$. Thus X is not critical, a contradiction.

Example 3.12. (1)

K_{2} is a core of X. Similarly, any edge is a core of X.
(2)

Y is a core of X.
(3)

Hence Y is a core of X but Z is not a core of X.
Theorem 3.13. Any two cores of X are isomorphic.
Proof. Let $Y, Y^{\prime} \subseteq X$ be two cores of X and $\varphi: X \rightarrow Y, \psi: X \rightarrow Y^{\prime}$ are the corresponding homomorphisms. Then $\psi \circ \varphi \upharpoonright Y^{\prime}: Y^{\prime} \rightarrow Y^{\prime}$ is a homomorphism. Since Y^{\prime} is a core, we know $\psi \circ \varphi \upharpoonright Y^{\prime}: Y^{\prime} \rightarrow Y^{\prime}$ indeed is an automorphism. Then $\varphi \| Y_{r}^{\prime}: Y^{\prime} \rightarrow Y$ is one to one. On the other hand, since $\varphi \circ \psi \upharpoonright Y: K \rightarrow Y$ is a homomorphism and Y is a core, we have $\varphi \circ \psi \upharpoonright Y: Y \rightarrow Y$ is an automorphism. This shows $\varphi \upharpoonright Y^{\prime}: Y^{\prime} \rightarrow Y$ is onto. Hence $\varphi \upharpoonright Y^{\prime}: Y^{\prime} \rightarrow \bar{Y}$ is a bijection. It is an isomorphism.

Lemma 3.14. Every graph has a core.
Proof. Let X be a graph, Set $S=\{Y \subseteq X \mid$ there exists a homomorphism f : $X \rightarrow Y\}$. Pick $Y \in S$ with least vertices. We claim $Y \in S$ is a core. Let $\rho: X \rightarrow Y$ be a homomorphism. Suppose Y is not a core. Let $\psi: Y \rightarrow Y$ be a homomorphism which is not onto. Then $\psi \circ \rho: X \rightarrow Y$ is a homomorphism with image $\psi \circ \rho(X) \subsetneq Y$, a contradiction to the choice of Y.

From Theorem 3.13 and Lemma 3.14, we have a conclusion: Every graph X has a unique core (up to isomorphism). We denoted it by X^{\bullet}.

Theorem 3.15. Suppose X is vertex transitive. Then X^{\bullet} is vertex transitive.
Proof. Pick any $x, y \in X^{\bullet}$, choose $f \in \operatorname{Aut}(X)$ such that $f(x)=y$. Pick a retraction $g: X \rightarrow X^{\bullet}$. Then

$$
g \circ\left(f \upharpoonright X^{\bullet}\right): X^{\bullet} \rightarrow X^{\bullet}
$$

is a homomorphism. Observe X^{\bullet} is a core and $g \circ\left(f \upharpoonright X^{\bullet}\right) \in \operatorname{Aut}\left(X^{\bullet}\right)$. Note $g \circ\left(f \upharpoonright X^{\bullet}\right)(x)=g(f(x))=g(y)=y$. Hence X^{\bullet} is vertex transitive.

Theorem 3.16. If X is a vertex transitive graph, then $\left|X^{\bullet}\right|$ divides $|X|$.
Proof. Let $f: X \rightarrow X^{\bullet}$ be a homomorphism. We want to prove $\left|f^{-1}(y)\right|$ is independent of $y \in X^{\bullet}$. We claim for any $g \in \operatorname{Aut}(X)$, for any $y \in X^{\bullet}$, $\left|f^{-1}(y) \cap g\left(X^{\bullet}\right)\right|=1$. Since $f \circ\left(g \upharpoonright X^{\bullet}\right): X^{\bullet} \rightarrow X^{\bullet}$ is a homomorphism, $f \circ\left(g \upharpoonright X^{\bullet}\right) \in \operatorname{Aut}\left(X^{\bullet}\right)$. Observe

$$
1=\left|f \circ\left(g \upharpoonright X^{\bullet}\right)^{-1}(y)\right|=\left|\left(g \upharpoonright X^{\bullet}\right)^{-1}\left(f^{-1}(y)\right)\right| .
$$

Thus $\left|f^{-1}(y) \cap g\left(X^{\bullet}\right)\right|=1$, since $g \upharpoonright X^{\bullet}$ is one to one. This claim says for each $y \in X^{\bullet}, g \in \operatorname{Aut}(X)$, there exists a unique pair (z, x) such that $z \in X^{\bullet}$, $x \in f^{-1}(y)$ and $g(z)=x$. On the other hand by Lemma 2.44(2), for each pair (z, x) such that $z \in X^{\bullet}, x \in f^{-1}(y)$ there are $\left|G_{x}\right|$ elements $g \in A u t(X)$ such that $g(z)=x$, where G_{x} is the stablizer of X under the action of $\operatorname{Aut}(X)$. (i.e. $\left.G_{x}=\{f \mid f(x)=x, f \in \operatorname{Aut}(X)\}\right)$. Note $\left|G_{x}\right|$ is independent of x. Hence $|\operatorname{Aut}(X)|=\left|X^{\bullet}\right|\left|f^{-1}(y)\right|\left|G_{x}\right|$. Thus $\left|f^{-1}(y)\right|=\frac{|\operatorname{Aut}(X)|}{\left|X^{\bullet}\right|\left|G_{x}\right|}$ is independent of y.

Corollary 3.17. If X is a vertêx transitive graph such that $|X|$ is a prime number and X has at least one edge, then X is a core.

Proof. From Theorem 3.16, we know $\left|X^{\bullet}\right|$ divides $|X|$. So $\left|X^{\bullet}\right|=1$ or $|X|$. Observe $\left|X^{\bullet}\right| \neq 1$, since X has at least one edge. Hence $\left|X^{\bullet}\right|=|X|$. We have $X=X^{\bullet}$ by Lemma 3.7.

Corollary 3.18. If X is a vertex transitive graph with $\chi(X)=3$ and $3 \nmid|X|$, then X has no triangle.

Proof. There exists a homomorphism $f: X \rightarrow K_{3}$ because $\chi(X)=3$. Suppose X has a triangle. Then there is no $Y \subseteq X$ such that $|Y| \leq 2$ and there exists a homomorphism $g: X \rightarrow Y$. Hence K_{3} is a core of X. Hence 3 divides $|X|$ and by Theorem 3.16 a contradiction.

3.2 Folding

Definition 3.19. Let X be a graph and $Y \subseteq X$ is a induced subgraph. A retraction $f: X \rightarrow Y$ is simple folding if
(1) $|X|=|Y|+1$,
(2) If $u, v \in X$ with $f(u)=f(v)$ then $u=v$ or $\partial(u, v)=2$ (in $X)$.

Note 3.20. We always assume $Y \subseteq X$, and f is a retraction.
Example 3.21.

f is a simple folding.
Definition 3.22. Suppose Y is an induced subgraph of X. Then a retraction $f: X \rightarrow Y$ is a folding, if either $X=Y$ or there exist induced subgraphs $Y_{1}, Y_{2}, \cdots, Y_{n}=Y$ of X and simple foldings $f_{1}: X \rightarrow Y_{1}, f_{2}: Y_{1} \rightarrow Y_{2}, \cdots$, $f_{n}: Y_{n-1} \rightarrow Y_{n}$ such that $f=f_{n} \circ \cdots \circ f_{2} \circ f_{1}$ for X is connected.
Lemma 3.23. Suppose Y is an indüced subgraph of X and $f: X \rightarrow Y$ is a retraction. Then f is a folding.
Proof. Induction on $|X|-|Y|$. If $X=Y$ then f is a folding by the definition. Suppose $Y \subsetneq X$. Pick $y \in V$ and $x \in X \mid Y$ such that $x \sim y$. Define Y_{1} by identifying x and $f(x)$ in X_{0}, hence $\left|Y_{1}\right|=|X|-1$. Define $f_{1}: X \rightarrow Y_{1}$ by

$$
f_{1}(u)= \begin{cases}u, & \text { if } u \neq x, \tag{3.1}\\ f(x), & \text { if } u=x\end{cases}
$$

Then $f_{1}: X \rightarrow Y_{1}$ is a simple folding. Define $f_{2}: Y_{1} \rightarrow Y$ by $f_{2}(u)=f(u)$. Then $f=f_{2} \circ f_{1}$. Observe $f_{2}: Y_{1} \rightarrow Y$ is a retraction and $\left|Y_{1}-Y\right|=$ $|X-Y|-1$. By induction, f_{2} is a folding, hence $f=f_{2} \circ f_{1}$ is a folding.

Definition 3.24. A homomorphism $f: X \rightarrow Y$ is a local injection, if for any $y \in Y$, and for any $u, v \in f^{-1}(y), u=v$ or $\partial(u, v) \geq 3$.

Lemma 3.25. Let X be a connected graph and Y be a induced subgraph of X. Suppose $f: X \rightarrow Y$ is a homomorphism. Then for any $y_{1}, y_{2} \in Y$ with $f\left(y_{1}\right)=y_{1}$ and $f\left(y_{2}\right)=y_{2}$, we have $\partial_{Y}\left(y_{1}, y_{2}\right)=\partial_{X}\left(y_{1}, y_{2}\right)$.

Proof. $\partial_{Y}\left(y_{1}, y_{2}\right) \geq \partial_{X}\left(y_{1}, y_{2}\right)$ since $Y \subseteq X$, and $\partial_{Y}\left(y_{1}, y_{2}\right) \leq \partial_{X}\left(y_{1}, y_{2}\right)$ since f is a homomorphism. Hence $\partial_{Y}\left(y_{1}, y_{2}\right)=\partial_{X}\left(y_{1}, y_{2}\right)$.

Lemma 3.26. Suppose X be a graph and Y is a proper induced subgraph of X. If $f: X \rightarrow Y$ is a folding, then $f: X \rightarrow Y$ is not a local injection.

Proof. Suppose $f=f_{t} \circ \cdots \circ f_{2} \circ f_{1}$ where f_{i} are simple folding with f_{i} : $Y_{i-1} \rightarrow Y_{i}$. Pick $y \in Y$ and $u, v \in Y_{t-1}$ such that $\partial_{Y_{t-1}}(u, v)=2$ and $f_{t}(u)=f_{t}(v)=y$. Then $f(u)=f(v)$ and $\partial_{X}(u, v)=\partial_{Y_{t-1}}(u, v)=2$.

Lemma 3.27. Let n be odd, Y be a graph. If $\phi: C_{n} \rightarrow Y$ be a homomorphism with C_{n} be a cycle of length n. Then Y contains an odd cycle.

Proof. Suppose Y does not contain odd cycles. Then Y is bipartite. Observe $\phi\left(C_{n}\right)$ is a closed walk of odd length in Y, a contradiction.

Example 3.28.

A example with odd cycle.
Definition 3.29. For $x, y, z \in X$ if $x \sim y \sim z$ and $x \neq z$, then $\{x, y, z\}$ is called a 2-arc of X.

Theorem 3.30. If X is a connected graph and every 2-arc of X is in a shortest odd cycle, then X is a core

Proof. Suppose $f: X \rightarrow X^{\bullet}$ is a retraction and $X^{\bullet} \neq X$. Then f is a folding. Hence f is not a local injection. Hence there exist $u, v \in X$ with $\partial(u, v)=2$ and $f(u)=f(v)$. Observe u, v are contained in a shortest odd cycle of C. And $f(u), f(v)$ are contained in the odd cycle $f(C)$ which has the same length as C. This implies $f(u) \neq f(v)$, a contradiction.

Example 3.31. (1)

The length of shortest odd cycle is seven. By Theorem 3.30 the graph is a core.
(2)

The length of shortest odd cycle is seven. By Theorem 3.30 the graph is a core.

Definition 3.32. Let X, Y be graphs. A homomorphism $f: X \rightarrow Y$ is local bijective(respectively isomorphic) if for any $y \in Y$, there exists $x \in X$ such that
(1) $f(x)=y$,
(2) $f \upharpoonright N[x]: N[\bar{x}] \rightarrow N[y]$ is bijective(respectively isomorphic) where $N[x]=N[\{x\}]$.

Example 3.33. (1)

Observe f is local bijective and local isomorphic.
(2)

Observe f is local bijective, but is not local isomorphic.

Lemma 3.34. If X is a connected graph and $f: X \rightarrow Y$ is local isomorphic. Then $f: X \rightarrow Y$ is isomorphic.

Proof. We only need to prove f is one to one. Suppose not. Pick $x, y \in X$ such that $f(x)=f(y)$ and $\partial(x, y)$ is minimum. Note $\partial(x, y) \geq 2$. Let x, z, \cdots, y be the shortest path from x to y. Then $f(x), f(z), \cdots, f(y)=f(x)$ is a cycle in Y. Hence $f(y) \sim f(z)$ in Y. Thus $y \sim z$ in X. Since $f(y)$, $f(x) \in N(f(z))$ and $f(y)=f(x)$, we must have $y=x$ by the assumption of local isomorphism, a contradiction to $\partial(x, y) \geq 2$.

Corollary 3.35. If Y is a tree, and $f: X \rightarrow Y$ is local bijective. Then X is disjoint copies of Y.

Proof. Since for each $y \in Y, N(y)$ contains no edges, f in fact is a local isomorphism. Then the corollary follows from Lemma 3.34.

Chapter 4

The Adjacency Matrix

4.1 Definition

Definition 4.1. The adjacency matrix $A=A(X)$ of a graph X is the matrix with rows and columns indexed by X such that

$$
A_{x y}= \begin{cases}1, & \text { if } x \sim y, \\ 0, & \text { if } x \approx y,(x, y \in X .)\end{cases}
$$

Example 4.2. X :

For the graph X, the adjacency matrix $A=\begin{gathered}1 \\ 1 \\ 1 \\ 2\end{gathered}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 \\ 1 & 0 & 1 \\ 3 \\ 0 & 1 & 0 \\ 4 \\ 1 & 0 & 1 \\ 1\end{array}\right)$.
Definition 4.3. A walk of length r in X is a sequence of vertices x_{0}, x_{1}, x_{2} $, \cdots, x_{r}$ such that $x_{i} \sim x_{i+1}$ for $i=0,1, \cdots r-1$.

Lemma 4.4. Let $A=A(X)$ be the adjacency matrix of X. For $x, y \in X$ the number of walks of length r from x to y is $\left(A^{r}\right)_{x y}$.

Proof. $\left(A^{r}\right)_{x y}=\sum_{x_{1}, x_{2}, \cdots, x_{r-1} \in X} A_{x x_{1}} A_{x_{1} x_{2}} \cdots A_{x_{r-1} y}=\mid\left\{\left(x_{1}, x_{2}, \cdots, x_{r-1}\right) \mid\right.$ $\left.x \sim x_{1} \sim x_{2} \sim \cdots \sim x_{r-1} \sim y\right\} \mid$.

4.2 Spectrum

Definition 4.5. Let $A=A(X)$ be the adjacency matrix of X. Then θ is an eigenvalue of A if there exists a nonzero column vector $U \in \mathbb{C}^{x}$ such that $A U=\theta U$. Then U is called an eigenvector of A associated with θ.

Note 4.6. An $n \times n$ symmetric matrix over \mathbb{R} has n orthogonal eigenvectors over \mathbb{R}. The multiset of the eigenvalues of $A(X)$ is called the spectrum of X.

Throughout this chapter, we assume the base field is \mathbb{R}.
Example 4.7. Let $X=K_{n}$ and we have the adjacency matrix $A=A(X)$. Observe $A+I=J$ (J is all 1 S. matrix). Hence we have $\operatorname{rank}(J)=1$ and J has $n-1$ orthogonal eigenvectors $U_{1}, U_{2}, \cdots, U_{n-1}$ associated with 0 . Set $U_{n}=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$. So $J U_{n}=n U_{n}$. Then

$$
A U_{i}=(J-I) U_{i}= \begin{cases}-U_{i}, & \text { for } i \leq n-1 \\ (n-1) U_{n}, & \text { for } i=n\end{cases}
$$

Hence A has eigenvalues $-1,-1, \cdots,-1(n-1$ times $), n-1$.
Lemma 4.8. Let X be a regular graph with valency k. Then
(1) The valency k is an eigenvalue of $A=A(X)$.
(2) For any eigenvalues θ of $A,|\theta| \leq k$.
(3) The multiplicity of k is the number of connected components in X.

Proof. (1) Observe $A\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)=\left(\begin{array}{c}k \\ k \\ \vdots \\ k\end{array}\right)=k\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$. So k is an eigenvalue of A.
(2) Suppose $A U=\theta U$ for some $U=\left(\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right) \neq 0$ where $n=|X|$. Pick j such that $\left|u_{j}\right|=\max _{i}\left|u_{i}\right|$. Hence

$$
\left|\theta u_{j}\right|=\left|(\theta U)_{j}\right|=\left|(A U)_{j}\right|=\left|\sum_{i} A_{j i} u_{i}\right| \leq \sum_{i} A_{j i}\left|u_{i}\right| \leq k\left|u_{j}\right| .
$$

Hence $|\theta| \leq k$.
(3) If $\theta=k$, then all of the above inequalities are equalities. This means $u_{i}=u_{j}$ if $i \sim j$. If we replace the role of \hat{u}_{j} by u_{k} for some $k \sim j$ and keep doing this, we obtain that $\bar{u}_{\bar{i}}$ are all the same when i was in the same connected components of X.

1896

Throughout the end of this section, we fix argraph X and its adjacency matrix $A(X)$.

Definition 4.9. (1) The set of eigenvalues of $A(X)$ is denoted by $e v(X)$.
(2) For $\theta \in e v(X)$, let $\mathbb{V}(\theta)$ denote the set of eigenvectors of $A(X)$ corresponding to θ. $(\mathbb{V}(\theta)$ is a subspace of $\mathbb{R})$.
(3) For $\theta \in e v(X)$, define a matrix $E_{\theta}: \mathbb{R}^{X} \rightarrow \mathbb{R}^{X}$ such that E_{θ} is the projection of \mathbb{R}^{X} into $\mathbb{V}(\theta)$. E_{θ} is called the primitive idempotent of θ.

Lemma 4.10. $E_{\theta}^{2}=E_{\theta}$.
Proof. For any $U \in \mathbb{R}^{X}$,

$$
E_{\theta}^{2} U=E_{\theta}\left(E_{\theta} U\right)=E_{\theta} U
$$

since $E_{\theta} U \in \mathbb{V}(\theta)$.

Lemma 4.11. For $\theta, \eta \in e v(X)$ with $\theta \neq \eta$, then $E_{\theta} E_{\eta}=0$.
Proof. For $U \in \mathbb{R}^{X}$, then $E_{\eta} U \in \mathbb{V}(\eta)$. Since $\mathbb{V}(\eta)$ is orthogonal to $\mathbb{V}(\theta)$, $E_{\theta}\left(E_{\eta} U\right)=0$.

Lemma 4.12. $I=\sum_{\theta \in \operatorname{ev}(X)} E_{\theta}$.
Proof. Pick $U \in \mathbb{R}^{X}$. Then $U=\sum_{\tau \in e v(X)} U_{\tau}$, for some $U_{\tau} \in \mathbb{V}(\tau)$. Hence by Lemma 4.10 and Lemma 4.11

$$
\begin{aligned}
\sum_{\theta \in e v(X)} E_{\theta} U & =\sum_{\theta \in e v(X)} E_{\theta} \sum_{\tau \in e v(X)} U_{\tau} \\
& =\sum_{\theta \in e v(X)} E_{\theta} \sum_{\tau \in e v(X)} E_{\tau} U_{\tau}=\sum_{\theta, \tau} E_{\theta} E_{\tau} U_{\tau} \\
& =\sum_{\theta \in e v(X)} E_{\theta} U_{\theta}=\sum_{\theta \in e v(X)} U_{\theta}=U .
\end{aligned}
$$

Hence $I=\sum_{\theta \in e v(X)} E_{\theta}$ 를 S
Lemma 4.13. $A=\sum_{\theta \in e v(x)_{/ / i n}} \theta_{\theta} E_{\theta}^{1896}$
Proof. Pick $U \in \mathbb{R}^{X}$. Suppose $U=\sum_{\theta \in e v(X)} U_{\theta}$ where $U_{\theta} \in \mathbb{V}(\theta)$. Then

$$
\begin{aligned}
A U & =\sum_{\theta \in e v(X)} A U_{\theta}=\sum_{\theta \in e v(X)} \theta U_{\theta}=\sum_{\theta \in e v(X)} \theta E_{\theta} U_{\theta} \\
& =\sum_{\theta \in e v(X)} \theta E_{\theta} \sum_{\tau \in e v(X)} U_{\tau}=\left(\sum_{\theta \in e v(X)} \theta E_{\theta}\right) U .
\end{aligned}
$$

Hence $A=\sum_{\theta \in e v(X)} \theta E_{\theta}$
Lemma 4.14. For any polynomial $f, f(A)=\sum_{\theta} f(\theta) E_{\theta}$.

Proof. For $U \in \mathbb{V}(\theta), A U=\theta U$,

$$
A^{2} U=A(A U)=A(\theta U)=\theta(A U)=\theta^{2} U .
$$

So $A^{n} U=\theta^{n} U$. Hence $f(A) U=f(\theta) U$.
For $U \in \mathbb{R}^{X}$ we let $U=\sum_{\theta \in e v(X)} U_{\theta}$. Hence

$$
\begin{aligned}
f(A) U & =\sum_{\theta} f(A) U_{\theta}=\sum_{\theta} f(\theta) U_{\theta} \\
& =\sum_{\theta} f(\theta) E_{\theta} U_{\theta}=\sum_{\theta} f(\theta) E_{\theta} U .
\end{aligned}
$$

Lemma 4.15. For $\theta \in \operatorname{ev}(A)$, set $P_{\theta}(x)=\prod_{\substack{\eta \in e v(A) \\ \eta \neq \theta}}(x-\eta)$. Then $E_{\theta}=$ $\frac{1}{P_{\theta}(\theta)} P_{\theta}(A)$. In particular, E_{θ} is a polynomial of A with $\operatorname{degree}|\operatorname{ev}(A)|-1$. Proof. Observe by Lemma 4.14

$$
\begin{aligned}
P_{\theta}(A) & =\sum_{\tau \in e v(\bar{A})} P_{\theta}(\tau) E_{\tau} \sum_{\forall \in \operatorname{ev}(A)}\left(\prod_{\eta \neq \theta} \tau-\eta\right) E_{\tau} \\
& =\left(\prod_{\eta \neq \theta}(\theta-\eta)\right) E_{\theta}=P_{\theta}(\theta) E_{\theta}^{-\frac{1}{*}}
\end{aligned}
$$

Lemma 4.16. Suppose $f(x), g(x) \in \mathbb{R}[x]$ and $g(\theta) \neq 0$ for all $\theta \in \operatorname{ev}(A)$. Then

$$
\frac{f(A)}{g(A)}=\sum_{\theta \in e v(A)} \frac{f(\theta)}{g(\theta)} E_{\theta}
$$

Proof. Observe the eigenvalues of $g(A)$ are $g(\theta)$, where $\theta \in e v(A)$. (In fact, A and $g(A)$ have the same set of eigenvectors). Hence $g(A)$ is invertible by the assumption $g(0) \neq 0$. Observe by Lemma 4.14, Lemma 4.11

$$
\begin{aligned}
g(A) \sum_{\theta \in e v(A)} \frac{f(\theta)}{g(\theta)} E_{\theta} & =\sum_{\theta \in e v(A)} g(\theta) E_{\theta} \sum_{\theta \in e v(A)} \frac{f(\theta)}{g(\theta)} E_{\theta} \\
& =\sum_{\theta \in \operatorname{ev}(A)} f(\theta) E_{\theta}^{2}=\sum_{\theta \in e v(A)} f(\theta) E_{\theta} \\
& =f(A) .
\end{aligned}
$$

Hence

$$
\frac{f(A)}{g(A)}=\sum_{\theta \in e v(A)} \frac{f(\theta)}{g(\theta)} E_{\theta}
$$

Lemma 4.17. $\left\{E_{\theta} \mid \theta \in \operatorname{ev}(A)\right\}$ are linear independent.
Proof. Suppose $\sum_{\theta \in e v(A)} c_{\theta} E_{\theta}=0$. Then for any nonzero $U_{\tau} \in \mathbb{V}(\tau)$,

$$
\left(\sum_{\theta \in e v(A)} c_{\theta} E_{\theta}\right) U_{\tau}=0 .
$$

Hence

$$
\left(\sum_{\theta \in e v(A)} c_{\theta} E_{\theta}\right) U_{\tau}=c_{\tau} E_{\tau} U_{\tau}=c_{\tau} U_{\tau}=0 .
$$

Hence $c_{\tau}=0$ for all $\tau \in \operatorname{ev}(\hat{}(A)$.
From Lemma 4.10~Lemma 4.17, we can conclude

$$
\langle A\rangle=\left\langle\left\{E_{\theta} \mid \theta \in e v(A)\right\}\right\rangle=S_{S} \operatorname{pan}\left\{E_{\theta} \mid \theta \in e v(A)\right\}
$$

where $\langle A\rangle$ is the algebrágenerated by A. Hence $\operatorname{dim}_{\mathbb{R}}\langle A\rangle=|\operatorname{ev}(A)|$.
Theorem 4.18. Let X be the graph with diameter d. Then $|e v(A)| \geq d+1$.
Proof. Suppose $|\operatorname{ev}(A)| \leq d$. Then $I, A, A^{2}, \cdots, A^{d-1}$ span E_{θ} for all $\theta \in \operatorname{ev}(A)$. Hence they span A^{d}. That is $A^{d}=c_{0} I+c_{1} A+\cdots+c_{d-1} A^{d-1}$ for $c_{i} \in \mathbb{R}$. Pick $x, y \in X$ with $\partial(x, y)=d$. Then

$$
0 \neq\left(A^{d}\right)_{x y}=\left(c_{0} I+c_{1} A+\cdots+c_{d-1} A^{d-1}\right)_{x y}=0
$$

a contradiction. Hence $|\operatorname{ev}(A)| \geq d+1$.
Corollary 4.19. The path P_{n} of length $n-1$ has n distinct eigenvalues.
Proof. Let $A=A\left(P_{n}\right)$. Then $|e v(A)| \leq n$ since A is an $n \times n$ matrix. $|e v(A)| \geq n$ from Theorem 4.18. Hence $|e v(A)|=n$.

4.3 Perron Frobenius Theorem

Lemma 4.20. Let C be an $n \times n$ symmetric matrix. Assume all eigenvalues of C are nonnegative. Then $C=D^{t} D$ for some $n \times n$ matrix D.

Proof. Observe

$$
\begin{aligned}
C & =P^{t}\left(\begin{array}{ccccc}
\theta_{1} & 0 & 0 & \cdots & 0 \\
0 & \theta_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \ldots & \theta_{n}
\end{array}\right) P \\
& =P^{t}\left(\begin{array}{ccccc}
\sqrt{\theta_{1}} & 0 & 0 & \cdots & 0 \\
0 & \sqrt{\theta_{2}} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & \sqrt{\theta_{n}}
\end{array}\right)\left(\begin{array}{ccccc}
\sqrt{\theta_{1}} & 0 & 0 & \cdots & 0 \\
0 & \sqrt{\theta_{2}} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & \sqrt{\theta_{n}}
\end{array}\right) P \\
& =D^{t} D
\end{aligned}
$$

where $D=\left(\begin{array}{ccccc}\sqrt{\theta_{1}} & 0 & 0 & \vdots & 0 \\ 0 & \sqrt{\theta_{2}} & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & \theta_{n}\end{array}\right) P$, and θ_{i} are eigenvalues with
nonnegative values.
Definition 4.21. Let C be a symmetric matrix with rows and columns indexed by $X . C$ is bipartite(resp. reducible) if there exists $Y_{1}, Y_{2} \subseteq X$ such that
(1) $Y_{1} \cup Y_{2}=X$;
(2) $Y_{1} \cap Y_{2}=\emptyset$;
(3) $Y_{1}, Y_{2} \neq \emptyset$;
(4) $C_{x y}=0$ if $x, y \in Y_{1}$ or $x, y \in Y_{2}$ (resp. $C_{x y}=0$ if either $x \in Y_{1}, y \in Y_{2}$, or $\left.x \in Y_{2}, y \in Y_{1}\right)$.

Lemma 4.22. Let C be a bipartite symmetric matrix and let θ be an eigenvalue of C. Then $-\theta$ is also an eigenvalue of C and the multiplicity of θ is equal to the multiplicity of $-\theta$ in C.

Proof. Suppose

$$
\left(\begin{array}{c|c}
\mathrm{O} & B \\
\hline B^{t} & \mathrm{O}
\end{array}\right)\binom{U_{1}}{U_{2}}=\theta\binom{U_{1}}{U_{2}} .
$$

Then $B U_{2}=\theta U_{1}$ and $B^{t} U_{1}=\theta U_{2}$. Observe

$$
\left(\begin{array}{c|c}
\mathrm{O} & B \\
\hline B^{t} & \mathrm{O}
\end{array}\right)\binom{U_{1}}{-U_{2}}=\binom{-B U_{2}}{B^{t} U_{1}}=\binom{-\theta U_{1}}{\theta U_{2}}=-\theta\binom{U_{1}}{-U_{2}} .
$$

Note 4.23. If C is bipartite, then C^{2} is reducible.
Lemma 4.24. Let C be an irreducible $n \times n$ symmetric matrix with positive entries. If C^{2} is reducible, then C is bipartite.

Proof. Let X be the graph associated with C. Let Y, Z be a partition of the vertex set of X such that $C_{i j}^{2}=0$ if $i \in Y$ and $j \in Z$. This means that two ends of each walk of length 2 n̄ust in the same set Y or in the same set Z. Observe there is an edge connecting Y, and Z, since X is connected(this is from the irreducible of C). It is not too difficult from above comments that there is no edges andloops in Y and in Z. Hence X is bipartite and then C is bipartite.

Theorem 4.25. (Perron Frobenius Theorem)
Let C be an $n \times n$ symmetric irreducible matrix with nonnegative entries. Let θ_{1} be the largest eigenvalue of C and θ_{r} is the smallest eigenvalue of C. Suppose that V is an eigenvector of C corresponding to θ_{1}. Then
(1) All entries of V have the same sign (no zero entries).
(2) θ_{1} has multiplicity 1 .
(3) $\theta_{r} \geq-\theta_{1}$.
(4) $\theta_{r}=\theta_{1}$ if and only if C is bipartite.

Proof. (1) Observe $\theta_{1} I-C$ has nonnegative eigenvalues. Hence $\theta_{1} I-C=$ $P^{t} P$ for some matrix P by Lemma 4.20. Observe

$$
\|P V\|^{2}=(P V)^{t}(P V)=V^{t} P^{t} P V=V^{t}\left(\theta_{1} I-C\right) V=V^{t} \theta_{1} I V-V^{t} \theta_{1} V=0
$$

Hence $P V=0$. i.e. $\sum_{x=1}^{n} v_{x} P_{x}=0$, where P_{x} is the x th column of P.
Set $S=\left\{x \mid v_{x}>0\right\}$, we assume $S \neq \emptyset$ (otherwise use $-V$ instead of $V)$. Set $W=\sum_{x \in S} P_{x} v_{x}$ and observe $W=-\sum_{y \notin S} P_{y} v_{y}$. For $x \in S$,
$\left\langle P_{x}, W\right\rangle=\left\langle P_{x},-\sum_{y \notin S} P_{y} v_{y}\right\rangle=-\sum_{y \notin S} v_{y}\left\langle P_{x}, P_{y}\right\rangle=-\sum_{y \notin S} v_{y}\left(\theta_{1} I-C\right)_{x y} \leq 0$.
Observe

$$
0 \leq\langle W, W\rangle=\left\langle\sum_{x \in S} v_{x} P_{x}, W\right\rangle=\sum_{x \in S} v_{x}\left\langle P_{x}, W\right\rangle \leq 0
$$

Hence $W=0$. For $y \notin S$,

$$
0=\left\langle P_{y}, W\right\rangle=\left\langle P_{y}, \sum_{x \in S} v_{x} P_{x}\right\rangle=\sum_{x \in S} v_{x}\left\langle P_{y}, P_{x}\right\rangle=\sum_{x \in S} v_{x}\left(\theta_{1} I-C\right)_{y x} .
$$

Since $\left(\theta_{1} I-C\right)_{y x} \leq 0$ and $v_{x}>0$ we have $C_{y x}=0$ for $y \notin S, x \in S$. Hence C is reducible, a contradiction.
(2) Suppose θ_{1} has multiplicity at least 2. Let $\mathbb{V}\left(\theta_{1}\right)$ be the eigenspace of C corresponding to θ_{1}. Then $\operatorname{dim}\left(\mathbb{V}\left(\theta_{1}\right)\right) \geq 2$. Since $\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)^{\perp}\right)=$ $n-1, \mathbb{V}\left(\theta_{1}\right) \cap \operatorname{span}_{\mathbb{R}}\left\{\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)^{\perp}\right\} \neq \emptyset$. Hence there exists nonzero vector of the form $\left(\begin{array}{c}0 \\ * \\ \vdots \\ *\end{array}\right)$ in $\mathbb{V}^{2}\left(\theta_{1}\right)$, a contradiction to (1).
(3) We consider two cases.

Case 1: C^{2} is reducible by Lemma 4.24. Hence C is bipartite. Thus the eigenvalues of C are symmetry to the origin. Hence $\theta_{r} \geq-\theta_{1}$.
Case 2: C^{2} is irreducible. Observe $C^{2} V=\theta_{1}^{2} V$. Hence V is an eigenvector of C^{2} corresponding to θ_{1}^{2}. Let U be an eigenvector of C. Suppose $\theta_{r}<-\theta_{1}$. Then θ_{r}^{2} is the maximal eigenvalue of C^{2} with corresponding eigenvector U. By (1), the entries of U have the same sign. But U is orthogonal to V, a contradiction. Hence $\theta_{r} \geq-\theta_{1}$.
(4) (\Rightarrow) Suppose $\theta_{r}=\theta_{1}$. Then $\theta_{r}^{2}=\theta_{1}^{2}$ are eigenvalues of C^{2} with multiplicity at least 2. By (2), C^{2} is reducible. Hence C is bipartite by Lemma 4.24.
(\Leftarrow) Obvious from Lemma 4.22.

Chapter 5

Interlacing

5.1 Interlacing of sets

Definition 5.1. Let $S=\left\{\eta_{1} \geq \eta_{2} \geq \cdots \geq \eta_{m}\right\}$ and $T=\left\{\theta_{1} \geq \theta_{2} \geq\right.$ $\left.\cdots \geq \theta_{n}\right\}$ are multisets of \mathbb{R}, where $n_{l} \geq m$. We say S interlaces T if $\theta_{i} \geq \eta_{i} \geq \theta_{n-m+i}$ for all $i=1,2, \cdots \cdots, m$.

Example 5.2. (1) Let $S=\{5,3,1\}, T \Rightarrow\{5,5,4,3,2,1\}$. Hence S interlaces T.
(2) Let $S=\{2.5,1\}, T=\{3,3,2,1\}$. Hence S interlaces T.

Note 5.3. If $S \subseteq T$, then S interlaces T.
Lemma 5.4. Suppose S, T, U are multisubsets of \mathbb{R}.
(1) Suppose S interlaces T. Then S interlaces $S \cup T$.
(2) S interlaces T if and only if $S \cup U$ interlaces $T \cup U$.
(3) Let $f(x), g(x)$ be real polynomials. Suppose

$$
\frac{f(x)}{g(x)}=\sum_{s \in S} \frac{1}{x-s}
$$

for some finite set $S \subseteq \mathbb{R}$. Then the zero's of $f(x)$ interlace the zero's of $g(x)$.

Proof. (1) We claim that "interlacing" is a transitive relation. Let S interlaces T, and T interlaces U. We show then S interlaces U. Let $S=\left\{\eta_{1} \geq \eta_{2} \geq \cdots \geq \eta_{m}\right\}, T=\left\{\theta_{1} \geq \theta_{2} \geq \cdots \geq \theta_{n}\right\}, U=\left\{\gamma_{1} \geq \gamma_{2} \geq\right.$ $\left.\cdots \geq \gamma_{p}\right\}$ where $p \geq n \geq m$. By the definition, we have

$$
\begin{aligned}
\theta_{i} & \geq \eta_{i} \geq \theta_{n-m+i}(1 \leq i \leq m) \\
\gamma_{i} & \geq \theta_{i} \geq \gamma_{p-n+i}(1 \leq i \leq n)
\end{aligned}
$$

Hence $\gamma_{n-m+i} \geq \theta_{n-m+i} \geq \gamma_{p-m+i} \geq \gamma_{p-n+i},(1 \leq i \leq m)$. Hence we obtain $\gamma_{i} \geq \theta_{i} \geq \eta_{i} \geq \theta_{n-m+i} \geq \gamma_{p-m+i},(1 \leq i \leq m)$. Hence S interlaces U. This proves "interlacing" is a transitive relation. Observe S interlaces T, and T interlaces $T \cup U$. Hence the result follows.
(2) To prove this, we can assume that $U=\{u\}$ has only one element. By a small perturbation on u, we can assume $u \in S \cup T$. Now (2) follows.
(3) By deleting the commonlinear factors in $f(x), g(x)$, and using (2), we can assume $f(x)$ and $g(x)$ have no common linear factors. From the right hand side we know $g(x)=\prod_{s \in S}(x-s)$ has degree $n=|S|$ and $f(x)$ has degree at most $n-1$. Hence $g(x)$ has n zero's, and $f(x)$ has at most $n-1$ zero's. Since ${ }^{396}$

$$
\frac{d}{d x} \frac{f(x)}{g(x)}=\sum_{s \in S} \frac{-1}{(x-s)^{2}}<0
$$

the graph of $y=\frac{f(x)}{g(x)}$ decreases. Hence $f(x)$ has exactly $n-1$ zeros and they appear between two consecutive zeros of $g(x)$.

Definition 5.5. The interlacing is tight if for each $i=1,2, \cdots, m$, one of the equality holds.

Example 5.6. (1) $\{4,3,2,1\}$ interlace $\{4,3,3,3,2,1\}$ tightly.
(2) $\{4,3,2,1\}$ interlace $\{4,4,2,2,1\}$. This interlacing is not tight.

5.2 Interlacing of eigenvalues

Theorem 5.7. Let A be an $n \times n$ real symmetric matrix. Suppose P is an $n \times m$ matrix satisfying $P^{t} P=I_{m \times m}$ and $B=P^{t} A P$ when $n \geq m$. Then
(1) The eigenvalues of B interlace the eigenvalues of A.
(2) If the interlacing is tight, then $A P=P B$.

Proof. (1) Let $\theta_{1} \geq \theta_{2} \geq \cdots \geq \theta_{n}$ be eigenvalues of A with corresponding orthogonal eigenvectors $U_{1}, U_{2}, \cdots, U_{n}$. Let $\eta_{1} \geq \eta_{2} \geq \cdots \geq$ η_{m} be eigenvalues of B with corresponding orthogonal eigenvectors $V_{1}, V_{2}, \cdots, V_{m}$. Set $\mathcal{U}_{i}=\operatorname{span}\left\{U_{1}, U_{2}, \cdots, U_{i}\right\}$ and $\mathcal{V}_{j}=\operatorname{span}\left\{V_{1}, V_{2}, \cdots, V_{j}\right\}$.
Observe

$$
\operatorname{dim}\left(P^{t} \mathcal{U}_{i-1}\right) \leq \operatorname{dim}\left(\mathcal{U}_{i-1}\right) \leq i-1
$$

Hence

$$
\begin{aligned}
& \operatorname{dim}\left(\left(P^{t} \mathcal{U}_{i-1}\right)^{\perp} \cap \mathcal{V}_{i}\right)=\operatorname{dim}\left(P^{t} \mathcal{U}_{i-1}\right)^{\perp}+\operatorname{dim}\left(\mathcal{V}_{i}\right)-\operatorname{dim}\left(\left(P^{t} \mathcal{U}_{i-1}\right)^{\perp}+\mathcal{V}_{i}\right) \\
& \geq(m-i+1)+i-m=1 . \\
& \text { Pick a nonzero vector } Y \\
& \text { since } Y \in\left(\mathcal{V}_{i} .\right. \text { Observe } \\
& \qquad Y \in\left(P^{t} \mathcal{U}_{i-1} \mathcal{U}_{i-1}\right)^{\perp} \Leftrightarrow \cap \mathcal{V}_{i} . \\
& \Leftrightarrow\left\langle Y, P^{t} U\right\rangle=0 \text { for all } U \in \mathcal{U}_{i-1} \\
& \Leftrightarrow\langle P Y, U\rangle=0 \text { for all } U \in \mathcal{U}_{i-1} \\
& \Leftrightarrow P Y \in Y_{i}^{t} B Y \geq \eta_{i} Y^{t} Y \\
&=\operatorname{span}\left\{U_{i}, U_{i+1}, \cdots, U_{n}\right\}
\end{aligned}
$$

Hence $(P Y)^{t} A(P Y) \leq \theta_{i}(P Y)^{t}(P Y)$. Observe $P Y \neq 0$ and

$$
\theta_{i} \geq \frac{(P Y)^{t} A(P Y)}{(P Y)^{t}(P Y)}=\frac{Y^{t} P^{t} A P Y}{Y^{t} P^{t} P Y}=\frac{Y^{t} B Y}{Y^{t} Y} \geq \eta_{i}
$$

If we use $-A,-B$ to replace A, B, we obtain $-\theta_{n-i} \geq-\eta_{m-i}$ for $i=0,1,2, \cdots, m-1$. This is $\eta_{i} \geq \theta_{n-m+i}$ for $i=1,2, \cdots, m$.
(2) In the proof of (1), the equality holds if and only if $P Y$ is an eigenvector of A corresponding to θ_{i} for an eigenvector Y of B corresponding to η_{i}. Suppose $\theta_{i}=\eta_{i}(1 \leq i \leq k)$ and $\eta_{i}=\theta_{n-m+i}(k+1 \leq i \leq m)$ for some k $(1 \leq k \leq m)$. Let $Y_{1}, Y_{2}, \cdots, Y_{m}$ be the eigenvectors of B corresponding to $\eta_{1}, \eta_{2}, \cdots, \eta_{m}$ such that $P Y_{1}, P Y_{2}, \cdots, P Y_{m}$ be the eigenvectors of
A corresponding to $\theta_{1}, \theta_{2}, \cdots, \theta_{k}, \theta_{n-m+k+1}, \theta_{n-m+k+2}, \cdots, \theta_{n}$. So for $1 \leq i \leq m$

$$
\begin{aligned}
P B Y_{i} & =\eta_{i} P Y_{i} \\
A P Y_{i} & =\theta_{j} P Y_{i}=\eta_{i} P Y_{i}
\end{aligned}
$$

where

$$
j=\left\{\begin{array}{l}
i, \text { if } i \leq k, \\
n-m+i, \text { else }
\end{array}\right.
$$

Hence $P B=A P$.

Definition 5.8. Let A be an $n \times n$ matrix. Then B is a principle submatrix of A if B is obtained by deleting some rows and columns with the same indices from A.

Example 5.9. Let

Then (1), (5), (9), ($\left.\begin{array}{ll}\overline{1} & 2 \\ 4 & 5\end{array}\right),\left(\begin{array}{cc}5 & 6 \\ 8 & 9\end{array}\right) \cdot\left(\begin{array}{ll}1 & 3 \\ 7 & 9\end{array}\right)$ and A are all the principle submatrices of A. Observe $\left(\begin{array}{cc}1 & 3 \\ 4 & 6\end{array}\right)$ is not a principle submatrix of A since it is obtained by deleting row 3 and column 2 from A.

Corollary 5.10. Let A be an $n \times n$ real symmetric matrix. Suppose B is an $m \times m$ principle submatrix of A. Then the eigenvalues of B interlace the eigenvalues of A.

Proof. By reordering the indices, we can assume that B appears in the upper left corner of A. Then $B=P^{t} A P$ for $n \times m$ matrix $P=\binom{I}{\mathrm{O}}$. Hence the result follows from Theorem 5.7.

Corollary 5.11. Let X be a graph and fix a vertex $x \in X$. Suppose θ is an eigenvalue of X with multiplicity $m>1$. Then θ is an eigenvalue of the graph induced on $X-x$ with multiplicity at least $m-1$ and at most $m+1$.

Proof. Let A be the adjacency matrix of X and B be the adjacency matrix of $X-x$. Observe A is a real symmetric matrix and B is a principal submatrix of A. By Corollary 5.10, we know the eigenvalues of B interlace the eigenvalues of A. Since θ is an eigenvalue of A with multiplicity m, the result follows.

5.3 Equitable partition of a graph

Definition 5.12. Let X be a graph, and let $\pi=\left\{C_{1}, C_{2}, \cdots, C_{r}\right\}$ be a partition of X. Then π is equitable if for all $i, j \in\{1,2, \cdots, r\}$, there exists a number $b_{i j}$ such that for all $x \in C_{i}$ we have $\left|N(x) \cap C_{j}\right|=b_{i j}$.

Definition 5.13. Suppose π is equitable. Then X / π is a weighted digraph where $X / \pi=\left\{C_{1}, C_{2}, \cdots, C_{r}\right\}$ and define $C_{i} \xrightarrow{b_{i j}} C_{j}$ if $b_{i j} \neq 0$. Let $A=$ $A(X / \pi)$ be the adjacency matrix. That is, A is an $r \times r$ matrix such that $A_{i j}=b_{i j}$.

Definition 5.14. Let $\pi=\left\{C_{1}, C_{2} \cdot \cdots, C_{r}\right\}$ be a partition of X. The characteristic matrix of π is an $|X| \times,|\pi|$ matrix P such that

$$
P_{x i}= \begin{cases}1, & \text { if } x \in C_{i} \\ 0, & \text { otherwise }\end{cases}
$$

Example 5.15.

For this graph, let $C_{1}=\{1,2,4,5,7,8\}$ and $C_{2}=\{3,6\}$. Then $b_{11}=1$,

$$
\begin{array}{r}
b_{12}=1, b_{21}=3, b_{22}=0, A(X / \pi)=\left(\begin{array}{ll}
1 & 1 \\
3 & 0
\end{array}\right) \text { and } \\
\\
\left.1 \begin{array}{cc}
C_{1} & C_{2} \\
2 \\
3 & \left(\begin{array}{c}
1 \\
1
\end{array}\right. \\
3 \\
0 & 1 \\
1 & 0 \\
5 \\
1 & 0 \\
6 & 1 \\
7 \\
1 & 0 \\
1 & 0
\end{array}\right)
\end{array}
$$

Note 5.16. (1) The columns of P is linear independent.
(2) Observe

$$
\left(P^{t} P\right)_{i j}=\sum_{x \in X} P_{i x}^{t} P_{x j}=\sum_{x \in X} P_{x i} P_{x j}= \begin{cases}0, & i \neq j, \\ \left|C_{i}\right|, & i=j .\end{cases}
$$

Hence $P^{t} P$ is an invertible diagonal matrix.
Lemma 5.17. Let π be an equitable partition of X with characteristic matrix P. Then $A(X) P \leftrightarrows P A(X / \pi),\left(\right.$ Equivalently, $\left(P^{t} P\right)^{-1} P^{t} A(X) P=$ $A(X / \pi))$.

Proof. Suppose $\pi=\left\{C_{1}, C_{2}, \cdots, C_{r}\right\}$ and $x \in C_{i}$. Observe

$$
(A(X) P)_{x j}=\sum_{y \in X} A(X)_{x y} P_{y j}=b_{i j}
$$

and

$$
(P A(X / \pi))_{x j}=\sum_{k=1}^{r} P_{x k} A(X / \pi)_{k j}=\sum_{k=1}^{r} P_{x k} b_{k j}=b_{i j} .
$$

Hence $A(X) P=P A(X / \pi)$.
Corollary 5.18. Let π be an equitable partition of X. Then the minimal polynomial of $A(X / \pi)$ divides the minimal polynomial of $A(X)$.

Proof. Let $A=A(X), B=A(X / \pi)$. From Lemma 5.17, we know $A P=P B$. Observe $A^{2} P=A P B=P B B=P B^{2}$. In general, $A^{n} P=P B^{n}$ holds for all $n \in \mathbb{N}$. Hence $f(A) P=P f(B)$ for any polynomials $f(x)$. Suppose $g(x)$ is the minimal polynomial of A. Then $g(A)=0$, and $g(A) P=P g(B)=0$. Since the columns of P are linear independent, we have $g(B)=0$. Then $g(x)$ is a multiple of the minimal polynomial of $B=A(X / \pi)$.

Theorem 5.19. The characteristic polynomial of B divides the characteristic polynomial of A where $A=A(X), B=A(X / \pi)$.

Proof. Let P be the characteristic matrix of the partition π of X. Set $T=$ ($P \mid Q$) for some $n \times(n-r)$ matrix Q such that T is invertible. Then

$$
\begin{aligned}
A T & =A(P \mid Q)=(A P \mid A Q)=(P B \mid A Q) \\
& =(P \mid Q)\left(\begin{array}{c|c}
B & C \\
\hline \mathrm{O} & D
\end{array}\right)=T\left(\begin{array}{c|c}
B & C \\
\hline \mathrm{O} & D
\end{array}\right)
\end{aligned}
$$

for some matrices C, D of size $r \times(n=r),(n-r) \times(n-r)$ respectively. Then $T^{-1} A T=\left(\begin{array}{c|c}B & C \\ \hline \mathrm{O} & D\end{array}\right)$. Hence

1896

$$
\begin{aligned}
\operatorname{det}(x I-A) & =\operatorname{det}\left(T^{-1}\right) \operatorname{det}(x I-A) \operatorname{det}(T) \\
& =\operatorname{det}\left(T^{-1}(x I-A) T\right)=\operatorname{det}\left(x I-T^{-1} A T\right) \\
& =\operatorname{det}\left(x I-\left(\begin{array}{c|c}
B & C \\
\hline \mathrm{O} & D
\end{array}\right)\right. \\
& =\operatorname{det}\left(\left(\begin{array}{c|c}
x I-B & C \\
\hline O & x I-D
\end{array}\right)\right)=\operatorname{det}(x I-B) \operatorname{det}(x I-D) .
\end{aligned}
$$

Hence $\operatorname{det}(x I-B)$ divides $\operatorname{det}(x I-A)$.

Note 5.20. (1) The set of eigenvalues of $A(X / \pi)$ is a subset of the set of eigenvalue of A.
(2) θ is an eigenvalue of $A(X / \pi)$ with multiplicity t. Then θ is an eigenvalue of A with multiplicity at least t.

Example 5.21. Petersen Graph X :

Let $\pi=\{\{1\},\{2,5,6\},\{3,4,7,8,9,10\}\}$. Then $A(X / \pi)=\left(\begin{array}{ccc}0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2\end{array}\right)$. We obtain $\operatorname{det}(x I-A(X / \pi))=(x-1)(x-3)(x+2)$. Hence 1, 3, -2 are eigenvalues of Pertersen Graph.

Theorem 5.22. Let G act on X with orbits $C_{1}, C_{2}, \cdots, C_{r}$. Then $\pi=$ $\left\{C_{1}, C_{2}, \cdots, C_{r}\right\}$ is an equitable partition of X.
Proof. Pick $x, y \in C_{i}$. Choose $g \in G$ such that $y=g(x)$. Then $\left|N(x) \cap C_{j}\right|=$ $\left|g\left(N(x) \cap C_{j}\right)\right|=\left|N(y) \cap C_{j}\right|$.
Example 5.23. Petêrsen Graph X :

Let $G=\left\{e, \sigma, \sigma^{2}, \sigma^{3}, \sigma^{4}\right\}$, where $\sigma=(1,2,3,4,5)(6,7,8,9,10)$. Then G acts on X with orbits $\pi=\left\{C_{1}, C_{2}\right\}$, where $C_{1}=\{1,2,3,4,5\}, C_{2}=\{6,7,8,9,10\}$. Since $A(X / \pi)=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, we obtain $\operatorname{det}(x I-A(X / \pi))=(x-3)(x-1)$.

5.4 Interlacing of rational functions

Lemma 5.24. Let A be an $n \times n$ real symmetric matrix and $z \in \mathbb{R}^{n}$ is nonzero. Set $\phi(x)=z^{t}(x I-A)^{-1} z$ and $\psi(x)=1-z^{t}(x I-A)^{-1} z$. Then
(1) $\phi^{\prime}(x)>0, \psi^{\prime}(x)<0$ if $\phi(x), \psi(x)$ are defined.
(2) Every root of $\phi(x)$ (resp. $\psi(x))$ has multiplicity 1.
(3) Every pole of $\phi(x)($ resp. $\psi(x))$ is simple.
(4) The roots of $\phi(x)$ (resp. $\psi(x))$ interlace the poles of $\phi(x)$.

Proof. (1) Observe

$$
\begin{aligned}
\phi(x) & =z^{t}(x I-A)^{-1} z=z^{t}\left(\sum_{\theta \in e v(A)}(x-\theta)^{-1} E_{\theta}\right) z \\
& =\sum_{\theta \in e v(A)} \frac{z^{t} E_{\theta} z}{x-\theta} .
\end{aligned}
$$

Hence

$$
\phi^{\prime}(x)=-\sum_{\theta \in \overrightarrow{e v}(A)} \frac{z^{t} E_{\theta} z}{(x-\theta)^{2}}<0 .
$$

And $\psi^{\prime}(x)=(1-\phi(x))^{\prime} \approx-\phi^{\prime}(x)>0$.
(2) From (1), we have $\phi^{\prime}(x) \neq 0, \psi^{\prime}(x) \neq 0$. Hence they have no repeated roots.
 Similar for $\psi(x)=1-\phi(x)$.
(4) Observe $\phi(x)$ is decreasing by $1, \lim _{x \rightarrow x} \phi(x)=0, \lim _{x \rightarrow-x} \phi(x)=0$. Hence after deleting the common factors of $\phi(x)$, the roots of $\phi(x)$ interlace the poles of $\phi(x)$. Hence the roots of $\phi(x)$ interlace the poles of $\phi(x)$.

Chapter 6

The Laplacian of a Graph

6.1 Laplacian and incidence matrix of a graph

Definition 6.1. Let X be a graph (not necessary simple). An orientation X^{σ} of X is a digraph that assigns each edge e a directed edge $\sigma(e)$.

Definition 6.2. Let X^{σ} be an orientation of X. The incidence matrix D of X^{σ} is an $n \times m$ matrix where $n=|X|, m=|R|$ such that for $x \in X$ and $e=y z \in X^{\sigma}$,

$$
D_{x e}=\left\{\begin{array}{l}
1, \text { if } x=z,(x \text { is the head of } e) \\
-1, \text { if } x=y,(x \text { is the tail of } e) \\
0, \text { if } x \neq y, x \neq z .
\end{array}\right.
$$

Note 6.3. Each column of D has exactly one 1 entry and -1 entry.
Example 6.4.

For this graph, $D=\begin{aligned} & 1 \\ & 2 \\ & 3\end{aligned}\left(\begin{array}{ccc}e_{1} & e_{2} & e_{3} \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1\end{array}\right)$.

Lemma 6.5. Let X be a graph with an orientation X^{σ} and let D be the incidence matrix of X^{σ}. Then $D D^{t}=\triangle(X)-A(X)$ where $\triangle(X)$ is a diagonal matrix with $(\triangle(X))_{y y}$ the degree of y. Such $Q:=D D^{t}$ is called the Laplacian of X.

Proof. Pick $x, y \in X$. Observe

$$
\begin{aligned}
\left(D D^{t}\right)_{x y} & =\sum_{e \in X^{\sigma}} D_{x e} D_{e y}^{t}=\sum_{e \in X^{\sigma}} D_{x e} D_{y e} \\
& =\left\{\begin{array}{l}
\operatorname{deg}(x), \text { if } x=y, \\
-1, \text { if } x \neq y, x \sim y, \\
0, \text { if } x \neq y, x \nsim y .
\end{array}\right. \\
& =\triangle(X)-A(X) .
\end{aligned}
$$

Example 6.6.

For this graph, $D=\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4\end{aligned}\left(\begin{array}{cccc}e_{1} & e_{2} & e_{3} & e_{4} \\ 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right)$ and
$Q(X)=D D^{t}=\left(\begin{array}{rrrr}2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2\end{array}\right)$.
Note 6.7. (1) $Q(X)$ is symmetric.
(2) $Q(X)$ is independent of the orientation σ.
(3) $Q(X)\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)=0$, and $D^{t}\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)=0$

Lemma 6.8. Let $Q:=Q(X)$ be the Laplacian of X. Then all eigenvalues of Q are nonnegative.

Proof. Let λ be an eigenvalue of Q with eigenvector x. Then $Q x=D D^{t} x=$ λx. Observe $x^{t} D D^{t} x=x^{t} \lambda x$. Hence $\left\|D^{t} x\right\|^{2}=\lambda\|x\|^{2}$. The result follows.

Lemma 6.9. For any matrix D, the nullspace of $D D^{t}$ equals the nullspace of D^{t}.

Proof. Observe nullspace $\left(D^{t}\right) \subseteq$ nullspace $\left(D D^{t}\right)$. Suppose $D D^{t} U=0$. Hence $U^{t} D D^{t} U=0$. Hence $\left\|D^{t} U\right\|^{2}=0$. Hence $D^{t} U=0$. Hence nullspace $\left(D^{t}\right) \supseteq$ nullspace (Q). Hence the result follows.
Theorem 6.10. Suppose X has c connected components. Then 0 is an eigenvalue of Q with multiplicity
Proof. Suppose $X=X_{1} \cup X_{2} \cup \vee \cup X_{c}$, where X_{i} are connected components. We claim the nullspace of D^{t} has dimension c. For $1 \leq i \leq c$, let U_{i} be a column vector such that

$$
U_{i}(x)=\left\{\begin{array}{l}
1, \text { if } x \in X_{i}, \\
0, \text { if } x \notin X_{i} .
\end{array}\right.
$$

Then $D^{t} U_{i}=0$. In fact, $D^{t} U=0$ for $U \in \operatorname{span}\left\{U_{1}, U_{2}, \cdots, U_{c}\right\}$. Hence the nullspace of D^{t} has dimension at least c. On the other hand, suppose $D^{t} U=0$ for some vector U. Then by the construction of $D, U(x)=U(y)$ for $x \sim y$. Hence $U(x)=U(y)$ for any x, y in the same component. Then $U \in \operatorname{span}\left\{U_{1}, \cdots, U_{c}\right\}$. Hence the nullspace of D^{t} has dimension c. The theorem follows from this and Lemma 6.9.

Lemma 6.11. Let X be a regular graph of order n with valency k, and $\theta_{1} \geq \theta_{2} \geq \cdots \geq \theta_{n}$ be eigenvalues of $A(X)$. Suppose $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are eigenvalues of $Q(X)$. Then $\lambda_{1}=0$ and $\lambda_{i}=k-\theta_{i}$ for $i=1,2, \cdots, n$.

Proof. $Q=\triangle(X)-A(X)=k I-A(X)$ since X is k-regular. Thus every eigenvector of A with eigenvalue θ_{i} is an eigenvector of Q with eigenvalue $k-\theta_{i} . \lambda_{1}=0$ by Theorem 6.10.

Definition 6.12. The complement \bar{X} of a graph X is the graph with vertex set X and edge set $\bar{R}=\{e=x y \mid x \neq y, e \notin E\}$.
Lemma 6.13. Let X be a graph. Then $Q(X)+Q(\bar{X})=Q\left(K_{n}\right)$ where $n=|X|$.

Proof. Observe

$$
\begin{aligned}
& Q(X)=\triangle(X)-A(X) \\
& Q(\bar{X})=\triangle(\bar{X})-A(\bar{X})
\end{aligned}
$$

Hence

$$
\begin{aligned}
Q(X)+Q(\bar{X}) & =\triangle(X)+\triangle(\bar{X})-(A(X)+A(\bar{X})) \\
& =(n-1) I-(J-I)=n I-J \\
& =Q\left(K_{n}\right)
\end{aligned}
$$

Lemma 6.14. Let X be â graph with n vertices. Then $\lambda_{i}(\bar{X})=n-\lambda_{n-i+2}(X)$ for $2 \leq i \leq n$.

Proof. Let $U_{1}, U_{2}, \cdots, U_{n}$ be orthogonal eigenvectors of $Q(X)$ corresponding to $\lambda_{1}(X), \lambda_{2}(X), \cdots, \lambda_{n}(X)$ respectively, and $U_{1}=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$. Observe

$$
\begin{aligned}
Q(\bar{X}) U_{i} & =\left(Q\left(K_{n}\right)-Q(X)\right) U_{i}=(n I-J-Q(X)) U_{i} \\
& =\left(n-\lambda_{i}(X)\right) U_{i},
\end{aligned}
$$

since $J U_{i}=0$ for $2 \leq i \leq n$.
Corollary 6.15. Let X be a graph with n vertices. Then
(1) $\lambda_{i}(X) \leq n$.
(2) $\left\{i \mid \lambda_{i}(X)=n\right\}=\bar{c}(X)-1$ where $\bar{c}(X)$ is the number of connected components in \bar{X}.

Proof. This is clear from Theorem 6.10 and Lemma 6.14.

Lemma 6.16. Let U be a column vector. Then $U^{t} Q U=\sum_{x y \in R}\left(U_{x}-U_{y}\right)^{2}$.
Proof. Observe

$$
\begin{aligned}
U^{t} Q U & =U^{t} D D^{t} U=\left(D^{t} U\right)^{t}\left(D^{t} U\right)=\left\|D^{t} U\right\|^{2} \\
& =\sum_{e \in R}\left(D^{t} U\right)_{e}^{2}=\sum_{e \in R}\left(\sum_{x \in X} D_{e x}^{t} U_{x}\right)^{2} \\
& =\sum_{e \in R}\left(\sum_{x \in X} D_{x e} U_{x}\right)^{2}=\sum_{e=x y \in R}\left(U_{x}-U_{y}\right)^{2} .
\end{aligned}
$$

6.2 The number of spanning trees of a graph

Definition 6.17. A tree is a connected simple graph without cycles.
Definition 6.18. Let X be a graph. A spanning tree T of X is a subgraph of X that is a tree and contains all vertices of X.

Definition 6.19. Let X be multigraph and $e^{e}=u v$ is an edge in X. Then $X \backslash e$ is the graph with vertex set X and edge set $R \backslash\{e\} . X / e$ is the multigraph obtained by identifying the vertices u and v and deleting the edge $e . X / e$ is the graph obtained by contracting the edge e.

Example 6.20. X :

Then $X \backslash e$:

And X / e :

Lemma 6.21. Let X be a multigraph. Let $\tau(X)$ denote the number of spanning tree in X. Then

$$
\tau(X)=\tau(X \backslash e)+\tau(X / e)
$$

Proof. Pick an edge e. Then every spanning tree either contains e or does not contain e. Observe $\tau(X \backslash e)$ counts the number of spanning trees in X that do not contain the edge e, and $\tau(X / e)$ counts the number of spanning trees in X that contain the edge e. The result follows.

Definition 6.22. Let M be a square matrix and S is a subset of its index set. Then $M[S]$ denote the submatrix of M obtained by deleting the rows and columns indexed by S.

Note 6.23. Let $Q=Q(X)$ be the Laplacian of X and uv be an edge in X. Then $Q[u, v]=Q(X / e)[v]$.

Theorem 6.24. Let $Q=Q(X)$ be the Laplacian of a graph X. Then for any $u \in X, \operatorname{det}(Q[u])=\tau(X)$.

Proof. We prove this theorem by induction on the number of edges of X. Fix an edge $e=u v$. Observe $Q[u]=Q(X \backslash e)[u]+E$, where E is the $(n-1) \times(n-1)$ matrix with $E_{v v}=1$ and all other entries equal to 0 . Then

$$
\begin{aligned}
\operatorname{det}(Q[u]) & =\operatorname{det}(Q(X \backslash e)[u])+\operatorname{det}(Q[u, v]) \\
& =\operatorname{det}(Q(X \backslash e)[u])+\operatorname{det}(Q(X / e)[v]) .
\end{aligned}
$$

By induction, $\operatorname{det}(Q(X \backslash e)[u])=\tau(X \backslash e)$ and $\operatorname{det}(Q(X / e)[v])=\tau(X / e)$. Hence the result follows.

Corollary 6.25. The number of spanning trees of K_{n} is n^{n-2}.
Proof. Observe $Q\left(K_{n}\right)=(n-1) I-A\left(K_{n}\right)=(n-1) I-(J-I)=n I-J$. Hence $Q\left(K_{n}\right)[1]=n I-J$ with size $(n-1) \times(n-1)$. Observe the eigenvalues of J are $0,0,0,0, \cdots, 0,(n-2$ times $), n-1$ and then the eigenvalues of $Q\left(K_{n}\right)[1]=n, n, n, n, \cdots,(n-2$ times $), 1$. Hence $\operatorname{det}\left(Q\left(K_{n}\right)[1]\right)=$ n^{n-2}.

Definition 6.26. Let M be an $n \times n$ matrix. The adjugate of M (adjM) is a $n \times n$ matrix such that $(\operatorname{adj} M)_{i j}=(-1)^{i+j} \operatorname{det}(M[j ; i])$ where $M[j ; i]$ is the submatrix of M that deletes row j and column i.

Note 6.27. (1) $M \cdot \operatorname{adj}(M)=\operatorname{det}(M) \cdot I$.
(2) If $\operatorname{det}(M) \neq 0$ then $M \cdot \frac{\operatorname{adj}(M)}{\operatorname{det}(M)}=I$.
(3) $(\operatorname{adj}(Q))_{u u}=\tau(X)$ for all $u \in X$.

Example 6.28. Let $M=\left(\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 1 \\ 1 & 2 & 2\end{array}\right)$. Then $\operatorname{adj}(M)=\left(\begin{array}{rrr}0 & -2 & 1 \\ -5 & 1 & 2 \\ 5 & 0 & -5\end{array}\right)$ and $M \cdot \operatorname{adj}(M)=\left(\begin{array}{rrr}-5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5\end{array}\right)=\operatorname{det}(M) \cdot I$.

Theorem 6.29. Let X be a graph and Q be its Laplacian. Then $\operatorname{adj}(Q)=$ $\tau(X) J$.

Proof. We consider two cases.
Case1: X is not connected. Observe 0 is an eigenvalue of $Q(X)$ with multiplicity at least 2 by Theorem 6.10. Hence $\operatorname{rank}(Q(X)) \leq n-2$. Let $Q[i ; j]$ be the submatrix of Q obtained by deleting the row i and the column j of Q. Hence $\operatorname{rank}(Q[i ; j]) \leq n-2$. Since the size of $Q[i ; j]$ is $(n-1) \times(n-1)$. Hence $\operatorname{det}(Q[i ; j])=0$. Then $\operatorname{adj}(Q)=0=\tau(X) J$. Note $\tau(X)=0$ since X has no spanning tree.

Case2: X is connected. From Theorem 6.10, 0 is an eigenvalue of Q and all eigenvectors corresponding to 0 has the form

$$
c\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
$$

Observe $Q a d j(Q)=\operatorname{det}(Q) I=0 \cdot \operatorname{adj}(Q)$. Hence each column of $\operatorname{adj}(Q)$ is an eigenvector of Q corresponding to 0 . Then $\operatorname{adj}(Q)$ has the form

$$
\left(\begin{array}{cccc}
t_{1} & t_{2} & \ldots & t_{n} \\
t_{1} & t_{2} & \ldots & t_{n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{1} & t_{2} & \ldots & t_{n}
\end{array}\right) .
$$

But the diagonals of Q are all the same number $\tau(X)$ by Note 6.27(3). Hence $\operatorname{adj}(Q)=\tau(X) J$.

Theorem 6.30. Let $0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ be eigenvalues of $Q(X)$. Then $\tau(X)=\frac{1}{n} \lambda_{2} \lambda_{3} \cdots \lambda_{n}$.

Proof. The result clearly follows if X is not connected. So we consider X is connected. Observe the characteristic polynomial of the Laplacian of X is

$$
\begin{aligned}
\operatorname{det}(x I-Q) & =\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{n}\right) \\
& =x\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{n}\right) \\
& =(-1)^{n-1}\left(\lambda_{2} \cdots \lambda_{n}\right) x+\cdots .
\end{aligned}
$$

and on the other hands,

$$
\begin{aligned}
& \operatorname{det}(x I-Q)=\sum_{u} \operatorname{det}(-Q[u]) x+\cdots \\
& \text { 브n }(-1)^{n-1} \tau(X) x+\cdots \text {. }
\end{aligned}
$$

Hence the result follows from comparing the coefficients.

6.3 The representation of a graph and its energy

Definition 6.31. A representation ρ of a graph X in \mathbb{R}^{k} is a map ρ from X into \mathbb{R}^{k}.

Suppose $|X|=n$ and identify $x \in X$ to be a column vector $x=$ $(0, \cdots, 0,1,0, \cdots, 0)^{t}$ with x th position is 1 . A representation $\rho: X \rightarrow \mathbb{R}^{k}$ is linear if $\rho(X)=L X$ for some $k \times n$ matrix L. Let $w: R \rightarrow \mathbb{R}^{>0}$ be a function that gives each edge e of X a weight $w(e)$.

Definition 6.32. Let $\rho: X \rightarrow \mathbb{R}^{k}$ be representation. Then

$$
\mathcal{E}(\rho):=\sum_{e=u v \in R} w(e)\|\rho(u)-\rho(v)\|^{2}
$$

is called the energy of ρ with respect to the weight function w.

Lemma 6.33. Let X be a graph and $\rho(X)=L X$ be a representation of X in \mathbb{R}^{k}. Fix an orientation X^{σ} of X with incidence matrix D. Then for $e=u v$, $\|\rho(u)-\rho(v)\|^{2}=\left((L D)^{t} L D\right)_{e e}$.
Proof. Observe

$$
\begin{aligned}
\left((L D)^{t} L D\right)_{e e} & =\sum_{f \in\{1,2, \cdots, k\}}(L D)_{e f}^{t}(L D)_{f e}=\sum_{f \in\{1,2, \cdots, k\}}(L D)_{f e}^{2} \\
& =\sum_{f \in\{1,2, \cdots, k\}}\left(\sum_{x \in X} L_{f x} D_{x e}\right)^{2}=\sum_{f \in\{1,2, \cdots, k\}}\left(L_{f u}-L_{f v}\right)^{2} \\
& =\sum_{f \in\{1,2, \cdots, k\}}\left((\rho(u)-\rho(v))_{f}\right)^{2}=\|\rho(u)-\rho(v)\|^{2} .
\end{aligned}
$$

Suppose $|R|=m$. The weight matrix W of w is $m \times m$ diagonal (indexed by $e \in R$) such that $W_{e e}=w(e)$.
Lemma 6.34. As notation above, $\mathcal{E}(\rho)=\operatorname{trace}\left(W(L D)^{t} L D\right)$.
Proof. Observe

$$
\begin{aligned}
\operatorname{trace}\left(W(L D)^{t} L D\right) & =\sum_{e \in R}\left(W(L D)^{t} \hat{E} D\right)_{e e}=\sum_{e \in R} W_{e e}\left((L D)^{t}(L D)\right)_{e e} \\
& =\sum_{e=u v \in R} w(e)\|\rho(u)-\rho(\hat{v})\|^{2}=\mathcal{E}(\rho) .
\end{aligned}
$$

We recall some facts in linear algebra.
Note 6.35. Let M be an $n \times n$ matrix.
(1) $\operatorname{trace}(M)=M_{11}+M_{22}+\cdots+M_{n n}$.
(2) $\operatorname{trace}\left(M M^{\prime}\right)=\operatorname{trace}\left(M^{\prime} M\right)$.

Theorem 6.36. Let X be a graph. Suppose $\rho: X \rightarrow \mathbb{R}^{k}$ represented by an $k \times n$ matrix L. Let W be a weight matrix. Then $\mathcal{E}(\rho)=\operatorname{trace}\left(L D W(L D)^{t}\right)$ for any incident matrix D of any orientation X^{σ} of X.
Proof. From Note 6.35 and Lemma 6.34, we have

$$
\mathcal{E}(\rho)=\operatorname{trace}\left(W(L D)^{t} L D\right)=\operatorname{trace}\left(L D W(L D)^{t}\right)
$$

6.4 Weighted Laplacian

Lemma 6.37. Let X be a graph with a weight matrix W and an orientation X^{σ} and let D be the incidence matrix of X^{σ}. Set $Q:=D W D^{t}$. Then

$$
Q_{x y}=\left\{\begin{array}{l}
0, \text { if } x \nsim y, x \neq y, \\
-w(e), \text { if } e=x y, \\
\sum_{z \sim x} w(z x), \text { if } x=y .
\end{array}\right.
$$

In particular, Q is independent of the orientation σ. Such $Q:=D W D^{t}$ is called the weighted Laplacian of X.

Proof. Observe

$$
Q_{x y}=\left(D W D^{t}\right)_{x y}=\sum_{e \in R} D_{x e} W_{e e} D_{e y}^{t}
$$

Note 6.38. (1)

$$
\begin{aligned}
& D\left(\begin{array}{ccccc}
\sqrt{w(1)} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & \sqrt{w(m)}
\end{array}\right)\left(\begin{array}{ccccc}
\sqrt{w(1)} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & \sqrt{w(m)}
\end{array}\right) D^{t} \\
& = \\
& D\left(\begin{array}{ccccc}
\sqrt{w(1)} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & \sqrt{w(m)}
\end{array}\right)\left(D\left(\begin{array}{ccccc}
\sqrt{w(1)} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & \sqrt{w(m)}
\end{array}\right)\right)^{t} .
\end{aligned}
$$

We use the notation

$$
\sqrt{W}:=\left(\begin{array}{ccccc}
\sqrt{w(1)} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & \sqrt{w(m)}
\end{array}\right) .
$$

(2) $Q\left(\begin{array}{c}1 \\ \vdots \\ \vdots \\ 1\end{array}\right)=0$ by Note $6.7(3)$.
(3) If Q^{\prime} is an $n \times n$ matrix satisfying
(i) $Q_{x y}^{\prime}<0$ if $x \neq y, x \sim y$,
(ii) $Q_{x y}^{\prime}=0$ if $x \neq y, x \nsim y$,
(iii) $Q^{\prime}\left(\begin{array}{c}1 \\ \vdots \\ 1 \\ \vdots \\ 1\end{array}\right)=0$

Then Q^{\prime} is a weighted Laplacian for some weight function w. In fact, this W satisfies $W_{x y}=-Q_{x y}^{\prime}$ for $x \sim y$:
Lemma 6.39. Let X be a graph of n vertices. Let Q be a weighted Laplacian of X with eigenvalues $\lambda_{1} \leq \lambda_{2} \leqq \cdots \lambda_{n}$. Let c denote the number of connected components in X. Then
(1) $\lambda_{1} \geq 0$,
(2) $c=\max \left\{i \mid \lambda_{i}=0\right\}$. In particular, $\lambda_{1}=0$.

Proof. (1) Observe λ_{1} is an eigenvalue of Q and $Q=D W D^{t}=D \sqrt{W} \sqrt{W} D^{t}$. Then $Q=(D \sqrt{W})(D \sqrt{W})^{t}$. Let U_{1} be the eigenvector of Q corresponding to λ_{1}. Then $\lambda_{1} U_{1}=Q U_{1}=(D \sqrt{W})(D \sqrt{W})^{t} U_{1}$. Hence

$$
U_{1}^{t} \lambda_{1} U_{1}=U_{1}^{t}(D \sqrt{W})(D \sqrt{W})^{t} U_{1}
$$

Hence $\left\|(D \sqrt{W})^{t} U_{1}\right\|^{2}=\lambda_{1}\left\|U_{1}\right\|^{2}$. Hence λ_{1} is nonnegative, the result follows.
(2) The proof is similar to Theorem 6.10.

Definition 6.40. A representation $\rho: X \rightarrow \mathbb{R}^{k}$ is balanced if $\sum_{x \in X} \rho(x)=0$.

Definition 6.41. A linear representation $\rho: X \rightarrow \mathbb{R}^{k}$ is orthonormal if $L L^{t}=I_{k \times k}$ where L is an $k \times n$ matrix that represents ρ.
Note 6.42. $k \leq n$.

Example 6.43.

For above representation of a cube in R^{3}, we have

$$
L=\left(\begin{array}{cccccccc}
1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & -1 & 1 & 1 & -1
\end{array}\right)
$$

$L(1,1,1,1,1,1,1,1)^{t}=0$
and

Hence the representation $\frac{1896}{2 \sqrt{2}} L$ is balanced and orthonormal.
Theorem 6.44. Let Q be the weighted Laplacian for the weight matrix W of X and $0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are eigenvalues of Q. Let ρ be an orthonormal representation $\rho: X \rightarrow \mathbb{R}^{k}$. Then $\mathcal{E}(\rho) \geq \lambda_{2}+\cdots+\lambda_{k}$, where $\mathcal{E}(\rho)$ is the energy of ρ with respect to W. Furthermore, there is an orthonormal representation of X into \mathbb{R}^{k} such that above equality holds.
Proof. Let L be the $k \times n$ matrix represented ρ. Observe by Theorem 5.7 and

$$
\begin{aligned}
\mathcal{E}(\rho) & =\operatorname{trace}\left(L D W(L D)^{t}\right) \\
& =\operatorname{trace}\left(L Q L^{t}\right) \\
& =\text { sum of eigenvalues of } L Q L^{t} \\
& \geq \lambda_{1}+\lambda_{2}+\cdots+\lambda_{k} \\
& =\lambda_{2}+\cdots+\lambda_{k} .
\end{aligned}
$$

Set

$$
U_{1}=\frac{1}{\sqrt{n}}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

Let $U_{1}, U_{2}, \cdots, U_{k}$ be orthonormal eigenvectors of Q corresponding to eigenvalues $\lambda_{1}, \cdots, \lambda_{k}$ respectively. Set

$$
L^{t}=\left(\begin{array}{llll}
U_{1} & U_{2} & \cdots & U_{k}
\end{array}\right)
$$

Then $L L^{t}=I$ and

$$
\begin{aligned}
& \operatorname{trace}\left(L Q L^{t}\right)=\operatorname{trace}\left(\left(\begin{array}{c}
U_{1}^{t} \\
U_{2}^{t} \\
\vdots \\
U_{k}^{t}
\end{array}\right) Q\left(U_{1} U_{2} \cdots U_{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=\lambda_{2}+\cdots+\lambda_{k} .
\end{aligned}
$$

Corollary 6.45. Let Q be the weighted Laplacian for the weight matrix W of X and $0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are eigenvalues of Q. Let $\rho: X \rightarrow \mathbb{R}^{k}$ be an orthonormal balanced representation. Then $\mathcal{E}(\rho) \geq \lambda_{2}+\cdots+\lambda_{k+1}$. Furthermore, there is an orthonormal balanced representation of X into \mathbb{R}^{k} such that above equality holds.
Proof. Let L represent ρ. Observe

$$
L\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)=0
$$

since ρ is balanced. Set

$$
L^{\prime}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\
& L &
\end{array}\right)
$$

Observe L^{\prime} is orthonormal from $X \rightarrow \mathbb{R}^{k+1}$. Observe $\mathcal{E}\left(L^{\prime}\right)=\mathcal{E}(\rho)$. Hence by Theorem 6.44,

$$
\mathcal{E}(\rho)=\mathcal{E}\left(L^{\prime}\right) \geq \lambda_{2}+\cdots+\lambda_{k+1} .
$$

Similarly, we can obtain the equality.

6.5 The second least eigenvalue

Throughout this section, let X be a graph with n vertices, Q be the Laplacian of X and $\lambda_{1}(X) \leq \lambda_{2}(X) \leq \cdots \lambda_{n}(X)$ be the eigenvalues of $Q(X)$.

Definition 6.46. Let X be a graph. Then S is a subgraph of X if $S \subseteq X$ and $R(S) \subseteq R(X)$. 1896

Theorem 6.47. Let X be a graph. Suppose that S is a subset of X. Then $\lambda_{2}(X) \leq \lambda_{2}(X \backslash S)+|S|$.

Proof. Observe $U^{t} Q(X) U \geq \lambda_{2}(X)\|U\|^{2}$ for any U orthogonal to the all 1's column vector. Pick $U \in \mathbb{R}^{X}$ such that
(1) $U_{x}=0$, if $x \in S$,
(2) $W=U \upharpoonright(X \backslash S)$ is an eigenvector of $Q(X \backslash S)$ corresponding to $\lambda_{2}(X \backslash S)$ and orthogonal to the all 1's column vector,
(3) $\|U\|=1$.

Then from above and by Lemma 6.16,

$$
\begin{aligned}
\lambda_{2}(X) & \leq U^{t} Q(X) U \\
& =\sum_{x y \in R}\left(U_{x}-U_{y}\right)^{2} \\
& =\sum_{x y \in R(X \backslash S)}\left(U_{x}-U_{y}\right)^{2}+\sum_{\substack{x \in S\\
}} \sum_{\substack{x y \in R \\
y \notin S}} U_{y}^{2} \\
& =\sum_{x y \in R(X \backslash S)}\left(W_{x}-W_{y}\right)^{2}+|S| \\
& =W^{t} Q(X \backslash S) W+|S| \\
& =\left.\lambda_{2}(X \backslash S)| | W\right|^{2}+|S|,
\end{aligned}
$$

where $\|W\|=\|U\|=1$. Hence $\lambda_{2}(X) \leq \lambda_{2}(X \backslash S)+|S|$.
Corollary 6.48. Let X be a graph. Suppose X is not complete. Then $\lambda_{2}(X) \leq \kappa_{0}(X)$ where $\kappa_{0}(X)$ is the vertex connectivity of X.

Proof. We can find a subset $S \subseteq X$ such that $\left\{S \mid=\kappa_{0}(X)\right.$ and $X \backslash S$ is disconnected. Then $\lambda_{2}(X \backslash S)=0$. Hence

$$
\left.\lambda_{2}(X) \leq \lambda_{2}(X) S\right)+\sqrt{S \mid E 0+} \mid S_{j}=\kappa_{0}(X) .
$$

Corollary 6.49. $\lambda_{2}(T) \leq 1$ for any tree T with at least three vertices.
Proof. It is clear by Corollary 6.48 since $\kappa_{0}(T)=1$ for any tree T.
Note 6.50. For any graph, $\lambda_{2}(X) \leq \kappa_{0}(X) \leq \kappa_{1}(X) \leq \delta(X)$ where $\delta(X)$ is the minimal degree of X.

Note 6.51. For any graph X, the Laplacian of $Q(X)$ has $\mid \operatorname{rank}(Q(X))-$ $\operatorname{rank}(Q(X \backslash e))|\leq|\operatorname{rank}(Q(X)-Q(X \backslash S))| \leq 2$.

Lemma 6.52. Let X be a graph and $e=u v$ be an edge of X. Then

$$
\lambda_{2}(X \backslash e) \leq \lambda_{2}(X) \leq \lambda_{2}(X \backslash e)+2
$$

Proof. For any $z \in \mathbb{R}^{X}$,

$$
\begin{aligned}
z^{t} Q(X) z & =\sum_{\substack{i \sim j \\
i, j \in X}}\left(z_{i}-z_{j}\right)^{2}=\sum_{\substack{i \sim j \\
i, j \in X \backslash e}}\left(z_{i}-z_{j}\right)^{2}+\left(z_{u}-z_{v}\right)^{2} \\
& =z^{t} Q(X \backslash e) z+\left(z_{u}-z_{v}\right)^{2}
\end{aligned}
$$

by Lemma 6.16. Let $z=U_{2}(X \backslash e)$ be the eigenvector of $Q(X \backslash e)$ corresponding to $\lambda_{2}(X \backslash e)$ and orthogonal to the all 1's column vector. Then

$$
\begin{align*}
\lambda_{2}(X)\|z\|^{2} & \leq z^{t} Q(X) z \tag{6.1}\\
& =z^{t} Q(X \backslash e) z+\left(z_{u}-z_{v}\right)^{2} \\
& =\lambda_{2}(X \backslash e)\|z\|^{2}+\left(z_{u}-z_{v}\right)^{2} \\
& \leq \lambda_{2}(X \backslash e)\|z\|^{2}+2\left(z_{u}^{2}+z_{v}^{2}\right) \tag{6.2}\\
& \leq \lambda_{2}(X \backslash e)\|z\|^{2}+2\|z\|^{2} . \tag{6.3}
\end{align*}
$$

Hence $\lambda_{2}(X) \leq \lambda_{2}(X \backslash e)+2$. Let $z=U_{2}(X)$ be the eigenvector of $Q(X)$ corresponding to $\lambda_{2}(X)$ and orthogonal to the all 1's column vector. Then

$$
\begin{aligned}
\lambda_{2}(X)\|z\|^{2} & =z^{t} Q(X) z \\
& =S_{z^{t}}(X)(X \mid Q) z+\left(z_{u}-z_{v}\right)^{2} \\
& \geq \lambda_{2}(X \backslash e)\|z\|^{2}+\left(z_{u}-z_{v}\right)^{2} \\
& \geq \lambda_{2}(X \backslash e)\|z\|^{2} .
\end{aligned}
$$

Hence $\lambda_{2}(X) \geq \lambda_{2}(X \backslash e)$.
Lemma 6.53. Let X be a graph. Then for any proper nonempty subset $S \subsetneq X$

$$
\lambda_{2}(X) \leq \frac{n|\partial S|}{|S|(n-|S|)}
$$

where $n=|X|$ and ∂S is the boundary of S.
Proof. Set Z be a column vector and

$$
Z_{x}=\left\{\begin{array}{l}
n-|S|, \text { for } x \in S, \\
-|S|, \text { otherwise }
\end{array}\right.
$$

Observe $(1,1, \cdots, 1) Z=(n-|S|)|S|-|S|(n-|S|)=0$. Hence

$$
\lambda_{2}(X)\|Z\|^{t} \leq Z^{t} Q(X) Z=\sum_{u v \in R}\left(Z_{u}-Z_{v}\right)^{2}=|\partial S| n^{2} .
$$

Note that

$$
\begin{aligned}
\|Z\|^{2} & =(n-|S|)^{2}|S|+(n-|S|)|S|^{2} \\
& =(n-|S|)|S|(n-|S|+|S|)=n(n-|S|)|S|
\end{aligned}
$$

Hence

$$
\lambda_{2}(X) \leq \frac{n|\partial S|}{|S|(n-|S|)}
$$

Definition 6.54. $\phi(X):=\min _{\substack{S \subset X \\ S \neq \emptyset}} \frac{|\partial S|}{|S|}$ is called the conductance of a graph X.
Corollary 6.55. For a graph $X, \lambda_{2}(X) \leq 2 \phi(X)$.
Proof. Note that $\partial S=\partial \bar{S}$. The Corollary is from previous Lemma.

6.6 Interlacing of eigenvalues

Lemma 6.56. Let C, D be $s \times t, t \times s$ matrices respectively. Then $\operatorname{det}(I-$ $C D)=\operatorname{det}(I-D C)$.

Proof. Let

1896

$$
X=\left(\begin{array}{c|c}
I & C \\
\hline D & I
\end{array}\right), Y=\left(\begin{array}{c|c}
I & \mathrm{O} \\
\hline-D & I
\end{array}\right) .
$$

Observe

$$
\begin{aligned}
\operatorname{det}(X Y) & =\operatorname{det}\left(\left(\begin{array}{cc}
I-C D & C \\
O & I
\end{array}\right)\right) \\
& =\operatorname{det}(I-C D) \operatorname{det}(I)=\operatorname{det}(I-C D)
\end{aligned}
$$

Similarly, $\operatorname{det}(Y X)=\operatorname{det}(I-D C)$. Since $\operatorname{det}(X Y)=\operatorname{det}(Y X), \operatorname{det}(I-$ $C D)=\operatorname{det}(I-D C)$.

Theorem 6.57. Let X be a graph with a fixed edge e. Then

$$
\left\{\begin{array}{l}
\lambda_{i}(X \backslash e) \leq \lambda_{i}(X) \leq \lambda_{i+1}(X \backslash e), \text { for } i=1,2, \cdots, n-1, \\
\lambda_{n}(X \backslash e) \leq \lambda_{n}(X)
\end{array}\right.
$$

Proof. Suppose $e=u v$, and u, v are the first two vertices of X. Set

$$
Z=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

Observe

$$
Z Z^{t}=\left(\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

By the construction of $Q(X)$, we obtain $Q(X)=Q(X \backslash e)+Z Z^{t}$. Observe $\lambda I-Q(X)=\lambda I-Q(X \backslash e)-Z Z^{t}$ 三 $(\lambda I-Q(X \backslash e))\left(I-(\lambda I-Q(X \backslash e))^{-1} Z Z^{t}\right)$.

Hence by Lemma 6.56 with $C=\mathrm{s}(\lambda I-Q(X \backslash e))^{-1} Z, D=Z^{t}$,

$$
\begin{aligned}
\operatorname{det}(\lambda I-Q(X)) & =\operatorname{det}(\lambda I-Q(X \backslash e))^{\prime} \operatorname{det}\left(I-(\lambda I-Q(X \backslash e))^{-1} Z Z^{t}\right) \\
& \Rightarrow \operatorname{det}(\lambda I-Q(X \backslash e)) \operatorname{det}\left(1-Z^{t}(\lambda I-Q(X \backslash e))^{-1} Z\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{\operatorname{det}(\lambda I-Q(X))}{\operatorname{det}(\lambda I-Q(X \backslash e))} & =\operatorname{det}\left(I-Z^{t}(\lambda I-Q(X \backslash e))^{-1} Z\right) \\
& =1-Z^{t}(\lambda I-Q(X \backslash e))^{-1} Z
\end{aligned}
$$

Hence the roots of $\operatorname{det}(\lambda I-Q(X))$ interlaces the roots of $\operatorname{det}(\lambda I-Q(X \backslash e))$ by Lemma $5.24(4)$. Hence the results follow.

Chapter 7

Matroids

7.1 Rank functions

Definition 7.1. Let Ω be a finite set. A rank function on Ω is a function $r k: \mathcal{P}(\Omega) \rightarrow \mathbb{N} \cup\{0\}$ such that
(1) If A and B are subsets of Ω and $A \subseteq B$, then $\operatorname{rk}(A) \leq r k(B)$;
(2) For all subsets A and B of Ω,

$$
r k(A \cap B)+r k(A \cup B) \leq r k(A)+r k(B) ;
$$

(3) If $A \subseteq \Omega$, then $r k(A) \leq|A|$,
where $\mathcal{P}(A)$ is the set of all subsets of A.
Lemma 7.2. Fix an $m \times n$ matrix D and let $\Omega=\{1,2, \cdots, n\}$. For $A \subseteq \Omega$, $r k(A):=$ the dimension of the subspace in \mathbb{R}^{m} spanned by those columns of D indexed by A. Then rk is a rank function on Ω.

Proof. The first and third conditions are clear. We check the second condition. Let D_{1}, \cdots, D_{n} be the columns of D. Set $V=\operatorname{Span}_{a \in A} D_{a}, W=$ $\operatorname{Span}_{b \in B} D_{b}$. Observe $r k(A \cap B) \leq \operatorname{dim}(V \cap W)$ and $r k(A \cup B)=\operatorname{dim}(V+W)$. Hence

$$
\begin{aligned}
r k(A \cap B)+r k(A \cup B) & \leq \operatorname{dim}(V \cap W)+\operatorname{dim}(V+W) \\
& =\operatorname{dim}(V)+\operatorname{dim}(W)=\operatorname{rank}(A)+\operatorname{rank}(B) .
\end{aligned}
$$

Definition 7.3. Let Ω be a finite set with a rank function $r k$. Then $M:=$ $(\Omega, r k)$ is called a matroid.

Definition 7.4. Let $M:=(\Omega, r k)$ be a matroid. Then $A \subseteq \Omega$ is independent if $r k(A)=|A| . \quad A \subseteq \Omega$ is dependent if $r k(A)<|A|$. A basis of M is a maximal independent subset of Ω.

Example 7.5. Let $\Omega=\{1,2, \cdots, n\}$ be a finite set and $\operatorname{rk}(A):=|A|$ for any $A \subseteq \Omega$. Then for any subset $A \subseteq \Omega$ is independent. $\{1,2, \cdots, n\}$ is a basis.

Example 7.6. Let $\Omega=\{1,2, \cdots, n\}$ be a finite set and $\operatorname{rk}(B)=0$ for all $B \subseteq \Omega$. Hence \emptyset is the only independent set and \emptyset is a basis.

Theorem 7.7. Let $(\Omega, r k)$ be a matroid and $A \subseteq \Omega$. Suppose $B \subseteq A$ is a maximal independent set in A. Then $r k(B)=r k(A)=|B|$.

Proof. We prove the theorem by induction on $|A-B|$. If $A=B$, then $r k(A)=r k(B)=|B|$ is clear. In general, suppose $B \subsetneq A$. Pick $x \in A-B$. Consider $C:=B \cup\{x\}$ and $D:=A-\{x\}$. Then

$$
r k(C \cap D)+r k(C \cup D) \leq r k(C)+r k(D) .
$$

Observe $B=C \cap D$ and $A=C \cup D$. Hence

$$
\begin{equation*}
r k(A)+r k(B) \leq r k(C)+r k(D) \tag{7.1}
\end{equation*}
$$

Note

$$
\operatorname{rk}(C) \leq|C|=|B|+1
$$

and

$$
|B|=r k(B) \leq r k(C)
$$

Observe C is dependent since $B \subsetneq C$. Hence $\operatorname{rk}(C)<|B|+1$. Hence $r k(C)=|B|=r k(B)$. Thus we obtain $r k(A) \leq r k(D)$ by equation(7.1). Hence $r k(A)=r k(D)$. Observe $B \subseteq D$ is a maximal independent set in D and $|D-B|<|A-B|$. By induction, $r k(B)=r k(D)$. Hence $r k(B)=$ $r k(A)$.

Corollary 7.8. Let $M=(\Omega, r k)$ is a matroid. Then all bases of M have the same size rk (Ω).

Proof. This is obvious by above Theorem.

Lemma 7.9. Let $(\Omega, r k)$ be a matroid. Then

$$
r k(\bar{A})+|A| \leq r k(\bar{B})+|B|
$$

for any $A \subseteq B \subseteq \Omega$.
Proof. Observe

$$
\begin{aligned}
r k(\bar{A})+|A| & =r k(\bar{B} \cup(B-A))+|A| \\
& \leq r k(\bar{B})+r k(B-A)+|A| \\
& \leq r k(\bar{B})+|B-A|+|A|=r k(\bar{B})+|B| .
\end{aligned}
$$

7.2 The dual

Definition 7.10. Let $M:=(\Omega, r k)$ be a matroid. Define $r k^{\perp}: \mathcal{P}(\Omega) \rightarrow$ $\mathbb{N} \cup\{\emptyset\}$ by

$$
r k^{\perp}(A)=r k(\bar{A})+|A|-r k(\Omega) .
$$

$r k^{\perp}$ is called the dual of $r k$.
Note 7.11. $r k^{\perp}(\emptyset)=r k(\Omega)+|\emptyset|-r k(\Omega)=0$.
Lemma 7.12. Let $M:=(\Omega, r k)$ be a matroid. Then $\left(r k^{\perp}\right)^{\perp}=r k$.
Proof. Choose any subset $A \subseteq \Omega$. Observe

$$
\begin{aligned}
\left(r k^{\perp}\right)^{\perp}(A) & =r k^{\perp}(\bar{A})+|A|-r k^{\perp}(\Omega) \\
& =(r k(\overline{\bar{A}})+|\bar{A}|-r k(\Omega))+|A|-(r k(\bar{\Omega})+|\Omega|-\operatorname{rk}(\Omega)) \\
& =r k(A)
\end{aligned}
$$

Theorem 7.13. Let $M=(\Omega, r k)$ be a matroid. Then $\left(\Omega, r k^{\perp}\right)$ is a matroid.

Proof. We check three conditions in Definition 7.1. The first condition is clear by Lemma 7.9. Choose two subsets $A, B \subseteq \Omega$. Observe

$$
\begin{aligned}
r k^{\perp}(A \cap B)+r k^{\perp}(A \cup B)= & (r k(\overline{A \cap B})+|A \cap B|-r k(\Omega)) \\
& +(r k(\overline{A \cup B})+|A \cup B|-r k(\Omega)) \\
= & (r k(\bar{A} \cup \bar{B})+|A \cap B|-r k(\Omega)) \\
& +(r k(\bar{A} \cap \bar{B})+|A \cup B|-r k(\Omega)) \\
\leq & r k(\bar{A})+r k(\bar{B})+|A|+|B|-r k(\Omega)-r k(\Omega) \\
= & r k^{\perp}(A)+r k^{\perp}(B) .
\end{aligned}
$$

Hence the second condition holds. Observe

$$
r k^{\perp}(A)=r k(\bar{A})+|A|-r k(\Omega) \leq|A| .
$$

Hence the third condition holds.
Definition 7.14. Let $M:=(\Omega, r k)$ be a matroid. Then $M^{\perp}:=\left(\Omega, r k^{\perp}\right)$ is called the dual matroid of M.

Lemma 7.15. The bases of ME-Sare the complements of the bases of M.
Proof. Let A be a basis of M. Then $r k(A)=|A|=r k(\Omega)$. Observe

$$
\begin{aligned}
r k^{\perp}(\bar{A}) & =r k(\overline{\bar{A}})+|\bar{A}|-r k(\Omega) \\
& =|A|+|\bar{A}|-r k(\Omega)=|\Omega|-r k(\Omega)+r k(\emptyset)=r k^{\perp}(\Omega) .
\end{aligned}
$$

We also showed in the second equality, $r k^{\perp}(\bar{A})=|\bar{A}|$. Hence \bar{A} is a basis in M^{\perp}.

7.3 The restriction and contraction

Definition 7.16. Let $M=(\Omega, r k)$ be a matroid and $T \subseteq \Omega$. Then $M \upharpoonright$ $T:=(T, r k \upharpoonright \mathcal{P}(T))$ is called the restriction of M into T.

Lemma 7.17. Let $M=(\Omega, r k)$ be a matroid. Then $M \upharpoonright T$ is a matroid.
Proof. Let $A \subseteq B \subseteq T$ and $\varphi=r k \upharpoonright \mathcal{P}(T)$. Then $\varphi(A)=\operatorname{rk}(A) \leq$ $r k(B)=\varphi(B)$. Hence the first condition holds. Similarly the second and third conditions hold. Hence the result follows.

Definition 7.18. Let $M=(\Omega, r k)$ be a matroid and $T \subseteq \Omega$. Define $M / T:=$ $(\bar{T}, r k / T)$ where $r k / T: \mathcal{P}(\bar{T}) \rightarrow \mathbb{N} \cup\{\emptyset\}$ such that $r k / T(A):=r k(T \cup A)-$ $r k(T)$. Then M / T is called the contraction of T on M.

Lemma 7.19. Let $M=(\Omega, r k)$ be a matroid and $T \subseteq \Omega$. Then $r k / T$ is a rank function on \bar{T} and $(M / T)^{\perp}=M^{\perp} \upharpoonright \bar{T}$.
Proof. Define $\psi: \mathcal{P}(\bar{T}) \rightarrow \mathbb{N} \cup\{\emptyset\}$ by $\psi(A)=r k / T(\bar{T}-A)+|A|-r k / T(\bar{T})$. Observe

$$
\begin{aligned}
\psi(A) & =r k((\bar{T}-A) \cup T)-r k(T)+|A|-(r k(\bar{T} \cup T)-r k(T)) \\
& =r k(\bar{A})+|A|-\operatorname{rk}(\Omega)=r^{\perp}(A)
\end{aligned}
$$

for all $A \subseteq \bar{T}$. Hence $\psi=r k^{\perp} \upharpoonright \mathcal{P}(\bar{T})$ is a rank function on \bar{T}. Observe $\psi^{\perp}=r k / T$. Hence $r k / T=\left(r k^{\perp} \upharpoonright \mathcal{P}(\bar{T})\right)^{\perp}$ is a rank function.

Note 7.20. We proved $r k / T=\left(r k^{\perp} \upharpoonright \mathcal{P}(\bar{T})\right)^{\perp}$.
Example 7.21. Let

Let $\Omega=\{1,2,3\}$ and $T=\{1\}, \bar{T}=\{2,3\}$. Define

$$
r k(A)=\left\{\begin{array}{l}
1, \text { if } A \neq \emptyset \\
0, \text { if } A=\emptyset
\end{array}\right.
$$

Observe

$$
r k / T(A)=r k(T \cup A)-r k(T)=1-1=0
$$

for all $A \subseteq \bar{T}$. Hence for any $A \subseteq \bar{T}$,

$$
r k^{\perp}(A)=r k(\bar{A})+|A|-r k(\Omega)=1+|A|-1=|A|
$$

and

$$
\begin{aligned}
\left(r k^{\perp} \upharpoonright \mathcal{P}(\bar{T})\right)^{\perp}(A) & =r k^{\perp} \upharpoonright \mathcal{P}(\bar{T})(\bar{T}-A)+|A|-r k^{\perp} \upharpoonright \mathcal{P}(\bar{T})(\bar{T}) \\
& =|\bar{T}-A|+|A|-|\bar{T}|=0 .
\end{aligned}
$$

Hence $r k / T=\left(r k^{\perp} \upharpoonright \mathcal{P}(\bar{T})\right)^{\perp}$.

Reference

[1] Godsil and Royle, Algebraic Graph Theory, Springer, 2001.
[2] C. D. Godsil, Algebraic Combinatorics, Chapman \& Hall, New York, 1993.
[3] Norman Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, second edition, 1993.

