國立交通大學

$$
\begin{aligned}
& \text { 應用數學系 } \\
& \text { 碩 士 論 文 }
\end{aligned}
$$

由一個荷米爾遜圖建構偏序集

The Poset constructed from a Hermitian Forms

研 究 生：卜文強
指導教授：翁志文 教授

中華民國九十七年六月

由一個荷米爾遜圖建構偏序集

The Poset constructed from a Hermitian Forms

 Graph

 Graph}

研 究 生：卜文強
指導教授：翁志文

Student ：Wen－Chiang Pu
Advisor ：Chih－Wen Weng

> A Thesis
> Submitted to Department of Applied Mathematics College of Science National Chiao Tung University
> In partial Fulfillment of Requirement
> For the Degree of Master In Applied Mathematics

June 2008
Hsinchu，Taiwan，Republic of China

中華民國九十七年六月

由一個荷米爾遜圖建構偏序集

研究生：卜文強
指導教授：翁志文

國立交通大學
應 用 數 學 系

在這篇論文裡，我們專注在荷米爾遜圖上。首先由一個半徑為 D 的荷米爾遜圖建構一個偏序集 P 。在 P 中的元素是半徑不大於 D 的荷米爾遜子圖。我們從反序的包含關係來定義 P 的順序。我們獲得一些 P 的計算性質。然後，我們試著在 P 中建構一個拉鍊的結構，計算在 P 中有多少拉鍊的結構。

The Poset constructed from a Hermitian Forms
 Graph

Student : Wen-Chiang Pu
Advisor: Chih-Wen Weng

In this thesis, we focus on Hermitian forms graphs. Firstly, we construct a poset P from a Hermitian forms graph $\operatorname{Her}_{q}(D)$, where D is the diameter. The elements in P are those subgraphs of $\operatorname{Her}_{q}(D)$ which are isomorphic to $\operatorname{Her}_{q}(t)$ for $0 \leq t \leq D$. We order P by reversed inclusion. Some counting properties of P are obtained. Then, we try to construct a zigzag-like structure in P so that we can count the number of zigzags inside P.

首先，感謝我的指導教授翁志文教授的指導，
如果沒有老師的耐心與沍忍，這篇埨文是不可能完成的，真的很感謝老師這幾年來的幫助。

感謝秋媛姐，傅老師，黄大原老師．．．等教授的關心與幫助，也因為老師們的認真與專業，從大學到研究所這麼長的時間，讓我真的學到了不少的東西，不管是學問或做人處事方面。感謝老閭，澍仁，老吴，陳博士，rere．．．等組合組的同學們，因著你們是那麼的有趣又歡樂，讓我有許多美好的回憶，這是我一生中蠻值得回味的時光

也感謝小培，景堯，小巴阿給！州和，等學長姐的幫助，解答了我許多的疑問。

感謝與我同住在教會的弟兄姐妹，你們的代禱與激謜，讓我得到許多生命上的供應，我們真的是神家裡的親人。感謝與我在武陵高中一起實習的夥伴，經歷了許多學校大大小小的事，也因著有你們的陪同，讓我順利的考過教檢，真的很高興認識你們。最後，感謝我的父母，讓我的求學生涯沒有後顧之憂，真的謝謝你們。

Contents

Abstract (in Chinese) i
Abstract (in English) ii
Acknowledgements iii
Contents iv

1. Introduction 1
2. Preliminaries 2
3. Subgraphs in a Hermitian forms graph 6
4. The shape of P 7
5. The subposets w^{+}and $[0, w]$ 9
6. Zigzags in P 13
References 15

1 Introduction

It is well-known that a Hermitian forms graph is a distance-regular graph that contains many subgraphs, each of them isomorphic to a Hermitian forms graph with smaller diameter. In this thesis, we fix a Hermitian forms graph $\operatorname{Her}_{q}(D)$ and construct a poset P from $\operatorname{Her}_{q}(D)$, where D is the diameter. The elements in P are those subgraphs of $\operatorname{Her}_{q}(D)$ which are isomorphic to $\operatorname{Her}_{q}(t)$ for $0 \leq t \leq D$. We order P by reversed inclusion. P is known to be a raked poset. What we aim in this thesis is to study other properties of P in counting aspects. After introducing the background, in chapter 4, we count the number of the subgraphs with diameter $D-t$ in $\operatorname{Her}_{q}(D)$ by Theorem 4.1, i.e., we know the $\left|P_{t}\right|$ in P. It helps us to count the number of $\left|w^{+} \cap P_{j}\right|$ because w is the Hermitian forms graph $\operatorname{Her}_{q}(D-i)$, where $w \in P_{i}$ and $0 \leq i \leq j \leq D$. Then, we get Lemma 5.1. Besides, we are also interested in counting $\left|[0, z] \cap P_{i}\right|$, where $z \in P_{j}$ and $0 \leq i \leq j \leq D$. By 2-way counting, we solve this question, namely-Lemma 5.2. In Lemma 5.3, we get the general case of Lemma 5.2, namely we get $\left|[w, z] \cap P_{h}\right|$, where $w \in P_{i}$, $z \in P_{j}$, and $0 \leq i \leq h \leq j \leq D$. Those lemmas are basic tools that help us to count the complex structure in P. In Lemma 5.4, we try to construct a zigzag-like structure in P so that we can count the number of zigzags inside P. Then, we solve it by multiplication principle.

In chapter 6, we count more numbers based on Lemma 5.4. We add some conditions on x and y for $x \in P_{i}$ and $y \in P_{i+1}$, thus, we let x, y meet in
P_{i-1} and x, u, v, y to form a zigzag. We name $t_{i}(x, y)$ the number of zigzags based on x, y. But it will be difficult if there is no element in $x \vee y$. There is a simple case with $x \vee y$ not existing in Lemma 6.1, we find $t_{D-1}(x, y)=0$ or 1 . But in the cases of $1 \leq i \leq D-2$, it is hard to find out. There are a lot of difficulties that we need to overcome in the future.

2 Preliminaries

Let P denote a finite set. By a partial order on P, we mean a binary relation \leq on P such that

1. $x \leq x \quad(\forall x \in P)$,
2. $x \leq y$ and $y \leq z \rightarrow x \leq z=(\forall x, y, z \in P)$,
3. $x \leq y$ and $y \leq x \rightarrow x=y \quad(\forall x, y \in P)$.

By a partially ordered set (or poset, for short), we mean a pair (P, \leq), where P is a finite set, and where \leq is a partial order on P. Abusing notation, we will suppress reference to \leq, and just write P instead of (P, \leq).

Let P denote a poset, with partial order \leq, and let x and y denote any elements in P. As usual we write $x<y$ whenever $x \leq y$ and $x \neq y$. We say y covers x whenever $x<y$, and there is no $z \in P$ such that $x<z<y$. An element $x \in P$ is said to be minimal whenever there is no $y \in P$ such that $y<x$. Let $\min (P)$ denote the set of all minimal elements in P. Whenever
$\min (P)$ consists of a single element, we denote it by 0 , and we say P has 0 .

Suppose P has a 0 . By an atom in P, we mean an element in P that covers 0 . We let A_{p} denote the set of atoms in P.

Suppose P has 0, By a rank function on P, we mean a function

$$
\text { rank: } P \rightarrow Z
$$

such that $\operatorname{rank}(0)=0$, and such that for all $x, y \in P$,

$$
y \text { covers } x \rightarrow \operatorname{rank}(y)-\operatorname{rank}(x)=1
$$

Observe the rank function is unique if it exits. P is said to ranked whenever P has a rank function. In this case, we set

$$
\operatorname{rank}(P):=\max \{\operatorname{rank}(x) \mid x \in p\},
$$

$$
P_{i}:=\{x \mid x \in P, \operatorname{rank}(x)=i\}(i \in Z),
$$

and observe $P_{0}=0, P_{1}=A_{p}$.

Let P denote any poset, and let S denote any subset of P. Then there is a unique partial order on S such that for all $x, y \in S$,

$$
x \leq y(\text { in } S) \leftrightarrow x \leq y \text { in } P .
$$

This partial order is said to be induced form P. By a subposet of P, we mean a subset of P, together with the partial order induced from P. Pick
any $x, y \in P$ such that $x \leq y$. By the interval $[x, y]$, we mean the subposet

$$
[x, y]:=\{z \mid z \in P, x \leq z \leq y\}
$$

of P.

Let P denote any poset, and pick any $x, y \in P$. By a lower bound for x, y, we mean an element $z \in P$ such that $z \leq x$ and $z \leq y$. Suppose the subposet of lower bounds for x, y has a unique maximal element. In this case we denote this maximal element by $x \wedge y$, and say $x \wedge y$ exists. This element $x \wedge y$ is known as the meet of x and $y . P$ is said to be (meet)semi-lattice whenever P is nonempty, and $x_{x} \wedge y$ exists for all $x, y \in P$. A semi-lattice has 0 . Suppose P is a semi-lattice, and pick, $x, y \in P$. By an upper bound for x and y, we mean an element $z \in P$ such that $x \leq z$ and $y \leq z$.Observe that subset of upper bounds for x and y is closed under \wedge; in particular, it has a unique minimal element iff it is nonempty. In this case we denote this minimal element by $x \vee y$, and say that $x \vee y$ exists. The element $x \vee y$ is known as the join of x and y.

Let P be a semi-lattice. Then P is said to be atomic whenever each element of P that is neither 0 nor an atom is a join of atoms. Observe if P is a ranked atomic semi-lattice, then $\left|[0, x] \cap P_{1}\right| \geq \operatorname{rank}(x)$ for all $x \in P$. A semi-lattice P is atomic iff each element of P that is not 0 and not an atom covers at least 2 elements of P.

Let $\Gamma=(X, R)$ denote a finite undirected graph without loops or multiple edges with vertex set X, edge set R and diameter D. For all $x \in X$ and for all integers $0 \leq i \leq D$, set

$$
\Gamma_{i}(x):=\{y \in X \mid \partial(x, y)=i\}
$$

Γ is said to be distance-regular whenever for all integers $0 \leq h, i, j \leq D$ and for all $x, y \in \Gamma$ with $\partial(x, y)=h$, the number

$$
p_{i j}^{h}:=\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|
$$

is independent of x, y. The constants $p_{i j}^{h}$ are known as the intersection numbers of Γ. For convenience, set $c_{i}:=p_{1 i-1}^{i}, a_{i}:=p_{1 i}^{i}, b_{i}:=p_{1 i+1}^{i}$, and $k_{i}:=p_{i i}^{0}$. Note that $c_{1}=1, a_{0}=0, b_{D}=0, k_{11}=c_{i}+a_{i}+b_{i}$,
for $1 \leq i \leq D$, and

$$
\begin{equation*}
|X|=1+k_{1}+\cdots+k_{D} \tag{2.2}
\end{equation*}
$$

We give an example of distance-regular graph. Let q denote a prime power, and let U denote a finite vector space of dimension D over the field $G F\left(q^{2}\right)$. Let H denote the D^{2}-dimensional vector space over $G F(q)$ of the Hermitian forms on U. Thus $f \in H$ if and only if $f(u, v)$ is linear in v, and $f(v, u)=\overline{f(u, v)}$ for all $u, v \in U$. Pick $f \in H$. We define

$$
\operatorname{rk}(f)=\operatorname{dim}(U \backslash \operatorname{Rad}(f)),
$$

where

$$
\operatorname{Rad}(f)=\{u \in U \mid f(u, v)=0 \text { for all } v \in U\} .
$$

The Hermitian forms graph $\operatorname{Her}_{q}(D)=(X, R)$ is the graph with vertex set $X=H$ and vertices $x, y \in R$ iff $\operatorname{rk}(x-y)=1$ for $x, y \in X$. It is well known that $\operatorname{Her}_{q}(D)$ is distance-regular with diameter D and intersection numbers

$$
\begin{align*}
c_{i} & =\frac{q^{i-1}\left(q^{i}-(-1)^{i}\right)}{q+1} \tag{2.3}\\
b_{i} & =\frac{q^{2 D}-q^{2 i}}{q+1} \tag{2.4}
\end{align*}
$$

for $0 \leq i \leq D[1$, Theorem 9.5.7]. Note that

$$
\begin{equation*}
|X|=|H|_{N_{2}}=q^{D^{2}} . \tag{2.5}
\end{equation*}
$$

3 Subgraphs in a Hermitian forms graph

1896
The following theorem about Hermitian forms graphs will be used in the thesis.

Theorem 3.1. ([2], [3], [4]) Let $\Gamma=(X, R)$ be the Hermitian forms graph $\operatorname{Her}_{q}(D)$. Then the following hold.
(i) For two vertices $x, y \in X$ with distance t, there exists a subgraph $\Delta(x, y)$ such that $\Delta(x, y)$ is isomorphic to $\operatorname{Her}_{q}(t)$.
(ii) Let $\Delta(x, y)$ be as in (i). Then for any $u, v \in \Delta(x, y)$ and $w \in X$ we have

$$
\begin{equation*}
\partial(u, w)+\partial(w, v) \leq \partial(u, v)+1 \Longrightarrow w \in \Delta(x, y) \tag{3.1}
\end{equation*}
$$

In particular $\Delta(x, y)$ has intersection numbers

$$
\begin{align*}
& c_{i}(\Delta(x, y))=\frac{q^{i-1}\left(q^{i}-(-1)^{i}\right)}{q+1} \tag{3.2}\\
& b_{i}(\Delta(x, y))=\frac{q^{2 t}-q^{2 i}}{q+1} \tag{3.3}
\end{align*}
$$

for $0 \leq i \leq D$.
(iii) Set $P:=\{\Delta(x, y) \mid x, y \in G\}$, and order P by reversed inclusion. Then P is a ranked meet semi-lattice with each interval isomorphic to a projective space over a finite field of q^{2} elements.
(iv) The set P_{i} of rank i elements in P is

$$
P_{i}=\{\Delta \in P \mid \text { diameter }(\Delta)=D-i\}
$$

for $0 \leq i \leq D$, the meet is defined by

and the join (if it exists) is

$$
\Delta \vee \Delta^{\prime}=\Delta \cap \Delta^{\prime} \quad\left(\text { assuming } \Delta \cap \Delta^{\prime} \neq \emptyset\right)
$$

for $\Delta, \Delta^{\prime} \in P$.

4 The shape of P

Throughout the remaining of the thesis, fix a Hermitian forms graph $\Gamma=$ $(X, R)=\operatorname{Her}_{q}(D)$, and let P denote the corresponding poset as described
in Theorem3.1(iii). Let P_{i} be as defined in Theorem3.1(iv) for $0 \leq i \leq D$. The following theorem counts the number of elements in P_{i}.

Theorem 4.1.

$$
\left|P_{t}\right|=\left[\begin{array}{c}
D \tag{4.1}\\
t
\end{array}\right]_{q^{2}} q^{t(2 D-t)}
$$

where

$$
\left[\begin{array}{c}
D \\
t
\end{array}\right]_{q^{2}}:=\prod_{i=0}^{t-1} \frac{q^{2 D}-q^{2 i}}{q^{2 t}-q^{2 i}}
$$

Proof. For $x \in P_{D}$, set

Note that

$$
p_{t}(x):=\left|P_{t} \cap[0, x]\right| \text {. }
$$

is independent of the choice of x by Theorem 3.1(iii). By the 2 -way counting in the pairs (x, Δ) such that $x \in P_{D}, \Delta \in P_{t}$ with $x \in \Delta$ we find

$$
\begin{equation*}
\left|P_{D}\right| \times\left|p_{t}(x)\right|=\left|P_{t}\right| \times|\Delta| . \tag{4.3}
\end{equation*}
$$

Note that Δ is $\operatorname{Her}_{q}(D-t)$ by Theorem 3.1(iv). Solving (4.2), (4.3) for $\left|P_{t}\right|$, and simplifying the result using (2.5), we find (4.1).

Note that by Theorem 3.1, the P_{t} collects the subgraphs of $\operatorname{Her}_{q}(D)$ which are isomorphic to $\operatorname{Her}_{q}(t)$. Hence Theorem 4.1 determines the number of such subgraphs.

5 The subposets w^{+}and $[0, w]$

For $w \in P$, set

$$
w^{+}:=\{u \in P \mid u \geq w\}
$$

and

$$
[0, w]:=\{u \in P \mid u \leq w\}
$$

We study the shape of w^{+}and $[0, w]$ in this section.

Lemma 5.1. For $w \in P_{i}$,

$$
\left|w^{+} \cap P_{j}\right|=\left[\begin{array}{c}
D-i \tag{5.1}\\
j-i
\end{array}\right]_{g^{2}} q^{(j-i)(2 D-i-j)}
$$

where $i \leq j \leq D$.

Proof. Fix $w \in P_{i}$. Since w is the Hermitian forms graph $\operatorname{Her}_{q}(D-i)$, we know w has diameter $D-i$ and $w^{+} \cap P_{j}$ is the rank $j-i$ elements in w^{+}. Hence we have (5.1) by Theorem 4.1.

The following is the downward version of Lemma 5.1.
Lemma 5.2. For $z \in P_{j}$

$$
\left|[0, z] \cap P_{i}\right|=\left[\begin{array}{l}
j \tag{5.2}\\
i
\end{array}\right]_{q^{2}},
$$

where $0 \leq i \leq j \leq D$.

Proof. By the 2-way counting of the pairs (w, z) such that $w \in P_{i}, z \in P_{j}$ with $w \leq z$ we find

$$
\begin{equation*}
\left|P_{i}\right| \times\left|w^{+} \cap P_{j}\right|=\left|P_{j}\right| \times\left|[0, z] \cap P_{i}\right| . \tag{5.3}
\end{equation*}
$$

Now (5.2) follows by solving (5.3) using (4.1), (5.1) for $\left|[0, z] \cap P_{i}\right|$.

The following is a generalization of Lemma 5.2.
Lemma 5.3. For $z \in P_{j}, w \in P_{i}$, and $w \leq z$

$$
\left|[w, z] \cap P_{h}\right|=\left[\begin{array}{c}
j-i \tag{5.4}\\
h-i
\end{array}\right]_{q^{2}},
$$

where $0 \leq i \leq h \leq j \leq D$.

Proof. Fix $w \in P_{i}$. Since w is the Hermitian forms $\operatorname{graph} \operatorname{Her}_{q}(D-i)$, we know w has diameter $D-i$. Also we know that z is the rank $j-i$ elements and $[w, z] \cap P_{h}$ is the rank $h-i$ elements in w^{+}. Hence we have (5.3) by Lemma 5.2.

Now we want to count a structure by using the above lemmas. Let
$\operatorname{Zig}(i, j):=\left|\left\{(x, u, v, y) \mid x, v \in P_{i}, u, y \in P_{j}, x, v \leq u, v \leq y, x \neq v, u \neq y\right\}\right|$, where $0 \leq i \leq j \leq D$. The structure looks like a zigzag so we name it zigzag.

Lemma 5.4.

$$
\begin{align*}
& \operatorname{Zig}(i, j) \\
= & {\left[\begin{array}{c}
D \\
i
\end{array}\right]_{q^{2}} q^{i(2 D-i)} \times\left[\begin{array}{c}
D-i \\
j-i
\end{array}\right]_{q^{2}} q^{(j-i)(2 D-i-j)} } \\
\times & \left(\left[\begin{array}{l}
j \\
i
\end{array}\right]_{q^{2}}-1\right) \times\left(\left[\begin{array}{c}
D-i \\
j-i
\end{array}\right]_{q^{2}} q^{(j-i)(2 D-i-j)}-1\right), \tag{5.5}
\end{align*}
$$

where $0 \leq i \leq j \leq D$.

Figure 5.4

Proof. First to choose x, we have $\left|P_{i}\right|$ choices. Second to choose u, we have $\left|x^{+} \cap P_{j}\right|$ choices. Third to choose v, we have $\left|[0, u] \cap P_{i}\right|-1$ choices. Fi-
nally, to choose y, we have $\left|v^{+} \cap P_{j}\right|-1$ choices. We count those choices by Theorem 4.1, Lemma 5.1, and Lemma 5.2. Hence,

$$
\begin{align*}
& \operatorname{Zig}(i, j) \\
= & {\left[\begin{array}{c}
D \\
i
\end{array}\right]_{q^{2}} q^{i(2 D-i)} \times\left[\begin{array}{c}
D-i \\
j-i
\end{array}\right]_{q^{2}} q^{(j-i)(2 D-i-j)} } \\
\times & \left(\left[\begin{array}{c}
j \\
i
\end{array}\right]_{q^{2}}-1\right) \times\left(\left[\begin{array}{c}
D-i \\
j-i
\end{array}\right]_{q^{2}} q^{(j-i)(2 D-i-j)}-1\right) . \tag{5.6}
\end{align*}
$$

6 Zigzags in P

For $x \in P_{i}, y \in P_{i+1}$, s.t.
For $x \in P_{i}, y \in P_{i+1}$, s.t. $x \wedge y \in P_{i-1}$, set

$$
t_{i}(x, y):=|\{(u, v) \mid \psi \wedge y=v, x \leq u\}|,
$$

where $1 \leq i \leq D-1$. We name $t_{i}(x, y)$ the number of zigzags based on x, y.

Lemma 6.1. For $x \in P_{D-1}$ and $y \in P_{D}, t_{D=1}(x, y)=0$ or 1 is independent of the choices of x, y.

Proof. Given a vertex y and a maximal clique x such that $x \wedge y \in P_{D-2}$, ie. a weak-geodetically closed subgraph of diameter 2 . Now we prove this lemma by cases. Case 1: $\partial(u, y)=2$ for all u in x. Hence, $t_{D-1}(x, y)=0$. Case 2: $\partial(u, y)=1$ for some u is in x. Then $v=\Delta(u, y)$ is the unique element in P_{D-1} containing u and y by Theorem 3.1(i), so $t_{D-1}(x, y)=1$.

The following problem is still open.

Problem 6.2. For $x \in P_{i}$ and $y \in P_{i+1}$, determine $t_{i}(x, y)$, where $1 \leq i \leq$ D-2.

References

[1] A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin Heidelberg, 1989.
[2] A.A. Ivanov and S.V. Shpectorov, Characterization of the association schemes of Hermitian forms over $G F\left(2^{2}\right)$, Geometriae Dedicata, 30(1989), 23-33.
[3] A.A. Ivanov and S.V. Shpectorov, A characterization of the association schemes of the Hermitian forms, J. Math. Soc. Japan, 43(1991), 25-48.
[4] C. Weng, Weak-geodetically closed subgraphs in distance-regular graphs, Graphs and Combinatorics, 14(1998), 275-304.

