Lecture Notes of Matrix Computations

Wen-Wei Lin

Department of Mathematics
National Tsing Hua University
Hsinchu, Taiwan 30043, R.O.C.

July 6, 2010

Contents

I On the Numerical Solutions of Linear Systems 1
1 Introduction 3
1.1 Mathematical auxiliary, definitions and relations 3
1.1.1 Vectors and matrices 3
1.1.2 Rank and orthogonality 4
1.1.3 Special matrices 5
1.1.4 Eigenvalues and Eigenvectors 5
1.2 Norms and eigenvalues 6
1.3 The Sensitivity of Linear System $A x=b$ 16
1.3.1 Backward error and Forward error 16
1.3.2 An SVD Analysis 17
1.3.3 Normwise Forward Error Bound 19
1.3.4 Componentwise Forward Error Bound 19
1.3.5 Derivation of Condition Number of $A x=b$ 20
1.3.6 Normwise Backward Error 20
1.3.7 Componentwise Backward Error 21
1.3.8 Determinants and Nearness to Singularity 21
2 Numerical methods for solving linear systems 23
2.1 Elementary matrices 23
2.2 LR-factorization 24
2.3 Gaussian elimination 27
2.3.1 Practical implementation 27
2.3.2 $L D R$ - and $L L^{T}$-factorizations 29
2.3.3 Error estimation for linear systems 30
2.3.4 Error analysis for Gaussian algorithm 30
2.3.5 Apriori error estimate for backward error bound of LR-factorization 33
2.3.6 Improving and Estimating Accuracy 38
2.4 Special Linear Systems 40
2.4.1 Toeplitz Systems 40
2.4.2 Banded Systems 43
2.4.3 Symmetric Indefinite Systems 44
3 Orthogonalization and least squares methods 45
3.1 QR-factorization (QR-decomposition) 45
3.1.1 Householder transformation 45
3.1.2 Gram-Schmidt method . 48
3.1.3 Givens method . 49
3.2 Overdetermined linear Systems - Least Squares Methods 50
3.2.1 Rank Deficiency I : QR with column pivoting 53
3.2.2 Rank Deficiency II : The Singular Value Decomposition 55
3.2.3 The Sensitivity of the Least Squares Problem 56
3.2.4 Condition number of a Rectangular Matrix 57
3.2.5 Iterative Improvement . 59

4 Iterative Methods for Solving Large Linear Systems 61
4.1 General procedures for the construction of iterative methods 61
4.1.1 Some theorems and definitions . 65
4.1.2 The theorems of Stein-Rosenberg 73
4.1.3 Sufficient conditions for convergence of TSM and SSM 75
4.2 Relaxation Methods (Successive Over-Relaxation (SOR) Method) . . . 77
$\begin{array}{ll}\text { 4.2.1 } & \text { Determination of the Optimal Parameter } \omega \text { for } 2 \text {-consistly Ordered } \\ & \text { Matrices . } 79\end{array}$
4.2.2 Practical Determination of Relaxation Parameter ω_{b}. 84
4.2.3 Break-off Criterion for SOR Method 84
4.3 Application to Finite Difference Methods: Model Problem (Example 4.1.3) 85
4.4 Block Iterative Methods . 87
4.5 The ADI method of Peaceman and Rachford 88
4.5.1 ADI method (alternating-direction implicit iterative method) . . . 88
4.5.2 The algorithm of Buneman for the solution of the discretized Pois-
son Equation . 94
4.5.3 Comparison with Iterative Methods 100
4.6 Derivation and Properties of the Conjugate Gradient Method 102
4.6.1 A Variational Problem, Steepest Descent Method (Gradient Method). 102
4.6.2 Conjugate gradient method . 106
4.6.3 Practical Implementation . 109
4.6.4 Convergence of CG-method . 110
4.7 CG-method as an iterative method, preconditioning 113
4.7.1 A new point of view of PCG . 114
4.8 Incomplete Cholesky Decomposition . 119
4.9 Chebychev Semi-Iteration Acceleration Method 124
4.9.1 Connection with SOR Method . 130
4.9.2 Practical Performance . 132
4.10 GCG-type Methods for Nonsymmetric Linear Systems 133
4.10.1 GCG method(Generalized Conjugate Gradient) 134
4.10.2 BCG method (A: unsymmetric) 137
4.11 CGS (Conjugate Gradient Squared), A fast Lanczos-type solver for non-
symmetric linear systems . 138
4.11.1 The polynomial equivalent method of the CG method 138
4.11.2 Squaring the CG algorithm: CGS Algorithm 142
4.12 Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems 143
CONTENTS V
4.13 A Transpose-Free Qusi-minimal Residual Algorithm for Nonsymmetric Linear Systems 146
4.13.1 Quasi-Minimal Residual Approach 147
4.13.2 Derivation of actual implementation of TFQMR 149
4.13.3 TFQMR Algorithm 149
4.14 GMRES: Generalized Minimal Residual Algorithm for solving Nonsym- metric Linear Systems 151
4.14.1 FOM algorithm: Full orthogonalization method 152
4.14.2 The generalized minimal residual (GMRES) algorithm 155
4.14.3 Practical Implementation: Consider $Q R$ factorization of \widetilde{H}_{k} 157
4.14.4 Theoretical Aspect of GMRES 159
II On the Numerical Solutions of Eigenvalue Problems 161
5 The Unsymmetric Eigenvalue Problem 163
5.1 Orthogonal Projections and C-S Decomposition 165
5.2 Perturbation Theory 169
5.3 Power Iterations 181
5.3.1 Power Method 182
5.3.2 Inverse Power Iteration 185
5.3.3 Connection with Newton-method 186
5.3.4 Orthogonal Iteration 188
5.4 QR-algorithm (QR-method, QR-iteration) 192
5.4.1 The Practical QR Algorithm 195
5.4.2 Single-shift QR-iteration 198
5.4.3 Double Shift $Q R$ iteration 199
5.4.4 Ordering Eigenvalues in the Real Schur From 202
5.5 $L R, L R C$ and $Q R$ algorithms for positive definite matrices 205
$5.6 q d$-algorithm (Quotient Difference) 208
5.6.1 The $q d$-algorithm for positive definite matrix 210
6 The Symmetric Eigenvalue problem 213
6.1 Properties, Decomposition, Perturbation Theory 213
6.2 Tridiagonalization and the Symmetric QR-algorithm 225
6.3 Once Again:The Singular Value Decomposition 228
6.4 Jacobi Methods 233
6.5 Some Special Methods 237
6.5.1 Bisection method for tridiagonal symmetric matrices 237
6.5.2 Rayleigh Quotient Iteration 240
6.5.3 Orthogonal Iteration with Ritz Acceleration 241
6.6 Generalized Definite Eigenvalue Problem $A x=\lambda B x$ 242
6.6.1 Generalized definite eigenvalue problem 242
7 Lanczos Methods 261
7.1 The Lanczos Algorithm 261
7.1.1 Reorthogonalization 269
7.1.2 Filter polynomials 271
7.1.3 Implicitly restarted algorithm 272
7.2 Approximation from a subspace 274
7.2.1 A priori bounds for interior Ritz approximations 277
7.3 Krylov subspace 279
7.3.1 The Error Bound of Kaniel and Saad 281
7.4 Applications to linear Systems and Least Squares 283
7.4.1 Symmetric Positive Definite System 283
7.4.2 Symmetric Indefinite Systems 286
7.4.3 Connection of Algorithm 7.4.1 and CG method 286
7.4.4 Bidiagonalization and the SVD 288
7.4.5 Least square problems 289
7.4.6 Error Estimation of least square problems 290
7.4.7 Perturbation of solutions of the least square problems 293
7.5 Unsymmetric Lanczos Method 295
8 Arnoldi Method 299
8.1 Arnoldi decompositions 299
8.2 Krylov decompositions 304
8.2.1 Reduction to Arnoldi form 305
8.3 The implicitly restarted Arnoldi method 306
8.3.1 Filter polynomials 307
8.3.2 Implicitly restarted Arnoldi 307
9 Jacobi-Davidson method 313
9.1 JOCC(Jacobi Orthogonal Component Correction) 313
9.2 Davidson method 314
9.3 Jacobi Davidson method 315
9.3.1 Jacobi Davidson method as on accelerated Newton Scheme 320
9.3.2 Jacobi-Davidson with harmonic Ritz values 320
9.4 Jacobi-Davidson Type method for Generalized Eigenproblems 323
9.4.1 The updating process for approximate eigenvector 323
9.4.2 Other projections for the eigenvector approximations 323
9.4.3 Equivalent formulations for the correction equation 325

List of Tables

1.1 Some definitions for matrices. 5
3.1 Solving the LS problem $(m \geq n)$ 56
4.1 Comparison results for Jacobi, Gauss-Seidel, SOR and ADI methods 101
4.2 Number of iterations and operations for Jacobi, Gauss-Seidel and SOR methods 102
4.3 Convergence rate of q_{k} where $j:\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{j} \approx q_{4}, q_{8}$ and $j^{\prime}: \mu_{n}^{j^{\prime}} \approx q_{4}, q_{8}$ 129

List of Figures

1.1 Relationship between backward and forward errors. 17
4.1 figure of $\rho\left(L_{\omega_{b}}\right)$ 82
4.2 Geometrical view of $\lambda_{i}^{(1)}(\omega)$ and $\lambda_{i}^{(2)}(\omega)$. 83
5.1 Orthogonal projection 165

Part I

On the Numerical Solutions of Linear Systems

Chapter 1

Introduction

1.1 Mathematical auxiliary, definitions and relations

1.1.1 Vectors and matrices

$A \in \mathbb{K}^{m \times n}$, where $\mathbb{K}=\mathbb{R}$ or $\mathbb{C} \Leftrightarrow A=\left[a_{i j}\right]=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right], a_{i j} \in \mathbb{K}$,

- Product of matrices $\left(\mathbb{K}^{m \times n} \times \mathbb{K}^{n \times p} \rightarrow \mathbb{K}^{m \times p}\right): C=A B$, where $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$, $i=1, \cdots, m, j=1, \cdots, p$.
- Transpose $\left(\mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{n \times m}\right): C=A^{T}$, where $c_{i j}=a_{j i} \in \mathbb{R}$.
- Conjugate transpose ($\left.\mathbb{C}^{m \times n} \rightarrow \mathbb{C}^{n \times m}\right): C=A^{*}$ or $C=A^{H}$, where $c_{i j}=\bar{a}_{j i} \in \mathbf{C}$.
- Differentiation $\left(\mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}\right)$: Let $C(t)=\left(c_{i j}(t)\right)$. Then $\dot{C}(t)=\left[\dot{c}_{i j}(t)\right]$.
- If $A, B \in \mathbb{K}^{n \times n}$ satisfy $A B=I$, then B is the inverse of A and is denoted by A^{-1}. If A^{-1} exists, then A is said to be nonsingular; otherwise, A is singular. A is nonsingular if and only if $\operatorname{det}(A) \neq 0$.
- If $A \in \mathbb{K}^{m \times n}, x \in \mathbb{K}^{n}$ and $y=A x$, then $y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, i=1, \cdots, m$.
- Outer product of $x \in \mathbb{K}^{m}$ and $y \in \mathbb{K}^{n}$:

$$
x y^{*}=\left[\begin{array}{ccc}
x_{1} \bar{y}_{1} & \cdots & x_{1} \bar{y}_{n} \\
\vdots & \ddots & \vdots \\
x_{m} \bar{y}_{1} & \cdots & x_{m} \bar{y}_{n}
\end{array}\right] \in \mathbb{K}^{m \times n} .
$$

- Inner product of x and $y \in \mathbb{K}^{n}$:

$$
\begin{aligned}
&(x, y):=x^{T} y \\
&=\sum_{i=1}^{n} x_{i} y_{i}=y^{T} x \in \mathbb{R} \\
&(x, y):=x^{*} y=\sum_{i=1}^{n} \bar{x}_{i} y_{i}=\overline{y^{*} x} \in \mathbb{C}
\end{aligned}
$$

- Sherman-Morrison Formula:

Let $A \in \mathbb{R}^{n \times n}$ be nonsingular, $u, v \in \mathbb{R}^{n}$. If $v^{T} A^{-1} u \neq-1$, then

$$
\begin{equation*}
\left(A+u v^{T}\right)^{-1}=A^{-1}-A^{-1} u\left(1+v^{T} A^{-1} u\right)^{-1} v^{T} A^{-1} . \tag{1.1.1}
\end{equation*}
$$

- Sherman-Morrison-Woodbury Formula:

Let $A \in \mathbb{R}^{n \times n}$, be nonsingular $U, V \in \mathbb{R}^{n \times k}$. If $\left(I+V^{T} A^{-1} U\right)$ is invertible, then

$$
\left(A+U V^{T}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{T} A^{-1} U\right)^{-1} V^{T} A^{-1}
$$

Proof of (1.1.1):

$$
\begin{aligned}
& \left(A+u v^{T}\right)\left[A^{-1}-A^{-1} u\left(1+v^{T} A^{-1} u\right) v^{T} A^{-1}\right] \\
& =I+\frac{1}{1+v^{T} A^{-1} u}\left[u v^{T} A^{-1}\left(1+v^{T} A^{-1} u\right)-u v^{T} A^{-1}-u v^{T} A^{-1} u v^{T} A^{-1}\right] \\
& =I+\frac{1}{1+v^{T} A^{-1} u}\left[u\left(v^{T} A^{-1} u\right) v^{T} A^{-1}-u v^{T} A^{-1} u v^{T} A^{-1}\right]=I .
\end{aligned}
$$

Note that these formulae also hold for the complex case with $T=$ transpose or conjugate transpose.

Example 1.1.1

$$
A=\left[\begin{array}{ccccc}
3 & -1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 2 \\
0 & -1 & 4 & 1 & 1 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]=B+\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right] .
$$

1.1.2 Rank and orthogonality

Let $A \in \mathbb{R}^{m \times n}$. Then

- $\mathcal{R}(A)=\left\{y \in \mathbb{R}^{m} \mid y=A x\right.$ for some $\left.x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m}$ is the range space of A.
- $\mathcal{N}(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\} \subseteq \mathbb{R}^{n}$ is the null space of A.
- $\operatorname{rank}(A)=\operatorname{dim}[\mathcal{R}(A)]=$ The number of maximal linearly independent columns of A.
- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
- $\operatorname{dim}(\mathcal{N}(A))+\operatorname{rank}(A)=n$.
- If $m=n$, then A is nonsingular $\Leftrightarrow \mathcal{N}(A)=\{0\} \Leftrightarrow \operatorname{rank}(A)=n$.
- Let $\left\{x_{1}, \cdots, x_{p}\right\} \subseteq \mathbb{R}^{n}$. Then $\left\{x_{1}, \cdots, x_{p}\right\}$ is said to be orthogonal if $x_{i}^{T} x_{j}=0$, for $i \neq j$ and orthonormal if $x_{i}^{T} x_{j}=\delta_{i j}$, where $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i j}=1$ if $i=j$.
- $S^{\perp}=\left\{y \in \mathbb{R}^{m} \mid y^{T} x=0\right.$, for $\left.x \in S\right\}=$ orthogonal complement of S.
- $\mathbb{R}^{n}=\mathcal{R}\left(A^{T}\right) \oplus \mathcal{N}(A), \mathbb{R}^{m}=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{T}\right)$.
- $\mathcal{R}\left(A^{T}\right) \perp \mathcal{N}(A), \mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$.

$A \in \mathbb{R}^{n \times n}$	$A \in \mathbb{C}^{n \times n}$
Symmetric: $A^{T}=A$	Hermitian: $A^{*}=A\left(A^{H}=A\right)$
skew-symmetric: $A^{T}=-A$	skew-Hermitian: $A^{*}=-A$
positive definite: $x^{T} A x>0, x \neq 0$	positive definite: $x^{*} A x>0, x \neq 0$
non-negative definite: $x^{T} A x \geq 0$	non-negative definite: $x^{*} A x \geq 0$
indefinite: $\left(x^{T} A x\right)\left(y^{T} A y\right)<0$ for some x, y	indefinite: $\left(x^{*} A x\right)\left(y^{*} A y\right)<0$ for some x, y
orthogonal: $A^{T} A=I_{n}$	unitary: $A^{*} A=I_{n}$
normal: $A^{T} A=A A^{T}$	normal: $A^{*} A=A A^{*}$
positive: $a_{i j}>0$	
non-negative: $a_{i j} \geq 0$.	

Table 1.1: Some definitions for matrices.

1.1.3 Special matrices

Let $A \in \mathbb{K}^{n \times n}$. Then the matrix A is

- diagonal if $a_{i j}=0$, for $i \neq j$. Denote $D=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right) \in \mathbf{D}_{n}$ the set of diagonal matrices;
- tridiagonal if $a_{i j}=0,|i-j|>1$;
- upper bi-diagonal if $a_{i j}=0, i>j$ or $j>i+1$;
- (strictly) upper triangular if $a_{i j}=0, i>j \quad(i \geq j)$;
- upper Hessenberg if $a_{i j}=0, i>j+1$.
(Note: the lower case is the same as above.)
Sparse matrix: n^{1+r}, where $r<1$ (usually between $0.2 \sim 0.5$). If $n=1000, r=0.9$, then $n^{1+r}=501187$.

Example 1.1.2 If S is skew-symmetric, then $I-S$ is nonsingular and $(I-S)^{-1}(I+S)$ is orthogonal (Cayley transformation of S).

1.1.4 Eigenvalues and Eigenvectors

Definition 1.1.1 Let $A \in \mathbb{C}^{n \times n}$. Then $\lambda \in \mathbb{C}$ is called an eigenvalue of A, if there exists $x \neq 0, x \in \mathbb{C}^{n}$ with $A x=\lambda x$ and x is called an eigenvector of A corresponding to λ.

Notations:

$\sigma(A):=$ Spectrum of $A=$ The set of eigenvalues of A.
$\rho(A):=$ Radius of $A=\max \{|\lambda|: \lambda \in \sigma(A)\}$.

- $\lambda \in \sigma(A) \quad \Leftrightarrow \quad \operatorname{det}(A-\lambda I)=0$.
- $p(\lambda)=\operatorname{det}(\lambda I-A)=$ The characteristic polynomial of A.
- $p(\lambda)=\prod_{i=1}^{s}\left(\lambda-\lambda_{i}\right)^{m\left(\lambda_{i}\right)}$, where $\lambda_{i} \neq \lambda_{j}($ for $i \neq j)$ and $\sum_{i=1}^{s} m\left(\lambda_{i}\right)=n$.
- $m\left(\lambda_{i}\right)=$ The algebraic multiplicity of λ_{i}.
- $n\left(\lambda_{i}\right)=n-\operatorname{rank}\left(A-\lambda_{i} I\right)=$ The geometric multiplicity of λ_{i}.
- $1 \leq n\left(\lambda_{i}\right) \leq m\left(\lambda_{i}\right)$.

Definition 1.1.2 If there is some i such that $n\left(\lambda_{i}\right)<m\left(\lambda_{i}\right)$, then A is called degenerated.

The following statements are equivalent:
(1) There are n linearly independent eigenvectors;
(2) A is diagonalizable, i.e., there is a nonsingular matrix T such that $T^{-1} A T \in \mathbf{D}_{n}$;
(3) For each $\lambda \in \sigma(A)$, it holds that $m(\lambda)=n(\lambda)$.

If A is degenerated, then eigenvectors and principal vectors derive the Jordan form of A. (See Gantmacher: Matrix Theory I, II)

Theorem 1.1.1 (Schur) (1) Let $A \in \mathbb{C}^{n \times n}$. There is a unitary matrix U such that $U^{*} A U\left(=U^{-1} A U\right)$ is upper triangular.
(2) Let $A \in \mathbb{R}^{n \times n}$. There is an orthogonal matrix Q such that $Q^{T} A Q\left(=Q^{-1} A Q\right)$ is quasi-upper triangular, i.e., an upper triangular matrix possibly with nonzero subdiagonal elements in non-consecutive positions.
(3) A is normal if and only if there is a unitary U such that $U^{*} A U=D$ diagonal.
(4) A is Hermitian if and only if A is normal and $\sigma(A) \subseteq \mathbb{R}$.
(5) A is symmetric if and only if there is an orthogonal U such that $U^{T} A U=D$ diagonal and $\sigma(A) \subseteq \mathbb{R}$.

1.2 Norms and eigenvalues

Let X be a vector space over $\mathbb{K}=\mathbb{R}$ or \mathbb{C}.
Definition 1.2.1 (Vector norms) Let N be a real-valued function defined on X (N : $X \rightarrow \mathbb{R}_{+}$). Then N is a (vector) norm, if
$N 1: \quad N(\alpha x)=|\alpha| N(x), \alpha \in \mathbb{K}$, for $x \in X ;$
N2: $\quad N(x+y) \leq N(x)+N(y)$, for $x, y \in X$;
N3: $\quad N(x)=0$ if and only if $x=0$.
The usual notation is $\|x\|=N(x)$.

Example 1.2.1 Let $X=\mathbb{C}^{n}, p \geq 1$. Then $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ is a p-norm. Especially,

$$
\begin{aligned}
& \|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \quad(1 \text {-norm }) \\
& \|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2} \quad(2-n o r m=\text { Euclidean-norm }) \\
& \|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad(\infty \text {-norm }=\text { maximum norm })
\end{aligned}
$$

Lemma 1.2.1 $N(x)$ is a continuous function in the components x_{1}, \cdots, x_{n} of x.
Proof:

$$
\begin{aligned}
|N(x)-N(y)| & \leq N(x-y) \leq \sum_{j=1}^{n}\left|x_{j}-y_{j}\right| N\left(e_{j}\right) \\
& \leq\|x-y\|_{\infty} \sum_{j=1}^{n} N\left(e_{j}\right)
\end{aligned}
$$

in which e_{j} is the j th column of the identity matrix I_{n}.
Theorem 1.2.1 (Equivalence of norms) Let N and M be any two norms on \mathbb{C}^{n}. Then there are constants $c_{1}, c_{2}>0$ such that

$$
c_{1} M(x) \leq N(x) \leq c_{2} M(x), \text { for all } x \in \mathbf{C}^{n} .
$$

Proof: Without loss of generality (W.L.O.G.) we can assume that $M(x)=\|x\|_{\infty}$ and N is arbitrary. We claim that

$$
c_{1}\|x\|_{\infty} \leq N(x) \leq c_{2}\|x\|_{\infty},
$$

equivalently,

$$
c_{1} \leq N(z) \leq c_{2}, \forall z \in S=\left\{z \in \mathbb{C}^{n} \mid\|z\|_{\infty}=1\right\} .
$$

From Lemma 1.2.1, N is continuous on S (closed and bounded). By maximum and minimum principle, there are $c_{1}, c_{2} \geq 0$ and $z_{1}, z_{2} \in S$ such that

$$
c_{1}=N\left(z_{1}\right) \leq N(z) \leq N\left(z_{2}\right)=c_{2} .
$$

If $c_{1}=0$, then $N\left(z_{1}\right)=0$, and thus, $z_{1}=0$. This contradicts that $z_{1} \in S$.
Remark 1.2.1 Theorem 1.2.1 does not hold in infinite dimensional space.
Definition 1.2.2 (Matrix-norms) Let $A \in \mathbb{C}^{m \times n}$. A real-valued function $\|\cdot\|: \mathbf{C}^{m \times n} \rightarrow$ \mathbb{R}_{+}satisfying

N1: $\quad\|\alpha A\|=|\alpha|\|A\| ;$
N2: $\quad\|A+B\| \leq\|A\|+\|B\|$;

N3: $\quad\|A\|=0$ if and only if $A=0$;
N4: $\quad\|A B\| \leq\|A\|\|B\|$;
N5: $\quad\|A x\|_{v} \leq\|A\|\|x\|_{v}$ (matrix and vector norms are compatible for some $\|\cdot\|_{v}$) is called a matrix norm. If $\|\cdot\|$ satisfies $N 1$ to $N 4$, then it is called a multiplicative or algebra norm.

Example 1.2.2 (Frobenius norm) Let $\|A\|_{F}=\left[\sum_{i, j=1}^{n}\left|a_{i, j}\right|^{2}\right]^{1 / 2}$.

$$
\begin{align*}
\|A B\|_{F} & =\left(\sum_{i, j}\left|\sum_{k} a_{i k} b_{k j}\right|^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{i, j}\left\{\sum_{k}\left|a_{i k}\right|^{2}\right\}\left\{\sum_{k}\left|b_{k j}\right|^{2}\right\}\right)^{\frac{1}{2}} \quad \text { (Cauchy-Schwartz Ineq.) } \\
& =\left(\sum_{i} \sum_{k}\left|a_{i k}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{j} \sum_{k}\left|b_{k j}\right|^{2}\right)^{\frac{1}{2}} \\
& =\|A\|_{F}\|B\|_{F} . \tag{1.2.1}
\end{align*}
$$

This implies that N4 holds. Furthermore, by Cauchy-Schwartz inequality we have

$$
\begin{align*}
\|A x\|_{2} & =\left(\sum_{i}\left|\sum_{j} a_{i j} x_{j}\right|^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{i}\left(\sum_{j}\left|a_{i j}\right|^{2}\right)\left(\sum_{j}\left|x_{j}\right|^{2}\right)\right)^{\frac{1}{2}} \\
& =\|A\|_{F}\|x\|_{2} . \tag{1.2.2}
\end{align*}
$$

This implies that N5 holds. Also, N1, N2 and N3 hold obviously. (Here, $\left.\|I\|_{F}=\sqrt{n}\right)$.
Example 1.2.3 (Operator norm) Given a vector norm $\|\cdot\|$. An associated (induced) matrix norm is defined by

$$
\begin{equation*}
\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\max _{x \neq 0} \frac{\|A x\|}{\|x\|} . \tag{1.2.3}
\end{equation*}
$$

Then N5 holds immediately. On the other hand,

$$
\begin{align*}
\|(A B) x\| & =\|A(B x)\| \leq\|A\|\|B x\| \\
& \leq\|A\|\|B\|\|x\| \tag{1.2.4}
\end{align*}
$$

for all $x \neq 0$. This implies that

$$
\begin{equation*}
\|A B\| \leq\|A\|\|B\| \tag{1.2.5}
\end{equation*}
$$

It holds N4. (Here $\|I\|=1$).

In the following, we represent and verify three useful matrix norms:

$$
\begin{align*}
& \|A\|_{1}=\sup _{x \neq 0} \frac{\|A x\|_{1}}{\|x\|_{1}}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| \tag{1.2.6}\\
& \|A\|_{\infty}=\sup _{x \neq 0} \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \tag{1.2.7}\\
& \|A\|_{2}=\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sqrt{\rho\left(A^{*} A\right)} \tag{1.2.8}
\end{align*}
$$

Proof of (1.2.6):

$$
\begin{aligned}
\|A x\|_{1} & =\sum_{i}\left|\sum_{j} a_{i j} x_{j}\right| \leq \sum_{i} \sum_{j}\left|a_{i j} \| x_{j}\right| \\
& =\sum_{j}\left|x_{j}\right| \sum_{i}\left|a_{i j}\right| .
\end{aligned}
$$

Let $C_{1}:=\sum_{i}\left|a_{i k}\right|=\max _{j} \sum_{i}\left|a_{i j}\right|$. Then $\|A x\|_{1} \leq C_{1}\|x\|_{1}$, thus $\|A\|_{1} \leq C_{1}$. On the other hand, $\left\|e_{k}\right\|_{1}=1$ and $\left\|A e_{k}\right\|_{1}=\sum_{i=1}^{n}\left|a_{i k}\right|=C_{1}$.
Proof of (1.2.7):

$$
\begin{aligned}
\|A x\|_{\infty} & =\max _{i}\left|\sum_{j} a_{i j} x_{j}\right| \\
& \leq \max _{i} \sum_{j}\left|a_{i j} x_{j}\right| \\
& \leq \max _{i} \sum_{j}\left|a_{i j}\right|\|x\|_{\infty} \\
& \equiv \sum_{j}\left|a_{k j}\right|\|x\|_{\infty} \\
& \equiv C_{\infty}\|x\|_{\infty}
\end{aligned}
$$

This implies that $\|A\|_{\infty} \leq C_{\infty}$. If $A=0$, there is nothing to prove. Assume that $A \neq 0$ and the k-th row of A is nonzero. Define $z=\left[z_{j}\right] \in \mathbb{C}^{n}$ by

$$
z_{j}=\left\{\begin{array}{lll}
\frac{\bar{a}_{k j}}{\left|a_{k j}\right|} & \text { if } & a_{k j} \neq 0 \\
1 & \text { if } & a_{k j}=0
\end{array}\right.
$$

Then $\|z\|_{\infty}=1$ and $a_{k j} z_{j}=\left|a_{k j}\right|$, for $j=1, \ldots, n$. It follows that

$$
\|A\|_{\infty} \geq\|A z\|_{\infty}=\max _{i}\left|\sum_{j} a_{i j} z_{j}\right| \geq\left|\sum_{j} a_{k j} z_{j}\right|=\sum_{j=1}^{n}\left|a_{k j}\right| \equiv C_{\infty} .
$$

Thus, $\|A\|_{\infty} \geq \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \equiv C_{\infty}$.
Proof of (1.2.8): Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ be the eigenvalues of $A^{*} A$. There are mutually orthonormal vectors $v_{j}, j=1, \ldots, n$ such that $\left(A^{*} A\right) v_{j}=\lambda_{j} v_{j}$. Let $x=$ $\sum_{j} \alpha_{j} v_{j}$. Since $\|A x\|_{2}^{2}=(A x, A x)=\left(x, A^{*} A x\right)$,

$$
\|A x\|_{2}^{2}=\left(\sum_{j} \alpha_{j} v_{j}, \sum_{j} \alpha_{j} \lambda_{j} v_{j}\right)=\sum_{j} \lambda_{j}\left|\alpha_{j}\right|^{2} \leq \lambda_{1}\|x\|_{2}^{2}
$$

Example 1.2.4 (Dual norm) Let $\frac{1}{p}+\frac{1}{q}=1$. Then $\|\cdot\|_{p}^{*}=\|\cdot\|_{q},(p=\infty, q=1)$. (It concludes from the application of the Hölder inequality that $\left|y^{*} x\right| \leq\|x\|_{p}\|y\|_{q}$. See Appendix later!)

Theorem 1.2.2 Let $A \in \mathbb{C}^{n \times n}$. Then for any operator norm $\|\cdot\|$, it holds

$$
\rho(A) \leq\|A\| .
$$

Moreover, for any $\varepsilon>0$, there exists an operator norm $\|\cdot\|_{\varepsilon}$ such that

$$
\|\cdot\|_{\varepsilon} \leq \rho(A)+\varepsilon
$$

Proof: Let $|\lambda|=\rho(A) \equiv \rho$ and x be the associated eigenvector with $\|x\|=1$. Then,

$$
\rho(A)=|\lambda|=\|\lambda x\|=\|A x\| \leq\|A\|\|x\|=\|A\| .
$$

On the other hand, there is a unitary matrix U such that $A=U^{*} R U$, where R is upper triangular. Let $D_{t}=\operatorname{diag}\left(t, t^{2}, \ldots, t^{n}\right)$. Compute

$$
D_{t} R D_{t}^{-1}=\left[\begin{array}{ccccc}
\lambda_{1} & t^{-1} r_{12} & t^{-2} r_{13} & \cdots & t^{-n+1} r_{1 n} \\
& \lambda_{2} & t^{-1} r_{23} & \cdots & t^{-n+2} r_{2 n} \\
& & \lambda_{3} & & \vdots \\
& & & \ddots & t^{-1} r_{n-1, n} \\
& & & & \lambda_{n}
\end{array}\right]
$$

For $t>0$ sufficiently large, the sum of all absolute values of the off-diagonal elements of $D_{t} R D_{t}^{-1}$ is less than ε. So, it holds $\left\|D_{t} R D_{t}^{-1}\right\|_{1} \leq \rho(A)+\varepsilon$ for sufficiently large $t(\varepsilon)>0$. Define $\|\cdot\|_{\varepsilon}$ for any B by

$$
\begin{aligned}
\|B\|_{\varepsilon} & =\left\|D_{t} U B U^{*} D_{t}^{-1}\right\|_{1} \\
& =\left\|\left(U D_{t}^{-1}\right)^{-1} B\left(U D_{t}^{-1}\right)\right\|_{1}
\end{aligned}
$$

This implies that

$$
\|A\|_{\varepsilon}=\left\|D_{t} R D_{t}^{-1}\right\| \leq \rho(A)+\varepsilon
$$

Remark 1.2.2

$$
\begin{align*}
\|U A V\|_{F} & =\|A\|_{F} \quad\left(\text { by }\|U A\|_{F}=\sqrt{\left\|U a_{1}\right\|_{2}^{2}+\cdots+\left\|U a_{n}\right\|_{2}^{2}}\right) \tag{1.2.9}\\
\|U A V\|_{2} & =\|A\|_{2} \quad\left(\text { by } \rho\left(A^{*} A\right)=\rho\left(A A^{*}\right)\right) \tag{1.2.10}
\end{align*}
$$

where U and V are unitary.

Theorem 1.2.3 (Singular Value Decomposition (SVD)) Let $A \in \mathbb{C}^{m \times n}$. Then there exist unitary matrices $U=\left[u_{1}, \cdots, u_{m}\right] \in \mathbb{C}^{m \times m}$ and $V=\left[v_{1}, \cdots, v_{n}\right] \in \mathbb{C}^{n \times n}$ such that

$$
U^{*} A V=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{p}\right)=\Sigma,
$$

where $p=\min \{m, n\}$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0$. (Here, σ_{i} denotes the i-th largest singular value of A).

Proof: There are $x \in \mathbb{C}^{n}, y \in \mathbb{C}^{m}$ with $\|x\|_{2}=\|y\|_{2}=1$ such that $A x=\sigma y$, where $\sigma=\|A\|_{2}\left(\|A\|_{2}=\sup _{\|x\|_{2}=1}\|A x\|_{2}\right)$. Let $V=\left[x, V_{1}\right] \in \mathbb{C}^{n \times n}$, and $U=\left[y, U_{1}\right] \in \mathbb{C}^{m \times m}$ be unitary. Then

$$
A_{1} \equiv U^{*} A V=\left[\begin{array}{cc}
\sigma & w^{*} \\
0 & B
\end{array}\right]
$$

Since

$$
\left\|A_{1}\binom{\sigma}{w}\right\|_{2}^{2} \geq\left(\sigma^{2}+w^{*} w\right)^{2}
$$

it follows that

$$
\left\|A_{1}\right\|_{2}^{2} \geq \sigma^{2}+w^{*} w \quad \text { from } \quad \frac{\left\|A_{1}\binom{\sigma}{w}\right\|_{2}^{2}}{\left\|\binom{\sigma}{w}\right\|_{2}^{2}} \geq \sigma^{2}+w^{*} w
$$

But $\sigma^{2}=\|A\|_{2}^{2}=\left\|A_{1}\right\|_{2}^{2}$, it implies $w=0$. Hence, the theorem holds by induction.
Remark 1.2.3 $\|A\|_{2}=\sqrt{\rho\left(A^{*} A\right)}=\sigma_{1}=$ The maximal singular value of A.
Let $A=U \Sigma V^{*}$. Then we have

$$
\begin{aligned}
\|A B C\|_{F} & =\left\|U \Sigma V^{*} B C\right\|_{F}=\left\|\Sigma V^{*} B C\right\|_{F} \\
& \leq \sigma_{1}\|B C\|_{F}=\|A\|_{2}\|B C\|_{F} .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\|A B C\|_{F} \leq\|A\|_{2}\|B\|_{F}\|C\|_{2} \tag{1.2.11}
\end{equation*}
$$

In addition, by (1.2.2) and (1.2.11), we get

$$
\begin{equation*}
\|A\|_{2} \leq\|A\|_{F} \leq \sqrt{n}\|A\|_{2} . \tag{1.2.12}
\end{equation*}
$$

Theorem 1.2.4 Let $A \in \mathbb{C}^{n \times n}$. The following statements are equivalent:
(1) $\lim _{m \rightarrow \infty} A^{m}=0$;
(2) $\lim _{m \rightarrow \infty} A^{m} x=0$ for all x;
(3) $\rho(A)<1$.

Proof: $\quad(1) \Rightarrow(2)$: Trivial. $(2) \Rightarrow(3)$: Let $\lambda \in \sigma(A)$, i.e., $A x=\lambda x, x \neq 0$. This implies $A^{m} x=\lambda^{m} x \rightarrow 0$, as $\lambda^{m} \rightarrow 0$. Thus $|\lambda|<1$, i.e., $\rho(A)<1$. (3) $\Rightarrow(1)$: There is a norm $\|\cdot\|$ with $\|A\|<1$ (by Theorem 1.2.2). Therefore, $\left\|A^{m}\right\| \leq\|A\|^{m} \rightarrow 0$, i.e., $A^{m} \rightarrow 0$.

Theorem 1.2.5 It holds that

$$
\rho(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}
$$

where || || is an operator norm.
Proof: Since

$$
\rho(A)^{k}=\rho\left(A^{k}\right) \leq\left\|A^{k}\right\| \Rightarrow \rho(A) \leq\left\|A^{k}\right\|^{1 / k}
$$

for $k=1,2, \ldots$. If $\varepsilon>0$, then $\tilde{A}=[\rho(A)+\varepsilon]^{-1} A$ has spectral radius <1 and by Theorem 1.2.4 we have $\left\|\tilde{A}^{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$. There is an $N=N(\varepsilon, A)$ such that $\left\|\tilde{A}^{k}\right\|<1$ for all $k \geq N$. Thus, $\left\|A^{k}\right\| \leq[\rho(A)+\varepsilon]^{k}$, for all $k \geq N$ or $\left\|A^{k}\right\|^{1 / k} \leq \rho(A)+\varepsilon$ for all $k \geq N$. Since $\rho(A) \leq\left\|A^{k}\right\|^{1 / k}$, and k, ε are arbitrary, $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}$ exists and equals $\rho(A)$.

Theorem 1.2.6 Let $A \in \mathbb{C}^{n \times n}$, and $\rho(A)<1$. Then $(I-A)^{-1}$ exists and

$$
(I-A)^{-1}=I+A+A^{2}+\cdots
$$

Proof: Since $\rho(A)<1$, the eigenvalues of $(I-A)$ are nonzero. Therefore, by Theorem $2.5,(I-A)^{-1}$ exists and

$$
(I-A)\left(I+A+A^{2}+\cdots+A^{m}\right)=I-A^{m} \rightarrow 0
$$

Corollary 1.2.1 If $\|A\|<1$, then $(I-A)^{-1}$ exists and

$$
\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|}
$$

Proof: Since $\rho(A) \leq\|A\|<1$ (by Theorem 1.2.2),

$$
\left\|(I-A)^{-1}\right\|=\left\|\sum_{i=0}^{\infty} A^{i}\right\| \leq \sum_{i=0}^{\infty}\|A\|^{i}=(1-\|A\|)^{-1}
$$

Theorem 1.2.7 (Without proof) For $A \in \mathbb{K}^{n \times n}$ the following statements are equivalent:
(1) There is a multiplicative norm p with $p\left(A^{k}\right) \leq 1, k=1,2, \ldots$.
(2) For each multiplicative norm p the power $p\left(A^{k}\right)$ are uniformly bounded, i.e., there exists a $M(p)<\infty$ such that $p\left(A^{k}\right) \leq M(p), k=0,1,2, \ldots$
(3) $\rho(A) \leq 1$ and all eigenvalue λ with $|\lambda|=1$ are not degenerated. (i.e., $m(\lambda)=n(\lambda)$.)
(See Householder's book: The theory of matrix, pp.45-47.)
In the following we prove some important inequalities of vector norms and matrix norms. We let $1 / p+1 / q=1$.
(a) It holds that

$$
\begin{equation*}
1 \leq \frac{\|x\|_{p}}{\|x\|_{q}} \leq n^{(q-p) / p q}, \quad(p \leq q) \tag{1.2.13}
\end{equation*}
$$

Proof: Claim $\|x\|_{q} \leq\|x\|_{p},(p \leq q)$: It holds

$$
\|x\|_{q}=\| \| x\left\|_{p} \frac{x}{\|x\|_{p}}\right\|_{q}=\|x\|_{p}\left\|\frac{x}{\|x\|_{p}}\right\|_{q} \leq \mathcal{C}_{p, q}\|x\|_{p}
$$

where

$$
\mathcal{C}_{p, q}=\max _{\|e\|_{p}=1}\|e\|_{q}, \quad e=\left(e_{1}, \cdots, e_{n}\right)^{T}
$$

We now show that $\mathcal{C}_{p, q} \leq 1$. From $p \leq q$, we have

$$
\|e\|_{q}^{q}=\sum_{i=1}^{n}\left|e_{i}\right|^{q} \leq \sum_{i=1}^{n}\left|e_{i}\right|^{p}=1 \quad\left(\text { by }\left|e_{i}\right| \leq 1\right) .
$$

Hence, $\mathcal{C}_{p, q} \leq 1$, thus $\|x\|_{q} \leq\|x\|_{p}$.
To prove the second inequality: Let $\alpha=q / p>1$. Then the Jensen inequality holds for the convex function $\varphi(x)$:

$$
\varphi\left(\int_{\Omega} f d \mu\right) \leq \int_{\Omega}(\varphi \circ f) d \mu, \quad \mu(\Omega)=1
$$

If we take $\varphi(x)=x^{\alpha}$, then we have

$$
\int_{\Omega}|f|^{q} d x=\int_{\Omega}\left(|f|^{p}\right)^{q / p} d x \geq\left(\int_{\Omega}|f|^{p} d x\right)^{q / p}
$$

with $|\Omega|=1$. Consider the discrete measure $\sum_{i=1}^{n} \frac{1}{n}=1$ and $f(i)=\left|x_{i}\right|$. It follows that

$$
\sum_{i=1}^{n}\left|x_{i}\right|^{q} \frac{1}{n} \geq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p} \frac{1}{n}\right)^{q / p}
$$

Hence, we have

$$
n^{-\frac{1}{q}}\|x\|_{q} \geq n^{-\frac{1}{p}}\|x\|_{p}
$$

Thus,

$$
n^{(q-p) / p q}\|x\|_{q} \geq\|x\|_{p}
$$

(b) It holds that

$$
\begin{equation*}
1 \leq \frac{\|x\|_{p}}{\|x\|_{\infty}} \leq n^{\frac{1}{p}} \tag{1.2.14}
\end{equation*}
$$

Proof: Let $q \rightarrow \infty$ and $\lim _{q \rightarrow \infty}\|x\|_{q}=\|x\|_{\infty}$:

$$
\|x\|_{\infty}=\left|x_{k}\right|=\left(\left|x_{k}\right|^{q}\right)^{\frac{1}{q}} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{1}{q}}=\|x\|_{q} .
$$

On the other hand, we have

$$
\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{1}{q}} \leq\left(n\|x\|_{\infty}^{q}\right)^{\frac{1}{q}} \leq n^{\frac{1}{q}}\|x\|_{\infty}
$$

which implies that $\lim _{q \rightarrow \infty}\|x\|_{q}=\|x\|_{\infty}$.
(c) It holds that

$$
\begin{equation*}
\max _{1 \leq j \leq n}\left\|a_{j}\right\|_{p} \leq\|A\|_{p} \leq n^{(p-1) / p} \max _{1 \leq j \leq n}\left\|a_{j}\right\|_{p} \tag{1.2.15}
\end{equation*}
$$

where $A=\left[a_{1}, \cdots, a_{n}\right] \in \mathbb{R}^{m \times n}$.
Proof: The first inequality holds obviously. To show the second inequality, for $\|y\|_{p}=1$ we have

$$
\begin{aligned}
\|A y\|_{p} & \leq \sum_{j=1}^{n}\left|y_{j}\right|\left\|a_{j}\right\|_{p} \leq \sum_{j=1}^{n}\left|y_{j}\right| \max _{j}\left\|a_{j}\right\|_{p} \\
& =\|y\|_{1} \max _{j}\left\|a_{j}\right\|_{p} \leq n^{(p-1) / p} \max _{j}\left\|a_{j}\right\|_{p} \quad(\text { by }(1.2 .13)) .
\end{aligned}
$$

(d) It holds that

$$
\begin{equation*}
\max _{i, j}\left|a_{i j}\right| \leq\|A\|_{p} \leq n^{(p-1) / p} m^{1 / p} \max _{i, j}\left|a_{i j}\right| \tag{1.2.16}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}$.
Proof: By (1.2.14) and (1.2.15) immediately.
(e) It holds that

$$
\begin{equation*}
m^{(1-p) / p}\|A\|_{1} \leq\|A\|_{p} \leq n^{(p-1) / p}\|A\|_{1} . \tag{1.2.17}
\end{equation*}
$$

Proof: By (1.2.15) and (1.2.13) immediately.
(f) By Hölder inequality, we have (see Appendix later!)

$$
\left|y^{*} x\right| \leq\|x\|_{p}\|y\|_{q},
$$

where $\frac{1}{p}+\frac{1}{q}=1$ or

$$
\begin{equation*}
\max \left\{\left|x^{*} y\right|:\|y\|_{q}=1\right\}=\|x\|_{p} . \tag{1.2.18}
\end{equation*}
$$

Then it holds that

$$
\begin{equation*}
\|A\|_{p}=\left\|A^{T}\right\|_{q} \tag{1.2.19}
\end{equation*}
$$

Proof: By (1.2.18) we have

$$
\begin{aligned}
\max _{\|x\|_{p}=1}\|A x\|_{p} & =\max _{\|x\|_{p}=1} \max _{y \|_{q}=1}\left|(A x)^{T} y\right| \\
& =\max _{\|y\|_{q}=1} \max _{\|x\|_{p}=1}\left|x^{T}\left(A^{T} y\right)\right|=\max _{\|y\|_{q}=1}\left\|A^{T} y\right\|_{q}=\left\|A^{T}\right\|_{q} .
\end{aligned}
$$

(g) It holds that

$$
\begin{equation*}
n^{-\frac{1}{p}}\|A\|_{\infty} \leq\|A\|_{p} \leq m^{\frac{1}{p}}\|A\|_{\infty} \tag{1.2.20}
\end{equation*}
$$

Proof: By (1.2.17) and (1.2.19), we get

$$
\begin{aligned}
m^{\frac{1}{p}}\|A\|_{\infty} & =m^{\frac{1}{p}}\left\|A^{T}\right\|_{1}=m^{1-\frac{1}{q}}\left\|A^{T}\right\|_{1} \\
& =m^{(q-1) / q}\left\|A^{T}\right\|_{1} \geq\left\|A^{T}\right\|_{q}=\|A\|_{p} .
\end{aligned}
$$

(h) It holds that

$$
\begin{equation*}
\|A\|_{2} \leq \sqrt{\|A\|_{p}\|A\|_{q}}, \quad\left(\frac{1}{p}+\frac{1}{q}=1\right) \tag{1.2.21}
\end{equation*}
$$

Proof: By (1.2.19) we have

$$
\|A\|_{p}\|A\|_{q}=\left\|A^{T}\right\|_{q}\|A\|_{q} \geq\left\|A^{T} A\right\|_{q} \geq\left\|A^{T} A\right\|_{2}
$$

The last inequality holds by the following statement: Let S be a symmetric matrix. Then $\|S\|_{2} \leq\|S\|$, for any matrix operator norm $\|\|$. Since $|\lambda| \leq\| S \|$,

$$
\|S\|_{2}=\sqrt{\rho\left(S^{*} S\right)}=\sqrt{\rho\left(S^{2}\right)}=\max _{\lambda \in \sigma(S)}|\lambda|=\left|\lambda_{\max }\right|
$$

This implies, $\|S\|_{2} \leq\|S\|$.
(i) For $A \in \mathbb{R}^{m \times n}$ and $q \geq p \geq 1$, it holds that

$$
\begin{equation*}
n^{(p-q) / p q}\|A\|_{q} \leq\|A\|_{p} \leq m^{(q-p) / p q}\|A\|_{q} \tag{1.2.22}
\end{equation*}
$$

Proof: By (1.2.13), we get

$$
\begin{aligned}
\|A\|_{p} & =\max _{\|x\|_{p}=1}\|A x\|_{p} \leq \max _{\|x\|_{q} \leq 1} m^{(q-p) / p q}\|A x\|_{q} \\
& =m^{(q-p) / p q}\|A\|_{q} .
\end{aligned}
$$

Appendix: To show Hölder inequality and (1.2.18)

Taking $\varphi(x)=e^{x}$ in Jensen's inequality we have

$$
\exp \left\{\int_{\Omega} f d \mu\right\} \leq \int_{\Omega} e^{f} d \mu
$$

Let $\Omega=$ finite set $=\left\{p_{1}, \ldots, p_{n}\right\}, \mu\left(\left\{p_{i}\right\}\right)=\frac{1}{n}, f\left(p_{i}\right)=x_{i}$. Then

$$
\exp \left\{\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)\right\} \leq \frac{1}{n}\left(e^{x_{1}}+\cdots+e^{x_{n}}\right)
$$

Taking $y_{i}=e^{x_{i}}$, we have

$$
\left(y_{1} \cdots y_{n}\right)^{1 / n} \leq \frac{1}{n}\left(y_{1}+\cdots+y_{n}\right)
$$

Taking $\mu\left(\left\{p_{i}\right\}\right)=q_{i}>0, \sum_{i=1}^{n} q_{i}=1$ we have

$$
\begin{equation*}
y_{1}^{q_{1}} \cdots y_{n}^{q_{n}} \leq q_{1} y_{1}+\cdots+q_{n} y_{n} \tag{1.2.23}
\end{equation*}
$$

Let $\alpha_{i}=x_{i} /\|x\|_{p}, \beta_{i}=y_{i} /\|y\|_{q}$, where $x=\left[x_{1}, \cdots, x_{n}\right]^{T}, y=\left[y_{1}, \cdots, y_{n}\right]^{T}, \alpha=$ $\left[\alpha_{1}, \cdots, \alpha_{n}\right]^{T}$ and $\beta=\left[\beta_{1}, \cdots, \beta_{n}\right]^{T}$. By (1.2.23) we have

$$
\alpha_{i} \beta_{i} \leq \frac{1}{p} \alpha_{i}^{p}+\frac{1}{q} \beta_{i}^{q} .
$$

Since $\|\alpha\|_{p}=1,\|\beta\|_{q}=1$, it holds

$$
\sum_{i=1}^{n} \alpha_{i} \beta_{i} \leq \frac{1}{p}+\frac{1}{q}=1
$$

Thus,

$$
\left|x^{T} y\right| \leq\|x\|_{p}\|y\|_{q} .
$$

To show $\max \left\{\left|x^{T} y\right| ;\|x\|_{p}=1\right\}=\|y\|_{q}$. Taking $x_{i}=y_{i}^{q-1} /\|y\|_{q}^{q / p}$ we have

$$
\|x\|_{p}^{p}=\frac{\sum_{i=1}^{n}\left|y_{i}\right|^{(q-1) p}}{\|y\|_{q}^{q}}=1 .
$$

Note $(q-1) p=q$. Then

$$
\left|\sum_{i=1}^{n} x_{i}^{T} y_{i}\right|=\frac{\sum_{i=1}^{n}\left|y_{i}\right|^{q}}{\|y\|_{q}^{q / p}}=\frac{\|y\|_{q}^{q}}{\|y\|_{q}^{q / p}}=\|y\|_{q} .
$$

The following two properties are useful in the following sections.
(i) There exists \hat{z} with $\|\hat{z}\|_{p}=1$ such that $\|y\|_{q}=\hat{z}^{T} y$. Let $z=\hat{z} /\|y\|_{q}$. Then we have $z^{T} y=1$ and $\|z\|_{p}=\frac{1}{\|y\|_{q}}$.
(ii) From the duality, we have $\|y\|=\left(\|y\|_{*}\right)_{*}=\max _{\|u\|_{*}=1}\left|y^{T} u\right|=y^{T} \hat{z}$ and $\|\hat{z}\|_{*}=1$. Let $z=\hat{z} /\|y\|$. Then we have $z^{T} y=1$ and $\|z\|_{*}=\frac{1}{\|y\|}$.

1.3 The Sensitivity of Linear System $A x=b$

1.3.1 Backward error and Forward error

Let $x=F(a)$. We define backward and forward errors in Figure 1.1. In Figure 1.1, $\hat{x}+\Delta x=F(a+\Delta a)$ is called a mixed forward-backward error, where $|\Delta x| \leq \varepsilon|x|$, $|\Delta a| \leq \eta|a|$.

Definition 1.3.1 (i) An algorithm is backward stable, if for all a, it produces a computed \hat{x} with a small backward error, i.e., $\hat{x}=F(a+\Delta a)$ with Δa small.
(ii) An algorithm is numerical stable, if it is stable in the mixed forward-backward error sense, i.e., $\hat{x}+\Delta x=F(a+\Delta a)$ with both Δa and Δx small.

Figure 1.1: Relationship between backward and forward errors.
(iii) If a method which produces answers with forward errors of similar magnitude to those produced by a backward stable method, is called a forward stable.

Remark 1.3.1 (i) Backward stable \Rightarrow forward stable, not vice versa!
(ii) Forward error \leq condition number \times backward error

Consider

$$
\hat{x}-x=F(a+\Delta a)-F(a)=F^{\prime}(a) \Delta a+\frac{F^{\prime \prime}(a+\theta \Delta a)}{2}(\Delta a)^{2}, \theta \in(0,1)
$$

Then we have

$$
\frac{\hat{x}-x}{x}=\left(\frac{a F^{\prime}(a)}{F(a)}\right) \frac{\Delta a}{a}+O\left((\Delta a)^{2}\right) .
$$

The quantity $C(a)=\left|\frac{a F^{\prime}(a)}{F(a)}\right|$ is called the condition number of F . If x or F is a vector, then the condition number is defined in a similar way using norms and it measures the maximum relative change, which is attained for some, but not all Δa.

$$
\left\{\begin{array}{l}
\text { Àpriori error estimate! } \\
\text { P̀posteriori error estimate! }
\end{array}\right.
$$

1.3.2 An SVD Analysis

Let $A=\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}=U \Sigma V^{T}$ be a singular value decomposition (SVD) of A. Then

$$
x=A^{-1} b=\left(U \Sigma V^{T}\right)^{-1} b=\sum_{i=1}^{n} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i} .
$$

If $\cos (\theta)=\left|u_{n}{ }^{T} b\right| /\|b\|_{2}$ and

$$
\left(A-\varepsilon u_{n} v_{n}^{T}\right) y=b+\varepsilon\left(u_{n}^{T} b\right) u_{n}, \quad \sigma_{n}>\varepsilon \geq 0 .
$$

Then we have

$$
\|y-x\|_{2} \geq\left(\frac{\varepsilon}{\sigma_{n}}\right)\|x\|_{2} \cos (\theta)
$$

Let $E=\operatorname{diag}\{0, \cdots, 0, \varepsilon\}$. Then it holds

$$
(\Sigma-E) V^{T} y=U^{T} b+\varepsilon\left(u_{n}{ }^{T} b\right) e_{n} .
$$

Therefore,

$$
\begin{aligned}
y-x & =V(\Sigma-E)^{-1} U^{T} b+\varepsilon\left(u_{n}{ }^{T} b\right)\left(\sigma_{n}-\varepsilon\right)^{-1} v_{n}-V \Sigma^{-1} U^{T} b \\
& =V\left((\Sigma-E)^{-1}-\Sigma^{-1}\right) U^{T} b+\varepsilon\left(u_{n}^{T} b\right)\left(\sigma_{n}-\varepsilon\right)^{-1} v_{n} \\
& =V\left(\Sigma^{-1} E(\Sigma-E)^{-1}\right) U^{T} b+\varepsilon\left(u_{n}^{T} b\right)\left(\sigma_{n}-\varepsilon\right)^{-1} v_{n} \\
& =V \operatorname{diag}\left(0, \cdots, 0, \frac{\varepsilon}{\sigma_{n}\left(\sigma_{n}-\varepsilon\right)}\right) U^{T} b+\varepsilon\left(u_{n}^{T} b\right)\left(\sigma_{n}-\varepsilon\right)^{-1} v_{n} \\
& =\frac{\varepsilon}{\sigma_{n}\left(\sigma_{n}-\varepsilon\right)} v_{n}\left(u_{n}^{T} b\right)+\varepsilon\left(u_{n}^{T} b\right)\left(\sigma_{n}-\varepsilon\right)^{-1} v_{n} \\
& =u_{n}^{T} b v_{n}\left(\frac{\varepsilon}{\sigma_{n}\left(\sigma_{n}-\varepsilon\right)}+\varepsilon\left(\sigma_{n}-\varepsilon\right)^{-1}\right) \\
& =\frac{\varepsilon\left(1+\sigma_{n}\right)}{\sigma_{n}\left(\sigma_{n}-\varepsilon\right)} u_{n}^{T} b v_{n} .
\end{aligned}
$$

From the inequality $\|x\|_{2} \leq\|b\|_{2}\left\|A^{-1}\right\|_{2}$ we have

$$
\frac{\|y-x\|_{2}}{\|x\|_{2}} \geq \frac{\left|u_{n}^{T} b\right| \frac{\varepsilon}{\sigma_{n}}\left(\frac{1+\sigma}{\sigma-\varepsilon}\right)}{\|b\|_{2}} \geq \frac{\left|u_{n}{ }^{T} b\right|}{\|b\|_{2}} \frac{\varepsilon}{\sigma_{n}}
$$

Theorem 1.3.1 A is nonsingular and $\left\|A^{-1} E\right\|=r<1$. Then $A+E$ is nonsingular and $\left\|(A+E)^{-1}-A^{-1}\right\| \leq\|E\|\left\|A^{-1}\right\|^{2} /(1-r)$.

Proof:: Since A is nonsingular, $A+E=A(I-F)$, where $F=-A^{-1} E$. Since $\|F\|=r<1$, it follows that $I-F$ is nonsingular (by Corollary 1.2.1) and $\left\|(I-F)^{-1}\right\|<\frac{1}{1-r}$. Then

$$
(A+E)^{-1}=(I-F)^{-1} A^{-1} \Longrightarrow\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-r}
$$

and

$$
(A+E)^{-1}-A^{-1}=-A^{-1} E(A+E)^{-1}
$$

It follows that

$$
\left\|(A+E)^{-1}-A^{-1}\right\| \leq\left\|A^{-1}\right\|\|E\|\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|^{2}\|E\|}{1-r}
$$

Lemma 1.3.1 Let

$$
\left\{\begin{array}{l}
A x=b \\
(A+\Delta A) y=b+\Delta b
\end{array}\right.
$$

where $\|\Delta A\| \leq \delta\|A\|$ and $\|\Delta b\| \leq \delta\|b\|$. If $\delta \kappa(A)=r<1$, then $A+\Delta A$ is nonsingular and $\frac{\|y\|}{\|x\|} \leq \frac{1+r}{1-r}$, where $\kappa(A)=\|A\|\left\|A^{-1}\right\|$. From the equality $\left(I+A^{-1} \Delta A\right) y=x+A^{-1} \Delta b$ follows that

$$
\begin{aligned}
\|y\| & \leq\left\|\left(I+A^{-1} \Delta A\right)^{-1}\right\|\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-r}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& =\frac{1}{1-r}\left(\|x\|+r \frac{\|b\|}{\|A\|}\right)
\end{aligned}
$$

From $\|b\|=\|A x\| \leq\|A\|\|x\|$ follows the lemma.

1.3.3 Normwise Forward Error Bound

Theorem 1.3.2 If the assumption of Lemma 1.3.1 holds, then $\frac{\|x-y\|}{\|x\|} \leq \frac{2 \delta}{1-r} \kappa(A)$.
Proof:: Since $y-x=A^{-1} \Delta b-A^{-1} \Delta A y$, we have

$$
\|y-x\| \leq \delta\left\|A^{-1}\right\|\|b\|+\delta\left\|A^{-1}\right\|\|A\|\|y\|
$$

So by Lemma 1.3.1 it holds

$$
\begin{aligned}
\frac{\|y-x\|}{\|x\|} & \leq \delta \kappa(A) \frac{\|b\|}{\|A\|\|x\|}+\delta \kappa(A) \frac{\|y\|}{\|x\|} \\
& \leq \delta \kappa(A)\left(1+\frac{1+r}{1-r}\right)=\frac{2 \delta}{1-r} \kappa(A)
\end{aligned}
$$

1.3.4 Componentwise Forward Error Bound

Theorem 1.3.3 Let $A x=b$ and $(A+\Delta A) y=b+\Delta b$, where $|\Delta A| \leq \delta|A|$ and $|\Delta b| \leq \delta|b|$. If $\delta \kappa_{\infty}(A)=r<1$, then $(A+\Delta A)$ is nonsingular and $\frac{\|y-x\|_{\infty}}{\|x\|_{\infty}} \leq \frac{2 \delta}{1-r} \| \mid$ $A^{-1}\|A \mid\|_{\infty}$. Here $\left\|\left|A^{-1}\|A \mid\|_{\infty}\right.\right.$ is called a Skeel condition number.

Proof:: Since $\|\Delta A\|_{\infty} \leq \delta\|A\|_{\infty}$ and $\|\Delta b\|_{\infty} \leq \delta\|b\|_{\infty}$, the assumptions of Lemma 1.3.1 are satisfied in ∞-norm. So, $A+\Delta A$ is nonsingular and $\frac{\|y\|_{\infty}}{\|x\|_{\infty}} \leq \frac{1+r}{1-r}$.

Since $y-x=A^{-1} \Delta b-A^{-1} \Delta A y$, we have

$$
\begin{aligned}
|y-x| & \leq\left|A^{-1}\right||\Delta b|+\left|A^{-1}\|\Delta A\| y\right| \\
& \leq \delta\left|A^{-1}\right||b|+\delta\left|A^{-1}\|A\| y\right| \\
& \leq \delta\left|A^{-1} \| A\right|(|x|+|y|) .
\end{aligned}
$$

By taking ∞-norm, we have

$$
\begin{aligned}
\|y-x\|_{\infty} & \leq \delta\left\|\left|A^{-1}\|A \mid\|_{\infty}\left(\|x\|_{\infty}+\frac{1+r}{1-r}\|x\|_{\infty}\right)\right.\right. \\
& =\frac{2 \delta}{1-r}\left\|\mid A^{-1}\right\| A \|_{\infty}
\end{aligned}
$$

1.3.5 Derivation of Condition Number of $A x=b$

Let

$$
(A+\varepsilon F) x(\varepsilon)=b+\varepsilon f \quad \text { with } \quad x(0)=x .
$$

Then we have $\dot{x}(0)=A^{-1}(f-F x)$ and $x(\varepsilon)=x+\varepsilon \dot{x}(0)+o\left(\varepsilon^{2}\right)$. Therefore,

$$
\frac{\|x(\varepsilon)-x\|}{\|x\|} \leq \varepsilon\left\|A^{-1}\right\|\left\{\frac{\|f\|}{\|x\|}+\|F\|\right\}+o\left(\varepsilon^{2}\right) .
$$

Define condition number $\kappa(A):=\|A\|\left\|A^{-1}\right\|$. Then we have

$$
\frac{\|x(\varepsilon)-x\|}{\|x\|} \leq \kappa(A)\left(\rho_{A}+\rho_{b}\right)+o\left(\varepsilon^{2}\right)
$$

where $\rho_{A}=\varepsilon\|F\| /\|A\|$ and $\rho_{b}=\varepsilon\|f\| /\|b\|$.

1.3.6 Normwise Backward Error

Theorem 1.3.4 Let y be the computed solution of $A x=b$. Then the normwise backward error bound

$$
\eta(y):=\min \{\varepsilon \mid(A+\Delta A) y=b+\Delta b, \quad\|\Delta A\| \leq \varepsilon\|A\|, \quad\|\Delta b\| \leq \varepsilon\|b\|\}
$$

is given by

$$
\begin{equation*}
\eta(y)=\frac{\|r\|}{\|A\|\|y\|+\|b\|}, \tag{1.3.24}
\end{equation*}
$$

where $r=b-A y$ is the residual.
Proof: The right hand side of (1.3.24) is a upper bound of $\eta(y)$. This upper bound is attained for the perturbation (by construction!)

$$
\Delta A_{\text {min }}=\frac{\|A\|\|y\| r z^{T}}{\|A\|\|y\|+\|b\|}, \quad \Delta b_{\text {min }}=-\frac{\|b\|}{\|A\|\|y\|+\|b\|} r,
$$

where z is the dual vector of y, i.e. $z^{T} y=1$ and $\|z\|_{*}=\frac{1}{\|y\|}$.
Check:

$$
\left\|\Delta A_{\min }\right\|=\eta(y)\|A\|
$$

or

$$
\left\|\Delta A_{\min }\right\|=\frac{\|A\|\|y\|\left\|r z^{T}\right\|}{\|A\|\|y\|+\|b\|}=\left(\frac{\|r\|}{\|A\|\|y\|+\|b\|}\right)\|A\| .
$$

That is, to prove

$$
\left\|r z^{T}\right\|=\frac{\|r\|}{\|y\|}
$$

Since

$$
\left\|r z^{T}\right\|=\max _{\|u\|=1}\left\|\left(r z^{T}\right) u\right\|=\|r\| \max _{\|u\|=1}\left|z^{T} u\right|=\|r\|\|z\|_{*}=\|r\| \frac{1}{\|y\|},
$$

we have done. Similarly, $\left\|\Delta b_{\text {min }}\right\|=\eta(y)\|b\|$.

1.3.7 Componentwise Backward Error

Theorem 1.3.5 The componentwise backward error bound

$$
\omega(y):=\min \{\varepsilon|(A+\Delta A) y=b+\Delta b, \quad| \Delta A|\leq \varepsilon| A|, \quad| \Delta b|\leq \varepsilon| b \mid\}
$$

is given by

$$
\begin{equation*}
\omega(y)=\max _{i} \frac{|r|_{i}}{(A|y|+b)_{i}}, \tag{1.3.25}
\end{equation*}
$$

where $r=b-A y$. (note: $\xi / 0=0$ if $\xi=0 ; \xi / 0=\infty$ if $\xi \neq 0$.)
Proof: The right hand side of (1.3.25) is a upper bound for $\omega(y)$. This bound is attained for the perturbations $\Delta A=D_{1} A D_{2}$ and $\Delta b=-D_{1} b$, where $D_{1}=\operatorname{diag}\left(r_{i} /(A|y|+\right.$ $\left.b)_{i}\right)$ and $D_{2}=\operatorname{diag}\left(\operatorname{sign}\left(y_{i}\right)\right)$.

Remark 1.3.2 Theorems 1.3 .4 and 1.3 .5 are posterior error estimation approach.

1.3.8 Determinants and Nearness to Singularity

$$
B_{n}=\left[\begin{array}{cccc}
1 & -1 & \cdots & -1 \\
& 1 & \ddots & \vdots \\
& & 1 & -1 \\
0 & & & 1
\end{array}\right], \quad B_{n}^{-1}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 2^{n-2} \\
& \ddots & \ddots & \vdots \\
& & \ddots & 1 \\
0 & & & 1
\end{array}\right]
$$

Then $\operatorname{det}\left(B_{n}\right)=1, \kappa_{\infty}\left(B_{n}\right)=n 2^{n-1}, \sigma_{30}\left(B_{30}\right) \approx 10^{-8}$.

$$
D_{n}=\left[\begin{array}{ccc}
10^{-1} & & 0 \\
& \ddots & \\
0 & & 10^{-1}
\end{array}\right]
$$

Then $\operatorname{det}\left(D_{n}\right)=10^{-n}, \kappa_{p}\left(D_{n}\right)=1$ and $\sigma_{n}\left(D_{n}\right)=10^{-1}$.

Chapter 2

Numerical methods for solving linear systems

Let $A \in \mathbb{C}^{n \times n}$ be a nonsingular matrix. We want to solve the linear system $A x=b$ by (a) Direct methods (finite steps); Iterative methods (convergence). (See Chapter 4)

2.1 Elementary matrices

Let $\mathbb{X}=\mathbb{K}^{n}$ and $x, y \in \mathbb{X}$. Then $y^{*} x \in \mathbb{K}, x y^{*}=\left(\begin{array}{ccc}x_{1} \overline{y_{1}} & \cdots & x_{1} \overline{y_{n}} \\ \vdots & & \vdots \\ x_{n} \overline{y_{1}} & \cdots & x_{n} \overline{y_{n}}\end{array}\right)$. The eigenvalues of $x y^{*}$ are $\left\{0, \cdots, 0, y^{*} x\right\}$, since $\operatorname{rank}\left(x y^{*}\right)=1$ by $\left(x y^{*}\right) z=\left(y^{*} z\right) x$ and $\left(x y^{*}\right) x=\left(y^{*} x\right) x$.

Definition 2.1.1 A matrix of the form

$$
\begin{equation*}
I-\alpha x y^{*} \quad\left(\alpha \in \mathbb{K}, x, y \in \mathbb{K}^{n}\right) \tag{2.1.1}
\end{equation*}
$$

is called an elementary matrix.
The eigenvalues of $\left(I-\alpha x y^{*}\right)$ are $\left\{1,1, \cdots, 1,1-\alpha y^{*} x\right\}$. Compute

$$
\begin{equation*}
\left(I-\alpha x y^{*}\right)\left(I-\beta x y^{*}\right)=I-\left(\alpha+\beta-\alpha \beta y^{*} x\right) x y^{*} . \tag{2.1.2}
\end{equation*}
$$

If $\alpha y^{*} x-1 \neq 0$ and $\operatorname{let} \beta=\frac{\alpha}{\alpha y^{*} x-1}$, then $\alpha+\beta-\alpha \beta y^{*} x=0$. We have

$$
\begin{equation*}
\left(I-\alpha x y^{*}\right)^{-1}=\left(I-\beta x y^{*}\right), \frac{1}{\alpha}+\frac{1}{\beta}=y^{*} x \tag{2.1.3}
\end{equation*}
$$

Example 2.1.1 Let $x \in \mathbb{K}^{n}$, and $x^{*} x=1$. Let $H=\left\{z: z^{*} x=0\right\}$ and

$$
Q=I-2 x x^{*} \quad\left(Q=Q^{*}, Q^{-1}=Q\right) .
$$

Then Q reflects each vector with respect to the hyperplane H. Let $y=\alpha x+w, w \in H$. Then, we have

$$
Q y=\alpha Q x+Q w=-\alpha x+w-2\left(x^{*} w\right) x=-\alpha x+w .
$$

Example 2.1.2 Let $y=e_{i}=$ the i-th column of unit matrix and $x=l_{i}=\left[0, \cdots, 0, l_{i+1, i}, \cdots\right.$, $\left.l_{n, i}\right]^{T}$. Then,

$$
I+l_{i} e_{i}^{T}=\left[\begin{array}{ccccc}
1 & & & & \tag{2.1.4}\\
& \ddots & & & \\
& & 1 & & \\
& & l_{i+1, i} & & \\
& & \vdots & \ddots & \\
& & l_{n, i} & & 1
\end{array}\right]
$$

Since $e_{i}^{T} l_{i}=0$, we have

$$
\begin{equation*}
\left(I+l_{i} e_{i}^{T}\right)^{-1}=\left(I-l_{i} e_{i}^{T}\right) \tag{2.1.5}
\end{equation*}
$$

From the equality

$$
\left(I+l_{1} e_{1}^{T}\right)\left(I+l_{2} e_{2}^{T}\right)=I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}+l_{1}\left(e_{1}^{T} l_{2}\right) e_{2}^{T}=I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}
$$

follows that

$$
\begin{align*}
\left(I+l_{1} e_{1}^{T}\right) \cdots\left(I+l_{i} e_{i}^{T}\right) \cdots\left(I+l_{n-1} e_{n-1}^{T}\right) & =I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}+\cdots+l_{n-1} e_{n-1}^{T} \\
& =\left[\begin{array}{cccc}
1 & & & \\
l_{21} & \ddots & 0 & \\
\vdots & \ddots & \ddots & \\
l_{n 1} & \cdots & l_{n, n-1} & 1
\end{array}\right] \tag{2.1.6}
\end{align*}
$$

Theorem 2.1.1 A lower triangular with " 1 " on the diagonal can be written as the product of $n-1$ elementary matrices of the form (2.1.4).

Remark 2.1.1 $\left(I+l_{1} e_{1}^{T}+\ldots+l_{n-1} e_{n-1}^{T}\right)^{-1}=\left(l-l_{n-1} e_{n-1}^{T}\right) \ldots\left(I-l_{1} e_{1}^{T}\right)$ which can not be simplified as in (2.1.6).

2.2 LR-factorization

Definition 2.2.1 Given $A \in \mathbb{C}^{n \times n}$, a lower triangular matrix L and an upper triangular matrix R. If $A=L R$, then the product $L R$ is called a $L R$-factorization (or $L R$ decomposition) of A.

Basic problem:

Given $b \neq 0, b \in \mathbb{K}^{n}$. Find a vector $l_{1}=\left[0, l_{21}, \ldots, l_{n 1}\right]^{T}$ and $c \in \mathbb{K}$ such that

$$
\left(I-l_{1} e_{1}^{T}\right) b=c e_{1} .
$$

Solution:

$$
\begin{aligned}
& \left\{\begin{array}{l}
b_{1}=c, \\
b_{i}-l_{i 1} b_{1}=0, \quad i=2, \ldots, n
\end{array}\right. \\
& \left\{\begin{array}{l}
b_{1}=0, \quad \text { it has no solution }(\text { since } b \neq 0), \\
b_{1} \neq 0, \quad \text { then } c=b_{1}, l_{i 1}=b_{i} / b_{1}, \quad i=2, \ldots, n
\end{array}\right.
\end{aligned}
$$

Construction of LR-factorization:
Let $A=A^{(0)}=\left[a_{1}^{(0)}|\ldots| a_{n}^{(0)}\right]$. Apply basic problem to $a_{1}^{(0)}$: If $a_{11}^{(0)} \neq 0$, then there exists $L_{1}=I-l_{1} e_{1}^{T}$ such that $\left(I-l_{1} e_{1}^{T}\right) a_{1}^{(0)}=a_{11}^{(0)} e_{1}$. Thus

$$
A^{(1)}=L_{1} A^{(0)}=\left[L_{1} a_{1}^{(0)}|\ldots| L_{1} a_{n}^{(0)}\right]=\left[\begin{array}{cccc}
a_{11}^{(0)} & a_{12}^{(0)} & \ldots & a_{1 n}^{(0)} \tag{2.2.1}\\
0 & a_{22}^{(1)} & & a_{2 n}^{(1)} \\
\vdots & \vdots & & \vdots \\
0 & a_{n 2}^{(1)} & \ldots & a_{n n}^{(1)}
\end{array}\right] .
$$

The i-th step:

$$
\begin{align*}
A^{(i)} & =L_{i} A^{(i-1)}=L_{i} L_{i-1} \ldots L_{1} A^{(0)} \\
& =\left[\begin{array}{cccccc}
a_{11}^{(0)} & \ldots & \cdots & \cdots & \cdots & a_{1 n}^{(0)} \\
0 & a_{22}^{(1)} & \cdots & \cdots & \cdots & a_{2 n}^{(1)} \\
\vdots & 0 & \ddots & & & \vdots \\
\vdots & \vdots & a_{i i}^{(i-1)} & \cdots & \cdots & a_{i n}^{(i-1)} \\
\vdots & \vdots & 0 & a_{i+1, i+1}^{(i)} & \cdots & a_{i+1, n}^{(i)} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{n, i+1}^{(i)} & \cdots & a_{n n}^{(i)}
\end{array}\right] \tag{2.2.2}
\end{align*}
$$

If $a_{i i}^{(i-1)} \neq 0$, for $i=1, \ldots, n-1$, then the method is executable and we have that

$$
\begin{equation*}
A^{(n-1)}=L_{n-1} \ldots L_{1} A^{(0)}=R \tag{2.2.3}
\end{equation*}
$$

is an upper triangular matrix. Thus, $A=L R$. Explicit representation of L :

$$
\begin{aligned}
L_{i} & =I-l_{i} e_{i}^{T}, \quad L_{i}^{-1}=I+l_{i} e_{i}^{T} \\
L & =L_{1}^{-1} \ldots L_{n-1}^{-1}=\left(I+l_{1} e_{1}^{T}\right) \ldots\left(I+l_{n-1} e_{n-1}^{T}\right) \\
& =I+l_{1} e_{1}^{T}+\ldots+l_{n-1} e_{n-1}^{T} \quad(\text { by }(2.1 .6)) .
\end{aligned}
$$

Theorem 2.2.1 Let A be nonsingular. Then A has an $L R$-factorization $(A=L R)$ if and only if $k_{i}:=\operatorname{det}\left(A_{i}\right) \neq 0$, where A_{i} is the leading principal matrix of A, i.e.,

$$
A_{i}=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 i} \\
\vdots & & \vdots \\
a_{i 1} & \ldots & a_{i i}
\end{array}\right]
$$

for $i=1, \ldots, n-1$.
Proof: (Necessity " \Rightarrow "): Since $A=L R$, we have

$$
\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 i} \\
\vdots & & \vdots \\
a_{i 1} & \ldots & a_{i i}
\end{array}\right]=\left[\begin{array}{ccc}
l_{11} & & \\
\vdots & \ddots & O \\
l_{i 1} & \ldots & l_{i i}
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & & r_{1 i} \\
O & \ddots & \\
& & r_{i i}
\end{array}\right]
$$

From $\operatorname{det}(A) \neq 0$ follows that $\operatorname{det}(L) \neq 0$ and $\operatorname{det}(R) \neq 0$. Thus, $l_{j j} \neq 0$ and $r_{j j} \neq 0$, for $j=1, \ldots, n$. Hence $k_{i}=l_{11} \ldots l_{i i} r_{11} \ldots r_{i i} \neq 0$.
(Sufficiency " \Leftarrow "): From (2.2.2) we have

$$
A^{(0)}=\left(L_{1}^{-1} \ldots L_{i}^{-1}\right) A^{(i)} .
$$

Consider the $(i+1)$-th leading principle determinant. From (2.2.3) we have

$$
\left.\begin{array}{rl}
& {\left[\begin{array}{ccc}
a_{11} & \ldots & a_{i, i+1} \\
\vdots & & \vdots \\
a_{i+1} & \ldots & a_{i+1, i+1}
\end{array}\right]} \\
=\left[\begin{array}{cccc}
1 & & & \\
l_{21} & \ddots & & \\
\vdots & \ddots & \ddots & \\
\vdots & & \ddots & \ddots \\
& \\
l_{i+1,1} & \cdots & \cdots & l_{i+1, i}
\end{array}\right. & 1
\end{array}\right]\left[\begin{array}{ccccc}
a_{11}^{(0)} & a_{12}^{(0)} & \cdots & \cdots & * \\
& a_{22}^{(1)} & \cdots & \cdots & \vdots \\
& & \ddots & & \vdots \\
& & & a_{i i}^{(i-1)} & a_{i, i+1}^{(i-1)} \\
0 & & & & a_{i+1, i+1}^{(i)}
\end{array}\right] .
$$

Thus, $k_{i}=1 \cdot a_{11}^{(0)} a_{22}^{(1)} \ldots a_{i+1, i+1}^{(i)} \neq 0$ which implies $a_{i+1, i+1}^{(i)} \neq 0$. Therefore, the LRfactorization of A exists.

Theorem 2.2.2 If a nonsingular matrix A has an $L R$-factorization with $A=L R$ and $l_{11}=\cdots=l_{n n}=1$, then the factorization is unique.

Proof: Let $A=L_{1} R_{1}=L_{2} R_{2}$. Then $L_{2}^{-1} L_{1}=R_{2} R_{1}^{-1}=I$.
Corollary 2.2.1 If a nonsingular matrix A has an $L R$-factorization with $A=L D R$, where D is diagonal, L and R^{T} are unit lower triangular (with one on the diagonal) if and only if $k_{i} \neq 0$.

Theorem 2.2.3 Let A be a nonsingular matrix. Then there exists a permutation P, such that $P A$ has an $L R$-factorization.
(Proof): By construction! Consider (2.2.2): There is a permutation P_{i}, which interchanges the i-th row with a row of index large than i, such that $0 \neq a_{i i}^{(i-1)}\left(\in P_{i} A^{(i-1)}\right)$. This procedure is executable, for $i=1, \ldots, n-1$. So we have

$$
\begin{equation*}
L_{n-1} P_{n-1} \ldots L_{i} P_{i} \ldots L_{1} P_{1} A^{(0)}=R . \tag{2.2.4}
\end{equation*}
$$

Let P be a permutation which affects only elements $i+1, \cdots, n$. It holds

$$
P\left(I-l_{i} e_{i}^{T}\right) P^{-1}=I-\left(P l_{i}\right) e_{i}^{T}=I-\tilde{l}_{i} e_{i}^{T}=\tilde{L}_{i}, \quad\left(e_{i}^{T} P^{-1}=e_{i}^{T}\right)
$$

where \tilde{L}_{i} is lower triangular. Hence we have

$$
\begin{equation*}
P L_{i}=\tilde{L}_{i} P . \tag{2.2.5}
\end{equation*}
$$

Now write all P_{i} in (2.2.4) to the right as

$$
L_{n-1} \tilde{L}_{n-2} \ldots \tilde{L}_{1} P_{n-1} \ldots P_{1} A^{(0)}=R .
$$

Then we have $P A=L R$ with $L^{-1}=L_{n-1} \tilde{L}_{n-2} \cdots \tilde{L}_{1}$ and $P=P_{n-1} \cdots P_{1}$.

2.3 Gaussian elimination

2.3.1 Practical implementation

Given a linear system

$$
\begin{equation*}
A x=b \tag{2.3.1}
\end{equation*}
$$

with A nonsingular. We first assume that A has an LR-factorization. i.e., $A=L R$. Thus

$$
L R x=b .
$$

We then (i) solve $L y=b$; (ii) solve $R x=y$. These imply that $L R x=L y=b$. From (2.2.4), we have

$$
L_{n-1} \ldots L_{2} L_{1}(A \mid b)=\left(R \mid L^{-1} b\right)
$$

Algorithm 2.3.1 (without permutation)

For $k=1, \ldots, n-1$,

$$
\begin{aligned}
& \text { if } a_{k k}=0 \text { then stop }(*) \text {; } \\
& \text { else } \omega_{j}:=a_{k j}(j=k+1, \ldots, n) \\
& \text { for } i=k+1, \ldots, n, \\
& \quad \eta:=a_{i k} / a_{k k}, a_{i k}:=\eta \\
& \quad \text { for } j=k+1, \ldots, n, \\
& \qquad a_{i j}:=a_{i j}-\eta \omega_{j}, b_{j}:=b_{j}-\eta b_{k} .
\end{aligned}
$$

For $x:$ (back substitution!)

$$
\begin{aligned}
& x_{n}=b_{n} / a_{n n} ; \\
& \text { for } i=n-1, n-2, \ldots, 1 \\
& \quad x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right) / a_{i i} .
\end{aligned}
$$

Cost of computation (one multiplication + one addition \equiv one flop):
(i) LR-factorization: $n^{3} / 3-n / 3$ flops;
(ii) Computation of $y: n(n-1) / 2$ flops;
(iii) Computation of $x: n(n+1) / 2$ flops.

For $A^{-1}: 4 / 3 n^{3} \approx n^{3} / 3+k n^{2}$ ($k=n$ linear systems).
Pivoting: (a) Partial pivoting; (b) Complete pivoting.
From (2.2.2), we have

$$
A^{(k-1)}=\left[\begin{array}{cccccc}
a_{11}^{(0)} & \cdots & \cdots & \cdots & \cdots & a_{1 n}^{(0)} \\
0 & \ddots & & & & \vdots \\
\vdots & & a_{k-1, k-1}^{(k-2)} & \cdots & \cdots & a_{k-1, n}^{(k-2)} \\
\vdots & & 0 & a_{k k}^{(k-1)} & \cdots & a_{k n}^{(k-1)} \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \cdots & 0 & a_{n k}^{(k-1)} & \cdots & a_{n n}^{(k-1)}
\end{array}\right] .
$$

For (a):

$$
\left\{\begin{array}{l}
\text { Find a } p \in\{k, \ldots, n\} \text { such that } \tag{2.3.2}\\
\quad\left|a_{p k}\right|=\max _{k \leq i \leq n}\left|a_{i k}\right| \quad\left(r_{k}=p\right) \\
\text { swap } a_{k j}, b_{k} \text { and } a_{p j}, b_{p} \text { respectively, }(j=1, \ldots, n) .
\end{array}\right.
$$

Replacing (*) in Algorithm 2.3 .1 by (2.3.2), we have a new factorization of A with partial pivoting, i.e., $P A=L R$ (by Theorem 2.2.1) and $\left|l_{i j}\right| \leq 1$ for $i, j=1, \ldots, n$. For solving linear system $A x=b$, we use

$$
P A x=P b \Rightarrow L(R x)=P^{T} b \equiv \tilde{b} .
$$

It needs extra $n(n-1) / 2$ comparisons.
For (b):

$$
\left\{\begin{array}{l}
\text { Find } \quad p, q \in\{k, \ldots, n\} \text { such that } \tag{2.3.3}\\
\quad\left|a_{p q}\right| \leq \max _{k \leq i, j \leq n}\left|a_{i j}\right|,\left(r_{k}:=p, c_{k}:=q\right) \\
\text { swap } a_{k j}, b_{k} \text { and } a_{p j}, b_{p} \text { respectively, }(j=k, \ldots, n), \\
\text { swap } a_{i k} \text { and } a_{i q}(i=1, \ldots, n) \text {. }
\end{array}\right.
$$

Replacing $(*)$ in Algorithm 2.3.1 by (2.3.3), we also have a new factorization of A with complete pivoting, i.e., $P A \Pi=L R$ (by Theorem 2.2.1) and $\left|l_{i j}\right| \leq 1$, for $i, j=1, \ldots, n$. For solving linear system $A x=b$, we use

$$
P A \Pi\left(\Pi^{T} x\right)=P b \Rightarrow L R \tilde{x}=\tilde{b} \Rightarrow x=\Pi \tilde{x}
$$

It needs $n^{3} / 3$ comparisons.
Example 2.3.1 Let $A=\left[\begin{array}{cc}10^{-4} & 1 \\ 1 & 1\end{array}\right]$ be in three decimal-digit floating point arithmetic.
Then $\kappa(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty} \approx 4$. A is well-conditioned.

- Without pivoting:

$$
\begin{aligned}
L & =\left[\begin{array}{cc}
1 & 0 \\
f l\left(1 / 10^{-4}\right) & 1
\end{array}\right], \quad f l\left(1 / 10^{-4}\right)=10^{4}, \\
R & =\left[\begin{array}{cc}
10^{-4} & 1 \\
0 & f l\left(1-10^{4} \cdot 1\right)
\end{array}\right], \quad f l\left(1-10^{4} \cdot 1\right)=-10^{4} . \\
L R & =\left[\begin{array}{cc}
1 & 0 \\
10^{4} & 1
\end{array}\right]\left[\begin{array}{cc}
10^{-4} & 1 \\
0 & -10^{4}
\end{array}\right]=\left[\begin{array}{cc}
10^{-4} & 1 \\
1 & 0
\end{array}\right] \neq\left[\begin{array}{cc}
10^{-4} & 1 \\
1 & 1
\end{array}\right]=A .
\end{aligned}
$$

Here a_{22} entirely "lost" from computation. It is numerically unstable. Let $A x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Then $x \approx\left[\begin{array}{l}1 \\ 1\end{array}\right]$. But $L y=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ solves $y_{1}=1$ and $y_{2}=f l\left(2-10^{4} \cdot 1\right)=-10^{4}, R \hat{x}=y$ solves $\hat{x}_{2}=f l\left(\left(-10^{4}\right) /\left(-10^{4}\right)\right)=1, \hat{x}_{1}=f l\left((1-1) / 10^{-4}\right)=0$. We have an erroneous solution with $\operatorname{cond}(L), \operatorname{cond}(R) \approx 10^{8}$.

- Partial pivoting:

$$
\begin{aligned}
L & =\left[\begin{array}{cc}
1 & 0 \\
f l\left(10^{-4} / 1\right) & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
10^{-4} & 1
\end{array}\right], \\
R & =\left[\begin{array}{cc}
1 & 1 \\
0 & f l\left(1-10^{-4}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

L and R are both well-conditioned.

2.3.2 $L D R$ - and $L L^{T}$-factorizations

Let $A=L D R$ as in Corollary 2.2.1.

Algorithm 2.3.2 (Crout's factorization or compact method)

For $k=1, \ldots, n$,

$$
\begin{aligned}
& \text { for } p=1,2, \ldots, k-1, \\
& r_{p}:=d_{p} a_{p k}, \\
& \omega_{p}:=a_{k p} d_{p}, \\
& d_{k}:=a_{k k}-\sum_{p=1}^{k-1} a_{k p} r_{p}, \\
& \text { if } d_{k}=0, \text { then stop; else } \\
& \text { for } i=k+1, \ldots, n, \\
& a_{i k}:=\left(a_{i k}-\sum_{p=1}^{k-1} a_{i p} r_{p}\right) / d_{k}, \\
& a_{k i}:=\left(a_{k i}-\sum_{p=1}^{k-1} \omega_{p} a_{p i}\right) / d_{k} .
\end{aligned}
$$

Cost: $n^{3} / 3$ flops.

- With partial pivoting: see Wilkinson EVP pp.225-.
- Advantage: One can use double precision for inner product.

Theorem 2.3.1 If A is nonsingular, real and symmetric, then A has a unique $L D L^{T}$ factorization, where D is diagonal and L is a unit lower triangular matrix (with one on the diagonal).

Proof: $\quad A=L D R=A^{T}=R^{T} D L^{T}$. It implies $L=R^{T}$.
Theorem 2.3.2 If A is symmetric and positive definite, then there exists a lower triangular $G \in \mathbb{R}^{n \times n}$ with positive diagonal elements such that $A=G G^{T}$.

Proof: $\quad A$ is symmetric positive definite $\Leftrightarrow x^{T} A x \geq 0$, for all nonzero vector $x \in \mathbb{R}^{n \times n}$ $\Leftrightarrow k_{i} \geq 0$, for $i=1, \cdots, n, \Leftrightarrow$ all eigenvalues of A are positive.

From Corollary 2.2.1 and Theorem 2.3 .1 we have $A=L D L^{T}$. From $L^{-1} A L^{-T}=D$ follows that $d_{k}=\left(e_{k}^{T} L^{-1}\right) A\left(L^{-T} e_{k}\right)>0$. Thus, $G=L \operatorname{diag}\left\{d_{1}^{1 / 2}, \cdots, d_{n}^{1 / 2}\right\}$ is real, and then $A=G G^{T}$.

Algorithm 2.3.3 (Cholesky factorization) Let A be symmetric positive definite. To find a lower triangular matrix G such that $A=G G^{T}$.

$$
\begin{aligned}
& \text { For } k=1,2, \ldots, n, \\
& \qquad \begin{array}{l}
a_{k k}:=\left(a_{k k}-\sum_{p=1}^{k-1} a_{k p}^{2}\right)^{1 / 2} ; \\
\quad \text { for } i=k+1, \ldots, n, \\
\quad a_{i k}=\left(a_{i k}-\sum_{p=1}^{k-1} a_{i p} a_{k p}\right) / a_{k k} .
\end{array}
\end{aligned}
$$

Cost: $n^{3} / 6$ flops.
Remark 2.3.1 For solving symmetric, indefinite systems: See Golub/ Van Loan Matrix Computation pp. 159-168. $P A P^{T}=L D L^{T}, D$ is 1×1 or 2×2 block-diagonal matrix, P is a permutation and L is lower triangular with one on the diagonal.

2.3.3 Error estimation for linear systems

Consider the linear system

$$
\begin{equation*}
A x=b, \tag{2.3.4}
\end{equation*}
$$

and the perturbed linear system

$$
\begin{equation*}
(A+\delta A)(x+\delta x)=b+\delta b, \tag{2.3.5}
\end{equation*}
$$

where δA and δb are errors of measure or round-off in factorization.
Definition 2.3.1 Let $\|\|$ be an operator norm and A be nonsingular. Then $\kappa \equiv \kappa(A)=$ $\|A\|\left\|A^{-1}\right\|$ is a condition number of A corresponding to $\|\|$.

Theorem 2.3.3 (Forward error bound) Let x be the solution of the (2.3.4) and $x+\delta x$ be the solution of the perturbed linear system (2.3.5). If $\|\delta A\|\left\|A^{-1}\right\|<1$, then

$$
\begin{equation*}
\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa}{1-\kappa \frac{\|\delta A\| \|}{\|A\|}}\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right) . \tag{2.3.6}
\end{equation*}
$$

Proof: From (2.3.5) we have

$$
(A+\delta A) \delta x+A x+\delta A x=b+\delta b .
$$

Thus,

$$
\begin{equation*}
\delta x=-(A+\delta A)^{-1}[(\delta A) x-\delta b] . \tag{2.3.7}
\end{equation*}
$$

Here, Corollary 2.7 implies that $(A+\delta A)^{-1}$ exists. Now,

$$
\left\|(A+\delta A)^{-1}\right\|=\left\|\left(I+A^{-1} \delta A\right)^{-1} A^{-1}\right\| \leq\left\|A^{-1}\right\| \frac{1}{1-\left\|A^{-1}\right\|\|\delta A\|}
$$

On the other hand, $b=A x$ implies $\|b\| \leq\|A\|\|x\|$. So,

$$
\begin{equation*}
\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|} \tag{2.3.8}
\end{equation*}
$$

From (2.3.7) follows that $\|\delta x\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|\delta A\|}(\|\delta A\|\|x\|+\|\delta b\|)$. By using (2.3.8), the inequality (2.3.6) is proved.

Remark 2.3.2 If $\kappa(A)$ is large, then A (for the linear system $A x=b$) is called illconditioned, else well-conditioned.

2.3.4 Error analysis for Gaussian algorithm

A computer in characterized by four integers: (a) the machine base β; (b) the precision t; (c) the underflow limit L; (d) the overflow limit U. Define the set of floating point numbers.

$$
\begin{equation*}
F=\left\{f= \pm 0 . d_{1} d_{2} \cdots d_{t} \times \beta^{e} \mid 0 \leq d_{i}<\beta, d_{1} \neq 0, L \leq e \leq U\right\} \cup\{0\} \tag{2.3.9}
\end{equation*}
$$

Let $G=\left\{x \in \mathbb{R}|m \leq|x| \leq M\} \cup\{0\}\right.$, where $m=\beta^{L-1}$ and $M=\beta^{U}\left(1-\beta^{-t}\right)$ are the minimal and maximal numbers of $F \backslash\{0\}$ in absolute value, respectively. We define an operator $f l: G \rightarrow F$ by

$$
f l(x)=\text { the nearest } c \in F \text { to } x \text { by rounding arithmetic. }
$$

One can show that $f l$ satisfies

$$
\begin{equation*}
f l(x)=x(1+\varepsilon), \quad|\varepsilon| \leq e p s \tag{2.3.10}
\end{equation*}
$$

where eps $=\frac{1}{2} \beta^{1-t}$. (If $\beta=2$, then eps $=2^{-t}$). It follows that

$$
f l(a \circ b)=(a \circ b)(1+\varepsilon)
$$

or

$$
f l(a \circ b)=(a \circ b) /(1+\varepsilon),
$$

where $|\varepsilon| \leq e p s$ and $\circ=+,-, \times, /$.
Algorithm 2.3.4 Given $x, y \in \mathbb{R}^{n}$. The following algorithm computes $x^{T} y$ and stores the result in s.

$$
\begin{aligned}
& s=0 \\
& \text { for } k=1, \ldots, n, \\
& \qquad s=s+x_{k} y_{k} .
\end{aligned}
$$

Theorem 2.3.4 If $n 2^{-t} \leq 0.01$, then

$$
f l\left(\sum_{k=1}^{n} x_{k} y_{k}\right)=\sum_{k=1}^{n} x_{k} y_{k}\left[1+1.01(n+2-k) \theta_{k} 2^{-t}\right],\left|\theta_{k}\right| \leq 1
$$

Proof: Let $s_{p}=f l\left(\sum_{k=1}^{p} x_{k} y_{k}\right)$ be the partial sum in Algorithm 2.3.4. Then

$$
s_{1}=x_{1} y_{1}\left(1+\delta_{1}\right)
$$

with $\left|\delta_{1}\right| \leq e p s$ and for $p=2, \ldots, n$,

$$
s_{p}=f l\left[s_{p-1}+f l\left(x_{p} y_{p}\right)\right]=\left[s_{p-1}+x_{p} y_{p}\left(1+\delta_{p}\right)\right]\left(1+\varepsilon_{p}\right)
$$

with $\left|\delta_{p}\right|,\left|\varepsilon_{p}\right| \leq e p s$. Therefore

$$
f l\left(x^{T} y\right)=s_{n}=\sum_{k=1}^{n} x_{k} y_{k}\left(1+\gamma_{k}\right),
$$

where $\left(1+\gamma_{k}\right)=\left(1+\delta_{k}\right) \prod_{j=k}^{n}\left(1+\varepsilon_{j}\right)$, and $\varepsilon_{1} \equiv 0$. Thus,

$$
\begin{equation*}
f l\left(\sum_{k=1}^{n} x_{k} y_{k}\right)=\sum_{k=1}^{n} x_{k} y_{k}\left[1+1.01(n+2-k) \theta_{k} 2^{-t}\right] . \tag{2.3.11}
\end{equation*}
$$

The result follows immediately from the following useful Lemma.

Lemma 2.3.5 If $(1+\alpha)=\prod_{k=1}^{n}\left(1+\alpha_{k}\right)$, where $\left|\alpha_{k}\right| \leq 2^{-t}$ and $n 2^{-t} \leq 0.01$, then

$$
\prod_{k=1}^{n}\left(1+\alpha_{k}\right)=1+1.01 n \theta 2^{-t} \text { with }|\theta| \leq 1
$$

Proof: From assumption it is easily seen that

$$
\begin{equation*}
\left(1-2^{-t}\right)^{n} \leq \prod_{k=1}^{n}\left(1+\alpha_{k}\right) \leq\left(1+2^{-t}\right)^{n} . \tag{2.3.12}
\end{equation*}
$$

Expanding the Taylor expression of $(1-x)^{n}$ as $-1<x<1$, we get

$$
(1-x)^{n}=1-n x+\frac{n(n-1)}{2}(1-\theta x)^{n-2} x^{2} \geq 1-n x .
$$

Hence

$$
\begin{equation*}
\left(1-2^{-t}\right)^{n} \geq 1-n 2^{-t} . \tag{2.3.13}
\end{equation*}
$$

Now, we estimate the upper bound of $\left(1+2^{-t}\right)^{n}$:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=1+x+\frac{x}{2} x\left(1+\frac{x}{3}+\frac{2 x^{2}}{4!}+\cdots\right) .
$$

If $0 \leq x \leq 0.01$, then

$$
\begin{equation*}
1+x \leq e^{x} \leq 1+x+0.01 x \frac{1}{2} e^{x} \leq 1+1.01 x \tag{2.3.14}
\end{equation*}
$$

(Here, we use the fact $e^{0.01}<2$ to the last inequality.) Let $x=2^{-t}$. Then the left inequality of (2.3.14) implies

$$
\begin{equation*}
\left(1+2^{-t}\right)^{n} \leq e^{2^{-t} n} \tag{2.3.15}
\end{equation*}
$$

Let $x=2^{-t} n$. Then the second inequality of (2.3.14) implies

$$
\begin{equation*}
e^{2^{-t} n} \leq 1+1.01 n 2^{-t} \tag{2.3.16}
\end{equation*}
$$

From (2.3.15) and (2.3.16) we have

$$
\left(1+2^{-t}\right)^{n} \leq 1+1.01 n 2^{-t}
$$

Let the exact $L R$-factorization of A be L and $R(A=L R)$ and let \tilde{L}, \tilde{R} be the $L R$-factorization of A by using Gaussian Algorithm (without pivoting). There are two possibilities:
(i) Forward error analysis: Estimate $|L-\tilde{L}|$ and $|R-\tilde{R}|$.
(ii) Backward error analysis: Let $\tilde{L} \tilde{R}$ be the exact $L R$-factorization of a perturbed matrix $\tilde{A}=A+F$. Then F will be estimated, i.e., $|F| \leq$?.

2.3.5 Apriori error estimate for backward error bound of LRfactorization

From (2.2.2) we have

$$
A^{(k+1)}=L_{k} A^{(k)}
$$

for $k=1,2, \ldots, n-1\left(A^{(1)}=A\right)$. Denote the entries of $A^{(k)}$ by $a_{i j}^{(k)}$ and let $l_{i k}=$ $f l\left(a_{i k}^{(k)} / a_{k k}^{(k)}\right), i \geq k+1$. From (2.2.2) we know that

$$
a_{i j}^{(k+1)}= \begin{cases}0 ; & \text { for } i \geq k+1, j=k \tag{2.3.17}\\ f l\left(a_{i j}^{(k)}-f l\left(l_{i k} a_{k j}^{(k)}\right)\right) ; & \text { for } i \geq k+1, j \geq k+1 \\ a_{i j}^{(k)} ; & \text { otherwise. }\end{cases}
$$

From (2.3.10) we have $l_{i k}=\left(a_{i k}^{(k)} / a_{k k}^{(k)}\right)\left(1+\delta_{i k}\right)$ with $\left|\delta_{i k}\right| \leq 2^{-t}$. Then

$$
\begin{equation*}
a_{i k}^{(k)}-l_{i k} a_{k k}^{(k)}+a_{i j}^{(k)} \delta_{i k}=0, \quad \text { for } i \geq k+1 \tag{2.3.18}
\end{equation*}
$$

Let $a_{i k}^{(k)} \delta_{i k} \equiv \varepsilon_{i k}^{(k)}$. From (2.3.10) we also have

$$
\begin{align*}
a_{i j}^{(k+1)} & =f l\left(a_{i j}^{(k)}-f l\left(l_{i k} a_{k j}^{(k)}\right)\right) \tag{2.3.19}\\
& =\left(a_{i j}^{(k)}-\left(l_{i k} a_{k j}^{(k)}\left(1+\delta_{i j}\right)\right)\right) /\left(1+\delta_{i j}^{\prime}\right)
\end{align*}
$$

with $\left|\delta_{i j}\right|,\left|\delta_{i j}^{\prime}\right| \leq 2^{-t}$. Then

$$
\begin{equation*}
a_{i j}^{(k+1)}=a_{i j}^{(k)}-l_{i k} a_{k j}^{(k)}-l_{i k} a_{k j}^{(k)} \delta_{i j}+a_{i j}^{(k+1)} \delta_{i j}^{\prime}, \quad \text { for } i, j \geq k+1 . \tag{2.3.20}
\end{equation*}
$$

Let $\varepsilon_{i j}^{(k)} \equiv-l_{i k} a_{k j}^{(k)} \delta_{i j}+a_{i j}^{(k+1)} \delta_{i j}^{\prime}$ which is the computational error of $a_{i j}^{(k)}$ in $A^{(k+1)}$. From (2.3.17), (2.3.18) and (2.3.20) we obtain

$$
a_{i j}^{(k+1)}= \begin{cases}a_{i j}^{(k)}-l_{i k} a_{k k}^{(k)}+\varepsilon_{i j}^{(k)} ; & \text { for } i \geq k+1, j=k \tag{2.3.21}\\ a_{i j}^{(k)}-l_{i k} a_{k j}^{(k)}+\varepsilon_{i j}^{(k)} ; & \text { for } i \geq k+1, j \geq k+1 \\ a_{i j}^{(k)}+\varepsilon_{i j}^{(k)} ; & \text { otherwise },\end{cases}
$$

where

$$
\varepsilon_{i j}^{(k)}= \begin{cases}a_{i j}^{(k)} \delta_{i j} ; & \text { for } i \geq k+1, j=k, \tag{2.3.22}\\ -l_{i k} a_{k j}^{(k)} \delta_{i j}-a_{i j}^{(k+1)} \delta_{i j}^{\prime} ; & \text { for } i \geq k+1, j \geq k+1 \\ 0 ; & \text { otherwise }\end{cases}
$$

Let $E^{(k)}$ be the error matrix with entries $\varepsilon_{i j}^{(k)}$. Then (2.3.21) can be written as

$$
\begin{equation*}
A^{(k+1)}=A^{(k)}-M_{k} A^{(k)}+E^{(k)}, \tag{2.3.23}
\end{equation*}
$$

where

$$
M_{k}=\left[\begin{array}{ccccc}
0 & & & & \tag{2.3.24}\\
& \ddots & & & \\
& & 0 & & \\
& & l_{k+1, k} & & \\
& & \vdots & \ddots & \\
& & l_{n, k} & & 0
\end{array}\right]
$$

For $k=1,2 \ldots, n-1$, we add the $n-1$ equations in (2.3.23) together and get

$$
\begin{aligned}
M_{1} A^{(1)} & +M_{2} A^{(2)}+\cdots+M_{n-1} A^{(n-1)}+A^{(n)} \\
& =A^{(1)}+E^{(1)}+\cdots+E^{(n-1)} .
\end{aligned}
$$

From (2.3.17) we know that the k-th row of $A^{(k)}$ is equal to the k-th row of $A^{(k+1)}, \ldots, A^{(n)}$, respectively and from (2.3.24) we also have

$$
M_{k} A^{(k)}=M_{k} A^{(n)}=M_{k} \tilde{R}
$$

Thus,

$$
\left(M_{1}+M_{2}+\cdots+M_{n-1}+I\right) \tilde{R}=A^{(1)}+E^{(1)}+\cdots+E^{(n-1)} .
$$

Then

$$
\begin{equation*}
\tilde{L} \tilde{R}=A+E \text {, } \tag{2.3.25}
\end{equation*}
$$

where

$$
\tilde{L}=\left[\begin{array}{cccc}
1 & & & \tag{2.3.26}\\
l_{21} & 1 & & O \\
\vdots & & \ddots & \\
l_{n 1} & \ldots & l_{n, n-1} & 1
\end{array}\right] \text { and } E=E^{(1)}+\cdots+E^{(n-1)} .
$$

Now we assume that the partial pivotings in Gaussian Elimination are already arranged such that pivot element $a_{k k}^{(k)}$ has the maximal absolute value. So, we have $\left|l_{i k}\right| \leq 1$. Let

$$
\begin{equation*}
\rho=\max _{i, j, k}\left|a_{i j}^{(k)}\right| /\|A\|_{\infty} \tag{2.3.27}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|a_{i j}^{(k)}\right| \leq \rho\|A\|_{\infty} \tag{2.3.28}
\end{equation*}
$$

From (2.3.22) and (2.3.28) follows that

$$
\left|\varepsilon_{i j}^{(k)}\right| \leq \rho\|A\|_{\infty}\left\{\begin{array}{cl}
2^{-t} ; & \text { for } i \geq k+1, j=k \tag{2.3.29}\\
2^{1-t} ; & \text { for } i \geq k+1, j \geq k+1 \\
0 ; & \text { otherwise }
\end{array}\right.
$$

Therefore,

$$
\left|E^{(k)}\right| \leq \rho\|A\|_{\infty} 2^{-t} \cdot\left[\begin{array}{c|cccc}
0 & 0 & 0 & \cdots & 0 \tag{2.3.30}\\
\hline 0 & 1 & 2 & \cdots & 2 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 1 & 2 & \cdots & 2
\end{array}\right]
$$

From (2.3.26) we get

$$
|E| \leq \rho\|A\|_{\infty} \cdot 2^{-t}\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \tag{2.3.31}\\
1 & 2 & 2 & \cdots & 2 & 2 \\
1 & 3 & 4 & \cdots & 4 & 4 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & 3 & 5 & \cdots & 2 n-4 & 2 n-4 \\
1 & 3 & 5 & \cdots & 2 n-3 & 2 n-2
\end{array}\right]
$$

Hence we have the following theorem.

Theorem 2.3.6 The LR-factorization \tilde{L} and \tilde{R} of A using Gaussian Elimination with partial pivoting satisfies

$$
\tilde{L} \tilde{R}=A+E \text {, }
$$

where

$$
\begin{equation*}
\|E\|_{\infty} \leq n^{2} \rho\|A\|_{\infty} 2^{-t} \tag{2.3.32}
\end{equation*}
$$

Proof:

$$
\|E\|_{\infty} \leq \rho\|A\|_{\infty} 2^{-t}\left(\sum_{j=1}^{n}(2 j-1)-1\right)<n^{2} \rho\|A\|_{\infty} 2^{-t}
$$

Now we shall solve the linear system $A x=b$ by using the factorization \tilde{L} and \tilde{R}, i.e., $\tilde{L} y=b$ and $\tilde{R} x=y$.

- For $L y=b$: From Algorithm 2.3.1 we have

$$
\begin{align*}
y_{1} & =f l\left(b_{1} / l_{11}\right) \\
y_{i} & =f l\left(\frac{-l_{i 1} y_{1}-l_{i 2} y_{2}-\cdots-l_{i, i-1} y_{i-1}+b_{i}}{l_{i i}}\right) \tag{2.3.33}
\end{align*}
$$

for $i=2,3, \ldots, n$. From (2.3.10) we have

$$
\left\{\begin{align*}
y_{1} & =b_{1} / l_{11}\left(1+\delta_{11}\right), \text { with }\left|\delta_{11}\right| \leq 2^{-t} \tag{2.3.34}\\
y_{i} & =f l\left(\frac{f l\left(-l_{i 11} y_{1}-l_{i 2} y_{2}-\cdots-l_{i, i-1} y_{i-1}\right)+b_{i}}{l_{i i}\left(1+\delta_{i i}\right)}\right) \\
& =\frac{f l\left(-l_{i 1} y_{1}-l_{i 2} y_{2}-\ldots-l_{i, i-1} y_{i-1}\right)+b_{i}}{l_{i i}\left(1+\delta_{i i}\right)\left(1+\delta_{i i}^{\prime}\right)}, \text { with }\left|\delta_{i i}\right|,\left|\delta_{i i}^{\prime}\right| \leq 2^{-t}
\end{align*}\right.
$$

Applying Theorem 2.3.4 we get

$$
f l\left(-l_{i 1} y_{1}-l_{i 2} y_{2}-\cdots-l_{i, i-1} y_{i-1}\right)=-l_{i 1}\left(1+\delta_{i 1}\right) y_{1}-\cdots-l_{i, i-1}\left(1+\delta_{i, i-1}\right) y_{i-1}
$$

where

$$
\begin{align*}
& \left|\delta_{i 1}\right| \leq(i-1) 1.01 \cdot 2^{-t} ; \text { for } i=2,3, \cdots, n, \\
& \left|\delta_{i j}\right| \leq(i+1-j) 1.01 \cdot 2^{-t} ; \text { for }\left\{\begin{array}{l}
i=2,3, \cdots, n \\
j=2,3, \cdots, i-1
\end{array}\right. \tag{2.3.35}
\end{align*}
$$

So, (2.3.34) can be written as

$$
\left\{\begin{array}{l}
l_{11}\left(1+\delta_{11}\right) y_{1}=b_{1} \tag{2.3.36}\\
l_{i 1}\left(1+\delta_{i 1}\right) y_{1}+\cdots+l_{i, i-1}\left(1+\delta_{i, i-1}\right) y_{i-1}+l_{i i}\left(1+\delta_{i i}\right)\left(1+\delta_{i i}^{\prime}\right) y_{i}=b_{i} \\
\text { for } i=2,3, \cdots, n
\end{array}\right.
$$

or

$$
\begin{equation*}
(L+\delta L) y=b \tag{2.3.37}
\end{equation*}
$$

From (2.3.35) (2.3.36) and (2.3.37) follow that

$$
|\delta L| \leq 1.01 \cdot 2^{-t}\left[\begin{array}{cccccc}
\left|l_{11}\right| & & & & & 0 \tag{2.3.38}\\
\left|l_{21}\right| & 2\left|l_{22}\right| & & & & \\
2\left|l_{31}\right| & 2\left|l_{32}\right| & 2\left|l_{33}\right| & & & \\
3\left|l_{41}\right| & 3\left|l_{42}\right| & 2\left|l_{43}\right| & \ddots & & \\
\vdots & \vdots & \vdots & \ddots & \ddots & \\
(n-1)\left|l_{n 1}\right| & (n-1)\left|l_{n 2}\right| & (n-2)\left|l_{n 3}\right| & \cdots & 2\left|l_{n, n-1}\right| & 2\left|l_{n n}\right|
\end{array}\right]
$$

This implies,

$$
\begin{equation*}
\|\delta L\|_{\infty} \leq \frac{n(n+1)}{2} \cdot 1.01 \cdot 2^{-t} \max _{i, j}\left|l_{i j}\right| \leq \frac{n(n+1)}{2} \cdot 1.01 \cdot 2^{-t} \tag{2.3.39}
\end{equation*}
$$

Theorem 2.3.7 For lower triangular linear system $L y=b$, if y is the exact solution of $(L+\delta L) y=b$, then δL satisfies (2.3.38) and (2.3.39).
Applying Theorem 2.3.7 to the linear system $\tilde{L} y=b$ and $\tilde{R} x=y$, respectively, the solution x satisfies

$$
(\tilde{L}+\delta \tilde{L})(\tilde{R}+\delta \tilde{R}) x=b
$$

or

$$
\begin{equation*}
(\tilde{L} \tilde{R}+(\delta \tilde{L}) \tilde{R}+\tilde{L}(\delta \tilde{R})+(\delta \tilde{L})(\delta \tilde{R})) x=b \tag{2.3.40}
\end{equation*}
$$

Since $\tilde{L} \tilde{R}=A+E$, substituting this equation into (2.3.40) we get

$$
\begin{equation*}
[A+E+(\delta \tilde{L}) \tilde{R}+\tilde{L}(\delta \tilde{R})+(\delta \tilde{L})(\delta \tilde{R})] x=b \tag{2.3.41}
\end{equation*}
$$

The entries of \tilde{L} and \tilde{R} satisfy

$$
\left|\widetilde{l}_{i j}\right| \leq 1, \text { and }\left|\widetilde{r}_{i j}\right| \leq \rho\|A\|_{\infty}
$$

Therefore, we get

$$
\left\{\begin{array}{l}
\|\tilde{L}\|_{\infty} \leq n \tag{2.3.42}\\
\|\tilde{R}\|_{\infty} \leq n \rho\|A\|_{\infty}, \\
\|\delta \tilde{L}\|_{\infty} \leq \frac{n(n+1)}{2} 1.01 \cdot 2^{-t} \\
\|\delta \tilde{R}\|_{\infty} \leq \frac{n(n+1)}{2} 1.01 \rho 2^{-t}
\end{array}\right.
$$

In practical implementation we usually have $n^{2} 2^{-t} \ll 1$. So it holds

$$
\|\delta \tilde{L}\|_{\infty}\|\delta \tilde{R}\|_{\infty} \leq n^{2} \rho\|A\|_{\infty} 2^{-t}
$$

Let

$$
\begin{equation*}
\delta A=E+(\delta \tilde{L}) \tilde{R}+\tilde{L}(\delta \tilde{R})+(\delta \tilde{L})(\delta \tilde{R}) \tag{2.3.43}
\end{equation*}
$$

Then, (2.3.32) and (2.3.42) we get

$$
\begin{align*}
\|\delta A\|_{\infty} & \leq\|E\|_{\infty}+\|\delta \tilde{L}\|_{\infty}\|\tilde{R}\|_{\infty}+\|\tilde{L}\|_{\infty}\|\delta \tilde{R}\|_{\infty}+\|\delta \tilde{L}\|_{\infty}\|\delta \tilde{R}\|_{\infty} \\
& \leq 1.01\left(n^{3}+3 n^{2}\right) \rho\|A\|_{\infty} 2^{-t} \tag{2.3.44}
\end{align*}
$$

Theorem 2.3.8 For a linear system $A x=b$ the solution x computed by Gaussian Elimination with partial pivoting is the exact solution of the equation $(A+\delta A) x=b$ and δA satisfies (2.3.43) and (2.3.44).

Remark 2.3.3 The quantity ρ defined by (2.3.27) is called a growth factor. The growth factor measures how large the numbers become during the process of elimination. In practice, ρ is usually of order 10 for partial pivot selection. But it can be as large as $\rho=2^{n-1}$, when

$$
A=\left[\begin{array}{cccccc}
1 & 0 & \cdots & \cdots & 0 & 1 \\
-1 & 1 & 0 & \cdots & 0 & 1 \\
\vdots & -1 & \ddots & \ddots & \vdots & 1 \\
\vdots & \vdots & \ddots & \ddots & 0 & 1 \\
-1 & -1 & \cdots & -1 & 1 & 1 \\
-1 & -1 & \cdots & \cdots & -1 & 1
\end{array}\right]
$$

Better estimates hold for special types of matrices. For example in the case of upper Hessenberg matrices, that is, matrices of the form

$$
A=\left[\begin{array}{cccc}
\times & \cdots & \cdots & \times \\
\times & \ddots & \ddots & \vdots \\
& \ddots & \ddots & \vdots \\
0 & & \times & \times
\end{array}\right]
$$

the bound $\rho \leq(n-1)$ can be shown. (Hessenberg matrices arise in eigenvalus problems.)
For tridiagonal matrices

$$
A=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & 0 \\
\gamma_{2} & \ddots & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \beta_{n} \\
0 & & & \gamma_{n} & \alpha_{n}
\end{array}\right]
$$

it can even be shown that $\rho \leq 2$ holds for partial pivot selection. Hence, Gaussian elimination is quite numerically stable in this case.
For complete pivot selection, Wilkinson (1965) has shown that

$$
\left|a_{i j}^{k}\right| \leq f(k) \max _{i, j}\left|a_{i j}\right|
$$

with the function

$$
f(k):=k^{\frac{1}{2}}\left(2^{1} 3^{\frac{1}{2}} 4^{\frac{1}{3}} \cdots k^{\frac{1}{(k-1)}}\right)^{\frac{1}{2}} .
$$

This function grows relatively slowly with k :

$$
\begin{array}{c|rrrr}
k & 10 & 20 & 50 & 100 \\
\hline f(k) & 19 & 67 & 530 & 3300
\end{array}
$$

Even this estimate is too pessimistic in practice. Up until now, no matrix has been found which fails to satisfy

$$
\left|a_{i j}^{(k)}\right| \leq(k+1) \max _{i, j}\left|a_{i j}\right| \quad k=1,2, \ldots, n-1,
$$

when complete pivot selection is used. This indicates that Gaussian elimination with complete pivot selection is usually a stable process. Despite this, partial pivot selection is preferred in practice, for the most part, because:
(i) Complete pivot selection is more costly than partial pivot selection. (To compute $A^{(i)}$, the maximum from among $(n-i+1)^{2}$ elements must be determined instead of $n-i+1$ elements as in partial pivot selection.)
(ii) Special structures in a matrix, i.e. the band structure of a tridiagonal matrix, are destroyed in complete pivot selection.

2.3.6 Improving and Estimating Accuracy

- Iterarive Improvement:

Suppose that the linear system $A x=b$ has been solved via the $L R$-factorization $P A=L R$. Now we want to improve the accuracy of the computed solution x. We compute

$$
\left\{\begin{align*}
r & =b-A x \tag{2.3.45}\\
L y & =\operatorname{Pr}, \quad R z=y \\
x_{\text {new }} & =x+z
\end{align*}\right.
$$

Then in exact arithmatic we have

$$
A x_{\text {new }}=A(x+z)=(b-r)+A z=b .
$$

Unfortunately, $r=f l(b-A x)$ renders an $x_{\text {new }}$ that is no more accurate than x. It is necessary to compute the residual $b-A x$ with extended precision floating arithmetic.

Algorithm 2.3.5

> Compute $P A=L R \quad$ (t-digit)
> Repeat: $r:=b-A x \quad$ (2t-digit)
> Solve Ly $=P r$ for $y \quad$ (t-digit)
> Solve $R z=y$ for $z \quad$ (t-digit)
> Update $x=x+z \quad$ (t-digit)

This is referred to as an iterative improvement. From (2.3.45) we have

$$
\begin{equation*}
r_{i}=b_{i}-a_{i 1} x_{1}-a_{i 2} x_{2}-\cdots-a_{i n} x_{n} \tag{2.3.46}
\end{equation*}
$$

Now, r_{i} can be roughly estimated by $2^{-t} \max _{j}\left|a_{i j}\right|\left|x_{j}\right|$. That is

$$
\begin{equation*}
\|r\| \approx 2^{-t}\|A\|\|x\| \tag{2.3.47}
\end{equation*}
$$

Let $e=x-A^{-1} b=A^{-1}(A x-b)=-A^{-1} r$. Then we have

$$
\begin{equation*}
\|e\| \leq\left\|A^{-1}\right\|\|r\| . \tag{2.3.48}
\end{equation*}
$$

From (2.3.47) follows that

$$
\|e\| \approx\left\|A^{-1}\right\| \cdot 2^{-t}\|A\|\|x\|=2^{-t} \operatorname{cond}(A)\|x\|
$$

Let

$$
\begin{equation*}
\operatorname{cond}(A)=2^{p}, 0<p<t,(p \text { is integer }) . \tag{2.3.49}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\|e\| /\|x\| \approx 2^{-(t-p)} \tag{2.3.50}
\end{equation*}
$$

From (2.3.50) we know that x has $q=t-p$ correct significant digits. Since r is computed by double precision, so we can assume that it has at least t correct significant digits. Therefore for solving $A z=r$ according to (2.3.50) the solution z (comparing with $-e=$ $A^{-1} r$) has q-digits accuracy so that $x_{\text {new }}=x+z$ has usually $2 q$-digits accuracy. From above discussion, the accuracy of $x_{\text {new }}$ is improved about q-digits after one iteration. Hence we stop the iteration, when the number of the iterates k (say!) satifies $k q \geq t$. From above we have

$$
\begin{equation*}
\|z\| /\|x\| \approx\|e\| /\|x\| \approx 2^{-q}=2^{-t} 2^{p} . \tag{2.3.51}
\end{equation*}
$$

From (2.3.49) and (2.3.51) we have

$$
\operatorname{cond}(A)=2^{t} \cdot(\|z\| /\|x\|)
$$

By (2.3.51) we get

$$
q=\log _{2}\left(\frac{\|x\|}{\|z\|}\right) \text { and } k=\frac{t}{\log _{2}\left(\frac{\|x\|}{\|z\|}\right)} .
$$

In the following we shall give a further discussion of convergence of the iterative improvement. From Theorem 2.3.8 we know that z in Algorithm 5.5 is computed by $(A+\delta A) z=r$. That is

$$
\begin{equation*}
A(I+F) z=r, \tag{2.3.52}
\end{equation*}
$$

where $F=A^{-1} \delta A$.
Theorem 2.3.9 Let the sequence of vectors $\left\{x_{v}\right\}$ be the sequence of improved solutions in Algorithm 5.5 for solving $A x=b$ and $x^{*}=A^{-1} b$ be the exact solution. Assume that F_{k} in (2.3.52) satisfies $\left\|F_{k}\right\| \leq \sigma<1 / 2$ for all k. Then $\left\{x_{k}\right\}$ converges to x^{*}, i.e., $\lim _{v \rightarrow \infty}\left\|x_{k}-x^{*}\right\|=0$.

Proof: From (2.3.52) and $r_{k}=b-A x_{k}$ we have

$$
\begin{equation*}
A\left(I+F_{k}\right) z_{k}=b-A x_{k} . \tag{2.3.53}
\end{equation*}
$$

Since A is nonsingular, multiplying both sides of (2.3.53) by A^{-1} we get

$$
\left(I+F_{k}\right) z_{k}=x^{*}-x_{k} .
$$

From $x_{k+1}=x_{k}+z_{k}$ we have $\left(I+F_{k}\right)\left(x_{k+1}-x_{k}\right)=x^{*}-x_{k}$, i.e.,

$$
\begin{equation*}
\left(I+F_{k}\right) x_{k+1}=F_{k} x_{k}+x^{*} . \tag{2.3.54}
\end{equation*}
$$

Subtracting both sides of (2.3.54) from $\left(I+F_{k}\right) x^{*}$ we get

$$
\left(I+F_{k}\right)\left(x_{k+1}-x^{*}\right)=F_{k}\left(x_{k}-x^{*}\right) .
$$

Applying Corollary 1.2 .1 we have

$$
x_{k+1}-x^{*}=\left(I+F_{k}\right)^{-1} F_{k}\left(x_{k}-x^{*}\right) .
$$

Hence,

$$
\left\|x_{k+1}-x^{*}\right\| \leq\left\|F_{k}\right\| \frac{\left\|x_{k}-x^{*}\right\|}{1-\left\|F_{k}\right\|} \leq \frac{\sigma}{1-\sigma}\left\|x_{k}-x^{*}\right\| .
$$

Let $\tau=\sigma /(1-\sigma)$. Then

$$
\left\|x_{k}-x^{*}\right\| \leq \tau^{k-1}\left\|x_{1}-x^{*}\right\| .
$$

But $\sigma<1 / 2$ follows $\tau<1$. This implies convergence of Algorithm 2.3.5.
Corollary 2.3.1 If

$$
1.01\left(n^{3}+3 n^{2}\right) \rho 2^{-t}\|A\|\left\|A^{-1}\right\|<1 / 2
$$

then Algorithm 2.3.5 converges.
Proof: From (2.3.52) and (2.3.44) follows that

$$
\left\|F_{k}\right\| \leq 1.01\left(n^{3}+3 n^{2}\right) \rho 2^{-t} \operatorname{cond}(A)<1 / 2 .
$$

2.4 Special Linear Systems

2.4.1 Toeplitz Systems

Definition 2.4.1 (i) $T \in \mathbb{R}^{n \times n}$ is called a Toeplitz matrix if there exists $r_{-n+1}, \cdots, r_{0}, \cdots, r_{n-1}$ such that $a_{i j}=r_{j-i}$ for all i, j. e.g.,

$$
T=\left[\begin{array}{cccc}
r_{0} & r_{1} & r_{2} & r_{3} \\
r_{-1} & r_{0} & r_{1} & r_{2} \\
r_{-2} & r_{-1} & r_{0} & r_{1} \\
r_{-3} & r_{-2} & r_{-1} & r_{0}
\end{array}\right], \quad(n=4) .
$$

(ii) $B \in \mathbb{R}^{n \times n}$ is called a Persymmetric matrix if it is symmetric about northest-southwest diagonal, i.e., $b_{i j}=b_{n-j+1, n-i+1}$ for all i, j. That is,

$$
B=E B^{T} E \text {, where } E=\left[e_{n}, \cdots e_{1}\right] .
$$

Given scalars r_{1}, \cdots, r_{n-1} such that the matrices

$$
T_{k}=\left[\begin{array}{ccccc}
1 & r_{1} & r_{2} & \cdots & r_{k-1} \\
r_{1} & 1 & r_{1} & & \vdots \\
\vdots & & \ddots & & \\
r_{k-1} & \cdots & \cdots & & 1
\end{array}\right]
$$

are all positive definite, for $k=1, \ldots, n$. Three algorithms will be described:
(a) Durbin's Algorithm for the Yule-Walker problem

$$
T_{n} y=-\left(r_{1}, \ldots, r_{n}\right)^{T} .
$$

(b) Levinson's Algorithm for the general right hand side $T_{n} x=b$.
(c) Trench's Algorithm for computing $B=T_{n}^{-1}$.

- To (a): Let $E_{k}=\left[e_{k}^{(k)}, \ldots, e_{1}^{(k)}\right]$. Suppose the k-th order Yule-Walker system

$$
T_{k} y=-\left(r_{1}, \ldots, r_{k}\right)^{T}=-r^{T}
$$

has been solved. Consider the $(k+1)$-st order system

$$
\left[\begin{array}{cc}
T_{k} & E_{k} r \\
r^{T} E_{k} & 1
\end{array}\right]\left[\begin{array}{c}
z \\
\alpha
\end{array}\right]=\left[\begin{array}{c}
-r \\
-r_{k+1}
\end{array}\right]
$$

can be solved in $O(k)$ flops. Observe that

$$
\begin{equation*}
z=T_{k}^{-1}\left(-r-\alpha E_{k} r\right)=y-\alpha T_{k}^{-1} E_{k} r \tag{2.4.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=-r_{k+1}-r^{T} E_{k} z \tag{2.4.56}
\end{equation*}
$$

Since T_{k}^{-1} is persymmetric, $T_{k}^{-1} E_{k}=E_{k} T_{k}^{-1}$ and $z=y+\alpha E_{k} y$. Substituting into (2.4.56) we get

$$
\alpha=-r_{k+1}-r^{T} E_{k}\left(y+\alpha E_{k} y\right)=-\left(r_{k+1}+r^{T} E_{k} y\right) /\left(1+r^{T} y\right) .
$$

Here $\left(1+r^{T} y\right)$ is positive, because T_{k+1} is positive definite and

$$
\left[\begin{array}{cc}
I & E_{k} y \\
0 & 1
\end{array}\right]^{T}\left[\begin{array}{cc}
T_{k} & E_{k} r \\
r^{T} E_{k} & 1
\end{array}\right]\left[\begin{array}{cc}
I & E_{k} y \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
T_{k} & 0 \\
0 & 1+r^{T} y
\end{array}\right] .
$$

Algorithm 2.4.1 (Durbin Algorithm, 1960) Let $T_{k} y^{(k)}=-r^{(k)}=-\left(r_{1}, \ldots, r_{k}\right)^{T}$.
For $k=1, \ldots, n$,
$y^{(1)}=-r_{1}$,
for $k=1, \ldots, n-1$,

$$
\begin{aligned}
& \beta_{k}=1+r^{(k) T} y^{(k)}, \\
& \alpha_{k}=-\left(r_{k+1}+r^{(k) T} E_{k} y^{(k)}\right) / \beta_{k}, \\
& z^{(k)}=y^{(k)}+\alpha_{k} E_{k} y^{(k)}, \\
& y^{(k+1)}=\left[\begin{array}{c}
z^{(k)} \\
\alpha_{k}
\end{array}\right] .
\end{aligned}
$$

This algorithm requires $\frac{3}{2} n^{2}$ flops to generate $y=y^{(n)}$.
Further reduction:

$$
\begin{aligned}
\beta_{k} & =1+r^{(k) T} y^{(k)} \\
& =1+\left[r^{(k-1) T}, r^{(k)}\right]\left[\begin{array}{c}
y^{(k-1)}+\alpha_{k-1} E_{k-1} y^{(k-1)} \\
\alpha_{k-1}
\end{array}\right] \\
& =1+r^{(k-1) T} y^{(k-1)}+\alpha_{k-1}\left(r^{(k-1) T} E_{k-1} y^{(k-1)}+r_{k}\right) \\
& =\beta_{k-1}+\alpha_{k-1}\left(-\beta_{k-1} \alpha_{k-1}\right)=\left(1-\alpha_{k-1}^{2}\right) \beta_{k-1} .
\end{aligned}
$$

- To (b):

$$
\begin{equation*}
T_{k} x=b=\left(b_{1}, \cdots, b_{k}\right)^{T}, \text { for } 1 \leq k \leq n . \tag{2.4.57}
\end{equation*}
$$

Want to solve

$$
\left[\begin{array}{cc}
T_{k} & E_{k} r \tag{2.4.58}\\
r^{T} E_{k} & 1
\end{array}\right]\left[\begin{array}{c}
\nu \\
\mu
\end{array}\right]\left[\begin{array}{c}
b \\
b_{k+1}
\end{array}\right]
$$

where $r=\left(r_{1}, \cdots, r_{k}\right)^{T}$. Since $\nu=T_{k}^{-1}\left(b-\mu E_{k} r\right)=x+\mu E_{k} y$, it follows that

$$
\begin{aligned}
\mu & =b_{k+1}-r^{T} E_{k} \nu=b_{k+1}-r^{T} E_{k} x-\mu r^{T} y \\
& =\left(b_{k+1}-r^{T} E_{k} x\right) /\left(1+r^{T} y\right) .
\end{aligned}
$$

We can effect the transition form (2.4.57) to (2.4.58) in $O(k)$ flops. We can solve the system $T_{n} x=b$ by solving

$$
T_{k} x^{(k)}=b^{(k)}=\left(b_{1}, \ldots, b_{k}\right)^{T}
$$

and

$$
T_{k} y^{(k)}=-r^{(k)}=-\left(r_{1}, \ldots, r_{k}\right)^{T} .
$$

It needs $2 n^{2}$ flops. See Algorithm Levinson (1947) in Matrix Computations, pp.128-129 for details.

- To (c):

$$
T_{n}^{-1}=\left[\begin{array}{cc}
A & E r \\
r^{T} E & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
B & \nu \\
\nu^{T} & \gamma
\end{array}\right],
$$

where $A=T_{n-1}, E=E_{n-1}$ and $r=\left(r_{1}, \ldots, r_{n-1}\right)^{T}$. From the equation

$$
\left[\begin{array}{cc}
A & E r \\
r^{T} E & 1
\end{array}\right]=\left[\begin{array}{l}
\nu \\
\gamma
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

follows that

$$
A \nu=-\gamma E r=-\gamma E\left(r_{1}, \ldots, r_{n-1}\right)^{T} \text { and } \gamma=1-r^{T} E \nu .
$$

If y is the solution of $(n-1)$-st Yule-Walker system $A y=-r$, then

$$
\gamma=1 /\left(1+r^{T} y\right) \text { and } \nu=\gamma E y .
$$

Thus the last row and column of T_{n}^{-1} are readily obtained. Since $A B+E r \nu^{T}=I_{n-1}$, we have

$$
B=A^{-1}-\left(A^{-1} E r\right) \nu^{T}=A^{-1}+\frac{\nu \nu^{T}}{\gamma}
$$

Since $A=T_{n-1}$ is nonsingular and Toeplitz, its inverse is persymmetric. Thus

$$
\begin{aligned}
b_{i j} & =\left(A^{-1}\right)_{i j}+\frac{\nu_{i} \nu_{j}}{\gamma}=\left(A^{-1}\right)_{n-j, n-i}+\frac{\nu_{i} \nu_{j}}{\gamma} \\
& =b_{n-j, n-i}-\frac{\nu_{n-i} \nu_{n-j}}{\gamma}+\frac{\nu_{i} \nu_{j}}{\gamma} \\
& =b_{n-j, n-i}-\frac{1}{\gamma}\left(\nu_{i} \nu_{j}-\nu_{n-i} \nu_{n-j}\right) .
\end{aligned}
$$

It needs $\frac{7}{4} n^{2}$ flops. See Algorithm Trench (1964) in Matrix Computations, pp. 132 for details.

2.4.2 Banded Systems

Definition 2.4.2 Let A be a $n \times n$ matrix. A is called a (p, q)-banded matrix, if $a_{i j}=0$ whenever $i-j>p$ or $j-i>q$. A has the form
where p and q are the lower and upper band widthes, respectively.

Example 2.4.1 (1,1): tridiagonal matrix; $(1, n-1)$: upper Hessenberg matrix; $(n-1,1)$: lower Hessenberg matrix.

Theorem 2.4.1 Let A be a (p, q)-banded matrix. Suppose A has a $L R$-factorization $(A=L R)$. Then $L=(p, 0)$ and $R=(0, q)$-banded matrix, respectively.

Algorithm 2.4.2 See Algorithm 4.3.1 in Matrix Computations, pp.150.

Theorem 2.4.2 Let A be a (p, q)-banded nonsingular matrix. If Gaussian Elimination with partial pivoting is used to compute Gaussian transformations $L_{j}=I-l_{j} e_{j}^{T}$, for $j=1, \ldots, n-1$, and permutations P_{1}, \ldots, P_{n-1} such that

$$
L_{n-1} P_{n-1} \cdots L_{1} P_{1} A=R
$$

is upper triangular, then R is a $(0, p+q)$-banded matrix and $l_{i j}=0$ whenever $i \leq j$ or $i>j+p$. (Since the j-th column of L is a permutation of the Gaussian vector l_{j}, it follows that L has at most $p+1$ nonzero elements per column.)

2.4.3 Symmetric Indefinite Systems

Consider the linear system $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is symmetric but indefinite. There are a method using $n^{3} / 6$ flops due to Aasen (1971) that computes the factorization $P A P^{T}=L T L^{T}$, where $L=\left[l_{i j}\right]$ is unit lower triangular, P is a permutation chosen such that $\left|l_{i j}\right| \leq 1$, and T is tridiagonal.

Rather than the above factorization $P A P^{T}=L T L^{T}$ we have the calculation of

$$
P A P^{T}=L D L^{T},
$$

where D is block diagonal with 1 by 1 and 2 by 2 blocks on diagonal, $L=\left[l_{i j}\right]$ is unit lower triangular, and P is a permutation chosen such that $\left|l_{i j}\right| \leq 1$.

Bunch and Parlett (1971) has proposed a pivot strategy to do this, $n^{3} / 6$ flops are required. Unfortunately the overall process requires $n^{3} / 12 \sim n^{3} / 6$ comparisons. A better method described by Bunch and Kaufmann (1977) requires $n^{3} / 6$ flops and $O\left(n^{2}\right)$ comparisons.

A detailed discussion of this subsection see p.159-168 in Matrix Computations.

Chapter 3

Orthogonalization and least squares methods

3.1 QR-factorization (QR-decomposition)

3.1.1 Householder transformation

Definition 3.1.1 A complex $m \times n$-matrix $R=\left[r_{i j}\right]$ is called an upper (lower) triangular matrix, if $r_{i j}=0$ for $i>j(i<j)$.

Example 3.1.1
(1) $m=n: R=\left[\begin{array}{ccc}r_{11} & \cdots & r_{1 n} \\ & \ddots & \vdots \\ 0 & & r_{n n}\end{array}\right], \quad$ (2) $m<n: R=\left[\begin{array}{cccc}r_{11} & \cdots & \cdots & \cdots \\ & r_{1 n} \\ & \ddots & & \\ 0 & & r_{m m} & \cdots \\ r_{m n}\end{array}\right]$,
(3) $m>n: R=\left[\begin{array}{ccc}r_{11} & \cdots & r_{1 n} \\ & \ddots & \vdots \\ 0 & & r_{n n} \\ \hline & 0 & \end{array}\right]$.

Definition 3.1.2 Given $A \in \mathbb{C}^{m \times n}, Q \in \mathbb{C}^{m \times m}$ unitary and $R \in \mathbb{C}^{m \times n}$ upper triangular as in Examples such that $A=Q R$. Then the product is called a $Q R$-factorization of A.

Basic problem:
Given $b \neq 0, b \in \mathbb{C}^{n}$. Find a vector $w \in \mathbb{C}^{n}$ with $w^{*} w=1$ and $c \in \mathbb{C}$ such that

$$
\begin{equation*}
\left(I-2 w w^{*}\right) b=c e_{1} . \tag{3.1.1}
\end{equation*}
$$

Solution (Householder transformation):
(1) $b=0: w$ arbitrary (in general $w=0$) and $c=0$.
(2) $b \neq 0$:

$$
\begin{align*}
& c=\left\{\begin{array}{cl}
-\frac{b_{1}}{\left|b_{1}\right|}\|b\|_{2}, & \text { if } b_{1} \neq 0, \\
\|b\|_{2}, & \text { if } b_{1}=0,
\end{array}\right. \tag{3.1.2}\\
& \left\{\begin{array}{c}
w=\frac{1}{2 k}\left(b_{1}-c, b_{2}, \ldots, b_{n}\right)^{T}:=\frac{1}{2 k} u \\
\text { with } 2 k=\sqrt{2\|b\|_{2}\left(\|b\|_{2}+\left|b_{1}\right|\right)}
\end{array}\right. \tag{3.1.3}
\end{align*}
$$

Theorem 3.1.1 Any complex $m \times n$ matrix A can be factorized by the product $A=Q R$, where Q is $m \times m$-unitary. R is $m \times n$ upper triangular.

Proof: Let $A^{(0)}=A=\left[a_{1}^{(0)}\left|a_{2}^{(0)}\right| \cdots \mid a_{n}^{(0)}\right]$. Find $Q_{1}=\left(I-2 w_{1} w_{1}^{*}\right)$ such that $Q_{1} a_{1}^{(0)}=c e_{1}$. Then

$$
A^{(1)}=Q_{1} A^{(0)}=\left[Q_{1} a_{1}^{(0)}, Q_{1} a_{2}^{(0)}, \cdots, Q_{1} a_{n}^{(0)}\right]=\left[\begin{array}{c|c|c|c}
c_{1} & * & \cdots & * \tag{3.1.4}\\
\hline 0 & & & \\
\vdots & a_{2}^{(1)} & \cdots & a_{n}^{(1)} \\
0 & & &
\end{array}\right] .
$$

Find $Q_{2}=\left[\begin{array}{c|c}1 & 0 \\ \hline 0 & I-w_{2} w_{2}^{*}\end{array}\right]$ such that $\left(I-2 w_{2} w_{2}^{*}\right) a_{2}^{(1)}=c_{2} e_{1}$. Then

$$
A^{(2)}=Q_{2} A^{(1)}=\left[\begin{array}{cc|ccc}
c_{1} & * & * & \cdots & * \\
0 & c_{2} & * & \cdots & * \\
\hline 0 & 0 & & & \\
\vdots & \vdots & a_{3}^{(2)} & \cdots & a_{n}^{(2)} \\
0 & 0 & & &
\end{array}\right]
$$

We continue this process. Then after $l=\min (m, n)$ steps $A^{(l)}$ is an upper triangular matrix satisfying

$$
A^{(l-1)}=R=Q_{l-1} \cdots Q_{1} A
$$

Then $A=Q R$, where $Q=Q_{1}^{*} \cdots Q_{l-1}^{*}$.
Remark 3.1.1 We usually call the method in Theorem 3.1.1 as Householder method.

Theorem 3.1.2 Let A be a nonsingular $n \times n$ matrix. Then the $Q R$ - factorization is essentially unique. That is, if $A=Q_{1} R_{1}=Q_{2} R_{2}$, then there is a unitary diagonal matrix $D=\operatorname{diag}\left(d_{i}\right)$ with $\left|d_{i}\right|=1$ such that $Q_{1}=Q_{2} D$ and $D R_{1}=R_{2}$.

Proof: Let $A=Q_{1} R_{1}=Q_{2} R_{2}$. Then $Q_{2}^{*} Q_{1}=R_{2} R_{1}^{-1}=D$ must be a diagonal unitary matrix.

Remark 3.1.2 The $Q R$-factorization is unique, if it is required that the diagonal elements of R are positive.

Corollary 3.1.1 A is an arbitrary $m \times n$-matrix. The following factorizations exist:
(i) $A=L Q$, where Q is $n \times n$ unitary and L is $m \times n$ lower triangular.
(ii) $A=Q L$, where Q is $m \times m$ unitary and L is $m \times n$ lower triangular.
(iii) $A=R Q$, where Q is $n \times n$ unitary and R is $m \times n$ upper triangular.

Proof: (i) A^{*} has a $Q R$-factorization. Then

$$
A^{*}=Q R \Rightarrow A=R^{*} Q^{*} \Rightarrow(i)
$$

(ii) Let $P_{m}=\left[\begin{array}{ll}O & 1 \\ 1 & O\end{array}\right]$. Then by Theorem 3.1.1 we have $P_{m} A P_{n}=Q R$. This implies

$$
A=\left(P_{m} Q P_{m}\right)\left(P_{m} R P_{n}\right) \equiv \tilde{Q} L \Rightarrow(i i)
$$

(iii) A^{*} has a $Q L$-factorization (from (ii)), i.e., $A^{*}=Q L$. This implies

$$
A=L^{*} Q^{*} \Rightarrow(i i i)
$$

Cost of Householder method

Consider that the multiplications in (3.1.4) can be computed in the form

$$
\begin{aligned}
\left(I-2 w_{1} w_{1}^{*}\right) A & =\left(I-\frac{u_{1}}{\|b\|_{2}^{2}+\left|b_{1}\right|\|b\|_{2}} u_{1}^{*}\right) A=\left(I-v u_{1}^{*}\right) A \\
& =A-v u_{1}^{*} A:=A-v w^{*}
\end{aligned}
$$

So the first step for a $m \times n$-matrix A requires;
$c_{1}: m$ multiplications, 1 root;
$4 k^{2}: 1$ multiplication;
$v: m$ divisions (= multiplications);
w : $m n$ multiplications;
$A^{(1)}=A-v w^{*}: m(n-1)$ multiplications.
Similarly, for the j-th step m and n are replaced by $m-j+1$ and $n-j+1$, respectively. Let $l=\min (m, n)$. Then the number of multiplications is

$$
\begin{align*}
& \sum_{j=1}^{l-1}[2(m-j+1)(n-j+1)+(m-j+2)] \tag{3.1.5}\\
& =l(l-1)\left[\frac{2 l-1}{3}-(m+n)-5 / 2\right]+(l-1)(2 m n+3 m+2 n+4) \\
& \left(=m n^{2}-1 / 3 n^{3}, \text { if } m \geq n\right)
\end{align*}
$$

Especially, for $m=n$, it needs

$$
\begin{equation*}
\sum_{j=1}^{n-1}\left[2(n-j+1)^{2}+m-j+2\right]=2 / 3 n^{3}+3 / 2 n^{2}+11 / 6 n-4 \tag{3.1.6}
\end{equation*}
$$

flops and $(l+n-2)$ roots. To compute $Q=Q_{1}^{*} \cdots Q_{l-1}^{*}$, it requires

$$
\begin{equation*}
2\left(m^{2} n-m n^{2}+n^{3} / 3\right) \text { multiplications }(m \geq n) \tag{3.1.7}
\end{equation*}
$$

Remark 3.1.3 Let $A=Q R$ be a $Q R$-factorization A. Then we have

$$
A^{*} A=R^{*} Q^{*} Q R=R^{*} R
$$

If A has full column rank and we require that the diagonal elements of R are positive, then we obtain the Cholesky factorization of $A^{*} A$.

3.1.2 Gram-Schmidt method

Remark 3.1.4 Theorem 3.1.1 (or Algorithm ??) can be used to solved orthonormal basis (OB) problem.
(OB) : Given linearly independent vectors $a_{1}, \cdots, a_{n} \in \mathbb{R}^{n \times 1}$. Find an orthonormal basis for $\operatorname{span}\left\{a_{1}, \cdots, a_{n}\right\}$.

If $A=\left[a_{1}, \cdots, a_{n}\right]=Q R$ with $Q=\left[q_{1}, \cdots, q_{n}\right]$, and $R=\left[r_{i j}\right]$, then

$$
\begin{equation*}
a_{k}=\sum_{i=1}^{k} r_{i k} q_{i} . \tag{3.1.8}
\end{equation*}
$$

By assumption $\operatorname{rank}(A)=n$ and (3.1.8) it implies $r_{k k} \neq 0$. So, we have

$$
\begin{equation*}
q_{k}=\frac{1}{r_{k k}}\left(a_{k}-\sum_{i=1}^{k-1} r_{i k} q_{i}\right) . \tag{3.1.9}
\end{equation*}
$$

The vector q_{k} can be thought as a unit vector in the direction of $z_{k}=a_{k}-\sum_{i=1}^{k-1} s_{i k} q_{i}$. To ensure that $z_{k} \perp q_{1}, \cdots, q_{k-1}$ we choose $s_{i k}=q_{i}^{T} a_{k}$, for $i=1, \cdots, k-1$. This leads to the Classical Gram-Schmidt (CGS) Algorithm for solving (OB) problem.

Algorithm 3.1.1 (Classical Gram-Schmidt (CGS) Algorithm) Given $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=n$. We compute $A=Q R$, where $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and $R \in \mathbb{R}^{n \times n}$.

$$
\begin{aligned}
& \text { For } i=1, \cdots, n, \\
& q_{i}=a_{i} ; \\
& \text { For } j=1, \cdots, i-1 \\
& r_{j i}=q_{j}^{T} a_{i}, \\
& q_{i}=q_{i}-r_{j i} q_{j}, \\
& \text { end for } \\
& r_{i i}=\left\|q_{i}\right\|_{2}, \\
& q_{i}=q_{i} / r_{i i}, \\
& \text { end for }
\end{aligned}
$$

Disadvantage : The CGS method has very poor numerical properties, if some columns of A are nearly linearly independent.

Advantage : The method requires $m n^{2}$ multiplications $(m \geq n)$.
Remark 3.1.5 Modified Gram-Schmidt (MGS):
Write $A=\sum_{i=1}^{n} q_{i} r_{i}^{T}$. Define $A^{(k)}$ by

$$
\begin{equation*}
\left[0, A^{(k)}\right]=A-\sum_{i=1}^{k-1} q_{i} r_{i}^{T}=\sum_{i=k}^{n} q_{i} r_{i}^{T} \tag{3.1.10}
\end{equation*}
$$

It follows that if $A^{(k)}=[z, B], z \in \mathbb{R}^{m}, B \in \mathbf{R}^{m \times(n-k)}$ then $r_{k k}=\|z\|_{2}$ and $q_{k}=z / r_{k k}$ by (3.1.9). Compute

$$
\left[r_{k, k+1}, \cdots, r_{k n}\right]=q_{k}^{T} B
$$

Next step: $A^{(k+1)}=B-q_{k}\left[r_{k, k+1}, \cdots, r_{k n}\right]$.

Algorithm 3.1.2 (MGS) Given $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=n$. We compute $A=Q R$, where $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and $R \in \mathbb{R}^{n \times n}$ is upper triangular.

$$
\begin{gathered}
\text { For } i=1, \cdots, n, \\
q_{i}=a_{i} ; \\
\text { For } j=1, \cdots, i-1 \\
r_{j i}=q_{j}^{T} q_{i}, \\
q_{i}=q_{i}-r_{j i} q_{j}, \\
\text { end for } \\
r_{i i}=\left\|q_{i}\right\|_{2}, \\
q_{i}=q_{i} / r_{i i},
\end{gathered}
$$

end for
The MGS requires $m n^{2}$ multiplications.
Remark 3.1.6 MGS computes the $Q R$ factorization at the k th step, the k th column of Q and the kth row of R are computed. CGS at the k th step, the k th column of Q and the k th column of R are computed.
Advantage for $O B$ problem $(m \geq n)$: (i) Householder method requires $m n^{2}-n^{3} / 3$ flops to get factorization. $A=Q R$ and $m n^{2}-n^{3} / 3$ flops to get the first n columns of Q. But MGS requires only $m n^{2}$ flops. Thus for the problem of finding an orthonormal basis of range (A), MGS is about twice as efficient as Householder orthogonalization. (ii) MGS is numerically stable.

3.1.3 Givens method

Basic problem: Given $(a, b)^{T} \in \mathbb{R}^{2}$, find $c, s \in \mathbb{R}$ with $c^{2}+s^{2}=1$ such that

$$
\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
k \\
0
\end{array}\right],
$$

where $c=\cos \alpha$ and $s=\sin \alpha$.
Solution:

$$
\left\{\begin{array}{l}
c=1, s=0, k=a ; \text { if } b=0, \tag{3.1.11}\\
c=\frac{a}{\sqrt{a^{2}+b^{2}}}, s=\frac{b}{\sqrt{a^{2}+b^{2}}}, k=\sqrt{a^{2}+b^{2}} ; \text { if } b \neq 0 .
\end{array}\right.
$$

Let

$$
G(i, j, \alpha)=\left[\begin{array}{ccccccc}
1 & & & & & & \\
& \ddots & \vdots & & \vdots & & \\
& \cdots & \cos \alpha & \cdots & \sin \alpha & \cdots & \\
& & \vdots & & \vdots & & \\
& \cdots & -\sin \alpha & \cdots & \cos \alpha & \cdots & \\
& & \vdots & & \vdots & \ddots & \\
& & & & & & 1
\end{array}\right] .
$$

Then $G(i, j, \alpha)$ is called a Givens rotation in the (i, j)-coordinate plane. In the matrix $\tilde{A}=G(i, j, \alpha) A$, the rows with index $\neq i, j$ are the same as in A and

$$
\begin{aligned}
\tilde{a}_{i k} & =\cos (\alpha) a_{i k}+\sin (\alpha) a_{j k}, \text { for } k=1, \ldots, n, \\
\tilde{a}_{j k} & =-\sin (\alpha) a_{i k}+\cos (\alpha) a_{j k}, \text { for } k=1, \ldots, n .
\end{aligned}
$$

Algorithm 3.1.3 (Givens orthogonalization) Given $A \in \mathbb{R}^{m \times n}$. The folllowing Algorithm overwrites A with $Q^{T} A=R$, where Q is orthonormal and R is upper triangular. For $q=2, \cdots, m$,
for $p=1,2, \cdots, \min \{q-1, n\}$,
Find $c=\cos \alpha$ and $s=\sin \alpha$ as in (3.1.11) such that

$$
\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
a_{p p} \\
a_{q p}
\end{array}\right]=\left[\begin{array}{l}
* \\
0
\end{array}\right] .
$$

$$
A:=G(p, q, \alpha) A
$$

This algorithm requires $2 n^{2}(m-n / 3)$ flops.
Fast Givens method (See Matrix Computations, pp.205-209):
A modification of Givens method bases on the fast Givens rotations and requires about $n^{2}(m-n / 3)$ flops.

3.2 Overdetermined linear Systems - Least Squares Methods

Given $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $m>n$. Consider the least squares(LS) problem:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2} . \tag{3.2.1}
\end{equation*}
$$

Let X be the set of minimizers defined by $X=\left\{x \in \mathbb{R}^{n} \mid\|A x-b\|_{2}=\right.$ min! $\}$. It is easy to see the following properties:

- $x \in X \Longleftrightarrow A^{T}(b-A x)=0$.
- X is convex.
- X has a unique element $x_{L S}$ having minimal 2-norm.
- $X=\left\{x_{L S}\right\} \Longleftrightarrow \operatorname{rank}(A)=n$.

For $x \in \mathbb{R}^{n}$, we refer to $r=b-A x$ as its residual. $A^{T}(b-A x)=0$ is refered to as the normal equation. The minimum sum is defined by $\rho_{L S}^{2}=\left\|A x_{L S}-b\right\|_{2}^{2}$. If we let $\varphi(x)=\frac{1}{2}\|A x-b\|_{2}^{2}$, then $\nabla \varphi(x)=A^{T}(A x-b)$.

Theorem 3.2.1 Let $A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$, with $r=\operatorname{rank}(A), U=\left[u_{1}, \ldots, u_{m}\right]$ and $V=$ $\left[v_{1}, \cdots, v_{n}\right]$ be the $S V D$ of $A \in \mathbb{R}^{m \times n}(m \geq n)$. If $b \in \mathbb{R}^{m}$, then

$$
\begin{equation*}
x_{L S}=\sum_{i=1}^{r}\left(u_{i}^{T} b / \sigma_{i}\right) v_{i} \tag{3.2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{L S}^{2}=\sum_{i=r+1}^{m}\left(u_{i}^{T} b\right)^{2} \tag{3.2.7}
\end{equation*}
$$

Proof: For any $x \in \mathbb{R}^{n}$ we have

$$
\|A x-b\|_{2}^{2}=\left\|U^{T} A V\left(V^{T} x\right)-U^{T} b\right\|_{2}^{2}=\sum_{i=1}^{r}\left(\sigma_{i} \alpha_{i}-u_{i}^{T} b\right)^{2}+\sum_{i=r+1}^{m}\left(u_{i}^{T} b\right)^{2},
$$

where $\alpha=V^{T} x$. Clearly, if x solves the LS-problem, then $\alpha_{i}=\left(u_{i}^{T} b / \sigma_{i}\right)$, for $i=1, \ldots, r$. If we set $\alpha_{r+1}=\cdots=\alpha_{n}=0$, then $x=x_{L S}$.

Remark 3.2.1 If we define A^{+}by $A^{+}=V \Sigma^{+} U^{T}$, where $\Sigma^{+}=\operatorname{diag}\left(\sigma_{1}^{-1}, . ., \sigma_{r}^{-1}, 0, . ., 0\right)$ $\in \mathbb{R}^{n \times m}$ then $x_{\mathrm{LS}}=A^{+} b$ and $\rho_{\mathrm{LS}}=\left\|\left(I-A A^{+}\right) b\right\|_{2} . A^{+}$is refered to as the pseudo-inverse of $A . A^{+}$is defined to be the unique matrix $X \in \mathbb{R}^{n \times m}$ that satisfies Moore-Penrose conditions :

$$
\begin{array}{ll}
(i) A X A=A, & \text { (iii) }(A X)^{T}=A X, \\
(i i) X A X=X, & (i v)(X A)^{T}=X A . \tag{3.2.8}
\end{array}
$$

Existence of X is easy to check by taking $X=A^{+}$. Now, we show the uniqueness of X. Suppose X and Y satisfying the conditions (i)-(iv). Then

$$
\begin{aligned}
X & =X A X=X(A Y A) X=X(A Y A) Y(A Y A) X \\
& =(X A)(Y A) Y(A Y)(A X)=(X A)^{T}(Y A)^{T} Y(A Y)^{T}(A X)^{T} \\
& =(A X A)^{T} Y^{T} Y Y^{T}(A X A)^{T}=A^{T} Y^{T} Y Y^{T} A^{T} \\
& =Y(A Y A) Y=Y A Y=Y .
\end{aligned}
$$

If $\operatorname{rank}(A)=n(m \geq n)$, then $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$. If $\operatorname{rank}(A)=m(m \leq n)$, then $A^{+}=A^{T}\left(A A^{T}\right)^{-1}$. If $m=n=\operatorname{rank}(A)$, then $A^{+}=A^{-1}$.

- For the case $\operatorname{rank}(A)=n$:

Algorithm 3.2.1 (Normal equations) Given $A \in \mathbb{R}^{m \times n}(m \geq n)$ with $\operatorname{rank}(A)=n$ and $b \in \mathbb{R}^{m}$. This Algorithm computes the solution to the LS-problem: $\min \{\| A x-$ $\left.b \|_{2} ; x \in \mathbb{R}^{n}\right\}$.
Compute $d:=A^{T} b$, and form $C:=A^{T} A$ by computing the Cholesky factorization $C=$ $R^{T} R$ (see Remark 6.1). Solve $R^{T} y=d$ and $R x_{L S}=y$.

Algorithm 3.2.2 (Householder and Givens orthogonalizations) Given $A \in \mathbb{R}^{m \times n}$ $(m \geq n)$ with $\operatorname{rank}(A)=n$ and $b \in \mathbb{R}^{m}$. This Algorithm computes the solutins to the LS-problem: $\min \left\{\|A x-b\|_{2} ; x \in \mathbb{R}^{n}\right\}$.
Compute $Q R$-factorization $Q^{T} A=\left[\begin{array}{c}R_{1} \\ 0\end{array}\right]$ by using Householder and Givens methods respectively. (Here R_{1} is upper triangular). Then

$$
\|A x-b\|_{2}^{2}=\left\|Q^{T} A x-Q^{T} b\right\|_{2}^{2}=\left\|R_{1} x-c\right\|_{2}^{2}+\|d\|_{2}^{2}
$$

where $Q^{T} b=\left[\begin{array}{c}c \\ d\end{array}\right]$. Thus, $x_{L S}=R_{1}^{-1} c,\left(\operatorname{since} \operatorname{rank}(A)=\operatorname{rank}\left(R_{1}\right)=n\right)$ and $\rho_{L S}^{2}=\|d\|_{2}^{2}$.

Algorithm 3.2.3 (Modified Gram-Schmidt) Given $A \in \mathbb{R}^{m \times n}(m \geq n)$ with $\operatorname{rank}(A)=$ n and $b \in \mathbb{R}^{m}$. The solution of $\min \|A x-b\|_{2}$ is given by:
Compute $A=Q_{1} R_{1}$, where $Q_{1} \in \mathbb{R}^{m \times n}$ with $Q_{1}^{T} Q_{1}=I_{n}$ and $R_{1} \in \mathbb{R}^{n \times n}$ upper triangular. Then the normal equation $\left(A^{T} A\right) x=A^{T} b$ is transformed to the linear system $R_{1} x=Q_{1}^{T} b \Rightarrow x_{L S}=R_{1}^{-1} Q_{1}^{T} b$.

- For the case $\operatorname{rank}(A)<n$:

Problem:

(i) How to find a solution to the LS-problem?
(ii) How to find the unique solution having minimal 2-norm?
(iii) How to compute $x_{L S}$ reliably with infinite conditioned A ?

Definition 3.2.1 Let A be a $m \times n$ matrix with $\operatorname{rank}(A)=r(r \leq m, n)$. The factorization $A=B C$ with $B \in \mathbb{R}^{m \times r}$ and $C \in \mathbb{R}^{r \times n}$ is called a full rank factorization, provided that B has full column rank and C has full row rank.

Theorem 3.2.2 If $A=B C$ is a full rank factorization, then

$$
\begin{equation*}
A^{+}=C^{+} B^{+}=C^{T}\left(C C^{T}\right)^{-1}\left(B^{T} B\right)^{-1} B^{T} \tag{3.2.9}
\end{equation*}
$$

Proof: From assumption follows that

$$
\begin{aligned}
& B^{+} B=\left(B^{T} B\right)^{-1} B^{T} B=I_{r}, \\
& C C^{+}=C C^{T}\left(C C^{T}\right)^{-1}=I_{r} .
\end{aligned}
$$

We calculate (3.2.8) with

$$
\begin{aligned}
& A\left(C^{+} B^{+}\right) A=B C C^{+} B^{+} B C=B C=A \\
& \left(C^{+} B^{+}\right) A\left(C^{+} B^{+}\right)=C^{+} B^{+} B C C^{+} B^{+}=C^{+} B^{+} \\
& A\left(C^{+} B^{+}\right)=B C C^{+} B^{+}=B B^{+} \quad \text { symmetric } \\
& \left(C^{+} B^{+}\right) A=C^{+} B^{+} B C=C^{+} C \quad \text { symmetric. }
\end{aligned}
$$

These imply that $X=C^{+} B^{+}$satisfies (3.2.8). It follows $A^{+}=C^{+} B^{+}$.
Unfortunately, if $\operatorname{rank}(A)<n$, then the QR-factorization does not necessarily produce a full rank factorization of A. For example

$$
A=\left[a_{1}, a_{2}, a_{3}\right]=\left[q_{1}, q_{2}, q_{3}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

Fortunately, we have the following two methods to produce a full rank factorization of A.

3.2.1 Rank Deficiency I : QR with column pivoting

Householder method can be modified in a simple way so as to produce a full rank factorization of A.

$$
A \Pi=Q R, \quad R=\underbrace{\left[\begin{array}{c}
R_{11} \tag{3.2.10}\\
0
\end{array}\right.}_{r} \underbrace{\left.\begin{array}{c}
R_{12} \\
0
\end{array}\right]}_{n-r}\} \mathrm{m} \text { 子r }
$$

where $r=\operatorname{rank}(A)<n(m \geq n), Q$ is orthogonal, R_{11} is nonsingular upper triangular and Π is a permuatation. Once $(3.2 .10)$ is computed, then the LS-problem can be readily solved by

$$
\|A x-b\|_{2}^{2}=\left\|\left(Q^{T} A \Pi\right)\left(\Pi^{T} x\right)-Q^{T} b\right\|_{2}^{2}=\left\|R_{11} y-\left(c-R_{12} z\right)\right\|_{2}^{2}+\|d\|_{2}^{2}
$$

 must have

$$
x=\Pi\left[\begin{array}{c}
R_{11}^{-1}\left(c-R_{12} z\right) \\
z
\end{array}\right]
$$

If z is set to be zero, then we obtain the basic solution

$$
x_{\mathrm{B}}=\Pi\left[\begin{array}{c}
R_{11}^{-1} c \\
0
\end{array}\right]
$$

The basic solution is not the solution with minimal 2-norm, unless the submatrix R_{12} is zero. Since

$$
\left\|x_{\mathrm{LS}}\right\|_{2}=\min _{z \in \mathbb{R}^{n-r}}\left\|x_{\mathrm{B}}-\Pi\left[\begin{array}{c}
R_{11}^{-1} R_{12} \tag{3.2.11}\\
-I_{n-r}
\end{array}\right] z\right\|_{2}
$$

We now solve the LS-problem (3.2.11) by using Algorithms 3.2.1 to 3.2.3.
Algorithm 3.2.4 Given $A \in \mathbb{R}^{m \times n}$, with $\operatorname{rank}(A)=r<n$. The following algorithm computes the factorization $A \Pi=Q R$ defined by (3.2.10). The element $a_{i j}$ is overwritten by $r_{i j}(i \leq j)$. The permutation $\Pi=\left[e_{c_{1}}, \ldots, e_{c_{n}}\right]$ is determined according to choosing the maximum of column norm in the current step.

$$
\begin{aligned}
& c_{j}:=j(j=1,2, \ldots, n), \\
& r_{j}:=\sum_{i=1}^{m} a_{i j}^{2}(j=1, \ldots, n), \\
& \text { For } k=1, \ldots, n, \\
& \quad \begin{array}{l}
\text { Detemine } p \text { with }(k \leq p \leq n) \text { so that } r_{p}=\max _{k \leq j \leq n} r_{j} \\
\quad \text { If } r_{p}=0 \text { then stop; else } \\
\quad \begin{array}{l}
\text { Interchange } c_{k} \text { and } c_{p}, r_{k} \text { and } r_{p}, \text { and } a_{i k} \text { and } a_{i p}, \text { for } i=1, \ldots, m . \\
\\
\quad \text { Determine a Householder } \hat{Q}_{k} \text { such that }
\end{array} \\
\qquad \hat{Q}_{k}\left[\begin{array}{c}
a_{k k} \\
\vdots \\
\vdots \\
a_{m k}
\end{array}\right]=\left[\begin{array}{c}
* \\
0 \\
\vdots \\
0
\end{array}\right] \\
\\
A:=\operatorname{diag}\left(I_{k-1}, \hat{Q}_{k}\right) A ; r_{j}:=r_{j}-a_{k j}^{2}(j=k+1, \ldots, n) .
\end{array}
\end{aligned}
$$

This algorithm requires $2 m n r-r^{2}(m+n)+2 r^{3} / 3$ flops.
Algorithm 3.2.4 produces the full rank factorization (3.2.10) of A. We have the following important relations:

$$
\left\{\begin{array}{l}
\left|r_{11}\right| \geq\left|r_{22}\right| \geq \ldots \geq\left|r_{r r}\right|, r_{j j}=0, j=r+1, \ldots, n \tag{3.2.12}\\
\left|r_{i i}\right| \geq\left|r_{i k}\right|, i=1, \ldots, r, k=i+1, \ldots, n .
\end{array}\right.
$$

Here, $r=\operatorname{rank}(A)<n$, and $R=\left(r_{j j}\right)$. In the following we show another application of the full rank factorization for solving the LS-problem.

Algorithm 3.2.5 (Compute $x_{\mathrm{LS}}=A^{+} b$ directly)

(i) Compute (3.2.10): $A \Pi=Q R \equiv(\underbrace{Q^{(1)}}_{r} \mid Q^{(2)})\binom{R_{1}}{0}_{\} m-r}^{\} r}, \Rightarrow A \Pi=Q^{(1)} R_{1}$.
(ii) $(A \Pi)^{+}=R_{1}^{+} Q^{(1)^{+}}=R_{1}^{+} Q^{(1)^{T}}$.
(iii) Compute R_{1}^{+}:

Either: $R_{1}^{+}=R_{1}^{T}\left(R_{1} R_{1}^{T}\right)^{-1}$ (since R_{1} has full row rank)

$$
\Rightarrow(A \Pi)^{+}=R_{1}^{T}\left(R_{1} R_{1}^{T}\right)^{-1} Q^{(1)^{T}} .
$$

Or: Find $\widehat{\dot{Q}}$ using Householder transformation (Algorithm ??) such that $\widehat{\dot{Q}} R_{1}^{T}=$ $\left[\begin{array}{c}T \\ 0\end{array}\right]$, where $T \in \mathbb{R}^{r \times r}$ is upper triangular.
Let $\widehat{Q}^{T}:=\left(\hat{Q}^{(1)}, \hat{Q}^{(2)}\right) \Rightarrow R_{1}^{T}=\hat{Q}^{(1)} T+\hat{Q}^{(2)} 0=\hat{Q}^{(1)} T$.
$R_{1}=T^{T} \hat{Q}^{(1)^{T}} \Rightarrow R_{1}^{+}=\left(\hat{Q}^{(1) T}\right)^{+}\left(T^{T}\right)^{+}=\hat{Q}^{(1)}\left(T^{T}\right)^{-1}$.
$\Rightarrow(A \Pi)^{+}=\hat{Q}^{(1)}\left(T^{T}\right)^{-1} Q^{(1)^{T}}$.
(iv) Since min $\|A x-b\|_{2}=\min \left\|A \Pi\left(\Pi^{T} x\right)-b\right\|_{2} \Rightarrow\left(\Pi^{T} x\right)_{L S}=(A \Pi)^{+} b$
$\Rightarrow x_{L S}=\Pi(A \Pi)^{+} b$.

Remark 3.2.2 Unfortunately, $Q R$ with column pivoting is not entirely reliable as a method for detecting near rank deficiency. For example:

$$
T_{n}(c)=\operatorname{diag}\left(1, s, \cdots, s^{n-1}\right)\left[\begin{array}{ccccc}
1 & -c & -c & \cdots & -c \\
& 1 & -c & \cdots & -c \\
& & \ddots & & \vdots \\
0 & & & & 1
\end{array}\right] \quad c^{2}+s^{2}=1, c, s>0
$$

If $n=100, c=0.2$, then $\sigma_{n}=0.3679 \mathrm{e}-8$. But this matrix is unaltered by Algorithm 3.2.4. However, the "degree of unreliability" is somewhat like that for Gaussian elimination with partial pivoting, a method that works very well in practice.

3.2.2 Rank Deficiency II : The Singular Value Decomposition

Algorithm 3.2.6 (Householder Bidiagonalization) Given $A \in \mathbb{R}^{m \times n}(m \geq n)$. The following algorithm overwrite A with $U_{B}^{T} A V_{B}=B$, where B is upper bidiagonal and U_{B} and V_{B} are orthogonal.
Let $U_{B}^{T}=I_{m}, V_{B}=I_{n}$.
For $k=1, \cdots, n$,
Determine a Householder matrix \tilde{U}_{k} of order $n-k+1$ such that

$$
\widetilde{U}_{k}^{T}\left[\begin{array}{c}
a_{k k} \\
\vdots \\
\vdots \\
a_{m k}
\end{array}\right]=\left[\begin{array}{c}
* \\
0 \\
\vdots \\
0
\end{array}\right]
$$

$$
A:=\operatorname{diag}\left(I_{k-1}, \widetilde{U}_{k}^{T}\right) A, U_{B}^{T}:=\operatorname{diag}\left(I_{k-1}, \widetilde{U}_{k}^{T}\right) U_{B}^{T}
$$

If $k \leq 2$, then determine a Householder matrix \widetilde{V}_{k} of order $n-k+1$ such that

$$
\left[a_{k, k+1}, \cdots, a_{k n}\right] \tilde{V}_{k}=(*, 0, \cdots, 0)
$$

$$
A:=\operatorname{Adiag}\left(I_{k}, \widetilde{V}_{k}\right), V_{B}:=V_{B} \operatorname{diag}\left(I_{k}, \widetilde{V}_{k}\right) .
$$

This algorithm requires $2 m n^{2}-2 / 3 n^{3}$ flops.
Algorithm 3.2.7 (R-Bidiagonalization) when $m \gg n$ we can use the following faster method of bidiagonalization.
(1) Compute an orthogonal $Q_{1} \in \mathbb{R}^{m \times m}$ such that $Q_{1}^{T} A=\left[\begin{array}{c}R_{1} \\ 0\end{array}\right]$, where $R_{1} \in \mathbb{R}^{n \times n}$ is upper triangular.
(2) Applying Algorithm 3.2.6 to R_{1}, we get $Q_{2}^{T} R_{1} V_{B}=B_{1}$, where Q_{2}, $V_{B} \in \mathbb{R}^{n \times n}$ orthogonal and $B_{1} \in \mathbb{R}^{n \times n}$ upper bidiagonal.
(3) Define $U_{B}=Q_{1} \operatorname{diag}\left(Q_{2}, I_{m-n}\right)$. Then $U_{B}^{T} A V_{B}=\left[\begin{array}{c}B_{1} \\ 0\end{array}\right] \equiv B$ bidiagonal.

This algorithm require $m n^{2}+n^{3}$. It involves fewer compuations comparing with Algorithm $7.6\left(2 m n^{2}-2 / 3 n^{3}\right)$ whenever $m \geq 5 / 3 n$.

Once the bidiagonalization of A has been achieved, the next step in the Golub-Reinsch SVD algorithm is to zero out the super diagonal elements in B. Unfortunately, we must defer our discussion of this iteration until Chapter 5 since it requires an understanding of the symmetric $Q R$ algorithm for eigenvalues. That is, it computes orthogonal matrices U_{Σ} and V_{Σ} such that

$$
U_{\Sigma}^{T} B V_{\Sigma}=\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{n}\right)
$$

By defining $U=U_{B} U_{\Sigma}$ and $V=V_{B} V_{\Sigma}$, we see that $U^{T} A V=\Sigma$ is the SVD of A.

	Algorithms		Flop Counts
$\operatorname{rank}(A)=n$	Algorithm 3.2.1	Normal equations	$m n^{2} / 2+n^{3} / 6$
	Algorithm 3.2.2	Householder orthogonalization	$m n^{2}-n^{3} / 3$
	Algorithm 3.2.3	Modified Gram-Schmidt	$m n^{2}$
	Algorithm 3.1.3	Givens orthogonalization	$2 m n^{2}-2 / 3 n^{3}$
	Algorithm 3.2.6	Householder Bidiagonalization	$2 m n^{2}-2 / 3 n^{3}$
	Algorithm 3.2.7	R-Bidiagonalization	$m n^{2}+n^{3}$
$\operatorname{lank}(A)<n$	LINPACK	Golub-Reinsch SVD	$2 m n^{2}+4 n^{3}$
	Algorithm 3.2.5	QR-with column pivoting	$2 m n r-m r^{2}+1 / 3 r^{3}$
	Alg. 3.2.7+SVD	Chan SVD	$m n^{2}+11 / 2 n^{3}$

Table 3.1: Solving the LS problem $(m \geq n)$

Remark 3.2.3 If the LINPACK SVD Algorithm is applied with eps $=10^{-17}$ to

$$
T_{100}(0.2)=\operatorname{diag}\left(1, s, \cdots, s^{n-1}\right)\left[\begin{array}{ccccc}
1 & -c & -c & \cdots & -c \\
& 1 & -c & \cdots & -c \\
& & \ddots & & \vdots \\
0 & & & & 1
\end{array}\right]
$$

then $\hat{\sigma}_{n}=0.367805646308792467 \times 10^{-8}$.
Remark 3.2.4 As we mentioned before, when solving the LS problem via the SVD, only Σ and V have to be computed (see (3.2.6)). Table 3.1 compares the efficiency of this approach with the other algorithms that we have presented.

3.2.3 The Sensitivity of the Least Squares Problem

Corollary 3.2.1 (of Theorem 1.2.3) Let $U=\left[u_{1}, \cdots, u_{m}\right], V=\left[v_{1}, \cdots, v_{n}\right]$ and $U^{*} A V=\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}, 0, \cdots, 0\right)$. If $k<r=\operatorname{rank}(A)$ and $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}$, Then

$$
\min _{\operatorname{rank}(B)=k}\|A-B\|_{2}=\left\|A-A_{k}\right\|_{2}=\sigma_{k+1} .
$$

Proof: Since $U^{T} A_{k} V=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{k}, 0, \cdots, 0\right)$, it follows $\operatorname{rank}\left(A_{k}\right)=k$ and that

$$
\left\|A-A_{k}\right\|_{2}=\left\|U^{T}\left(A-A_{k}\right) V\right\|_{2}=\left\|\operatorname{diag}\left(0, \cdots, 0, \sigma_{k+1}, \cdots, \sigma_{r}\right)\right\|_{2}=\sigma_{k+1} .
$$

Suppose $B \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(B)=k$, i.e., there are orthogonal vectors x_{1}, \cdots, x_{n-k} such that $\mathcal{N}(B)=\operatorname{span}\left\{x_{1}, \cdots, x_{n-k}\right\}$. This implies

$$
\operatorname{span}\left\{x_{1}, \cdots, x_{n-k}\right\} \bigcap \operatorname{span}\left\{v_{1}, \cdots, v_{k+1}\right\} \neq\{0\} .
$$

Let z be a unit vector in the intersection set. Then $B z=0$ and $A z=\sum_{i=1}^{k+1} \sigma_{i}\left(v_{i}^{T} z\right) u_{i}$. Thus,

$$
\|A-B\|_{2}^{2} \geq\|(A-B) z\|_{2}^{2}=\|A z\|_{2}^{2}=\sum_{i=1}^{k+1} \sigma_{i}^{2}\left(v_{i}^{T} z\right)^{2} \geq \sigma_{k+1}^{2}
$$

3.2.4 Condition number of a Rectangular Matrix

Let $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=n, \kappa_{2}(A)=\sigma_{\max }(A) / \sigma_{\min }(A)$.
(i) The method of normal equation:

$$
\min _{x \in R^{n}}\|A x-b\|_{2} \Leftrightarrow A^{T} A x=A^{T} b .
$$

(a) $C=A^{T} A, d=A^{T} b$.
(b) Compute the Cholesky factorization $C=G G^{T}$.
(c) Solve $G y=d$ and $G^{T} x_{\mathrm{LS}}=y$. Then

$$
\begin{aligned}
& \frac{\left\|\tilde{x}_{L S}-x_{\mathrm{LS}}\right\|_{2}}{x_{\mathrm{LS}}} \approx \operatorname{eps} \kappa_{2}\left(A^{T} A\right)=\operatorname{eps} \kappa_{2}(A)^{2} . \\
& \frac{\|\tilde{x}-x\|}{\|x\|} \leq \kappa(A)\left(\varepsilon \frac{\|F\|}{\|A\|}+\varepsilon \frac{\|f\|}{\|b\|}\right)+o\left(\varepsilon^{2}\right),
\end{aligned}
$$

where $(A+F) \tilde{x}=b+f$ and $A x=b$.
(ii) LS solution via $Q R$ factorization

$$
\begin{gathered}
\|A x-b\|_{2}^{2}=\left\|Q^{T} A x-Q^{T} b\right\|_{2}^{2}=\left\|R_{1} x-c\right\|_{2}^{2}+\|d\|_{2}^{2} \\
x_{\mathrm{LS}}=R_{1}^{-1} c, \rho_{\mathrm{LS}}=\|d\|_{2} .
\end{gathered}
$$

Numerically, trouble can be expected wherever $\kappa_{2}(A)=\kappa_{2}(R) \approx 1 /$ eps. But this is in contrast to normal equation, Cholesky factorization becomes problematical once $\kappa_{2}(A)$ is in the neighborhood of $1 / \sqrt{\text { eps }}$.

Remark 3.2.5

$$
\begin{aligned}
\|A\|_{2}\left\|\left(A^{T} A\right)^{-1} A^{T}\right\|_{2} & =\kappa_{2}(A), \\
\|A\|_{2}^{2}\left\|\left(A^{T} A\right)^{-1}\right\|_{2} & =\kappa_{2}(A)^{2} .
\end{aligned}
$$

Theorem 3.2.3 Let $A \in \mathbb{R}^{m \times n},(m \geq n), b \neq 0$. Suppose that $x, r, \tilde{x}, \tilde{r}$ satisfy

$$
\begin{aligned}
& \|A x-b\|=\min !, r=b-A x, \rho_{L S}=\|r\|_{2}, \\
& \|(A+\delta A) \tilde{x}-(b+\delta b)\|_{2}=\min ! \\
& \tilde{r}=(b+\delta b)-(A+\delta A) \tilde{x} .
\end{aligned}
$$

$$
\varepsilon=\max \left\{\frac{\|\delta A\|_{2}}{\|A\|_{2}}, \frac{\|\delta b\|_{2}}{\|b\|_{2}}\right\}<\frac{\sigma_{n}(A)}{\sigma_{1}(A)}
$$

and

$$
\sin \theta=\frac{\rho_{L S}}{\|b\|_{2}} \neq 1
$$

then

$$
\frac{\|\tilde{x}-x\|_{2}}{\|x\|_{2}} \leq \varepsilon\left\{\frac{2 \kappa_{2}(A)}{\cos \theta}+\tan \theta \kappa_{2}(A)^{2}\right\}+O\left(\varepsilon^{2}\right)
$$

and

$$
\frac{\|\tilde{r}-r\|_{2}}{\|b\|_{2}} \leq \varepsilon\left(1+2 \kappa_{2}(A)\right) \min (1, m-n)+O\left(\varepsilon^{2}\right) .
$$

Proof: Let $E=\delta A / \varepsilon$ and $f=\delta b / \varepsilon$. Since $\|\delta A\|_{2}<\sigma_{n}(A)$, by previous Corollary follows that $\operatorname{rank}(A+\varepsilon E)=n$ for $t \in[0, \varepsilon]$.
$\left[t=\varepsilon \Rightarrow A+t E=A+\delta A\right.$. If $\operatorname{rank}(A+\delta A)=k<n$, then $\|A-(A+\delta A)\|_{2}=$ $\|\delta A\|_{2} \geq\left\|A-A_{k}\right\|_{2}=\sigma_{k+1} \geq \delta_{n}$. Contradiction! So $\min _{\operatorname{rank}(B)=k}\|A-B\|_{2}=\left\|A-A_{k}\right\|_{2}$ $\left.=\left\|A-\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}\right\|_{2}=\sigma_{k+1}\right]$.
Hence we have,

$$
\begin{equation*}
(A+t E)^{T}(A+t E) x(t)=(A+t E)^{T}(b+t f) . \tag{3.2.13}
\end{equation*}
$$

Since $x(t)$ is continuously differentiable for all $t \in[0, \varepsilon], x=x(0)$ and $\tilde{x}=\lambda(\varepsilon)$, it follows that

$$
\tilde{x}=x+\varepsilon \dot{x}(0)+O\left(\varepsilon^{2}\right)
$$

and

$$
\frac{\|\tilde{x}-x\|}{\|x\|}=\varepsilon \frac{\|\dot{x}(0)\|_{2}}{\|x\|}+O\left(\varepsilon^{2}\right) .
$$

Differentiating (3.2.13) and setting $t=0$ then we have

$$
E^{T} A x+A^{T} E x+A^{T} A \dot{x}(0)=A^{T} f+E^{T} b .
$$

Thus,

$$
\dot{x}(0)=\left(A^{T} A\right)^{-1} A^{T}(f-E x)+\left(A^{T} A\right)^{-1} E^{T} r .
$$

From $\|f\|_{2} \leq\|b\|_{2}$ and $\|E\|_{2} \leq\|A\|_{2}$ follows

$$
\begin{aligned}
\frac{\|\tilde{x}-x\|_{2}}{\|x\|_{2}} & \leq \varepsilon\left\{\|A\|_{2}\left\|\left(A^{T} A\right)^{-1} A^{T}\right\|_{2}\left(\frac{\|b\|_{2}}{\|A\|_{2}\|x\|_{2}}+1\right)\right. \\
& \left.+\frac{\rho_{L S}}{\|A\|_{2}\|x\|_{2}}\|A\|_{2}^{2}\left\|\left(A^{T} A\right)^{-1}\right\|_{2}\right\}+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Since $A^{T}\left(A x_{L S}-b\right)=0, A x_{L S} \perp A x_{L S}-b$ and then

$$
\|b-A x\|_{2}^{2}+\|A x\|_{2}^{2}=\|b\|_{2}^{2}
$$

and

$$
\|A\|_{2}^{2}\|x\|_{2}^{2} \geq\|b\|_{2}^{2}-\rho_{L S}^{2}
$$

Thus,

$$
\frac{\|\tilde{x}-x\|_{2}}{\|x\|_{2}} \leq e p s\left\{\kappa_{2}(A)\left(\frac{1}{\cos \theta}+1\right)+\kappa_{2}(A)^{2} \frac{\sin \theta}{\cos \theta}\right\}+O\left(\varepsilon^{2}\right) .
$$

Furthermore, by $\frac{\sin \theta}{\cos \theta}=\frac{\rho_{L S}}{\sqrt{\|b\|_{2}^{2}-\rho_{L S}^{2}}}$, we have

$$
\frac{\|\tilde{x}-x\|_{2}}{\|x\|_{2}} \approx \operatorname{eps}\left(\kappa_{2}(A)+\kappa_{2}(A)^{2} \rho_{L S}\right) . \quad(\theta: \text { small })
$$

Remark 3.2.6 Normal equation: eps $\kappa_{2}(A)^{2}$.
$Q R$-approach: $\operatorname{eps}\left(\kappa_{2}(A)+\rho_{L S} \kappa_{2}(A)^{2}\right)$.
(i) If $\rho_{L S}$ is small and $\kappa_{2}(A)$ is large, then $Q R$ is better than the normal equation.
(ii) The normal equation approach involves about half of the arithmetic when $m>n$ and does not requires as much storage.
(iii) The $Q R$ approach is applicable to a wider class of matrices because the Cholesky to $A^{T} A$ break down "before" the back substitution process on $Q^{T} A=R$.

3.2.5 Iterative Improvement

$$
\left[\begin{array}{cc}
I_{m} & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right], \quad\|b-A x\|_{2}=\min !
$$

$r+A x=b, \quad A^{T} r=0 \Rightarrow A^{T} A x=A^{T} b$. Thus,

$$
\left[\begin{array}{l}
f^{(k)} \\
g^{(k)}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]-\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
r^{(k)} \\
x^{(k)}
\end{array}\right] \text { and }\left[\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
p^{(k)} \\
z^{(k)}
\end{array}\right]=\left[\begin{array}{l}
f^{(k)} \\
g^{(k)}
\end{array}\right] .
$$

This implies,

$$
\left[\begin{array}{l}
r^{(k+1)} \\
x^{(k+1)}
\end{array}\right]=\left[\begin{array}{l}
r^{(k)} \\
x^{(k)}
\end{array}\right]+\left[\begin{array}{l}
p^{(k)} \\
z^{(k)}
\end{array}\right]
$$

If $A=Q R=Q\left[\begin{array}{c}R_{1} \\ 0\end{array}\right]$, then $\left[\begin{array}{cc}I & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}p \\ z\end{array}\right]=\left[\begin{array}{l}f \\ g\end{array}\right]$ implies that

$$
\left[\begin{array}{cc|c}
I_{n} & 0 & R_{1} \\
0 & I_{m-n} & 0 \\
\hline R_{1}^{T} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
h \\
f_{2} \\
z
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
g
\end{array}\right]
$$

where $Q^{T} f=\left[\begin{array}{l}f_{1} \\ f_{2}\end{array}\right] Q^{T} p=\left[\begin{array}{c}h \\ f_{2}\end{array}\right]$. Thus, $R_{1}^{T} h=g \Rightarrow h=R_{1}^{-T} g$. Then

$$
z=R_{1}^{-1}\left(f_{1}-h\right), \quad P=Q\left[\begin{array}{c}
h \\
f_{2}
\end{array}\right] .
$$

Chapter 4

Iterative Methods for Solving Large Linear Systems

4.1 General procedures for the construction of iterative methods

Given a linear system of nonsingular A

$$
\begin{equation*}
A x=b \text {. } \tag{4.1.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
A=M-N \tag{4.1.2}
\end{equation*}
$$

with M nonsingular. Then (4.1.1) is equivalent to $M x=N x+b$; or letting $T=M^{-1} N$ and $f=M^{-1} b$ we have

$$
\begin{equation*}
x=T x+f . \tag{4.1.3}
\end{equation*}
$$

Set

$$
\begin{equation*}
x^{(k+1)}=T x^{(k)}+f, \tag{4.1.4}
\end{equation*}
$$

where $x^{(0)}$ is given. Then the solution x of (4.1.1) is determined by iteration.

Example 4.1.1 We consider the standard decomposition of A

$$
\begin{equation*}
A=D-L-R, \tag{4.1.5}
\end{equation*}
$$

where $A=\left[a_{i j}\right]_{i, j=1}^{n}$,

$$
\begin{aligned}
D & =\operatorname{diag}\left(a_{11}, a_{22}, \cdots, a_{n n}\right), \\
-L & =\left[\begin{array}{ccccc}
0 & & & & 0 \\
a_{2,1} & 0 & & & \\
a_{3,1} & a_{3,2} & \ddots & & \\
\vdots & \vdots & \ddots & \ddots & \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n-1} & 0
\end{array}\right], \\
-R & =\left[\begin{array}{ccccc}
0 & a_{1,2} & a_{1,3} & \cdots & a_{1, n} \\
& 0 & a_{2,3} & \cdots & a_{2, n} \\
& \ddots & \ddots & \ddots & \vdots \\
& & \ddots & \ddots & a_{n-1, n} \\
0 & & & \ddots & 0
\end{array}\right]
\end{aligned}
$$

For $a_{i, i} \neq 0, i=1, \cdots, n, D$ is nonsingular. If we choose $M=D$ and $N=L+R$ in (8.2), we then obtain the Total-step method (Jacobi method):

$$
\begin{equation*}
x^{(k+1)}=D^{-1}(L+R) x^{(k)}+D^{-1} b \tag{4.1.6}
\end{equation*}
$$

or in formula

$$
\begin{equation*}
x_{j}^{(k+1)}=\frac{1}{a_{j j}}\left(-\sum_{i \neq j} a_{j i} x_{i}^{(k)}+b_{j}\right), j=1, \cdots, n, k=0,1, \cdots . \tag{4.1.7}
\end{equation*}
$$

Example 4.1.2 If $D-L$ is nonsingular in (4.1.5), then the choices of $M=D-L$ and $N=R$ as in (4.1.2) are possible and yields the so-called Single-step method (Gauss-Seidel method):

$$
\begin{equation*}
x^{(k+1)}=(D-L)^{-1} R x^{(k)}+(D-L)^{-1} b \tag{4.1.8}
\end{equation*}
$$

or in formula

$$
\begin{equation*}
x_{j}^{(k+1)}=\frac{1}{a_{j j}}\left(-\sum_{i<j} a_{j i} x_{i}^{(k+1)}-\sum_{i>j} a_{j i} x_{i}^{(k)}+b_{j}\right), j=1, \cdots, n, k=1,2, \cdots . \tag{4.1.9}
\end{equation*}
$$

- Total-Step method=TSM=Jacobi method.
- Single-Step method=SSM=Gauss-Seidel method.

We now consider (4.1.1)-(4.1.4) once again:
Theorem 4.1.1 Let $1 \notin \sigma(T)$ and x be the unique solution of (4.1.3). The sequence $x^{(k+1)}=T x^{(k)}+f$ converges to x for arbitrary initial vector $x^{(0)}$ if and only if $\rho(T)<1$

Proof: We define the error

$$
\begin{equation*}
\varepsilon^{(k)}=x^{(k)}-x . \tag{4.1.10}
\end{equation*}
$$

Then

$$
\varepsilon^{(k)}=x^{(k)}-x=T x^{(k-1)}+f-(T x+f)=T \varepsilon^{(k-1)}
$$

or

$$
\varepsilon^{(k)}=T^{k} \varepsilon^{(0)}
$$

Theorem 1.2.4 shows that $\varepsilon^{(k)} \rightarrow 0$ if and only if $\rho(T)<1$.
We now consider the following point of views on the Examples 4.1.1 and 4.1.2:
(i) flops counts per iteration step.
(ii) Convergence speed.

Let \| \| be a vector norm, and $\|T\|$ be the corresponding operator norm. Then

$$
\begin{equation*}
\frac{\left\|\varepsilon^{(m)}\right\|}{\left\|\varepsilon^{(0)}\right\|}=\frac{\left\|T^{m} \varepsilon^{(0)}\right\|}{\left\|\varepsilon^{(0)}\right\|} \leq\left\|T^{m}\right\| . \tag{4.1.11}
\end{equation*}
$$

Here $\left\|T^{m}\right\|^{\frac{1}{m}}$ is a measure for the average diminution of error $\varepsilon^{(m)}$ per iteration step. We call

$$
\begin{equation*}
R_{m}(T)=-\ln \left(\left\|T^{m}\right\|^{\frac{1}{m}}\right)=-\frac{1}{m} \ln \left(\left\|T^{m}\right\|\right) \tag{4.1.12}
\end{equation*}
$$

the average of convergence rate for m iterations.
The larger is $R_{m}(T)$, so the better is convergence rate. Let $\sigma=\left(\left\|\varepsilon^{(m)}\right\| /\left\|\varepsilon^{(0)}\right\|\right)^{\frac{1}{m}}$. From (4.1.11) and (4.1.12) we get

$$
\sigma \leq\left\|T^{m}\right\|^{\frac{1}{m}} \leq e^{-R_{m}(T)}
$$

or

$$
\sigma^{1 / R_{m}(T)} \leq \frac{1}{e}
$$

That is, after $1 / R_{m}(T)$ steps in average the error is reduced by a factor of $1 / e$. Since $R_{m}(T)$ is not easy to determine, we now consider $m \rightarrow \infty$. Since

$$
\lim _{m \rightarrow \infty}\left\|T^{m}\right\|^{\frac{1}{m}}=\rho(T)
$$

it follows

$$
\begin{equation*}
R_{\infty}(T)=\lim _{m \rightarrow \infty} R_{m}(T)=-\ln \rho(T) \tag{4.1.13}
\end{equation*}
$$

R_{∞} is called the asymptotic convergence rate. It holds always $R_{m}(T) \leq R_{\infty}(T)$.
Example 4.1.3 Consider the Dirichlet boundary-value problem (Model problem):

$$
\begin{gather*}
-\Delta u \equiv-u_{x x}-u_{y y}=f(x, y), \quad 0<x, y<1 \tag{4.1.14}\\
u(x, y)=0 \quad(x, y) \in \partial \Omega
\end{gather*}
$$

for the unit square $\Omega:=\{x, y \mid 0<x, y<1\} \subseteq \mathbb{R}^{2}$ with boundary $\partial \Omega$.
To solve (4.1.14) by means of a difference methods, one replaces the differential operator by a difference operator. Let

$$
\begin{aligned}
\Omega_{h} & :=\left\{\left(x_{i}, y_{i}\right) \mid i, j=1, \cdots, N+1\right\}, \\
\partial \Omega_{h} & :=\left\{\left(x_{i}, 0\right),\left(x_{i}, 1\right),\left(0, y_{j}\right),\left(1, y_{j}\right) \mid i, j=0,1, \cdots, N+1\right\},
\end{aligned}
$$

where $x_{i}=i h, y_{j}=j h, i, j=0,1, \cdots, N+1, h:=\frac{1}{N+1}, N \geq 1$, an integer.
The differential operator $-u_{x x}-u_{y y}$ can be replaced for all $\left(x_{i}, y_{i}\right) \in \Omega_{h}$ by the difference operator:

$$
\begin{equation*}
\frac{4 u_{i, j}-u_{i-1, j}-u_{i+1, j}-u_{i, j-1}-u_{i, j+1}}{h^{2}} \tag{4.1.15}
\end{equation*}
$$

up to an error $\tau_{i, j}$. Therefore for sufficiently small h one can thus expect that the solution $z_{i, j}$, for $i, j=1, \cdots, N$ of the linear system

$$
\begin{align*}
& 4 z_{i, j}-z_{i-1, j}-z_{i+1, j}-z_{i, j-1}-z_{i, j+1}=h^{2} f_{i, j}, i, j=1, \cdots, N, \tag{4.1.16}\\
& z_{0, j}=z_{N+1, j}=z_{i, 0}=z_{i, N+1}=0, i, j=0,1, \cdots, N+1
\end{align*}
$$

obtained from (4.1.15) by omitting the error $\tau_{i, j}$, agrees approximately with the $u_{i, j}$. Let

$$
\begin{equation*}
z=\left[z_{1,1}, z_{2,1}, \cdots, z_{N, 1}, z_{1,2}, \cdots, z_{N, 2}, \cdots, z_{1, N}, \cdots, z_{N, N}\right]^{T} \tag{4.1.17a}
\end{equation*}
$$

and

$$
\begin{equation*}
b=h^{2}\left[f_{1,1}, \cdots, f_{N, 1}, f_{1,2}, \cdots, f_{N, 2}, \cdots, f_{1, N}, \cdots, f_{N, N}\right]^{T} \tag{4.1.17b}
\end{equation*}
$$

Then (4.1.16) is equivalent to a linear system $A z=b$ with the $N^{2} \times N^{2}$ matrix.

Let $A=D-L-R$. The matrix $J=D^{-1}(L+R)$ belongs to the Jacobi method (TSM). The N^{2} eigenvalues and eigenvectors of J can be determined explicitly. We can verify at
once, by substitution, that N^{2} vectors $z^{(k, l)}, k, l=1, \cdots, N$ with components

$$
z_{i, j}^{(k, l)}:=\sin \frac{k \pi i}{N+1} \sin \frac{l \pi j}{N+1}, \quad 1 \leq i, j \leq N
$$

satisfy

$$
\begin{equation*}
J z^{(k, l)}=\lambda^{(k, l)} z^{(k, l)} \tag{4.1.19}
\end{equation*}
$$

with

$$
\lambda^{(k, l)}:=\frac{1}{2}\left(\cos \frac{k \pi}{N+1}+\cos \frac{l \pi}{N+1}\right), \quad 1 \leq k, l \leq N .
$$

J thus has eigenvalues $\lambda^{(k, l)}, 1 \leq k, l \leq N$. Then we have

$$
\begin{equation*}
\rho(J)=\lambda_{1,1}=\cos \frac{\pi}{N+1}=1-\frac{\pi^{2} h^{2}}{2}+O\left(h^{4}\right) \tag{4.1.20}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\infty}(J)=-\ln \left(1-\frac{\pi^{2} h^{2}}{2}+O\left(h^{4}\right)\right)=\frac{\pi^{2} h^{2}}{2}+O\left(h^{4}\right) \tag{4.1.21}
\end{equation*}
$$

These show that
(i) TSM converges; Nevertheless,
(ii) Diminution of h will not only enlarge the flop counts per step, but also the convergence speed will drastically make smaller.
sectionSome Remarks on nonnegative matrices

4.1.1 Some theorems and definitions

$$
\rho(T): \text { A measure of quality for convergence. }
$$

Definition 4.1.1 A real $m \times n$-matrix $A=\left(a_{i k}\right)$ is called nonnegative (positive), denoted by $A \geq 0(A>0)$, if $a_{i k} \geq 0(>0), i=1, \cdots, m, k=1, \cdots, n$.

Remark 4.1.1 Let $K_{n}=\left\{x \mid x_{i} \geq 0, i=1, \cdots, n\right\} \subseteq \mathbb{R}^{n}$. It holds

$$
A \in \mathbb{R}^{m \times n}, A \geq 0 \Leftrightarrow A K_{n} \subset K_{m}
$$

Especially, for $m=n, A \geq 0 \Leftrightarrow A K \subset K, K=K$ is a cone.
Let $\tilde{N}=\{1,2, \cdots, n\}$.
Definition 4.1.2 An $m \times n$-matrix A is called reducible, if there is a subset $I \subset \tilde{N}, I \neq$ $\phi, I \neq \tilde{N}$ such that $i \in I, j \notin I \Rightarrow a_{i j}=0 . A$ is not reducible $\Leftrightarrow A$ is irreducible.

Remark 4.1.2 $G(A)$ is the directed graph associated with the matrix A. If A is an $n \times n$-matrix, then $G(A)$ consists of n vertices P_{1}, \cdots, P_{n} and there is an (oriented) arc $P_{i} \rightarrow P_{j}$ in $G(A)$ precisely if $a_{i j} \neq 0$.

It is easily shown that A is irreducible if and only if the graph $G(A)$ is connected in the sense that for each pair of vertices $\left(P_{i}, P_{j}\right)$ in $G(A)$ there is an oriented path from P_{i} to P_{j}. i.e., if $i \neq j$, there is a sequence of indices $i=i_{1}, i_{2}, \cdots, i_{s}=j$ such that ($a_{i_{1}, i_{2}}$ $\left.\cdots a_{i_{s-1}, i_{s}}\right) \neq 0$.

Lemma 4.1.1 If $A \geq 0$ is an irreducible $n \times n$ matrix, then $(I+A)^{n-1}>0$.
Proof: It is sufficient to prove for any $x \geq 0,(I+A)^{n-1} x>0$. Let $x_{k+1}=(I+A) x_{k}$ be a sequence of nonnegative vectors, for $0 \leq k \leq n-2$ with $x_{0}=x$. We now verify that x_{k+1} has fewer zero components than does x_{k} for every $0 \leq k \leq n-2$. Since $x_{k+1}=x_{k}+A x_{k}$, it is clear that x_{k+1} has no more zero components than x_{k}.

If x_{k+1} and x_{k} has exactly the same number of zero components, then for a suitable permutation P we have

$$
P x_{k+1}=\left[\begin{array}{c}
\alpha \\
0
\end{array}\right], \quad P x_{k}=\left[\begin{array}{c}
\beta \\
0
\end{array}\right], \quad \alpha>0, \quad \beta>0, \alpha, \beta \in \mathbb{R}^{m}, 1 \leq m \leq n
$$

Then

$$
\left[\begin{array}{l}
\alpha \\
0
\end{array}\right]=\left[\begin{array}{l}
\beta \\
0
\end{array}\right]+\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{c}
\beta \\
0
\end{array}\right] .
$$

This implies $A_{21} \beta=0$. But $A_{21} \geq 0$ and $\beta>0$, it follows $A_{21}=0$. It contradicts that A is irreducible. Thus x_{k+1} has fewer components and x_{k} has at most $(n-k-1)$ zero component. Hence

$$
x_{n-1}=(I+A)^{n-1} x_{0}
$$

is a positive vector.
(See also Miroslav Fiedler: "Special Matrices and their applications in Numerical Mathematics" for the following theorems.)

Lemma 4.1.2 If A, B are squared matrices and $|A| \leq B$, then $\rho(A) \leq \rho(B)$. In particular, $\rho(A) \leq \rho(|A|)$.

Proof: Suppose $|A| \leq B$, but $\rho(A)>\rho(B)$. Let s satisfy $\rho(A)>s>\rho(B), P=\left(\frac{1}{s}\right) A$ and $Q=\left(\frac{1}{s}\right) B$. Then $\rho(P)=s^{-1} \rho(A)>1, \rho(Q)=s^{-1} \rho(B)<1$. This means that $\lim _{k \rightarrow \infty} Q^{k}=0$. But $\left|P^{k}\right| \leq|P|^{k} \leq Q^{k}$ this implies $\lim _{k \rightarrow 0} P^{k}=0$, i.e., $\rho(P)<1$. Contradiction!

Lemma 4.1.3 Let $A \geq 0, z \geq 0$. If ξ is a real number satisfies $A z>\xi z$, then $\rho(A)>\xi$.
Proof: Assume $\xi \geq 0$. Clearly, $z \neq 0$. Since $A z>\xi z$, there is an $\varepsilon>0$ such that $A z \geq(\xi+\varepsilon) z$. It means that $B=(\xi+\varepsilon)^{-1} A$ satisfies $B z \geq z$. Thus,

$$
B^{k} z \geq B^{k-1} z \geq \cdots \geq z, \text { for } k>0 \text { (integer). }
$$

Hence B^{k} does not converge to the null matrix. This implies, $\rho(B) \geq 1$ and $\rho(A) \geq$ $\xi+\varepsilon>\xi$.

Theorem 4.1.4 (Perron-Frobenius Theorem) Let $A \geq 0$ be irreducible. Then $\rho(A)$ is a simple positive eigenvalue of A and there is a positive eigenvector belonging to $\rho(A)$. No nonnegative eigenvector belongs to any other eigenvalue of A.

Remark 4.1.3 $\rho(A)$ is called a Perron root of A. The eigenvector corresponding to $\rho(A)$ is called a Perron vector.

Lemma 4.1.1 (Perron Lemma) If $A>0$, then $\rho(A)$ is a positive eigenvalue of A and there is only one linearly independent eigenvector corresponding to the eigenvalue $\rho(A)$. Moreover, this eigenvector may be chosen to be positive.

Proof: The lemma holds for $n=1$. Let $n>1$ and $A>0$. There exists an eigenvalue λ of A such that $\rho(A)=|\lambda|$. Let

$$
\begin{equation*}
A u=\lambda u, \quad u \neq 0 \tag{4.1.1}
\end{equation*}
$$

Since $|\alpha v+\beta w| \leq \alpha|v|+\beta|w|$, if $v, w \in \mathbb{C}, \alpha, \beta \in \mathbb{R}_{+}$, then

$$
\text { " }=" \text { holds } \Leftrightarrow \text { exits complex unit } \eta \text { such that } \eta v \geq 0 \text { and } \eta w \geq 0 \text {. }
$$

Generalization: Since $\left|\sum_{i=1}^{n} \alpha_{i} v_{i}\right| \leq \sum_{i=1}^{n} \alpha_{i}\left|v_{i}\right|$, for $v_{1}, \ldots, v_{n} \in \mathbb{C}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}_{+}$. Then

$$
"=" \text { holds } \Leftrightarrow \exists \text { complex unit } \eta \text { such that } \eta v_{i} \geq 0, \quad i=1, \cdots, n \text {. }
$$

Use this result to show u in (4.1.1) has the property that there is a complex unit η such that

$$
\begin{equation*}
\eta u_{i} \geq 0, \text { for } i=1, \cdots, n \tag{4.1.2}
\end{equation*}
$$

To prove this, assume (4.1.2) does not hold. Then we have

$$
|\lambda|\left|u_{k}\right|=\left|\sum_{j=1}^{n} a_{k j} u_{j}\right|<\sum_{j=1}^{n} a_{k j}\left|u_{j}\right|
$$

in k-th equation of (4.1.1). By the above statement, this is true for $k=1, \cdots, n$. Thus,

$$
A|u|>|\lambda||u| .
$$

From Lemma 4.1.3 follows that $|\lambda|<\rho(A)$, which contradicts that $|\lambda|=\rho(A)$.
Therefore, the inequality (4.1.2) implies $v=\eta u, v \neq 0$ nonnegative and from (4.1.1) follows

$$
\begin{equation*}
A v=\lambda v \tag{4.1.3}
\end{equation*}
$$

If $v_{k} \neq 0$ and thus $v_{k}>0$, then the k-th equation in (4.1.3) gives $\lambda>0$. Hence $\lambda=\rho(A)$ and using (4.1.3) again follows $v>0$.

In particular, we have proved the implication: if λ is an eigenvalue such that $|\lambda|=\rho(A)$ and if u is an associated eigenvector then $|u|>0$.

Suppose that there are two linearly independent eigenvectors $v=\left(v_{i}\right)$ and $w=\left(w_{i}\right)$, belonging to λ. As $v \neq 0$, there is an integer k such that $v_{k} \neq 0$. The vector $z=$ $w-\left(w_{k} v_{k}^{-1}\right) v$ is also an eigenvector of A belonging to λ. Since $z \neq 0$, but $z_{k}=0$, this contradicts the proved results in above which states that $|z|>0$.

Corollary 4.1.1 Let $A>0$. Then $|\lambda|<\rho(A)$ for every eigenvalue $\lambda \neq \rho(A)$.

Proof: $|\lambda| \leq \rho(A)$ for all eigenvalues λ of A. Suppose $|\lambda|=\rho(A)$ and $A x=\lambda x, x \neq 0$. By Perron Lemma there is an $w=e^{-i \theta} x>0$ for some $\theta \in \mathbb{R}$ such that $A w=\lambda w$. But then $\lambda=\rho(A)$. Contradictions!
Proof of Theorem 4.1.4: Since $A \geq 0$ irreducible, $(I+A)^{n-1}$ is positive by Lemma 4.1.1. Also,

$$
\left(I+A^{T}\right)^{n-1}=\left((I+A)^{n-1}\right)^{T}
$$

is positive. By Perron Lemma there is an $y>0$ such that

$$
\begin{equation*}
y^{T}(I+A)^{n-1}=\rho\left((I+A)^{n-1}\right) y^{T} . \tag{4.1.4}
\end{equation*}
$$

Let λ be the eigenvalue of A satisfying $|\lambda|=\rho(A)$ and $A x=\lambda x, x \neq 0$. Further,

$$
\rho^{2}(A)|x| \leq \rho(A) A|x|=A \rho(A)|x| \leq A^{2}|x|,
$$

and in general

$$
\begin{equation*}
\rho^{k}(A)|x| \leq A^{k}|x|, \text { for } k=1,2, \cdots \text {. } \tag{4.1.5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
(1+\rho(A))^{n-1}|x| \leq(I+A)^{n-1}|x| \tag{4.1.6}
\end{equation*}
$$

Multiplying y^{T} from left it implies

$$
(1+\rho(A))^{n-1}\left(y^{T}|x|\right) \leq y^{T}(I+A)^{n-1}|x| .
$$

From (4.1.4) follows that

$$
\text { R.H.S }=\rho\left((I+A)^{n-1}\right) y^{T}|x| .
$$

Since $y^{T}|x|>0$, it implies

$$
\begin{equation*}
(1+\rho(A))^{n-1} \leq \rho\left((I+A)^{n-1}\right) . \tag{4.1.7}
\end{equation*}
$$

The eigenvalues of $(I+A)^{n-1}$ are of the form $(1+\alpha)^{n-1}$, where α is an eigenvalue of A. Hence there is an eigenvalue μ of A such that

$$
\begin{equation*}
\left|(1+\mu)^{n-1}\right|=\rho\left((I+A)^{n-1}\right) . \tag{4.1.8}
\end{equation*}
$$

On the other hand, we have $|\mu| \leq \rho(A)$. Substituting into (4.1.7), we get

$$
(1+\rho(A))^{n-1} \leq\left|(1+\mu)^{n-1}\right|
$$

and further

$$
1+\rho(A) \leq|1+\mu| \leq 1+|\mu| \leq 1+\rho(A)
$$

Since the left-hand and right-hand sides coincide, we have equality everywhere. Thus $\mu \geq 0$ and hence $\mu=\rho(A)$.

Equality is valid in all the inequalities that we have added, i.e., in (4.1.5). For $k=1$, it follows

$$
A|x|=\rho(A)|x| \text { or } A|x|=\mu|x| .
$$

In view of (4.1.6) and (4.1.8) follows

$$
(I+A)^{n-1}|x|=|1+\mu|^{n-1}|x|=\rho\left((I+A)^{n-1}\right)|x| .
$$

Using Perron's Lemma, we get $|x|>0$.
From this we know that there is only one linearly independent eigenvector belonging to eigenvalue μ by the same argument as that used in the last paragraph of the proof of Perron's Lemma. Moreover, $\rho(A)>0$ as A is distinct from the null matrix $(n>1)$!. Consequently, we want to claim: $\rho(A)$ is a simple eigenvalue of A if and only if
(i) there is a unique linearly independent eigenvector of A to λ, say u and also only one linearly independent eigenvector of A^{T} belonging to λ, say v.
(ii) $v^{T} u \neq 0$.

Indeed, only one linearly independent eigenvector of A, say u, belongs to $\rho(A)$. Moreover $u>0$. Similarly, $A^{T} \geq 0$ irreducible. The respective eigenvector v of A^{T} (to $\rho(A)$) can be chosen positive as well $v>0$. Therefore $v^{T} u>0$ and by Schur Lemma follows that $\rho(A)$ is simple.

Finally, we show that no nonnegative eigenvector belongs to any other eigenvalue. Suppose $A z=\xi z, z \geq 0$ and $\xi \neq \rho(A)$. We have shown that A^{T} has a positive eigenvector, say $w>0$. Then,

$$
A^{T} w=\rho(A) w
$$

But,

$$
w^{T} A z=w^{T} \xi z=\xi\left(w^{T} z\right)
$$

i.e.,

$$
w^{T} A z=\rho(A)\left(w^{T} z\right)
$$

which is a contradiction in view of $\rho(A)-\xi \neq 0$ and $w^{T} z>0$.
Theorem 4.1.5 Let $A \geq 0, x>0$. Define the quotients:

$$
\begin{equation*}
q_{i}(x) \equiv \frac{(A x)_{i}}{x_{i}}=\frac{1}{x_{i}} \sum_{k=1}^{n} a_{i k} x_{k}, \text { for } i=1, \cdots, n \tag{4.1.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\min _{1 \leq i \leq n} q_{i}(x) \leq \rho(A) \leq \max _{1 \leq i \leq n} q_{i}(x) . \tag{4.1.10}
\end{equation*}
$$

If A is irreducible, then it holds additionally, either

$$
\begin{equation*}
q_{1}=q_{2}=\cdots q_{n}\left(\text { then } x=\mu z, \quad q_{i}=\rho(A)\right) \tag{4.1.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\min _{1 \leq i \leq n} q_{i}(x)<\rho(A)<\max _{1 \leq i \leq n} q_{i}(x) . \tag{4.1.12}
\end{equation*}
$$

Proof: We first assume that A is irreducible. Then A^{T} is irreducible. From Theorem 4.1.4 there exists $y>0$ such that $A^{T} y=\rho\left(A^{T}\right) y=\rho y$. Since $A x=Q x$ with $Q=$ $\operatorname{diag}\left(q_{1}, \cdots, q_{n}\right)$, it follows

$$
\sum_{i=1}^{n} q_{i} y_{i} x_{i}=y^{T} Q x=y^{T} A x=\rho y^{T} x=\rho \sum_{i=1}^{n} y_{i} x_{i}
$$

or

$$
\sum_{i=1}^{n}\left(q_{i}-\rho\right) y_{i} x_{i}=0
$$

Now there is either $q_{i}-\rho=0$, for all $i=1, \cdots, n$, that is (4.1.11) holds or there is a $q_{i} \neq \rho$. Since $y_{i} x_{i}>0$, so (4.1.12) holds. (4.1.10) follows from the consideration of the limiting case.

Theorem 4.1.6 The statements in Theorem 4.1.5 can be formulated as: Let $A \geq 0, x>$ 0 . (4.1.10) corresponds:

$$
\begin{cases}A x \leq \mu x & \Rightarrow \quad \rho \leq \mu \tag{4.1.13}\\ A x \geq \nu x & \Rightarrow \quad \nu \leq \rho\end{cases}
$$

Let $A \geq 0$, irreducible, $x>0$. (4.1.12) corresponds :

$$
\left\{\begin{array}{l}
A x \leq \mu x, \quad A x \neq \mu x \quad \Rightarrow \quad \rho<\mu, \tag{4.1.14}\\
A x \geq \nu x, \quad A x \neq \nu x \quad \Rightarrow \quad \nu<\rho .
\end{array}\right.
$$

Theorem 4.1.7 (Perron and Frobenius 1907-1912, see Varga pp.30) Let $A \geq 0$ irreducible. Then
(i) $\rho=\rho(A)$ is a simple eigenvalue;
(ii) There is a positive eigenvector z associated to ρ, i.e., $A z=\rho z, z>0$;
(iii) If $A x=\lambda x, x \geq 0$, then $\lambda=\rho, x=\alpha z, \alpha>0$. i.e, if x is any nonnegative eigenvector of A, then x is a multiplicity of z;
(iv) $A \leq B, A \neq B \Longrightarrow \rho(A)<\rho(B)$.

Note that (i), (ii) and (iii) follows by Theorem 4.1.4 immediately. The proof of (iv) follows from Lemma 4.1.12 in Appendix.

Theorem 4.1.8 (See Varga pp.46) If $A \geq 0$, then
(i) $\rho=\rho(A)$ is an eigenvalue.
(ii) There is a $z \geq 0, z \neq 0$ with $A z=\rho z$.
(iii) $A \leq B \Longrightarrow \rho(A) \leq \rho(B)$.

Note that If $A \geq 0$ reducible, then A is a limit point of irreducible nonnegative matrices. Hence some parts of Theorem 4.1.7 are preserved.

Appendix

Let $A=\left[a_{i j}\right] \geq 0$ be irreducible and $x \geq 0$ be any vector. Let

$$
r_{x} \equiv \min _{x_{i}>0}\left\{\frac{\sum_{j=1}^{n} a_{i j} x_{j}}{x_{i}}\right\} \geq 0
$$

Then,

$$
\begin{equation*}
r_{x}=\sup \{\rho \geq 0 \mid A x \geq \rho x\} \tag{4.1.15}
\end{equation*}
$$

Consider

$$
\begin{equation*}
r=\sup _{x>0, x \neq 0}\left\{r_{x}\right\} \tag{4.1.16}
\end{equation*}
$$

Since r_{x} and $r_{\alpha x}$ have the same value for all $\alpha>0$, we only consider $\|x\|=1$ and $x \geq 0$. Let $P=\{x \mid x \geq 0,\|x\|=1\}$ and $Q=\left\{y \mid(I+A)^{n-1} x, x \in P\right\}$. From Lemma 4.1.1 follows Q consists only of positive vector. Multiplying $A x \geq r_{x} x$ by $(I+A)^{n-1}$, we get $A y \geq r_{x} y$ (by (9.15)). Thus $r_{y} \geq r_{x}$.

The quantity r of (4.1.16) can be defined equivalently as

$$
\begin{equation*}
r=\sup _{y \in Q}\left\{r_{y}\right\} . \tag{4.1.17}
\end{equation*}
$$

Note that $r_{y}: Q \rightarrow \mathbb{R}$ taking its maximum. As P is compact, so is Q, and as r_{y} is a continuous function on Q, there exists a positive z for which

$$
\begin{equation*}
A z \geq r z \tag{4.1.18}
\end{equation*}
$$

and no vector $w \geq 0$ exists for which $A w>r w$.
All non-negative nonzero z satifying (4.1.18) is called an extremal vector of the matrix A.

Lemma 4.1.9 Let $A \geq 0$ be irreducible. The quantity r of (4.1.16) is positive. Moreover, each extremal vector z is a positive eigenvector of A with corresponding eigenvalue r. i.e., $A z=r z, z>0$.

Proof: If ξ is positive and $\xi_{i}=1$, then since A is irreducible, no row of A can vanish. Thus no component of $A \xi$ can vanish. Thus $r_{\xi}>0$. Proving that $r>0$. Let z be an extremal vector which

$$
A z-r z=\eta, \quad \eta \geq 0
$$

If $\eta \neq 0$, then some component of η is positive. Multiplying both sides by $(I+A)^{n-1}$ we get

$$
A w-r w>0, w=(I+A)^{n-1} z>0
$$

Therefore, $r_{w}>r$ which contradicts (4.1.17). Thus $A z=r z$. Since $w>0$ and $w=$ $(1+r)^{n-1} z$, it follows $z>0$.

Lemma 4.1.10 Let $A=\left[a_{i j}\right] \geq 0$ be irreducible and $B=\left[b_{i j}\right]$ be a complex matrix with $|B| \leq A$. If β is any eigenvalue of B, then

$$
\begin{equation*}
|\beta| \leq r, \tag{4.1.19}
\end{equation*}
$$

where r is the positive constant of (4.1.16). Moreover, equality in (4.1.19) holds, i.e., $\beta=r e^{i \varphi}$, if and only if, $|B|=A$, and B has the form

$$
\begin{equation*}
B=e^{i \varphi} D A D^{-1} \tag{4.1.20}
\end{equation*}
$$

where D is diagonal whose diagonal entries have modulus unity.
Proof: If $B y=\beta y, y \neq 0$, then $\beta y_{i}=\sum_{j=1}^{n} b_{i j} y_{i}, 1 \leq i \leq n$. Thus,

$$
|\beta||y| \leq|B||y| \leq A|y| .
$$

This implies, $|\beta| \leq r_{|y|} \leq r$. Hence, (4.1.19) is proved.
If $|\beta|=r$, then $|y|$ is an extremal vector of A. From Lemma 4.1.9 follows that $|y|$ is a positive eigenvector of A corresponding to the eigenvalue r. Thus,

$$
\begin{equation*}
r|y|=|B||y|=A|y| . \tag{4.1.21}
\end{equation*}
$$

Since $|y|>0$, from (4.1.21) and $|B| \leq A$ follows

$$
\begin{equation*}
|B|=A \tag{4.1.22}
\end{equation*}
$$

For vector $y,(|y|>0)$, we set

$$
D=\operatorname{diag}\left\{\frac{y}{\left|y_{1}\right|}, \cdots, \frac{y_{n}}{\left|y_{n}\right|}\right\} .
$$

Then

$$
\begin{equation*}
y=D|y| \tag{4.1.23}
\end{equation*}
$$

Setting $\beta=r e^{i \varphi}$, then $B y=\beta y$ can be written as

$$
\begin{equation*}
C|y|=r|y| \tag{4.1.24}
\end{equation*}
$$

where

$$
\begin{equation*}
C=e^{-i \varphi} D^{-1} B D \tag{4.1.25}
\end{equation*}
$$

From (4.1.21) and (4.1.24) follows that

$$
\begin{equation*}
C|y|=|B||y|=A|y| . \tag{4.1.26}
\end{equation*}
$$

From the definition of C in (4.1.25) follows that $|C|=|B|$. Combining with (4.1.22) we have

$$
\begin{equation*}
|C|=|B|=A \tag{4.1.27}
\end{equation*}
$$

Thus, from (4.1.26) we conclude that $C|y|=|C||y|$, and as $|y|>0$, follows $C=|C|$, and thus $C=A$ from (4.1.27). Combing this result with (4.1.25) gives

$$
B=e^{i \varphi} D A D^{-1}
$$

Conversely, it is obvious that B has the form in (4.1.20), then $|B|=A$. So, B has an eigenvalue β with $|\beta|=r$.

Setting $B=A$ in Lemma 4.1.10, we have

Corollary 4.1.11 If $A \geq 0$ is irreducible, then the positive eigenvalue r of Lemma 4.1.9 equals the spectral radius $\rho(A)$ of A.

Lemma 4.1.12 If $A \geq 0$ is irreducible and B is any principal squared submatrix of A, then $\rho(B)<\rho(A)$.

Proof: There is a permutation P such that

$$
C=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & 0
\end{array}\right] \quad \text { and } P A P^{T}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Clearly, $0 \leq C \leq P A P^{T}$ and $\rho(C)=\rho(B)=\rho\left(A_{11}\right)$. But as $C=|C| \neq P A P^{T}$ follows that $\rho(B)<\rho(A)$.

4.1.2 The theorems of Stein-Rosenberg

Remark 4.1.4 Let D be nonsingular in the standard decomposition (4.1.5)

$$
A=D-L-R .
$$

Consider $\tilde{A}=D^{-1} A=\tilde{D}-\tilde{L}-\tilde{R}$, where $\tilde{D}=I, \tilde{L}=D^{-1} L$ and $\tilde{R}=D^{-1} R$. Then we have

$$
D^{-1}(L+R)=D^{-1} L+D^{-1} R=\tilde{D}^{-1}(\tilde{L}+\tilde{R})
$$

and

$$
(D-L)^{-1} R=\left(I-D^{-1} L\right)^{-1} D^{-1} R=(\tilde{D}-\tilde{L})^{-1} \tilde{R}
$$

When we investigate TSM and SSM, we can without loss of generality suppose that $D=I$. Therefore in the following paragraph we assume that

$$
\begin{equation*}
A=I-L-R \tag{4.1.28}
\end{equation*}
$$

The iteration matrices of TSM and SSM become

$$
\begin{gather*}
J=L+R \tag{4.1.29}\\
H=(I-L)^{-1} R \tag{4.1.30}
\end{gather*}
$$

respectively. If $L \geq 0$ and $R \geq 0$, then J and $H=(I-L)^{-1} R=\left(I+L+\cdots+L^{n-1}\right) R$ are nonnegative. Here, we have $L^{n}=0$.

Theorem 4.1.13 Let $A=I-L-R, L \geq 0, R \geq 0, n \geq 2$. Then precisely one of the following relationships holds:
(i) $0=\rho(H)=\rho(J)$,
(ii) $0<\rho(H)<\rho(J)<1$,
(iii) $\rho(H)=\rho(J)=1$,
(iv) $\rho(H)>\rho(J)>1$.

Proof: We will only give the proof of the case when A is irreducible. Hence the case (i) does not occur. If A is reducible, then we can transform the reducible matrices into irreducible matrices by using the normalform method. The method is very skillful and behind our discussion, so we assume that A is irreducible.
(a) claim: $\rho(H)>0$.

Let $z>0$ be given. Then $b=(I-L)^{-1} R z \geq 0$. Certainly $R z \neq 0$, thus $b=$ $R z+L R z+\cdots+L^{n-1} R z \neq 0$. Hence $I=\left\{i \mid b_{i}=0\right\} \neq\{1,2, \cdots, n\}=\tilde{N}$. Because $R z=b-L b$, for $i \in I$ we have

$$
0=b_{i}=\sum_{k>i} r_{i k} z_{k}+\sum_{k<i} l_{i k} b_{k}
$$

and

$$
\left\{\begin{array}{l}
r_{i k}=0, i \in I, k>i, k \notin I, \\
l_{i k}=0, i \in I, k<i, k \notin I,
\end{array}\right.
$$

and $a_{i k}=0$ for all $i \in I, k \notin I$. Since A is irreducible, it follows that $I=\emptyset$. For $b>0$ and from Theorem 4.1.5 follows that $0<\min _{1 \leq i \leq n}\left\{\frac{b_{i}}{z_{i}}\right\} \leq \rho(H)$.
(b) Let $x \geq 0$ be the eigenvector of H corresponding to $\rho_{H}=\rho(H)$ (by Theorem 4.1.8). Let $\rho_{J}=\rho(J)$. Since $(I-L)^{-1} R x=\rho_{H} x$, thus

$$
\frac{1}{\rho_{H}} R x=x-L x \text { or } x=\left(L+\frac{1}{\rho_{H}} R\right) x .
$$

Since A is irreducible, we can conclude that $L+\frac{1}{\rho_{H}} R$ is also irreducible. According to Theorem 4.1.7 (iii) we have

$$
\begin{equation*}
1=\rho\left(L+\frac{1}{\rho_{H}} R\right) \tag{4.1.31}
\end{equation*}
$$

and $x>0$. Now we define the real value function

$$
\begin{equation*}
\phi(t)=\rho\left(L+\frac{1}{t} R\right), \quad t>0 . \tag{4.1.32}
\end{equation*}
$$

From Theorem 4.1.7 (iv) we can conclude that $\phi(t)$ is strictly (monotonic) decreasing in t. On the other hand, $t \phi(t)=\rho(t L+R), t>0$ is strictly (monotone) increasing in t.
(case 1) $\rho_{H}<1$: Since $\rho_{J}=\phi(1)$, it implies that

$$
\begin{equation*}
\rho_{J}=\phi(1)=\rho(L+R)>\rho\left(\rho_{H} L+R\right)=\rho_{H} \rho\left(L+\frac{1}{\rho_{H} R}\right)=\rho_{H} . \tag{4.1.31}
\end{equation*}
$$

$(\mathbf{c a s e 2}) \rho_{H}=1: \rho(L+R)=\rho_{J}=1$.
(case 3) $\rho_{H}>1: \rho_{J}=\phi(1)>\phi\left(\rho_{H}\right)=1$ and

$$
\rho_{J}=\phi(1)=\rho(L+R)<\rho\left(\rho_{H} L+R\right)=\rho_{H} \rho\left(L+\frac{1}{\rho_{H}} R\right)=\rho_{H} .
$$

Theorem 4.1.14 If the off-diagonal elements in $A(A=I-L-R)$ are nonpositive, then SSM is convergent if and only if TSM is convergent. Furthermore, SSM is asymptotically faster.

Proof: The result follows immediately from theorem 4.1.13 and (4.1.13).

4.1.3 Sufficient conditions for convergence of TSM and SSM

Definition 4.1.3 A real matrix B is called an M-matrix if $b_{i j} \leq 0, i \neq j$ and B^{-1} exists with $B^{-1} \geq 0$.

In the following theorems we give some important equivalent conditions of the $M-$ matrix.

Theorem 4.1.15 Let B be a real matrix with $b_{i j} \leq 0$ for $i \neq j$. Then the following statements are equivalent.
(i) B is an M-matrix.
(ii) There exists a vector $v>0$ so that $B v>0$.
(iii) B has a decomposition $B=s I-C$ with $C \geq 0$ and $\rho(C)<s$.
(iv) For each decomposition $B=D-C$ with $D=\operatorname{diag}\left(d_{i}\right)$ and $C \geq 0$, it holds: $d_{i}>0$, $i=1,2, \cdots, n$, and $\rho\left(D^{-1} C\right)<1$.
(v) There is a decomposition $B=D-C$, with $D=\operatorname{diag}\left(d_{i}\right)$ and $C \geq 0$ it holds: $d_{i}>0, i=1,2, \cdots, n$ and $\rho\left(D^{-1} C\right)<1$.
Further, if B is irreducible, then (6) is equivalent to (1)-(5).
(vi) There exists a vector $v>0$ so that $B v \geq 0, \neq 0$.

Proof:
(i) \Rightarrow (ii) : Let $e=(1, \cdots, 1)^{T}$. Since $B^{-1} \geq 0$ is nonsingular it follows $v=B^{-1} e>0$ and $B v=B\left(B^{-1} e\right)=e>0$.
(ii) \Rightarrow (iii) : Let $s>\max \left(b_{i i}\right)$. It follows $B=s I-C$ with $C \geq 0$. There exists a $v>0$ with $B v=s v-C v$ (via (ii)), also $s v>C v$. From the statement (4.1.13) in Theorem 4.1.6 follows $\rho(C)<s$.
(iii) \Rightarrow (i) : $B=s I-C=s\left(I-\frac{1}{s} C\right)$. For $\rho\left(\frac{1}{s} C\right)<1$ and from Theorem 1.2.6 follows that there exists a series expansion $\left(I-\frac{1}{s} C\right)^{-1}=\sum_{\nu=0}^{\infty}\left(\frac{1}{s} C\right)^{k}$. Since the terms in sum are nonnegative, we get $B^{-1}=\frac{1}{s}\left(I-\frac{1}{s} C\right)^{-1} \geq 0$.
(ii) \Rightarrow (iv) : From $B v=D v-C v>0$ follows $D v>C v \geq 0$ and $d_{i}>0$, for $i=$ $1,2, \cdots, n$. Hence $D^{-1} \geq 0$ and $v>D^{-1} C v \geq 0$. From (4.1.13) follows that $\rho\left(D^{-1} C\right)<1$.
$(\mathrm{iv}) \Rightarrow(\mathrm{v}):$ Trivial.
(v) \Rightarrow (i) : Since $\rho\left(D^{-1} C\right)<1$, it follows from Theorem 1.2.6 that $\left(I-D^{-1} C\right)^{-1}$ exists and equals to $\sum_{k=0}^{\infty}\left(D^{-1} C\right)^{k}$. Since the terms in sum are nonnegative, we have $\left(I-D^{-1} C\right)^{-1}$ is nonnegative and $B^{-1}=\left(I-D^{-1} C\right)^{-1} D^{-1} \geq 0$.
$(\mathrm{ii}) \Rightarrow(\mathrm{vi}):$ Trivial.
$(\mathbf{v i}) \Rightarrow(\mathbf{v}):$ Consider the decomposition $B=D-C$, with $d_{i}=b_{i i}$. Let $\left\{I=i \mid d_{i} \leq 0\right\}$. From $d_{i} v_{i}-\sum_{k \neq i} c_{i k} v_{k} \geq 0$ follows $c_{i k}=0$ for $i \in I$, and $k \neq i$. Since $B v \geq 0, \neq 0 \Rightarrow$ $I \neq\{1, \cdots, n\}$. But B is irreducible $\Rightarrow I=\emptyset$ and $d_{i}>0$. Hence for $D v>, \neq C v$ also $v>, \neq D^{-1} C v$ and (4.1.14) show that $\rho\left(D^{-1} C\right)<1$.

Remark 4.1.5 Theorem 4.1.15 can also be described as follows: If $a_{i j} \leq 0, i \neq j$, then TSM and SSM converge if and only if A is an M-matrix.

Proof: \quad By (i) \Leftrightarrow (iv) and (i) \Leftrightarrow (v) of the previous theorem and Theorem 4.1.14.
Lemma 4.1.16 Let A be an arbitrary complex matrix and define $|A|=\left[\left|a_{i j}\right|\right]$. If $|A| \leq C$, then $\rho(A) \leq \rho(C)$. Especially $\rho(A) \leq \rho(|A|)$.

Proof: There is a $x \neq 0$ with $A x=\lambda x$ and $|\lambda|=\rho(A)$. Hence

$$
\rho(A)\left|x_{i}\right|=\left|\sum_{k=1}^{n} a_{i k} x_{k}\right| \leq \sum_{k=1}^{n}\left|a_{i k}\right|\left|x_{k}\right| \leq \sum_{k=1}^{n} c_{i k}\left|x_{k}\right| .
$$

Thus,

$$
\rho(A)|x| \leq C|x| .
$$

If $|x|>0$, then from (4.1.13) we have $\rho(A) \leq \rho(C)$. Otherwise, let $I=\left\{i \mid x_{i} \neq 0\right\}$ and C_{I} be the matrix, which consists of the i th row and i th column of C with $i \in I$. Then we have $\rho(A)\left|x_{I}\right| \leq C_{I}\left|x_{I}\right|$. Here $\left|x_{I}\right|$ consists of i th component of $|x|$ with $i \in I$. Then from $\left|x_{I}\right|>0$ and (4.1.13) follows $\rho(A) \leq \rho\left(C_{I}\right)$. We now fill C_{I} with zero up to an $n \times n$ matrix \tilde{C}_{I}. Then $\tilde{C}_{I} \leq C$. Thus, $\rho\left(C_{I}\right)=\rho\left(\tilde{C}_{I}\right) \leq \rho(C)$ (by Theorem 4.1.8(iii)).

Theorem 4.1.17 Let A be an arbitrary complex matrix. It satisfies either (Strong Row Sum Criterion):

$$
\begin{equation*}
\sum_{j \neq i}\left|a_{i j}\right|<\left|a_{i i}\right|, \quad i=1, \cdots, n . \tag{4.1.33}
\end{equation*}
$$

or (Weak Row Sum Criterion):

$$
\begin{align*}
\sum_{j \neq i}\left|a_{i j}\right| & \leq\left|a_{i i}\right|, i=1, \cdots, n \\
& <\left|a_{i_{0} i_{0}}\right|, \text { at least one } i_{0} \tag{4.1.34}
\end{align*}
$$

for A irreducible. Then TSM and SSM both are convergent.
Proof: Let $A=D-L-R$. From (4.1.33) and (4.1.34) D must be nonsingular and then as in Remark 4.1.4 we can w.l.o.g. assume that $D=I$. Now let $B=I-|L|-|R|$. Then (4.1.33) can be written as $B e>0$. From Theorem 4.1.15(ii) and (i) follows that B is an M-matrix.
(4.1.34) can be written as $B e \geq 0, B e \neq 0$. Since A is irreducible, also B, from Theorem 4.1.15 (vi) and (i) follows that B is an M-matrix.

Especially, from theorem 4.1.15(i), (iv) and Theorem 4.1.13 follows that

$$
\rho(|L|+|R|)<1 \text { and } \rho\left((I-|L|)^{-1}|R|\right)<1
$$

Now Lemma 4.1.16 shows that

$$
\rho(L+R) \leq \rho(|L|+|R|)<1 .
$$

So TSM is convergent. Similarly,

$$
\begin{aligned}
\rho\left((I-L)^{-1} R\right) & =\rho\left(R+L R+\cdots+L^{n-1} R\right) \\
& \leq \rho\left(|R|+|L||R|+\cdots+|L|^{n-1}|R|\right) \\
& =\rho\left((I-|L|)^{-1}|R|\right)<1
\end{aligned}
$$

So SSM is convergent.

4.2 Relaxation Methods (Successive Over-Relaxation (SOR) Method)

Consider the standard decomposition (4.1.5)

$$
A=D-L-R
$$

for solving the linear system (4.1.1) $A x=b$. The single-step method (SSM)

$$
(D-L) x^{i+1}=R x^{(i)}+b
$$

can be written in the form

$$
\begin{equation*}
x^{(i+1)}=x^{(i)}+\left\{D^{-1} L x^{(i+1)}+D^{-1} R x^{(i)}+D^{-1} b-x^{(i)}\right\}:=x^{(i)}+v^{(i)} . \tag{4.2.1}
\end{equation*}
$$

Consider a general form of (4.2.1)

$$
\begin{equation*}
x^{(i+1)}=x^{(i)}+\omega v^{(i)} \tag{4.2.2}
\end{equation*}
$$

with constant ω. Also (4.2.2) can be written as

$$
D x^{(i+1)}=D x^{(i)}+\omega L x^{(i+1)}+\omega R x^{(i)}+\omega b-\omega D x^{(i)} .
$$

Then

$$
\begin{equation*}
x^{(i+1)}=(D-\omega L)^{-1}((1-\omega) D+\omega R) x^{(i)}+\omega(D-\omega L)^{-1} b . \tag{4.2.3}
\end{equation*}
$$

We now assume that $D=I$ as above. Then (4.2.3) becomes

$$
\begin{equation*}
x^{(i+1)}=(I-\omega L)^{-1}((1-\omega) I+\omega R) x^{(i)}+\omega(I-\omega L)^{-1} b \tag{4.2.4}
\end{equation*}
$$

with the iteration matrix

$$
\begin{equation*}
L_{\omega}:=(I-\omega L)^{-1}((1-\omega) I+\omega R) . \tag{4.2.5}
\end{equation*}
$$

These methods is called for
$\omega<1$: under relaxation,
$\omega=1$: \quad single-step method,
$\omega>1$: over relaxation. (In general: relaxation methods.)
We now try to choose an ω such that $\rho\left(L_{\omega}\right)$ is possibly small. But this is only under some special assumptions possible. we first list a few qualitative results about $\rho\left(L_{\omega}\right)$.

Theorem 4.2.1 Let $A=D-L-L^{*}$ be hermitian and positive definite. Then the relaxation method is convergent for $0<\omega<2$.

Proof: We claim that each eigenvalue of L_{ω} has absolute value smaller than 1 (i.e., $\left.\rho\left(L_{\omega}\right)<1\right)$. Let $\lambda \in \sigma\left(L_{\omega}\right)$. Then there is an $x \neq 0$ with

$$
\begin{equation*}
\lambda(D-\omega L) x=\left((1-\omega) D+\omega L^{*}\right) x . \tag{4.2.6}
\end{equation*}
$$

It holds obviously

$$
\begin{aligned}
2 \lambda(D-\omega L) & =\lambda((2-\omega) D+\omega(D-2 L)) \\
& =\lambda\left((2-\omega) D+\omega A+\omega\left(L^{*}-L\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
2\left[(1-\omega) D+\omega L^{*}\right] & =(2-\omega) D+\omega\left(-D+2 L^{*}\right) \\
& =(2-\omega) D-\omega A+\omega\left(L^{*}-L\right)
\end{aligned}
$$

Hence multiplying (4.2.6) by x^{*} we get

$$
\begin{aligned}
& \lambda\left((2-\omega) x^{*} D x+\omega x^{*} A x+\omega x^{*}\left(L^{*}-L\right) x\right) \\
& =(2-\omega) x^{*} D x-\omega x^{*} A x+\omega x^{*}\left(L^{*}-L\right) x
\end{aligned}
$$

or by $d=x^{*} D x>0, a:=x^{*} A x>0$ and $x^{*}\left(L^{*}-L\right) x:=i s, s \in R$ we get

$$
\lambda((2-\omega) d+\omega a+i \omega s)=(2-\omega) d-\omega a+i \omega s
$$

Dividing above equation by ω and setting $\mu=(2-\omega) / \omega$, we get

$$
\lambda\{\mu d+a+i s\}=\mu d-a+i s
$$

For $0<\omega<2$ we have $\mu>0$ and $\mu d+i s$ is in the right half plane. Therefore the distance from a to $\mu d+i s$ is smaller than that from $-a$. So we have $|\lambda|=\left|\frac{\mu d+i s-a}{\mu d+i s+a}\right|<1$.
Theorem 4.2.2 Let A be Hermitian and nonsingular with positive diagonal. If SSM converges, then A is positive definite.

Proof: Let $A=D-L-L^{*}$. For any matrix C it holds:

$$
\begin{aligned}
A-\left(I-A C^{*}\right) A(I-C A) & =A-A+A C A+A C^{*} A-A C^{*} A C A \\
& =A C^{*}\left(C^{*-1}+C^{-1}-A\right) C A
\end{aligned}
$$

For special case that $C=(D-L)^{-1}$ we have

$$
C^{*-1}+C^{-1}-A=D-L^{*}+D-L-D+L+L^{*}=D
$$

and

$$
I-C A=(D-L)^{-1}(D-L-A)=(D-L)^{-1} L^{*}=H .
$$

Hence we obtain

$$
A-H^{*} A H=A(D-L)^{-*} D(D-L)^{-1} A=: B
$$ nonsingular). Because $\rho(H)<1$, for any $\varepsilon_{0} \in C^{n}$ the sequence $\left\{\varepsilon_{m}\right\}_{m=1}^{\infty}$ defined by $\varepsilon_{m}:=H^{m} \varepsilon_{0}$ converges to zero. Therefore the sequence $\left\{\varepsilon_{m}^{*} A \varepsilon_{m}\right\}_{m=1}^{\infty}$ also converges to zero. Furthermore, we have

$$
\begin{equation*}
\varepsilon_{m+1}^{*} A \varepsilon_{m+1}=\varepsilon_{m}^{*} H^{*} A H \varepsilon_{m}=\varepsilon_{m}^{*} A \varepsilon_{m}-\varepsilon_{m}^{*} B \varepsilon_{m}<\varepsilon_{m}^{*} A \varepsilon_{m} \tag{4.2.7}
\end{equation*}
$$

because $B>0$ is positive definite. If A is not positive definite, then there is a $\varepsilon_{0} \in \mathbb{C}^{n} \backslash\{0\}$ with $\varepsilon_{0}^{*} A \varepsilon_{0} \leq 0$. This is a contradiction that $\left\{\varepsilon_{m}^{*} A \varepsilon_{m}\right\} \rightarrow 0$ and (4.2.7).

4.2.1 Determination of the Optimal Parameter ω for 2-consistly Ordered Matrices

For an important class of matrices the more qualitative assertions of Theorems 4.2.1 and 4.2.2 can be considerably sharpened. This is the class of consistly ordered matrices. The optimal parameter ω_{b} with

$$
\rho\left(L_{\omega_{b}}\right)=\min _{\omega} \rho\left(L_{\omega}\right)
$$

can be determined. We consider $A=I-L-R$.

Definition 4.2.1 A is called 2-consistly ordered, if the eigenvalues of $\alpha L+\alpha^{-1} R$ are independent of α.

Example 4.2.1 $A=-\left[\begin{array}{cc}0 & R \\ L & 0\end{array}\right]+I$,

$$
\alpha L+\alpha^{-1} R=\left[\begin{array}{cc}
0 & \alpha^{-1} R \\
\alpha L & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & \alpha I
\end{array}\right]\left[\begin{array}{cc}
0 & R \\
L & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & \alpha^{-1} I
\end{array}\right]
$$

This shows that $\alpha L+\alpha^{-1} R$ is similar to $L+R$, so the eigenvalues are independent to α. A is 2-consistently ordered.

Let $A=I-L-R, J=L+R$. Let $s_{1}^{(i)}, s_{2}^{(i)}, \ldots$ denote the lengths of all closed oriented path (oriented cycles)

$$
P_{i} \rightarrow P_{k_{1}} \rightarrow P_{k_{2}} \rightarrow \cdots \rightarrow P_{k_{s}^{(i)}}=P_{i}
$$

in $G(J)$ which leads from P_{i} to P_{i}. Denoting by l_{i} the greatest common divisor: $l_{i}=$ g.c.d. $\left(s_{1}^{(i)}, s_{2}^{(i)}, \cdots\right)$.

Definition 4.2.2 The Graph $G(J)$ is called 2-cyclic if $l_{1}=l_{2}=\cdots=l_{n}=2$ and weakly 2-cyclic if all l_{i} are even.

Definition 4.2.3 The matrix A has property A if there exists a permutation P such that $P A P^{T}=\left[\begin{array}{cc}D_{1} & M_{1} \\ M_{2} & D_{2}\end{array}\right]$ with D_{1} and D_{2} diagonal.

Theorem 4.2.3 For every $n \times n$ matrix A with property A and $a_{i i} \neq 0, i=1, \cdots, n$, there exists a permutation P such that $\bar{A}=D(I-L-R)$ of the permuted matrix $\bar{A}:=P A P^{T}$ is 2-consistly ordered.

Proof: There is a permutation P such that

$$
P A P^{T}=\left[\begin{array}{ll}
D_{1} & M_{1} \\
M_{2} & D_{2}
\end{array}\right]=D(I-L-R)
$$

with

$$
D=\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right], \quad L=-\left[\begin{array}{cc}
0 & 0 \\
D_{2}^{-1} M_{2} & 0
\end{array}\right] \text { and } R=-\left[\begin{array}{cc}
0 & D_{1}^{-1} M_{1} \\
0 & 0
\end{array}\right] .
$$

For $\alpha \neq 0$, we have

$$
\begin{aligned}
J(\alpha) & =-\left[\begin{array}{cc}
0 & \alpha^{-1} D_{1}^{-1} M_{1} \\
\alpha D_{2}^{-1} M_{2} & 0
\end{array}\right]=-S_{\alpha}\left[\begin{array}{cc}
0 & D_{1}^{-1} M_{1} \\
D_{2}^{-1} M_{2} & 0
\end{array}\right] S_{\alpha}^{-1} \\
& =S_{\alpha} J(1) S_{\alpha}^{-1}
\end{aligned}
$$

where $S_{\alpha}:=\left[\begin{array}{cc}I_{1} & 0 \\ 0 & \alpha I_{2}\end{array}\right]$.
Theorem 4.2.4 An irreducible matrix A has property A if and only if $G(J)$ is weakly 2-cyclic. (Without proof!)

Example 4.2.2 Block tridiagonal matrices

$$
A=\left[\begin{array}{cccc}
D_{1} & A_{12} & & \\
A_{21} & D_{2} & \ddots & \\
& \ddots & \ddots & A_{N-1, N} \\
& & A_{N, N-1} & D_{N}
\end{array}\right]
$$

If all D_{i} are nonsingular, then

$$
J(\alpha)=\left[\begin{array}{cccc}
0 & \alpha^{-1} D_{1}^{-1} A_{12} & \cdots & 0 \\
\alpha D_{2}^{-1} A_{21} & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \alpha^{-1} D_{N-1}^{-1} A_{N-1, N} \\
0 & \cdots & \alpha D_{N}^{-1} A_{N, N-1} & 0
\end{array}\right]
$$

which obeys the relation $J(\alpha)=S_{\alpha} J(1) S_{\alpha}^{-1}$, with $S_{\alpha}=\operatorname{diag}\left\{I_{1}, \alpha I_{2}, \cdots, \alpha^{N-1} I_{N}\right\}$. Thus A is 2-consistly ordered.

The other description: $G(L+R)$ is bipartite.
Example 4.2.3 $A=\left[\begin{array}{cccc}1 & b_{1} & & 0 \\ c_{1} & \ddots & \ddots & \\ & \ddots & \ddots & b_{n-1} \\ 0 & & c_{n-1} & 1\end{array}\right]$ is 2-consistly ordered. The eigenvalues are the roots of $\operatorname{det}(A-\lambda I)=0$. The coefficients of above equation appear only those products $b_{i} c_{i}$. For $\alpha L+\alpha^{-1} R$, we substitute b_{i} and c_{i} by $\frac{1}{\alpha} b_{i}$ and αc_{i}, respectively, then the products are still $b_{i} c_{i}$. Therefore eigenvalues are independent of α.

Examples 4.2.1 and 4.2.2 are 2-cyclic.

Example 4.2.4

$$
A=\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & 0 \\
c & d & 1
\end{array}\right], \quad-\alpha L-\alpha^{-1} R=\left[\begin{array}{ccc}
0 & \alpha^{-1} a & \alpha^{-1} b \\
0 & 0 & 0 \\
\alpha c & \alpha d & 0
\end{array}\right]
$$

The coefficients of characteristic polynomial are independent to α, so A is 2-consistly ordered. But $G(L+R)$ is not bipartite, so not 2-cyclic.

If A is 2-consistly ordered, then $L+R$ and $-(L+R)(\alpha=-1)$ has the same eigenvalues. The nonzero eigenvalues of $L+R$ appear in pairs. Hence

$$
\begin{equation*}
\operatorname{det}(\lambda I-L-R)=\lambda^{m} \prod_{i=1}^{r}\left(\lambda^{2}-\mu_{i}^{2}\right), n=2 r+m(m=0, \text { possible }) \tag{4.2.8}
\end{equation*}
$$

Theorem 4.2.5 Let A be 2-consistly ordered, $a_{i i}=1, \omega \neq 0$. Then hold:
(i) If $\lambda \neq 0$ is an eigenvalue of L_{ω} and μ satisfies the equation

$$
\begin{equation*}
(\lambda+\omega-1)^{2}=\lambda \mu^{2} \omega^{2} \tag{4.2.9}
\end{equation*}
$$

then μ is an eigenvalue of $L+R$ (so is $-\mu$).
(ii) If μ is an eigenvalue of $L+R$ and λ satisfies the equation (4.2.9), then λ is an eigenvalue of L_{ω}.

Remark 4.2.1 If $\omega=1$, then $\lambda=\mu^{2}$, and $\rho\left((I-L)^{-1} R\right)=(\rho(L+R))^{2}$.
Proof: We first prove the identity

$$
\begin{equation*}
\operatorname{det}(\lambda I-s L-r R)=\operatorname{det}(\lambda I-\sqrt{s r}(L+R)) . \tag{4.2.10}
\end{equation*}
$$

Since both sides are polynomials of the form $\lambda^{n}+\cdots$ and

$$
s L+r R=\sqrt{s r}\left(\sqrt{\frac{s}{r}} L+\sqrt{\frac{r}{s}} R\right)=\sqrt{s r}\left(\alpha L+\alpha^{-1} R\right)
$$

if $s r \neq 0$, then $s L+r R$ and $\sqrt{s r}(L+R)$ have the same eigenvalues. It is obviously also for the case $s r=0$. The both polynomials in (4.2.10) have the same roots, so they are identical. For

$$
\begin{aligned}
\operatorname{det}(I-\omega L) \operatorname{det}\left(\lambda I-L_{\omega}\right) & =\operatorname{det}(\lambda(I-\omega L)-(1-\omega) I-\omega R) \\
& =\operatorname{det}((\lambda+\omega-1) I-\omega \lambda L-w R)=\Phi(\lambda)
\end{aligned}
$$

and $\operatorname{det}(I-\omega L) \neq 0, \lambda$ is an eigenvalue of L_{ω} if and only if $\Phi(\lambda)=0$. From (4.2.10) follows

$$
\Phi(\lambda)=\operatorname{det}((\lambda+\omega-1) I-\omega \sqrt{\lambda}(L+R))
$$

and that is (from (4.2.8))

$$
\begin{equation*}
\Phi(\lambda)=(\lambda+\omega-1)^{m} \prod_{i=1}^{r}\left((\lambda+\omega-1)^{2}-\omega^{2} \lambda \mu_{i}^{2}\right) \tag{4.2.11}
\end{equation*}
$$

where μ_{i} is an eigenvalue of $L+R$. Therefore, if μ is an eigenvalue of $(L+R)$ and λ satisfies (4.2.9), so is $\Phi(\lambda)=0$, then λ is eigenvalue of L_{ω}. This shows (b).

Now if $\lambda \neq 0$ an eigenvalue of L_{ω}, then one factor in (4.2.11) must be zero. Let μ satisfy (4.2.9). Then
(i) $\mu \neq 0$: From (4.2.9) follows $\lambda+\omega-1 \neq 0$, so

$$
\begin{aligned}
(\lambda+\omega-1)^{2} & =\lambda \omega^{2} \mu_{i}^{2}, \quad \text { for one } i(\text { from }(4.2 .11)), \\
& \left.=\lambda \omega^{2} \mu^{2}, \quad(\text { from }(4.2 .9))\right)
\end{aligned}
$$

This shows that $\mu= \pm \mu_{i}$, so μ is an eigenvalue of $L+R$.
(ii) $\mu=0$: We have $\lambda+\omega-1=0$ and

$$
0=\Phi(\lambda)=\operatorname{det}((\lambda+\omega-1) I-\omega \sqrt{\lambda}(L+R))=\operatorname{det}(-\omega \sqrt{\lambda}(L+R)),
$$

i.e., $L+R$ is singular, so $\mu=0$ is eigenvalue of $L+R$.

Theorem 4.2.6 Let $A=I-L-R$ be 2-consistly ordered. If $L+R$ has only real eigenvalues and satisfies $\rho(L+R)<1$, then it holds

$$
\begin{equation*}
\rho\left(L_{\omega_{b}}\right)=\omega_{b}-1<\rho\left(L_{\omega}\right), \text { for } \omega \neq \omega_{b}, \tag{4.2.12}
\end{equation*}
$$

where

$$
\omega_{b}=\frac{2}{1+\sqrt{1-\rho^{2}(L+R)}}\left(\text { solve } \omega_{b}\right. \text { in (4.2.9)). }
$$

Figure 4.1: figure of $\rho\left(L_{\omega_{b}}\right)$

One has in general,

$$
\rho\left(L_{\omega}\right)=\left\{\begin{array}{l}
\omega-1, \text { for } \omega_{b} \leq \omega \leq 2 \tag{4.2.13}\\
1-\omega+\frac{1}{2} \omega^{2} \mu^{2}+\omega \mu \sqrt{1-\omega+\frac{1}{4} \omega^{2} \mu^{2}}, \text { for } 0<\omega \leq \omega_{b}
\end{array}\right.
$$

Remark: We first prove the following Theorem proposed by Kahan: For arbitrary matrices A it holds

$$
\begin{equation*}
\rho\left(L_{\omega}\right) \geq|\omega-1|, \text { for all } \omega \text {. } \tag{4.2.14}
\end{equation*}
$$

Proof: Since $\operatorname{det}(I-\omega L)=1$ for all ω, the characteristic polynomial $\Phi(\lambda)$ of L_{ω} is

$$
\begin{aligned}
\Phi(\lambda) & =\operatorname{det}\left(\lambda I-L_{\omega}\right)=\operatorname{det}\left((I-\omega L)\left(\lambda I-L_{\omega}\right)\right) \\
& =\operatorname{det}((\lambda+\omega-1) I-\omega \lambda L-\omega R) .
\end{aligned}
$$

For $\prod_{i=1}^{n} \lambda_{i}\left(L_{\omega}\right)=\Phi(0)=\operatorname{det}((\omega-1) I-\omega R)=(\omega-1)^{n}$, it follows immediately that

$$
\rho\left(L_{\omega}\right)=\max _{i}\left|\lambda_{i}\left(L_{\omega}\right)\right| \geq|\omega-1|
$$

Proof of Theorem 4.2.6: By assumption the eigenvalues μ_{i} of $L+R$ are real and $-\rho(L+$ $R) \leq \mu_{i} \leq \rho(L+R)<1$. For a fixed $\omega \in(0,2)$ (by (4.2.14) in the Remark it suffices to consider the interval $(0,2))$ and for each μ_{i} there are two eigenvalues $\lambda_{i}^{(1)}\left(\omega, \mu_{i}\right)$ and $\lambda_{i}^{(2)}\left(\omega, \mu_{i}\right)$ of L_{ω}, which are obtained by solving the quadratic equation (4.2.9) in λ. Geometrically, $\lambda_{i}^{(1)}(\omega)$ and $\lambda_{i}^{(2)}(\omega)$ are obtained as abscissae of the points of intersection of the straight line $g_{\omega}(\lambda)=\frac{\lambda+\omega-1}{\omega}$ and the parabola $m_{i}(\lambda):= \pm \sqrt{\lambda} \mu_{i}$ (see Figure 4.2). The line $g_{\omega}(\lambda)$ has the slope $1 / \omega$ and passes through the point $(1,1)$. If $g_{\omega}(\lambda) \cap m_{i}(\lambda)=\phi$, then $\lambda_{i}^{(1)}(\omega)$ and $\lambda_{i}^{(2)}(\omega)$ are conjugate complex with modulus $|\omega-1|$ (from (4.2.9)). Evidently

$$
\rho\left(L_{\omega}\right)=\max _{i}\left(\left|\lambda_{i}^{(1)}(\omega)\right|,\left|\lambda_{i}^{(2)}(\omega)\right|\right)=\max \left(\left|\lambda^{(1)}(\omega)\right|,\left|\lambda^{(2)}(\omega)\right|\right)
$$

where $\lambda^{(1)}(\omega), \lambda^{(2)}(\omega)$ being obtained by intersecting $g_{\omega}(\lambda)$ with $m(\lambda):= \pm \sqrt{\lambda} \mu$, with $\mu=\rho(L+R)=\max _{i}\left|\mu_{i}\right|$. By solving (4.2.9) with $\mu=\rho(L+R)$ for λ, one verifies (4.2.13) immediately, and thus also the remaining assertions of the theorem.

Figure 4.2: Geometrical view of $\lambda_{i}^{(1)}(\omega)$ and $\lambda_{i}^{(2)}(\omega)$.

84

4.2.2 Practical Determination of Relaxation Parameter ω_{b}

For $\omega \in\left[1, \omega_{b}\right]$, from (4.2.13) in Theorem 4.2.6 we have

$$
\begin{equation*}
\rho\left(L_{\omega}\right)=\left[\frac{\omega \mu}{2}+\frac{1}{2} \sqrt{\mu^{2} \omega^{2}-4(\omega-1)}\right]^{2} \tag{4.2.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\mu=\frac{\rho\left(L_{\omega}\right)+\omega-1}{\omega \sqrt{\rho\left(L_{\omega}\right)}} . \tag{4.2.16}
\end{equation*}
$$

Here $\mu:=\rho(L+R)$. If μ is simple, then $\rho\left(L_{\omega}\right)$ is also a simple eigenvalue (See the proof of Theorem 4.2.6). So one can determine an approximation for $\rho\left(L_{\omega}\right)$ using power method (see later for details!): Let $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ be the sequence of iterates, which generated by (4.2.6) with parameter ω. Let $e^{(k)}=x^{(k)}-x$ be the error vector which satisfies the relation $e^{(k)}=L_{\omega}^{k} e^{(0)}($ Here $A x=b)$. We define $d^{(k)}:=x^{(k+1)}-x^{(k)}$, for $k \in \mathbb{N}$. Then we have

$$
\begin{aligned}
x^{(k+1)}-x^{(k)} & =e^{(k+1)}-e^{(k)}=\left(L_{\omega}-I\right) e^{(k)}=\left(L_{\omega}-I\right) L_{\omega}^{k} e^{(0)} \\
& =L_{\omega}^{k}\left(L_{\omega}-I\right) e^{(0)}=L_{\omega}^{k} d^{(0)}
\end{aligned}
$$

Hence $d^{(k)}=L_{\omega}^{k} d^{(0)}$. For sufficiently large $k \in \mathbb{N}$ we compute

$$
\begin{equation*}
q_{k}:=\max _{1 \leq i \leq n} \frac{\left|x_{i}^{(k+1)}-x_{i}^{(k)}\right|}{\left|x_{i}^{(k)}-x_{i}^{(k-1)}\right|}, \tag{4.2.17}
\end{equation*}
$$

which is a good approximation for $\rho\left(L_{\omega}\right)$. We also determine the corresponding approximation for μ by (4.2.16) and the corresponding optimal parameter $\tilde{\omega}$ as (by Theorem 4.2.4):

$$
\begin{equation*}
\tilde{\omega}=2 /\left(1+\left[1-\left(q_{k}+\omega-1\right)^{2} /\left(\omega^{2} q_{k}\right)\right]^{1 / 2}\right) \tag{4.2.18}
\end{equation*}
$$

4.2.3 Break-off Criterion for SOR Method

From $d^{(k)}=\left(L_{\omega}-I\right) e^{(k)}$ follows (for $\left.\rho\left(L_{\omega}\right)<1\right)$ that $e^{(k)}=\left(L_{\omega}-I\right)^{-1} d^{(k)}$ and then

$$
\left\|e^{(k)}\right\|_{\infty} \leq \frac{1}{1-\rho\left(L_{\omega}\right)}\left\|d^{(k)}\right\|_{\infty}
$$

With an estimate $q<1$ for $\rho\left(L_{\omega}\right)$ one obtains the break-off criterion for a given $\varepsilon \in \mathbb{R}_{+}$

$$
\begin{aligned}
&\left\|d^{(k)}\right\|_{\infty} \leq(1-q) \varepsilon, \\
& \text { (for absolute error) } \\
&\|d(k)\|_{\infty} /\left\|x^{(k+1)}\right\|_{\infty} \leq(1-q) \varepsilon, \\
& \text { (for relative error) }
\end{aligned}
$$

The estimate q_{k} in (4.2.17) for the spectral radius $\rho\left(L_{\omega}\right)$ of SOR method is theoretically justified, if $\omega \leq \omega_{b}$. But during the computation we cannot guarantee that the new $\tilde{\omega}$ also satisfies $\tilde{\omega} \leq \omega_{b}$. Then an oscillation of q_{k} at $\tilde{\omega}$ may occur, and $1-q_{k}$ can be considerably larger than $1-\rho\left(L_{\tilde{\omega}}\right)$; the break-off criterion may be satisfied too early. It is better to take $q:=\max \left(q_{k}, \tilde{\omega}-1\right)$ instead of q_{k}.

4.3 Application to Finite Difference Methods: Model Problem

(Example 4. 1.3) (Successive Over-Relaxation Method) Let $A \in \mathbb{R}^{n \times n}$ and $b \stackrel{85}{\in}$ \mathbb{R}^{n}. Let $A=D-L-R$ with D nonsingular. Suppose that A is 2-consistly ordered, all eigenvalues of $J:=D^{-1}(L+R)$ are real and $\rho(J)$ is a simple eigenvalue of J satisfying $\rho(J)<1$. [We apply a simple strategy to the following Algorithm, to perform a new updating after p iterative steps $(p \approx 5)$.]

Step 1: Choose a bound for machine precision $\varepsilon \in \mathbb{R}_{+}$and a positive integer p, and a initial vector $x^{(0)} \in \mathbb{R}^{n}$. Let $\omega:=1, q:=1$ and $k:=0$.

Step 2: (Iterative step):

Compute for $i=1, \ldots, n$,

$$
x_{i}^{(k+1)}=(1-\omega) x_{i}^{(k)}+\frac{\omega}{a_{i i}}\left[\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}+\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}-b_{i}\right] .
$$

If k is not positive integral multiplicity of p, then go to Step 4.
Step 3: (Adaptation of the Estimate of the Optimal Parameter):
Compute

$$
q:=\max _{1 \leq i \leq n} \frac{\left|x_{i}^{(k+1)}-x_{i}^{(k)}\right|}{\left|x_{i}^{(k)}-x_{i}^{(k-1)}\right|}
$$

If $q>1$, then go to Step 5 .
Let $q:=\max (q, \omega-1)$ and $\omega:=\frac{2}{1+\sqrt{1-\frac{(q+\omega-1)^{2}}{\omega^{2} q}}}$.
Step 4: (Break-off criterion): If

$$
\frac{\max _{1 \leq i \leq n}\left|x_{i}^{(k+1)}-x_{i}^{(k)}\right|}{\max _{1 \leq i \leq n}\left|x_{i}^{(k+1)}\right|} \leq \varepsilon(1-q)
$$

then stop.
Step 5: Let $k:=k+1$ and go to step 2.

4.3 Application to Finite Difference Methods: Model Problem (Example 4.1.3)

We consider the Dirichlet boundary-value problem (Model problem) as in Example 8.3. We shall solve a linear system $A z=b$ of the $N^{2} \times N^{2}$ matrix A as in (4.1.18).

To Jacobi method: The iterative matrix is

$$
J=L+R=\frac{1}{4}(4 I-A) .
$$

Graph $G(J)(N=3)$ is connected and weakly 2 -cyclic. Thus, A is irreducible and has property A. It is easily seen that A is 2 -consistly ordered (Exercise!).
To Gauss-Seidel method: The iterative matrix is

$$
H=(I-L)^{-1} R
$$

From the Remark of Theorem 4.2 .5 and (4.1.20) follows that

$$
\rho(H)=\rho(J)^{2}=\cos ^{2} \frac{\pi}{N+1} .
$$

According to Theorem 4.2.6 the optimal relaxation parameter ω_{b} and $\rho\left(L_{\omega_{b}}\right)$ are given by

$$
\begin{equation*}
\omega_{b}=\frac{2}{1+\sqrt{1-\cos ^{2} \frac{\pi}{N+1}}}=\frac{2}{1+\sin \frac{\pi}{N+1}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho\left(L_{\omega_{b}}\right)=\frac{\cos ^{2} \frac{\pi}{N+1}}{\left(1+\sin \frac{\pi}{N+1}\right)^{2}} . \tag{3.2}
\end{equation*}
$$

The number $k=k(N)$ with $\rho(J)^{k}=\rho\left(L_{\omega_{b}}\right)$ indicates that the k steps of Jacobi method produce the same reduction as one step of the optimal relaxation method. Clearly,

$$
\begin{equation*}
k=\ln \rho\left(L_{\omega_{b}}\right) / \ln \rho(J) . \tag{3.3}
\end{equation*}
$$

Now for small z one has $\ln (1+z)=z-z^{2} / 2+O\left(z^{3}\right)$ and for large N we have

$$
\cos \left(\frac{\pi}{N+1}\right)=1-\frac{\pi^{2}}{2(N+1)^{2}}+O\left(\frac{1}{N^{4}}\right) .
$$

Thus that

$$
\ln \rho(J)=\frac{\pi^{2}}{2(N+1)^{2}}+O\left(\frac{1}{N^{4}}\right) .
$$

Similarly,

$$
\begin{aligned}
\ln \rho\left(L_{\omega_{b}}\right) & =2\left[\ln \rho(J)-\ln \left(1+\sin \frac{\pi}{N+1}\right)\right] \\
& =2\left[-\frac{\pi^{2}}{2(N+1)^{2}}-\frac{\pi}{N+1}+\frac{\pi^{2}}{2(N+1)^{2}}+O\left(\frac{1}{N^{3}}\right)\right] \\
& =-\frac{2 \pi}{N+1}+O\left(\frac{1}{N^{3}}\right)(\text { for large } N) .
\end{aligned}
$$

and

$$
\begin{equation*}
k=k(N) \approx \frac{4(N+1)}{\pi} \tag{3.4}
\end{equation*}
$$

The optimal relaxation method is more than N times as fast as the Jacobi method. The quantities

$$
\begin{align*}
R_{J} & :=\frac{-\ln 10}{\ln \rho(J)} \approx 0.467(N+1)^{2} \tag{3.5}\\
R_{H} & :=\frac{1}{2} R_{J} \approx 0.234(N+1)^{2} \tag{3.6}\\
R_{L_{\omega_{b}}} & :=-\frac{\ln 10}{\ln \rho\left(L_{\omega_{b}}\right)} \approx 0.367(N+1) \tag{3.7}
\end{align*}
$$

indicate the number of iterations required in the Jacobi, the Gauss-Seidel method, and the optimal relaxation method, respectively, in order to reduce the error by a factor of $1 / 10$.

4.4 Block Iterative Methods

A natural block structure

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 N} \\
\vdots & \ddots & \vdots \\
A_{N 1} & \cdots & A_{N N}
\end{array}\right]
$$

where $A_{i i}$ are square matrices. In addition, if all $A_{i i}$ are nonsingular, we introduce block iterative methods relative to the given partition π of A, which is analogous to (4.1.5):

$$
A=D_{\pi}-L_{\pi}-R_{\pi}
$$

with

$$
\begin{align*}
& D_{\pi}:= {\left[\begin{array}{cccc}
A_{11} & 0 & 0 & 0 \\
0 & A_{22} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & A_{N N}
\end{array}\right], } \tag{4.1a}\\
& L_{\pi}:=-\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
A_{21} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & 0 \\
A_{N 1} & \cdots & A_{N, N-1} & 0
\end{array}\right], \\
& R_{\pi}:=-\left[\begin{array}{cccc}
0 & A_{12} & \cdots & A_{1 N} \\
0 & \ddots & \ddots & \vdots \\
\vdots & & \ddots & A_{N-1, N} \\
0 & \cdots & 0 & 0
\end{array}\right] . \tag{4.1b}
\end{align*}
$$

One obtains the block Jacobi method (block total-step method) for the solution of $A x=b$ by choosing in (4.1.4) analogously to (4.1.6) or (4.1.7), $F:=D_{\pi}$. One thus obtains

$$
\begin{equation*}
D_{\pi} x^{(i+1)}=b+\left(L_{\pi}+R_{\pi}\right) x^{(i)} \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{j j} x_{j}^{(i+1)}=b_{j}-\sum_{k \neq j} A_{j k} x_{k}^{(i)}, \text { for } j=1, \ldots, N, i=0,1,2, \cdots . \tag{4.3}
\end{equation*}
$$

We must solve system of linear equations of the form $A_{j j} z=y, j=1, \cdots, N$. By the methods of Chapter 2, a triangular factorization (or a Cholesky factorization, etc.) $A_{j j}=L_{j} R_{j}$ we can reduce $A_{j j} z=y$ to the two triangular systems

$$
L_{j} u=y \text { and } R_{j} z=u .
$$

For the matrix A in Example 8.3 (model problem): Here $A_{j j}$ are positive definite tridiagonal $N \times N$ matrices.

$$
A_{j j}=\left[\begin{array}{cccc}
4 & -1 & 0 & 0 \\
-1 & \ddots & \ddots & 0 \\
0 & \ddots & \ddots & -1 \\
0 & 0 & -1 & 4
\end{array}\right], \quad L_{j}=\left[\begin{array}{cccc}
\times & 0 & \cdots & 0 \\
\times & \ddots & & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & \times & \times
\end{array}\right] .
$$

The rate of convergence of (4.3) is determined by $\rho\left(J_{\pi}\right)$ of the matrix

$$
J_{\pi}:=L_{\pi}+R_{\pi}
$$

with $L_{\pi}:=D_{\pi}^{-1} L_{\pi}$ and $R_{\pi}:=D_{\pi}^{-1} R_{\pi}$.
One can analogously to (4.1.8) define a block Gauss-Seidel method (block single-step method):

$$
H_{\pi}:=\left(I-L_{\pi}\right)^{-1} R_{\pi}
$$

or

$$
\begin{equation*}
A_{j j} x_{j}^{(i+1)}=b_{j}-\sum_{k<j} A_{j k} x_{k}^{(i+1)}-\sum_{k>i} A_{j k} x_{k}^{(i)}, \text { for } j=1, \cdots, N, i=0,1,2, \cdots \tag{4.4}
\end{equation*}
$$

As in Section 10, one can also introduce block relaxation methods through the choice

$$
\begin{equation*}
L_{\omega}^{\pi}=\left(I-\omega L_{\pi}\right)^{-1}\left[(1-\omega) I+\omega R_{\pi}\right] \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{(i+1)}=\left(I-\omega L_{\pi}\right)^{-1}\left((1-\omega) I+\omega R_{\pi}\right) x^{(i)}+\omega\left(I-\omega L_{\pi}\right)^{-1} b . \tag{4.6}
\end{equation*}
$$

If one defines A as 2-consistly ordered whenever the eigenvalues of the matrices $J_{\pi}(\alpha)=$ $\alpha L_{\pi}+\alpha^{-1} R_{\pi}$ are independent of α. Optimal relaxation factors are determined as in Theorem 4.2.6 with the help of $\rho\left(J_{\pi}\right)$. For the model problem (Example 8.3), relative to the partition given in (8.18), $\rho\left(J_{\pi}\right)$ can again be determined explicitly. One finds

$$
\begin{equation*}
\rho\left(J_{\pi}\right)=\frac{\cos \frac{\pi}{N+1}}{2-\cos \frac{\pi}{N+1}}<\rho(J) . \tag{4.7}
\end{equation*}
$$

For the corresponding optimal block relaxation method one has asymptotically for $N \rightarrow$ ∞,

$$
\rho\left(L_{\omega_{b}}^{\pi}\right) \approx \rho\left(L_{w_{b}}\right)^{k}
$$

with $k=\sqrt{2}$ (Exercise!). The number of iterations is reduced by a factor $\sqrt{2}$ compared to the ordinary optimal relaxation method.

4.5 The ADI method of Peaceman and Rachford

4.5.1 ADI method (alternating-direction implicit iterative method)

Slightly generalizing the model problem (4.1.14), we consider the Poisson problem

$$
\left\{\begin{array}{l}
-u_{x x}-u_{y y}+\sigma u(x, y)=f(x, y), \text { for }(x, y) \in \Omega \tag{4.5.1}\\
u(x, y)=0, \text { for }(x, y) \in \partial \Omega
\end{array}\right.
$$

where $\Omega=\{(x, y) \mid 0<x<1,0<y<1\} \subseteq \mathbb{R}^{2}$ with boundary $\partial \Omega$. Here $\sigma>0$ is a constant and $f: \Omega \cup \partial \Omega \rightarrow \mathbb{R}$ continous function. Using the same discretization and the same notation as in Example 8.3, one obtains

$$
\begin{equation*}
4 z_{i j}-z_{i-1, j}-z_{i+1, j}-z_{i, j-1}-z_{i, j+1}+\sigma h^{2} z_{i j}=h^{2} f_{i j}, 1 \leq i, j \leq N \tag{4.5.2}
\end{equation*}
$$

with $z_{0 j}=z_{N+1, j}=z_{i, 0}=z_{i, N+1}=0,0 \leq i, j \leq N+1$ for the approximate values $z_{i j}$ of $u_{i j}=u\left(x_{i}, y_{j}\right)$. To the decomposition

$$
\begin{align*}
4 z_{i j} & -z_{i-1, j}-z_{i+1, j}-z_{i, j-1}-z_{i, j+1}+\sigma h^{2} z_{i j} \\
& \equiv\left(2 z_{i j}-z_{i-1, j}-z_{i+1, j}\right)+\left(2 z_{i j}-z_{i, j-1}-z_{i, j+1}\right)+\left(\sigma h^{2} z_{i j}\right) \tag{4.5.3}
\end{align*}
$$

there corresponds a decomposition of the matrix A if the system $A z=b$, of the form $A=H+V+\Sigma(H$: Horizontal, V : Vertical). Here H, V, Σ are defined by

$$
\begin{align*}
w_{i j} & =2 z_{i j}-z_{i-1, j}-z_{i+1, j}, \text { if } w=H z, \tag{4.5.4a}\\
w_{i j} & =2 z_{i j}-z_{i, j-1}-z_{i, j+1}, \text { if } w=V z, \tag{4.5.4b}\\
w_{i j} & =\sigma h^{2} z_{i j}, \text { if } w=\Sigma z . \tag{4.5.4c}
\end{align*}
$$

Σ is a diagonal matrix with nonnegative elements, H and V are both symmetric and positive definite, where $H=[\cdot]$ and $V=[\cdot] . \quad A=H+V+\Sigma$ is now transformed equivalently into

$$
\left(H+\frac{1}{2} \Sigma+r I\right) z=\left(r I-V-\frac{1}{2} \Sigma\right) z+b
$$

and also

$$
\left(V+\frac{1}{2} \Sigma+r I\right) z=\left(r I-H-\frac{1}{2} \Sigma\right) z+b
$$

Here r is an arbitrary real number. Let $H_{1}:=H+\frac{1}{2} \Sigma, V_{1}:=V+\frac{1}{2} \Sigma$, one obtains ADI method:

$$
\begin{align*}
\left(H_{1}+r_{i+1} I\right) z^{(i+1 / 2)} & =\left(r_{i+1} I-V_{1}\right) z^{(i)}+b, \tag{4.5.5}\\
\left(V_{1}+r_{i+1} I\right) z^{(i+1)} & =\left(r_{i+1} I-H_{1}\right) z^{(i+1 / 2)}+b . \tag{4.5.6}
\end{align*}
$$

With suitable ordering of the variables $z_{i j}$, the matrices $H_{1}+r_{i+1} I$ and $V_{1}+r_{i+1} I$ are positive definite tridiagonal matrices (assuming $r_{i+1} \geq 0$), so that the systems (4.5.5) and (4.5.6) can easily be solved for $z^{(i+1 / 2)}$ and $z^{(i+1)}$ via a Cholesky factorization. Eliminating $z^{(i+1 / 2)}$ in (4.5.5) and (4.5.6) we get

$$
\begin{equation*}
z^{(i+1)}=T_{r_{i+1}} z^{(i)}+g_{r_{i+1}}(b) \tag{4.5.7}
\end{equation*}
$$

with

$$
\begin{align*}
& T_{r}:=\left(V_{1}+r I\right)^{-1}\left(r I-H_{1}\right)\left(H_{1}+r I\right)^{-1}\left(r I-V_{1}\right), \tag{4.5.8}\\
& g_{r}(b):=\left(V_{1}+r I\right)^{-1}\left[I+\left(r I-H_{1}\right)\left(H_{1}+r I\right)^{-1}\right] b . \tag{4.5.9}
\end{align*}
$$

For the error $f_{i}:=z^{(i)}-z$ it follows from (4.5.7) and the relation $z=T_{r_{i+1}} z+g_{r_{i+1}}(b)$ by subtraction, that

$$
\begin{equation*}
f_{i+1}=T_{r_{i+1}} f_{i}, \tag{4.5.10}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
f_{m}=T_{r_{m}} T_{r_{m-1}} \cdots T_{r_{1}} f_{0} \tag{4.5.11}
\end{equation*}
$$

In view of (4.5.10) and (4.5.11), r_{i} are to be determined so that the spectral radius $\rho\left(T_{r_{m}}, \cdots, T_{r_{1}}\right)$ becomes as small as possible.
For the case $r_{i}=r$:

Theorem 4.5.1 Under the assumption that H_{1} and V_{1} are positive definite, one has $\rho\left(T_{r}\right)<1$, for all $r>0$.

Proof: V_{1} and H_{1} are positive definite. Therefore $\left(V_{1}+r I\right)^{-1}$, and $\left(H_{1}+r I\right)^{-1}$ exist, for $r>0$, and hence also T_{r} of (4.5.8). The matrix

$$
\begin{aligned}
\tilde{T}_{r} & :=\left(V_{1}+r I\right) T_{r}\left(V_{1}+r I\right)^{-1} \\
& \left.=\left[\left(r I-H_{1}\right)\left(H_{1}+r I\right)^{-1}\right]\left[r I-V_{1}\right)\left(V_{1}+r I\right)^{-1}\right]
\end{aligned}
$$

is similar to T_{r}. Hence $\rho\left(T_{r}\right)=\rho\left(\tilde{T}_{r}\right)$. The matrix $\tilde{H}:=\left(r I-H_{1}\right)\left(H_{1}+r I\right)^{-1}$ has the eigenvalues $\left(r-\lambda_{j}\right) /\left(r+\lambda_{j}\right)$, where $\lambda_{j}=\lambda_{j}\left(H_{1}\right)$ are the eigenvalues of H_{1}. Since $r>0, \lambda_{j}>0$ it follows that $\left|\left(r-\lambda_{j}\right) /\left(r+\lambda_{j}\right)\right|<1$ and thus $\rho(\tilde{H})<1$. Since H_{1} also \tilde{H} are symmetric, we have

$$
\|\tilde{H}\|_{2}=\rho(\tilde{H})<1
$$

In the same way one has

$$
\|\tilde{V}\|_{2}<1
$$

Let $\tilde{V}:=\left(r I-V_{1}\right)\left(V_{1}+r I\right)^{-1}$. Thus

$$
\rho\left(\tilde{T}_{r}\right) \leq\left\|\tilde{T}_{r}\right\|_{2} \leq\|\tilde{H}\|_{2}\|\tilde{V}\|_{2}<1
$$

The eigenvalues of T_{r} can be exhibited by

$$
\begin{align*}
& H_{1} z^{(k, l)}=\mu_{k} z^{(k, l)} \tag{4.5.12a}\\
& V_{1} z^{(k, l)}=\mu_{1} z^{(k, l)} \tag{4.5.12b}\\
& T_{r} z^{(k, l)}=\mu^{(k, l)} z^{(k, l)}, \tag{4.5.12c}
\end{align*}
$$

where $z_{i j}^{(k, l)}:=\sin \frac{k \pi i}{N+1} \sin \frac{l \pi j}{N+1}, 1 \leq i, j \leq N$, with

$$
\begin{equation*}
\mu^{(k, l)}=\frac{\left(r-\mu_{l}\right)\left(r-\mu_{k}\right)}{\left(r+\mu_{l}\right)\left(r+\mu_{k}\right)}, \mu_{j}:=4 \sin ^{2} \frac{j \pi}{2(N+1)} \tag{4.5.13}
\end{equation*}
$$

so that

$$
\rho\left(T_{r}\right)=\max _{1 \leq j \leq N}\left|\frac{r-\mu_{j}}{r+\mu_{j}}\right|^{2}
$$

One finally finds a result (Exercise!):

$$
\min _{r>0} \rho\left(T_{r}\right)=\rho\left(L_{\omega_{b}}\right)=\frac{\cos ^{2}\left(\frac{\pi}{N+1}\right)}{\left(1+\sin \left(\frac{\pi}{N+1}\right)\right)^{2}},
$$

where ω_{b} characterizes the best (ordinary) relaxation method. The best ADI method assuming constant choice of parameters, has the same rate of convergence for the model problem as the optimal ordinary relaxation method. Since the individual iteration step in ADI method is a great deal more expensive than in the relaxation method, the ADI method would appear to be inferior. This is certainly true if $r=r_{1}=r_{2}=\cdots$ is chosen.
For the case $r_{i} \neq r$:

However, if one makes use of the option to choose a separate parameter r_{i} in each step, the picture changes in favor of the ADI method. Indeed

$$
T_{r_{i}} \cdots T_{r_{1}} z^{(k, l)}=\mu_{r_{i} \cdots r_{1}}^{(k, l)} z^{(k, l)}
$$

where

$$
\mu_{r_{i} \cdots r_{1}}^{(k, l)}=\prod_{j=1}^{i} \frac{\left(r_{j}-\mu_{l}\right)\left(r_{j}-\mu_{k}\right)}{\left(r_{j}+\mu_{l}\right)\left(r_{j}+\mu_{k}\right)}
$$

Choosing $r_{j}:=\mu_{j}$, for $j=1, \cdots, N$, we have $\mu_{r_{N}, \cdots, r_{1}}^{(k, l)}=0$, for $1 \leq k, l \leq N$, so that by the linear independence of the $z^{(k, l)}, T_{r_{N}} \cdots T_{r_{1}}=0$. With this special choice of the r_{j}, the ADI method for the model problem terminates after N steps with the exact solution. This is a happy coincidence, which is due to the following essential assumptions:
(1) H_{1} and V_{1} have in common a set of eigenvectors which span the whole space.
(2) The eigenvalues of H_{1} and V_{1} are known.

Theorem 4.5.2 For Two Hermitian matrices H_{1} and $V_{1} \in \mathbb{C}^{n \times n}$, there exist n linearly independent (orthogonal) vectors z_{1}, \cdots, z_{n}, which are common eigenvectors of H_{1} and V_{1},

$$
\begin{equation*}
H_{1} z_{i}=\sigma_{i} z_{i}, V_{1} z_{i}=\tau_{i} z_{i}, \text { for } i=1, \cdots, n \tag{4.5.14}
\end{equation*}
$$

if and only if H_{1} commutes with V_{1}, i.e., $H_{1} V_{1}=V_{1} H_{1}$.
Proof: " \Rightarrow ": From (4.5.14) it follows that

$$
H_{1} V_{1} z_{i}=\sigma_{i} \tau_{i} z_{i}=V_{1} H_{1} z_{i}, \text { for } i=1,2, \cdots, n .
$$

Since the z_{i} form a basis in \mathbb{C}^{n}, it follows at once that $H_{1} V_{1}=V_{1} H_{1}$.
" \Leftarrow ": Let $H_{1} V_{1}=V_{1} H_{1}$. Let $\lambda_{1}<\cdots<\lambda_{r}$ be the eigenvalues of V_{1} with the multiplicities $\sigma\left(\lambda_{i}\right), i=1, \cdots, r$. According to Theorem 1.1.1 there exists a unitary matrix U with

$$
\Lambda_{V}:=U^{*} V_{1} U=\left[\begin{array}{ccc}
\lambda_{1} I_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{r} I_{r}
\end{array}\right]
$$

From $H_{1} V_{1}=V_{1} H_{1}$ it follows immediately that $\tilde{H}_{1}=\Lambda_{V} \tilde{H}_{1}$, with $\tilde{H}_{1}:=U^{*} H_{1} U$. We partition \tilde{H}_{1} analogously to Λ_{V} :

$$
\tilde{H}_{1}=\left[\begin{array}{ccc}
H_{11} & \cdots & H_{1 r} \\
\vdots & & \vdots \\
H_{r 1} & \cdots & H_{r r}
\end{array}\right] .
$$

By multiplying out

$$
\tilde{H}_{1} \Lambda_{V}=\Lambda_{V} \tilde{H}_{1},
$$

one obtains $H_{i j}=0$, for $i \neq j$, since $\lambda_{i} \neq \lambda_{j}$. The $H_{i i}$ are Hermitian of order $\sigma\left(\lambda_{i}\right)$. There exist unitary matrices \bar{U}_{i} such that $\bar{U}_{i}^{*} H_{i i} \bar{U}_{i}=\Lambda_{i}$ (diagonal). For $\bar{U}=\left[\begin{array}{llll}\bar{U}_{1} & & \\ & \ddots & \\ & & \bar{U}_{r}\end{array}\right] \in$

$$
\begin{gathered}
(U \bar{U})^{*} H_{1}(U \bar{U})=\bar{U}^{*} \tilde{H}_{1} \bar{U}=\Lambda_{H}=\left[\begin{array}{lll}
\Lambda_{1} & & \\
& \ddots & \\
& & \Lambda_{r}
\end{array}\right], \\
\text { i.e., } H_{1}(U \bar{U})=(U \bar{U}) \Lambda_{H}
\end{gathered}
$$

and

$$
\begin{gathered}
(U \bar{U})^{*} V_{1}(U \bar{U})=\bar{U}^{*} \Lambda_{V} \bar{U}=\Lambda_{V} \\
\text { i.e., } \quad V_{1}(U \bar{U})=(U \bar{U}) \Lambda_{V}
\end{gathered}
$$

so that $z_{i}:=(U \bar{U}) e_{i}$ can be taken as n common orthogonal eigenvectors of H_{1} and V_{1}.
We now assume in the following discussion that H_{1} and V_{1} are two positive definite commuting $n \times n$ matrices with (4.5.14) and that two numbers α, β are given such that $0<\alpha \leq \sigma_{i}, \tau_{i} \leq \beta$, for $i=1, \cdots, n$. Then

$$
T_{r} z_{i}=\frac{\left(r-\sigma_{i}\right)\left(r-\tau_{i}\right)}{\left(r+\sigma_{i}\right)\left(r+\tau_{i}\right)} z_{i}, \text { for } r>0, i=1,2, \cdots, n .
$$

gives the problem:

$$
\begin{align*}
\rho\left(T_{r_{m}}, \cdots, T_{r_{1}}\right) & =\max _{1 \leq i \leq n} \prod_{j=1}^{m}\left|\frac{\left(r_{j}-\sigma_{i}\right)\left(r_{j}-\tau_{i}\right)}{\left(r_{j}+\sigma_{i}\right)\left(r_{j}+\tau_{i}\right)}\right| \\
& \leq \max _{\alpha \leq x \leq \beta} \prod_{j=1}^{m}\left|\frac{r_{j}-x}{r_{j}+x}\right|^{2} . \tag{4.5.15}
\end{align*}
$$

For a given m, it is natural to choose $r_{i}>0, i=1, \cdots, m$, so that the function

$$
\begin{equation*}
\varphi\left(r_{1}, \cdots, r_{m}\right):=\max _{\alpha \leq x \leq \beta} \prod_{j=1}^{m}\left|\frac{r_{j}-x}{r_{j}+x}\right| \tag{4.5.16}
\end{equation*}
$$

becomes as small as possible. For each m it can be shown that there are uniquely determined number \bar{r}_{i} with $\alpha<\bar{r}_{i}<\beta, i=1, \cdots, m$, such that

$$
\begin{equation*}
d_{m}(\alpha, \beta):=\varphi\left(\bar{r}_{1}, \ldots, \bar{r}_{m}\right)=\min _{r_{i}>0,1 \leq i \leq m} \varphi\left(r_{1}, \ldots, r_{m}\right) . \tag{4.5.17}
\end{equation*}
$$

The optimal parameter $\bar{r}_{1}, \cdots, \bar{r}_{m}$ can even be given explicitly, for each m, in term of elliptic functions [see Young (1971) pp.518-525]. In the special case $m=2^{k}$, the relevant results will now be presented without proof [see Young (1971), Varga (1962)]. Let $r_{i}^{(m)}, i=1,2 \cdots, m$, denote the optimal ADI parameters for $m=2^{k}$. The $r_{i}^{(m)}$ and $d_{m}(\alpha, \beta)$ can be computed recursively by means of Gauss's arithmetic-geometric mean algorithm. It can be shown that

$$
\begin{equation*}
d_{2 n}(\alpha, \beta)=d_{n}\left(\sqrt{\alpha \beta}, \frac{\alpha+\beta}{2}\right) . \tag{4.5.18}
\end{equation*}
$$

The optimal parameter of the minimax problem (4.5.17), $r_{i}^{(2 n)}$ and $r_{i}^{(n)}$, being related by

$$
\begin{equation*}
r_{i}^{(n)}=\frac{r_{i}^{(2 n)}+\alpha \beta / r_{i}^{(2 n)}}{2}, i=1,2, \cdots, n . \tag{4.5.19}
\end{equation*}
$$

Define $\alpha_{0}:=\alpha, \beta_{0}:=\beta$. Then

$$
\begin{equation*}
\alpha_{j+1}:=\sqrt{\alpha_{j} \beta_{j}}, \beta_{j+1}:=\frac{\alpha_{j}+\beta_{j}}{2}, j=0,1, \cdots, k-1 . \tag{4.5.20}
\end{equation*}
$$

Thus

$$
\begin{align*}
d_{2^{k}}\left(\alpha_{0}, \beta_{0}\right) & =d_{2^{k-1}}\left(\alpha_{1}, \beta_{1}\right)=\cdots \\
& =d_{1}\left(\alpha_{k}, \beta_{k}\right)=\frac{\sqrt{\beta_{k}}-\sqrt{\alpha_{k}}}{\sqrt{\beta_{k}}+\sqrt{\alpha_{k}}} \cdot \text { (Exercise!) } \tag{4.5.21}
\end{align*}
$$

The solution of $d_{1}\left(\alpha_{k}, \beta_{k}\right)$ can be found with $r_{1}^{(1)}=\sqrt{\alpha_{k} \beta_{k}}$. The optimal ADI parameter $r_{i}^{(m)}, i=1, \cdots, m=2^{k}$ can be computed as follows:
(i) $s_{1}^{(0)}:=\sqrt{\alpha_{k} \beta_{k}}$.
(ii) For $j=0,1, \cdots, k-1$, determine $s_{i}^{(j+1)}, i=1,2, \cdots, 2^{j+1}$ as the 2^{j+1} solutions of the 2^{j} quadratic equations in x,

$$
\begin{equation*}
s_{i}^{(j)}=\frac{1}{2}\left(x+\frac{\alpha_{k-1-j} \beta_{k-1-j}}{x}\right), i=1,2, \cdots, 2^{j} . \tag{4.5.22}
\end{equation*}
$$

(iii) Put $r_{i}^{(m)}:=s_{i}^{(k)}, i=1,2, \ldots, m=2^{k}$.

The $s_{i}^{(j)}, i=1,2, \cdots, 2^{j}$ are just the optimal ADI parameters for the interval $\left[\alpha_{k-j}, \beta_{k-j}\right]$.
Let us use these formulas to study the model problem (8.14)(8.16), with $m=2^{k}$ fixed, and the asymptotic behavior of $d_{2^{k}}(\alpha, \beta)$ as $N \rightarrow \infty$. For α and β we take the best possible bounds

$$
\begin{equation*}
\alpha=4 \sin ^{2} \frac{\pi}{2(N+1)}, \beta=4 \sin ^{2} \frac{N \pi}{2(N+1)}=4 \cos ^{2} \frac{\pi}{2(N+1)} . \tag{4.5.23}
\end{equation*}
$$

We then have

$$
\begin{equation*}
d_{m}(\alpha, \beta) \sim 1-4 \sqrt[m]{\frac{\pi}{4(N+1)}} \tag{4.5.24}
\end{equation*}
$$

as $N \rightarrow \infty, m:=2^{k}$.
Proof of (4.5.24): By induction on k. Let $c_{k}:=\sqrt{\alpha_{k} / \beta_{k}}$. One obtains from ((4.5.20) and (4.5.21) that

$$
\begin{equation*}
d_{2^{k}}(\alpha, \beta)=\frac{1-c_{k}}{1+c_{k}} \tag{4.5.25}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{k+1}^{2}=\frac{2 c_{k}}{1+c_{k}^{2}} \tag{4.5.26}
\end{equation*}
$$

In order to prove (4.5.24), it suffices to show that

$$
\begin{equation*}
c_{k} \sim 2 \sqrt[2^{k}]{\frac{\pi}{4(N+1)}}, N \rightarrow \infty \tag{4.5.27}
\end{equation*}
$$

It follows then from (4.5.25) that for $N \rightarrow \infty, d_{2^{k}}(\alpha, \beta) \sim 1-2 c_{k}$. But (4.5.27) is true for $k=0$, by using

$$
c_{0}=\tan \frac{\pi}{2(N+1)} \sim \frac{\pi}{2(N+1)} .
$$

Thus, if (4.5.27) is valid for some $k \geq 0$, then it is also valid for $k+1$, because from (4.5.26) we have at once $c_{k+1} \sim \sqrt{2 c_{k}}$, as $N \rightarrow \infty$.

In practice, the parameter r_{i} are often repeated cyclically, i.e., one chooses a fixed m ($m=2^{k}$), then determines approximately the optimal ADI parameter $r_{i}^{(m)}$ belonging to this m, and finally takes for the ADI method the parameters

$$
r_{j m+i}:=r_{i}^{(m)} \text { for } i=1,2, \cdots, m, j=0,1, \cdots .
$$

If m individual steps of the ADI method are considered a "big iteration step", then the quantity

$$
\frac{-\ln 10}{\ln \rho\left(T r_{m}, \ldots, T_{r_{1}}\right)}
$$

indicates how many big iteration steps are required to reduce the error by a factor of $1 / 10$, i.e.,

$$
R_{A D I}^{(m)}=-m \frac{\ln 10}{\ln \rho\left(T_{r_{m}}, \ldots, T_{r_{1}}\right)}
$$

indicates how many ordinary ADI steps, on the average, are required for the same purpose. In case of the model problem one obtains for the optimal choice of parameter and $m=2^{k}$, by virtue of (4.5.15) and (4.5.24),

$$
\begin{array}{r}
\rho\left(T_{r_{m}}, \ldots, T_{r_{1}}\right) \leq d_{m}(\alpha, \beta)^{2} \sim 1-8 \sqrt[m]{\frac{\pi}{4(N+1)}}, N \rightarrow \infty \\
\ln \rho\left(T_{r_{m}}, \ldots, T_{r_{1}}\right) \leq-8 \sqrt[m]{\frac{\pi}{4(N+1)}}, N \rightarrow \infty
\end{array}
$$

so that

$$
\begin{equation*}
R_{A D I}^{(m)} \leq \frac{m}{8} \ln (10) \sqrt[m]{\frac{4(N+1)}{\pi}}, N \rightarrow \infty \tag{4.5.28}
\end{equation*}
$$

Comparing to (3.5)-(3.7) shows that for $m>1$ the ADI method converges considerably faster than the optimal ordinary relaxation method. This convergence behavior establishes the practical significance of the ADI method.

4.5.2 The algorithm of Buneman for the solution of the discretized Poisson Equation

Consider the possion problem

$$
\begin{cases}-u_{x x}-u_{y y}+\sigma u=f(x, y), & \text { for }(x, y) \in \Omega \tag{4.5.29}\\ u(x, y)=0, & \text { for }(x, y) \in \partial \Omega\end{cases}
$$

where $\Omega \equiv\{(x, y) \mid 0<x<a, 0<y<b\} \subseteq \mathbb{R}^{2}, \sigma>0$ is a constant and $f: \Omega \cup \partial \Omega \rightarrow \mathbb{R}$ is a continuous function.

Discretizing (4.5.29): for the approximate $z_{i j}$ of $u\left(x_{i}, y_{j}\right), x_{i}=i \delta x, y_{j}=j \delta y, \delta x \equiv$ $a /(p+1), \delta y \equiv b /(q+1)$. We obtain the equation:

$$
\begin{equation*}
\frac{-z_{i-1, j}+2 z_{i, j}-z_{i+1, j}}{\delta x^{2}}+\frac{-z_{i, j-1}+2 z_{i, j}-z_{i, j+1}}{\delta y^{2}}+\sigma z_{i, j}=f_{i j}=f\left(x_{i}, y_{j}\right) \tag{4.5.30}
\end{equation*}
$$

for $i=1,2, \cdots, p, j=1,2, \cdots, q$. Together with the boundary values

$$
\begin{aligned}
z_{0, j} & \equiv z_{p+1, j} \equiv 0, \text { for } j=0,1, \ldots, q+1 \\
z_{i, 0} & \equiv z_{i, q+1} \equiv 0, \text { for } i=0,1, \ldots, p+1 .
\end{aligned}
$$

Let $z=\left[z_{1}^{T}, z_{2}^{T}, \cdots, z_{q}^{T}\right]^{T}, z_{j}=\left[z_{1 j}, z_{2 j}, \cdots, z_{p j}\right]^{T}$. Then (4.5.30) can be written in the forms

$$
\begin{equation*}
M z=b \tag{4.5.31}
\end{equation*}
$$

with

$$
M=\left[\begin{array}{cccc}
A & I & & \tag{4.5.32}\\
I & A & \ddots & \\
& \ddots & \ddots & I \\
& & I & A
\end{array}\right], \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{q}
\end{array}\right]
$$

where $I=I_{p}, A$ is a $p \times p$ Hermitian tridiagonal matrix, and M consists of q block rows and columns.

We describe here only Buneman algorithm (1969). For related method see also Hockney (1969) and Swarztranber (1977). Now, (4.5.32) can be written as:

$$
\left\{\begin{array}{l}
A z_{1}+z_{2}=b_{1} \tag{4.5.33}\\
z_{j-1}+A z_{j}+z_{j+1}=b_{j}, j=2,3, \cdots, q-1 \\
z_{q-1}+A z_{q}=b_{q}
\end{array}\right.
$$

from the three consecutive equations

$$
\left.\begin{array}{llll}
z_{j-2} & +A z_{j-1} & +z_{j} & \\
& z_{j-1} & +A z_{j} & +z_{j+1} \\
& z_{j} & +A z_{j+1} & =b_{j-1}, \\
& & & =z_{j+2}
\end{array}\right)
$$

One can for all even $j=2,4, \ldots$ eliminate z_{j-1} and z_{j+1} by subtracting A times the second equation from the sum of the others:

$$
z_{j-2}+\left(2 I-A^{2}\right) z_{j}+z_{j+2}=b_{j-1}-A b_{j}+b_{j+1}
$$

For q odd, we obtain the reduced system

$$
\left[\begin{array}{cccc}
2 I-A^{2} & I & & 0 \tag{4.5.34}\\
I & 2 I-A^{2} & \ddots & \\
& \ddots & \ddots & I \\
0 & & I & 2 I-A^{2}
\end{array}\right]\left[\begin{array}{c}
z_{2} \\
z_{4} \\
\vdots \\
z_{q-1}
\end{array}\right]=\left[\begin{array}{c}
b_{1}+b_{3}-A b_{2} \\
b_{3}+b_{5}-A b_{4} \\
\vdots \\
b_{q-2}+b_{q}-A b_{q-1}
\end{array}\right]
$$

A solution $\left\{z_{2}, z_{4}, \ldots . ., z_{q-1}\right\}$ of (4.5.34) is known, then $\left\{z_{1}, z_{3}, \ldots\right\}$ can be determined by (from(4.5.33)):

$$
\left[\begin{array}{cccc}
A & & & 0 \tag{4.5.35}\\
& A & & \\
& & \ddots & \\
0 & & & A
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{3} \\
\vdots \\
z_{q}
\end{array}\right]=\left[\begin{array}{c}
b_{1}-z_{2} \\
b_{3}-z_{2}-z_{4} \\
\vdots \\
b_{q}-z_{q-1}
\end{array}\right] .
$$

Thus, (4.5.34) has the same structure as (4.5.32):

$$
M^{(1)} z^{(1)}=b^{(1)}
$$

with

$$
\begin{aligned}
& M^{(1)}=\left[\begin{array}{cccc}
A^{(1)} & I & & 0 \\
I & A^{(1)} & \ddots & \\
& \ddots & \ddots & I \\
0 & & I & A^{(1)}
\end{array}\right], \quad A^{(1)} \equiv 2 I-A^{2}, \\
& z^{(1)}=\left[\begin{array}{c}
z_{1}^{(1)} \\
z_{2}^{(1)} \\
\vdots \\
z_{q_{1}}^{(1)}
\end{array}\right] \equiv\left[\begin{array}{c}
z_{2} \\
z_{4} \\
\vdots \\
z_{q-1}
\end{array}\right], \quad b^{(1)}=\left[\begin{array}{c}
b_{1}^{(1)} \\
b_{2}^{(1)} \\
\vdots \\
b_{q_{1}}^{(1)}
\end{array}\right] \equiv\left[\begin{array}{c}
b_{1}+b_{3}-A b_{2} \\
b_{3}+b_{5}-A b_{4} \\
\vdots \\
b_{q-2}+b_{q}-A b_{q-1}
\end{array}\right],
\end{aligned}
$$

so that the reduction procedure just described can be applied to $M^{(1)}$ again. In general, for $q=q_{0}=2^{k+1}-1$, we obtain a sequence of $A^{(r)}$ and $b^{(r)}$ according to:

$$
\left\{\begin{array}{l}
\text { Set } A^{(0)}=A, b^{(0)}=b_{j}, j=1,2, \ldots, q_{0}, q^{(0)}=q=2^{k+1}-1 \tag{4.5.36}\\
\text { For } r=0,1,2, \ldots, k-1: \\
\quad(1) A^{(r+1)} \equiv 2 I-\left(A^{(r)}\right)^{2}, \\
\quad(2) b_{j}^{(r+1)} \equiv b_{2 j-1}^{(r)}+b_{2 j+1}^{(r)}-A^{(r)} b_{2 j}^{(r)}, j=1,2, \ldots, 2^{k-r}-1\left(\equiv q_{r+1}\right)
\end{array}\right.
$$

For each stage $r+1, r=0,1, \ldots, k-1$, one has a linear system

$$
M^{(r+1)} z^{(r+1)}=b^{(r+1)}
$$

or

$$
\left[\begin{array}{cccc}
A^{(r+1)} & I & & 0 \\
I & A^{(r+1)} & \ddots & \\
& \ddots & \ddots & I \\
0 & & I & A^{(r+1)}
\end{array}\right]\left[\begin{array}{c}
z_{1}^{(r+1)} \\
z_{2}^{(r+1)} \\
\vdots \\
z_{q_{r+1}}^{(r+1)}
\end{array}\right]=\left[\begin{array}{c}
b_{1}^{(r+1)} \\
b_{2}^{(r+1)} \\
\vdots \\
b_{q_{r+1}}^{(r+1)}
\end{array}\right] .
$$

Its solution $z^{(r+1)}$ furnishes the subvectors with even indices of $z^{(r)}$ of the system $M^{(r)} z^{(r)}=$ $b^{(r)}$ in stage r,

$$
\left[\begin{array}{c}
z_{2}^{(r)} \\
z_{4}^{(r)} \\
\vdots \\
z_{q_{r-1}}^{(r)}
\end{array}\right] \equiv\left[\begin{array}{c}
z_{1}^{(r+1)} \\
z_{2}^{(r+1)} \\
\vdots \\
z_{q_{r+1}}^{(r+1)}
\end{array}\right]
$$

while the subvector with odd indices of $z^{(r)}$ can be obtained by solving

$$
\left[\begin{array}{cccc}
A^{(r)} & & & \\
& A^{(r)} & & \\
& & \ddots & \\
& & & A^{(r)}
\end{array}\right]\left[\begin{array}{c}
z_{1}^{(r)} \\
z_{3}^{(r)} \\
\vdots \\
z_{q_{r}}^{(r)}
\end{array}\right]=\left[\begin{array}{c}
b_{1}^{(r)}-z_{2}^{(r)} \\
b_{3}^{(r)}-z_{2}^{(r)}-z_{4}^{(r)} \\
\vdots \\
b_{q_{r}}^{(r)}-z_{q_{r-1}}^{(r)}
\end{array}\right] .
$$

From $A^{(r)}, b^{(r)}$ produced by (4.5.36), the solution $z:=z^{(0)}$ of (4.5.32) is thus obtained by the following procedure (13.37) (say!):
Algorithm 4.5.1 (0) Initialization: Determine $z^{(k)}=z_{1}^{(k)}$ by solving $A^{(k)} z^{(k)}=b^{(k)}=$ $b_{1}^{(k)}$.
(1) For $r=k-1, k-2, \ldots, 0$,
(a) Put $z_{2 j}^{(r)}:=z_{j}^{(r+1)}, j=1,2, \ldots, q_{r+1}=2^{k-r}-1$,
(b) For $j=1,3,5, \ldots, q_{r}$, compute $z_{j}^{(r)}$ by solving

$$
A^{(r)} z_{j}^{(r)}=b_{j}^{(r)}-z_{j-1}^{(r)}-z_{j+1}^{(r)} \quad\left(z_{0}^{(r)}:=z_{q_{r}+1}^{(r)}:=0\right)
$$

(2) Put $z:=z^{(0)}$.

Remark 4.5.1 (4.5.36) and Algorithm 4.5 .1 are still unsatisfactory, as it has serious numerical drawbacks. We have the following disadvantages:
(1) $A^{(r+1)}=2 I-\left(A^{(r)}\right)^{2}$ in (I) of (4.5.36) is very expensive, the tridiagonal matrix $A^{(0)}=A$ as r increases, very quickly turns into a dense matrix. So that, the computation of $\left(A^{(r)}\right)^{2}$ and the solution of (1b) of Algorithm 4.5.1 become very expensive.
(2) The magnitude of $A^{(r)}$ grows exponentially: For

$$
A=A^{0}=\left[\begin{array}{cccc}
-4 & 1 & & 0 \\
1 & -4 & \ddots & \\
& \ddots & \ddots & 1 \\
0 & & 1 & -4
\end{array}\right], \quad\left\|A^{0}\right\| \geq 4,\left\|A^{(r)}\right\| \approx\left\|A^{(r-1)}\right\|^{2} \geq 4^{2^{r}}
$$

Both drawbacks can be avoided by a suitable reformulation of the algorithm. The explicit computation of $A^{(r)}$ is avoided if one exploits the fact that $A^{(r)}$ can be represented as a product of tridiagonal matrices.

Theorem 4.5.3 One has for all $r \geq 0$,

$$
A^{(r)}=-\prod_{j=1}^{2^{r}}\left[-\left(A+2 \cos \theta_{j}^{(r)} \cdot I\right)\right]
$$

where $\theta_{j}^{(r)}:=(2 j-1) \pi / 2^{r+1}$, for $j=1,2, \ldots, 2^{r}$.
Proof: By (1) of (4.5.36), one has $A^{(0)}=A, A^{(r+1)}=2 I-\left(A^{(r)}\right)^{2}$, so that there exists a polynomial $P_{r}(t)$ of degree 2^{r} such that

$$
\begin{equation*}
A^{(r)}=P_{r}(A) . \tag{4.5.37}
\end{equation*}
$$

Evidently, P_{r} satisfy

$$
\begin{aligned}
& P_{0}(t)=t \\
& P_{r+1}(t)=2-\left(P_{r}(t)\right)^{2},
\end{aligned}
$$

so that P_{r} has the form

$$
\begin{equation*}
P_{r}(t)=-(-t)^{2^{r}}+\cdots . \tag{4.5.38}
\end{equation*}
$$

By induction, using the substitution $t=-2 \cos \theta$, we get

$$
\begin{equation*}
P_{r}(-2 \cos \theta)=-2 \cos \left(2^{r} \theta\right) . \tag{4.5.39}
\end{equation*}
$$

The formula is trivial for $r=0$. If it is valid for some $r \geq 0$, then it is also valid for $r+1$, since

$$
\begin{aligned}
P_{r+1}(-2 \cos \theta) & =2-\left(P_{r}(-2 \cos \theta)\right)^{2} \\
& =2-4 \cos ^{2}\left(2^{r} \theta\right) \\
& =-2 \cos \left(2 \cdot 2^{r} \theta\right) .
\end{aligned}
$$

In view of (4.5.39), $P_{r}(t)$ has the 2^{r} distinct real zeros

$$
t_{j}=-2 \cos \left(\frac{2 j-1}{2^{r+1}} \pi\right), \quad j=1,2, \ldots, 2^{r},
$$

and therefore by (4.5.38), the product representation

$$
P_{r}(t)=-\prod_{j=1}^{2^{r}}\left[-\left(t-t_{j}\right)\right]
$$

From this, by virtue of (4.5.37), the assertion of Theorem follows immediately.
In practice, to reduce the systems $A^{(r)} u=b$ in (1b) of Algorithm 4.5.1 with $A^{(r)}$, recursively to the solution of 2^{r} systems with tridiagonal matrices

$$
A_{j}^{(r)}:=-A-2 \cos \theta_{j}^{(r)} \cdot I, \quad j=1,2, \ldots, 2^{r}
$$

as follows:

$$
\left\{\begin{array}{cl}
A_{1}^{(r)} u_{1}=b & \Rightarrow u_{1} \tag{4.5.40}\\
A_{2}^{(r)} u_{2}=u_{1} & \Rightarrow u_{2} \\
\vdots & \\
A_{2^{r}}^{(r)} u_{2^{r}}=u_{2^{r}-1} & \Rightarrow u_{2^{r}} \quad \Rightarrow u:=-u_{2^{r}}
\end{array}\right.
$$

Remark 4.5.2 (i) It is easily verified, the tridiagonal matrices $A_{j}^{(r)}$ are positive definite. One can use Cholesky decomposition for the systems.
(ii) The numerical instability which occurs in (4.5.36)(2) because of the exponential growth of $A^{(r)}$ can be avoided.

Buneman (1969) suggested that by introducing in place of the $b_{j}^{(r)}$ other vectors $p_{j}^{(r)}, q_{j}^{(r)}, j=1,2, \ldots, q_{r}$, which are related to $b_{j}^{(r)}$:

$$
\begin{equation*}
b_{j}^{(r)}=A^{(r)} p_{j}^{(r)}+q_{j}^{(r)}, \quad j=1,2, \ldots, q_{r}, \tag{4.5.41}
\end{equation*}
$$

which can be computed as follows:

$$
\left\{\begin{array}{l}
\text { Set } p_{j}^{(0)}:=0, q_{j}^{(0)}:=b_{j}=b_{j}^{(0)}, j=1,2, \ldots, q_{r} \tag{4.5.42}\\
\text { For } r=0,1, \ldots, k-1: \\
\text { for } j=1,2, \ldots, q_{r+1}: \text { Compute } \\
\text { (1) } p_{j}^{(r+1)}:=p_{2 j}^{(r)}-\left(A^{(r)}\right)^{-1}\left[p_{2 j-1}^{(r)}+p_{2 j+1}^{(r)}+q_{2 j}^{(r)}\right], \\
\text { (2) } q_{j}^{(r+1)}:=q_{2 j-1}^{(r)}+q_{2 j+1}^{(r)}-2 p_{j}^{(r+1)} .
\end{array}\right.
$$

The computation of $p_{j}^{(r+1)}$ in (4.5.42)(1) is as in (4.5.40). The solution u of $A^{(r)} u=$ $p_{2 j-1}^{(r)}+p_{2 j+1}^{(r)}-q_{2 j}^{(r)}$ with the factorization of $A^{(r)}$ in Theorem 4.5.3 and then computing $p_{j}^{(r+1)}$ from u by means of

$$
p_{j}^{(r+1)}:=p_{2 j}^{(r)}-u
$$

Let us prove by induction on r that $p_{j}^{(r)}, q_{j}^{(r)}$ in (4.5.42) satisfy the relation (4.5.41). For $r=0$ (4.5.41) is trivial. Assume that (4.5.41) holds true for some $r \geq 0$. Because of (4.5.36)(2) and $A^{(r+1)}=2 I-\left(A^{(r)}\right)^{2}$, we then have

$$
\begin{aligned}
b_{j}^{(r+1)} & =b_{2 j+1}^{(r)}+b_{2 j-1}^{(r)}-A^{(r)} b_{2 j}^{(r)} \\
& =A^{(r)} p_{2 j+1}^{(r)}+q_{2 j+1}^{(r)}+A^{(r)} p_{2 j-1}^{(r)}+q_{2 j-1}^{(r)}-A^{(r)}\left[A^{(r)} p_{2 j}^{(r)}+q_{2 j}^{(r)}\right] \\
& =A^{(r)}\left[p_{2 j+1}^{(r)}+p_{2 j-1}^{(r)}-q_{2 j}^{(r)}\right]+A^{(r+1)} p_{2 j}^{(r)}+q_{2 j-1}^{(r)}+q_{2 j+1}^{(r)}-2 p_{2 j}^{(r)} \\
& =A^{(r+1)} p_{2 j}^{(r)}+\left(A^{(r)}\right)^{-1}\left\{\left[2 I-A^{(r+1)}\right]\left[p_{2 j+1}^{(r)}+p_{2 j-1}^{(r)}-q_{2 j}^{(r)}\right]\right\}+q_{2 j-1}^{(r)}+q_{2 j+1}^{(r)}-2 p_{2 j}^{(r)} \\
& =A^{(r+1)}\left\{p_{2 j}^{(r)}-\left(A^{(r)}\right)^{-1}\left[p_{2 j+1}^{(r)}+p_{2 j-1}^{(r)}-q_{2 j}^{(r)}\right]\right\}+q_{2 j-1}^{(r)}+q_{2 j+1}^{(r)}-2 p_{j}^{(r+1)} \\
& =A^{(r+1)} p_{j}^{(r+1)}+q_{j}^{(r+1)} .
\end{aligned}
$$

By (4.5.41) we can express $b_{j}^{(r)}$ in Algorithm 4.5.1 in terms of $p_{j}^{(r)}, q_{j}^{(r)}$ and obtain, for example, from (1b) of Algorithm 4.5.1 for $z_{j}^{(r)}$ the system

$$
A^{(r)} z_{j}^{(r)}=A^{(r)} p_{j}^{(r)}+q_{j}^{(r)}-z_{j-1}^{(r)}-z_{j+1}^{(r)}
$$

which can be solved by determining u of

$$
A^{(r)} u=q_{j}^{(r)}-z_{j-1}^{(r)}-z_{j+1}^{(r)},
$$

and put $z_{j}^{(r)}:=u+p_{j}^{(r)}$. Replacing the $b_{j}^{(r)}$ in (4.5.36) and Algorithm 4.5.1 systematically by $p_{j}^{(r)}$ and $q_{j}^{(r)}$ one obtains:

Algorithm 4.5.2 (Algorithm of Buneman) Consider the system (4.5.32), with $q=$ $2^{k+1}-1$.
(0) Initialization: Put $p_{j}^{(0)}:=0, q_{j}^{(0)}:=b_{j}, j=1,2, \ldots, q_{0}:=q$.
(1) For $r=0,1, \ldots, k-1$,

For $j=1,2, \ldots, \quad q_{r+1}:=2^{k-r}-1:$
Compute u of $A^{(r)} u=p_{2 j-1}^{(r)}+p_{2 j+1}^{(r)}-q_{2 j}^{(r)}$ by the factorization of Theorem 4.5.3 and put $p_{j}^{(r+1)}:=p_{2 j}^{(r)}-u, q_{j}^{(r)}:=q_{2 j-1}^{(r)}+q_{2 j+1}^{(r)}-$ $2 p_{j}^{(r+1)}$.
(2) Determine u of the systems $A^{(k)} u=q_{1}^{(k)}$, and put $z^{(k)}:=z_{1}^{(k)}:=p_{1}^{(k)}+u$.
(3) For $r=k-1, k-2, \ldots, 0$,
(a) Put $z_{2 j}^{(r)}:=z_{j}^{(r+1)}$ for $j=1,2, \ldots, q_{r+1}$.
(b) For $j=1,3,5, \ldots, q_{r}$ determine the solution u of $A^{(r)} u=q_{j}^{(r)}-z_{j-1}^{(r)}-z_{j+1}^{(r)}$ and put $z_{j}^{(r)}:=p_{j}^{(r)}+u$.
(4) Put $z:=z^{(0)}$.

Remark 4.5.3 This method is very efficient: For the model problem (4.1.14) ($a=1=$ $b, p=q=N=2^{k+1}-1$), with its N^{2} unknowns, on requires about $3 k N^{2} \approx 3 N^{2} \log _{2} N$ multiplications and about the same number of additions.

4.5.3 Comparison with Iterative Methods

Consider the special model problem

$$
\left\{\begin{array}{l}
-u_{x x}-u_{y y}=2 \pi^{2} \sin \pi x \sin \pi y, \text { for }(x, y) \in \Omega \tag{4.5.43}\\
u(x, y)=0, \text { for }(x, y) \in \partial \Omega
\end{array}\right.
$$

where $\Omega=\{(x, y) \mid 0<x, y<1\}$, which has the exact solution $u(x, y)=\sin \pi x \sin \pi y$. Using the discretization we have

$$
\left\{\begin{array}{l}
A z=b, A \text { as in (4.1.18), } \tag{4.5.44}\\
b=2 h^{2} \pi^{2} \hat{u}
\end{array}\right.
$$

with $\hat{u}:=\left[\hat{u}_{11}, \hat{u}_{21}, \ldots, \hat{u}_{N 1}, \ldots, \hat{u}_{1 N}, \ldots, \hat{u}_{N N}\right]^{T}$ and $\hat{u}_{i j}:=u\left(x_{i}, y_{j}\right)=\sin i \pi h \sin j \pi h$, $h=1 /(N+1)$.

Method	k	N	$r^{(i)}$	i
Jacobi	5	3.5×10^{-3}	60	
	10	1.2×10^{-3}	235	
Gauss-Seidel	5	3.0×10^{-3}	33	
	10	1.1×10^{-3}	127	
	25	5.6×10^{-3}	600	
Relaxation	5	1.6×10^{-3}	13	
	10	0.9×10^{-3}	28	
	25	0.6×10^{-3}	77	
		50	1.0×10^{-2}	180
ADI	2	5	0.7×10^{-3}	9
	10	4.4×10^{-3}	12	
	25	2.0×10^{-2}	16	
	4	5	1.2×10^{-3}	9
	10	0.8×10^{-3}	13	
	25	1.6×10^{-5}	14	
	50	3.6×10^{-4}	14	

Table 4.1: Comparison results for Jacobi, Gauss-Seidel, SOR and ADI methods

Remark 4.5.4 The vector b in (4.5.44) is an eigenvector of $J=(4 I-A) / 4$, also an eigenvector of A. We have $J b=\mu b$ with $\mu=\cos \pi h$. The exact solution of (4.5.44) can be found

$$
\begin{equation*}
z:=\frac{h^{2} \pi^{2}}{2(1-\cos \pi h)} \hat{u} . \tag{4.5.45}
\end{equation*}
$$

As a measure for the error we took the residual, weighted by $1 / h^{2}$:

$$
\hat{r}^{(r)}:=\frac{1}{h^{2}}\left\|A z^{(i)}-b\right\|_{\infty} .
$$

We start with $z^{(0)}:=0 \quad\left(\hat{r}^{(0)}=2 \pi^{2} \approx 20\right)$. We show the table computed by Jacobi, Gauss-Seidel, SOR and ADI methods respectively:

Since the Algorithm of Buneman in $\S 13.2$ is a noniterative method which yields the exact solution of (4.5.44) in a finite number of steps at the expense of about $3 N^{2} \log _{2} N$ multiplications. From (4.5.45), by Taylor expansion in powers of h, we have

$$
z-\hat{u}=\left(\frac{\pi^{2} h^{2}}{2(1-\cos \pi h)}-1\right) \hat{u}=\frac{h^{2} \pi^{2}}{12} \hat{u}+O\left(h^{4}\right)
$$

so that the error $\|z-\hat{u}\|_{\infty}$, in as much as $\|\hat{u}\|_{\infty} \leq 1$, satisfies $\|z-\hat{u}\|_{\infty} \leq \frac{h^{2} \pi^{2}}{12}+O\left(h^{4}\right)$. In order to compute z with an error of the order h^{2}, the needed number of iterations and operations for the Jacobi, Gauss-Seidel and SOR methods are shown in Table 4.2.
For a given $N, R_{A D I}^{(m)}$ is minimized for $m \approx \ln [4(N+1) / \pi]$, in which case $\sqrt[m]{4(N+1) / \pi} \approx$ e. The ADI method with optimal choice of m and optimal choice of parameter thus requires

$$
R_{A D I}^{(m)} \log _{10}(N+1)^{2} \approx 3.60\left(\log _{10} N\right)^{2}
$$

Method	No. of iterations	No. of operatio
Jacobi	$0.467(N+1)^{2} \log _{10}(N+1)^{2} \approx N^{2} \log _{10} N$	$5 N^{4} \log _{10} N$
Gauss-Seidel	$0.234(N+1)^{2} \log _{10}(N+1)^{2} \approx 0.5 N^{2} \log _{10} N$	$2.5 N^{4} \log _{10} N$
Optimal SOR	$0.36(N+1) \log _{10}(N+1)^{2} \approx 0.72 N \log _{10} N$	$3.6 N^{3} \log _{10} N$

Table 4.2: Number of iterations and operations for Jacobi, Gauss-Seidel and SOR methods
iterations to approximate the solution z of (4.5.44) with error h^{2}. The ADI requires about $8 N^{2}$ multiplications per iteration, so that the total number of operations is about

$$
28.8 N^{2}\left(\log _{10} N\right)^{2}
$$

The Buneman method, according to $\S 13.2$ requires only $3 N^{2} \log _{2} N \approx 10 N^{2} \log _{10} N$ multiplications for the computation of the exact solution of (4.5.44). This clearly shows the superiority of Buneman method.

4.6 Derivation and Properties of the Conjugate Gradient Method

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite (s.p.d.) matrix. Here n is very large and A is sparse. Consider the linear system

$$
A x=b .
$$

4.6.1 A Variational Problem, Steepest Descent Method (Gradient Method).

Consider the functional $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
F(x)=\frac{1}{2} x^{T} A x-b^{T} x=\frac{1}{2} \sum_{i, k=1}^{n} a_{i k} x_{i} x_{k}-\sum_{i=1}^{n} b_{i} x_{i} . \tag{4.6.1}
\end{equation*}
$$

Then it holds:
Theorem 4.6.1 For a vector x^{*} the following statements are equivalent:
(i) $F\left(x^{*}\right)<F(x)$, for all $x \neq x^{*}$,
(ii) $A x^{*}=b$.

Proof: From assumption there exists $z_{0}=A^{-1} b$ and $F(x)$ can be rewritten as

$$
\begin{equation*}
F(x)=\frac{1}{2}\left(x-z_{0}\right)^{T} A\left(x-z_{0}\right)-\frac{1}{2} z_{0}^{T} A z_{0} \tag{4.6.3}
\end{equation*}
$$

Since A is positive definite, $F(x)$ has a minimum at $x=z_{0}$ and only at $x=z_{0}$, it follows the assertion.

Therefore, the solution of the linear system $A x=b$ is equal to the solution of the minimization problem

$$
\begin{equation*}
F(x)=\frac{1}{2} x^{T} A x-b^{T} x=\min !. \tag{4.6.4}
\end{equation*}
$$

Method of the steepest descent
Let x_{k} be an approximate of the exact solution x^{*} and p_{k} be a search direction. We want to find an α_{k+1} such that

$$
F\left(x_{k}+\alpha_{k+1} p_{k}\right)<F\left(x_{k}\right)
$$

Set $x_{k+1}:=x_{k}+\alpha_{k+1} p_{k}$. This leads to the following basic problem.
Basic Problem: Given $x, p \neq 0$, find α_{0} such that

$$
\Phi\left(\alpha_{0}\right)=F\left(x+\alpha_{0} p\right)=\min !
$$

Solution: Since

$$
\begin{aligned}
F(x+\alpha p) & =\frac{1}{2}(x+\alpha p)^{T} A(x+\alpha p)-b^{T}(x+\alpha p) \\
& =\frac{1}{2} \alpha^{2} p^{T} A p+\alpha\left(p^{T} A x-p^{T} b\right)+F(x)
\end{aligned}
$$

it follows that if we take

$$
\begin{equation*}
\alpha_{0}=\frac{(b-A x)^{T} p}{p^{T} A p}=\frac{r^{T} p}{p^{T} A p} \tag{4.6.5}
\end{equation*}
$$

where $r=b-A x=-\operatorname{grad} F(x)=$ residual, then $x+\alpha_{0} p$ is the minimal solution. Moreover,

$$
\begin{equation*}
F\left(x+\alpha_{0} p\right)=F(x)-\frac{1}{2} \frac{\left(r^{T} p\right)^{2}}{p^{T} A p} \tag{4.6.6}
\end{equation*}
$$

Steepest Descent Method with Optimal Choice α_{k+1} (Determine α_{k} via the given data $\left.x_{0}, p_{0}, p_{1}, \cdots\right)$: Let

$$
\begin{align*}
x_{k+1} & =x_{k}+\frac{r_{k}^{T} p_{k}}{p_{k}^{T} A p_{k}} p_{k}, r_{k}=b-A x_{k}, \tag{4.6.7}\\
F\left(x_{k+1}\right) & =F\left(x_{k}\right)-\frac{1}{2} \frac{\left(r_{k}^{T} p_{k}\right)^{2}}{p_{k}^{T} A p_{k}}, k=0,1,2, \cdots \tag{4.6.8}
\end{align*}
$$

Then, it holds

$$
\begin{equation*}
r_{k+1}^{T} p_{k}=0 \tag{4.6.9}
\end{equation*}
$$

Since

$$
\frac{d}{d \alpha} F\left(x_{k}+\alpha p_{k}\right)=\operatorname{grad} F\left(x_{k}+\alpha p_{k}\right)^{T} p_{k}
$$

as in (4.6.5) $\alpha_{k+1}=\frac{r_{k}^{T} p_{k}}{p_{k}^{T} A p_{k}}$, it follows that $\operatorname{grad} F\left(x_{k}+\alpha_{k+1} p_{k}\right)^{T} p_{k}=0$. Thus

$$
\left(b-A x_{k+1}\right)^{T} p_{k}=r_{k+1}^{T} p_{k}=0
$$

hence (4.6.9) holds.

Steepest Descent Method (Gradient Method)

Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differential function on x. Then it holds

$$
\frac{\Phi(x+\varepsilon p)-\Phi(x)}{\varepsilon}=\Phi^{\prime}(x)^{T} p+O(\varepsilon) .
$$ The right hand side takes minimum at $p=-\frac{\Phi^{\prime}(x)}{\left\|\Phi^{\prime}(x)\right\|}$ (i.e., the largest descent) for all p with $\|p\|=1$ (neglect $O(\varepsilon)$). Hence, it suggests to choose

$$
\begin{equation*}
p_{k}=-\operatorname{grad} F\left(x_{k}\right)=b-A x_{k} \tag{4.6.10}
\end{equation*}
$$

Gradient Method:

$$
\left\{\begin{array}{l}
\text { Given } x_{0}, \text { for } k=1,2, \cdots \tag{4.6.11}\\
r_{k-1}=b-A x_{k-1}, \text { if } r_{k-1}=0, \text { then stop; else } \\
\alpha_{k}=\frac{r_{k-1}^{T} r_{k-1}}{r_{k-1}^{T} A r_{k-1}}, x_{k}=x_{k-1}+\alpha_{k} r_{k-1} .
\end{array}\right.
$$

Cost in each step: compute $A x_{k-1}\left(A r_{k-1}\right.$ does not need to compute).
To prove the convergence of Gradient method, we need the Kontorowitsch inequality: Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0, \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i}=1$. Then it holds

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} \lambda_{i} \sum_{j=1}^{n} \alpha_{j} \lambda_{j}^{-1} \leq \frac{\left(\lambda_{1}+\lambda_{n}\right)^{2}}{4 \lambda_{1} \lambda_{n}}=\frac{1}{4}\left(\sqrt{\frac{\lambda_{1}}{\lambda_{n}}}+\sqrt{\frac{\lambda_{n}}{\lambda_{1}}}\right)^{2} . \tag{4.6.12}
\end{equation*}
$$

Proof of (4.6.12): Consider the n points $P_{i}=\left(\lambda_{i}, 1 / \lambda_{i}\right)$. Let B be the region between $y=1 / x$ and the straight line through P_{1}, P_{n}. The slope of the straight line $\overleftrightarrow{P_{1} P_{n}}$ is

$$
\frac{1 / \lambda_{n}-1 / \lambda_{1}}{\lambda_{n}-\lambda_{1}}=-\frac{1}{\lambda_{n} \lambda_{1}} .
$$

The point $P=\sum_{i=1}^{n} \alpha_{i} P_{i}$ lies in B. Maximize $x y$, for all $(x, y) \in B$. The point (ξ, η) which lies on $\overline{P_{1} P_{n}}$ is a maximum for $\xi \eta$ and has the coordinates:

$$
\xi=\alpha \lambda_{n}+(1-\alpha) \lambda_{1}, \text { and } \eta=\alpha \frac{1}{\lambda_{n}}+(1-\alpha) \frac{1}{\lambda_{1}} .
$$

Since

$$
\begin{aligned}
0 & =\frac{d}{d \alpha}\left[\left(\alpha \lambda_{n}+(1-\alpha) \lambda_{1}\right)\left(\alpha \frac{1}{\lambda_{n}}+(1-\alpha) \frac{1}{\lambda_{1}}\right)\right] \\
& =\frac{d}{d \alpha}\left[\alpha^{2}+(1-\alpha)^{2}+\alpha(1-\alpha)\left(\frac{\lambda_{n}}{\lambda_{1}}+\frac{\lambda_{1}}{\lambda_{n}}\right)\right] \\
& =2 \alpha+2(\alpha-1)+(1-2 \alpha)\left(\frac{\lambda_{n}}{\lambda_{1}}+\frac{\lambda_{1}}{\lambda_{n}}\right) \\
& =(1-2 \alpha)\left(\frac{\lambda_{n}}{\lambda_{1}}+\frac{\lambda_{1}}{\lambda_{n}}-2\right),
\end{aligned}
$$

it follows $\alpha=1 / 2$. Hence

$$
\xi \eta=\frac{1}{4}\left(\lambda_{1}+\lambda_{n}\right)\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{n}}\right)=\frac{1}{4} \frac{\left(\lambda_{1}+\lambda_{n}\right)^{2}}{\lambda_{1} \lambda_{n}} .
$$

So (4.6.12) holds.
Another form: Let A be s.p.d. (symmetric positive definite) and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$ be the eigenvalues of A. Let x be a vector with $\|x\|_{2}^{2}=x^{T} x=1$, then it holds

$$
\begin{equation*}
x^{T} A x \cdot x^{T} A^{-1} x \leq \frac{1}{4} \frac{\left(\lambda_{1}+\lambda_{n}\right)^{2}}{\lambda_{1} \lambda_{n}}=\frac{1}{4}\left(\sqrt{\frac{\lambda_{1}}{\lambda_{n}}}+\sqrt{\frac{\lambda_{n}}{\lambda_{1}}}\right)^{2} . \tag{4.6.13}
\end{equation*}
$$

Proof of (4.6.13): Let U be an orthogonal matrix satisfying $U A U^{T}=\Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$. Then we have

$$
x^{T} A x=x^{T} U^{T} \Lambda U x=y^{T} \Lambda y=\sum_{i=1}^{n} y_{i}^{2} \lambda_{i} \quad(y:=U x) .
$$

Similarly,

$$
x^{T} A^{-1} x=y^{T} \Lambda^{-1} y=\sum_{i=1}^{n} y_{i}^{2} \frac{1}{\lambda_{i}}
$$

From (4.6.12) follows (4.6.13).
Theorem 4.6.2 If x_{k}, x_{k-1} are two approximations of the gradient method (4.6.11) for solving $A x=b$ and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$ are the eigenvalues of A, then it holds:

$$
\begin{equation*}
F\left(x_{k}\right)+\frac{1}{2} b^{T} A^{-1} b \leq\left(\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}\right)^{2}\left[F\left(x_{k-1}\right)+\frac{1}{2} b^{T} A^{-1} b\right] \tag{4.6.14a}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\left\|x_{k}-x^{*}\right\|_{A} \leq\left(\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}\right)\left\|x_{k-1}-x^{*}\right\|_{A} \tag{4.6.14b}
\end{equation*}
$$

where $\|x\|_{A}=\sqrt{x^{T} A x}$. Thus the gradient method is convergent.
Proof: By computation,

$$
\begin{aligned}
F\left(x_{k}\right) & +\frac{1}{2} b^{T} A^{-1} b=\frac{1}{2}\left(x_{k}-x^{*}\right)^{T} A\left(x_{k}-x^{*}\right) \\
& =\frac{1}{2}\left(x_{k-1}-x^{*}+\alpha_{k} r_{k-1}\right)^{T} A\left(x_{k-1}-x^{*}+\alpha_{k} r_{k-1}\right) \quad\left(\text { since } A\left(x_{k-1}-x^{*}\right)=-r_{k-1}\right) \\
& =\frac{1}{2}\left[\left(x_{k-1}-x^{*}\right)^{T} A\left(x_{k-1}-x^{*}\right)-2 \alpha_{k} r_{k-1}^{T} r_{k-1}+\alpha_{k}^{2} r_{k-1}^{T} A r_{k-1}\right] \\
& =\frac{1}{2}\left[r_{k-1}^{T} A^{-1} r_{k-1}-\frac{\left(r_{k-1}^{T} r_{k-1}\right)^{2}}{r_{k-1}^{T} A r_{k-1}}\right] \\
& =\frac{1}{2} r_{k-1}^{T} A^{-1} r_{k-1}\left[1-\frac{\left(r_{k-1}^{T} r_{k-1}\right)^{2}}{r_{k-1}^{T} A r_{k-1} \cdot r_{k-1}^{T} A^{-1} r_{k-1}}\right] \\
& \leq \frac{1}{2} r_{k-1}^{T} A^{-1} r_{k-1}\left[1-\frac{4 \lambda_{1} \lambda_{n}}{\left(\lambda_{1}+\lambda_{n}\right)^{2}}\right] \quad(\text { from }(4.6 .13)) \\
& =\left[F\left(x_{k-1}\right)+\frac{1}{2} b^{T} A^{-1} b\right]\left(\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}\right)^{2}
\end{aligned}
$$

If the condition number of $A\left(=\lambda_{1} / \lambda_{n}\right)$ is large, then $\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}} \approx 1$. The gradient method converges very slowly. Hence this method is not recommendable.

4.6.2 Conjugate gradient method

It is favorable to choose that the search directions $\left\{p_{i}\right\}$ as mutually A-conjugate, where A is symmetric positive definite.

Definition 4.6.1 Two vectors p and q are called A-conjugate (A-orthogonal), if $p^{T} A q=$ 0.

Remark 4.6.1 Let A be symmetric positive definite. Then there exists a unique s.p.d. B such that $B^{2}=A$. Denote $B=A^{1 / 2}$. Then $p^{T} A q=\left(A^{1 / 2} p\right)^{T}\left(A^{1 / 2} q\right)$.

Lemma 4.6.3 Let $p_{0}, \ldots, p_{r} \neq 0$ be pairwisely A-conjugate. Then they are linearly independent.

Proof: From $0=\sum_{j=0}^{r} c_{j} p_{j}$ follows that

$$
p_{k}^{T} A\left(\sum_{j=0}^{r} c_{j} p_{j}\right)=0=\sum_{j=0}^{r} c_{j} p_{k}^{T} A p_{j}=c_{k} p_{k}^{T} A p_{k}
$$

so $c_{k}=0$, for $k=1, \ldots, r$.
Theorem 4.6.4 Let A be s.p.d. and p_{0}, \ldots, p_{n-1} be nonzero pairwisely A-conjugate vectors. Then

$$
\begin{equation*}
A^{-1}=\sum_{j=0}^{n-1} \frac{p_{j} p_{j}^{T}}{p_{j}^{T} A p_{j}} \tag{4.6.15}
\end{equation*}
$$

Remark 4.6.2 $A=I, U=\left(p_{0}, \ldots, p_{n-1}\right), p_{i}^{T} p_{i}=1, p_{i}^{T} p_{j}=0, i \neq j . U U^{T}=I$ and $I=U U^{T}$. Then

$$
I=\left(p_{0}, \ldots, p_{n-1}\right)\left[\begin{array}{c}
p_{0}^{T} \\
\vdots \\
p_{n-1}^{T}
\end{array}\right]=p_{0} p_{0}^{T}+\cdots+p_{n-1} p_{n-1}^{T}
$$

Proof of Theorem 4.6.4: Since $\tilde{p}_{i}=\frac{A^{1 / 2} p_{i}}{\sqrt{p_{i}^{T} A p_{i}}}$ are orthonormal, for $i=0,1, \ldots, n-1$, we have

$$
\begin{aligned}
I & =\tilde{p_{0}} \tilde{p}_{0}^{T}+\ldots+\tilde{p}_{n-1} \tilde{p}_{n-1}^{T} \\
& =\sum_{i=0}^{n-1} \frac{A^{1 / 2} p_{i} p_{i}^{T} A^{1 / 2}}{p_{i}^{T} A p_{i}}=A^{1 / 2}\left(\sum_{i=0}^{n-1} \frac{p_{i} p_{i}^{T}}{p_{i}^{T} A p_{i}}\right) A^{1 / 2} .
\end{aligned}
$$

Thus,

$$
A^{-1 / 2} I A^{-1 / 2}=A^{-1}=\sum_{i=0}^{n-1} \frac{p_{i} p_{i}^{T}}{p_{i}^{T} A p_{i}} .
$$

Remark 4.6.3 Let $A x^{*}=b$ and x_{0} be an arbitrary vector. Then from $x^{*}-x_{0}=A^{-1}(b-$ $A x_{0}$) and (4.6.15) follows that

$$
\begin{equation*}
x^{*}=x_{0}+\sum_{i=0}^{n-1} \frac{p_{i}^{T}\left(b-A x_{0}\right)}{\left(p_{i}^{T} A p_{i}\right)} p_{i} . \tag{4.6.16}
\end{equation*}
$$

Theorem 4.6.5 Let A be s.p.d. and $p_{0}, \ldots, p_{n-1} \in \mathbb{R}^{n} \backslash\{0\}$ be pairwisely A-orthogonal. Given x_{0} and let $r_{0}=b-A x_{0}$. For $k=0, \ldots, n-1$, let

$$
\begin{align*}
\alpha_{k} & =\frac{p_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}}, \tag{4.6.17}\\
x_{k+1} & =x_{k}+\alpha_{k} p_{k}, \tag{4.6.18}\\
r_{k+1} & =r_{k}-\alpha_{k} A p_{k} . \tag{4.6.19}
\end{align*}
$$

Then the following statements hold:
(i) $r_{k}=b-A x_{k} . \quad$ (By induction).
(ii) x_{k+1} minimizes $F(x)$ (see (4.6.1)) on $x=x_{k}+\alpha p_{k}, \alpha \in \mathbb{R}$.
(iii) $x_{n}=A^{-1} b=x^{*}$.
(iv) x_{k} minimizes $F(x)$ on the affine subspace $x_{0}+S_{k}$, where $S_{k}=\operatorname{Span}\left\{p_{0}, \ldots, p_{k-1}\right\}$.

Proof: (i): By Induction and using (4.6.18) (4.6.19).
(ii): From (4.6.5) and (i).
(iii): It is enough to show that x_{k} (which defined in (4.6.18)) corresponds with the partial sum in (4.6.16), i.e.,

$$
x_{k}=x_{0}+\sum_{i=0}^{k-1} \frac{p_{i}^{T}\left(b-A x_{0}\right)}{p_{i}^{T} A p_{i}} p_{i} .
$$

Then it follows that $x_{n}=x^{*}$ from (4.6.16). From (4.6.17) and (4.6.18) we have

$$
x_{k}=x_{0}+\sum_{i=0}^{k-1} \alpha_{i} p_{i}=x_{0}+\sum_{i=0}^{k-1} \frac{p_{i}^{T}\left(b-A x_{i}\right)}{p_{i}^{T} A p_{i}} p_{i} .
$$

To show that

$$
\begin{equation*}
p_{i}^{T}\left(b-A x_{i}\right)=p_{i}^{T}\left(b-A x_{0}\right) . \tag{4.6.20}
\end{equation*}
$$

From $x_{k}-x_{0}=\sum_{i=0}^{k-1} \alpha_{i} p_{i}$ we obtain

$$
p_{k}^{T} A x_{k}-p_{k}^{T} A x_{0}=\sum_{i=0}^{k-1} \alpha_{i} p_{k}^{T} A p_{i}=0
$$

So (4.6.20) holds.
(iv): From (4.6.19) and (4.6.17) follows that

$$
p_{k}^{T} r_{k+1}=p_{k}^{T} r_{k}-\alpha_{k} p_{k}^{T} A p_{k}=0
$$

$$
p_{k}^{T} r_{k+1}=p_{k}^{T} r_{k+2}=\ldots=p_{k}^{T} r_{n}=0
$$

Hence we have

$$
\begin{equation*}
\left.p_{i}^{T} r_{k}=0, i=0, \ldots, k-1, k=1,2, \ldots, n \text {. (i.e., } i<k\right) . \tag{4.6.21}
\end{equation*}
$$

We now consider $F(x)$ on $x_{0}+S_{k}$:

$$
F\left(x_{0}+\sum_{i=0}^{k-1} \xi_{i} p_{i}\right)=\varphi\left(\xi_{0}, \ldots, \xi_{k-1}\right)
$$

$F(x)$ is minimal on $x_{0}+S_{k}$ if and only if all derivatives $\frac{\partial \varphi}{\partial \xi_{i}}$ vanish at x. But

$$
\begin{equation*}
\frac{\partial \varphi}{\partial \xi_{s}}=\left[\operatorname{grad} F\left(x_{0}+\sum_{i=0}^{k-1} \xi_{i} p_{i}\right)\right]^{T} p_{s}, s=0,1, \ldots, k-1 \tag{4.6.22}
\end{equation*}
$$

If $x=x_{k}$, then $\operatorname{grad} F(x)=-r_{k}$. From (4.6.21) follows that

$$
\frac{\partial \varphi}{\partial \xi_{s}}\left(x_{k}\right)=0, \text { for } s=0,1, \ldots, k-1
$$

Another proof of (iv): For arbitrary $d \in \mathbb{R}^{n}$ it holds

$$
\begin{aligned}
F\left(x_{0}+d\right)-F\left(x_{0}\right) & =\frac{1}{2}\left(x_{0}+d\right)^{T} A\left(x_{0}+d\right)-b^{T}\left(x_{0}+d\right)-\frac{1}{2} x_{0}^{T} A x_{0}+b^{T} x_{0} \\
& =\frac{1}{2} d^{T} A d-d^{T}\left(b-A x_{0}\right)
\end{aligned}
$$

So for $d=\sum_{i=0}^{k-1} \xi_{i} p_{i}$ we have

$$
\begin{align*}
F\left(x_{0}+\sum_{i=0}^{k-1} \xi_{i} p_{i}\right) & =F\left(x_{0}\right)+\frac{1}{2}\left(\sum_{i=0}^{k-1} \xi_{i} p_{i}\right)^{T} A\left(\sum_{j=0}^{k-1} \xi_{j} p_{j}\right)-\sum_{i=0}^{k-1} \xi_{i} p_{i}^{T}\left(b-A x_{0}\right) \\
& =F\left(x_{0}\right)+\frac{1}{2} \sum_{i=0}^{k-1}\left[\xi_{i}^{2} p_{i}^{T} A p_{i}-2 p_{i}^{T}\left(b-A x_{0}\right) \xi_{i}\right]=\min ! \tag{4.6.23}
\end{align*}
$$

The equation (4.6.23) holds if and only if

$$
\xi_{i}^{2} p_{i}^{T} A p_{i}-2 \xi_{i} p_{i}\left(b-A x_{0}\right)=\min !i=0, \ldots, k-1,
$$

if and only if

$$
\xi_{i}=\frac{p_{i}^{T}\left(b-A x_{0}\right)}{p_{i}^{T} A p_{i}}=\frac{p_{i}^{T} r_{i}}{p_{i}^{T} A p_{i}}=\alpha_{i}
$$

from (4.6.20) and (4.6.17). Thus $x_{k}=x_{0}+\sum_{i=0}^{k-1} \alpha_{i} p_{i}$ minimizes F on $x_{0}+\operatorname{span}\left\{p_{0}, \ldots, p_{k-1}\right\}$.

Remark 4.6.4 The following conditions are equivalent: (i) $p_{i}^{T} A p_{j}=0, i \neq j, A$ conjugate, (ii) $p_{i}^{T} r_{k}=0, i<k$, (iii) $r_{i}^{T} r_{j}, i \neq j$.

Proof of (iii):

$$
p_{i}^{T} r_{k}=0 \Leftrightarrow\left(r_{i}^{T}+\beta_{i-1} p_{i-1}^{T}\right) r_{k}, i<k \quad \Leftrightarrow \quad r_{i}^{T} r_{k}=0, i<k \quad \Leftrightarrow \quad r_{i}^{T} r_{j}=0, \quad i \neq j .
$$

Remark 4.6.5 It holds

$$
<p_{0}, p_{1}, \cdots, p_{k}>=<r_{0}, r_{1}, \cdots, r_{k}>=<r_{0}, A r_{0}, \cdots, A^{k} r_{0}>
$$

Since $p_{1}=r_{1}+\beta_{0} p_{0}=r_{1}+\beta_{0} r_{0}, r_{1}=r_{0}-\alpha_{0} A r_{0}$, by induction, we have

$$
r_{2}=r_{1}-\alpha_{0} A p_{1}=r_{1}-\alpha_{0} A\left(r_{1}+\beta_{0} r_{0}\right)=r_{0}-\alpha_{0} A r_{0}-\alpha_{0} A\left(r_{0}-\alpha_{0} A r_{0}+\beta_{0} r_{0}\right) .
$$

Algorithm 4.6.1 (Method of conjugate directions) Let A be s.p.d., b and $x_{0} \in \mathbb{R}^{n}$. Given $p_{0}, \ldots, p_{n-1} \in \mathbb{R}^{n} \backslash\{0\}$ pairwisely A-orthogonal.

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \\
& \text { For } k=0, \ldots, n-1, \\
& \quad \alpha_{k}=\frac{p_{k} r_{k}}{p_{k}^{T} A p_{k}}, x_{k+1}=x_{k}+\alpha_{k} p_{k}, \\
& \quad r_{k+1}=r_{k}-\alpha_{k} A p_{k}=b-A x_{k+1}, \\
& \text { end for }
\end{aligned}
$$

From Theorem 4.6.5 we get $x_{n}=A^{-1} b$.

4.6.3 Practical Implementation

In the k-th step a direction p_{k} which is A-orthogonal to p_{0}, \ldots, p_{k-1} must be determined. It allows for A-orthogonalization of r_{k} against p_{0}, \ldots, p_{k-1} (see (4.6.21)). Let $r_{k} \neq 0, F(x)$ decreases strictly in the direction $-r_{k}$. For $\varepsilon>0$ small, we have $F\left(x_{k}-\varepsilon r_{k}\right)<F\left(x_{k}\right)$. It follows that F takes its minimum at a point $\left(\neq x_{k}\right)$ on $x_{0}+\operatorname{span}\left\{p_{0}, \ldots, p_{k-1}, r_{k}\right\}$. So it holds $x_{k+1} \neq x_{k}$, i.e., $\alpha_{k} \neq 0$. This derives that Conjugate Gradient method.

Algorithm 4.6.2 (Conjugate Gradient method (CG-method), (Stiefel-Hestenes, 1952)) Let A be s.p.d., $b \in \mathbb{R}^{n}$, choose $x_{0} \in \mathbb{R}^{n}$, $r_{0}=b-A x_{0}=p_{0}$. If $r_{0}=0$, then $N=0$ stop; otherwise for $k=0,1, \ldots$
(a) $\alpha_{k}=\frac{p_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}}$,
(b) $x_{k+1}=x_{k}+\alpha_{k} p_{k}$,
(c) $r_{k+1}=r_{k}-\alpha_{k} A p_{k}=b-A x_{k+1}$, if $r_{k+1}=0$, let $N=k+1$, stop.
(d) $\beta_{k}=\frac{-r_{k+1}^{T} A p_{k}}{p_{k}^{T} A p_{k}}$,
(e) $p_{k+1}=r_{k+1}+\beta_{k} p_{k}$.

Theorem 4.6.6 The CG-method holds
(i) If k steps of $C G$-method are executable, i.e., $r_{i} \neq 0$, for $i=0, \ldots$, k, then $p_{i} \neq 0$, $i \leq k$ and $p_{i}^{T} A p_{j}=0$ for $i, j \leq k, i \neq j$.
(ii) The CG-method breaks down after N steps for $r_{N}=0$ and $N \leq n$.
(iii) $x_{N}=A^{-1} b$.

Proof: (i): By induction on k, it is trivial for $k=0$. Suppose that (i) is true until k and $r_{k+1} \neq 0$. Then $p_{k_{+1}}$ is well-defined. we want to verify that (a) $p_{k+1} \neq 0$, (b) $p_{k+1}^{T} A p_{j}=0$, for $j=0,1, \ldots, k$.
For (a): First, it holds $r_{k+1}^{T} p_{k}=r_{k}^{T} p_{k}-\alpha_{k} p_{k}^{T} A p_{k}=0$ by (4.6.24)(c). Let $p_{k+1}=0$. Then from (4.6.24)(e) we have $r_{k+1}=-\beta_{k} p_{k} \neq 0$. So, $\beta_{k} \neq 0$, hence $0=r_{k+1}^{T} p_{k}=-\beta_{k} p_{k}^{T} p_{k} \neq 0$. This is a contradiction, so $p_{k+1} \neq 0$.
For (b): From (4.6.24)(d) and (e), we have

$$
p_{k+1}^{T} A p_{k}=r_{k+1}^{T} A p_{k}+\beta_{k} p_{k}^{T} A p_{k}=0 .
$$

Let $j<k$, from (4.6.24)(e) we have

$$
\begin{equation*}
p_{k+1}^{T} A p_{j}=r_{k+1}^{T} A p_{j}+\beta_{k} p_{k}^{T} A p_{j}=r_{k+1}^{T} A p_{j} \tag{4.6.25}
\end{equation*}
$$

It is enough to show that

$$
\begin{equation*}
A p_{j} \in \operatorname{span}\left\{p_{0}, \ldots ., p_{j+1}\right\}, j<k \tag{4.6.26}
\end{equation*}
$$

Then from the relation $p_{i}^{T} r_{j}=0, i<j \leq k+1$, which has been proved in (4.6.21), follows (b).

Claim (4.6.26): For $r_{j} \neq 0$, it holds that $\alpha_{j} \neq 0$. (4.6.24)(c) shows that

$$
A p_{j}=\frac{1}{\alpha_{j}}\left(r_{j}-r_{j+1}\right) \in \operatorname{span}\left\{r_{0}, \ldots, r_{j+1}\right\} .
$$

(4.6.24)(e) shows that $\operatorname{span}\left\{r_{0}, \ldots ., r_{j+1}\right\}=\operatorname{span}\left\{p_{0}, \ldots ., p_{j+1}\right\}$ with $r_{0}=p_{0}$, so is (4.6.26). (ii): Since $\left\{p_{i}\right\}_{i=0}^{k+1} \neq 0$ and are mutually A-orthogonal, p_{0}, \ldots, p_{k+1} are linearly independent. Hence there exists a $N \leq n$ with $r_{N}=0$. This follows $x_{N}=A^{-1} b$.
Advantage:(1) Break-down in finite steps. (2) Less cost in each step: one matrix \times vector.

4.6.4 Convergence of CG-method

Consider the following A-norm with A being s.p.d.

$$
\begin{equation*}
\|x\|_{A}=\left(x^{T} A x\right)^{1 / 2} \tag{4.6.27}
\end{equation*}
$$

Let $x^{*}=A^{-1} b$. Then from (4.6.3) we have

$$
\begin{equation*}
F(x)-F\left(x^{*}\right)=\frac{1}{2}\left(x-x^{*}\right)^{T} A\left(x-x^{*}\right)=\frac{1}{2}\left\|x-x^{*}\right\|_{A}^{2}, \tag{4.6.28}
\end{equation*}
$$

where x_{k} is the k-th iterate of CG-method. From Theorem 4.6.5 x_{k} minimizes the functional F on $x_{0}+\operatorname{span}\left\{p_{0}, \ldots, p_{k-1}\right\}$. Hence it holds

$$
\begin{equation*}
\left\|x_{k}-x^{*}\right\|_{A} \leq\left\|y-x^{*}\right\|_{A}, y \in x_{0}+\operatorname{span}\left\{p_{0}, . ., p_{k-1}\right\} . \tag{4.6.29}
\end{equation*}
$$

From (4.6.24)(c)(e) it is easily seen that both p_{k} and r_{k} can be written as linear combination of $r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}$. If $y \in x_{0}+\operatorname{span}\left\{p_{0}, \ldots, p_{k-1}\right\}$, then

$$
y=x_{0}+c_{1} r_{0}+c_{2} A r_{0}+\ldots . .+c_{k} A^{k-1} r_{0}=x_{0}+\mathcal{P}_{k-1}(A) r_{0}
$$

where \mathcal{P}_{k-1} is a polynomial of degree $\leq k-1$. But $r_{0}=b-A x_{0}=A\left(x^{*}-x_{0}\right)$, thus

$$
\begin{align*}
y-x^{*} & =\left(x-x^{*}\right)+\mathcal{P}_{k-1}(A) A\left(x^{*}-x_{0}\right) \\
& =\left[I-A \mathcal{P}_{k-1}(A)\right]\left(x_{0}-x^{*}\right)=\tilde{\mathcal{P}}_{k}(A)\left(x_{0}-x^{*}\right) \tag{4.6.30}
\end{align*}
$$

where degree $\tilde{\mathcal{P}_{k}} \leq k$ and

$$
\begin{equation*}
\tilde{\mathcal{P}}_{k}(0)=1 \tag{4.6.31}
\end{equation*}
$$

Conversely, if $\tilde{\mathcal{P}}_{k}$ is a polynomial of degree $\leq k$ and satisfies (4.6.31), then

$$
x^{*}+\tilde{\mathcal{P}}_{k}(A)\left(x_{0}-x^{*}\right) \in x_{0}+S_{k}
$$

Hence (4.6.29) means that if $\tilde{\mathcal{P}}_{k}$ is a polynomial of degree $\leq k$ with $\tilde{\mathcal{P}}_{k}(0)=1$, then

$$
\begin{equation*}
\left\|x_{k}-x^{*}\right\|_{A} \leq\left\|\tilde{\mathcal{P}}_{k}(A)\left(x_{0}-x^{*}\right)\right\|_{A} \tag{4.6.32}
\end{equation*}
$$

Lemma 4.6.7 Let A be s.p.d. It holds for every polynominal Q_{k} of degree k that

$$
\begin{equation*}
\max _{x \neq 0} \frac{\left\|Q_{k}(A) x\right\|_{A}}{\|x\|_{A}}=\rho\left(Q_{k}(A)\right)=\max \left\{\left|Q_{k}(\lambda)\right|: \lambda \text { eigenvalue of } A\right\} . \tag{4.6.33}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
\frac{\left\|Q_{k}(A) x\right\|_{A}^{2}}{\|x\|_{A}^{2}} & =\frac{x^{T} Q_{k}(A) A Q_{k}(A) x}{x^{T} A x} \\
& =\frac{\left(A^{1 / 2} x\right)^{T} Q_{k}(A) Q_{k}(A)\left(A^{1 / 2} x\right)}{\left(A^{1 / 2} x\right)\left(A^{1 / 2} x\right)} \quad\left(\text { Let } z:=A^{1 / 2} x\right) \\
& =\frac{z^{T} Q_{k}(A)^{2} z}{z^{T} z} \leq \rho\left(Q_{k}(A)^{2}\right)=\rho^{2}\left(Q_{k}(A)\right)
\end{aligned}
$$

Equality holds for suitable x, hence the first equality is shown. The second equality holds by the fact that $Q_{k}(\lambda)$ is an eigenvalue of $Q_{k}(A)$, where λ is an eigenvalue of A.

From (4.6.33) we have that

$$
\begin{equation*}
\left\|x_{k}-x^{*}\right\|_{A} \leq \rho\left(\tilde{\mathcal{P}}_{k}(A)\right)\left\|x_{0}-x^{*}\right\|_{A} \tag{4.6.34}
\end{equation*}
$$

where degree $\tilde{\mathcal{P}}_{k} \leq k$ and $\tilde{\mathcal{P}}_{k}(0)=1$.
Replacement problem for (4.6.34): For $0<a<b$, $\operatorname{minmax}\left\{\left|\mathcal{P}_{k}(\lambda)\right|: a \leq \lambda \leq b\right.$, for all polynomials of degree $\leq k$ with $\left.\mathcal{P}_{k}(0)=1\right\}(4.6 .35)$ (if $a=0$, it is clearly $\min \max \left\{\left|\mathcal{P}_{k}(\lambda)\right|\right\}=1$). We use Chebychev polynomials of the first kind for the solution. They are defined by

$$
\left\{\begin{array}{l}
T_{0}(t)=1, T_{1}(t)=t \tag{4.6.36}\\
T_{k+1}(t)=2 t T_{k}(t)-T_{k-1}(t)
\end{array}\right.
$$

it holds $T_{k}(\cos \phi)=\cos (k \phi)$ by using $\cos ((k+1) \phi)+\cos ((k-1) \phi)=2 \cos \phi \cos k \phi$. Especially,

$$
T_{k}\left(\cos \frac{j \pi}{k}\right)=\cos (j \pi)=(-1)^{j}, \text { for } j=0, \ldots, k
$$

i.e. T_{k} takes maximal value "one" at $k+1$ positions in $[-1,1]$ with alternating sign. In addition (Exercise!), we have

$$
\begin{equation*}
T_{k}(t)=\frac{1}{2}\left[\left(t+\sqrt{t^{2}-1}\right)^{k}+\left(t-\sqrt{t^{2}-1}\right)^{k}\right] . \tag{4.6.37}
\end{equation*}
$$

Lemma 4.6.8 The solution of the problem (4.6.35) is given by

$$
Q_{k}(t)=T_{k}\left(\frac{2 t-a-b}{b-a}\right) / T_{k}\left(\frac{a+b}{a-b}\right),
$$

i.e., for all \mathcal{P}_{k} of degree $\leq k$ with $\mathcal{P}_{k}(0)=1$ it holds

$$
\max _{\lambda \in[a, b]}\left|Q_{k}(\lambda)\right| \leq \max _{\lambda \in[a, b]}\left|\mathcal{P}_{k}(\lambda)\right| .
$$

Proof: $\quad Q_{k}(0)=1$. If t runs through the interval $[a, b]$, then $(2 t-a-b) /(b-a)$ runs through the interval $[-1,1]$. Hence, in $[a, b], Q_{k}(t)$ has $k+1$ extreme with alternating sign and absolute value $\delta=\left|T_{k}\left(\frac{a+b}{a-b}\right)^{-1}\right|$.

If there are a \mathcal{P}_{k} with $\max \left\{\left|\mathcal{P}_{k}(\lambda)\right|: \lambda \in[a, b]\right\}<\delta$, then $Q_{k}-\mathcal{P}_{k}$ has the same sign as Q_{k} of the extremal values, so $Q_{k}-\mathcal{P}_{k}$ changes sign at $k+1$ positions. Hence $Q_{k}-\mathcal{P}_{k}$ has k roots, in addition a root zero. This contradicts that degree $\left(Q_{k}-\mathcal{P}_{k}\right) \leq k$.

Lemma 4.6.9 It holds

$$
\begin{equation*}
\delta=\left|T_{k}\left(\frac{b+a}{a-b}\right)^{-1}\right|=\frac{1}{T_{k}\left(\frac{b+a}{b-a}\right)}=\frac{2 c^{k}}{1+c^{2 k}} \leq 2 c^{k}, \tag{4.6.38}
\end{equation*}
$$

where $c=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$ and $\kappa=b / a$.
Proof: For $t=\frac{b+a}{b-a}=\frac{\kappa+1}{\kappa-1}$, we compute

$$
t+\sqrt{t^{2}-1}=\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}=c^{-1}
$$

and

$$
t-\sqrt{t^{2}-1}=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}=c
$$

Hence from (4.6.37) follows

$$
\delta=\frac{2}{c^{k}+c^{-k}}=\frac{2 c^{k}}{1+c^{2 k}} \leq 2 c^{k} .
$$

Theorem 4.6.10 CG-method satisfies the following error estimate

$$
\begin{equation*}
\left\|x_{k}-x^{*}\right\|_{A} \leq 2 c^{k}\left\|x_{0}-x^{*}\right\|_{A}, \tag{4.6.39}
\end{equation*}
$$

where $c=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}, \kappa=\frac{\lambda_{1}}{\lambda_{n}}$ and $\lambda_{1} \geq \cdots \geq \lambda_{n}>0$ are the eigenvalues of A.
Proof: From (4.6.34) we have

$$
\begin{aligned}
\left\|x_{k}-x^{*}\right\|_{A} & \leq \rho\left(\mathcal{P}_{k}(A)\right)\left\|x_{0}-x^{*}\right\|_{A} \\
& \leq \max \left\{\left|\mathcal{P}_{k}(\lambda)\right|: \lambda_{1} \geq \lambda \geq \lambda_{n}\right\}\left\|x_{0}-x^{*}\right\|_{A},
\end{aligned}
$$

for all \mathcal{P}_{k} of degree $\leq k$ with $\mathcal{P}_{k}(0)=1$. From Lemma 4.6.8 and Lemma 4.6.9 follows that

$$
\begin{aligned}
\left\|x_{k}-x^{*}\right\|_{A} & \leq \max \left\{\left|Q_{k}(\lambda)\right|: \lambda_{1} \geq \lambda \geq \lambda_{n}\right\}\left\|x_{0}-x^{*}\right\|_{A} \\
& \leq 2 c^{k}\left\|x_{0}-x^{*}\right\|_{A} .
\end{aligned}
$$

Remark 4.6.6 To compare with Gradient method (see (4.6.14b)): Let x_{k}^{G} be the kth iterate of Gradient method. Then

$$
\left\|x_{k}^{G}-x^{*}\right\|_{A} \leq\left|\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}\right|^{k}\left\|x_{0}-x^{*}\right\|_{A}
$$

But

$$
\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}=\frac{\kappa-1}{\kappa+1}>\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}=c
$$

because in general $\sqrt{\kappa} \ll \kappa$. Therefore the $C G$-method is much better than Gradient method.

4.7 CG-method as an iterative method, preconditioning

Consider the linear system of a symmetric positive definite matrix A

$$
\begin{equation*}
A x=b \text {. } \tag{4.7.1}
\end{equation*}
$$

Let C be a nonsingular symmetric matrix and consider a new linear system

$$
\begin{equation*}
\tilde{A} \tilde{x}=\tilde{b} \tag{4.7.2}
\end{equation*}
$$

with $\tilde{A}=C^{-1} A C^{-1}$ s.p.d., $\tilde{b}=C^{-1} b$ and $\tilde{x}=C x$.
Applying CG-method to (4.7.2) it yields:
Choose $\tilde{x}_{0}, \tilde{r}_{0}=\tilde{b}-\tilde{A} \tilde{x}_{0}=\tilde{p}_{0}$.
If $\tilde{r}_{0}=0$, stop, otherwise for $k=0,1,2, \ldots$,

$$
\begin{cases}(a) & \tilde{\alpha}_{k}=\tilde{p}_{k}^{T} \tilde{r}_{k} / \tilde{p}_{k}^{T} C^{-1} A C^{-1} \tilde{p}_{k}, \\ (b) & \tilde{x}_{k+1}=\tilde{x}_{k}+\tilde{\alpha}_{k} \tilde{p}_{k}, \\ (c) & \tilde{r}_{k+1}=\tilde{r}_{k}-\tilde{\alpha}_{k} C^{-1} A C^{-1} \tilde{p}_{k}, \\ & \text { if } \tilde{r}_{k+1}=0 \text { stop; otherwise } \tag{4.7.3}\\ (d) & \tilde{\beta}_{k}=-\tilde{r}_{k+1}^{T} C^{-1} A C^{-1} \tilde{p}_{k} / \tilde{p}_{k} C^{-1} A C^{-1} \tilde{p}_{k}, \\ (e) & \tilde{p}_{k+1}=\tilde{r}_{k+1}+\tilde{\beta}_{k} \tilde{p}_{k}\end{cases}
$$

Simplification: Let

$$
C^{-1} \tilde{p}_{k}=p_{k}, \quad x_{k}=C^{-1} \tilde{x}_{k}, \quad z_{k}=C^{-1} \tilde{r}_{k} .
$$

Then

$$
r_{k}=C \tilde{r}_{k}=C\left(\tilde{b}-\tilde{A} \tilde{x}_{k}\right)=C\left(C^{-1} b-C^{-1} A C^{-1} C x_{k}\right)=b-A x_{k} .
$$

Algorithm 4.7.1 (Preconditioned CG-method (PCG))

$M=C^{2}$, choose $x_{0}=C^{-1} \tilde{x}_{0}, r_{0}=b-A x_{0}$, solve $M p_{0}=r_{0}$. If $r_{0}=0$ stop, otherwise for $k=0,1,2, \ldots$,

$$
\left\{\begin{array}{l}
(a) \quad \alpha_{k}=p_{k}^{T} r_{k} / p_{k}^{T} A p_{k}, \\
\text { (b) } \\
x_{k+1}=x_{k}+\alpha_{k} p_{k}, \tag{4.7.4}\\
(c) \\
r_{k+1}=r_{k}-\alpha_{k} A p_{k}, \\
\\
\text { if } r_{k+1}=0, \text { stop; otherwise } M z_{k+1}=r_{k+1}, \\
(d) \\
\beta_{k}=-z_{k+1}^{T} A p_{k} / p_{k}^{T} A p_{k}, \\
(e) \\
p_{k+1}=z_{k+1}+\beta_{k} p_{k}
\end{array}\right.
$$

Algorithm 4.7.1 is CG-method with preconditioner M. If $M=I$, then it is CGmethod.
Additional cost per step: solve one linear system $M z=r$ for z.
Advantage: $\operatorname{cond}\left(M^{-1 / 2} A M^{-1 / 2}\right) \ll \operatorname{cond}(A)$.

4.7.1 A new point of view of PCG

From (4.6.21) and Theorem 4.6.6 follows that $p_{i}{ }^{T} r_{k}=0$ for $i<k$, i.e., $\left(r_{i}{ }^{T}+\beta_{i-1} p_{i-1}{ }^{T}\right) r_{k}=$ $r_{i}{ }^{T} r_{k}=0, i<k$ and $p_{i}{ }^{T} A p_{j}=0, i \neq j$. That is, the CG method requires $r_{i}{ }^{T} r_{j}=0, i \neq j$. So, the PCG method satisfies $p_{i}^{T} C^{-1} A C^{-1} p_{j}=0 \Leftrightarrow \tilde{r}_{j}^{T} \tilde{r}_{j}=0, \quad i \neq j$ and requires

$$
\begin{aligned}
z_{i}^{T} M z_{j} & =r_{i}^{T} M^{-1} M M^{-1} r_{j}=r_{i}^{T} M^{-1} r_{j} \\
& =\left(r_{i}{ }^{T} C^{-1}\right)\left(C^{-1} r_{j}\right)=\widetilde{r}_{i}^{T} \widetilde{r}_{j}=0, \quad i \neq j .
\end{aligned}
$$

Consider the iteration (in two parameters):

$$
\begin{equation*}
x_{k+1}=x_{k-1}+\omega_{k+1}\left(\alpha_{k} z_{k}+x_{k}-x_{k-1}\right) \tag{4.7.5}
\end{equation*}
$$

with α_{k} and ω_{k+1} being two undetermined parameters. Let $A=M-N$. Then from $M z_{k}=r_{k} \equiv b-A x_{k}$ follows that

$$
\begin{align*}
M z_{k+1} & =b-A\left(x_{k-1}+\omega_{k+1}\left(\alpha_{k} z_{k}+x_{k}-x_{k-1}\right)\right) \\
& =M z_{k-1}-\omega_{k+1}\left[\alpha_{k}(M-N) z_{k}+M\left(z_{k-1}-z_{k}\right)\right] \tag{4.7.6}
\end{align*}
$$

For PCG method $\left\{\alpha_{k}, \omega_{k+1}\right\}$ are computed so that

$$
\begin{equation*}
z_{p}^{T} M z_{q}=0, \quad p \neq q, p, q=0,1, \cdots, n-1 . \tag{4.7.7}
\end{equation*}
$$

Since $M>0$, there is some $k \leq n$ such that $z_{k}=0$. Thus, $x_{k}=x$, the iteration converges no more than n steps. We show that (4.7.7) holds by induction. Assume

$$
\begin{equation*}
z_{p}^{T} M z_{q}=0, \quad p \neq q, p, q=0,1, \cdots, k \tag{4.7.8}
\end{equation*}
$$

holds until k. If we choose

$$
\alpha_{k}=z_{k}^{T} M z_{k} / z_{k}^{T}(M-N) z_{k}
$$

then

$$
z_{k}^{T} M z_{k+1}=0
$$

and if we choose

$$
\begin{equation*}
\omega_{k+1}=\left(1-\alpha_{k} \frac{z_{k-1}^{T} N z_{k}}{z_{k-1}^{T} M z_{k-1}}\right)^{-1} \tag{4.7.9}
\end{equation*}
$$

then

$$
z_{k-1}^{T} M z_{k+1}=0 .
$$

We want to simplify ω_{k+1}. From (4.7.6) follows that

$$
\begin{equation*}
M z_{k}=M z_{k-2}-\omega_{k}\left(\alpha_{k-1}(M-N) z_{k-1}+M\left(z_{k-2}-z_{k-1}\right)\right) . \tag{4.7.10}
\end{equation*}
$$

Multiplying (4.7.10) by $z_{k}{ }^{T}$ and from (4.7.8) we get

$$
\begin{equation*}
z_{k}^{T} N z_{k-1}=z_{k}^{T} M z_{k} / \omega_{k} \alpha_{k-1} . \tag{4.7.11}
\end{equation*}
$$

Since $z_{k-1}^{T} N z_{k}=z_{k}^{T} Z z_{k-1}$, from (4.7.11) the equation (4.7.9) becomes

$$
\begin{equation*}
\omega_{k+1}=\left(1-\frac{\alpha_{k} z_{k}^{T} M z_{k}}{\alpha_{k-1} z_{k-1}^{T} M z_{k-1}} \frac{1}{\omega_{k}}\right)^{-1} \tag{4.7.12}
\end{equation*}
$$

From (4.7.6) for $j<k-1$ we have

$$
\begin{equation*}
z_{j}^{T} M z_{k+1}=\alpha_{k} \omega_{k+1} z_{j}^{T} N z_{k} . \tag{4.7.13}
\end{equation*}
$$

But (4.7.6) holds for $j<k-1$,

$$
\begin{equation*}
M z_{j+1}=M z_{j-1}-\omega_{j+1}\left(\alpha_{j}(M-N) z_{j}+M\left(z_{j-1}-z_{j}\right)\right) . \tag{4.7.14}
\end{equation*}
$$

Multiplying (4.7.14) by $z_{k}{ }^{T}$ we get

$$
z_{k}^{T} N z_{j}=0
$$

Since $N=N^{T}$, it follows that

$$
z_{j}^{T} M z_{k+1}=0, \quad \text { for } \quad j<k-1
$$

Thus, we proved that $z_{p}{ }^{T} M z_{q}=0, p \neq q, p, q=0,1, \cdots, n-1$.
Consider (4.7.5) again

$$
x_{k+1}=x_{k-1}+\omega_{k+1}\left(\alpha_{k} z_{k}+x_{k}-x_{k-1}\right) .
$$

Since $M z_{k}=r_{k}=b-A x_{k}$, if we set $\omega_{k+1}=\alpha_{k}=1$, then

$$
\begin{equation*}
x_{k+1}=M^{-1}\left(b-A x_{k}\right)+x_{k} \equiv x_{k}+z_{k} . \tag{4.7.15}
\end{equation*}
$$

$$
\begin{align*}
M x_{k+1} & =b-A x_{k}+M x_{k} \\
& =N x_{k}+b \tag{4.7.16}
\end{align*}
$$

Recall the Iterative Improvement in Subsection 2.3.6:

Solve $A x=b$,

$$
\begin{aligned}
& r_{k}=b-A x_{k}, \\
& A z_{k}=r_{k}, \leftrightarrow M z_{k}=r_{k} . \\
& x_{k+1}=x_{k}+z_{k} .
\end{aligned}
$$

(i) Jacobi method $\left(\omega_{k+1}=\alpha_{k}=1\right): A=D-(L+R)$,

$$
x_{k+1}=x_{k}+D^{-1}\left(b-A x_{k}\right) .
$$

(ii) Gauss-Seidel $\left(\omega_{k+1}=\alpha_{k}=1\right)$: $\quad A=(D-L)-R$,

$$
x_{k+1}=x_{k}+(D-L)^{-1}\left(b-A x_{k}\right) .
$$

i.e.,

$$
\begin{aligned}
x_{j}^{(k+1)}= & b_{j}-\sum_{p=1}^{j-1} a_{j p} x_{p}^{(k+1)}-\sum_{p=j+1}^{n} a_{j p} x_{p}^{(k)}+x_{j}^{(k)}-1 \cdot x_{j}^{(k)} \\
= & x_{j}^{(k)}+b_{j}-\left(a_{j 1}, \ldots, a_{j, j-1}, 1, a_{j, j+1}, \ldots, a_{j n}\right)\left[\begin{array}{l}
x_{1}^{(k+1)} \\
\vdots \\
x_{j-1}^{(k+1)} \\
x_{j}^{(k)} \\
\vdots \\
x_{n}^{(k)}
\end{array}\right], \quad(D=I) .
\end{aligned}
$$

(iii) SOR-method $\left(\omega_{k+1}=1, \alpha_{k}=\omega\right)$: Solve $\omega A x=\omega b$. Write

$$
\omega A=(D-\omega L)-((1-\omega) D+\omega R) \equiv M-N .
$$

Then

$$
\begin{aligned}
x_{k+1} & =(D-\omega L)^{-1}(\omega R+(1-\omega) D) x_{k}+(D-\omega L)^{-1} \omega b \\
& =(D-\omega L)^{-1}((D-\omega L)-\omega A) x_{k}+(D-\omega L)^{-1} \omega b \\
& =\left(I-(D-\omega L)^{-1} \omega A\right) x_{k}+(D-\omega L)^{-1} \omega b \\
& =x_{k}+(D-\omega L)^{-1} \omega\left(b-A x_{k}\right) \\
& =x_{k}+\omega M^{-1} r_{k} .
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
x_{j}^{(k+1)}= & \omega\left(b_{j}-\sum_{p=1}^{j-1} a_{j p} x_{p}^{(k+1)}-\sum_{p=j+1}^{n} a_{j p} x_{p}^{(k)}\right)+(1-\omega) x_{j}^{(k)} \\
= & x_{j}^{(k)}+\omega b_{j}-\omega\left(a_{j 1}, \cdots, a_{j, j-1}, 1, a_{j, j+1}, \cdots, a_{j n}\right)\left[\begin{array}{l}
x_{1}^{(k+1)} \\
\vdots \\
x_{j-1}^{(k+1)} \\
x_{j}^{(k)} \\
\vdots \\
x_{n}^{(k)}
\end{array}\right] .
\end{aligned}
$$

(iv) Chebychev Semi-iterative method (later!) $\left(\omega_{k+1}=\omega_{k+1}, \alpha_{k}=\gamma\right)$:

$$
x_{k+1}=x_{k-1}+\omega_{k+1}\left(\gamma z_{k}+x_{k}-x_{k-1}\right) .
$$

We can think of the scalars ω_{k+1}, α_{k} in (4.7.5) as acceleration parameters that can be chosen to speed the convergence of the iteration $M x_{k+1}=N x_{k}+b$. Hence any iterative method based on the splitting $A=M-N$ can be accelerated by the Conjugate Gradient Algorithm so long as M (the preconditioner) is symmetric and positive definite.

Choices of M (Criterion):

(i) $\operatorname{cond}\left(M^{-1 / 2} A M^{-1 / 2}\right)$ is nearly by 1, i.e., $M^{-1 / 2} A M^{-1 / 2} \approx I, A \approx M$.
(ii) The linear system $M z=r$ must be easily solved. e.g. $M=L L^{T}$ (see Section 16.)
(iii) M is symmetric positive definite.

Explanation: Why we need to use preconditioning for solving the linear system $A x=b$.

Fixed Point Principle:

$$
\begin{aligned}
x & =b-A x+x \\
& =(I-A) x+b .
\end{aligned}
$$

Thus $x=B x+b$ with $B \equiv I-A$.

Fixed Point Iteration:

$$
x_{i+1}=B x_{i}+b .
$$

Let $e_{i}=x_{i}-x$. Then $e_{i+1}=B e_{i}=B^{i} e_{0}$. Thus $\left\{e_{i}\right\} \rightarrow 0$ if and only if $\rho(B)<1$. Hence we want to find an M so that $M^{-1} A \approx I$ with $A=M-N$. Consider

$$
M^{-1} A x=M^{-1} b
$$

then

$$
\begin{align*}
x_{i+1} & =\left(I-M^{-1} A\right) x_{i}+M^{-1} b \\
& =\left(I-M^{-1}(M-N)\right) x_{i}+M^{-1} b, \tag{4.7.17}\\
& =M^{-1} N x_{i}+M^{-1} b .
\end{align*}
$$

Here $A=M-N$ is called a splitting iterative scheme and $M z=r$ should be easily solvable. The iteration (4.7.17) is called a preconditioned fixed point iteration.
Jacobi: $\quad A=D-(L+R)$.
Gauss-Seidel: $\quad A=(D-L)-R$.
SOR (Successive Over Relaxation): $A x=b, \omega A x=\omega b,(\omega>1)$,

$$
\begin{aligned}
\omega A & =\omega D-\omega L-\omega R \\
& =(D-\omega L)-[(1-\omega) D+\omega R] \\
& \equiv M-N .
\end{aligned}
$$

This implies,

$$
\begin{aligned}
x_{i+1}= & (D-\omega L)^{-1}[(1-\omega) D+\omega R] x_{i}+(D-\omega L)^{-1} \omega b \\
= & M^{-1} N x_{i}+M^{-1} \omega b \\
& \left(M^{-1} N=I-(D-\omega L)^{-1} \omega A\right) .
\end{aligned}
$$

SSOR (Symmetric Successive Over Relaxation): A is symmetric and $A=D-$ $L-L^{T}$. Let

$$
\left\{\begin{array} { l }
{ M _ { \omega } : = D - \omega L , } \\
{ N _ { \omega } : = (1 - \omega) D + \omega L ^ { T } , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
M_{\omega}^{T}=D-\omega L^{T}, \\
N_{\omega}^{T}=(1-\omega) D+\omega L .
\end{array}\right.\right.
$$

Then from the iterations

$$
\begin{aligned}
M_{\omega} x_{i+1 / 2} & =N_{\omega} x_{i}+\omega b \\
M_{\omega}^{T} x_{i+1} & =N_{\omega}^{T} x_{i+1 / 2}+\omega b
\end{aligned}
$$

follows that

$$
\begin{aligned}
x_{i+1} & =\left(M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1} N_{\omega}\right) x_{i}+\tilde{b} \\
& \equiv G x_{i}+\omega\left(M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1}+M_{\omega}^{-T}\right) b \\
& \equiv G x_{i}+M(\omega)^{-1} b .
\end{aligned}
$$

But

$$
\begin{aligned}
& ((1-\omega) D+\omega L)(D-\omega L)^{-1}+I \\
& =(\omega L-D-\omega D+2 D)(D-\omega L)^{-1}+I \\
& =-I+(2-\omega) D(D-\omega L)^{-1}+I \\
& =(2-\omega) D(D-\omega L)^{-1},
\end{aligned}
$$

Thus

$$
M(\omega)^{-1}=\omega\left(D-\omega L^{T}\right)^{-1}(2-\omega) D(D-\omega L)^{-1}
$$

then

$$
\begin{align*}
M(\omega) & =\frac{1}{\omega(2-\omega)}(D-\omega L) D^{-1}\left(D-\omega L^{T}\right) \tag{4.7.18}\\
& \approx(D-L) D^{-1}\left(D-L^{T}\right),(\omega=1)
\end{align*}
$$

4.8 Incomplete Cholesky Decomposition

For a suitable ω the condition number of $M(\omega)^{-1 / 2} A M(\omega)^{-1 / 2}$, i.e., $\operatorname{cond}\left(M(\omega)^{-1 / 2} A M(\omega)^{-1 / 2}\right)$, can be considered smaller than cond (A). Axelsson(1976) showed (without proof): Let

$$
\mu=\max _{x \neq 0} \frac{x^{T} D x}{x^{T} A x}(\leq \operatorname{cond}(A))
$$

and

$$
\delta=\max _{x \neq 0} \frac{x^{T}\left(L D^{-1} L^{T}-\frac{1}{4} D\right) x}{x^{T} A x} \geq \frac{1}{4} .
$$

Then

$$
\operatorname{cond}\left(M(\omega)^{-1 / 2} A M(\omega)^{-1 / 2}\right) \leq \frac{1+\frac{(2-\omega)^{2}}{4 \omega}+\omega \delta}{2 \omega}=\kappa(\omega)
$$

for $\omega^{*}=\frac{2}{1+2 \sqrt{(2 \delta+1) / 2 \mu}}, \kappa\left(\omega^{*}\right)$ is minimal and $\kappa\left(\omega^{*}\right)=1 / 2+\sqrt{(1 / 2+\delta) \mu}$. Especially

$$
\operatorname{cond}\left(M\left(\omega^{*}\right)^{-1 / 2} A M\left(\omega^{*}\right)^{-1 / 2}\right) \leq \frac{1}{2}+\sqrt{(1 / 2+\delta) \operatorname{cond}(A)} \sim \sqrt{\operatorname{cond}(A)}
$$

Disadvantage : μ, δ in general are unknown.

SSOR + Conjugate Gradient method.
 SSOR + Chebychev Semi-iterative Acceleration (later!)

4.8 Incomplete Cholesky Decomposition

Let A be sparse and symmetric positive definite. Consider the Cholesky decomposition of $A=L L^{T}$. L is a lower triangular matrix with $l_{i i}>0(i=1, \ldots, n) . L$ can be heavily occupied (fill-in). Consider the following decomposition

$$
\begin{equation*}
A=L L^{T}-N, \tag{4.8.1}
\end{equation*}
$$

where L is a lower triangular matrix with prescribed reserved pattern E and N is "small".
Reserved Pattern: $E \subset\{1, \ldots, n\} \times\{1, \ldots, n\}$ with $\left\{\begin{array}{l}(i, i) \in E, i=1, \ldots, n \\ (i, j) \in E \Rightarrow(j, i) \in E\end{array}\right.$
For a given reserved pattern E we construct the matrices L and N as in (4.8.1) with

$$
\begin{equation*}
\text { (i) } \quad A=L L^{T}-N \text {, } \tag{4.8.2a}
\end{equation*}
$$

(ii) L : lower triangular with $l_{i i}>0$ and $l_{i j} \neq 0 \Rightarrow(i, j) \in E$,
(iii) $N=\left(n_{i j}\right), n_{i j}=0$, if $(i, j) \in E$

First step: Consider the Cholesky decomposition of A,

$$
A=\left(\begin{array}{cc}
a_{11} & a_{1}^{T} \\
a_{1} & A_{1}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{a_{11}} & 0 \\
a_{1} / \sqrt{a_{11}} & I
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \overline{A_{1}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{a_{11}} & a_{1}^{T} / \sqrt{a_{11}} \\
0 & I
\end{array}\right),
$$

where $\bar{A}_{1}=A_{1}-a_{1} a_{1}^{T} / a_{11}$. Then

$$
A=L_{1}\left(\begin{array}{cc}
1 & 0 \\
0 & \bar{A}_{1}
\end{array}\right) L_{1}^{T} .
$$

For the Incomplete Cholesky decomposition the first step will be so modified. Define $b_{1}=\left(b_{21}, \ldots, b_{n 1}\right)^{T}$ and $c_{1}=\left(c_{21}, \ldots ., c_{n 1}\right)^{T}$ by

$$
b_{j 1}=\left\{\begin{array}{cc}
a_{j 1}, & (j, 1) \in E, \tag{4.8.3}\\
0, & \text { otherwise },
\end{array} \quad c_{j 1}=b_{j 1}-a_{j 1}=\left\{\begin{array}{cc}
0, & (j, 1) \in E, \\
-a_{j 1}, & \text { otherwise } .
\end{array}\right.\right.
$$

Then

$$
A=\left(\begin{array}{cc}
a_{11} & b_{1}^{T} \tag{4.8.4}\\
b_{1} & A_{1}
\end{array}\right)-\left(\begin{array}{cc}
0 & c_{1}^{T} \\
c_{1} & 0
\end{array}\right)=\tilde{B}_{0}-C_{1} .
$$

Compute the Cholesky decomposition on \tilde{B}, we get

$$
\tilde{B}_{0}=\left(\begin{array}{cc}
\sqrt{a_{11}} & 0 \tag{4.8.5}\\
b_{1} / \sqrt{a_{11}} & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & \bar{B}_{1}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{a_{11}} & b_{1}^{T} / \sqrt{a_{11}} \\
0 & I
\end{array}\right)=L_{1} B_{1} L_{1}^{T}
$$

and

$$
\begin{equation*}
\bar{B}_{1}=A_{1}-\frac{b_{1} b_{1}^{T}}{a_{11}} \tag{4.8.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
A=L_{1} B_{1} L_{1}{ }^{T}-C_{1} . \tag{4.8.7}
\end{equation*}
$$

Consequently, compute the Cholesky decomposition on B_{1} :

$$
B_{1}=L_{2} B_{2} L_{2}^{T}-C_{2}
$$

with

$$
L_{2}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
0 & * & \cdots & \cdots & 0 \\
\vdots & * & 1 & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
0 & * & \cdots & \cdots & 1
\end{array}\right) \text { and } C_{2}=\left(\begin{array}{ccccc}
0 & & \cdots & \cdots & 0 \\
& 0 & * & \cdots & * \\
\vdots & * & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
0 & * & \cdots & \cdots & 0
\end{array}\right) .
$$

Thus,

$$
\begin{equation*}
A=L_{1} L_{2} B_{2} L_{2}^{T} L_{1}^{T}-L_{1} C_{2} L_{1}^{T}-C_{1} \tag{4.8.8}
\end{equation*}
$$

and so on, hence

$$
\begin{equation*}
A=L_{1} \cdots L_{n} I L_{n}^{T} \cdots L_{1}^{T}-C_{n-1}-C_{n-2}-\cdots-C_{1} \tag{4.8.9}
\end{equation*}
$$

with

$$
\begin{equation*}
L=L_{1} \cdots L_{n} \text { and } N=C_{1}+C_{2}+\cdots+C_{n} . \tag{4.8.10}
\end{equation*}
$$

Lemma 4.8.1 Let A be s.p.d. E be a reserved patten. Then there is at most a decomposition $A=L L^{T}-N$, which satisfies the conditions:
(4.8.2b) : L is lower triangular with $l_{i i}>0, l_{i i} \neq 0 \Longrightarrow(i, j) \in E$.
(4.8.2c) : $N=\left(n_{i j}\right), n_{i j}=0$, if $(i, j) \in E$.

Proof: Let $A=L L^{T}-N=\bar{L} \bar{L}^{T}-\bar{N}$. Then $a_{11}=l_{11}^{2}=\bar{l}_{11}^{2} \Longrightarrow l_{11}=l_{11}^{-}$(since l_{11} is positive). Also, $a_{k 1}=l_{k 1} l_{11}-n_{k 1}=\bar{l}_{k 1} l_{11}-\bar{n}_{k 1}$, so we have

$$
\begin{align*}
& \text { If }(k, 1) \in E \Longrightarrow n_{k 1}=\bar{n}_{k 1}=0 \Longrightarrow l_{k 1}=\bar{l}_{k 1}=a_{k 1} / l_{11}, \tag{4.8.11a}\\
& \text { If }(k, 1) \notin E \Longrightarrow l_{k 1}=\bar{l}_{k 1}=0 \Longrightarrow n_{k 1}=\bar{n}_{k 1}=-a_{k 1} \text {. } \tag{4.8.11b}
\end{align*}
$$

Suppose that $l_{k i}=\bar{l}_{k i}, n_{k i}=\bar{n}_{k i}$, for $k=i, \cdots, n, 1 \leq i \leq m-1$. Then from

$$
a_{m m}=l_{m m}^{2}+\sum_{k=0}^{m-1} l_{m k}^{2}=\bar{l}_{m m}^{2}+\sum_{k=1}^{m-1} \bar{l}_{m k}^{2}
$$

follows that $l_{m m}=\bar{l}_{m m}$. Also from

$$
a_{r m}=l_{r m} l_{m m}+\sum_{k=1}^{m-1} l_{r k} l_{m k}-n_{r m}=\bar{l}_{r m} \bar{l}_{m m}+\sum_{k=0}^{m-1} \bar{l}_{r k} \bar{l}_{m k}-\bar{n}_{r m}
$$

and (4.8.11) follows that $n_{r m}=\bar{n}_{r m}$ and $l_{r m}=\bar{l}_{r m}(r \geq m)$.
The Incomplete Cholesky decomposition may not exist, if

$$
s_{m}:=a_{m m}-\sum_{k=1}^{m-1}\left(l_{m k}\right)^{2} \leq 0 .
$$

Example 4.8.1 Let

$$
A=\left[\begin{array}{cccc}
1 & -1 & 0 & 2 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -3 \\
2 & 0 & -3 & 10
\end{array}\right]
$$

The Cholesky decomposition of A follows $L=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 2 & 2 & -1 & 1\end{array}\right]$. Consider the Incomplete Cholesky decomposition with patten

$$
E=E(A)=\left[\begin{array}{cccc}
\times & \times & 0 & \times \\
\times & \times & \times & 0 \\
0 & \times & \times & \times \\
\times & 0 & \times & \times
\end{array}\right]
$$

Above procedures (4.8.3)-(4.8.10) can be performed on A until the computation of l_{44} (see proof of Lemma 4.8.1),

$$
l_{44}^{2}=a_{44}-l_{41}^{2}-l_{42}^{2}-l_{43}^{2}=10-9-4=-3 .
$$

The Incomplete Cholesky decomposition does not exit for this pattern E. Now take

$$
E=\left(\begin{array}{cccc}
\times & \times & 0 & 0 \\
\times & \times & \times & 0 \\
0 & \times & \times & \times \\
0 & 0 & \times & \times
\end{array}\right) \Longrightarrow L \text { exists and } L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -3 & 1
\end{array}\right)
$$

Find the certain classes of matrices, which have no breakdown by Incomplete Cholesky decomposition. The classes are

M-matrices, H-matrices.
Definition 4.8.1 $A \in \mathbb{R}^{n \times n}$ is an M-matrix. If there is a decomposition $A=\sigma I-B$ with $B \geq 0\left(B \geq 0 \Leftrightarrow b_{i j} \geq 0\right.$ for $\left.i, j=1, \ldots, n\right)$ and $\rho(B)=\max \{|\lambda|: \lambda$ is an eigenvalue of $B\}$ $<\sigma$. Equivalence: $a_{i j} \leq 0$ for $i \neq j$ and $A^{-1} \geq 0$.

Lemma 4.8.2 A is symmetric, $a_{i j} \leq 0, i \neq j$. Then the following statements are equivalent
(i) A is an M-matrix.
(ii) A is s.p.d.

Proof: (i) \Rightarrow (ii): $A=\sigma I-B, \rho(B)<\sigma$. The eigenvalues of A have the form $\sigma-\lambda$, where λ is an eigenvalue of B and $|\lambda|<\sigma$. Since λ is real, so $\sigma-\lambda>0$ for all eigenvalues λ, it follows that A has only positive eigenvalues. Thus (ii) holds.
(ii) \Rightarrow (i): For $a_{i j} \leq 0,(i \neq j)$, there is a decomposition $A=\sigma I-B, B \geq 0$ (for example $\left.\sigma=\max \left(a_{i i}\right)\right)$. Claim $\rho(B)<\sigma$. By Perron-Frobenius Theorem 4.1.7, we have that $\rho(B)$ is an eigenvalue of B . Thus $\sigma-\rho(B)$ is an eigenvalue of A , so $\sigma-\rho(B)>0$. Then (i) holds.

Theorem 4.8.3 Let A be a symmetric M-matrix. Then the Incomplete Cholesky method described in (4.8.3)-(4.8.10) is executable and yields a decomposition $A=L L^{T}-N$, which satisfies (4.8.2).

Proof: It is sufficient to show that the matrix B_{1} constructed by (4.8.3)-(4.8.7) is a symmetric M-matrix.
(i): We first claim: \tilde{B}_{0} is an M-matrix. $A=\tilde{B}_{0}-C_{1} \leq \tilde{B}_{0}$, (since only negative elements are neglected). There is a $k>0$ such that $A=k I-\hat{A}, \tilde{B}_{0}=k I-\hat{B}_{0}$ with $\hat{A} \geq 0$, $\hat{B}_{0} \geq 0$, then $\hat{B}_{0} \leq \hat{A}$. By Perron-Frobenius Theorem 4.1.7 follows $\rho\left(\hat{B}_{0}\right) \leq \rho(\hat{A})<k$. This implies that \hat{B}_{0} is an M-matrix.
(ii): Thus \tilde{B}_{0} is positive definite, hence $B_{1}=L_{1}^{-1} \tilde{B}_{0}\left(L_{1}^{-1}\right)^{T}$ is also positive definite. B_{1} has nonpositive off-diagonal element, since $\bar{B}_{1}=\bar{A}_{1}-\frac{b_{1} b_{1} T}{a_{11}}$. Then B_{1} is an M-matrix (by Lemma 4.8.2)

Definition 4.8.2 $A \in \mathbb{R}^{n \times n}$. Decomposition $A=B-C$ is called regular, if $B^{-1} \geq 0$, $C \geq 0$ (regular splitting).

Theorem 4.8.4 Let $A^{-1} \geq 0$ and $A=B-C$ is a regular decomposition. Then $\rho\left(B^{-1} C\right)<1$. i.e., the iterative method $B x_{k+1}=C x_{k}+b$ for $A x=b$ is convergent for all x_{0}.

Proof: Since $T=B^{-1} C \geq 0, B^{-1}(B-C)=B^{-1} A=I-T$, it follows that

$$
(I-T) A^{-1}=B^{-1}
$$

Then

$$
0 \leq \sum_{i=0}^{k} T^{i} B^{-1}=\sum_{i=0}^{k} T^{i}(I-T) A^{-1}=\left(I-T^{k+1}\right) A^{-1} \leq A^{-1}
$$

That is, the monotone sequence $\sum_{i=0}^{k} T^{i} B^{-1}$ is uniformly bounded. Hence $T^{k} B^{-1} \rightarrow 0$ for $k \rightarrow \infty$, then $T^{k} \rightarrow 0$ and $\rho(T)<1$.
Theorem 4.8.5 If $A^{-1} \geq 0$ and $A=B_{1}-C_{1}=B_{2}-C_{2}$ are two regular decompositions with $0 \leq C_{1} \leq C_{2}$, then it holds $\rho\left(B_{1}^{-1} C_{1}\right) \leq \rho\left(B_{2}^{-1} C_{2}\right)$.
Proof: Let $A=B-C, A^{-1} \geq 0$. Then

$$
\begin{aligned}
\rho\left(B^{-1} C\right) & =\rho\left((A+C)^{-1} C\right)=\rho\left(\left[A\left(I+A^{-1} C\right)\right]^{-1} C\right) \\
& =\rho\left(\left(I+A^{-1} C\right)^{-1} A^{-1} C\right)=\frac{\rho\left(A^{-1} C\right)}{1+\rho\left(A^{-1} C\right)} . \\
& {\left[\lambda \rightarrow \frac{\lambda}{1+\lambda} \text { monotone for } \lambda \geq 0\right] . }
\end{aligned}
$$

Because $0 \leq C_{1} \leq C_{2}$ it follows $\rho\left(A^{-1} C_{1}\right) \leq \rho\left(A^{-1} C_{2}\right)$. Then

$$
\rho\left(B_{1}^{-1} C_{1}\right)=\frac{\rho\left(A^{-1} C_{1}\right)}{1+\rho\left(A^{-1} C_{1}\right)} \leq \frac{\rho\left(A^{-1} C_{2}\right)}{1+\rho\left(A^{-1} C_{2}\right)}=\rho\left(B_{2}^{-1} C_{2}\right),
$$

since $\lambda \rightarrow \frac{\lambda}{1+\lambda}$ is monotone for $\lambda>0$.
Theorem 4.8.6 If A is a symmetric M-matrix, then the decomposition $A=L L^{T}-N$ according to Theorem 4.8 .3 is a regular decomposition.

Proof: Because each $L_{j}^{-1} \geq 0$, it follows $\left(L L^{T}\right)^{-1} \geq 0,\left(\right.$ from $\left(I-l e^{T}\right)^{-1}=\left(I+l e^{T}\right)$, $l \geq 0) . N=C_{1}+C_{2}+\cdots+C_{n-1}$ and all $C_{i} \geq 0$.

Definition 4.8.3 $A \in \mathbb{R}^{n \times n}$ is called an H-matrix, if the matrix $H=H(A)$ which is defined by

$$
h_{i j}= \begin{cases}a_{i i}, & \text { if } i=j, \\ -\left|a_{i j}\right|, & \text { if } i \neq j,\end{cases}
$$

is an M-matrix.
Theorem 4.8.7 (Manteuffel) For any symmetric H-matrix A and any symmetric reserved pattern E there exists an uniquely determined Incomplete Cholesky decomposition of A which satisfies (16.2). [Exercise !].

History:

(i) CG-method, Hestenes-Stiefel (1952).
(ii) CG-method as iterative method, Reid (1971).
(iii) CG-method with preconditioning, Concus-Golub-Oleary (1976).
(iv) Incomplete Cholesky decomposition, Meijerink-Van der Vorst (1977).
(v) Nonsymmetric matrix, H-matrix, Incomplete Cholesky decomposition, Manteufel (1979).

Other preconditioning:
(i) A blockform $A=\left[A_{i j}\right]$ with $A_{i j}$ blocks. Take $M=\operatorname{diag}\left[A_{11}, \ldots, A_{k k}\right]$.
(ii) Try Incomplete Cholesky decomposition: Breakdown can be avoided by two ways. If $z_{i}=a_{i i}-\sum_{k=1}^{i-1} l_{i k}^{2} \leq 0$, breakdown, then either set $l_{i i}=1$ and go on or set $l_{i k}=0,(k=1, . ., i-1)$ until $z_{i}>0$ (change reserved pattern E).
(iii) A is an arbitrary nonsingular matrix with all principle determinants $\neq 0$. Then $A=L D R$ exists, where D is diagonal, L and R^{T} are unit lower triangular. Consider the following generalization of Incomplete Cholesky decomposition.

Theorem 4.8.8 (Generalization) Let A be an $n \times n$ matrix and E be an arbitrary reserved pattern with $(i, i) \in E, i=1,2, \ldots, n$. A decomposition of the form $A=L D R-N$ which satisfies:
(i) L is lower triangular, $l_{i i}=1, l_{i j} \neq 0$, then $(i, j) \in E$,
(ii) R is upper triangular, $r_{i i}=1, r_{i j} \neq 0$, then $(i, j) \in E$,
(iii) D is diagonal $\neq 0$,
(iv) $N=\left(n_{i j}\right), n_{i j}=0$ for $(i, j) \in E$.
is uniquely determined. (The decomposition almost exists for all matrices).

4.9 Chebychev Semi-Iteration Acceleration Method

Consider the linear system $A x=b$. The splitting $A=M-N$ leads to the form

$$
\begin{equation*}
x=T x+f, T=M^{-1} N \text { and } f=M^{-1} b . \tag{4.9.1}
\end{equation*}
$$

The basic iterative method of (4.9.1) is

$$
\begin{equation*}
x_{k+1}=T x_{k}+f . \tag{4.9.2}
\end{equation*}
$$

How to modify the convergence rate?
Definition 4.9.1 The iterative method (4.9.2) is called symmetrizable, if there is a matrix W with det $W \neq 0$ and such that $W(I-T) W^{-1}$ is symmetric positive definite.

Example 4.9.1 Let A and M be s.p.d., $A=M-N$ and $T=M^{-1} N$, then

$$
I-T=I-M^{-1} N=M^{-1}(M-N)=M^{-1} A
$$

Set $W=M^{1 / 2}$. Thus,

$$
W(I-T) W^{-1}=M^{1 / 2} M^{-1} A M^{-1 / 2}=M^{-1 / 2} A M^{-1 / 2} \text { s.p.d. }
$$

(i): $M=\operatorname{diag}\left(a_{i i}\right)$ Jacobi method.
(ii): $M=\frac{1}{\omega(2-\omega)}(D-\omega L) D^{-1}\left(D-\omega L^{T}\right)$ SSOR-method.
(iii): $M=L L^{T}$ Incomplete Cholesky decomposition.
(iv): $M=I \Rightarrow x_{k+1}=(I-A) x_{k}+b$ Richardson method.

Lemma 4.9.1 If (4.9.2) is symmetrizable, then the eigenvalues μ_{i} of T are real and satisfy

$$
\begin{equation*}
\mu_{i}<1, \text { for } i=1,2, \ldots, n \tag{4.9.3}
\end{equation*}
$$

Proof: Since $W(I-T) W^{-1}$ is s.p.d., the eigenvalues $1-\mu_{i}$ of $I-T$ are large than zero. Thus μ_{i} are real and (4.9.3) holds.

Definition 4.9.2 Let $x_{k+1}=T x_{k}+f$ be symmetrizable. The iterative method

$$
\left\{\begin{align*}
u_{0} & =x_{0} \tag{4.9.4}\\
u_{k+1} & =\alpha\left(T u_{k}+f\right)+(1-\alpha) u_{k} \\
& =(\alpha T+(1-\alpha) I) u_{k}+\alpha f \equiv T_{\alpha} u_{k}+\alpha f .
\end{align*}\right.
$$

is called an Extrapolation method of (4.9.2).
Remark 4.9.1 $T_{\alpha}=\alpha T+(1-\alpha) I$ is a new iterative matrix $\left(T_{1}=T\right)$. T_{α} arises from the decomposition $A=\frac{1}{\alpha} M-\left(N+\left(\frac{1}{\alpha}-1\right) M\right)$.

Theorem 4.9.2 If (4.9.2) is symmetrizable and T has the eigenvalues satisfying $\mu_{1} \leq$ $\mu_{2} \leq \cdots \leq \mu_{n}<1$, then it holds for $\alpha^{*}=\frac{2}{2-\mu_{1}-\mu_{2}}>0$ that

$$
\begin{equation*}
1>\rho\left(T_{\alpha^{*}}\right)=\frac{\mu_{n}-\mu_{1}}{2-\mu_{1}-\mu_{n}}=\min _{\alpha} \rho\left(T_{\alpha}\right) . \tag{4.9.5}
\end{equation*}
$$

Proof: Eigenvalues of T_{α} are $\alpha \mu_{i}+(1-\alpha)=1+\alpha\left(\mu_{i}-1\right)$. Consider the problem

$$
\begin{aligned}
& \min _{\alpha} \max _{i}\left|1+\alpha\left(u_{i}-1\right)\right|=\min ! \\
\Longleftrightarrow & \left|1+\alpha\left(\mu_{n}-1\right)\right|=\left|1+\alpha\left(\mu_{1}-1\right)\right| \\
\Longleftrightarrow & \left.1+\alpha\left(\mu_{n}-1\right)=\alpha\left(1-\mu_{n}\right)-1 \text { (otherwise } \mu_{1}=\mu_{n}\right) .
\end{aligned}
$$

This implies $\alpha=\alpha^{*}=\frac{2}{2-\mu_{1}-\mu_{n}}$, then $1+\alpha^{*}\left(\mu_{n}-1\right)=\frac{\mu_{n}-\mu_{1}}{2-\mu_{1}-\mu_{n}}$.
From (4.9.2) and (4.9.4) follows that

$$
u_{k}=\sum_{i=0}^{k} a_{k i} x_{i}, \text { and } \sum_{i=0}^{k} a_{k i}=1
$$

with suitable $a_{k i}$. Hence, we have the following idea:
Find a sequence $\left\{a_{k i}\right\}, k=1,2, \ldots, i=0,1,2, \ldots, k$ and $\sum_{i=0}^{k} a_{k i}=1$ such that

$$
\begin{equation*}
u_{k}=\sum_{i=0}^{k} a_{k i} x_{i}, u_{0}=x_{0} \tag{4.9.6}
\end{equation*}
$$

is a good approximation of $x^{*}\left(A x^{*}=b\right)$. Hereby the cost of computation of u_{k} should not be more expensive than x_{k}.
Error: Let

$$
\begin{equation*}
e_{k}=x_{k}-x^{*}, e_{k}=T^{k} e_{0}, e_{0}=x_{0}-x^{*}=u_{0}-x^{*}=d_{0} \tag{4.9.7}
\end{equation*}
$$

Hence,

$$
\begin{align*}
d_{k} & =u_{k}-x^{*}=\sum_{i=0}^{k} a_{k i}\left(x_{i}-x^{*}\right) \tag{4.9.8}\\
& =\sum_{i=0}^{k} a_{k i} T^{i} e_{0}=\left(\sum_{k i}^{k} a_{k i} T^{i}\right) e_{0} \\
& =\mathcal{P}_{k}(T) e_{0}=\mathcal{P}_{k}(T) d_{0}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{P}_{k}(\lambda)=\sum_{i=0}^{k} a_{k i} \lambda^{i} \tag{4.9.9}
\end{equation*}
$$

is a polynomial in λ with $\mathcal{P}_{k}(1)=1$.
Problem: Find \mathcal{P}_{k} such that $\rho\left(\mathcal{P}_{k}(T)\right)$ is possible small.
Remark 4.9.2 Let $\|x\|_{W}=\|W x\|_{2}$. Then

$$
\begin{aligned}
\|T\|_{W} & =\max _{x \neq 0} \frac{\|T x\|_{W}}{\|x\|_{W}} \\
& =\max _{x \neq 0} \frac{\left\|W T W^{-1} W x\right\|_{2}}{\|W x\|_{2}} \\
& =\left\|W T W^{-1}\right\|_{2}=\rho(T)
\end{aligned}
$$

because $W T W^{-1}$ is symmetric. We take $\|\cdot\|_{W}$-norm on both sides of (4.9.8) and have

$$
\begin{align*}
\left\|d_{k}\right\|_{W} & \leq\left\|\mathcal{P}_{k}(T)\right\|_{W}\left\|d_{0}\right\|_{W}=\left\|W \mathcal{P}_{k}(T) W^{-1}\right\|_{2}\left\|d_{0}\right\|_{2} \tag{4.9.10}\\
& =\left\|\mathcal{P}_{k}\left(W T W^{-1}\right)\right\|_{2}\left\|d_{0}\right\|_{W}=\rho\left(\mathcal{P}_{k}(T)\right)\left\|d_{0}\right\|_{W}
\end{align*}
$$

Replacement problem: Let $1>\mu_{n} \geq \cdots \geq \mu_{1}$ be the eigenvalues of T. Determine

$$
\begin{equation*}
\min \left[\left\{\max \left|\mathcal{P}_{k}(\lambda)\right|: \mu_{1} \leq \lambda \leq \mu_{n}\right\}: \operatorname{deg}\left(\mathcal{P}_{k}\right) \leq k, \mathcal{P}_{k}(1)=1\right] \tag{4.9.11}
\end{equation*}
$$

Solution of (4.9.11): The replacement problem (4.6.35)

$$
\max \left\{\left|\mathcal{P}_{k}(\lambda)\right|: 0<a \leq \lambda \leq b\right\}=\min !, \mathcal{P}_{k}(0)=1
$$

has the solution

$$
Q_{k}(t)=T_{k}\left(\frac{2 t-b-a}{b-a}\right) / T_{k}\left(\frac{b+a}{a-b}\right) .
$$

Substituting $t \rightarrow 1-\lambda, \lambda \rightarrow 1-t,\left(\mu_{1}, \mu_{n}\right) \rightarrow\left(1-\mu_{n}, 1-\mu_{1}\right)$, the problem (4.9.11) can be transformed to the problem (4.6.35). Hence, the solution of (4.9.11) is given by

$$
\begin{equation*}
Q_{k}(t)=T_{k}\left(\frac{2 t-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right) / T_{k}\left(\frac{2-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right) \tag{4.9.12}
\end{equation*}
$$

Write $Q_{k}(t):=\sum_{i=0}^{k} a_{k i} t^{i}$. Then we have

$$
u_{k}=\sum_{i=0}^{k} a_{k i} x_{i}
$$

which is called the optimal Chebychev semi-iterative method.
Effective Computation of u_{k} : Using recursion of T_{k} as in (4.6.36), we get

$$
T_{0}(t)=1, T_{1}(t)=t, T_{k+1}(t)=2 t T_{k}(t)-T_{k-1}(t)
$$

Transforming $T_{k}(t)$ to the form of $Q_{k}(t)$ as in (4.9.12) we get

$$
\begin{equation*}
Q_{0}(t)=1, Q_{1}(t)=\frac{2 t-\mu_{1}-\mu_{n}}{2-\mu_{1}-\mu_{n}}=p t+(1-p) \tag{4.9.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{k+1}(t)=[p t+(1-p)] c_{k+1} Q_{k}(t)+\left(1-c_{k+1}\right) Q_{k-1}(t) \tag{4.9.13b}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\frac{2}{2-\mu_{1}-\mu_{n}}, c_{k+1}=\frac{2 T_{k}(1 / r)}{r T_{k+1}(1 / r)} \text { and } r=\frac{\mu_{1}-\mu_{n}}{2-\mu_{1}-\mu_{n}} . \tag{4.9.14}
\end{equation*}
$$

Claim: (4.9.13b)

$$
\begin{aligned}
Q_{k+1}(t) & =T_{k+1}\left(\frac{2 t-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right) / T_{k+1}\left(\frac{1}{r}\right) \\
& =\frac{1}{T_{k+1}(1 / r)}\left[2\left(\frac{2 t-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right) T_{k}\left(\frac{2 t-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right)-T_{k-1}\left(\frac{2 t-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right)\right] \\
& =\frac{2 T_{k}(1 / r)}{r T_{k+1}(1 / r)} r\left(\frac{2 t-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right) \frac{T_{k}\left(\frac{2 t-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right)}{T_{k}(1 / r)}-\frac{T_{k-1}\left(\frac{2-\mu_{1}-\mu_{n}}{\mu_{1} \mu_{n}}\right)}{T_{K+1}\left(\frac{2-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right)} \frac{T_{k-1}\left(\frac{2-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right)}{T_{k-1}(1 / r)} \\
& =C_{k+1}[p t+(1-p)] Q_{k}(t)-\left[1-C_{k+1}\right] Q_{k-1}(t),
\end{aligned}
$$

since

$$
r\left(\frac{2 t-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right)=\frac{2 t-\mu_{1}-\mu n}{2-\mu_{1}-\mu_{n}}=p t+(1-p)
$$

and

$$
\begin{aligned}
1-C_{k+1} & =1-\frac{2 T_{k}(1 / r)}{r T_{k+1}(1 / r)}=\frac{r T_{k+1}(1 / r)-2 T_{k}(1 / r)}{r T_{k+1}(1 / r)} \\
& =\frac{-r T_{k-1}(1 / r)}{r T_{k+1}(1 / r)}=\frac{-T_{k-1}(1 / r)}{T_{k+1}(1 / r)} .
\end{aligned}
$$

Recursion for u_{k} :

$$
\begin{aligned}
d_{k+1} & =Q_{k+1}(T) d_{0}=(p T+(1-p) I) c_{k+1} Q_{k}(T) d_{0}+\left(1-c_{k+1}\right) Q_{k-1}(T) d_{0}, \\
x^{*} & =(p T+(1-p) I) c_{k+1} x^{*}+\left(1-c_{k+1}\right) x^{*}+p(I-T) x^{*} c_{k+1}
\end{aligned}
$$

Adding above two equations together we get

$$
\begin{aligned}
u_{k+1} & =[p T+(1-p) I] c_{k+1} u_{k}+\left(1-c_{k+1}\right) u_{k-1}+c_{k+1} p f \\
& =c_{k+1} p\left\{T u_{k}+f-u_{k}\right\}+c_{k+1} u_{k}+\left(1-c_{k+1}\right) u_{k-1} .
\end{aligned}
$$

Then we obtain the optimal Chebychev semi-iterative Algorithm.

Algorithm 4.9.1 (Optimal Chebychev semi-iterative Algorithm)

$$
\begin{align*}
& \text { Let } r=\frac{\mu_{1}-\mu_{n}}{2-\mu_{1}-\mu_{n}}, p=\frac{2}{2-\mu_{1}-\mu_{n}}, c_{1}=2 \\
& u_{0}=x_{0}, \\
& u_{1}=p\left(T u_{0}+f\right)+(1-p) u_{0} \tag{4.9.15}\\
& \text { For } k=1,2, \cdots, \\
& \quad u_{k+1}=c_{k+1}\left[p\left(T u_{k}+f\right)+(1-p) u_{k}\right]+\left(1-c_{k+1}\right) u_{k-1}, \\
& \quad c_{k+1}=\left(1-r^{2} / 4 c_{k}\right)^{-1} .
\end{align*}
$$

Remark 4.9.3 Here u_{k+1} can be rewritten as the three terms recursive formula with two parameters as in (4.7.5):

$$
\begin{aligned}
u_{k+1} & =c_{k+1}\left[p\left(T u_{k}+f\right)+(1-p) u_{k}\right]+\left(1-c_{k+1}\right) u_{k-1} \\
& =c_{k+1}\left[p M^{-1}\left((M-A) u_{k}+b\right)+(1-p) u_{k}\right]+u_{k-1}-c_{k+1} u_{k-1} \\
& =c_{k+1}\left[u_{k}+p M^{-1}\left(b-A u_{k}\right)-u_{k-1}\right]+u_{k-1} \\
& =c_{k+1}\left[u_{k}+p z_{k}-u_{k-1}\right]+u_{k-1},
\end{aligned}
$$

where $M z_{k}=b-A u_{k}$.
Recursion for c_{k} : Since

$$
c_{1}=\frac{2 t_{0}}{r T_{1}(1 / r)}=\frac{2}{r \cdot \frac{1}{r}}=2,
$$

thus

$$
T_{k+1}\left(\frac{1}{r}\right)=\frac{2}{r} T_{k}\left(\frac{1}{r}\right)-T_{k-1}\left(\frac{1}{r}\right) \quad(\text { from }(4.6 .36))
$$

It follows

$$
\frac{1}{c_{k+1}}=\frac{r T_{k+1}\left(\frac{1}{r}\right)}{2 T_{k}\left(\frac{1}{r}\right)}=1-\frac{r^{2}}{4}\left[\frac{2 T_{k-1}\left(\frac{1}{r}\right)}{r T_{k}\left(\frac{1}{r}\right)}\right]=1-\frac{r^{2}}{4} c_{k} .
$$

Then we have

$$
\begin{equation*}
c_{k+1}=\frac{1}{\left(1-\left(r^{2} / 4\right) c_{k}\right)} \quad \text { with } \quad r=\frac{\mu_{1}-\mu_{n}}{2-\mu_{1}-\mu_{n}} . \tag{4.9.16}
\end{equation*}
$$

Error estimate: It holds

$$
\begin{equation*}
\left\|u_{k}-x^{*}\right\|_{W} \leq\left|T_{k}\left(\frac{2-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right)\right|^{-1}\left\|u_{0}-x^{*}\right\|_{W} \tag{4.9.17}
\end{equation*}
$$

Proof: From (4.9.10) and (4.9.12) we have

$$
\begin{aligned}
\left\|d_{k}\right\|_{W} & =\left\|Q_{k}(T) d_{0}\right\|_{W} \leq \rho\left(Q_{k}(T)\right)\left\|d_{0}\right\|_{W} \\
& \leq \max \left\{\left|Q_{k}(\lambda)\right|: \mu_{1} \leq \lambda \leq \mu_{n}\right\}\left\|d_{0}\right\|_{W} \\
& \leq\left|T_{k}\left(\frac{2-\mu_{1}-\mu_{n}}{\mu_{1}-\mu_{n}}\right)\right|^{-1}\left\|d_{0}\right\|_{W} .
\end{aligned}
$$

We want to estimate the quantity $q_{k}:=\left|T_{k}(1 / r)\right|^{-1}$ (see also Lemma 4.6.9). From (4.6.37) we have

$$
\begin{aligned}
T_{k}\left(\frac{1}{r}\right) & =\frac{1}{2}\left[\left(\frac{1+\sqrt{1-r^{2}}}{r}\right)^{k}+\left(\frac{1-\sqrt{1-r^{2}}}{r}\right)^{k}\right] \\
& =\frac{1}{2}\left[\frac{\left(1+\sqrt{1-r^{2}}\right)^{k}+\left(1-\sqrt{1-r^{2}}\right)^{k}}{\left(r^{2}\right)^{k / 2}}\right] \\
& =\frac{1}{2}\left[\frac{\left(1+\sqrt{1-r^{2}}\right)^{k}+\left(1-\sqrt{1-r^{2}}\right)^{k}}{\left[\left(1+\sqrt{1-r^{2}}\right)\left(1-\sqrt{1-r^{2}}\right)\right]^{k / 2}}\right] \\
& =\frac{1}{2}\left(c^{k / 2}+c^{-k / 2}\right) \geq \frac{1}{2 c^{k / 2}},
\end{aligned}
$$

μ_{n}	k	q_{4}	j	j	q_{8}	j	j
0.8	5	0.0426	8	14	$9.06(-4)$	$17-18$	31
0.9	10	0.1449	$9-10$	18	$1.06(-2)$	$22-23$	43
0.95	20	0.3159	$11-12$	22	$5.25(-2)$	$29-30$	57
0.99	100	0.7464	$14-15$	29	$3.86(-1)$	47	95

Table 4.3: Convergence rate of q_{k} where $j:\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{j} \approx q_{4}, q_{8}$ and $j^{\prime}: \mu_{n}^{j^{\prime}} \approx q_{4}, q_{8}$.
where $c=\frac{1-\sqrt{1-r^{2}}}{1+\sqrt{1-r^{2}}}<1$. Thus $q_{k} \leq 2 c^{k / 2}$. Rewrite the eigenvalues of $I-T$ as $\lambda_{i}=1-\mu_{i}$, $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$. Then

$$
r=\frac{\mu_{n}-\mu_{1}}{2-\mu_{1}-\mu_{n}}=\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}=\frac{\kappa-1}{\kappa+1}, \quad \kappa=\frac{\lambda_{1}}{\lambda_{n}}
$$

Thus, from $c=\frac{1-\sqrt{1-r^{2}}}{1+\sqrt{1-r^{2}}}=\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2}$ follows

$$
\begin{equation*}
q_{k} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k} \tag{4.9.18}
\end{equation*}
$$

That is, after k steps of the Chebychev semi-iterative method the residual $\left\|u_{k}-x^{*}\right\|_{W}$ is reduced by a factor $2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}$ from the original residual $\left\|u_{0}-x^{*}\right\|_{W}$.

If $\mu_{\min }=\mu_{1}=0$, then $q_{k}=T_{k}\left(\frac{2-\mu_{n}}{\mu_{n}}\right)^{-1}$. Table 4.3 shows the convergence rate of the quantity q_{k}.

All above statements are true, if we replace μ_{n} by $\mu_{n}^{\prime}\left(\mu_{n}^{\prime} \geq \mu_{n}\right)$ and μ_{1} by $\mu_{1}^{\prime}\left(\mu_{1}^{\prime} \leq \mu_{1}\right)$, because λ is still in $\left[\mu_{1}^{\prime}, \mu_{n}^{\prime}\right]$ for all eigenvalue λ of T.

Example 4.9.2 Let $1>\rho=\rho(T)$. If we set $\mu_{n}^{\prime}=\rho, \mu_{1}^{\prime}=-\rho$, then p and r defined in (4.9.14) become $p=1$ and $r=\rho$, respectively. Algorithm 4.9.1 can be simplified by

$$
\begin{align*}
& u_{0}=x_{0}, \\
& u_{1}=T u_{0}+f \tag{4.9.19}\\
& u_{k+1}=c_{k+1}\left(T u_{k}+f\right)+\left(1-c_{k+1}\right) u_{k-1}, \\
& c_{k+1}=\left(1-\left(\rho^{2} / 4\right) c_{k}\right)^{-1} \quad \text { with } c_{1}=2 .
\end{align*}
$$

Also, Algorithm 4.9.1 can be written by the form of (4.9.19), by replacing T by $T_{\alpha^{*}}=T_{p}=(p T+(1-p) I)$ and it leads to

$$
\begin{equation*}
u_{k+1}=c_{k+1}\left(T_{p} u_{k}+f\right)+\left(1-c_{k+1}\right) u_{k-1} . \tag{4.9.20}
\end{equation*}
$$

Here $p \mu_{1}+(1-p)=\frac{\mu_{1}-\mu_{n}}{2-\mu_{1}-\mu_{n}}$ and $p \mu_{n}+(1-p)=\frac{\mu_{n}-\mu_{1}}{2-\mu_{1}-\mu_{n}}$ are eigenvalues of T_{p}.
Remark 4.9.4 (i) In (4.9.15) it holds $(r=\rho)$

$$
c_{2}>c_{3}>c_{4}>\cdots, \text { and } \lim _{k \rightarrow \infty} c_{k}=\frac{2}{1+\sqrt{1-r^{2}}} . \quad \text { (Exercise!) }
$$

(ii) If T is symmetric, then by (4.9.12) we get

$$
\begin{align*}
\left\|Q_{k}(T)\right\|_{2} & =\max \left\{\left|Q_{k}\left(\mu_{i}\right)\right|: \mu_{i} \text { is an eigenvalue of } T\right\} \\
& \leq \max \left\{\left|Q_{k}(\lambda)\right|:-\rho \leq \lambda \leq \rho\right\} \\
& =\left|T_{k}\left(\frac{1}{\rho}\right)\right|^{-1}, \quad(\rho=\rho(T)) . \\
& =\frac{1}{c^{k / 2}+c^{-k / 2}}=\frac{\left(\omega_{b}-1\right)^{k / 2}}{1+\left(\omega_{b}-1\right)^{k}}, \tag{4.9.21}
\end{align*}
$$

where $c=\frac{1-\sqrt{1-\rho^{2}}}{1+\sqrt{1-\rho^{2}}}=\omega_{b}-1$ with $\omega_{b}=\frac{2}{1+\sqrt{1-\rho^{2}}}$.

4.9.1 Connection with SOR Method

Recall
(i) The SOR method solves linear system $A x=b$ (standard decomposition $A=I-$ $L-R)$:

$$
\begin{align*}
x^{(i+1)} & =(I-\omega L)^{-1}((1-\omega) I+\omega R) x^{(i)}+\omega(I-\omega L)^{-1} b \tag{4.9.22}\\
& =L_{\omega} x^{(i)}+\omega(I-\omega L)^{-1} b, \quad 0<\omega<2
\end{align*}
$$

(ii) $A=I-L-R$ is called 2-consistly ordered, if the eigenvalues of $\alpha L+\alpha^{-1} R$ are independent of α,
(iii) (Theorem) $A=I-L-R$ and A is 2 -consistly ordered. If A has real eigenvalues and $\rho(L+R)<1$, then it holds

$$
\begin{equation*}
\omega_{b}-1=\rho\left(L_{\omega_{b}}\right)<\rho\left(L_{\omega}\right), \quad \omega \neq \omega_{b} \tag{4.9.23}
\end{equation*}
$$

where $\omega_{b}=\frac{2}{1+\sqrt{1-\rho^{2}(L+R)}}$.
Consider (4.9.1) again

$$
x=T x+f, \quad A=M-N, \quad T=M^{-1} N, \quad f=M^{-1} b .
$$

Assume that

$$
\begin{equation*}
\text { all eigenvalues of } T \text { are real and } \rho(T)<1 \text {. } \tag{4.9.24}
\end{equation*}
$$

Then the following linear system (of order $2 n$) is equivalent to (4.9.1).

$$
\left\{\begin{array}{l}
x=T y+f \tag{4.9.25}\\
y=T x+f
\end{array}\right.
$$

That is, if x^{*} solves (4.9.1), then $\left[\begin{array}{l}x^{*} \\ x^{*}\end{array}\right]$ solves (4.9.25), reversely, if $z^{*}=\left[\begin{array}{c}z_{1}{ }^{*} \\ z_{2}{ }^{*}\end{array}\right]$ solves (4.9.25), then $z_{1}{ }^{*}=z_{2}{ }^{*}$ solves (4.9.1). Because $z_{1}{ }^{*}-z_{2}{ }^{*}=-T\left(z_{1}{ }^{*}-z_{2}{ }^{*}\right)$ and -1 is not an eigenvalue of T, so $z_{1}{ }^{*}=z_{2}{ }^{*}$. Let

$$
z=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & T \\
T & 0
\end{array}\right], \quad h=\left[\begin{array}{l}
f \\
f
\end{array}\right] .
$$

Then (4.9.25) can be written as

$$
\begin{equation*}
z=J z+h \tag{4.9.26}
\end{equation*}
$$

and $I-J$ is 2 -consistly ordered. Applying SOR method to (4.9.26) we get

$$
J=L+R:=\left[\begin{array}{ll}
0 & 0 \\
T & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & T \\
0 & 0
\end{array}\right]
$$

and

$$
\begin{equation*}
(I-\omega L) z_{i+1}=((1-\omega) I+\omega R) z_{i}+\omega h \tag{4.9.27}
\end{equation*}
$$

Let $z_{i}=\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$. Then we have

$$
\left[\begin{array}{cc}
I & 0 \\
-\omega T & I
\end{array}\right]\left[\begin{array}{l}
x_{i+1} \\
y_{i+1}
\end{array}\right]=\left[\begin{array}{cc}
(1-\omega) I & \omega T \\
0 & (1-\omega) I
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{c}
\omega f \\
\omega f
\end{array}\right]
$$

hence

$$
\begin{align*}
x_{i+1} & =(1-\omega) x_{i}+\omega T y_{i}+\omega f=\omega\left\{T y_{i}+f-x_{i}\right\}+x_{i} \tag{4.9.28a}\\
y_{i+1} & =\omega T x_{i+1}+(1-\omega) y_{i}+\omega f=\omega\left\{T x_{i+1}+f-y_{i}\right\}+y_{i} \tag{4.9.28b}
\end{align*}
$$

The optimal value ω_{b} for (4.9.27) is given by

$$
\omega_{b}=\frac{1}{1+\sqrt{1-\rho^{2}(J)}} .
$$

Lemma 4.9.3 It holds $\sigma(J)=\sigma(T) \cup\{-\sigma(T)\}$, where $\sigma(T)=$ spectrum of T. Especially $\rho(T)=\rho(J)$.

Proof: Let $\lambda \in \sigma(T)$. There exists $x \neq 0$ with $T x=\lambda x$. Then

$$
J\left[\begin{array}{l}
x \\
x
\end{array}\right]=\lambda\left[\begin{array}{l}
x \\
x
\end{array}\right] \quad \text { and } \quad J\left[\begin{array}{r}
x \\
-x
\end{array}\right]=-\lambda\left[\begin{array}{r}
x \\
-x
\end{array}\right] .
$$

Thus we have $\sigma(J) \supset \sigma(T) \cup\{-\sigma(T)\}$. On the other hand, from $J^{2}=\left[\begin{array}{cc}T^{2} & 0 \\ 0 & T^{2}\end{array}\right]$ follows that if λ is an eigenvalue of J, then $\lambda^{2}=\mu^{2}$ for one $\mu \in \sigma(T)$, so $\lambda=\mu$ or $-\mu$. Thus

$$
\sigma(J) \subset \sigma(T) \cup\{-\sigma(T)\}
$$

We then have

$$
\begin{equation*}
\omega_{b}=\frac{2}{1+\sqrt{1-\rho^{2}(T)}}, \quad \rho\left(L \omega_{b}\right)=\omega_{b}-1=\frac{1-\sqrt{1-\rho^{2}(T)}}{1+\sqrt{1-\rho^{2}(T)}} . \tag{4.9.29}
\end{equation*}
$$

$$
\begin{array}{ccccccc}
x_{0}, & y_{0}, & x_{1}, & y_{1}, & x_{2}, & y_{2}, & \ldots \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\zeta_{0}, & \zeta_{1}, & \zeta_{2}, & \zeta_{3}, & \zeta_{4}, & \zeta_{5}, & \ldots \\
\zeta_{2 i}=x_{i}, & \zeta_{2 i+1}=y_{i}, & i=0,1,2, \ldots
\end{array}
$$

Then (4.9.28) can be written as

$$
\begin{equation*}
\zeta_{i+1}=\omega_{b}\left\{T \zeta_{i}+f-\zeta_{i-1}\right\}+\zeta_{i-1}, \quad i=1,2, \cdots \tag{4.9.30}
\end{equation*}
$$

with $\zeta_{0}=x_{0}$ and $\zeta_{1}=y_{0}=T x_{0}+f$. Comparing (4.9.30) with (4.9.19) we get

$$
\begin{equation*}
u_{i+1}=c_{i+1}\left\{T u_{i}+f-u_{i-1}\right\}+u_{i-1}, \quad i=1,2, \cdots \tag{4.9.31}
\end{equation*}
$$

Since c_{i} converges to ω_{b}, the optimal Chebychev acceleration method is referred to as a variant SOR method.

Error estimate of (4.9.30): Write (4.9.30) as

$$
\begin{aligned}
\zeta_{k+1} & =\omega_{b}\left\{T \zeta_{k}+f-\zeta_{k-1}\right\}+\zeta_{k-1} \\
\zeta_{0} & =x_{0} \\
\zeta_{1} & =T \zeta_{0}+f
\end{aligned}
$$

Let

$$
\begin{equation*}
\varepsilon_{k}=\zeta_{k}-x^{*} . \quad\left(A x^{*}=b\right) \tag{4.9.32}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
\varepsilon_{0} & =\zeta_{0}-x^{*} \\
\varepsilon_{1} & =T \varepsilon_{0} \\
\varepsilon_{k+1} & =\omega_{b} T \varepsilon_{k}+\left(1-\omega_{b}\right) \varepsilon_{k-1}
\end{aligned}
$$

Since $x^{*}=\omega_{b}\left\{T x^{*}+f-x^{*}\right\}+x^{*}$, it follow that

$$
\begin{equation*}
\varepsilon_{k}=r_{k}(T) \varepsilon_{0} \tag{4.9.33}
\end{equation*}
$$

where $r_{k}(x)$ is a polynomial of degree $\leq k$, and

$$
\begin{align*}
r_{0} & =1, \\
r_{1}(t) & =t \tag{4.9.34}\\
r_{k+1}(t) & =\omega_{b} t r_{k}(t)+\left(1-\omega_{b}\right) r_{k-1}(t) .
\end{align*}
$$

Either solve this difference equation or reduce to Chebychev polynomials of 2nd kind.

$$
\begin{aligned}
s_{k+1}(t) & =2 t s_{k}(t)-s_{k-1}(t) \\
s_{0}(t) & =1 \\
s_{1}(t) & =2 t
\end{aligned}
$$

In fact $s_{k}(\cos \theta)=\sin ((k+1) \theta) / \sin \theta$. One can estimate $\left\|r_{k}(T)\right\|$ (see Varga p.146) by: Let T be Hermitian. Then

$$
\begin{aligned}
\left\|r_{k}(T)\right\| & =\max \left\{\left|r_{k}\left(\mu_{i}\right)\right|: \mu_{i} \text { is an eigenvalue of } T\right\} \\
& =\max \left\{\left|r_{k}(\mu)\right|:-\rho(T) \leq \mu \leq \rho(T)\right\} \\
& =\left(\omega_{b}-1\right)^{k / 2}\left\{1+k \sqrt{1-\rho^{2}(T)}\right\}
\end{aligned}
$$

This implies

$$
\lim _{k \rightarrow \infty}\left\|r_{k}(T)\right\|^{1 / k}=\sqrt{\omega_{b}-1}
$$

From (4.9.21) follows that

$$
\lim _{k \rightarrow \infty}\left\|Q_{k}(T)\right\|^{1 / k}=\sqrt{\omega_{b}-1}
$$

4.10 GCG-type Methods for Nonsymmetric Linear Systems

Recall: A is s.p.d. Consider the quadratic functional

$$
\begin{gather*}
F(x)=\frac{1}{2} x^{T} A x-x^{T} b \tag{4.10.1}\\
A x^{*}=b \Longleftrightarrow \min _{x \in \mathbb{R}^{n}} F(x)=F\left(x^{*}\right)
\end{gather*}
$$

Consider

$$
\begin{equation*}
\varphi(x)=\frac{1}{2}(b-A x)^{T} A^{-1}(b-A x)=F(x)+\frac{1}{2} b^{T} A^{-1} b, \tag{4.10.2}
\end{equation*}
$$

where $\frac{1}{2} b^{T} A^{-1} b$ is a constant. Then

$$
A x^{*}=b \Longleftrightarrow \varphi\left(x^{*}\right)=\min _{x \in \mathbb{R}^{n}} \varphi(x)=\left[\min _{x \in \mathbb{R}^{n}} F(x)\right]+\frac{1}{2} b^{T} A^{-1} b
$$

CG-method:

$$
\begin{aligned}
& \text { Given } x_{0}, r_{0}=p_{0}=b-A x_{0} \\
& \text { for } \quad k=0,1, \ldots \\
& \quad \alpha_{k}=r_{k}^{T} p_{k} / p_{k}^{T} A p_{k}, \\
& \quad x_{k+1}=x_{k}+\alpha_{k} p_{k}, \\
& \\
& r_{k+1}=r_{k}-\alpha_{k} A p_{k}\left(\equiv b-A x_{k+1}\right) \\
& \quad p_{k+1}=r_{k+1}+\beta_{k} p_{k} \\
& \quad \beta_{k}=-r_{k+1}^{T} A p_{k} / p_{k}^{T} A p_{k}\left(=r_{k+1}^{T} r_{k+1} / r_{k}^{T} r_{k}\right)
\end{aligned}
$$

end for
Numerator: $r_{k+1}^{T}\left(\left(r_{k}-r_{k+1}\right) / \alpha_{k}\right)=\left(-r_{k+1}^{T} r_{k+1}\right) / \alpha_{k}$
Denominator: $p_{k}^{T} A p_{k}=\left(r_{k}^{T}+\beta_{k-1} p_{k-1}^{T}\right)\left(\left(r_{k}-r_{k+1}\right) / \alpha_{k}\right)=\left(r_{k}^{T} r_{k}\right) / \alpha_{k}$.
Remark 4.10.1 CG method does not need to compute any parameters. It only needs matrix vector and inner product of vectors. Hence it can not destroy the sparse structure of the matrix A.

The vectors r_{k} and p_{k} generated by CG-method satisfy:

$$
\begin{gathered}
p_{i}^{T} r_{k}=\left(p_{i}, r_{k}\right)=0, \quad i<k \\
r_{i}^{T} r_{j}=\left(r_{i}, r_{j}\right)=0, \quad i \neq j \\
p_{i}^{T} A p_{j}=\left(p_{i}, A p_{j}\right)=0, \quad i \neq j \\
x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} p_{i} \text { minimizes } F(x) \text { over } x=x_{0}+<p_{0}, \cdots, p_{k}>.
\end{gathered}
$$

4.10.1 GCG method(Generalized Conjugate Gradient)

GCG method is developed to minimize the residual of the linear equation under some special functional. In conjugate gradient method we take

$$
\varphi(x)=\frac{1}{2}(b-A x)^{T} A^{-1}(b-A x)=\frac{1}{2} r^{T} A^{-1} r=\frac{1}{2}\|r\|_{A^{-1}}^{2},
$$

where $\|x\|_{A^{-1}}=\sqrt{x^{T} A^{-1} x}$.
Let A be a unsymmetric matrix. Consider the functional

$$
f(x)=\frac{1}{2}(b-A x)^{T} P(b-A x)
$$

where P is s.p.d. Thus $f(x)>0$, unless $x^{*}=A^{-1} b \Rightarrow f\left(x^{*}\right)=0$, so x^{*} minimizes the functional $f(x)$.
Different choices of P :
(i) $P=A^{-1}$ (A is s.p.d.) \Rightarrow CG method (classical)
(ii) $P=I \Rightarrow$ GCR method (Generalized Conjugate residual).

$$
f(x)=\frac{1}{2}(b-A x)^{T}(b-A x)=\frac{1}{2}\|r\|_{2}^{2}
$$

Here $\left\{r_{i}\right\}$ forms A-conjugate.
(iii) Consider $M^{-1} A x=M^{-1} b$. Take $P=M^{T} M>0 \Rightarrow$ GCGLS method (Generalized Conjugate Gradient Least Square).
(iv) Similar to (iii), take $P=\left(A+A^{T}\right) / 2$ (note: P is not positive definite) and $M=$ $\left(A+A^{T}\right) / 2$ we get GCG method (by Concus, Golub and Widlund). In general, P is not necessary to be taken positive definite, but it must be symmetric ($P^{T}=P$). Therefore, the minimality property does not hold.

Let

$$
(x, y)_{o}=x^{T} P y \Longrightarrow(x, y)_{o}=(y, x)_{o}
$$

$$
\begin{align*}
& \text { Given } x_{0}, r_{0}=p_{0}=b-A x_{0} \\
& \text { for } k=0,1, \cdots \\
& \quad \alpha_{k}=\left(r_{k}, A p_{k}\right)_{o} /\left(A p_{k}, A p_{k}\right)_{o} \tag{4.10.3a}\\
& x_{k+1}=x_{k}+\alpha_{k} p_{k} \tag{4.10.3b}\\
& r_{k+1}=r_{k}-\alpha_{k} A p_{k}\left(\equiv b-A x_{k+1}\right) \tag{4.10.3c}\\
& \beta_{i}^{(k)}=-\left(A r_{k+1}, A p_{i}\right)_{o} /\left(A p_{i}, A p_{i}\right)_{o}, \quad i=0,1, \cdots, k \tag{4.10.3d}\\
& \quad p_{k+1}=r_{k+1}+\sum_{i=0}^{k} \beta_{i}^{(k)} p_{i} \tag{4.10.3e}\\
& \text { end for }
\end{align*}
$$

In GCG method, the choice of $\left\{\beta_{i}^{(k)}\right\}_{i=1}^{k}$ satisfy:

$$
\begin{align*}
\left(r_{k+1}, A p_{i}\right)_{o}=0, & i \leq k \tag{4.10.4a}\\
\left(r_{k+1}, A r_{i}\right)_{o}=0, & i \leq k \tag{4.10.4b}\\
\left(A p_{i}, A p_{j}\right)_{o}=0, & i \neq j \tag{4.10.4c}
\end{align*}
$$

Theorem 4.10.1 $x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{k} p_{i}$ minimizes $f(x)=\frac{1}{2}(b-A x)^{T} P(b-A x)$ over $\left.x=x_{0}+<p_{0}, \cdots, p_{k}\right\rangle$, where P is s.p.d.
(The proof is the same as that of classical CG method).
If P is indefinite, which is allowed in GCG method, then the minimality property does not hold. x_{k+1} is the critical point of $f(x)$ over $x=x_{0}+\left\langle p_{0}, \cdots, p_{k}\right\rangle$.
Question: Can the GCG method break down? i.e., Can α_{k} in GCG method be zero? Consider the numerator of α_{k} :

$$
\begin{array}{rlr}
\left(r_{k}, A p_{k}\right) & =\left(r_{k}, A r_{k}\right)_{o} \quad[\text { by (4.10.3e) and (4.10.4a) }] \\
& =r_{k}^{T} P A r_{k} & \\
& =r_{k}^{T} A^{T} P r_{k} \tag{4.10.5}\\
& =r_{k}^{T} \frac{\left(P A+A^{T} P\right)}{2} r_{k} .
\end{array}
$$

From (4.10.5), if $\left(P A+A^{T} P\right)$ is positive definite, then $\alpha_{k} \neq 0$ unless $r_{k}=0$. Hence if the matrix A satisfies $\left(P A+A^{T} P\right)$ positive definite, then GCG method can not break down.

From GCG method, r_{k} and p_{k} can be rewritten by

$$
\begin{align*}
& r_{k}=\psi_{k}(A) r_{0}, \tag{4.10.6a}\\
& p_{k}=\varphi_{k}(A) r_{0}, \tag{4.10.6b}
\end{align*}
$$

where ψ_{k} and φ_{k} are polynomials of degree $\leq k$ with $\psi_{k}(0)=1$ [by (4.10.3c), (4.10.3e)]. From (4.10.6a), (4.10.6b) and (4.10.4b) follows that

$$
\begin{equation*}
\left(r_{k+1}, A^{i+1} r_{0}\right)_{o}=0, \quad i=0,1, \cdots, k . \tag{4.10.7}
\end{equation*}
$$

From (4.10.6a), (4.10.6b) and (4.10.3d), the numerator of $\beta_{i}^{(k)}$ can be expressed by

$$
\begin{equation*}
\left(A r_{k+1}, A p_{i}\right)_{o}=r_{k+1}^{T} A^{T} P A p_{i}=r_{k+1}^{T} A^{T} P A \varphi_{i}(A) r_{0} \tag{4.10.8}
\end{equation*}
$$

If $A^{T} P$ can be expressed by

$$
\begin{equation*}
A^{T} P=P \theta_{s}(A), \tag{4.10.9}
\end{equation*}
$$

where θ_{s} is some polynomial of degree s. Then (4.10.8) can be written by

$$
\begin{align*}
\left(A r_{k+1}, A p_{i}\right)_{o} & =r_{k+1}^{T} A^{T} P A \varphi_{i}(A) r_{0} \\
& =r_{k+1}^{T} P \theta_{s}(A) A \varphi_{i}(A) r_{0} \tag{4.10.10}\\
& =\left(r_{k+1}, A \theta_{s}(A) \varphi_{i}(A) r_{0}\right)_{o} .
\end{align*}
$$

From (4.10.7) we know that if $s+i \leq k$, then (4.10.10) is zero, i.e., $\left(A r_{k+1}, A p_{i}\right)_{o}=0$. Hence $\beta_{i}^{(k)}=0, i=0,1, \cdots, k-s$. But only in the special case s will be small. For instance,
(i) In classical CG method, A is s.p.d, P is taking by A^{-1}. Then $A^{T} P=A A^{-1}=I=$ $A^{-1} A=A^{-1} \theta_{1}(A)$, where $\theta_{1}(x)=x, s=1$. So, $\beta_{i}^{(k)}=0$, for all $i+1 \leq k$, it is only $\beta_{k}^{(k)} \neq 0$.
(ii) Concus, Golub and Widlund proposed GCG method, it solves $M^{-1} A x=M^{-1} b$. (A : unsymmetric), where $M=\left(A+A^{T}\right) / 2$ and $P=\left(A+A^{T}\right) / 2$ (P may be indefinite).

- Check condition (4.10.9):

$$
\left(M^{-1} A\right)^{T} P=A^{T} M^{-1} M=A^{T}=M\left(2 I-M^{-1} A\right)=P\left(2 I-M^{-1} A\right) .
$$

Then

$$
\theta_{s}\left(M^{-1} A\right)=2 I-M^{-1} A,
$$

where $\theta_{1}(x)=2-x, s=1$. Thus $\beta_{i}^{(k)}=0, i=0,1, \cdots, k-1$. Therefore we only use r_{k+1} and p_{k} to construct p_{k+1}.

- Check condition $A^{T} P+P A$:

$$
\left(M^{-1} A\right)^{T} M+M M^{-1} A=A^{T}+A \quad \text { indefinite }
$$

The method can possibly break down.
(iii) The other case $s=1$ is BCG (BiCG) (See next paragraph).

Remark 4.10.2 Except the above three cases, the degree s is usually very large. That is, we need to save all directions $p_{i}(i=0,1, \cdots, k)$ in order to construct p_{k+1} satisfying the conjugate orthogonalization condition (4.10.4c). In GCG method, each iteration step needs to save $2 k+5$ vectors $\left(x_{k+1}, r_{k+1}, p_{k+1},\left\{A p_{i}\right\}_{i=0}^{k},\left\{p_{i}\right\}_{i=0}^{k}\right), k+3$ inner products (Here k is the iteration number). Hence, if k is large, then the space of storage and the computation cost can become very large and can not be acceptable. So, GCG method, in general, has some practical difficulty. Such as GCR, GMRES (by SAAD) methods, they preserve the optimality $(p>0)$, but it is too expensive (s is very large).

Modification:

(i) Restarted: If GCG method does not converge after $m+1$ iterations, then we take x_{k+1} as x_{0} and restart GCG method. There are at most $2 m+5$ saving vectors.
(ii) Truncated: The most expensive step of GCG method is to compute $\beta_{i}^{(k)}, i=$ $0,1, \cdots, k$ so that p_{k+1} satisfies (4.10.4c). We now release the condition (4.10.4c) to require that p_{k+1} and the nearest m direction $\{p \mid i\}_{i=k-m+1}^{k}$ satisfy the conjugate orthogonalization condition.

4.10.2 BCG method (A: unsymmetric)

BCG method is similar to the CG method, it does not need to save the search direction. But the norm of the residual produced by BCG method does not preserve the minimal property.

Solve $A x=b$ by considering $A^{T} y=c$ (phantom). Let

$$
\tilde{A}=\left(\begin{array}{cc}
A & 0 \\
0 & A^{T}
\end{array}\right), \quad \tilde{x}=\binom{x}{y}, \quad \tilde{b}=\binom{b}{c} .
$$

Consider

$$
\tilde{A} \tilde{x}=\tilde{b}
$$

Take $P=\tilde{A}^{-T} Z\left(P=P^{T}\right)$ with $Z=\left(\begin{array}{cc}0 & I \\ I & 0\end{array}\right)$. This implies

$$
\tilde{A}^{T} Z=Z \tilde{A} \text { and } \tilde{A}^{T} P=P \tilde{A}
$$

From (4.10.9) we know that $s=1$ for $\tilde{A} \tilde{x}=\tilde{b}$. Hence it only needs to save one direction p_{k} as in the classical CG method.

Algorithm 4.10.2 (Apply GCG method to $\tilde{A} \tilde{x}=\tilde{b})$

$$
\begin{aligned}
& \text { Given } x_{0}=\binom{x_{0}}{\hat{x}_{0}}, \quad \tilde{p}_{0}=\tilde{r}_{0}=\tilde{b}-\tilde{A} \tilde{x}_{0}=\binom{r_{0}}{\hat{r}_{0}} . \\
& \text { for } k=0,1, \ldots{ }^{k}= \\
& \quad \alpha_{k}=\left(\tilde{r}_{k}, \tilde{A} \tilde{p}_{k}\right)_{o} /\left(\tilde{A} \tilde{p}_{k}, \tilde{A} \tilde{p}_{k}\right)_{o}, \\
& \tilde{x}_{k+1}=\tilde{x}_{k}+\alpha_{k} \tilde{p}_{k}, \\
& \quad \tilde{r}_{k+1}=\tilde{r}_{k}-\alpha_{k} \tilde{A} \tilde{p}_{k}, \quad \tilde{p}_{k+1}=\tilde{r}_{k+1}+\beta_{k} \tilde{p}_{k} \\
& \beta_{k}=-\left(\tilde{A} \tilde{r}_{k+1}, \tilde{A} \tilde{p}_{k}\right)_{o} /\left(\tilde{A} \tilde{p}_{k}, \tilde{A} \tilde{p}_{k}\right)_{o} \\
& \text { end for }
\end{aligned}
$$

Algorithm 4.10.3 (Simplification (BCG method))

$$
\begin{aligned}
& \text { Given } x_{0}, p_{0}=r_{0}=b-A x_{0} \\
& \text { Choose } \hat{r}_{0}, \hat{p}_{0}=\hat{r}_{0} \\
& \text { for } k=0,1, \ldots \\
& \qquad \alpha_{k}=\left(\hat{r}_{k}, r_{k}\right) /\left(\hat{p}_{k}, A p_{k}\right) \\
& \quad x_{k+1}=x_{k}+\alpha_{k} p_{k}, \\
& \quad r_{k+1}=r_{k}-\alpha_{k} A p_{k} \quad \hat{r}_{k+1}=\hat{r}_{k}-\alpha_{k} A^{T} \hat{p}_{k} \\
& \beta_{k}=\left(\hat{r}_{k+1}, r_{k+1}\right) /\left(\hat{r}_{k}, r_{k}\right) \\
& \quad p_{k+1}=r_{k+1}+\beta_{k} p_{k}, \quad \hat{p}_{k+1}=\hat{r}_{k+1}+\beta_{k} \hat{p}_{k} . \\
& \text { end for }
\end{aligned}
$$

From above we have $\left(\tilde{A} \tilde{p}_{k}, \tilde{A} \tilde{p}_{k}\right)_{o}=\left(A p_{k}, A^{T} p_{k}\right)\left(\begin{array}{cc}0 & A^{-T} \\ A^{-1} & 0\end{array}\right)\binom{A p_{k}}{A^{T} \hat{p}_{k}}=2\left(\hat{p}_{k}, A p_{k}\right)$.

BCG method satisfies the following relations:

$$
\begin{align*}
r_{k}^{T} \hat{p}_{i}=\hat{r}_{k}^{T} p_{i}=0, & i<k \tag{4.10.11a}\\
p_{k}^{T} A^{T} \hat{p}_{i}=\hat{p}_{k}^{T} A p_{i}=0, & i<k \tag{4.10.11b}\\
r_{k}^{T} \hat{r}_{i}=\hat{r}_{k}^{T} r_{i}=0, & i<k \tag{4.10.11c}
\end{align*}
$$

Definition 4.10 .1 (4.10.11c) and (4.10.11b) are called biorthogonality and biconjugacy condition, respectively.

Property 4.10.1 (i) In $B C G$ method, the residual of the linear equation does not satisfy the minimal property, because P is taken by

$$
P=\tilde{A}^{-T} Z=\left(\begin{array}{cc}
0 & A^{-T} \\
A^{-1} & 0
\end{array}\right)
$$

and P is symmetric, but not positive definite. The minimal value of the functional $f(x)$ may not exist.
(ii) $B C G$ method can break down, because $Z=\left(\tilde{A}^{T} P+P \tilde{A}\right) / 2$ is not positive definite. From above discussion, α_{k} can be zero. But this case occurs very few.

GCG	
GCR, GCR (k)	BCG
Orthomin (k)	CGS
Orthodir	BiCGSTAB
Orthores	QMR
GMRES (m)	TFQMR
FOM	
Axelsson LS	

4.11 CGS (Conjugate Gradient Squared), A fast Lanczostype solver for nonsymmetric linear systems

4.11.1 The polynomial equivalent method of the CG method

Consider first A is s.p.d. Then the CG method

```
\(r_{0}=b-A x_{0}=p_{0}\)
for \(i=0,1,2, \cdots\)
    \(a_{i}=\left(r_{i}, p_{i}\right) /\left(p_{i}, A p_{i}\right)=\left(r_{i}, r_{i}\right) /\left(p_{i}, A p_{i}\right)\)
    \(x_{i+1}=x_{i}+a_{i} p_{i}\)
    \(r_{i+1}=r_{i}-a_{i} A p_{i}\)
    \(p_{i+1}=r_{i+1}+b_{i} p_{i}\)
    \(b_{i}=-\left(r_{i+1}, A p_{i}\right) /\left(p_{i}, A p_{i}\right)=-\left(r_{i+1}, r_{i+1}\right) /\left(r_{i}, r_{i}\right)\)
```

$$
\begin{aligned}
& r_{0}=b-A x_{0}, p_{-1}=1, \rho_{-1}=-1 \\
& \text { for } n=0,1,2, \cdots \\
& \quad \rho_{n}=r_{n}^{T} r_{n}, \quad \beta_{n}=\rho_{n} / \rho_{n-1} \\
& p_{n}=r_{n}+\beta_{n} p_{n-1} \\
& \sigma_{n}=p_{n}^{T} A p_{n}, \quad \alpha_{n}=\rho_{n} / \sigma_{n} \\
& r_{n+1}=r_{n}-\alpha_{n} A p_{n} \\
& x_{n+1}=x_{n}+\alpha_{n} p_{n} \quad\left(r_{n}=b-A x_{n}\right)
\end{aligned}
$$

Remark 4.11.1 1. $E_{n}=r_{n}^{T} A^{-1} r_{n}=\min _{x \in x_{0}+K_{n}}\|b-A x\|_{A^{-1}}$
2. $r_{n}^{T} r_{m}=\rho_{n} \delta_{n m}, \quad p_{n}^{T} A p_{m}=\sigma_{n} \delta_{n m}$

From the structure of the new form of the CG method, we write

$$
r_{n}=\varphi_{n}(A) r_{0}, \quad p_{n}=\psi_{n}(A) r_{0}
$$

where φ_{n} and ψ_{n} are polynomial of degree $\leq n$. Define $\varphi_{0}(\tau) \equiv 1$ and $\varphi_{-1}(\tau) \equiv 0$. Then we find

$$
\begin{equation*}
p_{n}=\varphi_{n}(A) r_{0}+\beta_{n} \psi_{n-1}(A) r_{0} \equiv \psi_{n}(A) r_{0} \tag{4.11.12a}
\end{equation*}
$$

with

$$
\begin{equation*}
\psi_{n}(\tau) \equiv \varphi_{n}(\tau)+\beta_{n} \psi_{n-1}(\tau) \tag{4.11.12b}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{n+1}=\varphi_{n}(A) r_{0}-\alpha_{n} A \psi_{n}(A) r_{0} \equiv \varphi_{n+1}(A) r_{0} \tag{4.11.13a}
\end{equation*}
$$

with

$$
\begin{equation*}
\varphi_{n+1}(\tau) \equiv \varphi_{n}(\tau)-\alpha_{n} \tau \psi_{n}(\tau) \tag{4.11.13b}
\end{equation*}
$$

The CG method can be re-iterpreted as an algorithm for generating a system of (orthogonal) polynomials. Define the symmetric bilinear form (\cdot, \cdot) by

$$
(\varphi, \psi)=\left[\varphi(A) r_{0}\right]^{T} \psi(A) r_{0}
$$

We have $(\varphi, \varphi) \geq 0$. Since A is symmetric, we can write

$$
(\varphi, \psi)=r_{0}^{T} \varphi(A) \psi(A) r_{0}
$$

Furthermore, from the associate law of matrices

$$
(\varphi \theta, \psi)=(\varphi, \theta \psi)
$$

for any polynomial φ, θ, ψ. Here (\cdot, \cdot) is semidefinite, thus $(\varphi, \varphi)=0$ may occur!
The polynomial equivalent method of the CG method:

$$
\begin{aligned}
& \varphi_{0} \equiv 1, \varphi_{-1} \equiv 0, \rho_{-1}=1 \\
& \text { for } n=0,1,2, \cdots \\
& \quad \rho_{n}=\left(\varphi_{n}, \varphi_{n}\right), \beta_{n}=\rho_{n} / \rho_{n-1} \\
& \psi_{n}=\varphi_{n}+\beta_{n} \psi_{n-1} \\
& \sigma_{n}=\left(\psi_{n}, \theta \psi_{n}\right), \alpha_{n}=\rho_{n} / \sigma_{n} \\
& \varphi_{n+1}=\varphi_{n}-\alpha_{n} \theta \psi_{n} .
\end{aligned}
$$

where $\theta(\tau)=\tau$.
The minimization property reads

$$
E_{n}=\left(\varphi_{n}, \theta^{-1} \varphi_{n}\right)=\min _{\varphi \in P^{N}} \frac{\left(\varphi, \theta^{-1} \varphi\right)}{\varphi(0)^{2}} .
$$

We also have

$$
\begin{gathered}
\left(\varphi_{i}, \varphi_{j}\right)=0, \quad i \neq j \text { from }\left(r_{i}, r_{j}\right)=0, \quad i \neq j \\
\left(\psi_{i}, \theta \psi_{j}\right)=0, \quad i \neq j \text { from }\left(p_{i}, A p_{j}\right)=0, \quad i \neq j
\end{gathered}
$$

Theorem 4.11.1 Let $[\cdot, \cdot]$ be any symmetric bilinear form satisfying

$$
[\varphi \chi, \psi]=[\varphi, \chi \psi] \quad \forall \varphi, \psi, \chi \in P^{N}
$$

Let the sequence of φ_{n} and ψ_{n} be constructed according to PE algorithm, but using $[\cdot, \cdot]$ instead (\cdot, \cdot). Then as long as the algorithm does not break down by zero division, then φ_{n} and ψ_{n} satisfy

$$
\left[\varphi_{n}, \varphi_{m}\right]=\rho_{n} \delta_{n m}, \quad\left[\psi_{n}, \theta \psi_{m}\right]=\sigma_{n} \delta_{n m}
$$

with $\theta(\tau) \equiv \tau$.
Proof: By induction we prove the following statement:

$$
\begin{equation*}
\left[\psi_{n-1}, \theta \psi_{k}\right]=\sigma_{n-1} \delta_{n-1, k}, \quad\left[\varphi_{n}, \psi_{k}\right]=0 \tag{4.11.14}
\end{equation*}
$$

$\forall n \geq 0,-1 \leq k \leq n-1$ with $\sigma_{-1}=0$. If $n=0$, this is true since $\psi_{-1}(\tau) \equiv 0$. Suppose (4.11.14) holds for $n \leq m$ and let $k<m$. Then by PE algorithm, it holds

$$
\begin{equation*}
\left[\psi_{m}, \theta \psi_{k}\right]=\left[\varphi_{m}, \theta \psi_{k}\right]+\beta_{m}\left[\varphi_{m-1}, \theta \psi_{k}\right] . \tag{4.11.15}
\end{equation*}
$$

Substitute $\theta \psi_{k}=\left(\varphi_{k}-\varphi_{k+1}\right) / \alpha_{k}$ in the first term. The second term is zero for $k<m-1$, by hypothesis. Thus

$$
\left[\psi_{m}, \theta \psi_{k}\right]=\frac{\left[\varphi_{m}, \varphi_{k}\right]-\left[\varphi_{m}, \varphi_{m+1}\right]}{\alpha_{k}}+\beta_{m} \sigma_{m-1} \delta_{m-1, k}, \quad \forall k \leq m-1 .
$$

If $k<m-1$, then $\left[\psi_{m}, \theta \psi_{k}\right]=0$. For $k=m-1$ we have

$$
\left[\psi_{m}, \theta \psi_{m-1}\right]=-\rho_{m} / \alpha_{m-1}+\beta_{m} \sigma_{m-1}=0
$$

which proves first part of (4.11.14) for $n=m+1$.
Second Part: Write

$$
\left[\varphi_{m+1}, \psi_{k}\right]=\left[\varphi_{m}, \psi_{k}\right]-\alpha_{m}\left[\psi_{m}, \theta \psi_{k}\right], \quad \forall k \leq m .
$$

If $k \leq m-1$, then $\left[\varphi_{m+1}, \psi_{k}\right]=0$ by hypothesis. Using the algorithm and choosing $k=m$ we get

$$
\left[\varphi_{m+1}, \psi_{m}\right]=\left[\varphi_{m}, \varphi_{m}+\beta_{m} \psi_{m-1}\right]-\alpha_{m}\left[\psi_{m}, \theta \psi_{m}\right]=\rho_{m}-\alpha_{m} \sigma_{m}=0
$$

which proves the second part of (4.11.14).

4.11 CGS (Conjugate Gradient Squared), A fast Lanczos-type solver for nonsymmetric linear systems

it implies

$$
\left[\varphi_{n}, \varphi_{k}\right]=\left[\varphi_{n}, \psi_{k}\right]-\beta_{n}\left[\varphi_{n}, \psi_{k-1}\right]=0, \quad \forall k<n .
$$

Together with the first part of (4.11.14), we prove the theorem.
The theorem is valid as long as the algorithm does not break down. For this reason we shall use orthogonal polynomial for φ_{n} and ψ_{n}, whether or not the bilinear forms involved are inner products.

In the following, we want to generalize the CG Algorithm to the nonsymmetric case. Consider

$$
A x=b, \quad A: \text { nonsymmetric. }
$$

Given $x_{0}, r_{0}=b-A x_{0}$, let \tilde{r}_{0} be a suitably chosen vector. Define $[\cdot, \cdot]$ by

$$
[\varphi, \psi]=\tilde{r}_{0}^{T} \varphi(A) \psi(A) r_{0}=\left(\varphi\left(A^{T}\right) \tilde{r}_{0}\right)^{T} \psi(A) r_{0}
$$

and define $p_{-1}=\tilde{p}_{-1}=0$. (If A symmetric : $\left.(\varphi, \psi)=r_{0}^{T} \varphi(A) \psi(A) r_{0}\right)$. Then we have

$$
\begin{array}{ll}
r_{n}=\varphi_{n}(A) r_{0}, & \tilde{r}_{n}=\varphi_{n}\left(A^{T}\right) \tilde{r}_{0}, \\
p_{n}=\psi_{n}(A) r_{0}, & \tilde{p}_{n}=\psi_{n}\left(A^{T}\right) \tilde{r}_{0}
\end{array}
$$

with φ_{n} and ψ_{n} according to (4.11.12b) and (4.11.13b). Indeed, these vectors can be produced by the Bi-Conjugate Gradient algorithm:

Algorithm 4.11.1 (Bi-Conjugate Gradient algorithm)

Given $r_{0}=b-A x_{0}, p_{-1}=\tilde{p}_{-1}$ and \tilde{r}_{0} arbitrary
For $n=0,1, \cdots$

$$
\begin{aligned}
& \rho_{n}=\tilde{r}_{n}^{T} r_{n}, \quad \beta_{n}=\rho_{n} / \rho_{n-1} \\
& p_{n}=r_{n}+\beta_{n} p_{n-1}, \quad \tilde{p}_{n}=\tilde{r}_{n}+\beta_{n} \tilde{p}_{n-1} \\
& \sigma_{n}=\tilde{p}_{n}^{T} A p_{n}, \quad \alpha_{n}=\rho_{n} / \sigma_{n} \\
& r_{n+1}=r_{n}-\alpha_{n} A p_{n}, \quad \tilde{r}_{n+1}=\tilde{r}_{n}-\alpha_{n} A^{T} \tilde{p}_{n} \\
& x_{n+1}=x_{n}+\alpha_{n} p_{n} .
\end{aligned}
$$

Property 4.11.1 $r_{n}=b-A x_{n}, r_{k}^{T} \tilde{r}_{j}=0, j \neq k$ and $p_{k}^{T} A^{T} \tilde{p}_{j}=0, j \neq k$.

Remark 4.11.2 The Bi-Conjugate Gradient method is equivalent to the Lanczos biorthogonalization method.

$$
\begin{aligned}
K_{m} & =\operatorname{span}\left(V_{m}\right)=\operatorname{span}\left(r_{0}, A r_{0}, \cdots, A^{m-1} r_{0}\right)=\operatorname{span}\left(p_{0}, p_{1}, \cdots, p_{m-1}\right), \\
L_{m} & =\operatorname{span}\left(W_{m}\right)=\operatorname{span}\left(\tilde{r}_{0}, A^{T} \tilde{r}_{0}, \cdots,\left(A^{T}\right)^{m-1} \tilde{r}_{0}\right)=\operatorname{span}\left(\tilde{p}_{0}, \tilde{p}_{1}, \cdots, \tilde{p}_{m-1}\right) .
\end{aligned}
$$

Remark 4.11.3 In practice \tilde{r}_{0} is often chosen equal to r_{0}. Then, if A is not too far from being S.P.D., the bilinear expressions $[\cdot, \cdot]$ and $[\cdot, \theta \cdot]$ will be positive semi-definite, and the algorithm will converge in the same way, and by the same argument as does the ordinary CG algorithm in the SPD-case!

4.11.2 Squaring the CG algorithm: CGS Algorithm

Assume that Bi-CG is converging well. Then $r_{n} \rightarrow 0$ as $n \rightarrow \infty$. Because $r_{n}=\varphi_{n}(A) r_{0}$, $\varphi_{n}(A)$ behaves like contracting operators.

- Expect: $\varphi_{n}\left(A^{T}\right)$ behaves like contracting operators (i.e., $\tilde{r}_{n} \rightarrow 0$). But "quasi-residuals" \tilde{r}_{n} is not exploited, they need to be computed for the ρ_{n} and σ_{n}.
- Disadvantage: Work of Bi-CG is twice the work of CG and in general $A^{T} v$ is not easy to compute. Especially if A is stored with a general data structure.
- Improvement: Using Polynomial equivalent algorithm to CG.

Since $\rho_{n}=\left[\varphi_{n}, \varphi_{n}\right]$ and $\sigma_{n}=\left[\psi_{n}, \theta \psi_{n}\right],[\cdot, \cdot]$ has the property $[\varphi \chi, \psi]=[\varphi, \chi \psi]$. Let $\varphi_{0}=1$. Then

$$
\begin{gathered}
\rho_{n}=\left[\varphi_{0}, \varphi_{n}^{2}\right], \quad \sigma_{n}=\left[\varphi_{0}, \theta \psi_{n}^{2}\right] . \\
\left\{\begin{array}{l}
\varphi_{n+1}=\varphi_{n}-\alpha_{n} \theta \psi_{n}, \\
\psi_{n}=\varphi_{n}+\beta_{n} \psi_{n-1} .
\end{array}\right.
\end{gathered}
$$

- Purpose: (i) Find an algorithm that generates the polynomials φ_{n}^{2} and ψ_{n}^{2} rather than φ_{n} and ψ_{n}.
(ii) Compute the approximation solution x_{n} with $r_{n}=\varphi_{n}^{2}(A) r_{0}$ as residuals (try to interpret). Because $\rho_{n}=\tilde{r}_{0}^{T} r_{n}$ with $r_{n}=\varphi_{n}^{2}(A) r_{0}, \tilde{r}_{n}$ and \tilde{p}_{n} need not to be computed.
How to compute φ_{n}^{2} and ψ_{n}^{2} ?

$$
\begin{aligned}
\psi_{n}^{2} & =\left[\varphi_{n}+\beta_{n} \psi_{n-1}\right]^{2}=\varphi_{n}^{2}+2 \beta_{n} \varphi_{n} \psi_{n-1}+\beta_{n}^{2} \psi_{n-1}^{2}, \\
\varphi_{n+1}^{2} & =\left[\varphi_{n}-\alpha_{n} \theta \psi_{n}\right]^{2}=\varphi_{n}^{2}-2 \alpha_{n} \theta \varphi_{n} \psi_{n}+\alpha_{n}^{2} \theta^{2} \psi_{n}^{2} .
\end{aligned}
$$

Since

$$
\varphi_{n} \psi_{n}=\varphi_{n}\left[\varphi_{n}+\beta_{n} \psi_{n-1}\right]=\varphi_{n}^{2}+\beta_{n} \varphi_{n} \psi_{n-1}
$$

we only need to compute $\varphi_{n} \psi_{n-1}, \varphi_{n}^{2}$ and ψ_{n}^{2}. Now define for $n \geq 0$:

$$
\Phi_{n}=\varphi_{n}^{2}, \quad \Theta_{n}=\varphi_{n} \psi_{n-1}, \quad \Psi_{n-1}=\psi_{n-1}^{2}
$$

Algorithm 4.11.2 (CGS)

$$
\begin{aligned}
& \Phi_{0} \equiv 1 . \Theta_{0} \equiv \Psi_{-1} \equiv 0, \rho_{-1}=1 \\
& \text { for } n=0,1, \cdots \\
& \quad \rho_{n}=\left[1, \Phi_{n}\right], \quad \beta_{n}=\rho_{n} / \rho_{n-1} \\
& Y_{n}=\Phi_{n}+\beta_{n} \Theta_{n} \\
& \Psi_{n}=Y_{n}+\beta_{n}\left(\Theta_{n}+\beta_{n} \Psi_{n-1}\right) \\
& \sigma_{n}=\left[1, \theta \Psi_{n}\right], \quad \alpha_{n}=\rho_{n} / \sigma_{n}, \quad \Theta(\tau)=\tau, \\
& \Theta_{n+1}=Y_{n}-\alpha_{n} \theta \Psi_{n} \\
& \Phi_{n+1}=\Phi_{n}-\alpha_{n} \theta\left(Y_{n}+\Theta_{n+1}\right)
\end{aligned}
$$

4.12 Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems

$$
\begin{aligned}
& \text { Define } r_{n}=\Phi_{n}(A) r_{0}, q_{n}=\Theta_{n}(A) r_{0}, p_{n}=\Psi_{n}(A) r_{0}, \\
& r_{0}=b-A x_{0}, q_{0}=p_{-1}=0, \rho_{-1}=1 \\
& \text { for } n=0,1, \cdots \\
& \quad \rho_{n}=\tilde{r}_{0}^{T} r_{n}, \quad \beta_{n}=\rho_{n} / \rho_{n-1} \\
& u_{n}=r_{n}+\beta_{n} q_{n} \\
& p_{n}=u_{n}+\beta_{n}\left(q_{n}+\beta_{n} p_{n-1}\right) \\
& v_{n}=A p_{n} \\
& \sigma_{n}=\tilde{r}_{0}^{T} v_{n}, \quad \alpha_{n}=\rho_{n} / \sigma_{n} \\
& q_{n+1}=u_{n}-\alpha_{n} v_{n} \\
& r_{n+1}=r_{n}-\alpha_{n} A\left(u_{n}+q_{n+1}\right) \\
& x_{n+1}=x_{n}+\alpha_{n}\left(u_{n}+q_{n+1}\right) .
\end{aligned}
$$

Since $r_{0}=b-A x_{0}, r_{n+1}-r_{n}=A\left(x_{n}-x_{n+1}\right)$, we have that $r_{n}=b-A x_{n}$. So this algorithm produces x_{n} of which the residual satisfy

$$
r_{n}=\varphi_{n}^{2}(A) r_{0}
$$

Remark 4.11.4 Each step requires twice the amount of work necessary for symmetric $C G$. However the contracting effect of $\varphi_{n}(A)$ is used twice each step. The work is not more than for Bi-CG and working with A^{T} is avoided.

4.12 Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems

Algorithm 4.12.1 (Bi-CG method)
Given $x_{0}, r_{0}=b-A x_{0},\left(\tilde{r}_{0}, r_{0}\right) \neq 0, \rho_{0}=1, \tilde{p}_{0}=p_{0}=0$.
For $i=1,2,3, \cdots$
$\rho_{i}=\left(\tilde{r}_{i-1}, r_{i-1}\right)$
$\beta_{i}=\left(\rho_{i} / \rho_{i-1}\right)$
$p_{i}=r_{i-1}+\beta_{i} p_{i-1}$
$\tilde{p}_{i}=\tilde{r}_{i-1}+\beta_{i} \tilde{p}_{i-1}$
$v_{i}=A p_{i}$
$\alpha_{i}=\rho_{i} /\left(\tilde{p}_{i}, v_{i}\right)$
$x_{i}=x_{i-1}+\alpha_{i} p_{i}$
Stop here, if x_{i} is accurate enough.
$r_{i}=r_{i-1}-\alpha_{i} v_{i}=r_{i-1}-\alpha_{i} A p_{i}$
$\tilde{r}_{i}=\tilde{r}_{i-1}-\alpha_{i} A^{T} \tilde{p}_{i}$
end for
Property 4.12.1 (i) $r_{j} \perp \tilde{r}_{0}, \ldots, \tilde{r}_{j-1}$ and $\tilde{r}_{j} \perp r_{0}, \ldots, r_{j-1}$.
(ii) three-term recurrence relations between $\left\{r_{j}\right\}$ and $\left\{\tilde{r}_{j}\right\}$.
(iii) It terminates within n steps, but no minimal property.

Since $r_{j}^{B i-C G}=\varphi_{j}(A) r_{0}$ and $\tilde{r}_{j}^{B i-C G}=\varphi_{j}\left(A^{T}\right) \tilde{r}_{0}$, it implies that

$$
\left(r_{j}, \tilde{r}_{i}\right)=\left(\varphi_{j}(A) r_{0}, \varphi_{i}\left(A^{T}\right) \tilde{r}_{0}\right)=\left(\varphi_{i}(A) \varphi_{j}(A) r_{0}, \tilde{r}_{0}\right)=0, \quad i<j
$$

Algorithm 4.12.2 (CGS method)

```
For \(i=1,2,3, \cdots\)
    \(\rho_{i}=\left(\tilde{r}_{0}, r_{i-1}\right)\)
    \(\beta=\rho_{i} / \rho_{i-1}\)
    \(u=r_{i-1}+\beta q_{i-1}\)
    \(p_{i}=u+\beta\left(q_{i-1}+\beta p_{i-1}\right)\)
    \(v=A p_{i}\)
    \(\alpha=\rho_{i} /\left(\tilde{r}_{0}, v\right)\)
    \(q_{i}=u-\alpha v\)
    \(w=u+q_{i}\)
    \(x_{i}=x_{i-1}+\alpha w\)
    Stop here, if \(x_{i}\) is accurate enough.
    \(r_{i}=r_{i-1}-\alpha A w\)
end for
```

Given $x_{0}, r_{0}=b-A x_{0},\left(r_{0}, \tilde{r}_{0}\right) \neq 0, \tilde{r}_{0}=r_{0}, \rho_{0}=1, p_{0}=q_{0}=0$.

We have $r_{i}^{\text {CGS }}=\varphi_{i}(A)^{2} r_{0}$.
From Bi-CG method we have $r_{i}^{B i-C G}=\varphi_{i}(A) r_{0}$ and $p_{i+1}=\psi_{i}(A) r_{0}$. Thus we get

$$
\psi_{i}(A) r_{0}=\left(\varphi_{i}(A)+\beta_{i+1} \psi_{i-1}(A)\right) r_{0}
$$

and

$$
\varphi_{i}(A) r_{0}=\left(\varphi_{i-1}(A)-\alpha_{i} A \psi_{i-1}(A)\right) r_{0}
$$

where $\psi_{i}=\varphi_{i}+\beta_{i+1} \psi_{i-1}$ and $\varphi_{i}=\varphi_{i-1}-\alpha_{i} \theta \psi_{i-1}$. Since

$$
\left(\varphi_{i}(A) r_{0}, \varphi_{j}\left(A^{T}\right) \tilde{r}_{0}\right)=0, \quad j<i
$$

it holds that

$$
\varphi_{i}(A) r_{0} \perp \tilde{r}_{0}, A^{T} \tilde{r}_{0}, \ldots,\left(A^{T}\right)^{i-1} \tilde{r}_{0}
$$

if and only if

$$
\left(\tilde{\varphi}_{j}(A) \varphi_{i}(A) r_{0}, \tilde{r}_{0},\right)=0
$$

for some polynomial $\tilde{\varphi}_{j}$ of degree $j<i$ for $j=0,1, \cdots, i-1$. In Bi-CG method, we take $\tilde{\varphi}_{j}=\varphi_{j} \tilde{r}_{j}=\varphi_{j}\left(A^{T}\right) \tilde{r}_{0}$ and exploit it in CGS to get $r_{j}^{C G S}=\varphi_{j}^{2}(A) r_{0}$. Now $r_{i}=\tilde{\varphi}_{i}(A) \varphi_{i}(A) r_{0}$. How to choose $\tilde{\varphi}_{i}$ polynomial of degree i so that $\left\|r_{i}\right\|$ satisfies the minimum. Like polynomial, we can determine the optimal parameters of $\tilde{\varphi}_{i}$ so that $\left\|r_{i}\right\|$ satisfies the minimum. But the optimal parameters for the Chebychev polynomial are in general not easily obtainable. Now we take

$$
\tilde{\varphi}_{i} \equiv \eta_{i}(x)
$$

where

4.12 Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems $\left(1-\eta_{i}(x)=\left(1-\omega_{\omega_{1}} x\right)\right)$.

Here ω_{j} are suitable constants to be selected.
Define

$$
r_{j}=\eta_{j}(A) \varphi_{j}(A) r_{0}
$$

Then

$$
\begin{aligned}
r_{i}= & \eta_{i}(A) \varphi_{i}(A) r_{0} \\
= & \left(1-\omega_{i} A\right) \eta_{i-1}(A)\left(\varphi_{i-1}(A)-\alpha_{i} A \psi_{i-1}(A)\right) r_{0} \\
= & \left\{\left(\eta_{i-1}(A) \varphi_{i-1}(A)-\alpha_{i} A \eta_{i-1}(A) \psi_{i-1}(A)\right)\right\} r_{0} \\
& -\omega_{i} A\left\{\left(\eta_{i-1}(A) \varphi_{i-1}(A)-\alpha_{i} A \eta_{i-1}(A) \psi_{i-1}(A)\right)\right\} r_{0} \\
= & r_{i-1}-\alpha_{i} A p_{i}-\omega_{i} A\left(r_{i-1}-\alpha_{i} A p_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
p_{i+1}= & \eta_{i}(A) \psi_{i}(A) r_{0} \\
= & \eta_{i}(A)\left(\varphi_{i}(A)+\beta_{i+1} \psi_{i-1}(A)\right) r_{0} \\
= & \eta_{i}(A) \varphi_{i}(A) r_{0}+\beta_{i+1}\left(1-\omega_{i} A\right) \eta_{i-1}(A) \psi_{i-1}(A) r_{0} \\
= & \eta_{i}(A) \varphi_{i}(A) r_{0}+\beta_{i+1} \eta_{i-1}(A) \psi_{i-1}(A) r_{0} \\
& -\beta_{i+1} \omega_{i} A \eta_{i-1}(A) \psi_{i-1}(A) r_{0} \\
= & r_{i}+\beta_{i+1}\left(p_{i}-\omega_{i} A p_{i}\right) .
\end{aligned}
$$

Recover the constants ρ_{i}, β_{i}, and α_{i} in $\mathrm{Bi}-\mathrm{CG}$ method. We now compute β_{i} : Let

$$
\tilde{\rho}_{i+1}=\left(\tilde{r}_{0}, \eta_{i}(A) \varphi_{i}(A) r_{0}\right)=\left(\eta_{i}\left(A^{T}\right) \tilde{r}_{0}, \varphi_{i}(A) r_{0}\right) .
$$

From Bi-CG we have $\varphi_{i}(A) r_{0} \perp$ all vectors $\mu_{i-1}\left(A^{T}\right) \tilde{r}_{0}$, where μ_{i-1} is an arbitrary polynomial of degree $i-1$. Consider the highest order term of $\eta_{i}\left(A^{T}\right)$ (when computing $\tilde{\rho}_{i+1}$) is $(-1)^{i} \omega_{1} \omega_{2} \cdots \omega_{i}\left(A^{T}\right)^{i}$. From Bi-CG method, we also have

$$
\rho_{i+1}=\left(\varphi_{i}\left(A^{T}\right) \tilde{r}_{0}, \varphi_{i}(A) r_{0}\right) .
$$

The highest order term of $\varphi_{i}\left(A^{T}\right)$ is $(-1)^{i} \alpha_{1} \cdots \alpha_{i}\left(A^{T}\right)^{i}$. Thus

$$
\beta_{i}=\left(\tilde{\rho}_{i} / \tilde{\rho}_{i-1}\right)\left(\alpha_{i-1} / \omega_{i-1}\right),
$$

because

$$
\begin{aligned}
\beta_{i} & =\frac{\rho_{i}}{\rho_{i-1}}=\frac{\left(\alpha_{1} \cdots \alpha_{i-1}\left(A^{T}\right)^{i-1} \tilde{r}_{0}, \varphi_{i-1}(A) r_{0}\right)}{\left(\alpha_{1} \cdots \alpha_{i-2}\left(A^{T}\right)^{i-2} \tilde{r}_{0}, \varphi_{i-2}(A) r_{0}\right)} \\
& =\frac{\left(\frac{\alpha_{1} \cdots \alpha_{i-1}}{\omega_{1} \cdots \omega_{i-1}} \omega_{1} \cdots \omega_{i-1}\left(A^{T}\right)^{i-1} \tilde{r}_{0}, \varphi_{i-1}(A) r_{0}\right)}{\left(\frac{\alpha_{1} \cdots \alpha_{i-2}}{\omega_{1} \cdots \omega_{i-2}} \omega_{1} \cdots \omega_{i-2}\left(A^{T}\right)^{i-2} \tilde{r}_{0}, \varphi_{i-2}(A) r_{0}\right)} \\
& =\left(\tilde{\rho}_{i} / \tilde{\rho}_{i-1}\right)\left(\alpha_{i-1} / \omega_{i-1}\right) .
\end{aligned}
$$

Similarly, we can compute ρ_{i} and α_{i}. Let

$$
r_{i}=r_{i-1}-\gamma A y, \quad x_{i}=x_{i-1}+\gamma y \quad \text { (side product). }
$$

Compute ω_{i} so that $r_{i}=\eta_{i}(A) \varphi(A) r_{0}$ is minimized in 2-norm as a function of ω_{i}.

Given $x_{0}, r_{0}=b-A x_{0}, \tilde{r}_{0}$ arbitrary, such that $\left(\tilde{r}_{0}, r_{0}\right) \neq 0$, e.g. $\tilde{r}_{0}=r_{0}$, $\rho_{0}=\alpha=\omega_{0}=1, v_{0}=p_{0}=0$
For $i=1,2,3, \cdots$
$\rho_{i}=\left(\tilde{r}_{0}, r_{i-1}\right)$
$\beta=\left(\rho_{i} / \rho_{i-1}\right)\left(\alpha / \omega_{i-1}\right)$
$p_{i}=r_{i-1}+\beta\left(p_{i-1}-\omega_{i-1} v_{i-1}\right)$
$v_{i}=A p_{i}$
$\alpha=\rho_{i} /\left(\tilde{r}_{0}, v_{i}\right)$
$s=r_{i-1}-\alpha v_{i}$
$t=A s$
$\omega_{i}=(t, s) /(t, t)$
$x_{i}=x_{i-1}+\alpha p_{i}+\omega_{i} s \quad\left(=x_{i-1}+\alpha p_{i}+\omega_{i}\left(r_{i-1}-\alpha A p_{i}\right)\right)$
Stop here, if x_{i} is accurate enough.
$r_{i}=s-\omega_{i} t\left[=r_{i-1}-\alpha A p_{i}-\omega_{i} A\left(r_{i-1}-\alpha A p_{i}\right)=r_{i-1}-A\left(\alpha p_{i}+\omega_{i}\left(r_{i-1}-\alpha A p_{i}\right)\right]\right.$
end for

Preconditioned Bi-CGSTAB-P:
Rewrite $A x=b$ as

$$
\tilde{A} \tilde{x}=\tilde{b} \quad \text { with } \quad \tilde{A}=K_{1}^{-1} A K_{2}^{-1}
$$

where $x=K_{2}^{-1} \tilde{x}$ and $\tilde{b}=K_{1}^{-1} b$. Then

$$
\begin{aligned}
& \tilde{p}_{i} \Rightarrow K_{1}^{-1} p_{i}, \quad \tilde{v}_{i} \Rightarrow K_{1}^{-1} v_{i}, \quad \tilde{r}_{i} \Rightarrow K_{1}^{-1} r_{i}, \\
& \tilde{s} \Rightarrow K_{1}^{-1} s_{i}, \quad \tilde{t} \Rightarrow K_{1}^{-1} t_{i}, \quad \tilde{x} \Rightarrow K_{2} x_{i}, \\
& \tilde{r}_{0} \Rightarrow K_{1}^{T} \hat{r}_{0} .
\end{aligned}
$$

4.13 A Transpose-Free Qusi-minimal Residual Algorithm for Nonsymmetric Linear Systems

Given $x_{0}, r_{0}=b-A x_{0}$ and \tilde{r}_{0} arbitrary such that $\tilde{r}_{0}^{T} r_{0} \neq 0$, e.g. $\tilde{r}_{0}=r_{0}$. We know that

$$
w^{T}\left(b-A x_{n}^{B C G}\right)=0, \quad \forall w \in K_{n}\left(\tilde{r}_{0}, A^{T}\right), \quad x_{n}^{B C G} \in x_{0}+K_{n}\left(r_{0}, A\right) .
$$

The nth iterate, $x_{n}^{B C G}$, generated by Bi-CG is defined by Petrov-Galerkin method.

$$
\begin{aligned}
r_{n}^{B C G} & =\varphi_{n}(A) r_{0}, \quad \varphi_{n} \in P_{n}, \quad \varphi_{n}(0)=1 \\
r_{n}^{C G S} & =\left(\varphi_{n}(A)\right)^{2} r_{0}, \quad x_{n} \in x_{0}+K_{2 n}\left(r_{0}, A\right) \\
r_{n}^{B i C G S T A B} & =\eta_{n}(A) \varphi_{n}(A) r_{0}, \quad x_{n} \in x_{0}+K_{2 n}\left(r_{0}, A\right) .
\end{aligned}
$$

Choose $x_{0} \in \mathbb{R}^{N}$, set $p_{0}=u_{0}=r_{0}=b-A x_{0}, v_{0}=A p_{0}$,
Choose \tilde{r}_{0} such that $\rho_{0}=\tilde{r}^{T} r_{0} \neq 0$,
for $n=0,1,2, \cdots$

$$
\begin{aligned}
& \sigma_{n-1}=\tilde{r}_{0}^{T} v_{n-1}, \alpha_{n-1}=\rho_{n-1} / \sigma_{n-1}, \\
& q_{n}=u_{n-1}-\alpha_{n-1} v_{n-1}, \\
& x_{n}=x_{n-1}+\alpha_{n-1}\left(u_{n-1}+q_{n}\right), \\
& r_{n}=r_{n-1}-\alpha_{n-1} A\left(u_{n-1}+q_{n}\right), \\
& \text { If } x_{n} \text { converges, stop; } \\
& \rho_{n}=\tilde{r}_{0}^{T} r_{n}, \beta_{n}=\rho_{n} / \rho_{n-1}, \\
& u_{n}=r_{n}+\beta_{n} q_{n} \\
& p_{n}=u_{n}+\beta_{n}\left(q_{n}+\beta_{n} p_{n-1}\right), \\
& v_{n}=A p_{n} .
\end{aligned}
$$

end for
Note that

$$
\begin{equation*}
\alpha_{n-1} \neq 0 \text { for all } n, \tag{4.13.1}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n-1}=\varphi_{n-1}(A) \psi_{n-1}(A) r_{0}, \quad q_{n}=\varphi_{n}(A) \psi_{n-1}(A) r_{0} \tag{4.13.2}
\end{equation*}
$$

where φ_{n}, ψ_{n} are generated by

$$
\begin{equation*}
\psi_{n}(\tau)=\varphi_{n}(\tau)+\beta_{n} \psi_{n-1}(\tau), \quad \psi_{0} \equiv 1 \tag{4.13.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{n}(\tau)=\varphi_{n-1}(\tau)-\alpha_{n-1} \tau \psi_{n-1}(\tau) \tag{4.13.4}
\end{equation*}
$$

4.13.1 Quasi-Minimal Residual Approach

Set

$$
y_{m}= \begin{cases}u_{n-1}, & \text { if } m=2 n-1, \text { odd } \tag{4.13.5}\\ q_{n}, & \text { if } m=2 n, \text { even }\end{cases}
$$

and

$$
w_{m}= \begin{cases}\varphi_{n}^{2}(A) r_{0}, & \text { if } m=2 n+1, \text { odd } \tag{4.13.6}\\ \varphi_{n}(A) \varphi_{n-1}(A) r_{0}, & \text { if } m=2 n, \text { even }\end{cases}
$$

From $r_{n}^{C G S}=\varphi_{n}^{2}(A) r_{0}$ follows that $w_{2 n+1}=r_{n}^{C G S}$. Using (4.13.2) and (4.13.4) we get

$$
\psi_{n-1}(A)=A^{-1} \frac{1}{\alpha_{n-1}}\left(\varphi_{n-1}(A)-\varphi_{n}(A)\right) .
$$

Multiply above equation by $\varphi_{n}(A)$, then the vectors in (4.13.5) and (4.13.6) are related by

$$
\begin{equation*}
A y_{m}=\frac{1}{\alpha_{\lfloor(m-1) / 2\rfloor}}\left(w_{m}-w_{m+1}\right) . \tag{4.13.7}
\end{equation*}
$$

By (4.13.1), $\alpha_{\lfloor(m-1) / 2\rfloor}$ in $(4.13 .7) \neq 0$. Let

$$
Y_{m}=\left[y_{1}, y_{2}, \cdots, y_{m}\right], \quad W_{m+1}=\left[w_{1}, \cdots, w_{m}, w_{m+1}\right] .
$$

Then from (4.13.7) we get

$$
\begin{equation*}
A Y_{m}=W_{m+1} B_{m}^{(e)} \tag{4.13.8}
\end{equation*}
$$

where

$$
B_{m}^{(e)}=\left(\begin{array}{ccccc}
1 & & & & 0 \tag{4.13.9}\\
-1 & 1 & & & \\
& \ddots & \ddots & & \\
& & & -1 & 1 \\
0 & & & & -1
\end{array}\right) \operatorname{diag}\left(\alpha_{0}, \alpha_{0}, \alpha_{1}, \alpha_{1}, \cdots, \alpha_{\lfloor(m-1) / 2\rfloor}\right)^{-1}
$$

is an $(m+1) \times m$ lower bidiagonal matrix.
By (4.13.3), (4.13.4) and (4.13.1) we have that polynomials φ_{n} and ψ_{n} are of full degree n. With (4.13.2) and (4.13.5) it implies

$$
\begin{equation*}
K_{m}\left(r_{0}, A\right)=\operatorname{span}\left\{y_{1}, y_{2}, \cdots, y_{m}\right\}=\left\{Y_{m} z \mid z \in \mathbb{R}^{m}\right\} . \tag{4.13.10}
\end{equation*}
$$

But any possible iterate x_{m} must lie in $x_{0}+K_{m}\left(r_{0}, A\right)$. Thus

$$
\begin{equation*}
x_{m}=x_{0}+Y_{m} z \quad \text { for some } z \in \mathbb{R}^{m} . \tag{4.13.11}
\end{equation*}
$$

From (4.13.8) and $w_{1}=r_{0}$ (see $w_{2 n+1}=r_{n}^{C G S}$) follows that the residual satisfies

$$
\begin{equation*}
r_{m}=r_{0}-A Y_{m} z=W_{m+1}\left(e_{1}^{(m+1)}-B_{m}^{(e)} z\right) . \tag{4.13.12}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Omega_{m+1}=\operatorname{diag}\left(w_{1}, w_{2}, \cdots, w_{m+1}\right), \quad w_{k}>0 \tag{4.13.13}
\end{equation*}
$$

be any scaling matrix, rewrite (4.13.12) as

$$
\begin{equation*}
r_{m}=W_{m+1} \Omega_{m+1}^{-1}\left(f_{m+1}-H_{m}^{(e)} z\right), \tag{4.13.14}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{m+1}=\omega_{1} e_{1}^{(m+1)}, \quad H_{m}^{(e)}=\Omega_{m+1} B_{m}^{(e)} . \tag{4.13.15}
\end{equation*}
$$

We now define the m-th iterate, x_{m}, of the transpose-free quasi-minimal residual method (TFQMR) by

$$
\begin{equation*}
x_{m}=x_{0}+Y_{m} z_{m}, \tag{4.13.16}
\end{equation*}
$$

where z_{m} is the solution of the least squares problem

$$
\begin{equation*}
\tau_{m}:=\left\|f_{m+1}-H_{m}^{(e)} z_{m}\right\|_{2}=\min _{z \in \mathbb{R}^{m}}\left\|f_{m+1}-H_{m}^{(e)} z\right\|_{2} \tag{4.13.17}
\end{equation*}
$$

By (4.13.9), (4.13.13) and (4.13.15) it implies that $H_{m}^{(e)}$ has full column rank m. Then z_{m} is uniquely defined by (4.13.17). In general, we set

$$
w_{k}=\left\|w_{k}\right\|_{2}, \quad k=1, \cdots, m+1 .
$$

This implies that all columns of $W_{m+1} \Omega_{m+1}^{-1}$ are unit vectors.

4.13 A Transpose-Free Qusi-minimal Residual Algorithm for Nonsymmetric

 Linear Systems ${ }^{\text {Derivation of actual implementation of TFQMR }}$Consider

$$
\begin{equation*}
\tilde{x}_{m}=x_{0}+Y_{m} \tilde{z}_{m}, \quad \tilde{z}_{m}=H_{m}^{-1} f_{m}, \tag{4.13.18}
\end{equation*}
$$

where

$$
H_{m}^{(e)}=\left[\begin{array}{c}
H_{m} \\
* \cdots *
\end{array}\right] \text { and } f_{m+1}=\left[\begin{array}{c}
f_{m} \\
*
\end{array}\right] .
$$

By (4.13.9), (4.13.13) and (4.13.15) follows H_{m} nonsingular, thus

$$
\begin{equation*}
\tilde{z}_{m}=\left[\alpha_{0}, \alpha_{0}, \alpha_{1}, \cdots, \alpha_{\lfloor(m-1) / 2\rfloor}\right]^{T} \tag{4.13.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{m+1}=\left\|f_{m+1}-H_{m}^{(e)} \tilde{z}_{m}\right\|_{2} \tag{4.13.20}
\end{equation*}
$$

Comparing (4.13.18) and (4.13.19) with update formula for iterate $x_{n}^{C G S}$ in CGS Algorithm we get

$$
\begin{equation*}
\tilde{x}_{2 n}=x_{n}^{C G S} . \tag{4.13.21}
\end{equation*}
$$

Lemma 4.13.1 Let $w_{1}>0, m \geq 1$ and

$$
H_{m}^{(e)}=\left(\begin{array}{cc}
H_{m} & \tag{4.13.22}\\
h_{m+1, m} & e_{m}^{T}
\end{array}\right)=\left(\begin{array}{cc}
H_{m-1}^{(e)} & * \\
0 & h_{m+1, m}
\end{array}\right)
$$

be an $(m+1) \times m$ upper Hessenberg matrix of full column rank m. For $k=m-1, m$, let $z_{k} \in \mathbb{R}^{k}$ denote the solution of the least-square problem

$$
\begin{equation*}
\tau_{k}:=\min _{z \in \mathbb{R}^{k}}\left\|f_{k+1}-H_{k}^{(e)} z\right\|_{2}, \quad f_{k+1}=w_{1} e_{1}^{k+1} \in \mathbb{R}^{k+1} \tag{4.13.23}
\end{equation*}
$$

Moreover, assume that H_{m} in (4.13.22) is nonsingular. Set $\tilde{z}_{m}:=H_{m}^{-1} f_{m}$. Then

$$
\begin{align*}
& z_{m}=\left(1-c_{m}^{2}\right)\binom{z_{m-1}}{0}+c_{m}^{2} \tilde{z}_{m}^{2}, \tag{4.13.24}\\
& \tau_{m}=\tau_{m-1} \theta_{m} c_{m}, \tag{4.13.25}
\end{align*}
$$

where

$$
\begin{equation*}
\theta_{m}=\frac{1}{\tau_{m-1}}\left\|f_{m+1}-H_{m}^{(e)} \tilde{z}_{m}\right\|_{2}, \quad c_{m}=\frac{1}{\sqrt{1+\theta_{m}^{2}}} \tag{4.13.26}
\end{equation*}
$$

4.13.3 TFQMR Algorithm

From (4.13.24), (4.13.11) and (4.13.18) are connected by

$$
\begin{equation*}
x_{m}=\left(1-c_{m}^{2}\right) x_{m-1}+c_{m}^{2} \tilde{x}_{m} . \tag{4.13.27}
\end{equation*}
$$

By (4.13.25), (4.13.26) and (4.13.20) follows that

$$
\begin{equation*}
\theta_{m}=\frac{w_{m+1}}{\tau_{m-1}}, \quad c_{m}=\frac{1}{\sqrt{1+\theta_{m}^{2}}} \quad \text { and } \quad \tau_{m}=\tau_{m-1} \theta_{m} c_{m} \tag{4.13.28}
\end{equation*}
$$

Setting

$$
\begin{equation*}
d_{m}=\frac{1}{\alpha_{\lfloor(m-1) / 2\rfloor}}\left(\tilde{x}_{m}-x_{m-1}\right) . \tag{4.13.29}
\end{equation*}
$$

Rewrite (4.13.27) and get

$$
\begin{equation*}
x_{m}=x_{m-1}+\eta_{m} d_{m}, \tag{4.13.30}
\end{equation*}
$$

where $\eta_{m}=c_{m}^{2} \alpha_{\lfloor(m-1) / 2\rfloor}$. By (4.13.18) and (4.13.19) we get

$$
\tilde{x}_{m}=x_{0}+Y_{m} \tilde{z}_{m}, \quad \tilde{z}_{m}=\left[\alpha_{0}, \alpha_{1}, \cdots, \alpha_{\lfloor(m-1) / 2\rfloor}\right]^{T},
$$

and thus

$$
\tilde{x}_{m}=\tilde{x}_{m-1}+\alpha_{\lfloor(m-1) / 2\rfloor} y_{m} .
$$

Together with (4.13.29) and (4.13.30) (m replaced by $m-1$) we have

$$
\begin{equation*}
d_{m}=y_{m}+\frac{\theta_{m-1}^{2} \eta_{m-1}}{\alpha_{\lfloor(m-1) / 2\rfloor}} d_{m-1} \tag{4.13.31}
\end{equation*}
$$

where $\theta_{m-1}^{2}:=\frac{1-c_{m}^{2}}{c_{m-1}^{2}}$.

Remark 4.13.1

$$
\begin{aligned}
d_{m} & =\frac{1}{\alpha}\left(\tilde{x}_{m-1}+\alpha y_{m}-x_{m-1}\right)=y_{m}+\frac{1}{\alpha}\left[\tilde{x}_{m-1}-x_{m-1}\right] \\
& =y_{m}+\frac{1}{\alpha}\left(\tilde{x}_{m-1}-x_{m-2}-\eta_{m-1} d_{m-1}\right) \\
& =y_{m}+\frac{1}{\alpha}\left(\tilde{\alpha} d_{m-1}-\eta_{m-1} d_{m-1}\right)=y_{m}+\frac{1}{\alpha}\left(\tilde{\alpha}-\eta_{m-1}\right) d_{m-1} \\
& =y_{m}+\frac{1}{\alpha}\left(\frac{\eta_{m-1}}{c_{m-1}^{2}}-\eta_{m-1}\right) d_{m-1}=y_{m}+\frac{1}{\alpha}\left(\eta_{m-1}\left(\frac{1-c_{m-1}^{2}}{c_{m-1}^{2}}\right)\right) d_{m-1}
\end{aligned}
$$

From (4.13.5) and (4.13.6), q_{n} and u_{n} in CGS Algorithm follows

$$
\begin{equation*}
y_{2 n}=y_{2 n-1}-\alpha_{n-1} v_{n-1}, \quad y_{2 n+1}=w_{2 n+1}+\beta_{n} v_{2 n} \tag{4.13.32}
\end{equation*}
$$

Multiplying the update formula for p_{n} in CGS Algorithm by A we get

$$
\begin{equation*}
v_{n}=A y_{2 n+1}+\beta_{n}\left(A y_{2 n}+\beta_{n} v_{n-1}\right), \text { for } v_{n}=A p_{n} \tag{4.13.33}
\end{equation*}
$$

By (4.13.7) w_{m} 's can be generated by

$$
\begin{equation*}
w_{m+1}=w_{m}-\alpha_{\lfloor(m-1) / 2\rfloor} A y_{m} . \tag{4.13.34}
\end{equation*}
$$

Combining (4.13.28), (4.13.30)-(4.13.34) we get the TFQMR Algorithm in standard weighting strategy $\omega_{k}=\left\|w_{k}\right\|_{2}$.

Choose $x_{0} \in \mathbb{R}^{N}$.
Set $w_{1}=y_{1}=r_{0}=b-A x_{0}, v_{0}=A y_{1}, d_{0}=0, \tau_{0}=\left\|r_{0}\right\|_{2}, \theta_{0}=0, \eta_{0}=0$;
Choose \tilde{r}_{0} such that $\rho_{0}=\tilde{r}^{T} r_{0} \neq 0$,
For $n=0,1,2, \cdots$ do
set $\sigma_{n-1}={\tilde{r_{0}}}^{T} v_{n-1}, \quad \alpha_{n-1}=\rho_{n-1} / \sigma_{n-1}, y_{2 n}=y_{2 n-1}-\alpha_{n-1} v_{n-1}$,
For $m=2 n-1,2 n$ do
set $w_{m+1}=w_{m}-\alpha_{n-1} A y_{m}$,
$\theta_{m}=\left\|w_{m+1}\right\|_{2} / \tau_{m-1}, c_{m}=1 / \sqrt{1+\theta_{m}^{2}}$,
$\tau_{m}=\tau_{m-1} \theta_{m} c_{m}, \quad \eta_{m}=c_{m}^{2} \alpha_{n-1}$,
$d_{m}=y_{m}+\left(\theta_{m-1}^{2} \eta_{m-1} / \alpha_{n-1}\right) d_{m-1}$,
$x_{m}=x_{m-1}+\eta_{m} d_{m}$,
If x_{m} converges, stop;
End for
set $\rho_{n}=\tilde{r}_{0}^{T} w_{2 n+1}, \beta_{n}=\rho_{n} / \rho_{n-1}$,
$y_{2 n+1}=w_{2 n+1}+\beta_{n} y_{c} 2 n$,
$v_{n}=A y_{2 n+1}+\beta_{n}\left(A y_{2 n}+\beta_{n} v_{n-1}\right)$.
End for

4.14 GMRES: Generalized Minimal Residual Algorithm for solving Nonsymmetric Linear Systems

Algorithm 4.14.1 (GCR)

```
Input: Given \(x_{0}\), compute \(p_{0}=r_{0}=b-A x_{0}\);
Output: solution of linear system \(A x=b\).
    Iterate \(i=0,1,2, \cdots\),
        compute \(\alpha_{i}=\left(r_{i}, A p_{i}\right) /\left(A p_{i}, A p_{i}\right)\),
            \(x_{i+1}=x_{i}+\alpha_{i} p_{i}\),
            \(r_{i+1}=r_{i}-\alpha_{i} A p_{i} \equiv b-A x_{i}\),
            \(p_{i+1}=r_{i+1}+\sum_{j=0}^{i} \beta_{j}^{(i)} p_{j}\),
        \(\beta_{j}^{(i)}\) are chosen so that \(\left(A p_{i+1}, A p_{j}\right)=0\), for \(0 \leq j \leq i\).
    End:
```

It requires that $\frac{1}{2}\left(A^{T}+A\right)$ is symmetric positive definite.
Example 4.14.1 Let

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Take $x_{0}=0$. Then we obtain the following results:

- For $i=0$ in Algorithm 4.14.1, we have that $\alpha_{0}=0$ which implies that $x_{1}=x_{0}$ and $r_{1}=r_{0}$. Thus $p_{1}=0$.
- For $i=1$ in Algorithm 4.14.1, we see that a division by zero when computing α_{1} and break down.
(a) CANNOT break down, unless it has already converged.
(b) $1 / 2$ storage required than GCR,
(c) $1 / 3$ fewer arithmetic operations than GCR

Main goal: Find orthogonal basis for $K_{k}=\left\{r_{0}, A r_{0}, \cdots, A^{k-1} r_{0}\right\}$, i.e., $\operatorname{span}\left(K_{k}\right)=<$ $v_{1}, \cdots, v_{k}>$, where $v_{i} \perp v_{j}$ for $i \neq j$.

Theorem 4.14.1 (Implicit \mathbf{Q} theorem) Let $A Q_{1}=Q_{1} H_{1}$ and $A Q_{2}=Q_{2} H_{2}$, where H_{1}, H_{2} are Hessenberg and Q_{1}, Q_{2} are unitary with $Q_{1} e_{1}=Q_{2} e_{1}=q_{1}$. Then $Q_{1}=Q_{2}$ and $H_{1}=H_{2}$.

Proof: Let

$$
A\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]\left[\begin{array}{ccccc}
h_{11} & h_{12} & \cdots & \cdots & h_{1 n} \tag{4.14.1}\\
h_{21} & h_{22} & \ddots & & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & h_{n-1, n} \\
0 & \cdots & 0 & h_{n, n-1} & h_{n n}
\end{array}\right]
$$

Then we have

$$
\begin{equation*}
A q_{1}=h_{11} q_{1}+h_{21} q_{2} \tag{4.14.2}
\end{equation*}
$$

Since $q_{1} \perp q_{2}$, it implies that

$$
h_{11}=q_{1}^{*} A q_{1} / q_{1}^{*} q_{1} .
$$

From (4.14.2), we get that

$$
\tilde{q_{2}} \equiv h_{21} q_{2}=A q_{1}-h_{11} q_{1}
$$

That is

$$
q_{2}=\tilde{q_{2}} /\left\|\tilde{q_{2}}\right\|_{2} \quad \text { and } \quad h_{21}=\left\|\tilde{q_{2}}\right\|_{2}
$$

Similarly, from (4.14.1),

$$
A q_{2}=h_{12} q_{1}+h_{22} q_{2}+h_{32} q_{3}
$$

where

$$
h_{12}=q_{1}^{*} A q_{2} \quad \text { and } \quad h_{22}=q_{2}^{*} A q_{2}
$$

Let

$$
\tilde{q_{3}}=A q_{2}-h_{12} q_{1}+h_{22} q_{2}
$$

$$
q_{3}=\tilde{q_{3}} /\left\|\tilde{q}_{3}\right\|_{2} \quad \text { and } \quad h_{32}=\left\|\tilde{q_{3}}\right\|,
$$

and so on. Therefore, $\left[q_{1}, \cdots, q_{n}\right]$ are uniquely determined by q_{1}. Thus, uniqueness holds.
Let $K_{n}=\left[v_{1}, A v_{1}, \cdots, A^{n-1} v_{1}\right]$ with $\left\|v_{1}\right\|_{2}=1$ is nonsingular. $K_{n}=U_{n} R_{n}$ and $U_{n} e_{1}=v_{1}$. Then

$$
A K_{n}=K_{n} C_{n}=\left[v_{1}, A v_{1}, \cdots, A^{n-1} v_{1}\right]\left[\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & * \tag{4.14.3}\\
1 & \ddots & & \vdots & * \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & 0 & 1 & *
\end{array}\right] .
$$

Since K_{n} is nonsingular, (4.14.3) implies that

$$
A=K_{n} C_{n} K_{n}^{-1}=\left(U_{n} R_{n}\right) C_{n}\left(R_{n}^{-1} U_{n}^{-1}\right)
$$

That is

$$
A U_{n}=U_{n}\left(R_{n} C_{n} R_{n}^{-1}\right),
$$

where $\left(R_{n} C_{n} R_{n}^{-1}\right)$ is Hessenberg and $U_{n} e_{1}=v_{1}$. Because $<U_{n}>=<K_{n}>$, find $A V_{n}=$ $V_{n} H_{n}$ by any method with $V_{n} e_{1}=v_{1}$, then it holds that $V_{n}=U_{n}$, i.e., $v_{n}^{(i)}=u_{n}^{(i)}$ for $i=1, \cdots, n$.

Algorithm 4.14.2 (Arnoldi algorithm)

```
Input: Given \(v_{1}\) with \(\left\|v_{1}\right\|_{2}=1\);
Output: Arnoldi factorization: \(A V_{k}=V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{T}\).
    Iterate \(j=1,2, \cdots\),
            compute \(h_{i j}=\left(A v_{j}, v_{i}\right)\) for \(i=1,2, \cdots, j\),
            \(\tilde{v}_{j+1}=A v_{j}-\sum_{i=1}^{j} h_{i j} v_{i}\),
            \(h_{j+1, j}=\left\|\tilde{v}_{j+1}\right\|_{2}\),
            \(v_{j+1}=\tilde{v}_{j+1} / h_{j+1, j}\).
    End;
```

Remark 4.14.1 (a) Let $V_{k}=\left[v_{1}, \cdots, v_{k}\right] \in \mathbb{R}^{n \times k}$ where v_{j}, for $j=1, \ldots, k$, is generated by Arnoldi algorithm. Then $H_{k} \equiv V_{k}^{T} A V_{k}$ is upper $k \times k$ Hessenberg.
(b) Arnoldi's original method was a Galerkin method for approximate the eigenvalue of A by H_{k}.

In order to solve $A x=b$ by the Galerkin method using $<K_{k}>\equiv<V_{k}>$, we seek an approximate solution $x_{k}=x_{0}+z_{k}$ with $z_{k} \in K_{k}=<r_{0}, A r_{0}, \cdots, A^{k-1} r_{0}>$ and $r_{0}=b-A x_{0}$.

Definition 4.14.1 $\left\{x_{k}\right\}$ is said to be satisfied the Galerkin condition if $r_{k} \equiv b-A x_{k}$ is orthogonal to K_{k} for each k.

The Galerkin method can be stated as that find

$$
\begin{equation*}
x_{k}=x_{0}+z_{k} \quad \text { with } \quad z_{k} \in V_{k} \tag{4.14.4}
\end{equation*}
$$

such that

$$
\left(b-A x_{k}, v\right)=0, \quad \forall v \in V_{k},
$$

which is equivalent to find

$$
\begin{equation*}
z_{k} \equiv V_{k} y_{k} \in V_{k} \tag{4.14.5}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left(r_{0}-A z_{k}, v\right)=0, \quad \forall v \in V_{k} . \tag{4.14.6}
\end{equation*}
$$

Substituting (4.14.5) into (4.14.6), we get

$$
V_{k}^{T}\left(r_{0}-A V_{k} y_{k}\right)=0,
$$

which implies that

$$
\begin{equation*}
y_{k}=\left(V_{k}^{T} A V_{k}\right)^{-1}\left\|r_{0}\right\| e_{1} . \tag{4.14.7}
\end{equation*}
$$

Since V_{k} is computed by the Arnoldi algorithm with $v_{1}=r_{0} /\left\|r_{0}\right\|, y_{k}$ in (4.14.7) can be represented as

$$
y_{k}=H_{k}^{-1}\left\|r_{0}\right\| e_{1} .
$$

Substituting it into (4.14.5) and (4.14.4), we get

$$
x_{k}=x_{0}+V_{k} H_{k}^{-1}\left\|r_{0}\right\| e_{1} .
$$

Using the result that $A V_{k}=V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{T}, r_{k}$ can be reformulated as

$$
\begin{aligned}
r_{k} & =b-A x_{k}=r_{0}-A V_{k} y_{k}=r_{0}-\left(V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{T}\right) y_{k} \\
& =r_{0}-V_{k}\left\|r_{0}\right\| e_{1}-h_{k+1, k} e_{k}^{T} y_{k} v_{k+1}=-\left(h_{k+1, k} e_{k}^{T} y_{k}\right) v_{k+1} .
\end{aligned}
$$

Algorithm 4.14.3 (FOM algorithm: Full orthogonalization method)
Input: choose x_{0}, compute $r_{0}=b-A x_{0}$ and $v_{1}=r_{0} /\left\|r_{0}\right\|$; Output: solution of linear system $A x=b$.

Iterate $j=1,2, \cdots, k$,
compute $h_{i j}=\left(A v_{j}, v_{i}\right)$ for $i=1,2, \cdots, j$,
$\tilde{v}_{j+1}=A v_{j}-\sum_{i=1}^{j} h_{i j} v_{i}$,
$h_{j+1, j}=\left\|\tilde{v}_{j+1}\right\|_{2}$,
$v_{j+1}=\tilde{v}_{j+1} / h_{j+1, j}$.
End;
Form the solution:
$x_{k}=x_{0}+V_{k} y_{k}$, where $y_{k}=\left\|r_{0}\right\| H_{k}^{-1} e_{1}$.

4.14 GMRES: Generalized Minimal Residual Algorithm for solving

 Nonsymmetric Linear Systems accurate. Fortunately, it is simple to determine a posteriori when k is sufficiently large without having to explicitly compute x_{k}. Furthermore, we have

$$
\left\|b-A x_{k}\right\|=h_{k+1, k}\left|e_{k}^{\mathrm{T}} y_{k}\right|
$$

Property 4.14.1 (FOM) (a) $r_{k} / / v_{k+1} \Rightarrow r_{i} \perp r_{j}, \quad i \neq j$
(b) FOM does NOT break down \Longleftrightarrow If the degree of the minimal polynomial of v_{1} is at least k, and the matrix H_{k} is nonsingular.
(c) The process terminates at most N steps.

A difficulty with the full orthogonalization method is that it becomes increasingly expensive when k increases. There are two distinct ways of avoiding this difficulty.
(i) restart the algorithm every m steps
(ii) v_{i+1} are only orthogonal to the previous ℓ vectors. H_{k} is then banded, then we have incomplete $\mathrm{FOM}(\ell)$.

A drawback of these truncation techniques is the lack of any theory concerning the global convergence of these truncation technique. Such a theory is difficult because there is NO optimality property similar to that of CG method. Therefore, we consider GMRES which satisfies an optimality property.

4.14.2 The generalized minimal residual (GMRES) algorithm

The approximate solution of the form $x_{0}+z_{k}$, which minimizes the residual norm over $z_{k} \in K_{k}$, can in principle be obtained by following algorithms:

- The ORTHODIR algorithm of Jea and Young;
- the generalized conjugate residual method (GCR);
- GMRES.

Let

$$
V_{k}=\left[v_{1}, \cdots, v_{k}\right], \quad \tilde{H}_{k}=\left[\begin{array}{cccc}
h_{1,1} & h_{1,2} & \cdots & h_{1, k} \\
h_{2,1} & h_{2,2} & \cdots & h_{2, k} \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & h_{k, k-1} & h_{k, k} \\
0 & \cdots & 0 & h_{k+1, k}
\end{array}\right] \in \mathbb{R}^{(k+1) \times k} .
$$

By Arnoldi algorithm, we have

$$
\begin{equation*}
A V_{k}=V_{k+1} \tilde{H}_{k} . \tag{4.14.8}
\end{equation*}
$$

To solve the least square problem:

$$
\begin{equation*}
\min _{z \in K_{k}}\left\|r_{o}-A z\right\|_{2}=\min _{z \in K_{k}}\left\|b-A\left(x_{o}+z\right)\right\|_{2}, \tag{4.14.9}
\end{equation*}
$$

where $K_{k}=<r_{o}, A r_{o}, \cdots, A^{k-1} r_{o}>=<v_{1}, \cdots, v_{k}>$ with $v_{1}=\frac{r_{o}}{\left\|r_{o}\right\|_{2}}$. Set $z=V_{k} y$, the least square problem (4.14.9) is equivalent to

$$
\begin{equation*}
\min _{y \in \mathbb{R}^{k}} J(y)=\min _{y \in \mathbb{R}^{k}}\left\|\beta v_{1}-A V_{k} y\right\| 2, \quad \beta=\left\|r_{o}\right\|_{2} . \tag{4.14.10}
\end{equation*}
$$

Using (4.14.8), we have

$$
\begin{equation*}
J(y)=\left\|V_{k+1}\left[\beta e_{1}-\tilde{H}_{k} y\right]\right\|_{2}=\left\|\beta e_{1}-\tilde{H}_{k} y\right\|_{2} . \tag{4.14.11}
\end{equation*}
$$

Hence, the solution of the least square (4.14.9) is

$$
x_{k}=x_{o}+V_{k} y_{k},
$$

where y_{k} minimize the function $J(y)$ defined by (4.14.11) over $y \in \mathbb{R}^{k}$.

Algorithm 4.14.4 (GMRES algorithm)

Input: choose x_{0}, compute $r_{0}=b-A x_{0}$ and $v_{1}=r_{0} /\left\|r_{0}\right\|$;
Output: solution of linear system $A x=b$.
Iterate $j=1,2, \cdots, k$,
compute $h_{i j}=\left(A v_{j}, v_{i}\right)$ for $i=1,2, \cdots, j$,
$\tilde{v}_{j+1}=A v_{j}-\sum_{i=1}^{j} h_{i j} v_{i}$,
$h_{j+1, j}=\left\|\tilde{v}_{j+1}\right\|_{2}$,
$v_{j+1}=\tilde{v}_{j+1} / h_{j+1, j}$.
End;
Form the solution:
$x_{k}=x_{0}+V_{k} y_{k}$, where y_{k} minimizes $J(y)$ in (4.14.11).
Difficulties: when k is increasing, storage for v_{j}, like k, the number of multiplications is like $\frac{1}{2} k^{2} N$.

Algorithm 4.14.5 (GMRES(m) algorithm)
Input: choose x_{0}, compute $r_{0}=b-A x_{0}$ and $v_{1}=r_{0} /\left\|r_{0}\right\|$;
Output: solution of linear system $A x=b$.
Iterate $j=1,2, \cdots, m$,
compute $h_{i j}=\left(A v_{j}, v_{i}\right)$ for $i=1,2, \cdots, j$,

$$
\begin{aligned}
& \tilde{v}_{j+1}=A v_{j}-\sum_{i=1}^{j} h_{i j} v_{i}, \\
& h_{j+1, j}=\left\|\tilde{v}_{j+1}\right\|_{2}, \\
& v_{j+1}=\tilde{v}_{j+1} / h_{j+1, j} .
\end{aligned}
$$

End;
Form the solution:

$$
x_{m}=x_{0}+V_{m} y_{m}, \text { where } y_{m} \text { minimizes }\left\|\beta e_{1}-\widetilde{H}_{m} y\right\| \text { for } y \in \mathbb{R}^{m}
$$

Restart: Compute $r_{m}=b-A x_{m}$, if $\left\|r_{m}\right\|$ is small, then stop,
else, Compute $x_{0}=x_{m}$ and $v_{1}=r_{m} /\left\|r_{m}\right\|$, GoTo Iterate step.

4.14 GMRES: Generalized Minimal Residual Algorithm for solving \tilde{H}_{k}

Consider the matrix \widetilde{H}_{k}, and let us suppose that we want to solve the least squares problem:

$$
\min _{y \in \mathbb{R}^{k}}\left\|\beta e_{1}-\widetilde{H}_{k} y\right\|_{2}
$$

Assume Givens rotations $F_{i}, i=1 \ldots, j$ such that

$$
F_{j} \cdots F_{1} \widetilde{H}_{j}=F_{j} \ldots F_{1}\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \times & \times \\
0 & 0 & 0 & \times
\end{array}\right]=\left[\begin{array}{cccc}
\times & \times & \times & \times \\
& \times & \times & \times \\
& & \times & \times \\
& & & \times \\
& & & 0
\end{array}\right] \equiv R_{j} \in \mathbb{R}^{(j+1) \times j} .
$$

In order to obtain R_{j+1} we must start by premultiptying the new column by the previous rotations.

$$
\widetilde{H}_{j+1}=\left[\begin{array}{ccccc}
\times & \times & \times & \times & + \\
\times & \times & \times & \times & + \\
0 & \times & \times & \times & + \\
0 & 0 & \times & \times & + \\
0 & 0 & 0 & \times & + \\
\hline 0 & 0 & 0 & 0 & +
\end{array}\right] \Rightarrow F_{j} \ldots F_{i} \widetilde{H}_{j+1}=\left[\begin{array}{ccccc}
\times & \times & \times & \times & + \\
& \times & \times & \times & + \\
& & \times & \times & + \\
& & \times & + \\
& & 0 & r \\
& & & 0 & h
\end{array}\right]
$$

The principal upper $(j+1) \times j$ submatrix of the above matrix is nothing but R_{j}, and $h:=h_{j+2, j+1}$ is not affected by the previous rotations. The next rotation F_{j+1} defined by

$$
\left\{\begin{aligned}
c_{j+1} & \equiv r /\left(r^{2}+h^{2}\right)^{1 / 2} \\
s_{j+1} & =-h /\left(r^{2}+h^{2}\right)^{1 / 2}
\end{aligned}\right.
$$

Thus, after k steps of the above process, we have achieved

$$
Q_{k} \widetilde{H}_{k}=R_{k}
$$

where Q_{k} is a $(k+1) \times(k+1)$ unitary matrix and

$$
\begin{equation*}
J(y)=\left\|\beta e_{1}-\widetilde{H}_{k} y\right\|=\left\|Q_{k}\left[\beta e_{1}-\widetilde{H}_{k} y\right]\right\|=\left\|g_{k}-R_{k} y\right\|, \tag{4.14.12}
\end{equation*}
$$

where $g_{k} \equiv Q_{k} \beta e_{1}$. Since the last row of R_{k} is a zero row, the minimization of (4.14.12) is achieved at $y_{k}=\widetilde{R}_{k}^{-1} \widetilde{g}_{k}$, where \widetilde{R}_{k} and \widetilde{g}_{k} are removed the last row of R_{k} and the last component of g_{k}, respectively.

Proposition 4.14.1 $\left\|r_{k}\right\|=\left\|b-A x_{k}\right\|=\mid$ The ($k+1$)-st component of $g_{k} \mid$.

To avoid the extra computation needed to obtain x_{k} explicitly we suggest an efficient implementation of the last step of $\operatorname{GMRES}(\mathrm{m})$. To compute x_{m} we need to compute \widetilde{H}_{m}
and v_{1}, \ldots, v_{m}. Since v_{1}, \cdots, v_{m} are known, we need to compute $h_{i, m}$, for $i=1, \ldots, m+1$, of the form

$$
\left[\begin{array}{llll}
h_{11} & \ldots & h_{1 m-1} & h_{1 m} \\
h_{21} & \ddots & & \vdots \\
& \ddots & \ddots & \vdots \\
0 & & h_{m, m-1} & h_{m m} \\
\hline & & 0 & h_{m+1, m}
\end{array}\right]
$$

with $h_{i, m}=\left(A v_{m}, v_{i}\right)$, for $i \leq m$. Here $h_{m+1, m}$ satisfies

$$
h_{m+1, m}^{2}=\left\|A v_{m}-\sum_{i=1}^{m} h_{i m} v_{i}\right\|^{2}=\left\|A v_{m}\right\|^{2}-\sum_{i=1}^{m} h_{i, m}^{2},
$$

because

$$
A v_{m}-\sum_{i=1}^{m} h_{i m} v_{i}=h_{m+1, m} v_{m+1}, \quad v_{m+1} \perp v_{i}, \text { for } i=1, \ldots, m
$$

Now we will show how to compute $r_{m}=b-A x_{m}$ from v_{i} 's $i=1, \ldots, m$ and $A v_{m}$. From (4.14.11) the residual vector can be expressed as

$$
r_{m}=V_{m+1}\left[\beta e_{1}-\widetilde{H}_{m} y_{m}\right] .
$$

Define $t \equiv\left[t_{1}, t_{2}, \ldots, t_{m+1}\right]^{T} \equiv \beta e_{1}-\widetilde{H}_{m} y_{m}$. Then

$$
\begin{aligned}
v_{m} & =\left(\sum_{i=1}^{m} t_{i} v_{i}\right)+t_{m+1} v_{m+1} \\
& =\left(\sum_{i=1}^{m} t_{i} v_{i}\right)+t_{m+1} \frac{1}{h_{m+1, m}}\left[A v_{m}-\sum_{i=1}^{m} h_{i, m} v_{i}\right] \\
& =\frac{t_{m+1}}{h_{m+1, m}} A v_{m}+\sum_{i=1}^{m}\left(t_{i}-t_{m+1} h_{i, m} / h_{m+1, m}\right) v_{i} .
\end{aligned}
$$

Assume the first $m-1$ Arnoldi steps have been performed that the first $m-1$ columns of \widetilde{H}_{m} and the first m vectors $v_{i}, i=1, \ldots, m$ are available. Since we will not normalize v_{i} at every step, we do not have explicitly v_{i} but rather $w_{i}=\mu_{i} v_{i}, \mu_{i}$ are some known scaling coefficient (e.g., $\mu_{i}=\left\|v_{i}\right\|$). We have shown that r_{m} is a linear combination of $A v_{m}$ and v_{i} 's, $i=1, \ldots, m$. Hence after m steps we do not need v_{m+1}. (Note that computing \widetilde{v}_{m+1} and its norm costs $(2 m+1) n$ multiplications. So elimination of its computation is a significant saving). So using v_{1}, \ldots, v_{m} and $A v_{m}$ we can compute restarting vector $v_{1}:=r_{m} /\left\|r_{m}\right\|$ and don't need to compute v_{m+1}. Then

$$
r_{m}=\frac{t_{m+1}}{h_{m+1, m}} A v_{m}+\sum_{i=1}^{m}\left(t_{i}-t_{m+1} h_{i, m} / h_{m+1, m}\right) v_{i} .
$$

By Proposition 4.14.1 it holds that $\left\|r_{m}\right\|_{2}=\mid$ the $(k+1)$-st component of $g_{k} \mid$. So $v_{1}:=$ $r_{m} /\left\|r_{m}\right\|_{2}$.

4.14 GMRES: Generalized Minimal Residual Algorithm for solving

GMRES CANNOT break down! GCR can break down when A is not positive real, i.e., $\frac{1}{2}\left(A+A^{T}\right)$ is not symmetric positive definite. We assume that the first m Arnoldi vectors can be constructed. That is, $h_{j+1, j} \neq 0$, for $j=1,2, \ldots, m$. In fact, if $h_{j+2, j+1} \neq 0$, the diagonal element $r_{j+1, j+1}$ of R_{j+1} satisfies

$$
r_{j+1, j+1}=\left(c_{j+1} r-s_{j+1} h_{j+2, j+1}\right)=\left(r^{2}+h_{j+2, j+1}^{2}\right)^{1 / 2}>0 .
$$

Hence, the diagonal elements of R_{m} do not vanish and the least squares problem $J(y)=$ $\min \left\|g_{m}-R_{m} y\right\|_{2}$ can be solved, establishing that the algorithm can not break down if $h_{j+1, j} \neq 0$, for $j=1, \ldots, m$.

Thus the only possible potential difficulty is that during the Arnoldi process we encounter $h_{j+1, j}=0$. From Arnoldi's algorithm it is easily seen that
(i) $A V_{j}=V_{j} H_{j}$ which means that K_{j} spanned by V_{j} is invariant. Note that if A is nonsingular then the eigenvalues of H_{j} are nonzero. $J(y)$ in (4.14.10) at the j th step becomes

$$
J(y)=\left\|\beta v_{1}-A V_{j} y\right\|=\left\|\beta v_{1}-V_{j} H_{j} y\right\|=\left\|V_{j}\left[\beta e_{1}-H_{j} y\right]\right\|=\left\|\beta e_{1}-H_{j} y\right\| .
$$

Since H_{j} is nonsingular, the above function is minimum for $y=H_{j}^{-1} \beta e_{1}$ and the corresponding minimum norm is zero, i.e., the solution x_{j} is exact.
Conversely, assume x_{j} is the exact solution and x_{i}, for $i=1, \ldots, j-1$ are not, i.e. $r_{j}=0$ but $r_{i} \neq 0$, for $i=0,1, \ldots, j-1$. From Proposition 4.14 .1 we know that

$$
\left\|r_{j}\right\|=s_{j} e_{j-1}^{T} g_{j-1}=s_{j}\left\|r_{j-1}\right\|=0
$$

Then $s_{j}=0\left(\left\|r_{j-1}\right\| \neq 0\right)$ which implies that $h_{j+1, j}=0$, i.e., the algorithm breaks down and $\tilde{v}_{j+1}=0$ which proves the result.
(ii) $\tilde{v}_{j+1}=0$ and $\tilde{v}_{i} \neq 0$, for $i=1, \ldots, j \Leftrightarrow$ the degree of minimal polynomial of $r_{0}=v_{1}$ is equal to j.
(\Leftarrow) Assume that there exists a polynomial p_{j} of degree j such that $p_{j}(A) v_{1}=0$ and p_{j} is the polynomial of the lowest degree for which this is true. Therefore, $K_{j+1}=<v_{1}, A v_{1}, \cdots, A^{j} v_{1}>=K_{j}$ so $\tilde{v}_{j+1} \in K_{j+1}=K_{j}$ and $\tilde{v}_{j+1} \perp K_{j}$, then $\tilde{v}_{j+1}=0$. Moreover, if $\tilde{v}_{i}=0$ for some $i \leq j$ then there is a polynomial p_{i} of degree i such that $p_{i}(A) v_{i}=0$. This contradicts the minimality of p_{j}.
(\Rightarrow) There is a polynomial p_{j} of degree j such that $p_{j}(A) v_{1}=0$ (by assumption $\left.\tilde{v}_{j+1}=c, \tilde{v}_{i} \neq 0, i=1, \ldots, j\right) . p_{j}$ is the polynomial of the lowest degree for which this is true. Otherwise, we have $\tilde{v}_{i}=0$, for some $i<j+1$ by the first part of this proof. This is contradiction.

Proposition 4.14.2 The solution x_{j} produced by GMRES at step j is exact which is equivalent to
(i) The algorithm breaks down at step j,
(ii) $\tilde{v}_{j+1}=0$,
(iii) $h_{j+1, j}=0$,
(iv) The degree of the minimal polynomial of r_{0} is j.

Corollary 4.14.1 For an $n \times n$ problem GMRES terminates at most n steps.
This uncommon type of breakdown is sometimes referred to as a "Lucky" breakdown is the context of the Lanczos algorithm.
Proposition 4.14.3 Suppose that A is diagonalizable so that $A=X D X^{-1}$ and let

$$
\varepsilon^{(m)}=\min _{p \in P_{m}, p(0)=1} \max _{\lambda_{i} \in \sigma(A)}\left|p\left(\lambda_{i}\right)\right| .
$$

Then

$$
\left\|r_{m+1}\right\| \leq \kappa(X) \varepsilon^{(m)}\left\|r_{0}\right\|
$$

where $\kappa(X)=\|X\|\left\|X^{-1}\right\|$.
When A is positive real with symmetric part M, it holds that

$$
\left\|r_{m}\right\| \leq[1-\alpha / \beta]^{m / 2}\left\|r_{0}\right\|,
$$

where $\alpha=\left(\lambda_{\min }(M)\right)^{2}$ and $\beta=\lambda_{\max }\left(A^{T} A\right)$.
This proves the convergence of $\operatorname{GMRES}(m)$ for all m, when A is positive real.
Theorem 4.14.2 Assume $\lambda_{1}, \ldots, \lambda_{v}$ of A with positive(negative) real parts and the other eigenvalues enclosed in a circle centered at C with $C>0$ and have radius R with $C>R$. Then

$$
\varepsilon^{(m)} \leq\left[\frac{R}{C}\right]^{m-\nu} \max _{j=\nu+1, \cdots, N} \prod_{i=1}^{\nu} \frac{\left|\lambda_{i}-\lambda_{j}\right|}{\left|\lambda_{i}\right|} \leq\left[\frac{D}{d}\right]^{2}\left[\frac{R}{C}\right]^{m-\nu}
$$

where

$$
D=\max _{\substack{i=1, \cdots, \nu \\ j=\nu+1, \cdots, N}}\left|\lambda_{i}-\lambda_{j}\right| \quad \text { and } \quad d=\min _{i=1, \cdots, \nu}\left|\lambda_{i}\right| .
$$

Proof: Consider $p(z)=r(z) q(z)$ where $r(z)=\left(1-z / \lambda_{1}\right) \cdots\left(1-z / \lambda_{\nu}\right)$ and $q(z)$ arbitrary polynomial of $\operatorname{deg} \leq m-\nu$ such that $q(0)=1$. Since $p(0)=1$ and $p\left(\lambda_{i}\right)=0$, for $i=1, \ldots, \nu$, we have

$$
\varepsilon^{(m)} \leq \max _{j=\nu+1, \cdots, N}\left|p\left(\lambda_{j}\right)\right| \leq \max _{j=\nu+1, \cdots, N}\left|r\left(\lambda_{j}\right)\right| \max _{j=\nu+1, \cdots, N}\left|q\left(\lambda_{j}\right)\right| .
$$

It is easily seen that

$$
\max _{j=\nu+1, \cdots, N}\left|r\left(\lambda_{j}\right)\right|=\max _{j=\nu+1, \cdots, N} \prod_{i=1}^{\nu} \frac{\left|\lambda_{i}-\lambda_{j}\right|}{\left|\lambda_{i}\right|} \leq\left[\frac{D}{d}\right]^{\nu} .
$$

By maximin principle, the maximin of $|q(z)|$ for $z \in\left\{\lambda_{j}\right\}_{j=\nu+1}^{N}$ is no larger than its maximin over the circle that encloses that set. Taking $\sigma(z)=[(C-z) / C]^{m-\nu}$ whose maximin modulus on the circle is $(R / C)^{m-\nu}$ yields the desired result.
Corollary 4.14.2 Under the assumptions of Proposition 4.14.3 and Theorem 4.14.2, GMRES (m) converges for any initial x_{0} if

$$
m>\nu \log \left[\frac{D C}{d R} \kappa(X)^{1 / \nu}\right] / \log \left[\left.\frac{C}{R} \right\rvert\,\right.
$$

Part II

On the Numerical Solutions of Eigenvalue Problems

Chapter 5

The Unsymmetric Eigenvalue Problem

Generalized eigenvalue problem (GEVP):

Given $A, B \in \mathbb{C}^{n \times n}$. Determine $\lambda \in \mathbb{C}$ and $0 \neq x \in \mathbb{C}^{n}$ with $A x=\lambda B x$. λ is called an eigenvalue of the pencil $A-\lambda B$ (or $\operatorname{pair}(A, B)$) and x is called an eigenvector corresponding to $\lambda . \lambda$ is an eigenvalue of $A-\lambda B \Longleftrightarrow \operatorname{det}(A-\lambda B)=0$. $(\sigma(A, B) \equiv\{\lambda \in \mathbb{C} \mid \operatorname{det}(A-\lambda B)=0\}$.)

Definition 5.0.2 A pencil $A-\lambda B\left(A, B \in \mathbb{R}^{m \times n}\right)$ or a $\operatorname{pair}(A, B)$ is called regular if that
(i) A and B are square matrices of order n, and
(ii) $\operatorname{det}(A-\lambda B) \not \equiv 0$.

In all other case $(m \neq n$ or $m=n$ but $\operatorname{det}(A-\lambda B) \equiv 0)$, the pencil is called singular.
Detailed algebraic structure of a pencil $A-\lambda B$ see Matrix theory II, chapter XII (Gantmacher 1959).

Eigenvalue Problem (EVP):

Special case in GEVP when $B=I$, we have $\lambda \in \mathbb{C}$ and $0 \neq x \in \mathbb{C}^{n}$ with $A x=\lambda x$. λ is an eigenvalue of A and x is an eigenvector corresponding to λ.

Definition 5.0.3 (a) $\sigma(A)=\{\lambda \in \mathbb{C} \mid \operatorname{det}(A-\lambda I)=0\}$ is called the spectrum of A.
(b) $\rho(A)=\max \{|\lambda|: \lambda \in \sigma(A)\}$ is called the radius of $\sigma(A)$.
(c) $P(\lambda)=\operatorname{det}(\lambda I-A)$ is called the characteristic polynomial of A.

Let $P(\lambda)=\prod_{i=1}^{s}\left(\lambda-\lambda_{i}\right)^{m\left(\lambda_{i}\right)}, \quad \lambda_{i} \neq \lambda_{j}(i \neq j)$ and $\sum_{i=1}^{s} m\left(\lambda_{i}\right)=n$.
Example 5.0.2 $A=\left[\begin{array}{ll}2 & 2 \\ 0 & 3\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \Longrightarrow \operatorname{det}(A-\lambda B)=2-\lambda$ and $\sigma(A, B)=$ \{2\}.

Example 5.0.3 $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \Longrightarrow \operatorname{det}(A-\lambda B)=3$ and $\sigma(A, B)=\emptyset$.
Example 5.0.4 $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \Longrightarrow \operatorname{det}(A-\lambda B)=0$ and $\sigma(A, B)=\mathbb{C}$.
Example 5.0.5 $\operatorname{det}(\mu A-\lambda B)=(2 \mu-\lambda) \mu$
$\mu=1: A x=\lambda B x \Longrightarrow \lambda=2$.
$\lambda=1: B x=\mu A x \Longrightarrow \mu=0, \mu=\frac{1}{2} \Longrightarrow \lambda=\infty, \lambda=2$.
$\sigma(A, B)=\{2, \infty\}$.
Example 5.0.6 $\operatorname{det}(\mu A-\lambda B)=\mu \cdot 3 \mu$
$\mu=1$: no solution for λ.
$\lambda=1: B x=\mu A x \Longrightarrow \mu=0,0$.(multiple) $\sigma(A, B)=\{\infty, \infty\}$.

Let
$m\left(\lambda_{i}\right):=$ algebraic multiplicity of λ_{i}.
$n\left(\lambda_{i}\right):=n-\operatorname{rank}\left(A-\lambda_{i} I\right)=$ geometric multiplicity. $1 \leq n\left(\lambda_{i}\right) \leq m\left(\lambda_{i}\right)$.
If for some $i, n\left(\lambda_{i}\right)<m\left(\lambda_{i}\right)$, then A is degenerated (defective). The following statements are equivalent:
(a) A is diagonalizable: There exists a nonsingular matrix T such that $T^{-1} A T=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$.
(b) There are n linearly independent eigenvectors.
(c) A is nondefective, i.e. $\forall \lambda \in \sigma(A) \Longrightarrow m(\lambda)=n(\lambda)$.

If A is defective then eigenvector + principle vector \Longrightarrow Jordan form.
Theorem 5.0.3 (Jordan decomposition) If $A \in \mathbb{C}^{n \times n}$, then there exists a nonsingular $X \in \mathbb{C}^{n \times n}$, such that $X^{-1} A X=\operatorname{diag}\left(J_{1}, \cdots, J_{t}\right)$, where

$$
J_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & 0 \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
0 & & & \lambda_{i}
\end{array}\right]
$$

is $m_{i} \times m_{i}$ and $m_{1}+\cdots+m_{t}=n$.
Theorem 5.0.4 (Schur decomposition) If $A \in \mathbb{C}^{n \times n}$ then there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that $U^{*} A U\left(=U^{-1} A U\right)$ a upper triangular.

- A normal $\left(\right.$ i.e. $\left.A A^{*}=A^{*} A\right) \Longleftrightarrow \exists$ unitary U such that $U^{*} A U=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, i.e. $A u_{i}=\lambda_{i} u_{i}, \quad u_{i}^{*} u_{j}=\delta_{i j}$.
- A hermitian(i.e. $\left.A^{*}=A\right) \Longleftrightarrow A$ is normal and $\sigma(A) \subseteq \mathbb{R}$.
- A symmetric(i.e. $\left.A^{T}=A, A \in \mathbb{R}^{n \times n}\right) \Longleftrightarrow \exists$ orthogonal U such that $U^{T} A U=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and $\sigma(A) \subseteq \mathbb{R}$.

5.1 Orthogonal Projections and C-S Decomposition
 5.1 Orthogonal Projections and C-S Decomposition

Definition 5.1.1 Let $S \subseteq \mathbb{R}^{n}$ be a subspace, $P \in \mathbb{R}^{n \times n}$ is the orthogonal projection onto S if

$$
\left\{\begin{array}{l}
\operatorname{Range}(P)=S, \tag{5.1.1}\\
P^{2}=P \\
P^{T}=P
\end{array}\right.
$$

where Range $(P)=\mathcal{R}(P)=\left\{y \in \mathbb{R}^{n} \mid y=P x\right.$, for some $\left.x \in \mathbb{R}^{n}\right\}$.
Remark 5.1.1 If $x \in \mathbb{R}^{n}$, then $P x \in S$ and $(I-P) x \in S^{\perp}$.
Example 5.1.1 $P=v v^{T} / v^{T} v$ is the orthogonal projection onto $S=\operatorname{span}\{v\}, v \in \mathbb{R}^{n}$.

Figure 5.1: Orthogonal projection

Remark 5.1.2 (i) If P_{1} and P_{2} are orthogonal projections, then for any $z \in \mathbb{R}^{n}$ we have

$$
\begin{equation*}
\left\|\left(P_{1}-P_{2}\right) z\right\|_{2}^{2}=\left(P_{1} z\right)^{T}\left(I-P_{2}\right) z+\left(P_{2} z\right)^{T}\left(I-P_{1}\right) z \tag{5.1.2}
\end{equation*}
$$

If $\mathcal{R}\left(P_{1}\right)=\mathcal{R}\left(P_{2}\right)=S$ then the right-hand side of (5.1.2) is zero. Thus the orthogonal projection for a subspace is unique.
(ii) If $V=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right]$ is an orthogonal basis for S, then $P=V V^{T}$ is unique orthogonal projection onto S.

Definition 5.1.2 Suppose S_{1} and S_{2} are subspaces of \mathbb{R}^{n} and $\operatorname{dim}\left(S_{1}\right)=\operatorname{dim}\left(S_{2}\right)$. We define the distance between S_{1} and S_{2} by

$$
\begin{equation*}
\operatorname{dist}\left(S_{1}, S_{2}\right)=\left\|P_{1}-P_{2}\right\|_{2}, \tag{5.1.3}
\end{equation*}
$$

where P_{i} is the orthogonal projection onto $S_{i}, \quad i=1,2$.
Remark 5.1.3 By considering the case of one-dimensional subspaces in \mathbb{R}^{2}, we obtain a geometrical interpretation of $\operatorname{dist}(\cdot, \cdot)$. Suppose $S_{1}=\operatorname{span}\{x\}$ and $S_{2}=\operatorname{span}\{y\}$ and

$\|x\|_{2}=\|y\|_{2}=1$. Assume that $x^{T} y=\cos \theta, \theta \in\left[0, \frac{\pi}{2}\right]$. It follows that the difference between the projections onto these spaces satisfies

$$
P_{1}-P_{2}=x x^{T}-y y^{T}=x\left[x-\left(y^{T} x\right) y\right]^{T}-\left[y-\left(x^{T} y\right) x\right] y^{T} .
$$

If $\theta=0(\Rightarrow x=y)$, then $\operatorname{dist}\left(S_{1}, S_{2}\right)=\left\|P_{1}-P_{2}\right\|_{2}=\sin \theta=0$.
If $\theta \neq 0$, then

$$
U_{x}=\left[u_{1}, u_{2}\right]=\left[x,-\left[y-\left(y^{T} x\right) x\right] / \sin \theta\right]
$$

and

$$
V_{x}=\left[v_{1}, v_{2}\right]=\left[\left[x-\left(x^{T} y\right) y\right] / \sin \theta, y\right]
$$

are defined and orthogonal. It follows that

$$
P_{1}-P_{2}=U_{x} \operatorname{diag}[\sin \theta, \sin \theta] V_{x}^{T}
$$

is the SVD of $P_{1}-P_{2}$. Consequently, dist $\left(S_{1}, S_{2}\right)=\sin \theta$, the sine of the angle between the two subspaces.

Theorem 5.1.1 (C-S Decomposition, Davis / Kahan(1970) or Stewart(1977)) If $Q=\left[\begin{array}{ll}Q_{11} & Q_{12} \\ Q_{21} & Q_{22}\end{array}\right]$ is orthogonal with $Q_{11} \in \mathbb{R}^{k \times k}$ and $Q_{22} \in \mathbb{R}^{j \times j}(k \geq j)$, then there exists orthogonal matrices $U_{1}, V_{1} \in \mathbb{R}^{k \times k}$ and orthogonal matrices $U_{2}, V_{2} \in \mathbb{R}^{j \times j}$ such that

$$
\left[\begin{array}{cc}
U_{1} & 0 \tag{5.1.4}\\
0 & U_{2}
\end{array}\right]^{T}\left[\begin{array}{cc}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right]\left[\begin{array}{cc}
V_{1} & 0 \\
0 & V_{2}
\end{array}\right]=\left[\begin{array}{cc|c}
I & 0 & 0 \\
0 & C & S \\
\hline 0 & -S & C
\end{array}\right]
$$

where

$$
\begin{gathered}
C=\operatorname{diag}\left(c_{1}, \cdots, c_{j}\right), \quad c_{i}=\cos \theta_{i}, \\
S=\operatorname{diag}\left(s_{1}, \cdots, s_{j}\right), \quad s_{i}=\sin \theta_{i} \\
\text { and } 0 \leq \theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{j} \leq \frac{\pi}{2}
\end{gathered}
$$

Lemma 5.1.1 Let $Q=\left[\begin{array}{l}Q_{1} \\ Q_{2}\end{array}\right]$ be orthogonal with $Q_{1} \in \mathbb{R}^{n \times n}$. Then there are unitary matrices U_{1}, U_{2} and W such that

$$
\left[\begin{array}{cc}
U_{1}^{T} & 0 \\
0 & U_{2}^{T}
\end{array}\right]\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right] W=\left[\begin{array}{c}
C \\
S
\end{array}\right]
$$

where $C=\operatorname{diag}\left(c_{1}, \cdots, c_{j}\right) \geq 0$, and $S=\operatorname{diag}\left(s_{1}, \cdots, s_{n}\right) \geq 0$ with $c_{i}^{2}+s_{i}^{2}=1, i=$ $1, \cdots, n$.

Proof: Let $U_{1}^{T} Q_{1} W=C$ be the SVD of Q_{1}. Consider

$$
\left[\begin{array}{cc}
U_{1}^{T} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right] W=\left[\begin{array}{c}
C \\
Q_{2} W
\end{array}\right]
$$

has orthogonal columns. Define $\tilde{Q}_{2} \equiv Q_{2} W$. Then $C^{2}+\tilde{Q}_{2}^{T} \tilde{Q}_{2}=I$ or $\tilde{Q}_{2}^{T} \tilde{Q}_{2}=I-C^{2}$ diagonal, thus $\tilde{Q}_{2}^{T} \tilde{Q}_{2}$ is diagonal. Which means that the nonzero column of \tilde{Q}_{2} are orthogonal to one another.If all the columns of \tilde{Q}_{2} are nonzero, set $S^{2}=\tilde{Q}_{2}^{T} \tilde{Q}_{2}$ and $U_{2}=\tilde{Q}_{2} S^{-1}$, then we have $U_{2}^{T} U_{2}=I$ and $U_{2}^{T} \tilde{Q}_{2}=S$. It follows the decomposition.

If \tilde{Q}_{2} has zero columns, normalize the nonzero columns and replace the zero columns with an orthogonal basis for the orthogonal complement of the column space of \tilde{Q}_{2}. It is easily verified that U_{2} so defined is orthogonal and $S \equiv U_{2}^{T} \tilde{Q}_{2}$ is diagonal. It also follows that decomposition.

Theorem 5.1.2 (C-S Decomposition) Let the unitary matrix $W \in \mathbb{C}^{n \times n}$ be partitioned in the form $W=\left[\begin{array}{ll}W_{11} & W_{12} \\ W_{21} & W_{22}\end{array}\right]$, where $W_{11} \in \mathbb{C}^{r \times r}$ with $r \leq \frac{n}{2}$. Then there exist unitary matrices $U=\operatorname{diag}(\overbrace{U_{1}}^{r}, \overbrace{U_{2}}^{n-r})$ and $V=\operatorname{diag}(\overbrace{V_{1}}^{r}, \overbrace{V_{2}}^{n-r})$ such that

$$
U^{*} W V=\left[\begin{array}{ccc}
\Gamma & -\Sigma & 0 \tag{5.1.5}\\
\Sigma & \Gamma & 0 \\
0 & 0 & I
\end{array}\right] \begin{aligned}
& \} r \\
& \} r \\
& \} n-2 r
\end{aligned}
$$

where $\Gamma=\operatorname{diag}\left(\gamma_{1}, \cdots, \gamma_{r}\right) \geq 0$ and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}\right) \geq 0$ with $\gamma_{i}^{2}+\sigma_{i}^{2}=1, i=$ $1, \cdots, r$.

Proof: Let $\Gamma=U_{1}^{*} W_{11} V_{1}$ be the SVD of W_{11} with the diagonal elements of $\Gamma: \gamma_{1} \leq$ $\gamma_{2} \leq \cdots \leq \gamma_{k}<1=\gamma_{k+1}=\cdots=\gamma_{r}$, i.e.

$$
\Gamma=\operatorname{diag}\left(\Gamma^{\prime}, I_{r-k}\right)
$$

The matrix $\left[\begin{array}{l}W_{11} \\ W_{21}\end{array}\right] V_{1}$ has orthogonal columns. Hence

$$
I=\left[\binom{W_{11}}{W_{21}} V_{1}\right]^{*}\left[\binom{W_{11}}{W_{21}} V_{1}\right]=\Gamma^{2}+\left(W_{21} V_{1}\right)^{*}\left(W_{21} V_{1}\right) .
$$

Since I and Γ^{2} are diagonal, $\left(W_{21} V_{1}\right)^{*}\left(W_{21} V_{1}\right)$ is diagonal. So the columns of $W_{21} V_{1}$ are orthogonal. Since the i th diagonal of $I-\Gamma^{2}$ is the norm of the i th column of $W_{21} V_{1}$, only the first $k(k \leq r \leq n-r)$ columns of $W_{21} V_{1}$ are nonzero. Let \hat{U}_{2} be unitary whose first k columns are the normalized columns of $W_{21} V_{1}$. Then

$$
\hat{U}_{2}^{*} W_{21} V_{1}=\left[\begin{array}{c}
\Sigma \\
0
\end{array}\right],
$$

where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{k}, 0, \cdots, 0\right) \equiv \operatorname{diag}\left(\Sigma^{\prime}, 0\right), \hat{U}_{2} \in \mathbb{C}^{(n-r) \times(n-r)}$. Since

$$
\operatorname{diag}\left(U_{1}, \hat{U}_{2}\right)^{*}\binom{W_{11}}{W_{21}} V_{1}=\left(\begin{array}{c}
\Gamma \\
\Sigma \\
0
\end{array}\right)
$$

has orthogonal (orthonormal) columns, we have $\gamma_{i}^{2}+\sigma_{i}^{2}=1, i=1, \cdots, r$. (Σ^{\prime} is nonsingular).

By the same argument as above : there is a unitary $V_{2} \in \mathbb{C}^{(n-r) \times(n-r)}$ such that

$$
U_{1}^{*} W_{12} V_{2}=(T, 0),
$$

where $T=\operatorname{diag}\left(\tau_{1}, \cdots, \tau_{r}\right)$ and $\tau_{i} \leq 0$. Since $\gamma_{i}^{2}+\tau_{i}^{2}=1$, it follows from $\gamma_{i}^{2}+\sigma_{i}^{2}=1$ that $T=-\Sigma$. Set $\hat{U}=\operatorname{diag}\left(U_{1}, \hat{U}_{2}\right)$ and $V=\operatorname{diag}\left(V_{1}, V_{2}\right)$. Then $X=\hat{U}^{*} W V$ can be partitioned in the form

$$
X=\left[\begin{array}{ccccc}
\Gamma^{\prime} & 0 & -\Sigma^{\prime} & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
\Sigma^{\prime} & 0 & X_{33} & X_{34} & X_{35} \\
0 & 0 & X_{43} & X_{44} & X_{45} \\
0 & 0 & X_{53} & X_{54} & X_{55}
\end{array}\right] \begin{aligned}
& \} k \\
& \} r-k \\
& \} k \\
& \} r-k \\
& \} n-2 r
\end{aligned} .
$$

Since columns 1 and 4 are orthogonal, it follows $\Sigma^{\prime} X_{34}=0$. Thus $X_{34}=0$ (since Σ^{\prime} nonsigular). Likewise $X_{35}, X_{43}, X_{53}=0$. From the orthogonality of columns 1 and 3, it follows that $-\Gamma^{\prime} \Sigma^{\prime}+\Sigma^{\prime} X_{33}=0$, so $X_{33}=\Gamma^{\prime}$. The matrix $\hat{U}_{3}=\left[\begin{array}{ll}X_{44} & X_{45} \\ X_{54} & X_{55}\end{array}\right]$ is unitary. Set $U_{2}=\operatorname{diag}\left(I_{k}, \hat{U}_{3}\right) \hat{U}_{2}$ and $U=\operatorname{diag}\left(U_{1}, U_{2}\right)$. Then $U^{H} W V=\operatorname{diag}\left(I_{r+k}, \hat{U}_{3}\right) X$ with

$$
X=\left[\begin{array}{ccccc}
\Gamma^{\prime} & 0 & -\Sigma^{\prime} & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
\Sigma^{\prime} & 0 & \Gamma^{\prime} & 0 & 0 \\
0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & 0 & I
\end{array}\right]
$$

The theorem is proved.
Theorem 5.1.3 Let $W=\left[W_{1}, W_{2}\right]$ and $Z=\left[Z_{1}, Z_{2}\right]$ be orthogonal, where $W_{1}, Z_{1} \in \mathbb{R}^{n \times k}$ and $W_{2}, Z_{2} \in \mathbb{R}^{n \times(n-k)}$. If $S_{1}=R\left(W_{1}\right)$ and $S_{2}=R\left(Z_{1}\right)$ then

$$
\begin{equation*}
\operatorname{dist}\left(S_{1}, S_{2}\right)=\sqrt{1-\sigma_{\min }^{2}\left(W_{1}^{T} Z_{1}\right)} \tag{5.1.6}
\end{equation*}
$$

Proof: Let $Q=W^{T} Z$ and assume that $k \geq j=n-k$. Let the C-S decomposition of Q be given by (5.1.2), ($\left.Q_{i j}=W_{i}^{T} Z_{j}, \quad i, j=1,2\right)$. It follows that

$$
\left\|W_{1}^{T} Z_{2}\right\|_{2}=\left\|W_{2}^{T} Z_{1}\right\|_{2}=s_{j}=\sqrt{1-c_{j}^{2}}=\sqrt{1-\sigma_{\min }^{2}\left(W_{1}^{T} Z_{1}\right)} .
$$

Since $W_{1} W_{1}^{T}$ and $Z_{1} Z_{1}^{T}$ are the orthogonal projections onto S_{1} and S_{2}, respectively. We have

$$
\begin{aligned}
\operatorname{dist}\left(S_{1}, S_{2}\right) & =\left\|W_{1} W_{1}^{T}-Z_{1} Z_{1}^{T}\right\|_{2} \\
& =\left\|W^{T}\left(W_{1} W_{1}^{T}-Z_{1} Z_{1}^{T}\right) Z\right\|_{2} \\
& =\left\|\left[\begin{array}{cc}
0 & W_{1}^{T} Z_{2} \\
W_{2}^{T} Z_{1} & 0
\end{array}\right]\right\|_{2} \\
& =s_{j} .
\end{aligned}
$$

If $k<j$, the above argument by setting $Q=\left[W_{2}, W_{1}\right]^{T}\left[Z_{2}, Z_{1}\right]$ and noting that

$$
\sigma_{\min }\left(W_{2}^{T} Z_{1}\right)=\sigma_{\min }\left(W_{1}^{T} Z_{2}\right)=s_{j} .
$$

5.2 Perturbation Theory

Theorem 5.2.1 (Gerschgorin Circle Theorem) If $X^{-1} A X=D+F, D \equiv \operatorname{diag}\left(d_{1}, \cdots, d_{n}\right)$ and F has zero diagonal entries, then $\sigma(A) \subset \bigcup_{i=1}^{n} D_{i}$, where

$$
D_{i}=\left\{z \in \mathbb{C}| | z-d_{i}\left|\leq \sum_{j=1, j \neq i}^{n}\right| f_{i j} \mid\right\}
$$

Proof: Suppose $\lambda \in \sigma(A)$ and assume without loss of generality that $\lambda \neq d_{i}$ for $i=$ $1, \cdots, n$. Since $(D-\lambda I)+F$ is singular, it follows that

$$
1 \leq\left\|(D-\lambda I)^{-1} F\right\|_{\infty}=\sum_{j=1}^{n}\left|f_{k j}\right| /\left|d_{k}-\lambda\right|
$$

for some $k(1 \leq k \leq n)$. But this implies that $\lambda \in D_{k}$.
Corollary 5.2.1 If the union $M_{1}=\bigcup_{j=1}^{k} D_{i_{j}}$ of k discs $D_{i_{j}}, j=1, \cdots, k$, and the union M_{2} of the remaining discs are disjoint, then M_{1} contains exactly k eigenvalues of A and M_{2} exactly $n-k$ eigenvalues.

Proof: Let $B=X^{-1} A X=D+F$, for $t \in[0,1]$. Let $B_{t}:=D+t F$, then $B_{0}=$ $D, B_{1}=B$. The eigenvalues of B_{t} are continuous functions of t. Applying Theorem 5.2.1 of Gerschgorin to B_{t}, one finds that for $t=0$, there are exactly k eigenvalues of B_{0} in M_{1} and $n-k$ in M_{2}. (Counting multiple eigenvalues) Since for $0 \leq t \leq 1$ all eigenvalues of B_{t} likewise must lie in these discs, it follows for reasons of continuity that also k eigenvalues of A lie in M_{1} and the remaining $n-k$ in M_{2}.

Remark 5.2.1 Take $X=I, A=\operatorname{diag}(A)+\operatorname{offdiag}(A)$. Consider the transformation $A \longrightarrow \triangle^{-1} A \triangle$ with $\triangle=\operatorname{diag}\left(\delta_{1}, \cdots, \delta_{n}\right)$. The Gerschgorin discs:

$$
D_{i}=\left\{\left.z \in \mathbb{C}| | z-a_{i i}\left|\leq \sum_{\substack{k=1 \\ k \neq i}}^{n}\right| \frac{a_{i k} \delta_{k}}{\delta_{i}} \right\rvert\,=: \rho_{i}\right\}
$$

Example 5.2.1 Let $A=\left[\begin{array}{ccc}1 & \epsilon & \epsilon \\ \epsilon & 2 & \epsilon \\ \epsilon & \epsilon & 2\end{array}\right], D_{1}=\{z| | z-1 \mid \leq 2 \epsilon\}, D_{2}=D_{3}=\{z \mid$ $|z-2| \leq 2 \epsilon\}, 0<\epsilon \ll 1$. Transformation with $\triangle=\operatorname{diag}(1, k \epsilon, k \epsilon), k>0$ yields

$$
\tilde{A}=\triangle^{-1} A \triangle=\left[\begin{array}{ccc}
1 & k \epsilon^{2} & k \epsilon^{2} \\
\frac{1}{k} & 2 & \epsilon \\
\frac{1}{k} & \epsilon & 2
\end{array}\right]
$$

For \tilde{A} we have $\rho_{1}=2 k \epsilon^{2}, \rho_{2}=\rho_{3}=\frac{1}{k}+\epsilon$. The discs D_{1} and $D_{2}=D_{3}$ for \tilde{A} are disjoint if

$$
\rho_{1}+\rho_{2}=2 k \epsilon^{2}+\frac{1}{k}+\epsilon<1 .
$$

For this to be true we must clearly have $k>1$. The optimal value \tilde{k}, for which D_{1} and D_{2} (for \tilde{A}) touch one another, is obtained from $\rho_{1}+\rho_{2}=1$. One finds

$$
\tilde{k}=\frac{2}{1-\epsilon+\sqrt{(1-\epsilon)^{2}-8 \epsilon^{2}}}=1+\epsilon+O\left(\epsilon^{2}\right)
$$

and thus $\rho_{1}=2 \tilde{k} \epsilon^{2}=2 \epsilon^{2}+O\left(\epsilon^{3}\right)$. Through the transformation $A \longrightarrow \tilde{A}$ the radius ρ_{1} of D_{1} can thus be reduced from the initial 2ϵ to about $2 \epsilon^{2}$.

Theorem 5.2.2 (Bauer-Fike) If μ is an eigenvalue of $A+E \in \mathbb{C}^{n \times n}$ and $X^{-1} A X=$ $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, then

$$
\min _{\lambda \in \sigma(A)}|\lambda-\mu| \leq \kappa_{p}(X)\|E\|_{p},
$$

where $\|\cdot\|_{p}$ is p-norm and $\kappa_{p}(X)=\|X\|_{p}\left\|X^{-1}\right\|_{p}$.
Proof: We need only consider the case $\mu \notin \sigma(A)$. If $X^{-1}(A+E-\mu I) X$ is singular, then so is $I+(D-\mu I)^{-1}\left(X^{-1} E X\right)$. Thus,

$$
1 \leq\left\|(D-\mu I)^{-1}\left(X^{-1} E X\right)\right\|_{p} \leq \frac{1}{\min _{\lambda \in \sigma(A)}|\lambda-\mu|}\|X\|_{p}\|E\|_{p}\left\|X^{-1}\right\|_{p}
$$

Theorem 5.2.3 Let $Q^{*} A Q=D+N$ be a Schur decomposition of A with $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and N strictly upper triangular, $N^{n}=0$. If $\mu \in \sigma(A+E)$, then

$$
\min _{\lambda \in \sigma(A)}|\lambda-\mu| \leq \max \left\{\theta, \theta^{\frac{1}{n}}\right\},
$$

where $\theta=\|E\|_{2} \sum_{k=0}^{n-1}\|N\|_{2}^{k}$.
Proof: Define $\delta=\min _{\lambda \in \sigma(A)}|\lambda-\mu|$. The theorem is true if $\delta=0$. If $\delta>0$, then $I-(\mu I-A)^{-1} E$ is singular and we have

$$
\begin{aligned}
1 & \leq\left\|(\mu I-A)^{-1} E\right\|_{2} \\
& \leq\left\|(\mu I-A)^{-1}\right\|_{2}\|E\|_{2} \\
& =\left\|[(\mu I-D)-N]^{-1}\right\|_{2}\|E\|_{2}
\end{aligned}
$$

Since $(\mu I-D)$ is diagonal it follows that $\left[(\mu I-D)^{-1} N\right]^{n}=0$ and therefore

$$
[(\mu I-D)-N]^{-1}=\sum_{k=0}^{n-1}\left[(\mu I-D)^{-1} N\right]^{k}(\mu I-D)^{-1}
$$

Hence we have

$$
1 \leq \frac{\|E\|_{2}}{\delta} \max \left\{1, \frac{1}{\delta^{n-1}}\right\} \sum_{k=0}^{n-1}\|N\|_{2}^{k}
$$

from which the theorem readily follows.
Example 5.2.2 If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4.001\end{array}\right]$ and $E=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0.001 & 0 & 0\end{array}\right]$. Then $\sigma(A+E) \cong$
$\{1.0001,4.0582,3.9427\}$ and A 's matrix of eigenvectors satisfies $\kappa_{2}(X) \cong 10^{7}$. The BauerFike bound in Theorem 5.2.2 has order 10^{4}, but the Schur bound in Theorem 5.2.3 has order 10^{0}.

Theorems 5.2.2 and 5.2.3 each indicate potential eigenvalue sensitively if A is nonnormal. Specifically, if $\kappa_{2}(X)$ and $\|N\|_{2}^{n-1}$ is large, then small changes in A can induce large change in the eigenvalues.

Example 5.2.3 If $A=\left[\begin{array}{cc}0 & I_{9} \\ 0 & 0\end{array}\right]$ and $E=\left[\begin{array}{cc}0 & 0 \\ 10^{-10} & 0\end{array}\right]$, then for all $\lambda \in \sigma(A)$ and $\mu \in \sigma(A+E),|\lambda-\mu|=10^{\frac{-10}{10}}$. So a change of order 10^{-10} in A results in a change of order 10^{-1} in its eigenvalues.

Let λ be a simple eigenvalue of $A \in \mathbb{C}^{n \times n}$ and x and y satisfy $A x=\lambda x$ and $y^{*} A=\lambda y^{*}$ with $\|x\|_{2}=\|y\|_{2}=1$. Using classical results from Function Theory, it can be shown that there exists differentiable $x(\varepsilon)$ and $\lambda(\varepsilon)$ such that

$$
(A+\varepsilon F) x(\varepsilon)=\lambda(\varepsilon) x(\varepsilon)
$$

with $\|x(\varepsilon)\|_{2}=1$ and $\|F\|_{2} \leq 1$, and such that $\lambda(0)=\lambda$ and $x(0)=x$. By differentiating and set $\varepsilon=0$:

$$
A \dot{x}(0)+F x=\dot{\lambda}(0) x+\lambda \dot{x}(0) .
$$

Applying y^{*} to both sides and dividing by $y^{*} x \Longrightarrow$

$$
f(x, y)=y^{n}+p_{n-1}(x) y^{n-1}+p_{n-2}(x) y^{n-2}+\cdots+p_{1}(x) y+p_{0}(x) .
$$

Fix x, then $f(x, y)=0$ has n roots $y_{1}(x), \cdots, y_{n}(x) . f(0, y)=0$ has n roots $y_{1}(0), \cdots, y_{n}(0)$.
Theorem 5.2.4 Suppose $y_{i}(0)$ is a simple root of $f(0, y)=0$, then there is $\delta_{i}>0$ such that there is a simple root $y_{i}(x)$ of $f(x, y)=0$ defined by

$$
\left.y_{i}(x)=y_{i}(0)+p_{i 1} x+p_{i 2} x^{2}+\cdots, \quad \text { (may terminate! }\right)
$$

where the series is convergent for $|x|<\delta_{i} .\left(y_{i}(x) \longrightarrow y_{i}(0)\right.$ as $\left.x \longrightarrow 0\right)$.
Theorem 5.2.5 If $y_{1}(0)=\cdots=y_{m}(0)$ is a root of multiplicity m of $f(0, y)=0$, then there exists $\delta>0$ such that there are exactly m zeros of $f(x, y)=0$ when $|x|<\delta$ having the following properties:
(a) $\sum_{i=1}^{r} m_{i}=m, \quad m_{i} \geq 0$. The m roots fall into r groups.
(b) Those roots in the group of m_{i} are m_{i} values of a series

$$
y_{1}(0)+p_{i 1} z+p_{i 2} z^{2}+\cdots
$$

corresponding to the m_{i} different values of z defined by $z=x^{\frac{1}{m_{i}}}$.

Let λ_{1} be a simple root of A and x_{1} be the corresponding eigenvector. Since λ_{1} is simple, $\left(A-\lambda_{1} I\right)$ has at least one nonzero minor of order $n-1$. Suppose this lies in the first $(n-1)$ rows of $\left(A-\lambda_{1} I\right)$. Take $x_{1}=\left(A_{n 1}, A_{n 2}, \cdots, A_{n n}\right)$. Then

$$
\left(A-\lambda_{1} I\right)\left(\begin{array}{c}
A_{n 1} \\
A_{n 2} \\
\vdots \\
A_{n n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right),
$$

since $\sum_{j=1}^{n} a_{n j} A_{n j}=\operatorname{det}\left(A-\lambda_{1} I\right)=0$. Here $A_{n i}$ is the cofactor of $a_{n i}$, hence it is a polynomial in λ_{1} of degree not greater than $(n-1)$.

Let $\lambda_{1}(\varepsilon)$ be the simple eigenvalue of $A+\varepsilon F$ and $x_{1}(\varepsilon)$ be the corresponding eigenvector. Then the elements of $x_{1}(\varepsilon)$ are the polynomial in $\lambda_{1}(\varepsilon)$ and ε. Since the power series for $\lambda_{1}(\varepsilon)$ is convergent for small ε, so $x_{1}(\varepsilon)=x_{1}+\varepsilon z_{1}+\varepsilon^{2} z_{2}+\cdots$ is a convergent power series $|\dot{\lambda}(0)|=\frac{\left|y^{*} F x\right|}{\left|y^{*} x\right|} \leq \frac{1}{\left|y^{*} x\right|}$. The upper bound is attained if $F=y x^{*}$. We refer to the reciprocal of $s(\lambda) \equiv\left|y^{*} x\right|$ as the condition number of the eigenvalue λ.
$\lambda(\varepsilon)=\lambda(0)+\dot{\lambda}(0) \varepsilon+O\left(\varepsilon^{2}\right)$, an eigenvalue λ may be perturbed by an amount $\frac{\varepsilon}{s(\lambda)}$, if $s(\lambda)$ is small then λ is appropriately regarded as ill-conditioned. Note that $s(\lambda)$ is the cosine of the angle between the left and right eigenvectors associated with λ and is unique only if λ is simple. A small $s(\lambda)$ implies that A is near a matrix having a multiple eigenvalue. In particular, if λ is distinct and $s(\lambda)<1$, then there exists an E such that λ is a repeated eigenvalue of $A+E$ and

$$
\|E\|_{2} \leq \frac{s(\lambda)}{\sqrt{1-s^{2}(\lambda)}}
$$

this is proved in Wilkinson(1972).
Example 5.2.4 If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4.001\end{array}\right]$ and $E=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0.001 & 0 & 0\end{array}\right]$. Then $\sigma(A+E) \cong$ $\{1.0001,4.0582,3.9427\}$ and $s(1) \cong 0.79 \times 10^{0}, s(4)=0.16 \times 10^{-3}, s(4.001) \cong 0.16 \times 10^{-3}$. Observe that \| $E \|_{2} / s(\lambda)$ is a good estimate of the perturbation that each eigenvalue undergoes.

If λ is a repeated eigenvalue, then the eigenvalue sensitivity question is more complicated. For example $A=\left[\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right]$ and $F=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ then $\sigma(A+\varepsilon F)=\{1 \pm \sqrt{\varepsilon a}\}$. Note that if $a \neq 0$ then the eigenvalues of $A+\varepsilon F$ are not differentiable at zero, their rate of change at the origin is infinite. In general, if λ is a detective eigenvalue of A, then $O(\varepsilon)$ perturbations in A result in $O\left(\varepsilon^{\frac{1}{p}}\right)$ perturbations in λ where $p \geq 2$ (see Wilkinson AEP pp. 77 for a more detailed discussion).

We now consider the perturbations of invariant subspaces. Assume $A \in \mathbb{C}^{n \times n}$ has distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ and $\|F\|_{2}=1$. We have

$$
(A+\varepsilon F) x_{k}(\varepsilon)=\lambda_{k}(\varepsilon) x_{k}(\varepsilon), \quad\left\|x_{k}(\varepsilon)\right\|_{2}=1
$$

and

$$
y_{k}^{*}(\varepsilon)(A+\varepsilon F)=\lambda_{k}(\varepsilon) y_{k}^{*}(\varepsilon), \quad\left\|y_{k}(\varepsilon)\right\|_{2}=1,
$$

for $k=1, \cdots, n$, where each $\lambda_{k}(\varepsilon), x_{k}(\varepsilon)$ and $y_{k}(\varepsilon)$ are differentiable. Set $\varepsilon=0$:

$$
A \dot{x}_{k}(0)+F x_{k}=\dot{\lambda}_{k}(0) x_{k}+\lambda_{k} \dot{x}_{k}(0)
$$

where $\lambda_{k}=\lambda_{k}(0)$ and $x_{k}=x_{k}(0)$. Since $\left\{x_{i}\right\}_{i=1}^{n}$ linearly independent, write $\dot{x}_{k}(0)=$ $\sum_{i=1}^{n} a_{i} x_{i}$, so we have

$$
\sum_{\substack{i=1 \\ i \neq k}}^{n} a_{i}\left(\lambda_{i}-\lambda_{k}\right) x_{i}+F x_{k}=\dot{\lambda}_{k}(0) x_{k}
$$

But $y_{i}^{*}(0) x_{k}=y_{i}^{*} x_{k}=0$, for $i \neq k$ and thus

$$
a_{i}=y_{i}^{*} F x_{k} /\left[\left(\lambda_{k}-\lambda_{i}\right) y_{i}^{*} x_{i}\right], \quad i \neq k .
$$

Hence the Taylor expansion for $x_{k}(\varepsilon)$ is

$$
x_{k}(\varepsilon)=x_{k}+\varepsilon \sum_{\substack{i=1 \\ i \neq k}}^{n}\left\{\frac{y_{i}^{*} F x_{k}}{\left(\lambda_{k}-\lambda_{i}\right) y_{i}^{*} x_{i}}\right\} x_{i}+O\left(\varepsilon^{2}\right)
$$

Thus the sensitivity of x_{k} depends upon eigenvalue sensitivity and the separation of λ_{k} from the other eigenvalues.

Example 5.2.5 If $A=\left[\begin{array}{ll}1.01 & 0.01 \\ 0.00 & 0.99\end{array}\right]$, then $\lambda=0.99$ has Condition $\frac{1}{s(0.99)} \cong 1.118$ and associated eigenvector $x=(0.4472,-8.944)^{T}$. On the other hand, $\tilde{\lambda}=1.00$ of the "nearby" matrix $A+E=\left[\begin{array}{ll}1.01 & 0.01 \\ 0.00 & 1.00\end{array}\right]$ has an eigenvector $\tilde{x}=(0.7071,-0.7071)^{T}$.

Suppose

$$
Q^{*} A Q=\left[\begin{array}{cc}
T_{11} & T_{12} \tag{5.2.1}\\
0 & T_{22}
\end{array}\right] \begin{aligned}
& \} p \\
& \} q=n-p
\end{aligned}
$$

is a Schur decomposition of A with

$$
\begin{equation*}
Q=[\underbrace{Q_{1}}_{p}, \underbrace{Q_{2}}_{n-p}] . \tag{5.2.2}
\end{equation*}
$$

Definition 5.2.1 We define the separation between T_{11} and T_{22} by

$$
\operatorname{sep}_{F}\left(T_{11}, T_{22}\right)=\min _{Z \neq 0} \frac{\left\|T_{11} Z-Z T_{22}\right\|_{F}}{\|Z\|_{F}}
$$

Definition 5.2.2 Let X be a subspace of \mathbb{C}^{n}, X is called an invariant subspace of $A \in$ $\mathbb{C}^{n \times n}$, if $A X \subset X$ (i.e. $x \in X \Longrightarrow A x \in X$).

Theorem 5.2.6 $A \in \mathbb{C}^{n \times n}, V \in \mathbb{C}^{n \times r}$ and $\operatorname{rank}(V)=r$, then there are equivalent:
(a) there exists $S \in \mathbb{C}^{r \times r}$ such that $A V=V S$.
(b) $R(V)$ is an invariant subspace of A.

Proof: Trivial!
Remark 5.2.2 (a) If $S z=\mu z, z \neq 0$ then μ is eigenvalue of A with eigenvector $V z$.
(b) If V is a basis of X, then $\tilde{V}=V\left(V^{*} V\right)^{-\frac{1}{2}}$ is an orthogonal basis of X.

Theorem 5.2.7 $A \in \mathbb{C}^{n \times n}, Q=\left(Q_{1}, Q_{2}\right)$ orthogonal, then there are equivalent:
(a) If $Q^{*} A Q=B=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$, then $B_{21}=0$.
(b) $R\left(Q_{1}\right)$ is an invariant subspace of A.

Proof: $Q^{*} A Q=B \Longleftrightarrow A Q=Q B=\left(Q_{1}, Q_{2}\right)\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$. Thus $A Q_{1}=Q_{1} B_{11}+$ $Q_{2} B_{21}$.
(a) $B_{21}=0$, then $A Q_{1}=Q_{1} B_{11}$, so $R\left(Q_{1}\right)$ is an invariant subspace of A (from Theorem 5.2.6).
(b) $R\left(Q_{1}\right)$ is invariant subspace. There exists S such that $A Q_{1}=Q_{1} S=Q_{1} B_{11}+Q_{2} B_{21}$. Multiply with Q_{1}^{*}, then

$$
S=Q_{1}^{*} Q_{1} S=Q_{1}^{*} Q_{1} B_{11}+Q_{1}^{*} Q_{2} B_{21} .
$$

So $S=B_{11} \Longrightarrow Q_{2} B_{21}=0 \Longrightarrow Q_{2}^{*} Q_{2} B_{21}=0 \Longrightarrow B_{21}=0$.
Theorem 5.2.8 Suppose (5.2.1) and (5.2.2) hold and for $E \in \mathbb{C}^{n \times n}$ we partition $Q^{*} E Q$ as follows:

$$
Q^{*} E Q=\left[\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right]
$$

with $E_{11} \in \mathbb{R}^{p \times p}$ and $E_{22} \in \mathbb{R}^{(n-p) \times(n-p)}$. If

$$
\delta=\operatorname{sep}_{2}\left(T_{11}, T_{22}\right)-\left\|E_{11}\right\|_{2}-\left\|E_{22}\right\|_{2}>0
$$

and

$$
\left\|E_{21}\right\|_{2}\left(\left\|T_{12}\right\|_{2}+\left\|E_{12}\right\|_{2}\right) \leq \delta^{2} / 4
$$

Then there exists $P \in \mathbb{C}^{(n-k) \times k}$ such that

$$
\|P\|_{2} \leq 2\left\|E_{21}\right\|_{2} / \delta
$$

and such that the column of $\tilde{Q}_{1}=\left(Q_{1}+Q_{2} P\right)\left(I+P^{*} P\right)^{-\frac{1}{2}}$ form an orthonormal basis for a invariant subspace of $A+E$.(See Stewart 1973).

Lemma 5.2.1 Let $\left\{s_{m}\right\}$ and $\left\{p_{m}\right\}$ be two sequence defined by

$$
\begin{equation*}
s_{m+1}=s_{m} /\left(1-2 \eta p_{m} s_{m}\right), \quad p_{m+1}=\eta p_{m}^{2} s_{m+1}, \quad m=0,1,2, \cdots \tag{5.2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{0}=\sigma, \quad p_{0}=\sigma \gamma \tag{5.2.4}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
4 \eta \sigma^{2} \gamma<1 . \quad(\text { Here } \quad \sigma, \eta, \gamma>0) \tag{5.2.5}
\end{equation*}
$$

Then $\left\{s_{m}\right\}$ is monotonic increasing and bounded above; $\left\{p_{m}\right\}$ is monotonic decreasing, converges quadratically to zero.

Proof: Let

$$
\begin{equation*}
x_{m}=s_{m} p_{m}, \quad m=0,1,2, \cdots . \tag{5.2.6}
\end{equation*}
$$

From (5.2.3) we have

$$
\begin{equation*}
x_{m+1}=s_{m+1} p_{m+1}=\eta p_{m}^{2} s_{m}^{2} /\left(1-2 \eta p_{m} s_{m}\right)^{2}=\eta x_{m}^{2} /\left(1-2 \eta x_{m}\right)^{2}, \tag{5.2.7}
\end{equation*}
$$

(5.2.5) can be written as

$$
\begin{equation*}
0<x_{0}<\frac{1}{4 \eta} . \quad\left(\text { since } \quad x_{0}=s_{0} p_{0}=\sigma^{2} \gamma<\frac{1}{4 \eta}\right) \tag{5.2.8}
\end{equation*}
$$

Consider

$$
\begin{equation*}
x=f(x), \quad f(x)=\eta x^{2} /(1-2 \eta x)^{2}, \quad x \geq 0 . \tag{5.2.9}
\end{equation*}
$$

By

$$
\frac{d f(x)}{d x}=\frac{2 \eta x}{(1-2 \eta x)^{3}},
$$

we know that $f(x)$ is differentiable and monotonic increasing in $[0,1 / 2 \eta)$, and $\left.\frac{d f(x)}{d x}\right|_{x=0}=0$: The equation (5.2.9) has zeros 0 and $1 / 4 \eta$ in $[0,1 / 2 \eta$). Under Condition (5.2.8) the iteration x_{m} as in (5.2.7) must be monotone decreasing converges quadratically to zero. (Issacson \& Keller "Analysis of Num. Method 1996, Chapter 3 §1.) Thus

$$
\frac{s_{m+1}}{s_{m}}=\frac{1}{1-2 \eta x_{m}}=1+\frac{2 \eta x_{m}}{1-2 \eta x_{m}}=1+t_{m},
$$

where t_{m} is monotone decreasing, converges quadratically to zero, hence

$$
s_{m+1}=s_{0} \prod_{j=0}^{m} \frac{s_{j+1}}{s_{j}}=s_{0} \prod_{j=0}^{m}\left(1+t_{j}\right)
$$

monotone increasing, and converges to $s_{0} \prod_{j=0}^{\infty}\left(1+t_{j}\right)<\infty$, so $p_{m}=\frac{x_{m}}{s_{m}}$ monotone decreasing, and quadratically convergent to zero.

Theorem 5.2.9 Let

$$
\begin{equation*}
P A_{12} P+P A_{11}-A_{22} P-A_{21}=0 \tag{5.2.10}
\end{equation*}
$$

be the quadratic matrix equation in $P \in \mathbb{C}^{(n-l) \times l} \quad(1 \leq l \leq n)$, where

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=A, \quad \sigma\left(A_{11}\right) \bigcap \sigma\left(A_{22}\right)=\emptyset .
$$

Define operator T by:

$$
\begin{equation*}
T Q \equiv Q A_{11}-A_{22} Q, \quad Q \in \mathbb{C}^{(n-l) \times l} \tag{5.2.11}
\end{equation*}
$$

Let

$$
\begin{equation*}
\eta=\left\|A_{12}\right\|, \quad \gamma=\left\|A_{21}\right\| \tag{5.2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma=\left\|T^{-1}\right\|=\sup _{\|P\|=1}\left\|T^{-1} P\right\| . \tag{5.2.13}
\end{equation*}
$$

If

$$
\begin{equation*}
4 \eta \sigma^{2} \gamma<1 \tag{5.2.14}
\end{equation*}
$$

then according to the following iteration, we can get a solution P of (5.2.10) satisfying

$$
\begin{equation*}
\|P\| \leq 2 \sigma \gamma \tag{5.2.15}
\end{equation*}
$$

and this iteration is quadratic convergence.
Iteration: Let $A_{m}=\left[\begin{array}{ll}A_{11}^{(m)} & A_{12}^{(m)} \\ A_{21}^{(m)} & A_{22}^{(m)}\end{array}\right], \quad A_{0}=A$.
(i) Solve

$$
\begin{equation*}
T_{m} P_{m} \equiv P_{m} A_{11}^{(m)}-A_{22}^{(m)} P_{m}=A_{21}^{(m)} \tag{5.2.16}
\end{equation*}
$$

and get $\quad P_{m} \in \mathbb{C}^{(n-l) \times l}$;
(ii) Compute

$$
\begin{aligned}
& A_{11}^{(m+1)}=A_{11}^{(m)}+A_{12} P_{m}, \\
& A_{22}^{(m+1)}=A_{22}^{(m)}-P_{m} A_{12}, \\
& A_{21}^{(m+1)}=-P_{m} A_{12} P_{m} .
\end{aligned}
$$

Goto (i), solve P_{m+1}.
Then

$$
\begin{equation*}
P=\lim _{m \rightarrow \infty} \sum_{i=0}^{m} P_{i} \tag{5.2.17}
\end{equation*}
$$

is a solution of (5.2.10) and satisfies (5.2.15).

Proof: (a) Prove that for $m=0,1,2, \cdots, \quad T_{m}^{-1}$ exist: denote

$$
\begin{equation*}
\left\|T_{m}^{-1}\right\|=\sigma_{m}, \quad\left(T=T_{0}, \quad \sigma=\sigma_{0}\right) \tag{5.2.18}
\end{equation*}
$$

then

$$
\begin{equation*}
4\left\|A_{12}\right\|\left\|P_{m}\right\| \sigma_{m}<1 \tag{5.2.19}
\end{equation*}
$$

By induction, $m=0$, from $\sigma\left(A_{11}\right) \bigcap \sigma\left(A_{22}\right)=\emptyset$ we have $T_{0}=T$ is nonsingular. From (5.2.12)-(5.2.14) it holds

$$
4\left\|A_{12}\right\|\left\|P_{0}\right\| \sigma_{0}=4 \eta\left\|T^{-1} A_{21}\right\| \sigma \leq 4 \eta \sigma^{2} \gamma<1 .
$$

Suppose T_{m}^{-1} exists, and (5.2.19) holds, prove that T_{m+1}^{-1} exists and

$$
4\left\|A_{12}\right\|\left\|P_{m+1}\right\| \sigma_{m+1}<1
$$

From the definition

$$
\operatorname{sep}\left(A_{11}, A_{22}\right)=\inf _{\|Q\|=1}\left\|Q A_{11}-A_{22} Q\right\|
$$

and the existence of T^{-1} follows $\operatorname{sep}\left(A_{11}, A_{22}\right)=\left\|T^{-1}\right\|^{-1}=\sigma^{-1}$, and by the perturbation property of "sep" follows

$$
\begin{align*}
& \operatorname{sep}\left(A_{11}^{(m+1)}, A_{22}^{(m+1)}\right)=\operatorname{sep}\left(A_{11}^{(m)}+A_{12} P_{m}, A_{22}^{(m)}-P_{m} A_{12}\right) \\
& \geq \operatorname{sep}\left(A_{11}^{(m)}, A_{22}^{(m)}\right)-\left\|A_{12} P_{m}\right\|-\left\|P_{m} A_{12}\right\| \\
& \geq \frac{1-2\left\|A_{12}\right\|\left\|P_{m}\right\| \sigma_{m}}{\sigma_{m}}>0 . \tag{5.2.20}
\end{align*}
$$

From

$$
\operatorname{sep}\left(A_{11}, A_{22}\right) \leq \min \left\{\left|\lambda_{1}-\lambda_{2}\right|: \lambda_{1} \in \sigma\left(A_{11}\right), \lambda_{2} \in \sigma\left(A_{22}\right)\right\} .
$$

We have $\sigma\left(A_{11}^{(m+1)}\right) \bigcap \sigma\left(A_{22}^{(m+1)}\right)=\emptyset$, hence T_{m+1}^{-1} exists and

$$
\operatorname{sep}\left(A_{11}^{(m+1)}, A_{22}^{(m+1)}\right)=\left\|T_{m+1}^{-1}\right\|^{-1}=\sigma_{m+1}^{-1} .
$$

From (5.2.20) it follows

$$
\begin{equation*}
\sigma_{m+1} \leq \frac{\sigma_{m}}{1-2\left\|A_{12}\right\|\left\|P_{m}\right\| \sigma_{m}} \tag{5.2.21}
\end{equation*}
$$

Substitute (5.2.19) into (5.2.21), we get $\sigma_{m+1} \leq 2 \sigma_{m}$, and

$$
\left\|P_{m+1}\right\| \leq\left\|T_{m+1}^{-1}\right\|\left\|A_{21}^{m+1}\right\| \leq \sigma_{m+1}\left\|P_{m}\right\|^{2}\left\|A_{12}\right\|<\frac{1}{2}\left\|P_{m}\right\| .
$$

Hence

$$
2\left\|A_{12}\right\|\left\|P_{m+1}\right\| \sigma_{m+1} \leq 2\left\|A_{12}\right\|\left\|P_{m}\right\| \sigma_{m}<1 / 2
$$

This proved that T_{m}^{-1} exists for all $m=0,1,2, \cdots$ and (5.2.19) holds.
(b) Prove $\left\|P_{m}\right\|$ is quadratic convergence to zero. Construct sequences $\left\{q_{m}\right\},\left\{s_{m}\right\},\left\{p_{m}\right\}$ satisfying

$$
\begin{equation*}
\left\|A_{21}^{(m)}\right\| \leq q_{m}, \quad \sigma_{m} \leq s_{m}, \quad\left\|P_{m}\right\| \leq p_{m} \tag{5.2.22}
\end{equation*}
$$

From

$$
\begin{equation*}
A_{21}^{(m+1)}=-P_{m} A_{12} P_{m} \tag{5.2.23}
\end{equation*}
$$

follows

$$
\begin{equation*}
\left\|A_{21}^{(m+1)}\right\| \leq\left\|A_{12}\right\|\left\|P_{m}\right\|^{2} \leq \eta p_{m}^{2} . \tag{5.2.24}
\end{equation*}
$$

Define $\left\{q_{m}\right\}$ by

$$
\begin{equation*}
q_{m+1}=\eta p_{m}^{2}, \quad q_{0}=\gamma ; \tag{5.2.25}
\end{equation*}
$$

From (5.2.21) we have

$$
\begin{equation*}
\sigma_{m+1} \leq \frac{s_{m}}{1-2 \eta p_{m} s_{m}} \tag{5.2.26}
\end{equation*}
$$

Define $\left\{s_{m}\right\}$ by

$$
\begin{equation*}
s_{m+1}=\frac{s_{m}}{1-2 \eta p_{m} s_{m}}, \quad s_{0}=\sigma ; \tag{5.2.27}
\end{equation*}
$$

From (5.2.16) we have

$$
\left\|P_{m}\right\| \leq\left\|T_{m}^{-1}\right\|\left\|A_{21}^{(m)}\right\|=\sigma_{m}\left\|A_{21}^{(m)}\right\| \leq s_{m} q_{m} .
$$

Define $\left\{p_{m}\right\}$ by

$$
\begin{equation*}
p_{m+1}=s_{m+1} q_{m+1}=\eta p_{m}^{2} s_{m+1}, \quad p_{0}=\sigma \gamma . \tag{5.2.28}
\end{equation*}
$$

By Lemma 5.2.1 follows that $\left\{p_{m}\right\} \searrow 0$ monotone and form (5.2.22) follows that \| $P_{m} \| \longrightarrow 0$ quadratically.
(c) Prove $P^{(m)} \longrightarrow P$ and (5.2.15) holds. According to the method as in Lemma 5.2.1. Construct $\left\{x_{m}\right\}$ (see (5.2.6),(5.2.7)), that is

$$
\begin{equation*}
x_{m+1}=\frac{\eta x_{m}^{2}}{\left(1-2 \eta x_{m}\right)^{2}}, \quad s_{m+1}=\frac{s_{m}}{1-2 \eta x_{m}} \tag{5.2.29}
\end{equation*}
$$

and then

$$
\begin{equation*}
p_{m+1}=\frac{x_{m+1}}{s_{m+1}}=\frac{\eta x_{m}}{1-2 \eta x_{m}} p_{m} . \tag{5.2.30}
\end{equation*}
$$

By induction! For all $m=1,2, \cdots$ we have

$$
\begin{equation*}
p_{m}<\frac{1}{2} p_{m-1}, \quad x_{m}<\frac{1}{4 \eta} . \tag{5.2.31}
\end{equation*}
$$

In fact, substitute

$$
\begin{equation*}
\frac{\eta x_{0}}{1-2 \eta x_{0}}=\frac{\eta \sigma^{2} \gamma}{1-2 \eta \sigma^{2} \gamma}<\frac{1}{2} \tag{5.2.32}
\end{equation*}
$$

into (5.2.30) and get $p_{1}<\frac{1}{2} p_{0}$; From (5.2.29) and (5.2.32) it follows that

$$
x_{1}=\frac{1}{\eta}\left(\frac{\eta x_{0}}{1-2 \eta x_{0}}\right)^{2}<\frac{1}{4 \eta} .
$$

For $m=1$, (5.2.31) holds. Suppose for m (5.2.31) holds, form (5.2.30), we have

$$
p_{m+1}<\frac{1}{2} p_{m}
$$

by (5.2.29) it holds $x_{m+1}=\frac{1}{\eta}\left(\frac{\eta x_{m}}{1-2 \eta x_{m}}\right)^{2}<\frac{1}{4 \eta}$, that is (5.2.31) holds for $m+1$. Hence (5.2.31) holds for all nature number m. Therefore $p_{m}<p_{0} / 2^{m}, \quad m=1,2, \cdots$, hence $p^{(m)}$ converges, where

$$
\begin{equation*}
p^{(m)}=\sum_{i=0}^{m} p_{i}<\left(\sum_{i=0}^{m} \frac{1}{2^{i}}\right) p_{0}=2\left(1-\frac{1}{2^{m+1}}\right) p_{0} . \tag{5.2.33}
\end{equation*}
$$

Let

$$
P^{(m)}=\sum_{i=0}^{m} P_{i} .
$$

From (5.2.22), (5.2.28) and (5.2.33) follows that

$$
\left\|P^{(m)}\right\| \leq \sum_{i=0}^{m}\left\|P_{i}\right\| \leq \sum_{i=0}^{m} p_{i}<2\left(1-\frac{1}{2^{m+1}}\right) p_{0}=2\left(1-\frac{1}{2_{m+1}}\right) \sigma \gamma
$$

Let $m \longrightarrow \infty$, then (5.2.15) holds. By (b) the limit matrix P as in (5.2.17) is quadratic convergence.

Theorem 5.2.10 Let $A, E \in \mathbb{C}^{n \times n}, \quad Z_{1} \in \mathbb{C}^{n \times l}$ be the eigenmatrix of A corresponding to $A_{11} \in \mathbb{C}^{l \times l}$ (i.e. $A Z_{1}=Z_{1} A_{11}$) and $Z_{1}^{H} Z_{1}=I, \quad 1 \leq l \leq n$. Let $Z=\left(Z_{1}, Z_{2}\right)$ be unitary. Denote

$$
Z^{*} A Z=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right), \quad Z^{*} E Z=\left(\begin{array}{cc}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right) .
$$

Define T as in (5.2.11). Suppose $\sigma\left(A_{11}\right) \bigcap \sigma\left(A_{22}\right)=\emptyset$ and $\left\|T^{-1}\right\|\left(\left\|E_{11}\right\|+\left\|E_{22}\right\|\right.$ $)<1$. Let

$$
\begin{equation*}
\tilde{\sigma}=\frac{\left\|T^{-1}\right\|}{1-\left\|T^{-1}\right\|\left(\left\|E_{11}\right\|+\left\|E_{22}\right\|\right)}, \quad \tilde{\eta}=\left\|A_{12}\right\|+\left\|E_{12}\right\|, \quad \tilde{\gamma}=\left\|E_{21}\right\| . \tag{5.2.34}
\end{equation*}
$$

If

$$
\begin{equation*}
4 \tilde{\eta} \tilde{\sigma}^{2} \tilde{\gamma}<1 \tag{5.2.35}
\end{equation*}
$$

then there exists $P \in \mathbb{C}^{(n-l) \times l}$ with $\|P\| \leq 2 \tilde{\sigma} \tilde{\gamma}$ such that

$$
\begin{equation*}
\tilde{Z}_{1}=Z_{1}+Z_{2} P \in \mathbb{C}^{n \times l} \tag{5.2.36}
\end{equation*}
$$

is the eigenmatrix of $\tilde{A}=A+E$ corresponding to $\tilde{A}^{\prime}=A_{11}+E_{11}+\left(A_{12}+E_{12}\right) P$.

Proof: Prove that there exists $L=\left[\begin{array}{cc}I_{l} & 0 \\ P & I_{n-l}\end{array}\right]$ with $\|P\| \leq 2 \tilde{\sigma} \tilde{\gamma}$ such that

$$
L^{-1}\left[\begin{array}{cc}
A_{11}+E_{11} & A_{12}+E_{12} \tag{5.2.37}\\
E_{21} & A_{22}+E_{22}
\end{array}\right] L=\left[\begin{array}{cc}
\tilde{A}_{11}^{\prime} & * \\
0 & *
\end{array}\right] .
$$

This is resulted from solving the following equation

$$
\begin{equation*}
P\left(A_{12}+E_{12}\right) P+P\left(A_{11}+E_{11}\right)-\left(A_{22}+E_{22}\right) P-E_{21}=0 . \tag{5.2.38}
\end{equation*}
$$

Let

$$
\tilde{T} P \equiv P\left(A_{11}+E_{11}\right)-\left(A_{22}+E_{22}\right) P
$$

By (5.2.34), (5.2.35) and

$$
\begin{aligned}
& \left\|\tilde{T}^{-1}\right\|=\left\{\inf _{\|P\|=1}\left\|P\left(A_{11}+E_{11}\right)-\left(A_{22}+E_{22}\right) P\right\|\right\}^{-1} \\
& \leq\left\{\inf _{\|P\|=1}\left\|P A_{11}-A_{22} P\right\|-\sup _{\|P\|=1}\left\|P E_{11}-E_{22} P\right\|\right\}^{-1} \\
& \leq \frac{\left\|T^{-1}\right\|}{1-\left\|T^{-1}\right\|\left(\left\|E_{11}\right\|+\left\|E_{22}\right\|\right)}=\tilde{\sigma}
\end{aligned}
$$

we have

$$
4\left\|\left(A_{12}+E_{12}\right)\right\|\left\|\tilde{T}^{-1}\right\|^{2}\left\|E_{21}\right\| \leq 4 \tilde{\eta} \tilde{\sigma}^{2} \tilde{\gamma}<1
$$

Because the condition (5.2.14) in Theorem 5.2.9 is satisfied, by Theorem 5.2.9, the equation (5.2.38) has a solution P satisfying $\|P\| \leq 2 \tilde{\sigma} \tilde{\gamma}$. Then it follows the result from (5.2.37).

Remark 5.2.3 Normalized $Z_{1}+Z_{2} P \longrightarrow\left(Z_{1}+Z_{2} P\right)\left(I+P^{H} P\right)^{\frac{-1}{2}}$. Consider

$$
\begin{aligned}
& \operatorname{dist}\left(Z_{1},\left(Z_{1}+Z_{2} P\right)\left(I+P^{H} P\right)^{\frac{-1}{2}}\right) \\
& =\sqrt{1-\sigma_{\min }^{2}\left[Z_{1}^{H}\left(Z_{1}+Z_{2} P\right)\left(I+P^{H} P\right)^{\frac{-1}{2}}\right]} \\
& =\sqrt{1-\sigma_{\min }^{2}\left[\left(I+P^{H} P\right)^{\frac{-1}{2}}\right]} \\
& =\sqrt{1-\left[\sigma_{\max }\left(I+P^{H} P\right)\right]^{-1}} \\
& \leq \sqrt{1-\frac{1}{1+\|P\|_{2}^{2}}} \\
& =\frac{\|P\|_{2}}{\sqrt{1+\|P\|_{2}^{2}}} .
\end{aligned}
$$

Example 5.2.6 Let $n=3, l=2, k=1$,

$$
A=\left[\begin{array}{cc|c}
6 & -1 & 1 \\
1 & 4 & 0 \\
\hline 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad E=\left[\begin{array}{cc|c}
0.5 & -0.1 & 0.3 \\
-0.4 & 0.3 & -0.2 \\
\hline 0.3 & -0.2 & 0.3
\end{array}\right]=\left[\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right],
$$

$\tilde{A}=A+E=\left[\begin{array}{cc|c}6.5 & -1.1 & 1.3 \\ 0.6 & 4.3 & -0.2 \\ \hline 0.3 & -0.2 & 1.3\end{array}\right]=\left[\begin{array}{cc}\tilde{A}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22}\end{array}\right]$.
The Jordan form of A is $\left[\begin{array}{lll}5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right], \quad \sigma\left(A_{11}\right)=\{5,5\}, \quad \sigma\left(A_{22}\right)=\{1\}$.
The eigenmatrix of A is $Z_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$, which satisfies $A Z_{1}=Z_{1} A_{11}$.
Question 1: Compute $\left\|T^{-1}\right\|=\left\|\left[\begin{array}{cc}5 & 1 \\ -1 & 3\end{array}\right]^{-1}\right\|_{\infty}=\frac{3}{8}$, and $\left\|A_{12}\right\|_{\infty}=1,\left\|E_{12}\right\|_{\infty}=0.3$, $\left\|E_{21}\right\|_{\infty}=0.5,\left\|E_{11}\right\|_{\infty}=0.7,\left\|E_{22}\right\|_{\infty}=0.3$, to make sure the conditions in Theorem 5.2.10, which are $\tilde{\sigma}=0.6, \tilde{\eta}=1.3, \quad \tilde{\gamma}=0.5$. Then check $4 \tilde{\eta} \tilde{\sigma}^{2} \tilde{\gamma}=\frac{117}{125}<1$, i.e., (5.2.35) is satisfied.

Question 2: From theorem 5.2.9, take $A_{0}=\tilde{A}$. For all $m=0,1,2, \cdots$, we solve

$$
P_{m} A_{11}^{(m)}-A_{22}^{(m)} P_{m}=A_{21}^{(m)}
$$

and get

$$
P_{m}=A_{21}^{(m)} S_{m}, \text { where } S_{m}=\left(A_{11}^{(m)}-\left[\begin{array}{cc}
A_{22}^{(m)} & 0 \\
0 & A_{22}^{(m)}
\end{array}\right]\right)^{-T} .
$$

Compute $A_{11}^{(m+1)}=A_{11}^{(m)}+A_{12} P_{m}, \quad A_{22}^{(m+1)}=A_{22}^{(m)}-P_{m} A_{12}$ and $A_{21}^{(m+1)}=-P_{m} A_{12} P_{m}$. And then go back to solve P_{m+1}. Then

$$
P^{(m)}=\sum_{i=0}^{m} P_{i} .
$$

Compute $\left\|A_{21}^{(m)}\right\|_{\infty}=$? when $m=0,1,2,3$. and $\left\|P_{m}\right\|_{\infty}=$? when $m=0,1,2,3$.
Compute $A_{4}=\left[\begin{array}{cc}I & 0 \\ -P^{(3)} & I\end{array}\right] \tilde{A}\left[\begin{array}{cc}I & 0 \\ P^{(3)} & I\end{array}\right] \approx$?.
Compute $\tilde{Z}_{1} \approx \tilde{Z}_{1}^{(3)}=\left[\begin{array}{c}I \\ P^{(3)}\end{array}\right]=$?.
Compute $\tilde{A}^{\prime}=A_{11}^{(4)}=$?.

5.3 Power Iterations

Given $A \in \mathbb{C}^{n \times n}$ and a unitary $U_{0} \in \mathbb{C}^{n \times n}$. Consider the following iteration:

$$
\begin{equation*}
T_{0}=U_{0}^{*} A U_{0}, \text { for } \mathrm{k}=1,2,3, \cdots \tag{5.3.1}
\end{equation*}
$$

where $T_{k-1}=U_{k} R_{k}$ is the $Q R$ factorization of T_{k-1} and set $T_{k}=R_{k} U_{k}$. Since

$$
\begin{equation*}
T_{k}=\left(U_{0} U_{1} \cdots U_{k}\right)^{*} A\left(U_{0} U_{1} \cdots U_{k}\right) \tag{5.3.2}
\end{equation*}
$$

it is obvious that each T_{k} is unitary similar to A.
Is (5.3.2) always "converges" to a Schur decomposition of A ?
Iteration (5.3.1) is called the $\mathbf{Q R}$ iterations. (See Section 5.4)

5.3.1 Power Method

Let A be a diagonalizable matrix,

$$
\begin{equation*}
A x_{i}=\lambda_{i} x_{i}, \quad i=1, \cdots, n \tag{5.3.3}
\end{equation*}
$$

with

$$
\begin{equation*}
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n}\right| \tag{5.3.4}
\end{equation*}
$$

and let $u_{0} \neq 0$ be a given vector. From the expansion

$$
\begin{equation*}
u_{0}=\sum_{i=1}^{n} \alpha_{i} x_{i} \tag{5.3.5}
\end{equation*}
$$

follows that

$$
\begin{equation*}
A^{s} u_{0}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{s} x_{i}=\lambda_{1}^{s}\left\{\alpha_{1} x_{1}+\sum_{i=2}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{s} x_{i}\right\} . \tag{5.3.6}
\end{equation*}
$$

Thus the sequence of $\lambda_{1}^{-s} A^{s} u_{0}$ converges to a multiplicity of x_{1}. We consider two possibilities of normalization :
(A) \| \| - a given vector norm:

$$
\text { For } \begin{align*}
& i=0,1,2, \ldots, \\
& v_{i+1}=A u_{i} \\
& k_{i+1}=\left\|v_{i+1}\right\| \tag{5.3.7}\\
& u_{i+1}=v_{i+1} / k_{i+1} \text { with initial } u_{0}
\end{align*}
$$

End
Theorem 5.3.1 Under the assumption (5.3.4) and $\alpha_{1} \neq 0$ in (5.3.5) holds for the sequence defined by (5.3.7)

$$
\begin{aligned}
\lim _{i \rightarrow \infty} k_{i} & =\left|\lambda_{1}\right| \\
\lim _{i \rightarrow \infty} \varepsilon^{i} u_{i} & =\frac{x_{1}}{\left\|x_{1}\right\|} \frac{\alpha_{1}}{\left|\alpha_{1}\right|}, \text { where } \varepsilon=\frac{\left|\lambda_{1}\right|}{\lambda_{1}}
\end{aligned}
$$

Proof: It is obvious that

$$
\begin{equation*}
u_{s}=A^{s} u_{0} /\left\|A^{s} u_{0}\right\|, k_{s}=\left\|A^{s} u_{0}\right\| /\left\|A^{s-1} u_{0}\right\| . \tag{5.3.8}
\end{equation*}
$$

This follows from $\lambda_{1}{ }^{-s} A^{s} u_{0} \rightarrow \alpha_{1} x_{1}$ that

$$
\begin{aligned}
\left|\lambda_{1}\right|^{-s}\left\|A^{s} u_{0}\right\| & \rightarrow\left|\alpha_{1}\right|\left\|x_{1}\right\|, \\
\left|\lambda_{1}\right|^{-s+1}\left\|A^{s-1} u_{0}\right\| & \rightarrow\left|\alpha_{1}\right|\left\|x_{1}\right\|,
\end{aligned}
$$

and then

$$
\left|\lambda_{1}\right|^{-1}\left\|A^{s} u_{0}\right\| /\left\|A^{s-1} u_{0}\right\|=\left|\lambda_{1}\right|^{-1} k_{s} \longrightarrow 1
$$

From (5.3.6) follows now for $s \rightarrow \infty$

$$
\begin{equation*}
\varepsilon^{s} u_{s}=\varepsilon^{s} \frac{A^{s} u_{0}}{\left\|A^{s} u_{0}\right\|}=\frac{\alpha_{1} x_{1}+\sum \cdots}{\left\|\alpha_{1} x_{1}+\sum \cdots\right\|} \rightarrow \frac{\alpha_{1} x_{1}}{\left\|\alpha_{1} x_{1}\right\|}=\frac{x_{1}}{\left\|x_{1}\right\|} \frac{\alpha_{1}}{\left|\alpha_{1}\right|} . \tag{5.3.9}
\end{equation*}
$$

(B) Let l be a linear functional:

Consider

$$
\text { For } \begin{align*}
i & =0,1,2, \ldots, \\
& v_{i+1}=A u_{i}, \\
k_{i+1} & =l\left(v_{i+1}\right) \quad \text { e.g. } e_{n}\left(v_{i+1}\right), e_{1}\left(v_{i+1}\right), \tag{5.3.10}\\
u_{i+1} & =v_{i+1} / k_{i+1} \quad \text { with initial } u_{0} .
\end{align*}
$$

End
Then it holds
Theorem 5.3.2 Under the assumption of theorem 5.3.1, consider the method defined by (5.3.10) and suppose that $l\left(v_{i}\right) \neq 0$, for $i=1,2, \cdots$, and $l\left(x_{1}\right) \neq 0$. Then holds

$$
\lim _{i \rightarrow \infty} k_{i}=\lambda_{1} \quad \text { and } \quad \lim _{i \rightarrow \infty} u_{i}=\frac{x_{1}}{l\left(x_{1}\right)}
$$

Proof: As above we show that

$$
u_{i}=A^{i} u_{0} / l\left(A^{i} u_{0}\right), k_{i}=l\left(A^{i} u_{0}\right) / l\left(A^{i-1} u_{0}\right) .
$$

From (5.3.6) we get for $s \rightarrow \infty$

$$
\begin{gathered}
\lambda_{1}^{-s} l\left(A^{s} u_{0}\right) \rightarrow \alpha_{1} l\left(x_{1}\right), \\
\lambda_{1}^{-s+1} l\left(A^{s-1} u_{0}\right) \rightarrow \alpha_{1} l\left(x_{1}\right),
\end{gathered}
$$

thus

$$
\lambda_{1}{ }^{-1} k_{s} \rightarrow 1 .
$$

Similarly for $i \rightarrow \infty$,

$$
\begin{equation*}
u_{i}=\frac{A^{i} u_{0}}{l\left(A^{i} u_{0}\right)}=\frac{\alpha_{1} x_{1}+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{i} x_{j}}{l\left(\alpha_{1} x_{1}+\sum \cdots\right)} \rightarrow \frac{\alpha_{1} x_{1}}{\alpha_{1} l\left(x_{1}\right)} \tag{5.3.11}
\end{equation*}
$$

Remark 5.3.1 (a) As linear functional l, a fix component k will always be chosen $l(x)=$ $x_{k}, k f i x$.
(b) The above argument also holds, if λ is a multiple eigenvalue.
(c) The iteration (5.3.10) follows

$$
\begin{align*}
k_{s} & =\frac{l\left(A^{s} u_{0}\right)}{l\left(A^{s-1} u_{0}\right)}=\lambda_{1} \frac{\alpha_{1} l\left(x_{1}\right)+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{s} l\left(x_{j}\right)}{\alpha_{1} l\left(x_{1}\right)+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{s-1} l\left(x_{j}\right)} \\
& =\lambda_{1}+O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{s-1}\right) . \tag{5.3.12}
\end{align*}
$$

That is the convergence depends on $\left|\frac{\lambda_{2}}{\lambda_{1}}\right|$. In the case $\left|\frac{\lambda_{2}}{\lambda_{1}}\right|=1$ the iteration does not converge. Sometimes one can make the number $\left|\frac{\lambda_{2}}{\lambda_{1}}\right|$ small if we replace A with $A+\alpha I$, then the eigenvalue λ_{i} of A are transformed into $\lambda_{i}+\alpha$ and the convergence will be described by $\left(\max _{i=1}\left|\frac{\lambda_{i}+\alpha}{\lambda_{1}+\alpha}\right|\right)^{s}$. But this correction is not remarkable. The more useful method is use the inverse iteration. (See later !)

Now consider the case : A real and

$$
\begin{equation*}
\lambda_{1}=\bar{\lambda}_{2},\left|\lambda_{1}\right|>\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n}\right| . \tag{5.3.13}
\end{equation*}
$$

We can choose $x_{2}=\bar{x}_{1}$ such that

$$
A x_{1}=\lambda_{1} x_{1}, \quad A \bar{x}_{1}=\bar{\lambda}_{1} \bar{x}_{1}=\lambda_{2} \bar{x}_{1} .
$$

Let u_{0} be real and let

$$
u_{0}=\alpha_{1} x_{1}+\bar{\alpha}_{1} \bar{x}_{1}+\sum_{i \geq 3}^{n} \alpha_{i} x_{i}, \quad \lambda_{1}=\gamma e^{i \beta}, \quad \alpha_{1}=\rho e^{i \alpha} .
$$

Then from (5.3.6) and (5.3.10) we have

$$
\begin{aligned}
A^{s} u_{0} & =\alpha_{1} \lambda_{1}^{s} x_{1}+{\overline{\alpha_{1}}}_{\lambda_{1}}{ }^{s} \overline{x_{1}}+\sum_{i \geq 3}^{n} \alpha_{i} \lambda_{i}^{s} x_{i} \\
& =\gamma^{s}\left\{\rho e^{i(\alpha+s \beta)} x_{1}+\rho e^{-i(\alpha+s \beta)} \overline{x_{1}}+\sum_{i \geq 3}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{\gamma}\right)^{s} x_{i}\right\} .
\end{aligned}
$$

It happens oscillation without convergence!
Let

$$
h(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\bar{\lambda}_{1}\right)=\lambda^{2}-p \lambda-q, \quad p=\lambda_{1}+\bar{\lambda}_{1} q=-\lambda_{1} \bar{\lambda}_{1} .
$$

Then

$$
\left(A^{s+2}-p A^{s+1}-q A^{s}\right) u_{0}=\alpha_{1} \lambda_{1}^{s} \underbrace{h\left(\lambda_{1}\right)}_{=0} x_{1}+\bar{\alpha}_{1} \bar{\lambda}_{1}^{s} \underbrace{h\left(\bar{\lambda}_{1}\right)}_{=0} \bar{x}_{1}+\sum_{i=3}^{n} \alpha_{i} h\left(\lambda_{i}\right) \lambda_{i}^{s} x_{i} .
$$

Together with

$$
l\left(A^{s} u_{0}\right)=r^{s}\left\{\rho e^{i(\alpha+s \beta)} l\left(x_{1}\right)+\rho e^{-i(\alpha+s \beta)} l\left(\bar{x}_{1}\right)+\sum_{i=3}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{\gamma}\right)^{s} l\left(x_{i}\right)\right\}
$$

follows

$$
k_{s+2} k_{s+1} u_{s+2}-p k_{s+1} u_{s+1}-q u_{s}=\frac{\left(A^{s+2}-p A^{s+1}-q A^{s}\right) u_{0}}{l\left(A^{s} u_{0}\right)} \rightarrow 0 .
$$

In this limit case u_{s+2}, u_{s+1} and u_{s} are linearly dependent. For fix s we determine p_{s} and q_{s} such that

$$
\left\|k_{s+2} k_{s+1} u_{s+2}-p_{s} k_{s+1} u_{s+1}-q_{s} u_{s}\right\|_{2}=\min !
$$

We have to project the lot of $k_{s+2} k_{s+1} u_{s+2}$ on the plane determined by $k_{s+1} u_{s+1}$ and u_{s}, this leads

$$
k_{s+2} k_{s+1} u_{s+2}-p k_{s+1} u_{s+1}-q u_{s} \perp u_{s+i}, \quad i=0,1
$$

or

$$
\left(\begin{array}{cc}
u_{s+1}^{T} u_{s+1} & u_{s+1}^{T} u_{s} \tag{5.3.14}\\
u_{s}^{T} u_{s+1} & u_{s}^{T} u_{s}
\end{array}\right)\binom{p_{s} k_{s+1}}{q_{s}}=k_{s+1} k_{s+2}\binom{u_{s+1}^{T} u_{s+2}}{u_{s}^{T} u_{s+2}} .
$$

We can show that $p_{s} \rightarrow p, q_{s} \rightarrow q$.

5.3.2 Inverse Power Iteration

Let α be an approximate eigenvalue of λ_{1}, i.e., $\alpha \approx \lambda_{1}$, then $(\alpha I-A)^{-1}$ has eigenvalues $\frac{1}{\alpha-\lambda_{1}}, \frac{1}{\alpha-\lambda_{2}}, \cdots, \frac{1}{\alpha-\lambda_{n}}$. Substitute A by $(\alpha I-A)^{-1}$, then the convergence is determined by $\max _{i \neq 1}\left|\frac{\alpha-\lambda_{1}}{\alpha-\lambda_{i}}\right|$.

Consider

$$
\text { For } \quad \begin{align*}
& i=0,1,2, \ldots, \\
& v_{i+1}=(\alpha I-A)^{-1} u_{i} \\
& k_{i+1}=l\left(v_{i+1}\right) \tag{5.3.15}\\
& u_{i+1}=v_{i+1} / k_{i+1} \quad \text { with initial vector } u_{0}
\end{align*}
$$

End
Let A and u_{0} be given and satisfy (5.3.3) and (5.3.5) respectively. Then we have the following theorem.

Theorem 5.3.3 If $\left|\alpha-\lambda_{1}\right|<\left|\alpha-\lambda_{i}\right|$, for $i \neq 1$ and suppose that $\alpha_{1} \neq 0, l\left(x_{1}\right) \neq 0$, and $l\left(v_{i}\right) \neq 0$ for all i in (5.3.15) then holds

$$
\begin{align*}
\lim _{i \rightarrow \infty} k_{i} & =\frac{1}{\alpha-\lambda_{1}}, \quad\left(\lambda_{1} \approx \alpha-\frac{1}{k_{i}}\right) \\
\lim _{i \rightarrow \infty} u_{i} & =\frac{x_{1}}{l\left(x_{1}\right)} . \tag{5.3.16}
\end{align*}
$$

Variant I: (5.3.15) with constant α.
Variant II: Updating α.

$$
\begin{array}{ll}
\text { Given } & \alpha_{(0)}=\alpha \text { and } u_{0} . \\
\text { For } & i=0,1,2, \ldots, \\
& v_{i+1}=\left(\alpha_{(i)} I-A\right)^{-1} u_{i}, \\
& k_{i+1}=l\left(v_{i+1}\right), \tag{5.3.17}\\
& u_{i+1}=\frac{v_{i+1}}{k_{i+1}} \text { and } \alpha_{(i+1)}=\alpha_{(i)}-\frac{1}{k_{i+1}} .
\end{array}
$$

Show that: The method (5.3.17) is quadratic convergence.
Let $\alpha_{(i)} \approx \lambda_{1}, u_{i} \approx x_{1}$, and $l\left(x_{1}\right)=1$. The remaining components of x_{1} are smaller than 1 (Here $\left.l(z)=z_{1}\right)$. Let

$$
\begin{equation*}
u_{m}=\left(1+\varepsilon_{1}^{(m)}\right) x_{1}+\sum_{j=2}^{n} \varepsilon_{j}^{(m)} x_{j}, \quad \tilde{\varepsilon}^{(m)}=\left|\alpha^{(m)}-\lambda_{1}\right| \tag{5.3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{m}=\max \left(\left|\varepsilon_{1}^{(m)}\right|, \cdots,\left|\varepsilon_{n}^{(m)}\right|, \tilde{\varepsilon}^{(m)}\right) . \tag{5.3.19}
\end{equation*}
$$

Claim: There exist a constant M independent on m with

$$
\begin{equation*}
\delta_{m+1} \leq M \delta_{m}^{2} \tag{5.3.20}
\end{equation*}
$$

Let $\varepsilon_{i}^{(m)} \approx \varepsilon_{i}$. Then we have

$$
\begin{equation*}
v_{m+1}=k_{m+1} u_{m+1}=\frac{1+\varepsilon_{1}}{\alpha_{(m)}-\lambda_{1}} x_{1}+\sum_{j=2}^{n} \frac{\varepsilon_{j}}{\alpha_{(m)}-\lambda_{j}} x_{j} \tag{5.3.21}
\end{equation*}
$$

$$
\begin{align*}
\alpha_{(m+1)} & =\alpha_{(m)}-\frac{1}{k_{m+1}}=\alpha_{(m)}-\left(\alpha_{m}-\lambda_{1}\right)\left[\left(1+\varepsilon_{1}\right)+\sum_{j=2}^{n} \frac{\varepsilon_{j}\left(\alpha_{(m)}-\lambda_{1}\right)}{\alpha_{(m)}-\lambda_{j}} x_{j, 1}\right]^{-1} . \\
& =\alpha_{(m)}-\left(\alpha_{(m)}-\lambda_{1}\right)\left(1+O\left(\delta_{m}\right)\right)=\lambda_{1}+\delta_{m} O\left(\delta_{m}\right) . \tag{5.3.22}
\end{align*}
$$

From (5.3.21),

$$
\begin{aligned}
u_{m+1} & =\frac{k_{m+1} u_{m+1}}{k_{m+1}} \\
& =\left[\left(1+\varepsilon_{1}\right) x_{1}+\sum_{j \geq 2} \frac{\varepsilon_{j}\left(\alpha_{(m)}-\lambda_{1}\right)}{\alpha_{(m)}-\lambda_{j}} x_{j}\right]\left[1+\varepsilon_{1}+\sum_{j \geq 2} \frac{\varepsilon_{j}\left(\alpha_{(m)}-\lambda_{1}\right)}{\alpha_{(m)}-\lambda_{j}} x_{j, 1}\right]^{-1} \\
& =\left[x_{1}+\sum_{j \geq 2} \frac{\varepsilon_{j}\left(\alpha_{(m)}-\lambda_{1}\right)}{\left(1+\varepsilon_{1}\right)\left(\alpha_{(m)}-\lambda_{j}\right)} x_{j}\right] \underbrace{\left.1+\sum_{j \geq 2} \frac{\varepsilon_{j}\left(\alpha_{(m)}-\lambda_{1}\right)}{\left(1+\varepsilon_{1}\right)\left(\alpha_{(m)}-\lambda_{j}\right)} x_{j, 1}\right]^{-1}}_{1+O\left(\delta_{m}^{2}\right)} . \\
& =\left(1+\varepsilon_{1}^{(m+1)}\right) x_{1}+\sum_{j \geq 2} \varepsilon_{1}^{(m+1)} x_{j}
\end{aligned}
$$

with $\varepsilon_{i}^{(m+1)}=O\left(\delta_{m}^{2}\right)$. This implies $\delta_{m+1} \leq M \delta_{m}^{2}$.

5.3.3 Connection with Newton-method

Consider the nonlinear equations

$$
\begin{aligned}
& A u-\lambda u=0, \\
& l^{T} u=1,
\end{aligned}
$$

for $n+1$ unknowns u and λ. Let

$$
\begin{equation*}
F\binom{u}{\lambda}:=\binom{A u-\lambda u}{l^{T} u-1}=0 . \tag{5.3.23}
\end{equation*}
$$

Newton method for (5.3.23):

$$
\binom{u_{i+1}}{\lambda_{i+1}} \equiv\binom{u}{\lambda}_{(i+1)}=\binom{u}{\lambda}_{(i)}-F^{\prime}\binom{u}{\lambda}_{(i)}^{-1}\left(F\binom{u}{\lambda}_{(i)}\right),
$$

where

$$
F^{\prime}\binom{u}{\lambda}=\left(\begin{array}{cc}
A-\lambda I & -u \\
l^{T} & 0
\end{array}\right) .
$$

Multiplying with $F^{\prime}\binom{u}{\lambda}_{(i)}$ and write the first n equations and the last equation separately and simplify

$$
\begin{equation*}
\left(A-\lambda_{i} I\right) u_{i+1}=\left(\lambda_{i+1}-\lambda_{i}\right) u_{i}, \quad l^{T} u_{i+1}=1 . \tag{5.3.24}
\end{equation*}
$$

We see that (5.3.24) identifies with (5.3.17) and is also quadratic convergence.

Variant III: A is real symmetric and $\alpha_{m+1}=$ Rayleigh Quotient
Give u_{0} with $\left\|u_{0}\right\|_{2}=1$ and $\alpha_{0}=u_{0}^{T} A u_{0}$,
For $m=0,1,2, \ldots$,

$$
\begin{align*}
v_{m+1} & =\left(\alpha_{m} I-A\right)^{-1} u_{m}, \\
u_{m+1} & =\frac{v_{m+1}}{\left\|v_{m+1}\right\|_{2}}, \tag{5.3.25}\\
\alpha_{m+1} & =u_{m+1}^{T} A u_{m+1} .
\end{align*}
$$

End
Claim: The iteration (5.3.25) is cubic convergence.
The eigenvectors x_{i} of A form an orthonormal system

$$
\begin{equation*}
x_{i}^{T} x_{j}=\delta_{i j} . \tag{5.3.26}
\end{equation*}
$$

As above, let $\varepsilon_{i}^{(m)}$ and δ_{m} be defined in (5.3.18) and (5.3.19). From (5.3.26) follows $\left(\varepsilon_{i}=\varepsilon_{i}^{(m)}\right)$:

$$
\left\|u_{m}\right\|_{2}^{2}=1=\left(1+\varepsilon_{1}\right)^{2}+\sum_{j \geq 2} \varepsilon_{j}^{2}=1+2 \varepsilon_{1}+\sum_{j=1}^{n} \varepsilon_{j}^{2} .
$$

So $\varepsilon_{1} \leq \frac{n}{2} \delta_{m}^{2}=O\left(\delta_{m}^{2}\right)$. That is

$$
\begin{align*}
\alpha_{(m)} & =u_{m}^{T} A u_{m}=\lambda_{1}\left(1+\varepsilon_{1}\right)^{2}+\sum_{j \geq 2} \lambda_{j} \varepsilon_{j}^{2} \tag{5.3.27}\\
& =\lambda_{1}+2 \varepsilon_{1} \lambda_{1}+\sum_{j=1}^{n} \lambda_{j} \varepsilon_{j}^{2}=\lambda_{1}+O\left(\delta_{m}^{2}\right) .
\end{align*}
$$

Thus $\tilde{\varepsilon}^{(m)}=O\left(\delta_{m}^{2}\right)$. On the other hand,

$$
\begin{aligned}
v_{m+1}^{T} v_{m+1} & =\frac{\left(1+\varepsilon_{1}\right)^{2}}{\left(\alpha_{(m)}-\lambda_{1}\right)^{2}}+\sum_{j \geq 2} \frac{\varepsilon_{j}^{2}}{\left(\alpha_{(m)}-\lambda_{j}\right)^{2}} \\
& =\left|\frac{1+\varepsilon_{1}}{\alpha_{(m)}-\lambda_{1}}\right|^{2}\{\underbrace{1+\sum_{j \geq 2} \frac{\varepsilon_{j}^{2} \tilde{\varepsilon}^{(m) 2}}{\left(1+\varepsilon_{1}\right)^{2}\left(\alpha_{(m)}-\lambda_{j}\right)^{2}}}_{1+O\left(\delta_{m}^{6}\right)}\}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
u_{m+1} & =\left(\frac{1+\varepsilon_{1}}{\alpha_{(m)}-\lambda_{1}} x_{1}+\sum_{j \geq 2} \frac{\varepsilon_{j}}{\alpha_{(m)}-\lambda_{j}} x_{j}\right)\left(1+O\left(\delta_{m}^{6}\right)\right)\left(\frac{\alpha_{(m)}-\lambda_{1}}{1+\varepsilon_{1}}\right) \\
& =\left[x_{1}+\sum_{j \geq 2} \frac{\varepsilon_{j} \tilde{\varepsilon}^{(m)}}{\left(1+\varepsilon_{1}\right)\left(\alpha_{(m)}-\lambda_{j}\right)} x_{j}\right]\left(1+O\left(\delta_{m}^{6}\right)\right) \\
& =\left(1+\varepsilon_{1}^{(m+1)}\right) x_{1}+\sum_{j \geq 2} \varepsilon_{j}^{(m+1)} x_{j}
\end{aligned}
$$

with $\left|\varepsilon_{j}^{(m+1)}\right| \leq M \delta_{m}^{3}(j=1, \cdots, n)$. As in (5.3.27) we have

$$
\left|\alpha_{(m+1)}-\lambda_{1}\right|=O\left(\delta_{m+1}^{2}\right)=O\left(\delta_{m}^{6}\right)
$$

5.3.4 Orthogonal Iteration

Given $Q_{0} \in \mathbb{C}^{n \times p}$ with orthogonal columns and $1 \leq p<n$.

$$
\begin{align*}
& \text { For } k=1,2, \cdots \\
& \quad Z_{k}=A Q_{k-1}, \\
& \tag{5.3.28}\\
& \text { End } Q_{k} R_{k}=Z_{k}, \quad(\mathrm{QR} \text { decomposition })
\end{align*}
$$

Note that if $p=1$ this is just the power method. Suppose that

$$
\begin{equation*}
Q^{*} A Q=T=\operatorname{diag}\left(\lambda_{i}\right)+N, \quad\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right| \tag{5.3.29}
\end{equation*}
$$

is a Schur decomposition of A and partition Q, T and N as follows

$$
Q=[\overbrace{Q_{\alpha}}^{p}, \overbrace{Q_{\beta}}^{n-p}], T=\left(\begin{array}{cc}
T_{11} & T_{12} \tag{5.3.30}\\
0 & T_{22}
\end{array}\right), \quad N=\left(\begin{array}{cc}
N_{11} & N_{12} \\
0 & N_{22}
\end{array}\right)
$$

If $\left|\lambda_{p}\right|>\left|\lambda_{p+1}\right|$ we define $D_{p}(A)=\mathcal{R}\left(Q_{\alpha}\right) \equiv \operatorname{Range}\left(Q_{\beta}\right)$ is a dominant invariant subspace. It is the unique subspace associated with associated with $\lambda_{1}, \cdots, \lambda_{p}$. The following theorem (without proof see Golub/Vanloan p.215) shows that the subspace $\mathcal{R}\left(Q_{k}\right)$ generated by (5.3.28) converges to $D_{p}(A)$ at a rate proportional to $\left|\frac{\lambda_{p+1}}{\lambda_{p}}\right|^{k}$ under reasonable assumptions.

Theorem 5.3.4 Let the Schur form of A be given by (5.3.29) and (5.3.30). Assume that $\left|\lambda_{p}\right|>\left|\lambda_{p+1}\right|$ and that $\theta \geq 0$ satisfies

$$
(1+\theta)\left|\lambda_{p}\right|>\|N\|_{F}
$$

If $Q_{0} \in \mathbb{C}^{n \times p}$ with $Q_{0}^{*} Q_{0}=I_{p}$ and $d=\operatorname{dist}\left[D_{p}\left(A^{*}\right), \mathcal{R}\left(Q_{0}\right)\right]<1$, then Q_{k} generated by (5.3.28) satisfy

$$
\operatorname{dist}\left[D_{p}(A), \mathcal{R}\left(Q_{k}\right)\right] \leq \frac{(1+\theta)^{n-2}}{\sqrt{1-d^{2}}}\left[1+\frac{\left\|T_{12}\right\|_{F}}{\operatorname{sep}\left(T_{11}, T_{12}\right)}\right]\left[\frac{\left|\lambda_{p+1}\right|+\|N\|_{F} /(1+\theta)}{\left|\lambda_{p}\right|-\|N\|_{F} /(1+\theta)}\right]^{k} .
$$

When θ is chosen large enough then the theorem essentially shows that

$$
\operatorname{dist}\left[D_{p}(A), R\left(Q_{k}\right)\right] \leq c\left|\lambda_{p+1} / \lambda_{p}\right|^{k},
$$

where c depends on $\operatorname{sep}\left(T_{11}, T_{12}\right)$ and $\|N\|_{F}$. Needless to say, the convergence can be very slow if the gap between $\left|\lambda_{p}\right|$ and $\left|\lambda_{p+1}\right|$ is not sufficiently wide. To prove this theorem we need to prove the following two lemmas 5.3.1 and 5.3.3.
Lemma 5.3.1 Let $T=\left[\begin{array}{cc}T_{11} & T_{12} \\ 0 & T_{22}\end{array}\right]$ and define the linear operator $\varphi: \mathbb{C}^{p \times q} \rightarrow \mathbb{C}^{p \times q}$ by

$$
\varphi(X)=T_{11} X-X T_{22}
$$

Then φ is nonsingular $\Longleftrightarrow \sigma\left(T_{11}\right) \cap \sigma\left(T_{22}\right)=\phi$. if φ is nonsingular and $\varphi(Z)=-T_{12}$, then $Y^{-1} T Y=\operatorname{diag}\left(T_{11}, T_{22}\right)$, where $Y=\left[\begin{array}{cc}I_{p} & Z \\ 0 & I_{q}\end{array}\right]$.

Proof: " ": Suppose $\varphi(X)=0$ for $X \neq 0$ and

$$
U^{*} X V=\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right], \quad \Sigma_{r}=\operatorname{diag}\left(\sigma_{i}\right), \quad r=\operatorname{rank}(X) .
$$

Substituting into $T_{11} X=X T_{22}$ gives

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right],
$$

where

$$
U^{*} T_{11} U=\left(A_{i j}\right) \text { and } V^{*} T_{22} V=\left(B_{i j}\right)
$$

By comparing blocks, we see that $A_{21}=B_{12}=0$ and $\sigma\left(A_{11}\right)=\sigma\left(B_{11}\right)$. Conversely, $\phi \neq \sigma\left(A_{11}\right)=\sigma\left(B_{11}\right) \subset \sigma\left(T_{11}\right) \cap \sigma\left(T_{22}\right)$.
" \Longrightarrow ": If $\lambda \in \sigma\left(T_{11}\right) \cap \sigma\left(T_{22}\right)$, then there are $x \neq 0, y \neq 0$ satisfy $T_{11} x=\lambda x$ and $y^{*} T_{22}=\lambda y^{*}$. This implies $\varphi\left(x y^{*}\right)=0$.

Finally, if φ nonsingular, then Z exists and

$$
Y^{-1} T Y=\left[\begin{array}{cc}
T_{11} & T_{11} Z-Z T_{22}+T_{12} \\
0 & T_{22}
\end{array}\right]=\left[\begin{array}{cc}
T_{11} & 0 \\
0 & T_{22}
\end{array}\right]
$$

\{ Another proof \}
For $A \in \mathbb{C}^{m \times m}$ and $B \in \mathbb{C}^{m \times m}$ define the Kronecker product of A and B by

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 m} B \\
\vdots & & \vdots \\
a_{m 1} B & \cdots & a_{m m} B
\end{array}\right]=\left[a_{i j} B\right]_{i, j=1}^{m} \in \mathbb{C}^{m n \times m n}
$$

Let $C=\left[c_{1}, \cdots, c_{n}\right] \in \mathbb{C}^{m \times m}$. Define

$$
\operatorname{vec}(C)=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \in \mathbb{C}^{m n \times 1}
$$

Consider the linear matrix equation

$$
\begin{equation*}
A X-X B=C \tag{5.3.31}
\end{equation*}
$$

Lemma 5.3.2 $\operatorname{vec}(A X-X B)=\left(I \otimes A-B^{T} \otimes I\right) \operatorname{vec}(X)$.

Proof:

$$
\begin{aligned}
& (A X)_{j}=A X_{j} \rightarrow \operatorname{vec}(A X)=(I \otimes A) \operatorname{vec}(X), \\
& (X B)_{j}=\sum_{k=1}^{n} b_{k j} X_{k}=\left[b_{1 j} I, \cdots, b_{n j} I\right] \operatorname{vec}(X) .
\end{aligned}
$$

By linearity of vec we have

$$
\operatorname{vec}(A X-X B)=\operatorname{vec}(A X)-\operatorname{vec}(X B)=\left[(I \otimes A)-\left(B^{T} \otimes I\right)\right] \operatorname{vec}(X)
$$

Let $G=\left[\left(I \otimes A-B^{T} \otimes I\right)\right], X=\operatorname{vec}(X), r=\operatorname{vec}(C)$. Then the equation (5.3.31) is equivalent to $G x=r$ and the equation (5.3.31) has a unique solution $\Longleftrightarrow \sigma(A) \cap \sigma(B)=$ ϕ. There are unitary Q_{1}, Z_{1} such that

$$
Q_{1}^{*} A Q_{1}=A_{1}=\left[\begin{array}{ccc}
r_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & r_{m}
\end{array}\right], \quad Z_{1}^{*} B Z_{1}=B_{1}=\left[\begin{array}{ccc}
s_{1} & 0 & 0 \\
* & \ddots & 0 \\
* & * & s_{m}
\end{array}\right]
$$

(5.3.31) becomes

$$
\begin{aligned}
& Q_{1}^{*} A Q_{1} Q_{1}^{*} X Z_{1}-Q_{1}^{*} X Z_{1} Z_{1}^{*} B Z_{1}=Q_{1}^{*} C Z_{1} \equiv C_{1} \\
& \Longleftrightarrow A_{1} X_{1}-X_{1} B_{1}=C_{1}, \text { where } X_{1}=Q_{1}^{*} X Z_{1} \\
& \Longleftrightarrow G_{1} x_{1}=r_{1},
\end{aligned}
$$

where $G_{1}=\left[I \otimes A_{1}-B_{1} \otimes I\right]$ and $x_{1}=\operatorname{vec}\left(X_{1}\right), r_{1}=\operatorname{vec}\left(C_{1}\right)$. Also

$$
\operatorname{det}\left(G_{1}\right)=\prod_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}\left(r_{i}-r_{j}\right)
$$

Hence we have $\sigma(A) \cap \sigma(B)=\phi \Longleftrightarrow\left(r_{j}-s_{j}\right) \neq 0 \quad(i=1, \cdots m, j=1, \cdots n) \Longleftrightarrow$ $\operatorname{det}\left(G_{1}\right) \neq 0 \Longleftrightarrow G_{1} x_{1}=r_{1}$, has a unique solution. \Longleftrightarrow the equation (5.3.31) has a unique solution X.

Exercise:

(a) Consider the linear matrix equation $A X B-C X D=R$ where $A, C \in \mathbb{C}^{m \times m}$, $B, D \in \mathbb{C}^{n \times n}$ and $X, R \in \mathbb{C}^{m \times n}$. The equation has a unique solution $\Longleftrightarrow \sigma(A, C) \cap$ $\sigma(B, D)=\phi$.
(b) Consider $\left\{\begin{array}{l}A X-Y B=R, \\ C X-Y D=S,\end{array}\right.$ where $A, B, C, D, X, Y, R, S \in \mathbb{C}^{m \times n}$. The equation has a unique solution $(X, Y) \Longleftrightarrow \sigma(A, C) \cap \sigma(B, D)=\phi$.

Lemma 5.3.3 Let $Q^{*} A Q=T=D+N$ (Schur decomposition). D is diagonal and N is strictly upper triangular. Let $\lambda=\max \{|\eta|: \operatorname{det}(A-\eta I)=0\}$ and $\mu=\min \{|\eta|$: $\operatorname{det}(A-\eta I)\}=0$. If $\theta \geq 0$, then

$$
\begin{equation*}
\left\|A^{k}\right\|_{2} \leq(1+\theta)^{n-1}\left[|\lambda|+\frac{\|N\|_{F}}{1+\theta}\right]^{k}, \quad k \geq 0 \tag{5.3.32}
\end{equation*}
$$

If A is nonsingular and $\theta \geq 0$ satisfies $(1+\theta)|\mu|>\|N\|_{F}$, then

$$
\begin{equation*}
\left\|A^{-k}\right\|_{2} \leq(1+\theta)^{n-1}\left[\frac{1}{|\mu|-\|N\|_{F} /(1+\theta)}\right]^{k}, \quad k \geq 0 \tag{5.3.33}
\end{equation*}
$$

5.3 Power Iterations

Proof: For $\theta \geq 0$, define $\triangle=\operatorname{diag}\left(1,1+\theta,(1+\theta)^{2}, \cdots,(1+\theta)^{n-1}\right)$ and $\kappa_{2}(\triangle)=(1+\theta)^{n-1}$. But $\left\|\triangle N \triangle_{F}^{-1}\right\| \leq\|N\|_{F} /(1+\theta)$, thus

$$
\begin{aligned}
\left\|A^{k}\right\|_{2} & =\left\|T^{k}\right\|_{2}=\left\|\triangle^{-1}\left(D+\triangle N \triangle^{-1}\right)^{k} \triangle\right\|_{2} \\
& \leq \kappa_{2}(\triangle)\left[\|D\|_{2}+\left\|\triangle N \triangle^{-1}\right\|_{2}\right]^{k} \\
& \leq(1+\theta)^{n-1}\left[|\lambda|+\|N\|_{F} /(1+\theta)\right]^{k} .
\end{aligned}
$$

On the other hand, if A is nonsingular and $(1+\theta)|\mu|>\|N\|_{F}$, then

$$
\left\|\triangle D^{-1} N \triangle^{-1}\right\|_{2}<1
$$

and thus,

$$
\begin{aligned}
\left\|A^{-k}\right\|_{2} & \left.=\left\|T^{-k}\right\|_{2}=\| \triangle^{-1}\left(I+\triangle D^{-1} N \triangle^{-1}\right)^{-1} D^{-1}\right]^{k} \triangle \|_{2} \\
& \leq \kappa_{2}(\triangle)\left[\left\|D^{-1}\right\|_{2} /\left[1-\left\|\triangle D^{-1} N \triangle^{-1}\right\|_{2}\right]^{k}\right. \\
& \leq(1+\theta)^{n-1}\left[\frac{1}{|\mu|-\|N\|_{F} /(1+\theta)}\right]^{k}
\end{aligned}
$$

\{ proof of Theorem 5.3.4: \} By induction $A^{k} Q_{0}=Q_{k}\left(R_{k} \cdots R_{1}\right)$. By substituting (5.3.29), (5.3.30) into this equality we get

$$
\left[\begin{array}{c}
V_{0} \\
W_{0}
\end{array}\right]=\left[\begin{array}{c}
V_{k} \\
W_{k}
\end{array}\right]\left(R_{k}, \cdots, R_{1}\right),
$$

where $V_{k}=Q_{\alpha}^{*} Q_{k}$ and $W_{k}=Q_{\beta}^{*} Q_{k}$. Using Lemma 5.3.1 there is an $X \in C^{p \times(n-p)}$ such that

$$
\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
T_{11} & 0 \\
0 & T_{22}
\end{array}\right] .
$$

Moreover since $\operatorname{sep}\left(T_{11}, T_{22}\right)=$ the smallest singular value of $\phi(X)=T_{11} X-X T_{22}$. From $\phi(X)=-T_{12}$ follows

$$
\|X\|_{F} \leq\left\|T_{12}\right\|_{F} / \operatorname{sep}\left(T_{11}, T_{22}\right)
$$

Thus

$$
\left[\begin{array}{cc}
T_{11}^{k} & 0 \\
0 & T_{22}^{k}
\end{array}\right]\left[\begin{array}{c}
V_{0}-X W_{0} \\
W_{0}
\end{array}\right]=\left[\begin{array}{c}
V_{k}-X W_{k} \\
W_{k}
\end{array}\right]\left(R_{k}, \cdots, R_{1}\right) .
$$

Assume $V_{0}-X W_{0}$ is nonsingular. Then

$$
W_{k}=T_{22}^{k} W_{0}\left(V_{0}-X W_{0}\right)^{-1} T_{11}^{-k}\left(V_{k}-X W_{k}\right)
$$

From Theorem 5.1.3 follows that

$$
\operatorname{dist}\left[D_{p}(A), \mathcal{R}\left(Q_{k}\right)\right]=\left\|Q_{\beta}^{*} Q_{k}\right\|_{2}=\left\|W_{k}\right\|_{2}
$$

Then

$$
\begin{equation*}
\operatorname{dist}\left[D_{p}(A), \mathcal{R}\left(Q_{k}\right)\right] \leq\left\|T_{22}^{k}\right\|_{2}\left\|\left(V_{0}-X W_{0}\right)^{-1}\right\|_{2}\left\|T_{11}^{-k}\right\|_{2}\left[1+\|X\|_{F}\right] \tag{5.3.34}
\end{equation*}
$$

We prove $V_{0}-X W_{0}$ is nonsingular. From $A^{*} Q=Q T^{*}$ follows that

$$
A^{*}\left(Q_{\alpha}-Q_{\beta} X^{*}\right)=\left(Q_{\alpha}-Q_{\beta} X^{*}\right) T_{11}^{*},
$$

which implies orthogonal column of $Z=\left(Q_{\alpha}-Q_{\beta} X^{*}\right)\left(I+X X^{*}\right)^{-\frac{1}{2}}$ are a basis of $D_{p}\left(A^{*}\right)$. Also

$$
\left(V_{0}-X W_{0}\right)=\left(I+X X^{*}\right)^{\frac{1}{2}} Z^{*} Q_{0} .
$$

This implies

$$
\sigma_{p}\left(V_{0}-X W_{0}\right) \geq \sigma_{p}\left(Z^{*} Q_{0}\right)=\sigma_{p}\left(V_{0}-X W_{0}\right) \geq \sigma_{p}\left(Z^{*} Q_{0}\right)=\sqrt{1-d^{2}}>0
$$

Hence $V_{0}-X W_{0}$ is invertible and $\left\|\left(V_{0}-X W_{0}\right)^{-1}\right\|_{2} \leq \frac{1}{\sqrt{1-d^{2}}}$. By Lemma 5.3.1 we get

$$
\left\|T_{22}^{k}\right\|_{2} \leq(1+\theta)^{n-p-1}\left[\left|\lambda_{p+1}\right|+\|N\|_{F} /(1+\theta)\right]^{k} .
$$

and

$$
\left\|T_{11}^{-k}\right\|_{2} \leq(1+\theta)^{p-1} /\left[\left|\lambda_{p}\right|-\|N\|_{F} /(1+\theta)\right]^{k} .
$$

Substituting into (5.3.34) the theorem is proved.

5.4 QR-algorithm (QR-method, QR-iteration)

Theorem 5.4.1 (Schur Theorem) There exists a unitary matrix U such that

$$
A U=U R,
$$

where R is upper triangular.
Iteration method (from Vojerodin):

$$
\begin{aligned}
& \text { Set } U_{0}=I, \\
& \text { For } i=0,1,2, \ldots \\
& \quad A U_{i}=U_{i+1} R_{i+1}, \quad \text { (an QR factorization of } A U_{i} . \text {) } \\
& \text { End }
\end{aligned}
$$

If U_{i} converges to U, then for $i \rightarrow \infty$

$$
R_{i+1}=U_{i+1}^{*} A U_{i} \rightarrow U^{*} A U
$$

We now define

$$
\begin{equation*}
Q_{i}=U_{i-1}^{*} U_{i}, A_{i+1}=U_{i}^{*} A U_{i} \tag{5.4.2}
\end{equation*}
$$

Then from (5.4.1) we have

$$
A_{i}=U_{i-1}^{*} A U_{i-1}=U_{i-1}^{*} U_{i} R_{i}=Q_{i} R_{i} .
$$

On the other hand from (5.4.1) substituting i by $i-1$ we get

$$
R_{i} U_{i-1}^{*}=U_{i}^{*} A
$$

and thus

$$
R_{i} Q_{i}=R_{i} U_{i-1}^{*} U_{i}=U_{i}^{*} A U_{i}=A_{i+1}
$$

So (5.4.1) for $U_{0}=I$ and $A_{1}=A$ is equivalent to:

$$
\begin{align*}
& \text { For } i=1,2,3, \cdots \\
& \quad A_{i}=Q_{i} R_{i} \quad\left(\mathrm{QR} \text { factorization of } A_{i}\right), \tag{5.4.3}\\
& A_{i+1}=R_{i} Q_{i} . \tag{5.4.4}
\end{align*}
$$

End
Equations (5.4.3)-(5.4.4) describe the basic form of $Q R$ algorithm. We prove two important results. Let

$$
\begin{equation*}
P_{i}=Q_{1} Q_{2} \cdots Q_{i}, \quad S_{i}=R_{i} R_{i-1} \cdots R_{1} \tag{5.4.5}
\end{equation*}
$$

Then hold

$$
\begin{align*}
A_{i+1} & =P_{i}^{*} A P_{i}=S_{i} A S_{i}^{-1}, \quad i=1,2, \cdots \tag{5.4.6}\\
A^{i} & =P_{i} S_{i} \quad i=1,2, \cdots \tag{5.4.7}
\end{align*}
$$

(5.4.6) is evident. (5.4.7) can be proved by induction. For $i=1, A_{1}=Q_{1} R_{1}$, Suppose (5.4.7) holds for i. Then

$$
\begin{aligned}
A^{i+1} & =A P_{i} S_{i}=P_{i} A_{i+1} S_{i} \quad(\text { from (5.4.6) }) \\
& =P_{i} Q_{i+1} R_{i+1} S_{i}=P_{i+1} S_{i+1}
\end{aligned}
$$

Theorem 5.4.2 Let $A \in \mathbb{C}^{n \times n}$ with eigenvalues λ_{i} under the following assumptions:
(a)

$$
\begin{equation*}
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots\left|\lambda_{n}\right|>0 \tag{5.4.8}
\end{equation*}
$$

(b) The factorization

$$
\begin{equation*}
A=X \Lambda X^{-1} \tag{5.4.9}
\end{equation*}
$$

with $X^{-1}=Y$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ holds. Here Y has an LR factorization.
Then $Q R$ algorithm converges. Furthermore
(a) $\lim _{i \rightarrow \infty} a_{j k}^{(i)}=0$, for $j>k$, where $A_{i}=\left(a_{j k}^{(i)}\right)$;
(b) $\lim _{i \rightarrow \infty} a_{k k}^{(i)}=\lambda_{k}$, for $k=1, \cdots, n$.

Remark 5.4.1 Assumption (5.4.9) is not essential for convergence of the $Q R$ algorithm. If the assumption is not satisfied, the $Q R$ algorithm still converges, only the eigenvalues on the diagonal no longer necessary appear ordered in absolute values, i.e. (b) is replaced by (b') $\lim _{i \rightarrow \infty} a_{k k}^{(i)}=\lambda_{\pi(k)}, k=1,2 \cdots, n$, where π is a permutation of $\{1,2, \cdots, n\}$. (See Wilkinson pp.519) we have

$$
\begin{equation*}
Q^{*} A Q=R \Lambda R^{-1} \tag{5.4.10}
\end{equation*}
$$

is an upper-triangular matrix with diagonal elements λ_{i} ordered in absolute value as in (5.4.8). Now

$$
A^{s}=X \Lambda^{s} X^{-1}=Q R \Lambda^{s} L U=Q R \Lambda^{s} L \Lambda^{-s} \Lambda^{s} U
$$

and since

$$
\left(\Lambda^{s} L \Lambda^{-s}\right)_{i k}=\ell_{i k}\left(\frac{\lambda_{i}}{\lambda_{k}}\right)^{s}= \begin{cases}0, & i<k \\ 1, & i=k, \\ \rightarrow 0, & i>k \text { as } s \rightarrow \infty\end{cases}
$$

where $\Lambda^{s} L \Lambda^{-s}=I+E_{s}$, with $\lim _{s \rightarrow \infty} E_{s}=0$. Therefore

$$
A^{s}=Q R\left(I+E_{s}\right) \Lambda^{s} U=Q\left(I+R E_{s} R^{-1}\right) R \Lambda^{s} U=Q\left(I+F_{s}\right) R \Lambda^{s} U
$$

with $\lim _{s \rightarrow \infty} F_{s}=0$. From the conclusion of $Q R$ factorization the matrices Q and R ($r_{i i}>0$) depend continuously on $A(A=Q R)$. But $I=I \cdot I$ is the $Q R$ factorization of I, therefore it holds for the $Q R$ factorization:

$$
I+F_{s}=\tilde{Q}_{s} \tilde{R}_{s}
$$

Thus for $F_{s} \rightarrow 0$, we have $\lim _{s \rightarrow \infty} \tilde{Q}_{s}=I$ and $\lim _{s \rightarrow \infty} \tilde{R}_{s}=I$. From (5.4.7) we have

$$
A^{s}=\left(Q \tilde{Q}_{s}\right)\left(\tilde{R}_{s} R \Lambda^{s} U\right)=P_{s} R_{s}
$$

So from the "uniqueness" of $Q R$ factorization there exists a unitary diagonal matrix D_{s} with

$$
P_{s} D_{s}=Q \tilde{Q}_{s} \rightarrow Q
$$

Thus from (5.4.6) we have

$$
\begin{equation*}
D_{i}^{*} A_{i+1} D_{i}=D_{i}^{*} P_{i}^{*} A P_{i} D_{i} \rightarrow Q^{*} A Q=R \Lambda R^{-1} \tag{5.4.11}
\end{equation*}
$$

The assertions (a) and (b) are proved.
Remark 5.4.2 One can show that $\lim _{s \rightarrow \infty} Q_{s}=\operatorname{diag}\left(\frac{\lambda_{i}}{\left|\lambda_{i}\right|}\right)$. That is in general Q_{s} does not converge to I and then P_{s} does not converge. Therefore D_{s} does not converge to I and (5.4.11) shows that the elements of A_{s} over the diagonal elements oscillate and only converge in absolute values.

Let A be diagonalizable and the eigenvalues such that

$$
\begin{equation*}
\left|\lambda_{1}\right|=\cdots=\left|\lambda_{\nu_{1}}\right|>\left|\lambda_{\nu_{1}+1}\right|=\cdots=\left|\lambda_{\nu_{2}}\right|>\cdots=\left|\lambda_{\nu s}\right| \tag{5.4.12}
\end{equation*}
$$

with $\nu_{s}=n$. We define a block partition of $n \times n$ matrix B in s^{2} blocks $B_{k \ell}$ for $k, \ell=$ $1,2, \cdots, s$

$$
B=\left[B_{k \ell}\right]_{k, \ell=1}^{s} .
$$

5.4 QR-algorithm (QR-method, QR-iteration)

Theorem 5.4.3 (Wilkinson) Let A be diagonalizable and satisfy (5.4.12) and (5.4.9). Then it holds for the blocks $A_{j k}^{(i)}$ of A_{i} that
(a) $\lim _{i \rightarrow \infty} A_{j k}^{(i)}=0, \quad j>k$;
(b) The eigenvalues of $A_{k k}^{(i)}$ converges to the eigenvalues $\lambda_{\nu_{k-1}+1}, \cdots, \lambda_{\nu_{k}}$.

Special case: If A is real and all the eigenvalues have different absolute value except conjugate eigenvalues. Then

$$
A_{i} \rightarrow\left[\begin{array}{ccccccc}
\times & \times & + & + & + & + & + \\
\times & \times & + & + & + & + & + \\
& & \times & \times & + & + & + \\
& & \times & \times & + & + & + \\
& & & & \times & + & + \\
& & & & & \times & \times \\
0 & & & & & \times & \times
\end{array}\right] .
$$

Theorem 5.4.4 Let A be an upper Hessenberg matrix. Then the matrices Q_{i} and A_{i} in (5.4.3) and (5.4.4) are also upper Hessenberg matrices.

Proof: It is obvious from $A_{i+1}=R_{i} A_{i} R_{i}^{-1}$ and $Q_{i}=A_{i} R_{i}^{-1}$.

5.4.1 The Practical QR Algorithm

In the following paragraph we will develop an useful $Q R$ algorithm for real matrix A. We will concentrate on developing the iteration

Compute orthogonal Q_{0} such that $H_{0}=Q_{0}^{T} A Q_{0}$ is upper Hessenberg.
For $k=1,2,3, \cdots$
Compute QR factorization $H_{k}=Q_{k} R_{k}$;
Set $H_{k+1}=R_{k} Q_{k}$;
End
Here $A \in \mathbb{R}^{n \times n}, Q_{i} \in \mathbb{R}^{n \times n}$ is orthogonal and $R_{i} \in \mathbb{R}^{n \times n}$ is upper triangular.
Theorem 5.4.5 (Real Schur Decomposition) If $A \in \mathbb{R}^{n \times n}$, then there exists an orthogonal $Q \in \mathbb{R}^{n \times n}$ such that

$$
Q^{T} A Q=\left(\begin{array}{cccc}
R_{11} & R_{12} & \cdots & R_{1 m} \tag{5.4.14}\\
0 & R_{21} & \cdots & R_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & R_{m m}
\end{array}\right)
$$

where each $R_{i i}$ is either 1×1 or 2×2 matrix having complex conjugate eigenvalues.

Proof: Let k be the number of complex conjugate pair in $\sigma(A)$. We prove the theorem by induction on k. The theorem holds if $k=0$. Now suppose that $k \geq 1$. If $\lambda=\gamma+i \mu \in \sigma(A)$ and $\mu \neq 0$, then there exists vectors y and $z \in \mathbb{R}^{n}(z \neq 0)$ such that

$$
A(y+i z)=(\gamma+i \mu)(y+i z)
$$

i.e.,

$$
A[y, z]=[y, z]\left[\begin{array}{cc}
\gamma & \mu \\
-\mu & \gamma
\end{array}\right]
$$

The assumption that $\mu \neq 0$ implies that y and z span a two dimensional, real invariant subspace for A. It then follows that

$$
U^{T} A U=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right] \text { with } \sigma\left(T_{11}\right)=\{\lambda, \bar{\lambda}\} .
$$

By induction, there exists an orthogonal \tilde{U} so that $\tilde{U}^{T} T_{22} \tilde{U}$ has the require structure. The theorem follows by setting $Q=U \operatorname{diag}\left(I_{2}, \tilde{U}\right)$.

Algorithm 5.4.1 (Hessenberg QR step)
Input: Given the upper Hessenberg matrix $H \in \mathbb{R}^{n \times n}$;
Compute $Q R$ factorization of $H: H=Q R$ and overwrite H with $\bar{H}=R Q$;
For $k=1, \cdots, n-1$,
Determine c_{k} and s_{k} with $c_{k}^{2}+s_{k}^{2}=1$ such that

$$
\left[\begin{array}{cc}
c_{k} & s_{k} \\
-s_{k} & c_{k}
\end{array}\right]\left[\begin{array}{c}
h_{k k} \\
h_{k+1, k}
\end{array}\right]=\left[\begin{array}{c}
* \\
0
\end{array}\right]
$$

For $j=k, \cdots, n$,

$$
\left[\begin{array}{c}
h_{k j} \\
h_{k+1, j}
\end{array}\right]=\left[\begin{array}{cc}
c_{k} & s_{k} \\
-s_{k} & c_{k}
\end{array}\right]\left[\begin{array}{c}
h_{k j} \\
h_{k+1, j}
\end{array}\right] .
$$

End;
End;
For $k=1, \cdots, n-1$,
For $i=1, \cdots, k+1$,

$$
\left[h_{i k}, h_{i, k+1}\right] \equiv\left[h_{i k}, h_{i, k+1}\right]\left[\begin{array}{cc}
c_{k} & s_{k} \\
-s_{k} & c_{k}
\end{array}\right] .
$$

End:
End;
This algorithm requires $4 n^{2}$ flops. Moreover, since $Q^{T}=J\left(n-1, n, \theta_{n-1}\right) \cdots J(1,2$, θ_{1}) is lower Hessenberg $\bar{H}=Q R$ is upper Hessenberg. Thus the $Q R$ iteration preserves Hessenberg structure.

We now describe how the Hessenberg decomposition $Q_{0}^{T} A Q_{0}=H=$ upper Hessenberg to be computed.

Algorithm 5.4.2 (Householder Reduction to Hessenberg Form) Given $A \in \mathbb{R}^{n \times n}$. The following algorithm overwrites A with $H=Q_{0}^{T} A Q_{0}$, where H is upper Hessenberg and $Q_{0}=P_{1} \cdots P_{n-2}$ is a product of Householder matrices.

For $k=1, \cdots, n-2$,
Determine a Householder matrix \bar{P}_{k} of order $n-k$ such that

$$
\bar{P}_{k}\left[\begin{array}{c}
a_{k+1, k} \\
\vdots \\
\vdots \\
a_{n, k}
\end{array}\right]=\left[\begin{array}{c}
* \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

Compute $A \equiv P_{k}^{T} A P_{k}$ where $P_{k}=\operatorname{diag}\left(I_{k}, \bar{P}_{k}\right)$.
End;
This algorithm requires $\frac{5}{3} n^{3}$ flops. Q_{0} can be stored in factored form below the subdiagonal A. If Q_{0} is explicitly formed, an additional $\frac{2}{3} n^{3}$ flops are required.

Theorem 5.4.6 (Implicit Q Theorem) Suppose $Q=\left[q_{1}, \cdots, q_{n}\right]$ and $V=\left[v_{1}, \cdots, v_{n}\right]$ are orthogonal matrices with $Q^{T} A Q=H$ and $V^{T} A V=G$ are upper Hessenberg. Let k denote the smallest positive integer for which $h_{k+1, k}=0$ with the convention that $k=n$, if H is unreduced. If $v_{1}=q_{1}$, then $v_{i}= \pm q_{i}$ and $\left|h_{i, i-1}\right|=\left|g_{i, i-1}\right|$, for $i=2, \cdots, k$. Moreover if $k<n$ then $g_{k+1, k}=0$.

Proof: Define $W=V^{T} Q=\left[w_{1}, \cdots, w_{n}\right]$ orthogonal, and observe $G W=W H$. For $i=2, \cdots k$, we have

$$
h_{i, i-1} w_{i}=G w_{i-1}-\sum_{j=1}^{i-1} h_{j, i-1} w_{j}
$$

Since $w_{1}=e_{1}$, it follows that $\left[w_{1}, \cdots, w_{k}\right]$ is upper triangular and thus $w_{i}= \pm e_{i}$ for $i=2, \cdots, k$. Since $w_{i}=V^{T} q_{i}$ and $h_{i, i-1}=w_{i}^{T} G w_{i-1}$, it follows that $v_{i}= \pm q_{i}$ and $\left|h_{i, i-1}\right|=\left|g_{i, i-1}\right|$ for $i=2, \cdots, k$. If $h_{k+1, k}=0$, then ignoring signs we have

$$
\begin{aligned}
g_{k+1, k} & =e_{k+1}^{T} G e_{k}=e_{k+1}^{T} G W e_{k}=\left(e_{k+1}^{T} W\right)\left(H e_{k}\right) \\
& =e_{k+1}^{T} \sum_{i=1}^{k} h_{i k} W e_{i}=\sum_{i=1}^{k} h_{i k} e_{k+1}^{T} e_{i}=0 .
\end{aligned}
$$

Remark 5.4.3 The gist of the implicit Q theorem is that if $Q^{T} A Q=H$ and $Z^{T} A Z=G$ are each unreduced upper Hessenberg matrices and Q and Z have the same first column, then G and H are "essentially equal" in the sense that $G=D^{-1} H D$, where $D=\operatorname{diag}(\pm 1, \cdots, \pm 1)$.

We now return to Hessenberg $Q R$ iteration in (5.4.13):
Give orthogonal Q_{0} such that $H=Q_{0}^{T} A Q_{0}$ is upper Hessenberg.
For $k=1,2,3, \cdots$

$$
\begin{array}{lc}
H=Q R, & \text { (QR factorization) } \\
H:=R Q, & \text { (upper Hessenberg) }
\end{array}
$$

End

Without loss of generality we may assume that each Hessenberg matrix produced by (5.4.13) is unreduced. If not, then at some stage we have

$$
H=\left[\begin{array}{cc}
H_{11} & H_{12} \\
0 & H_{22}
\end{array}\right] \text { with } H_{11} \in \mathbb{R}^{p \times p} \quad(1 \leq p<n) .
$$

The problem "decouples" into two small problems involving H_{11} and H_{22}. The term "deflation" is also used in this context, usually when $p=n-1$ or $n-2$. In practice, decoupling occurs whenever a subdiagonal entry in H is suitably small. For example in EISPACK if

$$
\begin{equation*}
\left|h_{p+1, p}\right| \leq \operatorname{eps}\left(\left|h_{p, p}\right|+\left|h_{p+1, p+1}\right|\right), \tag{5.4.15}
\end{equation*}
$$

then $h_{p+1, p}$ is "declared" to be zero.
Now we will investigate how the convergence (5.4.13) can be accelerated by incorporating "shifts". Let $\mu \in \mathbb{R}$ and consider the iteration

Give orthogonal Q_{0} such that $H=Q_{0}^{T} A Q_{0}$ is upper Hessenberg.
For $k=1,2, \cdots$

$$
\begin{aligned}
& H-\mu I=Q R, \quad \text { (QR factorization }) \\
& H=R Q+\mu I,
\end{aligned}
$$

End
The scale μ is refereed to a shift. Each matrix H in (5.4.16) is similar to A, since $R Q+\mu I=Q^{T}(Q R+\mu I) Q=Q^{T} H Q$.

If we order the eigenvalues λ_{i} of A so that $\left|\lambda_{1}-\mu\right| \geq \cdots \geq\left|\lambda_{n}-\mu\right|$, then Theorem 5.4.5 says that the p-th subdiagonal entry in H converges to zero with rate $\left|\frac{\lambda_{p+1}-\mu}{\lambda_{p}-\mu}\right|^{k}$. Of course if $\lambda_{p}=\lambda_{p+1}$ then there is no convergence at all. But if μ is much closer to λ_{n} than to the other eigenvalues, the convergence is required.

Theorem 5.4.7 Let μ be an eigenvalues of an $n \times n$ unreduced Hessenberg matrix H. If $\bar{H}=R Q+\mu I$, where $(H-\mu I)=Q R$ is the $Q R$ decomposition of $H-\mu I$, then $\bar{h}_{n, n-1}=0$ and $\bar{h}_{n n}=\mu$.

Proof: If H is unreduced, then so is the upper Hessenberg matrix $H-\mu I$. Since $Q^{T}(H-\mu I)=R$ is singular and since it can be shown that

$$
\begin{equation*}
\left|r_{i i}\right| \geq\left|h_{i+1, i}\right|, \quad i=1,2, \cdots, n-1 \tag{5.4.17}
\end{equation*}
$$

it follows that $r_{m}=0$. Consequently, the bottom row of \bar{H} is equal to $(0, \cdots, 0, \mu)$.

5.4.2 Single-shift QR-iteration

Give orthogonal Q_{0} such that $H=Q_{0}^{T} A Q_{0}$ is upper Hessenberg.
For $k=1,2, \cdots$,

$$
\begin{aligned}
& H_{i}-h_{n n} I=Q_{i} R_{i}, \quad(\text { QR factorization }) \\
& H_{i+1}:=R_{i} Q_{i}+h_{n n} I,
\end{aligned}
$$

End

Quadratic convergence

If the ($n, n-1$) entry converges to zero and let

$$
H=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \varepsilon & h_{n n}
\end{array}\right],
$$

then one step of the single shift $Q R$ algorithm leads:

$$
Q R=H-h_{n n} I, \quad \bar{H}=R Q+h_{n n} I
$$

After $n-2$ steps in the reduction of $H-h_{n n} I$ to upper triangular we have

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & a & b \\
& & \varepsilon & 0
\end{array}\right]
$$

And we have $(n, n-1)$ entry in \bar{H} is given by

$$
\bar{h}_{n, n-1}=\frac{\varepsilon^{2} b}{\varepsilon^{2}+a^{2}} .
$$

If $\varepsilon \ll a$, then it is clear that $(n, n-1)$ entry has order ε^{2}.

5.4.3 Double Shift $Q R$ iteration

If at some stage the eigenvalues a_{1} and a_{2} of $\left[\begin{array}{ll}h_{m m} & h_{m n} \\ h_{n m} & h_{n n}\end{array}\right](m=n-1)$ are complex, for then $h_{n n}$ would tend to be a poor approximate eigenvalue. A way around this difficulty is to perform two single shift $Q R$ steps in succession, using a_{1} and a_{2} as shifts:

$$
\begin{align*}
H-a_{1} I & =Q_{1} R_{1} \\
H_{1} & =R_{1} Q_{1}+a_{1} I \\
H_{1}-a_{2} I & =Q_{2} R_{2} \tag{5.4.19}\\
H_{2} & =R_{2} Q_{2}+a_{2} I
\end{align*}
$$

We then have

$$
\begin{align*}
\left(Q_{1} Q_{2}\right)\left(R_{2} R_{1}\right) & =Q_{1}\left(H_{1}-a_{2} I\right) R_{1}=Q_{1}\left(R_{1} Q_{1}+a_{1} I-a_{2} I\right) R_{1} \\
& =\left(Q_{1} R_{1}\right)\left(Q_{1} R_{1}\right)+a_{1}\left(Q_{1} R_{1}\right)-a_{2}\left(Q_{1} R_{1}\right) \\
& =\left(H-a_{1} I\right)\left(H-a_{1} I\right)+a_{1}\left(H-a_{1} I\right)-a_{2}\left(H-a_{1} I\right) \\
& =\left(H-a_{1} I\right)\left(H-a_{2} I\right)=M \tag{5.4.20}
\end{align*}
$$

where

$$
\begin{equation*}
M=\left(H-a_{1} I\right)\left(H-a_{2} I\right) \tag{5.4.21}
\end{equation*}
$$

Note that M is a real matrix, since

$$
M=H^{2}-s H+t I,
$$

where $s=a_{1}+a_{2}=h_{m m}+h_{n n} \in \mathbb{R}$ and $t=a_{1} a_{2}=h_{m m} h_{n n}-h_{m n} h_{n m} \in \mathbb{R}$. Thus, (5.4.20) is the $Q R$ factorization of a real matrix, and we may choose Q_{1} and Q_{2} so that $Z=Q_{1} Q_{2}$ is real orthogonal. It follows that

$$
H_{2}=Q_{2}^{*} H_{1} Q_{2}=Q_{2}^{*}\left(Q_{1}^{*} H Q_{1}\right) Q_{2}=\left(Q_{1} Q_{2}\right)^{*} H\left(Q_{1} Q_{2}\right)=Z^{T} H Z
$$

is real. A real H_{2} could be guaranteed if we
(a) explicitly form the real matrix $M=H^{2}-s H+t I$;
(b) compute the real $Q R$ decomposition $M=Z R$ and
(c) set $H_{2}=Z^{T} H Z$.

But since (a) requires $O\left(n^{3}\right)$ flops, this is not a practical course. In light of the Implicit Q theorem, however, it is possible to effect the transition from H to H_{2} in $O\left(n^{2}\right)$ flops if we
(\mathbf{a}^{\prime}) compute $M e_{1}$, the first column of M;
(\mathbf{b}^{\prime}) determine Householder Matrix P_{0} such that

$$
P_{0}\left(M e_{1}\right)=\alpha e_{1}, \quad(\alpha \neq 0) ;
$$

(\mathbf{c}^{\prime}) compute Householder matrices P_{1}, \cdots, P_{n-2} such that if $Z_{1}=P_{0} P_{1} \cdots P_{n-2}$ the $Z_{1}^{T} H Z_{1}$ is upper Hessenberg and the first column of Z and Z_{1} are the same. If $Z^{T} H Z$ and $Z_{1}^{T} H Z_{1}$ are both unreduced upper Hessenberg, then they are essentially equal.

Since $M e_{1}=(x, y, z, 0, \cdots, 0)^{T}$, where $x=h_{11}^{2}+h_{12} h_{21}-s h_{11}+t, y=h_{21}\left(h_{11}+\right.$ $\left.h_{22}-s\right), z=h_{21} h_{32}$. So, a similarity transformation with P_{0} only changes rows and columns 1, 2 and 3. Since $P_{0}^{T} H P_{0}$ has the form

$$
\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array}\right],
$$

it follows that

$$
\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array}\right] \xrightarrow[\rightarrow]{P_{7}}\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array}\right] \xrightarrow[\rightarrow]{P_{2}}\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times
\end{array}\right]
$$

$$
\xrightarrow{P_{3}}\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times
\end{array}\right] \xrightarrow{P_{4}}\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array}\right]
$$

$P_{k}=\operatorname{diag}\left(I_{k}, \bar{P}_{k}, I_{n-k-3}\right), \bar{P}_{k}$ is 3×3-Householder matrix. The applicability of Theorem 5.4.6 (Implicit Q-theorem) follows from that $P_{k} e_{1}=e_{1}$, for $k=1, \cdots, n-2$, and that P_{0} and Z have the same first column. Hence $Z_{1} e_{1}=Z e_{1}$.

Algorithm 5.4.3 (Francis $Q R$ step) Given $H \in \mathbb{R}^{n \times n}$ unreduced whose trailing 2×2 principal submatrix has eigenvalues a_{1} and a_{2}, the following algorithm overwrites H with $Z^{T} H Z$, where $Z=P_{1} \cdots P_{n-2}$ is a product of Householder matrices and $Z^{T}\left(H-a_{1} I\right)(H-$ $\left.a_{2} I\right)$ is upper triangular.

```
Set
    \(m:=n-1 ;\)
    \(s:=h_{m m}+h_{n n} ;\)
    \(t:=h_{m m} h_{n n}-h_{m n} h_{n m} ;\)
    \(x:=h_{n}^{2}+h_{12} h_{21}-s h_{11}+t ;\)
    \(y:=h_{21}\left(h_{11}+h_{22}-s\right)\);
    \(z:=h_{21} h_{32}\);
For \(k=0, \cdots, n-2\),
    If \(k<n-2\), then
            Determine a Householder matrix \(\bar{P}_{k} \in \mathbb{R}^{3 \times 3}\) such that
                                    \(\bar{P}_{k}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}* \\ 0 \\ 0\end{array}\right] ;\)
Set
\[
H:=P_{k} H P_{k}^{T}, \quad P_{k}=\operatorname{diag}\left(I_{\underline{k}}, \bar{P}_{k}, I_{n-k-3}\right) ;
\]
else determine a Householder matrix \(\bar{P}_{n-2} \in \mathbb{R}^{2 \times 2}\) such that
\[
\bar{P}_{n-2}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
* \\
0
\end{array}\right] ;
\]
Set
\[
H:=P_{n-2} H P_{n-2}^{T}, \quad P_{n-2}=\operatorname{diag}\left(I_{n-2}, \bar{P}_{n-2}\right) ;
\]
End if
\(x:=h_{k+2, k+1}\);
\(y:=h_{k+3, k+1}\);
If \(k<n-3\), then \(z:=h_{k+4, k+1}\);
End for;
```

This algorithm requires $6 n^{2}$ flops. If Z is accumulated into a given orthogonal matrix, an additional $6 n^{2}$ flops are necessary.

Algorithm 5.4.4 ($Q R$ Algorithm) Given $A \in \mathbb{R}^{n \times n}$ and a tolerance ε, this algorithm computes the real schur decomposition $Q^{T} A Q=T$. A is overwritten with the Hessenberg decomposition.

Using Algorithm 5.4.2 to compute the Hessenberg decomposition

$$
Q^{T} A Q=H
$$

where $Q=P_{1} \cdots P_{n-2}$ and H is Hessenberg;
Repeat: Set to zero all subdiagonal elements that satisfy

$$
\left|h_{i, i-1}\right| \leq \varepsilon\left(\left|h_{i i}\right|+\left|h_{i-1, i-1}\right|\right) ;
$$

Find the largest non-negative q and the smallest non-negative p such that

$$
\left.H=\left[\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \\
0 & H_{22} & H_{23} \\
0 & 0 & H_{33}
\end{array}\right] \begin{array}{l}
p \\
p-p-q \\
p
\end{array}, \begin{array}{l}
n-p-q
\end{array}\right)
$$

where H_{33} is upper quasi-triangular and H_{22} is unreduced (Note: either p or q may be zero).
If $q=n$, then upper triangularize all 2×2 diagonal blocks in H that have real eigenvalues, accumulate the orthogonal transformations if necessary, and quit.
Apply a Francis $Q R$-step to H_{22} :

$$
H_{22}:=Z^{T} H_{22} Z ;
$$

If Q and T are desired, then $Q:=Q \operatorname{diag}\left(I_{p}, Z, I_{q}\right)$;
Set $H_{12}:=H_{12} Z$ and $H_{23}:=Z^{T} H_{23}$;
Go To Repeat.
This algorithm requires $15 n^{3}$ flops, if Q and T are computed. If only the eigenvalues are desired, then $8 n^{3}$ flops are necessary.

5.4.4 Ordering Eigenvalues in the Real Schur From

If $Q^{T} A Q=\left[\begin{array}{cc}T_{11} & T_{12} \\ 0 & T_{22}\end{array}\right]$ with $T_{11} \in \mathbb{R}^{p \times p}$ and $\sigma\left(T_{11}\right) \cup \sigma\left(T_{22}\right)=\phi$, then the first p columns of Q span the unique invariant subspace associated with $\sigma\left(T_{11}\right)$. Unfortunately, the Francis iteration leads $Q_{R}^{T} A Q_{F}=T_{F}$ in which the eigenvalues appear somewhat randomly along the diagonal of T_{F}. We need a method for computing an orthogonal matrix Q_{D} such that $Q_{D}^{T} T_{F} Q_{D}$ is upper quasitriangular with appropriate eigenvalues ordering.

Let $A \in \mathbb{R}^{2 \times 2}$, suppose

$$
Q_{F}^{T} A Q_{F}=T_{F}=\left[\begin{array}{cc}
\lambda_{1} & t_{12} \\
0 & \lambda_{2}
\end{array}\right], \quad \lambda_{1} \neq \lambda_{2} .
$$

Note that $T_{F} x=\lambda_{2} x$, where $x=\left[\begin{array}{c}t_{12} \\ \lambda_{2}-\lambda_{1}\end{array}\right]$. Let Q_{D} be a given rotation such that $Q_{D}^{T} x=\left[\begin{array}{c}\alpha \\ 0\end{array}\right]$. If $Q=Q_{F} Q_{D}$, then

$$
\left(Q^{T} A Q\right) e_{1}=Q_{D}^{T} T_{F}\left(Q_{D} e_{1}\right)=\lambda_{2} Q_{D}^{T}\left(Q_{D} e_{1}\right)=\lambda_{2} e_{1}
$$

and so

$$
Q^{T} A Q=\left[\begin{array}{cc}
\lambda_{2} & \pm t_{12} \\
0 & \lambda_{1}
\end{array}\right]
$$

Using this technique, we can move any subset of $\sigma(A)$ to the top of $T^{\prime} s$ diagonal. See Algorithm 7, 6-1 pp. 241 (Golub \& Van Loan: Matrix Computations). The swapping gets a little more complicated when T has 2×2 blocks. See Ruhe (1970) and Stewart (1976).

Block Diagonalization

Let

$$
T=\left[\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 q} \tag{5.4.22}\\
0 & T_{22} & \cdots & T_{2 q} \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & T_{q q}
\end{array}\right] \begin{gathered}
\} n_{1} \\
\} n_{2} \\
\} n_{q}
\end{gathered}
$$

be a partitioning of some real Schur form $Q^{T} A Q=T \in \mathbb{R}^{n \times n}$ such that $\sigma\left(T_{11}\right), \cdots, \sigma\left(T_{q q}\right)$ are disjoint. There exists a matrix Y such that $Y^{-1} T Y=\operatorname{diag}\left(T_{11}, \cdots, T_{q q}\right)$. A practical procedure for determining Y is now given together with an analysis of Y 's sensitivity as a function of the above partitioning.

Partition $I_{n}=\left[E_{1}, \cdots, E_{q}\right]$ conformally with T and define $Y_{i j} \in \mathbb{R}^{n \times n}$ as follows:

$$
Y_{i j}=I_{n}+E_{i} Z_{i j} E_{j}^{T}, \quad i<j, Z_{i j} \in \mathbb{R}^{n_{i} \times n_{j}} .
$$

It follows that if $Y_{i j}^{-1} T Y_{i j}=\bar{T}=\left(\bar{T}_{i j}\right)$ then T and \bar{T} are identical except that

$$
\begin{aligned}
& \bar{T}_{i j}=T_{i i} Z_{i j}-Z_{i j} T_{j j}+T_{i j}, \\
& \bar{T}_{i k}=T_{i k}-Z_{i j} T_{j k} \quad(k=j+1, \cdots, q) \\
& \bar{T}_{k j}=T_{k i} Z_{i j}+T_{k j} \quad(k=1, \cdots, i-1)
\end{aligned}
$$

This $\bar{T}_{i j}$ can be zeroed provided we have an algorithm for solving the Sylvester equation

$$
\begin{equation*}
F Z-Z G=C \tag{5.4.23}
\end{equation*}
$$

where $F \in \mathbb{R}^{p \times p}, G \in \mathbb{R}^{r \times r}$ are given upper quasi-triangular and $C \in \mathbb{R}^{p \times r}$.
Bartels and Stevart (1972): Let $C=\left[c_{1}, \cdots, c_{r}\right]$ and $Z=\left[z_{1}, \cdots, z_{r}\right]$ be column partitionings. If $g_{k+1, k}=0$, then by comparing columns in (5.4.23) we find

$$
F z_{k}-\sum_{i=1}^{k} g_{i k} z_{i}=c_{k} .
$$

Thus, once we know z_{1}, \cdots, z_{k-1} then we can solve the quasi-triangular system

$$
\left(F-g_{k k}\right) z_{k}=c_{k}+\sum_{i=1}^{k-1} g_{i k} z_{i} \text { for } z_{k} .
$$

If $g_{k+1, k} \neq 0$, then z_{k} and z_{k+1} can be simultaneously found by solving the $2 p \times 2 p$ system

$$
\left[\begin{array}{ll}
F-g_{k k} I & -g_{m k} I \tag{5.4.24}\\
-g_{k m} I & F-g_{m m} I
\end{array}\right]\left[\begin{array}{c}
z_{k} \\
z_{m}
\end{array}\right]=\left[\begin{array}{c}
c_{k} \\
c_{m}
\end{array}\right]+\sum_{i=1}^{k-1}\left[\begin{array}{c}
g_{i k} z_{i} \\
g_{i m} z_{i}
\end{array}\right] \quad(m=k+1)
$$

By reordering the equations according to permutation ($1, p+1, p+2, \cdots, p, 2 p$), a banded system is obtained that can be solved in $O\left(p^{2}\right)$ flops. The detail may be found in Bartel and Stewart (1972) and see algorithm 7.6-2, 6-3 pp. 243 (Golub \& Van Loan Matrix Computation).

Connection with variant inverse iteration

Now let $A \in \mathbb{C}^{n \times n}$. The $Q R$ algorithm with respect to the sequence $\left\{k_{i}\right\}_{i=1}^{\infty}$ of shift:

$$
\begin{aligned}
A_{1} & =A \\
\left(A_{i}-k_{i} I\right) & =Q_{i} R_{i}, \\
A_{i+1} & =R_{i} Q_{i}+k_{i} I, \quad P_{i}=Q_{1} Q_{2} \cdots Q_{i} .
\end{aligned}
$$

Theorem 5.4.8 Let p_{s} denote the last column of P_{s}. The sequence $\left\{p_{s}\right\}_{s=1}^{\infty}$ is then created by the variant inverse iteration:

$$
\begin{aligned}
& p_{0}=e_{n}, \quad k_{1}=p_{p}^{T} A p_{0}, \\
& \text { for } s=0,1,2, \cdots \\
& \qquad \begin{array}{l}
\tilde{p}_{s+1}=\left(A^{*}-k_{s+1} I\right)^{-1} p_{s}, \quad r_{s+1}=\left(\tilde{p}_{s+1}^{*} \tilde{p}_{s+1}\right)^{-1 / 2}, \\
p_{s+1}=r_{s+1} \tilde{p}_{s+1}, \quad k_{s+2}=p_{s+1}^{*} A p_{s+1} .
\end{array}
\end{aligned}
$$

Proof: $A P_{s}=P_{s} A_{s+1}$ implies

$$
\begin{aligned}
P_{s+1} & =P_{s} Q_{s+1} R_{s+1} R_{s+1}^{-1}=P_{s}\left(A_{s+1}-k_{s+1} I\right) R_{s+1}^{-1} \\
& =\left(A-K_{s+1} I\right) P_{s} R_{s+1}^{-1}
\end{aligned}
$$

and therefore

$$
P_{s+1}=\left(A^{*}-\bar{k}_{s+1} I\right)^{-1} P_{s} R_{s+1}^{*}\left(\text { since } P_{s}^{-*}=P_{s}\right) .
$$

If we denote by r the last diagonal element of R_{s+1}, then $p_{s+1}=\left(A^{*}-\bar{k}_{s+1} I\right)^{-1} p_{s} r$. From $\left(A_{s+1}-k_{s+1} I\right)^{-*} R_{s+1}^{*}=Q_{s+1}$ follows that

$$
R_{s+1} P_{s}^{*}\left(A-k_{s+1} I\right)^{-1}\left(A^{*}-\bar{k}_{s+1} I\right)^{-1} P_{s} R_{s+1}^{*}=I
$$

and then $r=r_{s+1}$.
Deflation "Remove" a computed eigenvalue and eigenvector from a matrix.
(a) Deflation from Hotelling: A is symmetric and real. Let λ_{1} and x_{1} be the computed eigenvalue and eigenvector respectively, and $x_{1}^{T} x_{1}=1$. Then

$$
B=A-\lambda_{1} x_{1} x_{1}^{*}
$$

has the following relation

$$
B x_{j}=A x_{j}-\lambda_{1} x_{1} x_{1}^{T} x_{j}= \begin{cases}\lambda_{j} x_{j}, & j \neq 1, \\ 0 \cdot x_{j}, & j=1,\end{cases}
$$

where $A x_{j}=\lambda_{j} x_{j} \quad j=1, \cdots, n$. B has the eigenvalues $\left\{0, \lambda_{2}, \cdots, \lambda_{n}\right\}$.
(b) Deflation from Wielandt: Let A be arbitrary. We know the fact, that a left eigenvector y to μ and a right eigenvector x to λ for $\lambda \neq \mu$ are orthogonal:

$$
0=\left(y^{T} A\right) x-y^{T}(A x)=\mu y^{T} x-\lambda y^{T} x=(\mu-\lambda) y^{T} x .
$$

Let λ_{1} and x_{1} be the given eigenvalue and the eigenvector respectively. Let $u \neq 0$ be a vector with $u^{T} x_{1} \neq 0$. Then

$$
B=A-x_{1} u^{T} .
$$

From

$$
B x_{1}=\lambda_{1} x_{1}-\left(u^{T} x_{1}\right) x_{1}=\left(\lambda_{1}-u^{T} x_{1}\right) x_{1}
$$

follows that the eigenvalue λ_{1} is transformed to $\lambda_{1}-u^{T} x_{1}$. If $\lambda \neq \lambda_{1}$ an eigenvalue, then follows from $y^{T} A=\lambda y^{T}(y \neq 0)$ and $y^{T} B=y^{T} A-\left(y^{T} x_{1}\right) u^{T}=\lambda y^{T}$ that λ is also an eigenvalue of B. But the right eigenvectors are changed.
(c) Deflation with similarity transformation

A is arbitrary. Let x_{1}, λ_{1} be given with $A x_{1}=\lambda_{1} x_{1}$. Find a matrix H such that $H x_{1}=k e_{1}(k \neq 0)$. Then holds

$$
H A H^{-1} H x_{1}=\lambda_{1} H x_{1} \quad \text { and } \quad H A H^{-1} e_{1}=\lambda_{1} e_{1} .
$$

That is $H A H^{-1}$ has the form

$$
H A H^{-1}=\left(\begin{array}{c|c}
\lambda_{1} & b^{T} \\
\hline 0 & B
\end{array}\right)
$$

B has the eigenvalues $\sigma(A) \backslash\left\{\lambda_{1}\right\}$.

5.5 $L R, L R C$ and $Q R$ algorithms for positive definite matrices

(a). $L R$-algorithm: Given matrix A. Consider

$$
\begin{align*}
& A_{1}:=A \\
& \text { for } i=1,2,3, \cdots \\
& \quad A_{i}=L_{i} R_{i}, \quad\left(L R \text { factorization of } A_{i}\right) \tag{5.5.1}\\
& A_{i+1}:=R_{i} L_{i} .
\end{align*}
$$

From (5.4.5)-(5.4.7) we have

$$
\begin{align*}
& P_{i}:=L_{1} \cdots L_{i}, S_{i}:=R_{i} \cdots R_{1}, \\
& A_{i+1}:=P_{i}^{-1} A P_{i}=S_{i} A S_{i}^{-1}, \tag{5.5.2}\\
& A^{i}=P_{i} S_{i} . \tag{5.5.3}
\end{align*}
$$

There exists the convergence theorem as Theorem 5.4.2.
Advantage: less cost of computation at each step.
Disadvantage: $L R$ factorization does not always exist.
(b). $L R C$-algorithm:

Let A be symmetric positive definite. Then the $L R$ factorization exists. So we have the following iterative algorithm

$$
\begin{align*}
& A_{1}:=A \\
& \text { for } i=1,2,3, \ldots \\
& \quad A_{i}=L_{i} L_{i}^{T}, \quad\left(\text { Cholesky factorization of } A_{i}\right) \tag{5.5.4}\\
& A_{i+1}:=L_{i}^{T} L_{i} .
\end{align*}
$$

Similar to (5.4.5)-(5.4.7) we also have

$$
\begin{align*}
& P_{i}:=L_{1} L_{2} \cdots L_{i}, \\
& A_{k+1}=P_{k}^{-1} A P_{k}=P_{k}^{T} A P_{k}^{-T}, \tag{5.5.5}\\
& A^{k}=P_{k} P_{k}^{T} . \tag{5.5.6}
\end{align*}
$$

Because all P_{i} are positive definite, the $L R C$ algorithm is always performable.
Theorem 5.5.1 Let A be symmetric positive definite with eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$. Then the LRC algorithm converges: The sequence A_{k} converges to a diagonal matrix Λ with the eigenvalues of A on the diagonal. If $\Lambda=\operatorname{diag}\left(\lambda_{i}\right)$, where $\lambda_{1}>\lambda_{2}>\cdots \lambda_{n}>0$, $A=U \Lambda U^{T}$ and U^{T} has a $L R$ factorization, then A_{k} converges to Λ.

Proof: Let $L_{k}=\left(\ell_{i j}^{k}\right)$ and $s_{m}^{k}=\sum_{i=1}^{m} a_{i i}^{k}, 1 \leq m \leq n$. Since all A_{k} are positive definite and $a_{i i}^{k}>0$, we have

$$
0 \leq s_{m}^{k} \leq \sum_{i=1}^{n} a_{i i}^{k}=\text { trace of } A_{k}=\text { trace of } A
$$

Thus s_{m}^{k} are bounded. From $A_{k}=L_{k} L_{k}^{T}$ follows $a_{i i}^{k}=\sum_{p=1}^{i}\left|\ell_{i p}^{k}\right|^{2}$. From $A_{k+1}=L_{k}^{T} L_{k}$ follows $a_{i i}^{k+1}=\sum_{p=i}^{i}\left|\ell_{p i}^{k}\right|^{2}$. Hence $s_{m}^{k}=\sum_{i=1}^{m} \sum_{p=1}^{i}\left|\ell_{i p}^{k}\right|^{2}$ and $s_{m}^{k+1}=\sum_{i=1}^{m} \sum_{p=i}^{n}\left|\ell_{p i}^{k}\right|^{2}$.

The skizze shows clearly that $s_{m}^{k+1} \geq s_{m}^{k}$. So s_{m}^{k} converges, and then $a_{i i}^{k}=s_{i}^{k}-s_{i-1}^{k}$ and $s_{m}^{k+1}-s_{m}^{k}=\sum_{p=1}^{m} \sum_{j=m+1}^{n}\left(\ell_{j p}^{k}\right)^{2} \rightarrow 0$. This shows that $\ell_{p j}^{k} \rightarrow 0, p \neq j$ and since $a_{i i}^{k}=\left(\ell_{i i}^{k}\right)^{2}+\sum_{p=1}^{i-1}\left(\ell_{i p}^{k}\right)^{2}$ and $a_{i i}^{k}>0$, so $\ell_{i i}^{k}$ converges. So L_{i} converges to a diagonal matrix. Here $A_{i}=L_{i} L_{i}^{T}$.

Second part: From $A=U \Lambda U^{T}, U^{T}=L R$ follows

$$
\begin{aligned}
A^{s} & =U \Lambda^{s} U^{T}=R^{T} L^{T} \Lambda^{s} L R \quad(s=2 t) \\
& =R^{T} \Lambda^{t}\left(\Lambda^{-t} L^{T} \Lambda^{t}\right)\left(\Lambda^{t} L \Lambda^{-t}\right) \Lambda^{t} R .
\end{aligned}
$$

Since $\Lambda^{t} L \Lambda^{-t}=I+E_{t}$ with $E_{t} \rightarrow 0$ and by continuity of $L L^{T}$-factorization we have

$$
\left(\Lambda^{-t} L^{T} \Lambda^{t}\right)\left(\Lambda^{t} L^{T} \Lambda^{-t}\right)=\left(I+E_{t}\right)^{T}\left(I+E_{t}\right)=\tilde{L}_{s} \tilde{S}_{s}^{T}, \quad \tilde{L}_{s} \rightarrow I
$$

and

$$
A^{s}=R^{T} \Lambda^{t} \tilde{L}_{s} \cdot \tilde{L}_{s} \Lambda^{t} R=P_{s} P_{s}^{T}
$$

We now have two different $L L^{T}$-decomposition of A^{s}. There is a unitary diagonal matrix D_{s} with

$$
P_{s} D_{s}=R^{T} \Lambda^{T} \tilde{L}_{s}
$$

and hence

$$
\begin{aligned}
D_{s}^{-1} A_{s+1} D_{s} & =D_{s}^{-1} P_{s}^{-1} A P_{s} D_{s} \\
& =\tilde{L}_{s}^{-1} \Lambda^{-t}\left(R^{-T} A R^{T}\right) \Lambda^{t} \tilde{L}_{s} \\
& =\tilde{L}_{s}^{-1} \Lambda^{-t}\left(L^{T} \Lambda L^{-T}\right) \Lambda^{t} \tilde{L}_{s} .
\end{aligned}
$$

Since $A=U \Lambda U^{-1}=R^{T} L^{T} \Lambda L^{-T} R^{-T}$ and $L^{T} \Lambda L^{-T}$ is a upper triangular with diagonal Λ, it holds $\Lambda^{-t} L^{T} \Lambda L^{-T} \Lambda^{t} \rightarrow \Lambda$ and because of $\tilde{L}_{s} \rightarrow I$, it holds $D_{s}^{-1} A_{s+1} D_{s} \rightarrow \Lambda$, also $A_{s+1} \rightarrow \Lambda$.

Remark 5.5.1 (i) One can also develop shift-strategy and deflation technique for $L R$ and LRC algorithm as in $Q R$ algorithm.
(ii) If A is a (k, k)-band matrix, then L_{1} is a $(k, 0)$-band matrix and therefore $A_{2}=L_{1}^{T} L_{1}$ is also a (k, k)-band matrix. The band structure is preserved.
(c). $Q R$-algorithm for positive definite matrices

We apply $Q R$-algorithm (5.4.3)-(5.4.4) to symmetric matrices. From

$$
A_{i+1}=Q_{i}^{*} A_{i} Q_{i}
$$

follows that A_{i} are symmetric.
Theorem 5.5.2 The $Q R$ algorithm converges for positive definite matrices.

The proof follows immediately from the following Theorem 5.5.3.
We consider now the iteration of $Q R$ algorithm

$$
A_{i+1}=Q_{i}^{*} A_{i} Q_{i}
$$

and the iterations of $L R C$ algorithm

$$
\tilde{A}_{i}:=L_{i} L_{i}^{T}, \quad \tilde{A}_{i+1}=L_{i}^{T} L_{i} .
$$

Theorem 5.5.3 The $(i+1)$-th iteration A_{i+1} of $Q R$ algorithm for positive definite A corresponds to the $(2 i+1)$-th iteration $\tilde{A}_{2 i+1}$ of LRC algorithm for $i=0,1,2, \cdots$.

Proof: From (5.4.5)-(5.4.7) we have

$$
\begin{equation*}
P_{i}:=Q_{i} \cdots Q_{i}, S_{i}:=R_{i} \cdots R_{1} \tag{5.5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{i}=P_{i} S_{i}, \quad A_{i+1}=S_{i} A S_{i}^{-1} \tag{5.5.8}
\end{equation*}
$$

Similarly, from (5.5.2) and (5.5.3) with $\tilde{P}_{i}=L_{1} \cdots L_{i}$, we have

$$
\begin{equation*}
A^{i}=\tilde{P}_{i} \tilde{P}_{i}^{T}, \quad \tilde{A}_{i+1}=\tilde{P}_{i}^{T} A \tilde{P}_{i}^{-T} \tag{5.5.9}
\end{equation*}
$$

From(5.5.8) follows

$$
A^{2 i}=\left(A^{i}\right)^{*} A^{i}=S_{i}^{*} P_{i}^{*} P_{i} S_{i}=S_{i}^{*} S_{i}
$$

On the other hand from (5.5.9) with $i \leftarrow 2 i$ follows

$$
A^{2 i}=\tilde{P}_{2 i} \tilde{P}_{2 i}^{T}
$$

From the uniqueness of $L R C$ factorization of positive diagonal follows $S_{i}=\tilde{P}_{2 i}^{T}$ and hence according to (5.5.8) (5.5.9) it holds

$$
A_{i+1}=S_{i} A S_{i}^{-1}=\tilde{P}_{2 i}^{T} A \tilde{P}_{2 i}^{-T}=\tilde{A}_{2 i+1}
$$

The proof of Theorem 5.5.2 is now from Theorem 5.5.1 and Theorem 5.5.3 evident.
Remark 5.5.2 For positive definite matrices two steps of $L L^{T}$ algorithm are as many as one step of $Q R$ algorithm. This shows that $Q R$ algorithm is much more favorable.

$5.6 \quad q d$-algorithm (Quotient Difference)

We indicated in Remark 5.5.1(ii), the band structure is preserved by $L R$ algorithm. Let $A=A_{1}$ be a (k, m)-band matrix. Then all $L_{i},(k, 0)-$, all $R_{i},(0, m)-$ and all $A_{i},(k, m)$ band matrices, respectively. Especially tridiagonal form is preserved. A transformation of $L R$-algorithm for tridiagonal matrices derives to $q d$-algorithm. A tridiagonal matrix

$$
\tilde{A}=\left(\begin{array}{ccccc}
\tilde{\alpha}_{1} & \tilde{\beta}_{2} & & & 0 \tag{5.6.1}\\
\tilde{\gamma}_{2} & \tilde{\alpha}_{2} & \tilde{\beta}_{3} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \tilde{\beta}_{n} \\
0 & & & \tilde{\gamma}_{n} & \tilde{\alpha}_{n}
\end{array}\right)
$$

for $\tilde{\beta}_{i} \neq 0(i=2, \cdots, n)$ can be transformed with $D=\operatorname{diag}\left(1, \tilde{\beta}_{2}, \tilde{\beta}_{2} \tilde{\beta}_{3}, \cdots, \tilde{\beta}_{2} \cdots \tilde{\beta}_{n}\right)$ to the form $D \tilde{A} D^{-1}=A$, where

$$
A=\left(\begin{array}{ccccc}
\alpha_{1} & 1 & & & 0 \tag{5.6.2}\\
\gamma_{1} & \alpha_{2} & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & 1 \\
0 & & & \gamma_{n} & \alpha_{n}
\end{array}\right)
$$

with $\gamma_{i}=\tilde{\beta}_{i} \tilde{\gamma}_{i}$ and $\alpha_{i}=\tilde{\alpha}_{i}$. Hence without loss of generality we can study the form (5.6.2) for tridiagonal matrices. We now apply $L R$-algorithm to (5.6.2):

$$
\left.\begin{array}{c}
A_{s}=\left(\begin{array}{cccc}
\alpha_{1}^{s} & 1 & & 0 \\
\gamma_{2}^{s} & \alpha_{2}^{s} & \ddots & \\
& \ddots & \ddots & 1 \\
0 & & \gamma_{n}^{s} & \alpha_{n}^{s}
\end{array}\right), L_{s}=\left(\begin{array}{cccc}
1 & & & 0 \\
e_{2}^{s} & \ddots & & \\
& \ddots & \ddots & \\
0 & & e_{n}^{s} & 1
\end{array}\right), \\
\end{array} \quad \begin{array}{ccccc}
q_{1}^{s} & 1 & & 0 \tag{5.6.3}\\
& \ddots & \ddots & \\
& & \ddots & 1 \\
0 & & & q_{n}^{s}
\end{array}\right) .
$$

The $L R$ factorization $A_{s}=L_{s} R_{s}$ can be obtained by element comparison:

$$
\begin{array}{rll}
(1,1): & \alpha_{1}^{s}=q_{1}^{s}, & \\
(i, i-1): & \gamma_{i}^{s}=e_{i}^{s} q_{i-1}^{s}, & i=2, \cdots, n, \tag{5.6.4}\\
(i, i): & \alpha_{i}^{s}=e_{i}^{s}+q_{i}^{s}, & i=2, \cdots, n, \\
(i, i+1): & 1=1 \cdot 1, & i=1, \cdots, n-1 .
\end{array}
$$

We can determine e_{i}^{s}, q_{i}^{s} from above equations for a given A_{s} in the sequence $q_{1}^{s}, e_{2}^{s}, q_{2}^{s}, e_{3}^{s}, q_{3}^{s}$, \ldots, q_{n}^{s} and compute $A_{s+1}=R_{s} L_{s}$ by

$$
\begin{cases}\alpha_{i}^{s+1}=q_{i}^{s}+e_{i+1}^{s}, & i=1, \cdots, n-1 \tag{5.6.5}\\ \alpha_{n}^{s+1}=q_{n}^{s}, & \\ \gamma_{i}^{s+1}=q_{i}^{s} e_{i}^{s}, & i=2, \cdots, n .\end{cases}
$$

We write $s+1$ instead of s in (5.6.4), then we can eliminate A_{s+1} and obtain

$$
\left\{\begin{array}{ll}
\left(\alpha_{i}^{s+1}=\right) e_{i}^{s+1}+q_{i}^{s+1}=q_{i}^{s}+e_{i+1}^{s}, & i=1, \cdots, n \tag{5.6.6}\\
\left(\gamma_{i}^{s+1}=\right) e_{i}^{s+1} q_{i-1}^{s+1}=q_{i}^{s} e_{i}^{s}, & i=2, \cdots, n
\end{array} .\right.
$$

For the convenience of notation we suppose

$$
\begin{equation*}
e_{1}^{s}=0, \quad e_{n+1}^{s}=0, \quad s=1,2, \cdots \tag{5.6.7}
\end{equation*}
$$

The equations (5.6.6) can be represented by the $q d$-scheme and the Rhomben rules:
$q d$-Scheme

$$
\left.\begin{array}{c|llllll|l}
\left(e_{1}^{s}=\right) 0 & q_{1}^{s} & e_{2}^{s} & & & & & \\
\left(e_{1}^{s+1}=\right) 0 & q_{1}^{s+1} & e_{2}^{s+1} & q_{2}^{s} & & & & \\
& & & q_{2}^{s+1} & \ddots & q_{n-1}^{s} & e_{n}^{s} & \\
& & & & \ddots & q_{n-1}^{s+1} & e_{n}^{s+1} & q_{n}^{s} \\
& & & & & & & q_{n}^{s+1}
\end{array}\right) 0\left(=e_{n+1}^{s}\left(=e_{n+1}^{s+1}\right)\right.
$$

The first equations in (5.6.6) can be formulated as sum rule:

$$
\begin{array}{ccccc}
& & q_{i}^{s} & & \\
& & & \ddots & \\
e_{i}^{s+1} & & & & e_{i+1}^{s} \\
& \ddots & & & \\
& & q_{i}^{s+1} & &
\end{array}
$$

The sum of elements of upper rows is equal to the sum of elements of lower rows. Thus,

$$
\begin{equation*}
q_{i}^{s+1}=q_{i}^{s}+e_{i+1}^{s}-e_{i}^{s+1} . \tag{5.6.8}
\end{equation*}
$$

The second equations in (5.6.6) can be formulated as product rule:

$$
\begin{array}{ccccc}
& & e_{i}^{s} & & \\
& & & \ddots & \\
q_{i-1}^{s+1} & & & & q_{i}^{s} \\
& \ddots & & & \\
& & e_{i}^{s+1} & &
\end{array}
$$

The product of elements of upper rows is equal to the product of elements of lower rows. Thus,

$$
\begin{equation*}
e_{i}^{s+1}=\frac{e_{i}^{s} q_{i}^{s}}{q_{i-1}^{s+1}} \tag{5.6.9}
\end{equation*}
$$

With these rules a new $q d$-rows can be determined by sum and product rules from left to right. Start according to (5.6.4) with $s=1$. The formulas (5.6.8)(5.6.9) interpret the name quotient-difference algorithm.

5.6.1 The $q d$-algorithm for positive definite matrix

If \tilde{A} in (5.6.1) is positive definite, then $\operatorname{det} \tilde{A}>0$, and it also holds for A because $\operatorname{det} A=\operatorname{det} D \operatorname{det} \tilde{A} \operatorname{det} D^{-1}=\operatorname{det} \tilde{A}>0$. This also holds for principal determinants h_{1}, \cdots, h_{n} of \tilde{A}. They are positive and equal to principal determinants of A, respectively. In general we have

Lemma 5.6.1 If a matrix B is diagonal similar to a positive definite matrix C, then all principal determinants of B are positive.

Lemma 5.6.2 A matrix in the form (5.6.2) is diagonal similar to a symmetric tridiagonal matrix, if and only if, $\gamma_{i}>0$, for $i=2, \cdots, n$. Especially this matrix is irreducible.

Proof: If $\gamma_{i}>0$, then $D^{-1} A D$ is symmetric, where

$$
D=\operatorname{diag}\left(1, t_{2}, t_{2} t_{3}, \cdots, t_{2} \cdots t_{n}\right), \quad t_{i}:=\sqrt{\gamma_{i}} .
$$

Reversely, if D is a diagonal matrix, $D=\operatorname{diag}\left(d_{i}\right)$ and $\tilde{A}=D^{-1} A D$ symmetric, then $\tilde{a}_{i, i+1}=d_{i+1} / d_{i}=\tilde{a}_{i+1, i}=\gamma_{i}\left(d_{i} / d_{i+1}\right) \quad$ and $\quad d_{i+1} / d_{i} \neq 0$. So $\gamma_{i}=\left(\tilde{a}_{i, i+1}\right)^{2}>0$.

Theorem 5.6.1 The qd-algorithm converges for irreducible, symmetric positive definite tridiagonal matrices. i.e. If \tilde{A} is irreducible and positive definite, then it holds the quantities computed from (5.6.2) (5.6.4) (5.6.8)(5.6.9):

$$
\begin{array}{ll}
e_{i}^{s}>0, & \lim _{s \rightarrow \infty} e_{i}^{s}=0, \quad i=2, \cdots, n, \\
q_{i}^{s}>0, & \lim _{s \rightarrow \infty} q_{i}^{s}=0, \quad i=1, \cdots, n . \tag{5.6.11}
\end{array}
$$

Hereby $\lambda_{i}, i=1, \cdots, n$ are the eigenvalues of \tilde{A} and satisfy

$$
\begin{equation*}
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}>0 \tag{5.6.12}
\end{equation*}
$$

Proof: Let h_{i}^{k} be the i-th principal determinant of A_{k}. We first show that by induction on k :

$$
e_{i}^{k}>0, i=2, \cdots, n, q_{i}^{k}>0, h_{i}^{k}>0, i=1, \cdots, n .
$$

For $A=A_{1}$, Lemma 5.6 .1 shows that: $h_{i}^{1}>0, i=1, \cdots, n$. In addition we have from $A_{s}=L_{s} R_{s}$ that

$$
\begin{equation*}
h_{i}^{s}=q_{i}^{s} \cdots q_{i}^{s}, \quad i=1, \cdots, n . \tag{5.6.13}
\end{equation*}
$$

Hence for $s=1: q_{i}^{1}>0, i=1, \cdots, n$. From Lemma 5.6.2 follows $\gamma_{i}=\gamma_{i}^{1}>0, i=$ $2, \cdots, n$, so from (5.6.4) we get

$$
e_{i}^{1}=\gamma_{i}^{1} / q_{i-1}^{1}>0
$$

We suppose the above assertion is true until $k-1$, then from (5.6.5) follows

$$
\gamma_{i}^{k}=q_{i}^{k-1} e_{i}^{k-1}>0
$$

so from Lemma 5.6.2 and Lemma 5.6.1 we have that A_{k} is diagonal similar to a symmetric matrix, which must be positive definite, because A_{k} is similar to \tilde{A}. Hence all $h_{i}^{k}>0$. Therefore from (5.6.13) q_{i}^{k} and from (5.6.4) e_{i}^{k} are also positive.

We now show that

$$
\lim _{k \rightarrow \infty} e_{i}^{k}=0, \lim _{k \rightarrow \infty} q_{i}^{k}=q_{i}>0
$$

From (5.6.6) for $i=n, q_{n}^{s+1}+e_{n}^{s+1}=q_{n}^{s}$ follows that q_{n}^{s} is monotone decreasing, so q_{n}^{s} converges and $e_{n}^{s+1}=q_{n}^{s}-q_{n}^{s+1}$ approaches to zero. Adding the following equations together

$$
\begin{aligned}
& q_{n}^{k+1}=q_{n}^{k}-e_{n}^{k+1}, \\
& q_{n-1}^{k+2}=q_{n-1}^{k+1}+e_{n}^{k+1}-e_{n-1}^{k+2}, \\
& \quad \vdots \\
& q_{n-\nu}^{k+\nu+1}=q_{n-\nu}^{k+\nu}+e_{n+1-\nu}^{k+\nu}-e_{n-\nu}^{k+\nu+1},
\end{aligned}
$$

we get that

$$
q_{n}^{k+1}+q_{n-1}^{k+2}+\cdots+q_{n-\nu}^{k+\nu+1}=q_{n}^{k}+q_{n-1}^{k+1}+\cdots+q_{n-\nu}^{k+\nu}-e_{n-\nu}^{k+\nu+1},
$$

i.e.,

$$
\rho_{\nu}^{k+1}=\rho_{\nu}^{k}-e_{n-\nu}^{k+\nu+1} .
$$

The sequence ρ_{ν}^{k} is positive, monotone decreasing, so it converges, for $\nu=1, \cdots, n-1$. Hence q_{ν}^{k} converges to a number $q_{\nu} \geq 0$, thus $\lim _{k \rightarrow \infty} e_{\nu}^{k}=0$. So $\lim _{s \rightarrow \infty} L_{s}=I$ and hence

$$
\lim _{s \rightarrow \infty} A_{s}=\lim _{s \rightarrow \infty} L_{s} R_{s}=\lim _{s \rightarrow \infty} R_{s}=\left[\begin{array}{cccc}
q_{1} & 1 & & 0 \\
& \ddots & \ddots & 1 \\
& & \ddots & \\
0 & & & q_{n}
\end{array}\right] .
$$

This shows that q_{i} are the eigenvalues of A and \tilde{A}. It is necessary to show that q_{i} are in decreasing order. Suppose $q_{i} / q_{i-1}>1$ for one i, then also holds for all $s, q_{i}^{s} / q_{i-1}^{s}>1$. This contradicts that

$$
e_{i}^{s+1}=e_{i}^{s} q_{i}^{s} / q_{i-1}^{s} \text { and } e_{i}^{s} \rightarrow 0
$$

On the other hand, $q_{i}=q_{i-1}$ is not possible, since a tridiagonal matrix with nonzero subdiagonal only possesses simple eigenvalues.

Remark 5.6.1 It is remarkable that the qd-algorithm has the advanced applications in the numerical mathematics for the computation of roots of polynomials.

Chapter 6

The Symmetric Eigenvalue problem

6.1 Properties, Decomposition, Perturbation Theory

$$
\begin{aligned}
& \text { A Hermitian } \Longleftrightarrow A=A^{*} \Longleftrightarrow A=\left(a_{i k}\right), a_{i k}=\bar{a}_{k i}, i, k=1, \cdots, n . \\
& \text { A symmetric } \Longleftrightarrow A=\bar{A}, A=A^{T} \Longleftrightarrow a_{i k}=a_{k i}, a_{i k}=\bar{a}_{i k}, i, k=1, \cdots, n \text {. }
\end{aligned}
$$

Theorem 6.1.1 (Schur Decomposition for Hermitian matrices) If $A \in \mathbf{C}^{n \times n}$ is Hermitian (real symmetric), then there exists a unitary (orthogonal) Q such that

$$
\begin{align*}
& Q^{*} A Q=\wedge \equiv \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right), \\
& A q_{i}=\lambda_{i} q_{i}, \quad i=1, \cdots, n, \quad Q=\left[q_{1}, \cdots, q_{n}\right] . \tag{1.1}
\end{align*}
$$

Proof: Let $Q^{*} A Q=T$ be the Schur Decomposition of A. It follows that T must be a direct sum of 1×1 and 2×2 matrices, since T is Hermitian. But a 2×2 Hermitian matrix can not have complex eigenvalues. Consequently, T has no 2×2 block along its diagonal.

Classical techniques:

There are extremely effetive techniques based on the minimax principle, for investigating the eigenvalues of the sum of two symmetric matrices.

Let X be a symmetric matrix defined by

$$
X=\left[\begin{array}{l|l}
\alpha & a^{T} \\
\hline a & \operatorname{diag}\left(\alpha_{i}\right)
\end{array}\right] \quad(i=1, \cdots, n) .
$$

We wish to relate the eigenvalues of X with the α_{i}.
Suppose that only s of the components of a are non-zero. If a_{j} is zero, then α_{j} is an eigenvalue of X. There exists a permutation P such that

$$
Y=P^{T} X P=\left(\begin{array}{c|c|c}
\alpha & b^{T} & 0 \\
\hline b & \operatorname{diag}\left(\beta_{i}\right) & 0 \\
\hline 0 & 0 & \operatorname{diag}\left(\gamma_{i}\right)
\end{array}\right),
$$

where no component of b is zero, $\operatorname{diag}\left(\beta_{i}\right)$ is of order s, and $\operatorname{diag}\left(\gamma_{i}\right)$ is of order $n-1-s$.

The eigenvalues of X are therefore γ_{i} together with those of the matrix Z defined by

$$
Z=\left(\begin{array}{c|c}
\alpha & b^{T} \\
\hline b & \operatorname{diag}\left(\beta_{i}\right)
\end{array}\right)
$$

If $s=0, Z$ is the single element α and hence the eigenvalues of X are $\operatorname{diag}\left(\alpha_{i}\right)$ and α. Otherwise examine the characteristic polynominal of Z :

$$
\begin{equation*}
(\alpha-\lambda) \prod_{i=1}^{s}\left(\beta_{i}-\lambda\right)-\sum_{j=1}^{s} b_{j}^{2} \prod_{i \neq j}\left(\beta_{i}-\lambda\right)=0 \tag{1.1.1}
\end{equation*}
$$

Suppose that there are only t distinct values among the β_{i}. W.l.o.g. we may take them to be $\beta_{1}, \cdots, \beta_{t}$ with multiplicities $r_{1}, r_{2}, \cdots, r_{t}$ respectively, so that $r_{1}+r_{2}+\cdots+r_{t}=s$. Clearly the left-hand side of (1.1.1) has the factor

$$
\prod_{i=1}^{t}\left(\beta_{i}-\lambda\right)^{r_{i}-1}
$$

so that β_{i} is an eigenvalue of Z of multiplicity $\left(r_{i}-1\right)$.
Dividing (1.1.1) by $\Pi_{i=1}^{t}\left(\beta_{i}-\lambda\right)^{r_{i}}$ we see that the remaining eigenvalues of Z are the roots of

$$
\begin{equation*}
0=(\alpha-\lambda)-\sum_{i=1}^{t} c_{i}^{2}\left(\beta_{i}-\lambda\right)^{-1} \equiv \alpha-f(\lambda) \tag{1.1.2}
\end{equation*}
$$

where c_{i}^{2} is the sum of the r_{i} values b_{j}^{2} associated with β_{i} and is therefore strictly positive. A graph of $f(\lambda)$ against λ is given as follows, where it is assumed that distinct β_{i} are in decreasing order.
It is immediately evident that the $t+1$ roots of $\alpha=f(\lambda)$ which we denote by $\delta_{1}, \delta_{2}, \cdots, \delta_{t+1}$ satisfy

$$
\begin{equation*}
\infty>\delta_{1}>\beta_{1} ; \beta_{i-1}>\delta_{i}>\beta_{i}(i=2,3, \cdots, t) ; \beta_{t}>\delta_{t+1}>-\infty \tag{1.1.3}
\end{equation*}
$$

The n eigenvalues of X therefore fall into three sets:
(1) The eigenvalues $\gamma_{1}, \cdots, \gamma_{n-1-s}$ corresponding to the zero a_{i}. These are equal to $n-1-s$ of the α_{i}.
(2) $s-t$ eigenvalues consisting of $r_{i}-1$ values equal to $\beta_{i}(i=1,2, \cdots, t)$. These are equal to a further $s-t$ of the α_{i}.
(3) $t+1$ eigenvalues equal to δ_{i} satisfying (1.1.3). If $t=0$ then $\delta_{1}=\alpha$.

Let the eigenvalues of X be denoted by $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then it is an immediate consequence of our enumeration of the λ_{i} above that if the α_{i} are also arranged in nonincreasing order then

$$
\begin{equation*}
\lambda_{1} \geq \alpha_{1} \geq \lambda_{2} \geq \alpha_{2} \geq \cdots \geq \alpha_{n-1} \geq \lambda_{n} \tag{1.1.4}
\end{equation*}
$$

In other words the α_{i} separate the λ_{i} at least in the weak sense.

6.1 Properties, Decomposition, Perturbation Theory

Consider now the eigenvalues of X^{\prime} derived from X by replacing α and α^{\prime}. The eigenvalues of X^{\prime} will equal to those of X as far as sets (1) and (2) are concerned.

Let us denote those in (3) by $\delta_{1}^{\prime}, \delta_{2}^{\prime}, \cdots, \delta_{t+1}^{\prime}$. Now for $\lambda>0$, we have

$$
\begin{equation*}
\frac{d f}{d \lambda}=1+\sum_{i=1}^{t} \frac{c_{i}^{2}}{\left(\beta_{i}-\lambda\right)^{2}}>1, \tag{1.1.5}
\end{equation*}
$$

and hence $\delta_{i}{ }^{\prime}-\delta_{i}$ lies between 0 and $\alpha^{\prime}-\alpha$. We may write

$$
\begin{equation*}
\delta_{i}^{\prime}-\delta_{i}=m_{i}\left(\alpha^{\prime}-\alpha\right), \tag{1.1.6}
\end{equation*}
$$

where $0 \leq m_{i} \leq 1$ and $\sum_{i=1}^{t+1} m_{i}=1$. If $t=0$ then $\delta_{1}{ }^{\prime}=\alpha^{\prime}$ and $\delta_{1}=\alpha$ and $\delta_{1}{ }^{\prime}-\delta_{1}=\alpha^{\prime}-\alpha$. Hence we may write in all cases

$$
\delta_{i}^{\prime}-\delta_{i}=m_{i}\left(\alpha^{\prime}-\alpha\right),
$$

where $0 \leq m_{i} \leq 1$ and $\sum_{i=1}^{t+1} m_{i}=1$. Since the other eigenvalues of X and X^{\prime} are equal, we have established a correspondence between n eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ and $\lambda_{1}{ }^{\prime}, \cdots, \lambda_{n}{ }^{\prime}$ of X and X^{\prime} respectively.

$$
\begin{align*}
& \lambda_{i}^{\prime}-\lambda_{i}=m_{i}\left(\alpha^{\prime}-\alpha\right), \tag{1.1.7}\\
& 0 \leq m_{i} \leq 1, \quad \sum_{i=1}^{n} m_{i}=1
\end{align*}
$$

where $m_{i}=0$ for the eigenvalues from sets (1) and (2).
Now let $C=A+B$, where A and B are symmetric and B is of rank 1 . There exists an orthogonal matrix R such that $R^{T} B R=\left[\begin{array}{c|c}\rho & 0 \\ \hline 0 & \bigcirc\end{array}\right], \rho \neq 0$. Let

$$
R^{T} A R=\left[\begin{array}{c|c}
\alpha & a^{T} \\
\hline a & A_{n-1}
\end{array}\right] .
$$

Then there is an orthogonal matrix S of order n-1 such that

$$
S^{T} A_{n-1} S=\operatorname{diag}\left(\alpha_{i}\right)
$$

and if we define Q by

$$
Q=R\left[\begin{array}{l|l}
1 & 0 \\
\hline 0 & S
\end{array}\right],
$$

then Q is orthogonal and

$$
Q^{T}(A+B) Q=\left[\begin{array}{c|c}
\alpha & b^{T} \\
\hline b & \operatorname{diag}\left(\alpha_{i}\right)
\end{array}\right]+\left[\begin{array}{c|c}
\rho & 0 \\
\hline 0 & \bigcirc
\end{array}\right]
$$

where $b=S^{T} a$, the eigenvalues of A and of $(A+B)$ are therefore those of

$$
\left[\begin{array}{c|c}
\alpha & b^{T} \\
\hline b & \operatorname{diag}\left(\alpha_{i}\right)
\end{array}\right] \text { and }\left[\begin{array}{c|c}
\alpha+\rho & b^{T} \\
\hline b & \operatorname{diag}\left(\alpha_{i}\right)
\end{array}\right],
$$

and if we denote these eigenvalues by λ_{i} and $\lambda_{i}{ }^{\prime}$ in decreasing order, then they satisfy

$$
\begin{align*}
& \lambda_{i}^{\prime}-\lambda_{i}=m_{i} \rho \tag{1.1.8}\\
& 0 \leq m_{i} \leq 1 \quad \sum_{i=1}^{n} m_{i}=1
\end{align*}
$$

Hence when B is added to A, all eigenvalues of the latter are shifted by anount which lies between zero and the eigenvalue ρ of B. We summary the above discussion as the following theorem.

Theorem 6.1.2 Supose $B=A+\tau c c^{T}$, where $A \in R^{n \times n}$ is symmetric, $c \in R^{n}$ has unit 2-norm and $\tau \in R$. If $\tau \geq 0$ then

$$
\lambda_{i}(B) \in\left[\lambda_{i}(A), \lambda_{i-1}(A)\right], \quad i=2,3, \ldots, n,
$$

while if $\tau \leq 0$ then

$$
\lambda_{i}(B) \in\left[\lambda_{i+1}(A), \lambda_{i}(A)\right], \quad i=1,2, \ldots, n-1 .
$$

In either case

$$
\lambda_{i}(B)=\lambda_{i}(A)+m_{i} \tau,
$$

where $m_{1}+m_{2}+\cdots+m_{n}=1$ and $m_{i} \geq 0$.
Let $\lambda_{i}(A)$ denote the i th largest eigenvalue of A. Then

$$
\begin{equation*}
\lambda_{n}(A) \leq \lambda_{n-1}(A) \leq \cdots \leq \lambda_{1}(A) \tag{1.2}
\end{equation*}
$$

Definition 6.1.1 If $A=A^{*}, x \neq 0$, then

$$
R[x]=\frac{x^{T} A x}{x^{T} x}
$$

is called the Rayleigh-Quotient of x, sometimes denoted by $R[x, A]$.
Theorem 6.1.3 If $A=A^{*}$, then it holds

$$
\begin{equation*}
\lambda_{n}(A) \leq R[x] \leq \lambda_{1}(A) . \tag{1.3}
\end{equation*}
$$

Proof: From (1.1) we have

$$
\begin{equation*}
R[x]=\frac{x^{*} A x}{x^{*} x}=\frac{x^{*} U A U^{*} x}{x^{*} U U^{*} x}=\frac{y^{*} \Lambda y}{y^{*} y}=\frac{\sum_{i=1}^{n} \lambda_{i}\left|y_{i}\right|^{2}}{\sum_{i=1}^{n}\left|y_{i}\right|^{2}},\left(y=U^{*} x\right) . \tag{1.4}
\end{equation*}
$$

Thus $R[x]$ is a convex combination of λ_{i}, it follows (1.3).
Corollary 6.1.4

$$
\lambda_{1}(A)=\max _{x \neq 0} R[x] \quad \text { and } \quad \lambda_{n}(A)=\min _{x \neq 0} R[x] .
$$

Theorem 6.1.5 (Weyl) If A is Hermitian with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ and eigenvectors u_{1}, \cdots, u_{n}, then it holds

$$
\begin{equation*}
\lambda_{i}=\max \left\{R[x]: x \neq 0, x \perp u_{k}, k=1, \cdots, i-1\right\}, \tag{1.5}
\end{equation*}
$$

for $i=1, \cdots, n$.
Proof: It is clear for $i=1$. Let $i>1$. If $x \perp u_{1}, \cdots, u_{i-1}$ then $u_{k}^{*} x=0$, for $k=$ $1, \cdots, i-1$. So $y=U^{*} x$ satisfies $y_{k}=0, k=1, \cdots, i-1$ (Here $U=\left[u_{1}, \cdots, u_{n}\right]$). It follows from (1.4) that

$$
R[x]=\frac{\sum_{j=i}^{n} \lambda_{j}\left\|y_{j}\right\|^{2}}{\sum_{j=i}^{n}\left\|y_{j}\right\|^{2}} \leq \lambda_{i}
$$

For $x=u_{i}$, we have $R[x]=\lambda_{i}$, so (1.5) holds.
Theorem 6.1.6 (Courant-Fischer) Under above assumptions we have

$$
\begin{align*}
\lambda_{i} & =\min _{\left\{p_{1}, \cdots, p_{n}\right\} l . i .}\left\{\max \left\{R[x]: x \neq 0, x \perp p_{k}, k=1, \cdots, i-1\right\}\right\} \tag{1.6}\\
\lambda_{i} & =\min _{\operatorname{dim} S=n+1-i}\{\max \{R[x]: x \in S \backslash\{0\}\}\} . \tag{1.7}\\
\lambda_{i} & =\max _{\operatorname{dim} S=i}\{\min \{R[x]: x \in S \backslash\{0\}\}\} . \tag{1.8}
\end{align*}
$$

Proof:

$(1.6) \Longleftrightarrow(1.7)$ trivial.
$(1.7) \Rightarrow(1.8)$: Applying (1.7) to $-A$, we then have

$$
\lambda_{i}(-A)=\min _{\operatorname{dim} S=n+1-i}\{\max \{-R[x]: x \in S \backslash\{0\}\}\} .
$$

That is

$$
-\lambda_{n+1-i}(A)=-\max _{\operatorname{dim} S=n+1-i}\{\min \{-R[x]: x \in S \backslash\{0\}\}\} .
$$

(Use $\max \left(-a_{i}\right)=-\min \left(a_{i}\right), \min \left(-a_{i}\right)=-\max \left(a_{i}\right)$). By substituting $i \rightarrow n+1-i$ follows (1.8).

Claim (1.6): Since $\lambda_{1}=\max _{x \neq 0}(R[x])$, for $i=1$ it is true.
Consider $i>1$: Let $p_{1}, \cdots, p_{i-1} \neq 0$ be given. The linear system

$$
\begin{cases}p_{k}{ }^{*} x=0, & k=1, \cdots, i-1, \\ u_{k}{ }^{*} x=0, & k=i+1, \cdots, n\end{cases}
$$

has a solution $x \neq 0$, because of $n-1$ homogenous equations with n variables. Let $U=\left[u_{1}, \cdots, u_{n}\right]$. Then

$$
R[x]=\frac{x^{*} U \Lambda U^{*} x}{x^{*} U U^{*} x}=\frac{\sum_{j=1}^{i} \lambda_{j}\left|U^{*} x\right|_{j}^{2}}{\sum_{j=1}^{i}\left|U^{*} x\right|_{j}^{2}} \geq \lambda_{i} .
$$

But $p_{k}^{*} x=0, k=1, \cdots, i-1$ so

$$
\max \left\{R[x]: \quad x \perp p_{k}, k=1, \cdots, i-1\right\} \geq \lambda_{i} .
$$

This implies

$$
\lambda_{i} \leq \min _{\left\{p_{k}\right\}_{k=1}^{i-1}}\left\{\max \left\{R[x]: x \perp p_{k}, k=1, \cdots, i-1\right\}\right\} .
$$

Now set $p_{k}=u_{k}, k=1, \cdots, i-1$. By (1.5) we have the equality (1.6).

Theorem 6.1.7 (Separation theorem) A is Hermitian with eigenvalues $\lambda_{n} \leq \lambda_{n-1} \leq$ $\cdots \leq \lambda_{1}$. Let

$$
A_{n-1}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1, n-1} \\
\vdots & & \vdots \\
a_{n-1,1} & \cdots & a_{n-1, n-1}
\end{array}\right)
$$

be the $n-1$ principal submatrix of A with eigenvalues $\lambda_{n-1}^{\prime} \leq \cdots \leq \lambda_{1}{ }^{\prime}$. Then it holds $\lambda_{s+1} \leq \lambda_{s}^{\prime} \leq \lambda_{s}$, for $s=1, \cdots, n-1$.
Proof: Let $z=\left[\begin{array}{l}x \\ 0\end{array}\right] \in \mathbf{C}^{n}$, where $x \in \mathbf{C}^{n-1}$. Then

$$
\frac{x^{*} A_{n-1} x}{x^{*} x}=\frac{z^{*} A z}{z^{*} z} .
$$

Applying (1.5) to A_{n-1} we have

$$
\begin{aligned}
\lambda_{s}^{\prime} & =\max \left\{\frac{x^{*} A_{n-1} x}{x^{*} x}: 0 \neq x \in \mathbf{C}^{n-1}, x \perp u_{i}^{\prime}, i=1, \cdots, s-1\right\} \\
& =\max \left\{\frac{z^{*} A z}{z^{*} z}: 0 \neq z \in \mathbf{C}^{n}, z \perp\left[\begin{array}{c}
u_{i}^{\prime} \\
0
\end{array}\right], e_{n}^{T} z=0, i=1, \cdots, s-1\right\} \\
& \geq \min _{\left\{p_{i}\right\}_{i=1}^{s} l . i .} \max \left\{R[z]: z \perp p_{i}, i=1, \cdots, s\right\}=\lambda_{s+1} \quad(B y(1.6)) .
\end{aligned}
$$

therefore $\lambda_{s+1} \leq \lambda_{s}^{\prime}$. Here u_{i}^{\prime} is the eigenvector of A_{n-1}. Now set $A \rightarrow-A$ then

$$
\lambda_{s+1}(-A) \leq \lambda_{s}^{\prime}\left(-A_{n-1}\right)
$$

Thus

$$
-\lambda_{n-s}(A) \leq-\lambda_{n-s}^{\prime}\left(A_{n-1}\right)
$$

It follows

$$
\lambda_{n-s}(A) \geq \lambda_{n-s}^{\prime}\left(A_{n-1}\right)
$$

Hence we have $\lambda_{n-s} \geq \lambda_{n-s}^{\prime}$. By setting $s \rightarrow n-s$, we have $\lambda_{s} \geq \lambda_{s}^{\prime}$.

Theorem 6.1.8 (Separation theorem) Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of A and $\lambda_{1}{ }^{\prime} \geq \cdots \geq \lambda_{n-1}^{\prime}$ be the eigenvalues of B^{\prime}, where B^{\prime} is obtained by scratching a row and the same column of A, then $\lambda_{s+1} \leq \lambda_{s}{ }^{\prime} \leq \lambda_{s}$. Further consequence are: If B consists of by scratching two rows and the coresponding columns of B^{\prime}, i.e., $A \rightarrow B^{\prime} \rightarrow B$, then we have

$$
\lambda_{i+2} \leq \lambda_{i+1}^{\prime} \leq \lambda_{i}^{\prime \prime} \leq \lambda_{i}^{\prime} \leq \lambda_{i} \text { and } \lambda_{i+2} \leq \lambda_{i}^{\prime \prime} \leq \lambda_{i} .
$$

In general: Let B be the principal submatrix of A of order $n-r$, then

$$
\lambda_{i+r}(A) \leq \lambda_{i}(B) \leq \lambda_{i}(A), \quad i=1, \cdots, n-r .
$$

$$
\begin{equation*}
\lambda_{i}(A)+\lambda_{n}(E) \leq \lambda_{i}(A+E) \leq \lambda_{i}(A)+\lambda_{1}(E), \quad i=1, \cdots, n \tag{1.9}
\end{equation*}
$$

Proof: For $x \neq 0, R[x, A+E]=R[x, A]+R[x, E]$. Thus

$$
R[x, A]+\lambda_{n}(E) \leq R[x, A+E] \leq R[x, A]+\lambda_{1}(E)
$$

Applying (1.6) we get

$$
\lambda_{i}(A)+\lambda_{n}(E) \leq \lambda_{i}(A+E) \leq \lambda_{i}(A)+\lambda_{1}(E)
$$

Corollary 6.1.10 (Monotonic theorem) If E is positive semidefinite, then it holds

$$
\lambda_{i}(A+E) \geq \lambda_{i}(A)
$$

Corollary 6.1.11 (Weyl's theorem) It holds

$$
\begin{aligned}
& \left|\lambda_{i}(A+E)-\lambda_{i}(A)\right| \leq \max \left\{\lambda_{1}(E),-\lambda_{n}(E)\right\} \\
= & \max \left\{\left|\lambda_{i}(E)\right|, i=1, \cdots, n\right\}=\rho(E)=\|E\|_{2} \\
= & \text { spectral radius of } E .
\end{aligned}
$$

Theorem 6.1.12 (Hoffmann-Wielandt) If A, E are Hermitian matrices, then

$$
\sum_{i=1}^{n}\left(\lambda_{i}(A+E)-\lambda_{i}(A)\right)^{2} \leq\|E\|_{F}^{2}=\left(\sum_{i=1}^{n} \lambda_{i}(E)^{2}\right)^{\frac{1}{2}}
$$

Proof: Later!

Definition 6.1.2 A matrix $B=\left(b_{i j}\right)$ is called double stochastic(d.s.), if (1) $b_{i j} \geq 0$. (2) $\sum_{j=1}^{n} b_{i j}=\sum_{j=1}^{n} b_{j i}=1$, for $i, j=1, \cdots, n$.

Remark: The d.s. matrices form a convex set D.
Example: Let W be orthogonal and $W=\left(w_{i k}\right)$. Then $\left(\left|w_{i k}\right|^{2}\right)=\tilde{W}$ is double stochastic.
Example: Let P be a permutation matrix. Then P is double stochastic (Extreme point of D).

Theorem 6.1.13 (Birkhoff) D is the convex closure of the permutation matrices, that is, for $B \in D$, there exists $\alpha_{1}, \cdots, \alpha_{r}$ and P_{1}, \cdots, P_{r} permutations such that

$$
B=\sum_{i=1}^{r} \alpha_{i} p_{i}, \quad \alpha_{i} \geq 0, \quad \sum_{i=1}^{r} \alpha_{i}=1
$$

Remark: Let l be a linear functional from D into R. Then it holds

$$
\min _{P \in \text { Perm. }} l(P) \leq l(B)=l\left(\sum_{i=1}^{r} \alpha_{i} p_{i}\right) \leq \max _{P \in \text { Perm. }} l(P) .
$$

Proof of Hoffmann-Wielandt theorem 6.1.12: Let

$$
\begin{gathered}
A=U \Lambda U^{*}, \quad \Lambda=\operatorname{diag}\left(\lambda_{1}(A), \cdots, \lambda_{n}(A)\right), \\
A+E=V \tilde{\Lambda} V^{*}, \tilde{\Lambda}=\operatorname{diag}\left(\lambda_{1}(A+E), \cdots, \lambda_{n}(A+E)\right) \equiv \operatorname{diag}\left(\tilde{\lambda}_{i}\right) .
\end{gathered}
$$

Then

$$
\begin{aligned}
-E & =A-(A+E)=U \Lambda U^{*}-V \tilde{\Lambda} V^{*} \\
& =V\left(V^{*} U \Lambda-\tilde{\Lambda} V^{*} U\right) U^{*} \\
& =V(W \Lambda-\tilde{\Lambda} W) U^{*}
\end{aligned}
$$

and since $W=V^{*} U$ is unitary, we have

$$
\begin{aligned}
\|E\|_{F}^{2} & =\|W \Lambda-\tilde{\Lambda} W\|_{F}^{2}=\sum_{i, k=1}^{n}\left|w_{i k}\left(\lambda_{k}-\tilde{\lambda}_{i}\right)\right|^{2} \\
& =\sum_{i, k=1}^{n}\left|w_{i k}\right|^{2}\left|\lambda_{i}-\tilde{\lambda}_{k}\right|^{2}=l(\tilde{W}) \geq l(P)(\text { for some } P) \\
& \quad\left(\text { Hereby } \tilde{W}=\left(\left|w_{i k}\right|\right) \text { is in } D\right) . \\
& \left.=\sum_{k=1}^{n}\left|\lambda_{k}-\tilde{\lambda}_{\pi(k)}\right|^{2} \text { (for some permutation } \pi\right) \\
& =\min _{\pi} \sum_{k=1}^{n}\left|\lambda_{k}-\tilde{\lambda}_{\pi(k)}\right|^{2} \\
& =\sum_{k=1}^{n}\left(\lambda_{k}(A)-\lambda_{k}(A+E)\right)^{2} . \quad \text { (Exercise!) }
\end{aligned}
$$

Perturbation theorem of invariant subspaces (eigenvectors)

Theorem 6.1.14 $A \in R^{n \times n}$ symmetric, $S \in R^{m \times m}$ symmetric and

$$
\begin{equation*}
A Q_{1}-Q_{1} S=E_{1} \text { with } Q_{1} \in R^{n \times m}, Q_{1}^{T} Q_{1}=I_{m} \tag{1.10}
\end{equation*}
$$

Then there exist eigenvalues $\lambda_{1}^{\prime}, \cdots, \lambda_{m}^{\prime}$ of A such that

$$
\begin{equation*}
\left|\lambda_{i}^{\prime}-\lambda_{i}(S)\right| \leq\left\|E_{1}\right\|_{2} . \tag{1.11}
\end{equation*}
$$

Proof: Extend Q_{1} to an orthogonal matrix $Q=\left(Q_{1}, Q_{2}\right)$, then

$$
\begin{align*}
Q^{T} A Q & =\left(\begin{array}{ll}
Q_{1}^{T} A Q_{1} & Q_{1}^{T} A Q_{2} \\
Q_{2}^{T} A Q_{1} & Q_{2}^{T} A Q_{2}
\end{array}\right)=\left(\begin{array}{cc}
S+Q_{1}^{T} E_{1} & E_{1}^{T} Q_{2} \\
Q_{2}^{T} E_{1} & Q_{2}^{T} A Q_{2}
\end{array}\right) \tag{1.10}\\
& =\left(\begin{array}{cc}
S & 0 \\
0 & Q_{2}^{T} A Q_{2}-X
\end{array}\right)+\left(\begin{array}{cc}
Q_{1}^{T} E_{1} & E_{1}^{T} Q_{2} \\
Q_{2}^{T} E_{1} & X
\end{array}\right) \equiv B+E .
\end{align*}
$$

Here $Q_{1}^{T} E_{1}=Q_{1}^{T} A Q_{1}-S$ is symmetric. Corollary 6.1.10 results

$$
\left|\lambda_{i}^{\prime}-\lambda_{i}(S)\right| \leq\|E\|_{2} .
$$

Show that: $\|E\|_{2}=\left\|E_{1}\right\|_{2}$ for suitable X.
It holds $\left\|E_{1}\right\|_{2} \leq\|E\|_{2}$. The equality holds immediately from the Extension Theorem of Kahan(1967):
Extension Lemma: Let $R=\left[\begin{array}{l}H \\ B\end{array}\right], H=H^{*}$. There exists a W such that the "extend" matrix $A=\left[\begin{array}{cc}H & B^{*} \\ B & W\end{array}\right]$ satisfies $\|A\|_{2}=\|R\|_{2}$.
Proof of Extension Lemma: Let $\rho=\|R\|_{2}$. For any choice of W we have $\rho^{2} \leq\left\|A^{2}\right\|_{2}$ (by separation theorem). The theorem requires that for some W the matrix $\rho^{2}-A^{2}$ is positive semidefinite.

Take any $\sigma>\rho$, show that $\sigma^{2}-A^{2}>0$ for some W depending on σ. Then a limiting argument show that, as $\sigma \rightarrow \rho^{+}, \lim W(\sigma)$ exists.
For any W : Define $\tilde{R}=\left[\begin{array}{c}B^{*} \\ W\end{array}\right]$. Write $A=(R, \tilde{R})$. Then

$$
\sigma^{2}-A^{2}=\left[\begin{array}{cc}
I & 0 \\
L & I
\end{array}\right]\left[\begin{array}{cc}
\sigma^{2}-R^{*} R & 0 \\
0 & U(\sigma)
\end{array}\right]\left[\begin{array}{cc}
I & L^{*} \\
0 & I
\end{array}\right]
$$

and

$$
\sigma^{2}-R R^{*}=\left[\begin{array}{cc}
I & 0 \\
K & I
\end{array}\right]\left[\begin{array}{cc}
\sigma^{2}-H^{2} & 0 \\
0 & V(\sigma)
\end{array}\right]\left[\begin{array}{cc}
I & K^{*} \\
0 & I
\end{array}\right] .
$$

where

$$
\begin{aligned}
& U(\sigma)=\sigma^{2}-\tilde{R}^{*}\left[I+R\left(\sigma^{2}-R^{*} R\right)^{-1} R^{*}\right] \tilde{R}, \\
& V(\sigma)=\sigma^{2}\left[I-B\left(\sigma^{2}-H^{2}\right)^{-1} B^{*}\right] .
\end{aligned}
$$

Since $\sigma^{2}>\rho^{2}=\|R\|_{2}^{2}=\left\|R^{*} R\right\|_{2}=\left\|R R^{*}\right\|_{2}, \sigma^{2}-R^{*} R, \sigma^{2}-R R^{*}$ and $\sigma^{2}-H^{2}$ are all positive definite. By Sylvester's Inertia theorem we have $V(\sigma)$ positive definite. $U(\sigma)$ depends on W.

The trick of the proof: To find a W such that $U(\sigma)=V(\sigma)$, and then from Sylvester's follows $\sigma^{2}-A^{2}>0$.

First we prove that

$$
W(\sigma)=-B H\left(\sigma^{2}-H^{2}\right)^{-1} B^{*}=-B\left(\sigma^{2}-H^{2}\right)^{-1} H B^{*} .
$$

From above

$$
U(\sigma)=\sigma^{2}-B B^{*}-W^{2}-(B H+W B)\left(\sigma^{2}-H^{2}-B^{*} B\right)^{-1}\left(H B^{*}+B^{*} W\right)
$$

Consider

$$
\begin{aligned}
& \left(\sigma^{2}-H^{2}-B^{*} B\right)^{-1} \\
= & \left(\sigma^{2}-H^{2}\right)^{-1}+\left(\sigma^{2}-H^{2}\right)^{-1} B^{*}\left[I-B\left(\sigma^{2}-H^{2}\right)^{-1} B^{*}\right]^{-1} B\left(\sigma^{2}-H^{2}\right)^{-1} \\
& \quad(\text { Scherrman-Morrison formula) } \\
\equiv & S+S B^{*} X B S,
\end{aligned}
$$

where

$$
S=\left(\sigma^{2}-H^{2}\right)^{-1}
$$

and

$$
X=\left(I-B\left(\sigma^{2}-H^{2}\right)^{-1} B^{*}\right)^{-1}=\left(I-B S B^{*}\right)^{-1}
$$

Set $Y=B S H B^{*}$. Then by $S H=H S$ we get

$$
\begin{aligned}
U(\sigma) & =\sigma^{2}-B B^{*}-W^{2}-(B H+H B)\left(S+S B^{*} X B S\right)\left(H B^{*}+B^{*} W\right) \\
& =\sigma^{2}-B B^{*}-W^{2}-B S H^{2} B^{*}+W Y+Y X Y+W B S B^{*} X Y+Y W \\
& +W B S B^{*} W+Y X B S B^{*} W+W B S B^{*} W+W B S B^{*} X B S B^{*} W \\
& =V(\sigma)+\Omega \text { (remainder term). }
\end{aligned}
$$

Then

$$
\begin{aligned}
\Omega= & W^{2}+W Y+Y X Y+W\left(I-X^{-1}\right) X Y+Y W+W\left(I-X^{-1}\right) W \\
& +Y X\left(I-X^{-1}\right) W+W\left(I-X^{-1}\right) X\left(I-X^{-1}\right) W \\
= & Y X Y+W X Y+Y X W+W X W \\
= & (Y+W) X(Y+W)=0 .
\end{aligned}
$$

Thus

$$
W(\sigma)=-Y=-B S H B^{*}=-B\left(\sigma^{2}-H^{2}\right)^{-1} H B^{*} .
$$

The matrix $W(\sigma)$ is a rational, and therefore meromorphic function of complex variable σ. Its only singularities are poles in any neighborhood of which $\|W\|_{2}$ must be unbounded. However $\|W\|_{2} \leq\|A\|_{2}<\sigma$ for all $\sigma>\rho$ and thus $W(\sigma)$ must be regular at $\sigma=\rho$ and so $W(\rho)=\lim _{\sigma \rightarrow \rho^{+}} W(\sigma)$. By continuity of norm we have

$$
\|A(\rho)\|_{2}=\lim _{\sigma \rightarrow \rho^{+}}\|A(\sigma)\|_{2}=\rho
$$

Generalized Extension Theorem (C. Davis-Kahan-Weinberger)
Given H, B, E arbitary, then there exists W with

$$
\left\|\left[\begin{array}{cc}
H & E \\
B & W
\end{array}\right]\right\|_{2}=\max \left\{\left\|\left[\begin{array}{c}
H \\
B
\end{array}\right]\right\|_{2},\|(H, E)\|_{2}\right\}
$$

So for suitable X we have

$$
\|E\|_{2}=\left\|\left[\begin{array}{c}
Q_{1}^{T} E_{1} \\
Q_{2}^{T} E_{1}
\end{array}\right]\right\|_{2}=\left\|Q^{T} E_{1}\right\|_{2}=\left\|E_{1}\right\|_{2}
$$

Theorem 6.1.15 $A \in R^{n \times n}$ and $S \in R^{m \times m}$ are symmetric and $A X_{1}-X_{1} S=E_{1}$, where $X_{1} \in R^{n \times m}$ satisfies $\sigma_{m}\left(X_{1}\right)>0$, then there exists eigenvalues $\lambda_{1}^{\prime}, \cdots, \lambda_{m}^{\prime}$ of A such that $\left|\lambda_{i}^{\prime}-\lambda_{i}(S)\right| \leq\left\|E_{1}\right\|_{2} / \sigma_{m}\left(X_{1}\right)$.

Proof: Let $X_{1}=Q_{1} R_{1}$ be the $Q R$-decomposition of X_{1}. By substituting into $A X_{1}-$ $X_{1} S=E_{1}$ we get

$$
A Q_{1}-Q_{1} S=F_{1}
$$

where $S_{1}=R_{1} S R_{1}^{-1}$ and $F_{1}=E_{1} R_{1}^{-1}$. The theorem follows by applying theorem 6.1.14 and noting that $\lambda(S)=\lambda\left(S_{1}\right)$ and $\left\|F_{1}\right\|_{2} \leq\left\|E_{1}\right\|_{2} / \sigma_{m}\left(X_{1}\right)$.

The eigenvalue bounds in theorem 6.1.14 depend on the size of the residual of the approximate invariant subspace, i.e., upon the size of $\left\|A Q_{1}-Q_{1} S\right\|$. The following theorem tells how to choose S so that this quantity is minimized when $\|\cdot\|=\|\cdot\|_{F}$.

Theorem 6.1.16 If $A \in R^{n \times n}$ is symmetric and $Q_{1} \in R^{n \times m}$ satisfies $Q_{1}^{T} Q_{1}=I_{m}$, then

$$
\min _{S \in R^{m \times m}}\left\|A Q_{1}-Q_{1} S\right\|_{F}=\left\|A Q_{1}-Q_{1}\left(Q_{1}^{T} A Q_{1}\right)\right\|_{F}=\left\|\left(I-Q_{1} Q_{1}^{T}\right) A Q_{1}\right\|_{F}
$$

Proof: Let $Q_{2} \in R^{n \times(n-m)}$ be such that $Q=\left[Q_{1}, Q_{2}\right]$ is orthogonal. For any $S \in R^{m \times m}$ we have

$$
\left\|A Q_{1}-Q_{1} S\right\|_{F}^{2}=\left\|Q^{T} A Q_{1}-Q^{T} Q_{1} S\right\|_{F}^{2}=\left\|Q_{1}^{T} A Q_{1}-S\right\|_{F}^{2}+\left\|Q_{2}^{T} A Q_{1}\right\|_{F}^{2}
$$

Clearly, the minimizing S is given by $S=Q_{1}{ }^{T} A Q_{1}$.

Theorem 6.1.17 Suppose $A \in R^{n \times n}$ is symmetric and $Q_{1} \in R^{n \times k}$ satisfies $Q_{1}^{T} Q_{1}=I_{k}$. If

$$
Z^{T}\left(Q_{1}^{T} A Q_{1}\right) Z=\operatorname{diag}\left(\theta_{1}, \cdots \theta_{k}\right)=D
$$

is the Schur decomposition of $Q_{1}^{T} A Q_{1}$ and $Q_{1} Z=\left[y_{1}, \cdots, y_{k}\right]$, then

$$
\left\|A y_{i}-\theta_{i} y_{i}\right\|_{2}=\mid\left(I-Q_{1} Q_{1}^{T}\right) A Q_{1} Z e_{i}\left\|_{2} \leq\right\|\left(I-Q_{1} Q_{1}^{T}\right) A Q_{1} \|_{2}
$$

for $i=1, \cdots, k$. The θ_{i} are called Ritz values, the y_{i} are called Ritz vectors, and the $\left(\theta_{i}, y_{i}\right)$ are called Ritz pairs.

Proof: $A y_{i}-\theta_{i} y_{i}=A Q_{1} Z e_{i}-Q_{1} Z D e_{i}=\left(A Q_{1}-Q_{1}\left(Q_{1}^{T} A Q_{1}\right)\right) Z e_{i}$. The theorem follows by taking norms.

Definition 6.1.3 The inertia of a symmetric matrix A is a triplet of integers (m, z, p), where m, z and p are the number of negative, zero and positive elements of $\sigma(A)$.

Theorem 6.1.18 (Sylvester Law of Interia) If $A \in R^{n \times n}$ is symmetric and $X \in R^{n \times n}$ in nonsingular, then A and $X^{T} A X$ have the same inertia.

Proof: Suppose $\lambda_{r}(A)>0$ and define the subspace $S_{0} \subset R^{n}$ by

$$
S_{0}=\operatorname{Span}\left\{X^{-1} q_{1}, \cdots, X^{-1} q_{r}\right\}, q_{i} \neq 0
$$

where $A q_{i}=\lambda_{i}(A) q_{i}$ and $i=1, \cdots, r$. From the Minimax characterization of $\lambda_{r}\left(X^{T} A X\right)$ we have

$$
\lambda_{r}\left(X^{T} A X\right)=\max _{\operatorname{dim}(S)=r} \min _{y \in S} \frac{y^{T}\left(X^{T} A X\right) y}{y^{T} y} \geq \min _{y \in S_{0}} \frac{y^{T}\left(X^{T} A X\right) y}{y^{T} y} .
$$

Now for any $y \in R^{n}$ we have

$$
\frac{y^{T}\left(X^{T} X\right) y}{y^{T} y} \geq \sigma_{n}(X)^{2}, \text { while for } y \in S_{0} .
$$

It is clear that

$$
\frac{y^{T}\left(X^{T} A X\right) y}{y^{T}\left(X^{T} X\right) y} \geq \lambda_{r}(A) .
$$

Thus,

$$
\lambda_{r}\left(X^{T} A X\right) \geq \min _{y \in S_{0}}\left\{\frac{y^{T}\left(X^{T} A X\right) y}{y^{T}\left(X^{T} X\right) y} \frac{y^{T}\left(X^{T} X\right) y}{y^{T} y}\right\} \geq \lambda_{r}(A) \sigma_{n}(X)^{2} .
$$

An analogous argument with the roles of A and $X^{T} A X$ reversed shows that

$$
\lambda_{r}(A) \geq \lambda_{r}\left(X^{T} A X\right) \sigma_{n}\left(X^{-1}\right)^{2}=\lambda_{r}\left(X^{T} A X\right) / \sigma_{1}(X)^{2} .
$$

It follows that A and $X^{T} A X$ have the same number of positive eigenvalues. If we apply this result to $-A$, we conclude that A and $X^{T} A X$ have the same number of negative eigenvalues. Obviously, the number of zero eigenvalues possessed by each matrix is also the same.

6.2 Tridiagonalization and the Symmetric QR-algorithm
 6.2 Tridiagonalization and the Symmetric QR-algorithm

We now investigate how the practical $Q R$ algorithm develop in Chapter 1 can be specialized when $A \in R^{n \times n}$ is symmetric. There are three obvious observations:
(a) If $Q_{0}{ }^{T} A Q_{0}=H$ is upper Hessenberg, then $H=H^{T}$ must be tridiagonal.
(b) Symmetry and tridiagonal band structure are preserved when a single shift $Q R$ step is performed.
(c) There is no need to consider complex shift, since $\sigma(A) \subset R$.

Algorithm 2.1 (Householder Tridiagonalization) Given symmetric $A \in R^{n \times n}$, the following algorithm overwrites A with $Q_{0}{ }^{T} A Q_{0}=T$, where T is tridiagonal and $Q_{0}=$ $P_{1} \cdots P_{n-2}$ is the product of Householder transformations.

$$
\text { For } k=1,2, \cdots, n-2,
$$

determine a Householder $P_{k} \in R^{n-k}$ such that

$$
\begin{aligned}
& \bar{P}_{k}\left[\begin{array}{c}
a_{k+1, k} \\
\vdots \\
a_{n k}
\end{array}\right]=\left[\begin{array}{c}
* \\
0 \\
\vdots \\
0
\end{array}\right] \\
& A:=P_{k} A P_{k}^{T}, P_{k}=\operatorname{diag}\left(I_{k}, \bar{P}_{k}\right) .
\end{aligned}
$$

This algorithm requires $\frac{2}{3} n^{3}$ flops. If Q_{0} is required, it can be formed with an additional (2/3) n^{3} flops.

We now consider the single shift QR iteration for symmetric matrices.

$$
\begin{align*}
& T=Q_{0}^{T} A Q_{0}, \quad \text { (tridiagonal) } \\
& \text { For } k=0,1, \cdots \\
& T-\mu I=Q R, \quad \text { (QR decomposition) } \tag{6.2.1}\\
& T:=R Q+\mu I .
\end{align*}
$$

Single Shift: Denote T by

$$
T=\left[\begin{array}{cccc}
a_{1} & b_{2} & & \\
b_{2} & a_{2} & \ddots & \\
& \ddots & \ddots & b_{n} \\
& & b_{n} & a_{n}
\end{array}\right]
$$

We can set (a) $\mu=a_{n}$ or (b) a more effective choice to shift by the eigenvalues of $\left[\begin{array}{cc}a_{n-1} & b_{n} \\ b_{n} & a_{n}\end{array}\right]$ that is closer to a_{n}. This is known as the Wilkinson shift and is given by

$$
\begin{align*}
& \mu=a_{n}+d-\operatorname{sign}(d) \sqrt{d^{2}+b_{n}^{2}}, \quad \text { where } \tag{6.2.2}\\
& d=\left(a_{n-1}-a_{n}\right) / 2 .
\end{align*}
$$

Wilkinson (1968) has shown that (6.2.2) is cubically convergent with either shift strategy, but gives heuristic reasons why (6.2.2) is prefered.

As in the unsymmetric $Q R$ iteration, it is possible to shift implicitly in (6.2.1). Let $c=\cos (\theta)$ and $s=\sin (\theta)$ by computed such that

$$
\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]^{T}\left[\begin{array}{c}
a_{1}-\mu \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
* \\
0
\end{array}\right],
$$

then $J_{1} e_{1}=Q e_{1}$, where $Q^{T} T Q=R Q+\mu I=\bar{T}\left(\right.$ as in (6.2.1)) and $J_{1}=J(1,2, \theta)$.

$$
J_{1}{ }^{T} T J_{1}=\left[\begin{array}{ccccc}
\times & \times & + & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
+ & \times & \times & \times & 0 \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right] .
$$

We are thus in a position to apply implicit Q theorem provided we can compute rotations J_{2}, \cdots, J_{n-1} with the property that if $Z=J_{1} \cdots J_{n-1}$ then $Z e_{1}=J_{1} e_{1}=Q e_{1}$ and $Z^{T} T Z$ is tridiagonal.

$$
\begin{aligned}
& T:=J_{2}^{T} T J_{2}=\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & + & 0 \\
0 & \times & \times & \times & 0 \\
0 & + & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right], \quad T:=J_{3}^{T} T J_{3}=\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
0 & \times & \times & \times & + \\
0 & 0 & \times & \times & \times \\
0 & 0 & + & \times & \times
\end{array}\right] \\
& T:=J_{4}^{T} T J_{4}=\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
0 & \times & \times & \times & 0 \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right]
\end{aligned}
$$

Algorithm 2.2 (Implicit Symmetric $Q R$ step with Wilkinson Shift) Given an unreduced symmetric tridiagonal matrix $T \in R^{n \times n}$, the following algorithm overwrites T with $\bar{Z}^{T} T \bar{Z}$, where $\bar{Z}=J_{1} \cdots J_{n-1}$ is the product of Givens rotation with $\bar{Z}^{T}(T-\mu I)$ is upper triangular and μ is Wilkinson shift.

$$
\begin{aligned}
& d:=\left(t_{n-1, n-1}-t_{n n}\right) / 2, \\
& \mu=t_{n n}-t_{n, n-1}^{2} /\left[d+\operatorname{sign}(d) \sqrt{d^{2}+t_{n, n-1}^{2}}\right], \\
& x:=t_{11}-\mu, \\
& z:=t_{21}, \\
& \text { For } k=1, \cdots, n-1, \\
& \text { determine } c=\cos (\theta), s=\sin (\theta) \\
& \text { such that }\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]\left[\begin{array}{c}
x \\
z
\end{array}\right]=\left[\begin{array}{l}
* \\
0
\end{array}\right], \\
& T:=J_{k}^{T} T J_{k}, \quad J_{k}=J(k, k+1, \theta) . \\
& \text { If } k<n-1, \text { then } x:=t_{k+1, k}, z=t_{k+2, k} .
\end{aligned}
$$

Algorithm 2.3 (Symmetric $Q R$ algorithm) Given symmetric matrix $A \in R^{n \times n}$ and a tolerance ϵ, the following algorithm overwrites A with $Q^{T} A Q=D+E$, where Q is orthogonal, D is diagonal and E satifies $\|E\|_{2} \simeq e p s\|A\|_{2}$.

Using Algorithm 2.1 compute
$A:=\left(P_{1} \cdots P_{n-1}\right)^{T} A\left(P_{1} \cdots P_{n-2}\right)=T$.
Repeat set $a_{i+1, i}$ and $a_{i, i+1}$ to zero if
$\left|a_{i+1, i}\right|=\left|a_{i, i+1}\right| \leq \epsilon\left(\left|a_{i i}\right|+\left|a_{i+1, i+1}\right|\right)$
for any $i=1, \cdots, n-1$.
Find the largest q and the smallest p such that if

$$
A=\left[\begin{array}{ccc}
A_{11} & 0 & 0 \\
0 & A_{22} & 0 \\
0 & 0 & A_{33}
\end{array}\right] \begin{aligned}
& \} p \\
& \} n-p-q \\
& \} q
\end{aligned}
$$

then A_{33} is diagonal and A_{22} has no zero subdiagonal elements.
If $q=n$ then stop.
Apply algorithm 2.2 to $A_{22}, A=\operatorname{diag}\left(I_{p}, \bar{Z}, I_{q}\right)^{T} A \operatorname{diag}\left(I_{p}, \bar{Z}, I_{q}\right)$,
Go to Repeat.
This algorithm requires about $(2 / 3) n^{3}$ flops and about $5 n^{3}$ flops if Q is accumulated.

6.3 Once Again:The Singular Value Decomposition

Let $A \in R^{m \times n}$. If $U^{T} A V=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ is the $S V D$ of $A(m \geq n)$ then

$$
\begin{align*}
& V^{T}\left(A^{T} A\right) V=\operatorname{diag}\left(\sigma_{1}^{2}, \cdots, \sigma_{n}^{2}\right) \in R^{n \times n} \text { and } \tag{3.1}\\
& U^{T}\left(A A^{T}\right) U=\operatorname{diag}\left(\sigma_{1}^{2}, \cdots, \sigma_{n}^{2}, 0, \cdots, 0\right) \in R^{n \times n} \tag{3.2}
\end{align*}
$$

Moreover if $U=\left[\begin{array}{ll}U_{1}, & U_{2}\end{array}\right]$ and we define the orthogonal Q by

$$
Q=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
V & V & 0 \\
U_{1} & -U_{1} & \sqrt{2} U_{2}
\end{array}\right],
$$

then

$$
Q^{T}\left[\begin{array}{cc}
0 & A^{T} \tag{3.3}\\
A & 0
\end{array}\right] Q=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{n},-\sigma_{1}, \cdots,-\sigma_{n}, 0, \cdots, 0\right) .
$$

These connections to the symmetric eigenvalue problem allow us to develop an algorithm for $S V D$ as previous section.

Theorem 6.3.1 If $A \in R^{m \times n}$, then for $k=1, \cdots, \min \{m, n\}$,

$$
\sigma_{k}(A)=\max _{d i m S=k, \operatorname{dim} T=k}\left\{\min _{x \in S, y \in T} \frac{y^{T} A x}{\|x\|_{2}\|y\|_{2}}\right\}=\max _{d i m S=k}\left\{\min _{x \in S} \frac{\|A x\|_{2}}{\|x\|_{2}}\right\} .
$$

Proof: Exercise! Prove theorem 6.1.5 (Weyl) and theorem 6.1.6 (Courant-Fisher)!
By applying theorem 6.1.9 to $\left[\begin{array}{cc}0 & A^{T} \\ A & 0\end{array}\right]$ and $\left[\begin{array}{cc}0 & (A+E)^{T} \\ (A+E) & 0\end{array}\right]$ and theorem6.1.8 to $A^{T} A$ we obtain

Corollary 6.3.2 If A and $A+E$ are in $R^{m \times n}(m \geq n)$, then for $k=1,2, \cdots, n$

$$
\left|\sigma_{k}(A+E)-\sigma_{k}(A)\right| \leq \sigma_{1}(E)=\|E\|_{2} .
$$

Corollary 6.3.3 Let $A=\left[a_{1}, \cdots, a_{n}\right]$ be a column partitioning of $A \in \mathbf{R}^{m \times n}(m \geq n)$. If $A_{r}=\left[a_{1}, \cdots, a_{r}\right]$, then for $r=1, \cdots, n-1$,

$$
\sigma_{1}\left(A_{r+1}\right) \geq \sigma_{1}\left(A_{r}\right) \geq \sigma_{2}\left(A_{r+1}\right) \geq \cdots \geq \sigma_{r}\left(A_{r+1}\right) \geq \sigma_{r}\left(A_{r}\right) \geq \sigma_{r+1}\left(A_{r+1}\right)
$$

Theorem 6.3.4 If A and $A+E$ are in $\mathbf{R}^{m \times n}(m \geq n)$, then

$$
\sum_{k=1}^{n}\left[\sigma_{k}(A+E)-\sigma_{k}(A)\right]^{2} \leq\|E\|_{F}^{2}
$$

Proof: Apply Theorem 6.1.12 to $\left[\begin{array}{cc}0 & A^{T} \\ A & 0\end{array}\right]$ and $\left[\begin{array}{cc}0 & (A+E)^{T} \\ (A+E) & 0\end{array}\right]$.
We now show a variant of the $Q R$ algorithm can be used to comput $S V D$ of a matrix. Equation (3.1) suggests:
(a) Form $C=A^{T} A$;
(b) Use the symmetric $Q R$ algorithm to compute $V_{1}^{T} C V_{1}=\operatorname{diag}\left(\sigma^{2}\right)$;
(c) Use $Q R$ with column pivoting to upper triangularize $B=A V_{1}$:

$$
U^{T}\left(A V_{1}\right) \Pi=R
$$

Since R has orthogonal columns, it follows that $U^{T} A\left(V_{1} \Pi\right)$ is diagonal.
A preferable method for computing the $S V D$ is described in Golub and Kahan(1965). The first step is to reduce A to upper bidiagonal form using algorithm 7.5 or 7.6 in part I:

$$
U_{B}^{T} A V_{B}=\left[\begin{array}{c}
B \\
\cdots \\
0
\end{array}\right]=\left[\begin{array}{cccc}
d_{1} & f_{2} & & \bigcirc \\
& d_{2} & \ddots & \\
& & \ddots & f_{n} \\
\bigcirc & & & d_{n} \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

The remaining problem is thus to compute the $S V D$ of B. Consider applying an implicit $Q R$ step (algorithm 8.2) to the tridiagonal matrix $T=B^{T} B$:
(a) Compute the eigenvalue λ of $\left[\begin{array}{cc}d_{m}^{2}+f_{m}^{2} & d_{m} f_{n} \\ d_{m} f_{n} & d_{n}^{2}+f_{n}^{2}\end{array}\right](m=n-1)$ that is closer to $d_{n}^{2}+f_{n}^{2}$.
(b) Compute $c_{1}=\cos \theta_{1}$ and $s_{1}=\sin \theta_{1}$ such that

$$
\left[\begin{array}{cc}
c_{1} & -s_{1} \\
s_{1} & c_{1}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{2}-\lambda \\
d_{1} f_{2}
\end{array}\right]=\left[\begin{array}{l}
* \\
0
\end{array}\right],
$$

and set $J_{1}=J\left(1,2, \theta_{1}\right)$.
(c) Compute Givens rotations J_{2}, \cdots, J_{n-1} such that if $Q=J_{1} \cdots J_{n-1}$ then $Q^{T} T Q$ is tridiagonal and $Q e_{1}=J_{1} e_{1}$.

Note that these calculations require the explicit formation of $B^{T} B$, which is unwise in the numerical standpoint. Suppose instead that we apply Givens rotation J_{1} above to B directly. This gives

$$
B:=B J_{1}=\left[\begin{array}{ccccc}
\times & \times & & & \\
+ & \times & \times & & \\
& & \times & \times & \\
& & & \times & \times \\
& & & & \times
\end{array}\right], \quad n=5 .
$$

Determine Givens rotations $U_{1}, V_{2}, U_{2}, \cdots, V_{n-1}$ and U_{n-1} to chase the nonzero element down the diagonal:

$$
\begin{aligned}
& B:=U_{1}^{T} B=\left[\begin{array}{ccccc}
\times & \times & + & & \\
& \times & \times & & \\
& & \times & \times & \\
& & & \times & \times \\
& & & & \times
\end{array}\right], \quad B:=B V_{2}=\left[\begin{array}{cccc}
\times & \times & & \\
& \times & \times & \\
& + & \times & \times \\
& & & \times \\
& & & \times \\
& & & \\
& & \times
\end{array}\right], \\
& B:=U_{2}^{T} B=\left[\begin{array}{ccccc}
\times & \times & & & \\
& \times & \times & + & \\
& & \times & \times & \\
& & & \times & \times \\
& & & & \times
\end{array}\right], \quad B:=B V_{3}=\left[\begin{array}{ccccc}
\times & \times & & & \\
& \times & \times & & \\
& & \times & \times & \\
& & & & \times \\
& & & & \times
\end{array}\right]
\end{aligned}
$$

The process terminates with a new bidiagonal \bar{B} as follows

$$
\bar{B}=\left(U_{n-1}^{T} \cdots U_{1}^{T}\right) B\left(J_{1} V_{2} \cdots V_{n-1}\right)=\bar{U}^{T} B \bar{V}
$$

Since each V_{i} has the form $V_{i}=J\left(i, i+1, \theta_{i}\right), i=2, \cdots, n-1$, it follows that $\bar{V} e_{1}=Q e_{1}$. By implicit Q theorem we can assert that \bar{V} and Q are essentially the same. Thus we can implicitly effect the transition from T to $\bar{T}=\bar{B} \bar{B}^{T}$ by working directly on the bidiagonal matrix.

It is necessary for these claims to hold that the underlying tridiagonal matrices be unreduced. This is the condition for the performance of implicit $Q R$ method.

Let $B=\left[\begin{array}{cccc}d_{1} & f_{2} & & \bigcirc \\ & d_{2} & \ddots & \\ & & \ddots & f_{n} \\ \bigcirc & & & d_{n}\end{array}\right]$. If $\left(B^{T} B\right)_{i, i+1}=f_{i+1} d_{i}=0$, then:
Either $f_{i+1}=0: B$ is reduced to $B=\left(\begin{array}{c|c}B_{1} & \bigcirc \\ \hline \bigcirc & B_{2}\end{array}\right)$ two small problems.
Or $d_{i}=0$: What happens?

For Example

$$
\begin{aligned}
& B=\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
0 & 0 & \times & 0 & 0 \\
0 & 0 & \times & \times & 0 \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right],\left(d_{2}=0, n=5\right) \\
& \underset{\substack{\text { Rotation } \\
\text { in }(2,3)}}{\longrightarrow} B:=J_{1}(2,3, \theta) B=\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
0 & 0 & 0 & \times & 0 \\
0 & 0 & \times & \times & 0 \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right] \\
& \underset{\substack{\text { Rotation } \\
\text { in }(2,4)}}{\longrightarrow} B:=J_{2}(2,4, \theta) B=\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \times \\
0 & 0 & \times & \times & 0 \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right] \\
& \underset{\begin{array}{c}
\text { Rotation } \\
\text { in }(2,5)
\end{array}}{\longrightarrow} \quad B:=J_{3}(2,5, \theta) B=\left[\begin{array}{cc|ccc}
\times & \times & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & \times & \times & 0 \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right]
\end{aligned}
$$

Criteria: For smallness within $B^{\prime} s$ band are usually of the the form

$$
\left|f_{i}\right| \leq \epsilon\left(\left|d_{i-1}\right|+\left|d_{i}\right|\right) \quad \text { and } \quad\left|d_{i}\right| \leq \epsilon\|B\|,
$$

where ϵ is a small multiple of the unit roundoff.
Algorithm 3.1 (Golub-Kahan $S V D$ Step) $B \in R^{n \times n}$ is bidiagonal having nonzero subdiagonal and diagonal, the following algorithm overwrites B with the bidiagonal matrix $\bar{B}=\bar{U}^{T} B \bar{V}$, where \bar{U} and \bar{V} are orthogonal and \bar{V} is essentially the orthogonal matrix that would be obtained by applying algorithm 8.2 to $T=B^{T} B$. Let μ be the eigenvalue of the trailing 2×2 sumatrix of $T=B^{T} B$ that is closer to $t_{n n}$.

$$
\begin{aligned}
& y=t_{11}-\mu \\
& z=t_{12} \\
& \text { For } k=1, \cdots, n-1,
\end{aligned}
$$

Determine $c=\cos \theta$ and $s=\sin \theta$ such that

$$
\begin{aligned}
& {[y, z]\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]=[*, 0]} \\
& B=B J(k, k+1, \theta) \\
& y=b_{k k} \\
& z=b_{k+1, k}
\end{aligned}
$$

Determine $c=\cos \theta$ and $s=\sin \theta$ such that
$\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right]\left[\begin{array}{l}y \\ z\end{array}\right]=\left[\begin{array}{l}* \\ 0\end{array}\right]$
$B:=J(k, k+1)^{T} B$
If $k<n-1$, then $y:=b_{k, k+1}, z:=b_{k, k+2}$. flops and \bar{V} requires $4 n^{2}$ flops.

Algorithm 3.2 (The $S V D$ Algorithm) Given $A \in R^{m \times n}(m \geq n)$ and ϵ a tolerance, the following algorithm overwrites A with $U^{T} A V=D+E$, where $U \in R^{m \times n}$ is orthogonal, $V \in R^{n \times n}$ is orthogonal, $D \in R^{m \times n}$ is diagonal, and E satisfies $\|E\|_{2} \simeq$ $e p s\|A\|_{2}$. Using algorithm 7.5 or 7.6 in Part I to compute the bidiagonalization $A:=$ $\left(U_{1} \cdots U_{n}\right)^{T} A\left(V_{1} \cdots V_{n-2}\right)$.

Repeat

Set $a_{i, i+1}$ to zero if $\left|a_{i, i+1}\right| \leq \epsilon\left(\left|a_{i i}\right|+\left|a_{i+1, i+1}\right|\right)$ for any $i=1, \cdots, n-1$.
Find the largest q and the smallest p such that

$$
A=\left[\begin{array}{ccc}
A_{11} & 0 & 0 \\
0 & A_{22} & 0 \\
0 & 0 & A_{33} \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& p \\
& n-p-q \\
& q-n \\
& m-n
\end{aligned}
$$

Then A_{33} is diagonal and A_{22} has a nonzero subdiagonal.
If $q=n$ then stop.
If any diagonal entry in A_{22} is zero then zero the subdiagonal entry in the same row and go to Repeat.
Apply algorithm 3.1 to A_{22},
$A:=\operatorname{diag}\left(I_{p}, \bar{U}, I_{q+m-n}\right)^{T} A \operatorname{diag}\left(I_{p}, \bar{V}, I_{q}\right)$.

Go to Repeat

6.4 Jacobi Methods

Jacobi(1846) proposed a method for reducing a Hermitian matrix $A=A^{*} \in \mathbf{C}^{n \times n}$ to diagonal form using Givens rotations. Let $A \in \mathbf{C}^{n \times n}$ be a Hermitian matrix, there exists a unitary U such that

$$
\begin{equation*}
U^{*} A U=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right) \tag{4.1}
\end{equation*}
$$

The Jacobi method constructs U as the product of infinite many two dimensional Givens rotations. Fix indices $i, k, i \neq k$, Given a Givens Rotation

Hereby α, φ are free parameters, if A is real symmetric then $\alpha=0$. Set $V=U_{i k}$, $B=V^{*} A V$. Then

$$
\begin{align*}
& b_{s j}=\left\{\begin{array}{ll}
a_{s j}, & s \neq i, k \\
e^{i \alpha} \cos \varphi a_{i j}-\sin \varphi a_{k j}, & s=i \\
\sin \varphi a_{i j}+e^{i \alpha} \cos \varphi a_{k j}, & s=k
\end{array}\right\} j \neq i, k \tag{4.3}\\
& \begin{cases}b_{s i}=e^{i \alpha} \cos \varphi a_{s i}-\sin \varphi a_{s k}, & s \neq i, k \\
b_{s k}=\sin \varphi a_{s i}+e^{i \alpha} \cos \varphi a_{s k}, & s \neq i, k\end{cases} \tag{4.4}\\
& \left\{\begin{array}{l}
b_{i k}=\sin \varphi \cos \varphi e^{i \alpha}\left(a_{i i}-a_{k k}\right)+e^{2 i \alpha}\left(\cos ^{2} \varphi-\sin ^{2} \varphi\right) a_{k i} \\
b_{k i}=\bar{b}_{i k} \\
b_{i i}=\cos ^{2} \varphi a_{i i}+\sin ^{2} \varphi a_{k k}-\sin \varphi \cos \varphi\left[e^{-i \alpha} a_{k i}+e^{i \alpha} a_{i k}\right] \\
b_{k k}=\sin ^{2} \varphi a_{i i}+\cos ^{2} \varphi a_{k k}-\sin \varphi \cos \varphi\left[e^{-i \alpha} a_{k i}+e^{i \alpha} a_{i k}\right]
\end{array}\right. \tag{4.5}
\end{align*}
$$

We denote here the Frobenius norm (Hilbert-Schmidt norm) by $\epsilon(A)=\sqrt{\sum_{i, k}\left|a_{i k}\right|^{2}}$ and define the "outer norm" by

$$
g(A)=\sqrt{\sum_{i \neq k}\left|a_{i k}\right|^{2}}
$$

which is only a seminorm (that is $g(A)=0 \Rightarrow A=0$ does not hold). We also have $\epsilon(U A)=\epsilon(A)=\epsilon(A V)$ for unitary U, V. Therefore

$$
\epsilon(A)=\epsilon\left(V^{*} A V\right)=\epsilon(B)
$$

that is

$$
\begin{equation*}
\sum_{j, s}\left|a_{j s}\right|^{2}=\sum_{j, s}\left|b_{j s}\right|^{2} \tag{4.6}
\end{equation*}
$$

On the other hand one computes

$$
\begin{equation*}
\left|a_{i i}\right|^{2}+\left|a_{k k}\right|^{2}+2\left|a_{i k}\right|^{2}=\left|b_{i i}\right|^{2}+\left|b_{k k}\right|^{2}+2\left|b_{i k}\right|^{2} . \tag{4.7}
\end{equation*}
$$

Together with $b_{j j}=a_{j j} j \neq i, k$ follows from (4.6) and (4.7)

$$
\sum_{j \neq s}\left|a_{j s}\right|^{2}=\sum_{j \neq s}\left|b_{j s}\right|^{2}+2\left|a_{i k}\right|^{2}-2\left|b_{i k}\right|^{2}
$$

or

$$
\begin{equation*}
g^{2}(A)-2\left|a_{i k}\right|^{2}+2\left|b_{i k}\right|^{2}=g^{2}(B) \tag{4.8}
\end{equation*}
$$

To make $g(B)$ as small as possible we choose the free parameters α, φ such that $b_{i k}=0$. Multiplying the first equation in (4.5) by $2 e^{-i \alpha}$ and set $b_{i k}$ to zero:

$$
\begin{equation*}
\sin 2 \varphi\left(a_{k k}-a_{i i}\right)=2 e^{i \alpha} \cos ^{2} \varphi a_{i k}-2 e^{-i \alpha} \sin ^{2} \varphi \bar{a}_{i k} \tag{4.9}
\end{equation*}
$$

We exclude the trivial case $a_{i k}=0$ (then set $V=I$). Suppose that $a_{i k} \neq 0$. Compare the imaginary part in (4.9) which results $0=\operatorname{Im}\left(a_{i k} e^{i \alpha}\right)$. This equation holds for $\alpha=$ $-\arg a_{i k}$. From $a_{i k} e^{i \alpha}=\left|a_{i k}\right|$. (4.9) leads to

$$
2\left|a_{i k}\right|\left(\cos ^{2} \phi-\sin ^{2} \phi\right)=\sin 2 \phi\left(a_{k k}-a_{i i}\right)
$$

where

$$
\begin{equation*}
\cot 2 \phi=\frac{a_{k k}-a_{i i}}{2\left|a_{i k}\right|} \tag{4.10}
\end{equation*}
$$

(4.10) has exactly one solution in $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right]$. The choice $\alpha=-\operatorname{arga}_{i k}+\pi$ leads to the same matrix B. For symmetric A, we choose $\alpha=0$, then ϕ is obtained by

$$
\cot 2 \phi=\frac{a_{k k}-a_{i i}}{2 a_{i k}} .
$$

So the Jacobi method proceeds: $A_{0}:=A$, an iteration sequence A_{0}, A_{1}, \cdots is constructed by $A_{m+1}:=V_{m}^{*} A_{m} V_{m}, A_{m}=\left(a_{i k}^{m}\right)$. Hereby V_{m} has the form of (4.2). The underlying pivot pairs i, k of V_{m} is formed according to a rule of choice so that the underlying α, ϕ are chosen satisfying $a_{i k}^{m+1}=0$.

Choice rules:
(1) choose (i, k) such that

$$
\left|a_{i k}^{m}\right|=\max _{j \neq s}\left|a_{j s}^{m}\right| .
$$

This is the classical Jacobi method.

Theorem 6.4.1 Let A be Hermitian. $V=U_{i k}$ is as in (4.2) where (i, k) are chosen so that $\left|a_{i k}\right|$ is maximal with α, ϕ according to (4.10). Let $B=V^{*} A V$. Then it holds

$$
\begin{equation*}
g^{2}(B) \leq p^{2} g^{2}(A) \quad \text { with } \quad p=\sqrt{\frac{n^{2}-n-2}{n^{2}-n}}<1 \tag{4.11}
\end{equation*}
$$

Proof: There are $n^{2}-n$ off-diagonal elements, so $g^{2}(A) \leq\left(n^{2}-n\right)\left|a_{i k}\right|^{2}$. Thus $\left|a_{i k}\right|^{2} \geq$ $\frac{1}{n^{2}-n} g^{2}(A)$, hence

$$
g^{2}(B)=g^{2}(A)-2\left|a_{i k}\right|^{2} \leq \frac{n^{2}-n-2}{n^{2}-n} g^{2}(A) .
$$

Theorem 6.4.2 The classcial Jacobi method converges, that is, there exists a diagonal matrix Λ so that $\lim _{m \rightarrow \infty} A_{m}=\Lambda$.
Proof: From (4.11) follows $g\left(A_{m}\right) \rightarrow 0$, so $a_{r s}^{(m)} \rightarrow 0$ for all $r \neq s$. It remains to show the convergence of diagonal elements. From (4.5) and (4.10) follows that

$$
\begin{aligned}
\left|b_{i i}-a_{i i}\right| & =\left|\sin ^{2} \phi\left(a_{k k}-a_{i i}\right)-\left|a_{i k}\right| 2 \sin \phi \cos \phi\right| \\
& =\left|a_{i k}\right|\left|2 \sin ^{2} \phi \cot 2 \phi-2 \sin \phi \cos \phi\right| \\
& =\left|a_{i k}\right|\left|\frac{\sin \phi}{\cos \phi}\right| \leq\left|a_{i k}\right| .
\end{aligned}
$$

Analogously, $\left|b_{k k}-a_{k k}\right| \leq\left|a_{i k}\right|$. If now i, k are the pivot indices of A_{m}, then from above we have

$$
\left|a_{j j}^{m}-a_{j j}^{m+1}\right| \leq\left|a_{i k}^{m}\right| \leq g\left(A_{m}\right) \leq p^{m} g(A) .
$$

Thus

$$
\left|a_{j j}^{m+q}-a_{j j}^{m}\right| \leq\left|p^{m}+p^{m+1}+\cdots+p^{m+q-1}\right| g(A) \leq \frac{p^{m}}{1-p} g(A) .
$$

This shows that the convergence of diagonal.
Schonage (1964) and Van Kempen (1966) show that for k large enough there is a constant c such that $g\left(A_{k+N}\right) \leq c g\left(A_{k}\right)^{2}, N=\frac{n(n-1)}{2}$, i.e., quadratic convergence. An earlier result established by Henrici (1958) when A has distinct eigenvalue.
(2) choose (i, k) cyclically, e.g., $(i, k)=(1,2),(1,3), \ldots,(1, n) ;(2,3), \ldots,(2, n) ; \ldots ;(n-$ $1, n) ;(1,2),(1,3), \ldots$. This is the cyclic Jacobi method.

Algorithm 4.1 (Serial Jacobi cyclic Jacobi) Given a symmetric $A \in \mathbf{R}^{n \times n}$ and $\delta \geq e p s$, the following algorithm overwrites A with $U^{T} A U=D+E$, where U is orthogonal, D is diagonal, and E has a zero diagonal and satisfies $\|E\|_{F} \leq \delta\|A\|_{F}$:
$\delta:=\delta\|A\|_{F}$
Do until $g(A) \leq \delta^{2}$
For $p=1,2, \ldots, n-1$,
For $q=p+1, \cdots, n$,
Find $J=J(p, q, \theta)$ such that the (p, q) entry of $J^{T} A J$ is zero,
$A:=J^{T} A J$.

Remark 4.1 In classical Jacobi method for each update $O\left(n^{2}\right)$ comparsions are required in order to locate the largest off-diagonal element. Thus much more time is spent by searching than updating. So the cyclic Jacobi method is considerably faster than classical Jacobi method.
(3) When implementing serical Jacobi method, it is sensible to skip the annihilation of $a_{i k}$ if its modulus is less than some small (sweep-dependent) parameter, because the net reduction of $g(A)$ is not worth to cost. This leads to what is called threshold Jacobi method.

Given a threshold value δ, choose the indices pair (i, k) as in (2). But perform the rotation only for $\left|a_{i k}^{m}\right|>\delta$. If all $\left|a_{i k}^{m}\right| \leq \delta$, then we substitute δ by $\delta / 2$ and so on. Details concering this variant of Jacobi's algorithm may be found in Wilkinson (AEP p.277ff).

Remark 4.2 (1) Although the serial Jacobi method (2) and (3) converge quadratically, it is not competitive with symmetric QR algorithm. One sweep of Jacobi requires as many flops as a complete computation of symmetric QR algorithm. However, the Jacobi iteration is attractive, for example, the matrix A might be close to a diagonal form. In this situation, the QR algorithm loses its advantage.
(2) The Jacobi iteration is adapted to parallel computation. A given computational task, such as a sweep, can be shared among the various CPUs thereby reducing the overall computation time.
(3) In practice we usually apply the choice (2) or (3).
(4) It is not necessary to determine ϕ explicitly in (4.10), since only $c=\cos \phi$ and $s=\sin \phi$ are needed. From (4.10) follows $\frac{1-4 s^{2}+4 s^{4}}{s^{2}\left(1-s^{2}\right)}=\frac{\left(a_{k k}-a_{i i}\right)^{2}}{4\left|a_{i k}\right|^{2}}$, a quadratic equation in s^{2}. The sign is determined by (4.10).

6.5 Some Special Methods

6.5.1 Bisection method for tridiagonal symmetric matrices

Let A be tridiagonal, real and symmetric. Write

$$
A=\left[\begin{array}{cccccc}
a_{1} & b_{1} & 0 & \ldots & & 0 \tag{5.1}\\
b_{1} & a_{2} & b_{2} & & & \vdots \\
0 & b_{2} & a_{3} & & & \\
\vdots & 0 & \ddots & \ddots & \ddots & 0 \\
& & & & \ddots & b_{n-1} \\
0 & \ldots & & 0 & b_{n-1} & a_{n}
\end{array}\right]
$$

Let A_{k} be the k th principal submatrix

$$
A_{k}=\left[\begin{array}{cccccc}
a_{1} & b_{1} & 0 & \ldots & & 0 \\
b_{1} & a_{2} & b_{2} & & & \vdots \\
0 & b_{2} & a_{3} & & & \\
\vdots & 0 & \ddots & \ddots & \ddots & 0 \\
& & & & \ddots & b_{k-1} \\
0 & \ldots & & 0 & b_{k-1} & a_{k}
\end{array}\right]
$$

and

$$
\begin{align*}
& f_{k}(\lambda)=\operatorname{det}\left(\lambda I_{k}-A_{k}\right), \text { for } k=1, \cdots, n . \tag{5.2}\\
& \left(f_{n}(\lambda)=\text { Characteristic polynomial of } A .\right)
\end{align*}
$$

Write $f_{0}(\lambda)=1$ and $f_{1}(\lambda)=\lambda-a_{1}$ we have the recursive formula:

$$
\begin{equation*}
f_{k}(\lambda)=\left(\lambda-a_{k}\right) f_{k-1}(\lambda)-b_{k-1}^{2} f_{k-2}(\lambda), k=2, \ldots, n \tag{5.3}
\end{equation*}
$$

It holds:
Theorem 6.5.1 If $b_{i} \neq 0$ in (5.1) for $i=1, \ldots, n$, then $f_{k}(\lambda)$ has k real simple roots, $k=0, \ldots, n$. For $1 \leq k \leq n-1$ the roots of $f_{k}(\lambda)$ separate the roots of $f_{k+1}(\lambda)$.

Proof: Since A_{k} is real symmetric, it follows form (5.2) that the roots of $f_{k}(\lambda)$ are real. The rank of $\lambda I_{k}-A_{k}$ is at least $k-1$ (scratsch the first row and k-th column, and then consider $b_{i} \neq 0$), therefore the dimension of the zero spaces of $\lambda I_{k}-A_{k}$ is not bigger than one, so we have simple roots.
$n=2: f_{1}$ has the root a_{1} and $f_{2}\left(a_{1}\right)=-b_{1}^{2}<0\left(\right.$ from (5.3), $k=2$ and $\left.\lambda=a_{1}\right)$, both roots of f_{2} must lie on the right and left sides of a_{1}, respectively.

Suppose the assertion is true for $k=2, \ldots, n-1$, we shall prove that it is also true for $k=n$. It only needs to show that the roots of f_{n-1} separate the roots of f_{n}.

Let $\mu_{1}>\mu_{2}>\cdots>\mu_{n-1}$ be the roots of f_{n-1}. From (5.3) we have

$$
\begin{array}{r}
f_{n}\left(\mu_{i}\right)=-b_{n-1}^{2} f_{n-2}\left(\mu_{i}\right), \\
f_{n}\left(\mu_{i+1}\right)=-b_{n-1}^{2} f_{n-2}\left(\mu_{i+1}\right) . \tag{5.4}
\end{array}
$$

The roots of f_{n-2} separate the roots of f_{n-1}, there exists exactly one root of f_{n-2} between μ_{i} and μ_{i+1}, that is, $\operatorname{sgn} f_{n-2}\left(\mu_{i}\right)=-\operatorname{sgn} f_{n-2}\left(\mu_{i+1}\right)$. Therefore it holds also for f_{n} (because of (5.4)), so there is at least one root of f_{n} in $\left(\mu_{i+1}, \mu_{i}\right)$ from Roll'e theorem, for $i=$ $1, \ldots, n-2$. It is $f_{n}\left(\mu_{1}\right)=-b_{n-1}^{2} f_{n-2}\left(\mu_{1}\right)<0$, since $f_{n-2}(\lambda)=\lambda^{n-2}+\cdots$ and all roots of f_{n-2} are on the left side of μ_{1}.

On the other hand $f_{n} \rightarrow \infty$ for $\lambda \rightarrow \infty$, so there exists an other root of f_{n} in $\left(\mu_{1}, \infty\right)$. Similarly, we can show that there is a root of f_{n} in $\left(-\infty, \mu_{n-1}\right)$. This shows that f_{n} has n distinct, simple roots, which are separated by the roots of f_{n-1}.

The sequence of functions $f_{0}, f_{1}, \cdots, f_{n}$ satisfies in each bounded interval $[a, b]$ the following conditions:
(S1) $f_{i}(x)$ is continuous, $i=0, \ldots, n$.
(S2) $f_{0}(x)$ has constant sign in $[a, b]$.
(S3) $f_{i}(\bar{x})=0 \Rightarrow f_{i-1}(\bar{x}) f_{i+1}(\bar{x})<0, i=1, \ldots, n-1$,

$$
f_{n}(\bar{x})=0 \Rightarrow f_{n-1}(\bar{x}) \neq 0 .
$$

(S4) if \bar{x} is a root of f_{n} and $h>0$ small, then

$$
\operatorname{sgn} \frac{f_{n}(\bar{x}-h)}{f_{n-1}(\bar{x}-h)}=-1 \text { and } \operatorname{sgn} \frac{f_{n}(\bar{x}+h)}{f_{n-1}(\bar{x}+h)}=+1 .
$$

(S1) and (S2) are trivial, (S3) can be proved by (5.3) and $f_{0}=1: f_{i+1}(\bar{x})=-b_{i}^{2} f_{i-1}(\bar{x})$, so $f_{i-1}(\bar{x}) f_{i+1}(\bar{x}) \leq 0$. If $f_{i-1}(\bar{x})=0$, then from (5.3) $f_{i-2}(\bar{x})=0 \Rightarrow \cdots \Rightarrow f_{0}(\bar{x})=0$. Contradiction! So $f_{i-1}(\bar{x}) f_{i+1}(\bar{x})<0$. For (S4): It is clear for largest root \bar{x}, the others follow from induction.

Definition 6.5.1 A sequence of functions with (S1)-(S4) is called a Sturm chain on $[a, b]$.

If $x \in[a, b]$, then $f_{0}(x), f_{1}(x), \cdots, f_{n}(x)$ are well-defined. Let

$$
\begin{equation*}
V(x)=\frac{1}{2} \sum_{i=0}^{n-1}\left|\operatorname{sgn} f_{i}(x)-\operatorname{sgn} f_{i+1}(x)\right| . \tag{5.5}
\end{equation*}
$$

For $f_{i}(x) \neq 0, i=0, \ldots, n . V(x)$ is the number of the sign change of the sequence $f_{0}(x), \ldots, f_{n}(x)$. If $f_{k}(x)=0,1 \leq k \leq n-1$, then $V(x)$ is no differnce, whether sgn 0 is defined by 0,1 or -1 . Only $\operatorname{sgn} f_{n}(x)$ must be defined for $f_{n}(x)=0$, we set

$$
\begin{equation*}
f_{n}(x)=0 \Rightarrow \operatorname{sgn} f_{n}(x):=\operatorname{sgn} f_{n-1}(x) . \tag{5.6}
\end{equation*}
$$

Theorem 6.5.2 Let f_{0}, \ldots, f_{n} be a Sturm chain on $[a, b]$ and $f_{n}(a) f_{n}(b) \neq 0$. Then $f_{n}(x)$ has $m=V(a)-V(b)$ roots in $[a, b]$.

Proof: x runs from a to b, what happens with $V(x) ? V(x)$ is constant in an interval, if all $f_{k}(x) \neq 0, k=0, \ldots, n, x \in[a, b]$.
(a) x runs through a root \bar{x} of $f_{k}(x), 1 \leq k \leq n-1$. If follows from (S3) that $V(x)$ remains constant.
(b) x runs through a root \bar{x} of $f_{n}(x)$. Then from (S4) a sign changes is lost. So $V(a)-V(b)=$ the number of roots of $f_{k}(x)$ in (a, b).

For special case as in (5.2), $f_{k}(\lambda)$ is the characteristic polynomial of A_{k}. Since $f_{k}(\lambda) \rightarrow$ ∞ for $\lambda \rightarrow \infty$, so $V(b)=0$ for large enough b.

Theorem 6.5.3 If $f_{i}(x)$ are defined as in (5.2) and $V(x)$ as in (5.5), then holds

$$
V(a)=\text { the number of eigenvalues of } A \text { which are larger than } a .
$$

Proof: (1) $f_{n}(a) \neq 0$. Apply theorem 6.5.2 for large b.
(2) $f_{n}(a)=0$, for $\epsilon>0 \operatorname{small} \operatorname{sgn} f_{i}(a+\epsilon)=\operatorname{sgn} f_{i}(a), i=0, \cdots, n-1$ and $\operatorname{sgn} f_{n}(a+\epsilon)=$ $\operatorname{sgn} f_{n-1}(a+\epsilon)$ from (S4). Thus $V(a)=V(a+\epsilon)$ for $\epsilon>0$. So by theorem 6.5.3 $V(a)=$ the number of eigenvalues of A, which are large than $a+\epsilon$ for arbitrary small $\epsilon>0$.

Calculation of the eigenvalues

Theorem 6.5.3 will be used as the basic tool of the bisection method in locating and separating the roots of $f_{n}(\lambda)$. Let $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$ be the eigenvalues of A as in (5.1) and A is irreducible (i.e., $b_{i} \neq 0$). Using the Gerschgorin circle theorem 5.2.1 all eigenvalues lie in $[a, b]$, with

$$
\begin{aligned}
& a=\min _{1 \leq i \leq n}\left\{a_{i}-\left|b_{i}\right|-\left|b_{i-1}\right|\right\} \\
& b=\max _{1 \leq i \leq n}\left\{a_{i}+\left|b_{i}\right|+\left|b_{i-1}\right|\right\},
\end{aligned}
$$

where $b_{0}=b_{n}=0$.
We use the bisection method on $[a, b]$ to divide it into smaller subintervals. Theorem 6.5.3 is used to determine how many roots are contained in a subinterval, and we seek to obtain subintervals that will contain the desired root. If some eigenvalues are nearly equal, then we continue subdividing until the root is found with sufficient accuracy.

Let $a^{(0)}, b^{(0)}$ be found with $V\left(a^{(0)}\right) \geq k, V\left(b^{(0)}\right)<k$. Then by theorem 6.5 .3 we have $\lambda_{k} \in\left(a^{(0)}, b^{(0)}\right]$.

Determine

$$
\begin{gathered}
V\left(\frac{a^{(0)}+b^{(0)}}{2}\right)=v . \\
v \geq k \Rightarrow a^{(1)}:=\frac{a^{(0)}+b^{(0)}}{2}, b^{(1)}:=b^{(0)} \\
v<k \Rightarrow a^{(1)}:=a^{(0)}, b^{(1)}:=\frac{a^{(0)}+b^{(0)}}{2}
\end{gathered}
$$

we have $\lambda_{k} \in\left(a^{(1)}, b^{(1)}\right]$. So λ_{k} is always contained in a smaller interval. The evaluation of $V\left(\frac{a^{(i)}+b^{(i)}}{2}\right)$ is simply computed by (5.3).

$$
T=\left[\begin{array}{ccccc}
2 & 1 & 0 & \ldots & 0 \\
1 & 2 & \ddots & & \vdots \\
0 & \ddots & \ddots & \ddots & \\
\vdots & \ddots & \ddots & \ddots & 1 \\
0 & \ldots & 0 & 1 & 2
\end{array}\right]
$$

By Gershgorin theorem all eigenvalues lie in $[0,4] .0$ and 4 are not the eigenvalues of T (Check!). The roots of T are labeled as

$$
0<\lambda_{6} \leq \lambda_{5} \leq \ldots \leq \lambda_{1}<4
$$

The roots can be found by continuing the bisection method.

λ	$f_{6}(\lambda)$	$V(\lambda)$	Comment
0.0	7.0	6	$\lambda_{6}>0$
4.0	7.0	0	$\lambda_{1}<4$
2.0	-1.0	3	$\lambda_{4}<2<\lambda_{3}$
1.0	1.0	4	$\lambda_{5}<1<\lambda_{4}<2$
0.5	-1.421875	5	$0<\lambda_{6}<0.5<\lambda_{5}<1$
3.0	1.0	2	$2<\lambda_{3}<3<\lambda_{2}$
3.5	-1.421875	1	$3<\lambda_{2}<3.5<\lambda_{1}<4$

Remark 5.1 Although all roots of a tridiagonal matrix may be found by this technique, it is generally faster in that case to use the QR algorithm. With large matrices, we usually do not want all roots, so the method of this section are preferable. If we only want some certain specific roots, for example, the five largest or all roots in a given interval, it is easy to locate them by using theorem 6.5.3.

6.5.2 Rayleigh Quotient Iteration

Suppose $A \in \mathbf{R}^{n \times n}$ is symmetric and $x \neq 0$ is a given vector. A simple differentiation reveals that

$$
\begin{equation*}
\lambda=R[x] \equiv \frac{x^{T} A x}{x^{T} x} \tag{5.7}
\end{equation*}
$$

minimizes $\|(A-\lambda I) x\|_{2}$. The scalar $r(x)$ is called the Rayleigh quotient of x. If x is an approximate eigenvector, then $r(x)$ is a reasonable choice for the corresponding eigenvalue. On the other hand, if λ is an approximate eigenvalue, then inverse iteration tells us that the solution to $(A-\lambda I) x=b$ will almost always be a good approximate eigenvector.

Combining these two ideas lead to the Rayleigh-quotient iteration:
Given x_{0} with $\left\|x_{0}\right\|_{2}=1$.
For $k=0,1, \ldots$
$\mu_{k}=R\left[x_{k}\right]$
Solve $\left(A-\mu_{k} I\right) z_{k+1}=x_{k}$ for z_{k+1}
$x_{k+1}=z_{k+1} /\left\|z_{k+1}\right\|_{2}$.

Parlett (1974) has shown that (5.8) converges globally and the loccally cubically. (See also Chapter I).

6.5.3 Orthogonal Iteration with Ritz Acceleration

Given $Q_{0} \in \mathbf{R}^{n \times p}$ with $Q_{0}^{T} Q_{0}=I_{p}$.
For $k=0,1, \ldots$
$Z_{k}=A Q_{k-1}$,
$Q_{k} R_{k}=Z_{k}$ (QR-decomposition).
Let $Q^{T} A Q=\operatorname{diag}\left(\lambda_{i}\right)$ be the Schur decomposition of A and $Q=\left[q_{1}, \ldots, q_{n}\right]$, and $\left|\lambda_{1}\right|>$ $\left|\lambda_{2}\right|>\ldots\left|\lambda_{n}\right|$. If follows from theorem 5.3.4 that if

$$
d=\operatorname{dist}\left[D_{\rho}(A), R\left(Q_{0}\right)\right]<1,
$$

then

$$
\operatorname{dist}\left[D_{\rho}(A), R\left(Q_{k}\right)\right] \leq \frac{1}{\sqrt{1-d^{2}}}\left|\frac{\lambda_{p+1}}{\lambda_{p}}\right|^{k} .
$$

We know that (Stewart 1976) if $R_{k}=\left[r_{i j}^{(k)}\right]$ then

$$
\left|r_{i i}^{(k)}-\lambda_{i}\right|=O\left(\left|\frac{\lambda_{i+1}}{\lambda_{i}}\right|^{k}\right), \quad i=1, \ldots, p
$$

This can be an unacceptably slow rate of convergence if λ_{i} and λ_{i+1} are of nearly equal modulus. This difficulty can be surmounted by replacing Q_{k} with its Ritz Vectors at each step:

Given $Q_{0} \in \mathbf{R}^{n \times p}$ with $Q_{0}^{T} Q_{0}=I_{p}$.
For $k=0,1, \ldots$

$$
Z_{k}=A Q_{k-1}
$$

$$
\begin{equation*}
\tilde{Q_{k}} R_{k}=Z_{k} \text { (QR decomposition) } \tag{5.10}
\end{equation*}
$$

$$
S_{k}=\tilde{Q}_{k}^{T} A \tilde{Q}_{k}
$$

$$
U_{k}^{T} S_{k} U_{\tilde{k}}=D_{k} \text { (Schur decomposition), }
$$

$$
Q_{k}=\tilde{Q_{k}} U_{k}
$$

It can be shown that if

$$
D_{k}=\operatorname{diag}\left(\theta^{(k)}, \ldots, \theta_{p}^{(k)}\right) \quad \text { and } \quad\left|\theta_{1}^{(k)}\right| \geq \cdots \geq\left|\theta_{p}^{(k)}\right|
$$

then

$$
\left|\theta_{i}^{(k)}-\lambda_{i}(A)\right|=\left|\frac{\lambda_{p+1}}{\lambda_{i}}\right|^{k}, \quad i=1, \ldots, p
$$

Thus the Ritz values $\theta_{i}^{(k)}$ converge in a more favorable rate than the $r_{i i}^{(k)}$ in (5.9). For details, see Stewart (1969) and Parlett's book chapters 11 and 14.

6.6.1 Generalized definite eigenvalue problem

$$
\begin{equation*}
A x=\lambda B x, \tag{6.1}
\end{equation*}
$$

where $A, B \in \mathbf{R}^{n \times n}$ are symmetric and B is positive definite. (In practice A, B are very large and sparse).

Theorem 6.6.1 The eigenvalue problem (6.1) has n real eigenvalues λ_{i} associated with egienvectors x_{i} satisfying

$$
\begin{equation*}
A x_{i}=\lambda_{i} B x_{i}, i=1, \ldots, n \tag{6.2}
\end{equation*}
$$

Here $\left\{x_{i}\right\}_{i=1}^{n}$ can be chosen such that $x_{i}^{T} B x_{j}=\delta_{i j}$ (B-orthogonal), $i, j=1, \ldots, n$.
Proof: Let $B=L L^{T}$ be the Cholesky decomposition of B. Then $A x_{i}=\lambda_{i} B x_{i} \Longleftrightarrow$ $A x_{i}=\lambda_{i} L L^{T} x_{i} \Longleftrightarrow L^{-1} A L^{-T}\left(L^{T} x_{i}\right)=\lambda_{i}\left(L^{T} x_{i}\right) \Longleftrightarrow C z_{i}=\lambda_{i} z_{i}$, where $C \equiv L^{-1} A L^{-1}$ symmetric and $z_{i} \equiv L^{T} x_{i}$. Since λ_{i} are the eigenvalues of the symmetric matrix C, they are real. The vectors z_{i} can be chosen pairwisely orthogonal, i.e., $z_{i}^{T} z_{i}=\delta_{i j}=x_{i}^{T} L L^{T} x_{j}=$ $x_{i}^{T} B x_{j}$.

Let $X=\left[x_{1}, \cdots, x_{n}\right]$. Then from above we have $X^{T} B X=I$ and $\left(X^{T} A X\right)_{i j}=$ $x_{i}^{T} A x_{j}=\lambda_{j} x_{i}^{T} B x_{j}=\lambda_{j} \delta_{i j}$ which implies $X^{T} A X=\Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$. That is, A, B are simultaneously diagonalizable by a congruence transformations.

Numerical methods for (6.1):
(a) Bisection method,
(b) Coordinate relaxation,
(c) Method of steepest descent.

(a) Bisection methods:

Basic tool: Sylvester law of inertia
Definition 6.6.1 Two real, symmetric matrices A, B are called congruent, if there exists a nonsingular C such that

$$
\begin{equation*}
A=C^{T} B C \tag{6.3}
\end{equation*}
$$

We denote it by $A \stackrel{c}{\sim} B$.
Defintion 6.6.2 The inertia of a symmetric matrix A is a triplet of integers

$$
\begin{equation*}
i n(A)=(\pi(A), \nu(A), \delta(A)) \tag{6.4}
\end{equation*}
$$

$\pi(A)=$ the number of positive eigenvalues of A (geometry multiplicity),
$\nu(A)=$ the number of negative eigenvalues of A (geometry multiplicity),
$\delta(A)=n-\operatorname{rank}(A)=$ the number of zero eigenvalues of A.

Theorem 6.6.2 (Sylvester law of inertia) Two real, symmetric matrices are congruent if and only if they have the same inertia.
Proof: (1) A, B real and symmetric. Suppose $i n(A)=i n(B)$, there exist orthogonal U and V such that $U A U^{T}=\Lambda_{1}=\operatorname{diag}\left(\lambda_{1}(A), \cdots, \lambda_{n}(A)\right)$ with $\lambda_{1}(A) \geq \cdots \geq \lambda_{n}(A)$ and $V B V^{T}=\Lambda_{2}=\operatorname{diag}\left(\lambda_{1}(B), \cdots, \lambda_{n}(B)\right)$ with $\lambda_{1}(B) \geq \cdots \geq \lambda_{n}(B)$.

Claim: Λ_{1} is congruent to Λ_{2}. Since $\operatorname{in}(A)=\operatorname{in}(B)$, it holds either $\lambda_{i}(A) \lambda_{i}(B)>0$ or $\lambda_{i}(A)=\lambda_{i}(B)=0$. Set $D=\operatorname{diag}\left(d_{i}\right)$, where

$$
d_{i}=\left\{\begin{array}{cl}
\sqrt{\frac{\lambda_{i}(A)}{\lambda_{i}(B)}}, & \text { if } \lambda_{i}(A) \lambda_{i}(B)>0 \\
1, & \text { if } \lambda_{i}(A) \lambda_{i}(B)=0
\end{array} .\right.
$$

Then $D^{T} \Lambda_{2} D=\Lambda_{1}$, so $A \stackrel{c}{\sim} B$.
(2) Suppose $A \stackrel{c}{\sim} B$. Claim: $\operatorname{in}(A)=\operatorname{in}(B)$. Let $A=C^{T} B C, U A U^{T}=\Lambda_{1}$ and $V B V^{T}=\Lambda_{2}$ as above. These imply $\Lambda_{1}=P^{T} \Lambda_{2} P$, where $P=V^{T} C U^{T}$. Assume that in $(A) \neq \operatorname{in}(B)$. Clearly $\delta(A)=\delta(B) \Rightarrow \pi(A) \neq \pi(B)$. Without loss of generality we can suppose $\pi(A)<\pi(B)$. The homogenous linear system

$$
\left\{\begin{align*}
& x_{i}=0, \tag{6.5}\\
&(P x)_{i}=0, \\
& i=\pi(B)+1, \cdots, n
\end{align*}\right.
$$

has a nonzero solution $x \neq 0$, since it has fewer than n equations. With this x we have

$$
\begin{aligned}
0 & \geq \sum_{i=1}^{n} \lambda_{i}(A) x_{i}^{2}=x^{T} \Lambda_{1} x=x^{T} P^{T} \Lambda_{2} P x \\
& =\sum_{i=1}^{n} \lambda_{i}(B)(P x)_{i}^{2}>0 \\
& =\sum_{i=1}^{\pi(B)} \lambda_{i}(B)(P x)_{i}^{2} .
\end{aligned}
$$

That is, there is an $i(1 \leq i \leq \pi(B))$ with $(P x)_{i} \neq 0$, contradiction!

Second Part of Proof:

Show that B and $C^{T} B C$ have the same inertia. Because they have the same rank, it is sufficient to show that: $\pi(B)=\pi\left(C^{T} B C\right)$.

If $\lambda_{r}(B)>0$, let $B q_{i}=\lambda_{i}(B) q_{i}$ and $S_{0}=\operatorname{span}\left\{C^{-1} q_{q}, \cdots, C^{-1} q_{r}\right\}$. Then

$$
\begin{aligned}
\lambda_{r}\left(C^{T} B C\right) & =\max _{\operatorname{dim}} \min _{S=r} \frac{x^{T} C^{T} C x}{x^{T} x, x \neq 0} \geq \min _{x \in S_{0}, x \neq 0} \frac{x^{T} C^{T} B C x}{x^{T} x} \\
& =\min _{x \in S, x \neq 0} \frac{x^{T} C^{T} B C x}{x^{T} C^{T} C x} \frac{x^{T} C^{T} C x}{x^{T} x} \\
& \geq \min _{x \in S_{0}, x \neq 0} \frac{x^{T} C^{T} B C x}{x^{T} C^{T} C x} \min _{x \in \mathbf{R}^{n \times n}, x \neq 0} \frac{x^{T} C^{T} C x}{x^{T} x} \\
& =\lambda_{r}(B) \sigma_{n}(C)^{2}>0, \quad\left(\text { Since } x \in S_{0} \Rightarrow C x \in \operatorname{Span}\left(q_{1}, \cdots, q_{r}\right)\right)
\end{aligned}
$$

Important inequality:
From above we have $\lambda_{r}\left(C^{T} B C\right) \geq \lambda_{r}(B) \sigma_{n}^{2}(C)$. Change B and $C^{T} B C$ we then obtain

$$
\lambda_{r}(B) \geq \lambda_{r}\left(C^{T} B C\right) \sigma_{n}^{2}\left(C^{-1}\right)=\lambda_{r}\left(C^{T} B C\right) \frac{1}{\sigma_{1}^{2}(C)}
$$

This imply

$$
\begin{equation*}
\sigma_{1}^{2}(C) \geq \frac{\lambda_{r}\left(C^{T} B C\right)}{\lambda_{r}(B)} \geq \sigma_{n}^{2}(C) \tag{6.6}
\end{equation*}
$$

It holds also for the negative eigenvalues of B and $C^{T} B C$.

Corollary 6.6.3 If $A=C^{T} B C, C$ nonsingular $(A \stackrel{\subset}{\sim} B)$, then it holds for nonzero eigenvalues

$$
\sigma_{1}^{2}(C) \geq \frac{\lambda_{r}(A)}{\lambda_{r}(B)} \geq \sigma_{n}^{2}(C)
$$

Lemma 6.6.4 A nonsigular, real and symmetric and has a LR-decomposition

$$
\begin{equation*}
A=L R, \tag{6.7}
\end{equation*}
$$

where L is lower triangular with $l_{i i}=1$ and R is upper triangular with $r_{i i} \neq 0, i=$ $1, \cdots, n$. Then holds

$$
\pi(A)=\#\left\{i: r_{i i}>0\right\} \quad \text { and } \quad \nu(A)=\#\left\{i: r_{i i}<0\right\} .
$$

Proof: Let $D=\operatorname{diag}\left(r_{i i}\right)$. Then $\tilde{R}=D^{-1} R$ has "one" on the diagonal. This implies

$$
A=L R=L D \tilde{R}=A^{T}=\tilde{R}^{T} D L^{T} .
$$

The decomposition $A=\tilde{L} \tilde{D} \tilde{R}$, where \tilde{L}, \tilde{R} has "one" on the diagonal is unique, therefore $L=\tilde{R}^{T}$. So

$$
A=L D L^{T} \Longrightarrow A \stackrel{c}{\sim} D \Longrightarrow \operatorname{in}(A)=i n(D) .
$$

But $\pi(D)=\#\left\{i: r_{i i}>0\right\}$, the assertion is proved.

Theorem 6.6.5 Let A, B be real, symmetric and B positive definite, α be a given real number. Then holds

$$
\begin{aligned}
\pi(A-\alpha B) & =\#\{\text { eigenvalues of (6.1) larger than } \alpha\} \\
\nu(A-\alpha B) & =\#\{\text { eigenvalues of (6.1) smaller than } \alpha\} \\
\delta(A-\alpha B) & =\#\{\text { multiplicity of } \alpha \text { as an eigenvalues of (6.1) }\}
\end{aligned}
$$

Proof: $A x=\lambda B x \Longleftrightarrow C y=\lambda y$, where $C=L^{-1} A L^{-1}, B=L L^{T}$ and $L^{T} x=y$. By theorem 6.6.2 (Sylvester law of inertia) we have

$$
\operatorname{in}\{(A-\alpha B)\}=\operatorname{in}\left\{L^{-1}(A-\alpha B) L^{-1}\right\}=\operatorname{in}\{(C-\alpha I)\}
$$

Since $C-\alpha I$ has the eigenvalues $\lambda_{i}-\alpha>0$, we have

$$
\pi(A-\alpha B)=\#\left\{i: \lambda_{i}-\alpha>0\right\}=\#\left\{i: \lambda_{i}>\alpha\right\}
$$

Similarly, we also have the assertions for $\nu(A-\alpha B)$ and $\delta(A-\alpha B)$.

Remark 6.1 Theorem 6.6.5 leads to a bisection method for (6.1). If $[a, b]$ is an interval, which contains the desired eigenvalues, then by calculation of $i n\left(A-\frac{a+b}{2} B\right)$ we know that the desired eigenvalues lie in $\left[a, \frac{a+b}{2}\right]$ or $\left[\frac{a+b}{2}, b\right]$. It requires the $L U$ decomposition of $A-\alpha B$, which in general is indefinite.
(b) Methods of Coordinate relaxatoin:

This method requires only the calculation of $A x$ and $B x$. Consider the generalized Rayleigh quotient

$$
\begin{equation*}
R[x]=\frac{x^{T} A x}{x^{T} B x} \tag{6.8}
\end{equation*}
$$

Let $z=L^{T} x, C=L^{-1} A L^{-T}$ and $B=L L^{T} \quad(A x=\lambda B x)$. C is symmetric, let $C u_{i}=$ $\lambda_{i} u_{i}$ and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. By theorem 6.1.6 we have

$$
\lambda_{i}=\max \left\{R[z, C]=\frac{z^{T} C z}{z^{T} z}: z \perp u_{i}, j<i, z \neq 0\right\}
$$

From (6.8) follows that

$$
R[x]=\frac{x^{T} A x}{x^{T} B x}=\frac{z^{T} L^{-1} A L^{-T} z}{z^{T} z}=\frac{z^{T} C z}{z^{T} z}
$$

Therefore we have the following new version of connection between the eigenvalues and Rayleigh quotient of generalized definite eigenvalues problem (6.1).

Theorem 6.6.6 Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of $A x=\lambda B x$ satisfying $A x_{i}=$ $\lambda_{i} B x_{i}, i=1, \cdots, n$. It holds

$$
\begin{equation*}
\lambda_{i}=\max \left\{R[x]=\frac{x^{T} A x}{x^{T} B x}: \quad x^{T} B x_{j}=0, \quad j<i, x \neq 0\right\} \tag{6.9}
\end{equation*}
$$

Proof: $A x_{i}=\lambda_{i} B x_{i} \Longleftrightarrow C u_{i}=\lambda_{i} u_{i}, u_{i}=L^{T} x_{i}$. Let $z=L^{T} x$, then $z \perp u_{j} \Longleftrightarrow z^{T} u_{j}=$ $0 \Longleftrightarrow x^{T} L L^{T} x_{j}=0 \Longleftrightarrow x^{T} B x_{j}=0$. These imply that

$$
\begin{aligned}
& \left\{\frac{z^{T} C z}{z^{T} z}: z \perp u_{j}, j<i, z \neq 0\right\} \\
= & \left\{\frac{x^{T} A x}{x^{T} B x}: x^{T} B x_{j}=0, j<i, x \neq 0\right\} .
\end{aligned}
$$

Take maximum and from (1.5) follows (6.9).

Similarly, theorem 6.1.6 (Courant-Fischer) can be transfered to:

Theorem 6.6.7 For the eigenvalues $\lambda_{1} \geq \lambda_{2} \cdots \geq \lambda_{n}$ of $A x=\lambda B x$ it holds

$$
\begin{align*}
\lambda_{i} & =\min _{\substack{\left\{p_{1}, \cdots, p_{i-1}\right\}, 1 \leq j<i, p_{j} \neq 0}} \max _{\substack{p_{j}^{T} x=0, 1 \leq j<i, x \neq 0}} \frac{x^{T} A x}{x^{T} B x}, \tag{6.10}\\
\lambda_{i} & =\min _{\operatorname{dim} S=n+1-i} \max _{x \in S, x \neq 0} \frac{x^{T} A x}{x^{T} B x}, \tag{6.11}\\
\lambda_{i} & =\max _{\operatorname{dim} S=i} \min _{x \in S, x \neq 0} \frac{x^{T} A x}{x^{T} B x} . \tag{6.12}
\end{align*}
$$

Theorem 6.1.7 (Separation theorem) can be transfered to:
Theorem 6.6.8 A, B are real, symmetric and B is positive definite. A_{n-1} and B_{n-1} are obtained by scratching the last row and column of A and B respectively. For the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$ of $A x=\lambda B x$ and $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1}$ of $A_{n-1} x=\tilde{\lambda} B_{n-1} x$ it holds

$$
\begin{equation*}
\lambda_{s+1} \leq \mu_{s} \leq \lambda_{s}, \quad s=1, \cdots, n-1 \tag{6.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}=\max _{x \neq 0} R[x], \quad \lambda_{n}=\min _{x \neq 0} R[x] . \tag{6.14}
\end{equation*}
$$

Problem: How to compute the smallest eigenvalue λ_{n} and its associated eigenvector?
Ideal: Minimize Rayleigh quotient $R[x]$ on a two dimension subspace.
Basic Problem: Given two linearly independent vectors x, y. Minimize $R[x]$ on the from x and y generated subspace generated by x and y.

Let $x^{\prime}=\phi x+\gamma y$, then

$$
\begin{equation*}
R\left[x^{\prime}\right]=\frac{(\phi x+\gamma y)^{T} A(\phi x+\gamma y)}{(\phi x+\gamma y)^{T} B(\phi x+\gamma y)}=\frac{\phi^{2} \alpha+2 \phi \gamma f+\gamma^{2} p}{\phi^{2} \beta+2 \phi \gamma g+\gamma^{2} q}, \tag{6.15}
\end{equation*}
$$

where $\alpha=x^{T} A x, \beta=x^{T} B x, f=x^{T} A y, g=x^{T} B y, p=y^{T} A y$ and $q=y^{T} B y$. Let

$$
\tilde{A}=\left[\begin{array}{ll}
\alpha & f \tag{6.16}\\
f & p
\end{array}\right], \tilde{B}=\left[\begin{array}{ll}
\beta & g \\
g & q
\end{array}\right], \tilde{x}=\left[\begin{array}{l}
\phi \\
\gamma
\end{array}\right] .
$$

Then

$$
R\left[x^{\prime}\right]=\frac{\tilde{x}^{T} \tilde{A} \tilde{x}}{\tilde{x}^{T} \tilde{B} \tilde{x}},
$$

where \tilde{A}, \tilde{B} are symmetric and B is positive definite. Applying (6.14) to \tilde{A} and \tilde{B} we get that $R\left[x^{\prime}\right]$ has the minimum R^{\prime}, where R^{\prime} is the smallest eigenvalue of the problem $\tilde{A} \tilde{x}=\tilde{\lambda} \tilde{B} \tilde{x}$. That is,

$$
\begin{equation*}
\operatorname{det}\left(\tilde{A}-R^{\prime} \tilde{B}\right)=0, \text { quadratic equation in } R^{\prime} . \tag{6.17}
\end{equation*}
$$

Compute the associated eigenvector (to $\left.R^{\prime}\right) \tilde{x}=(\phi, \gamma)^{T}$ from one of the following equations:

$$
\begin{align*}
\left(\alpha-R^{\prime} \beta\right) \phi+\left(f-R^{\prime} g\right) \gamma & =0 \tag{6.18}\\
\left(f-R^{\prime} g\right) \phi+\left(p-R^{\prime} q\right) \gamma & =0 \tag{6.19}\\
\Longleftrightarrow\left(\tilde{A}-R^{\prime} \tilde{B}\right)\left[\begin{array}{l}
\phi \\
\gamma
\end{array}\right] & =0
\end{align*}
$$

Case 1: $p-R^{\prime} q \neq 0\left(p / q=y^{T} A y / y^{T} B y=R[y]>R^{\prime}\right)$:
From (6.19) implies $\phi \neq 0$. Set $\phi=1$. From (6.19) follows

$$
\begin{equation*}
\gamma=-\frac{f-R^{\prime} g}{p-R^{\prime} q} \tag{6.20}
\end{equation*}
$$

and that

$$
\begin{equation*}
x^{\prime}=x+\gamma y \tag{6.21}
\end{equation*}
$$

is the solution of the basic problem. Case 1 is called normal case.
Case 2: $p-R^{\prime} q=0$: This implies $f-R^{\prime} g=0$, because

$$
0=\operatorname{det}\left(\tilde{A}-R^{\prime} \tilde{B}\right)=\left(\alpha-R^{\prime} \beta\right)\left(p-R^{\prime} q\right)-\left(f-R^{\prime} g\right)^{2}
$$

(a) If $\alpha-R^{\prime} \beta \neq 0$, then $\phi=0$ and γ is arbitray. Set $x^{\prime}=y$.
(b) If $\alpha-R^{\prime} \beta=0$, then $\tilde{A}=R^{\prime} \tilde{B} \Longrightarrow R[\tilde{x}]=R^{\prime}$ for all $\tilde{x} \in \operatorname{Span}(x, y)$. Set $x^{\prime}=x$.

The method of coordinate relaxation
Given a starting vecor $y_{1} \neq 0$.
y_{i+1} is determined by y_{i} as follows:
Set $x=y_{i}, y=e_{k}, k=i \bmod n$ and
Solve the basic problem with respect to x and y.
Let x^{\prime} be the solution. Set $y_{i+1}=x^{\prime} /\left|x^{\prime}\right|$.
We obtain the sequence of vectors $y_{1}, y_{2}, y_{3}, \cdots$ such that

$$
R\left[y_{1}\right] \geq R\left[y_{2}\right] \geq R\left[y_{3}\right] \geq \cdots \geq \lambda_{n}
$$

Remark to the computational cost
(1) Compute \tilde{A}, \tilde{B} : compute

$$
\begin{aligned}
& p=y^{T} A y=e_{k}^{T} A e_{k}=a_{k k}, \quad q=e_{k}^{T} B e_{k}=b_{k k}, \\
& u=A x \text { and } v=B x, \text { and then } \\
& f=y^{T} A x=e_{k}^{T} u=u_{k}, \quad g=y^{T} B x=e_{k}^{T} v=v_{k}, \\
& \alpha=x^{T} A x=x^{T} u \text { and } \beta=x^{T} v . \\
& \text { Construct } \tilde{A} \text { and } \tilde{B} .
\end{aligned}
$$

(2) Solve the quadratic equation $\operatorname{det}\left(\tilde{A}-R^{\prime} \tilde{B}\right)=0$ in R^{\prime}.
(3) Solve $x^{\prime}=x+\gamma e_{k}$.
(4) $A x^{\prime}$ and $B x^{\prime}$ (for the next step) can be computed implicitly. We use the following updating:

$$
\begin{aligned}
& A x^{\prime}=A x+\gamma A e_{k}, \quad\left(A x^{\prime}\right)_{j}=u_{j}+\gamma a_{j k}, \\
& B x^{\prime}=B x+\gamma B e_{k}, \quad\left(B x^{\prime}\right)_{j}=v_{j}+\gamma b_{j k} .
\end{aligned}
$$

Remark 6.2 If $R\left[y_{1}\right]<\min _{i}\left(a_{i i} / b_{i i}\right)=\min _{i} R\left[e_{i}\right]$, then it happens only normal case:

$$
R^{\prime} q-p=R^{\prime} b_{k k}-a_{k k} \leq R\left[y_{1}\right] b_{k k}-a_{k k}<0 .
$$

Since $R\left[y_{1}\right]<a_{k k} / b_{k k}$, so $R^{\prime} q-p \neq 0$, a normal case!
Theorem 6.6.9 Let

$$
\begin{equation*}
R\left[y_{1}\right]<\min _{i} \frac{a_{i i}}{b_{i i}}, \tag{6.22}
\end{equation*}
$$

Then it holds

$$
\begin{equation*}
\lim _{i \rightarrow \infty} R\left[y_{i}\right]=\lambda \tag{6.23}
\end{equation*}
$$

Here λ is an eigenvalue of (6.1) $A x=\lambda B x$, and each accumulation point of $\left\{y_{i}\right\}$ is the associated eigenvector to λ.

Corollary 6.6.10 If (6.22) holds and

$$
\begin{equation*}
R\left[y_{1}\right]<\lambda_{n-1} \tag{6.24}
\end{equation*}
$$

Then $\lim _{i \rightarrow \infty} R\left[y_{i}\right]=\lambda_{n}$. If λ_{n} is simple, then holds:

$$
\lim _{i \rightarrow \infty} y_{i}=y \text { exists and } y \text { is the eigenvector to } \lambda_{n} .
$$

Proof of theorem 6.6.9 Only normal case!
y_{i+1} is a function of $e_{k}(k=i \bmod n)$ and y_{i}. Let $y_{i+1}=T_{k}\left(y_{i}\right)$. The function T_{k} is continuous in y_{i}, since for fix y the solution x^{\prime} of basic problem depends continously on the given x. (normal case!)

For $R\left[y_{1}\right] \geq R\left[y_{2}\right] \geq \cdots \geq \lambda_{n}$ there exists the limit point λ. Show that:

$$
\lambda=\lim _{i \rightarrow \infty} R\left[y_{i}\right] \text { is an eigenvalue. }
$$

In addition we show that an accumulation point y of the sequence $\left\{y_{i}\right\}$ satisfies $A y=\lambda B y$.
Let $y_{r(i)}$ be the convergence subsequence of $\left\{y_{i}\right\}$, i.e., $\lim _{i \rightarrow \infty} y_{r(i)}=y$. Without loss of generality there are infinite $r(i)$ satisfying $1=r(i) \bmod n$. So

$$
y=\lim _{i \rightarrow \infty} y_{n k(i)+1} \text { and } R[y]=\lambda .
$$

Since T_{1} is continuous, where

$$
T_{1} y=\lim _{i \rightarrow \infty} T_{1} y_{n k(i)+1}=\lim _{i \rightarrow \infty} y_{n k(i)+2}
$$ $f-\lambda g=0$. So $f=(A y)_{1}$ and $g=(B y)_{1} \Longrightarrow(A y)_{1}=\lambda(B y)_{1}$. Also T_{2} is continuous, we have

$$
T_{2} T_{1} y=T_{2} y=\lim _{i \rightarrow \infty} T_{2} y_{n k(i)+2}=\lim _{i \rightarrow \infty} y_{n k(i)+3}
$$

then $\lambda=R[y]=R\left[T_{2} y\right]$. As above we also have $\gamma=0$ and then $y=T_{2} y$. So $f=\lambda g$, thus $(A y)_{2}=\lambda(B y)_{2}$, and so on. It follows $A y=\lambda B y$.

Proof of Corollaray 6.6.10

The first part is trivial, since λ_{n} is the unique eigenvalue smaller than λ_{n-1}. The normalized eigenvectors to λ_{n} are $\pm x /|x|$, where $A x=\lambda_{n} x$. Two possible accumulation points are separate. Let $y_{i} \approx x /|x|$, then $A y_{i} \approx \lambda_{n} B y_{i}$. This follows $f \approx \lambda_{n} g$, so $\gamma \approx 0$, thus $y_{i+1} \approx y_{i}$. A second accumulation point can not appear.

As relaxation method by solving linear system, we introduce an "overcorrect" $x^{\prime}=$ $x+\omega \gamma y(1<\omega<2)$ for the csae 1 instead of $x^{\prime}=x+\gamma y$. We describe the above discussion as the following algorithm:

Algorithm 6.1 (Coordinate over relaxation method to determine the smallest eigenvalue of symmetric generalized definite problem $A x=\lambda B x)$

Let $A, B \in \mathbf{R}^{n \times n}$ be symmetric and B positive definite.
Step 1: Choose a relaxation factor $\omega \in(1,2)$, tolerance $\delta, \epsilon \in \mathbf{R}_{+}$and a starting vector $x \in \mathbf{R}^{n} \backslash\{0\}$. Compute $a:=x^{T} A x, b:=x^{T} B x$ and $r:=a / b$.

Step 2: Set $R_{\max }:=R_{\text {min }}:=r$.
For $j=1,2, \cdots, n$
Compute $f: \sum_{k=1}^{n} a_{j k} x_{k}, \quad g:=\sum_{k=1}^{n} b_{j k} x_{k}, \quad p:=a_{j j}, \quad q:=b_{j j}$
Determine the smallest eigenvalue r_{1} of

$$
\left(\left[\begin{array}{ll}
a & f \\
f & p
\end{array}\right]-\lambda\left[\begin{array}{ll}
b & g \\
g & q
\end{array}\right]\right)\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=0
$$

(2.1) If $\left|p-r_{1} q\right|>\epsilon$, then set

$$
\begin{aligned}
& \beta:=-\omega \frac{f-r_{1} g}{g-r_{1} q}, x_{j}:=x_{j}+\beta, a:=a+2 \beta f+\beta^{2} p, \\
& b:=b+2 \beta g+\beta^{2} g, r:=\frac{a}{b}
\end{aligned}
$$

(2.2) If $\left|p-r_{1} q\right| \leq \epsilon$, and $\left|a-r_{1} b\right|>\epsilon$ then set

$$
x:=e_{j}, a:=p, b:=q, r:=\frac{a}{b}
$$

(2.3) If $\left|p-r_{1} q\right| \leq \epsilon$, and $\left|a-r_{1} b\right| \leq \epsilon$ then stop. Set

$$
R_{\max }:=\max \left(r, R_{\max }\right) \text { and } R_{\min }:=\min \left(r, R_{\min }\right)
$$

Step 3: If $\frac{R_{\text {min }}}{R_{\text {max }}} \leq 1-\delta$, then go to step 2, otherwise stop.
A detail discussions for determining optimal ω can be found in:
H.R.Schwarz: Numer. Math. 23, 135-151 (1974).
H.R.Schwarz: Finite Elemente, Teubner Verlag.

(c) Methods of steepest descent

Recall that at a point x_{k} the function $\phi: \mathbf{R}^{\mathbf{n}} \longrightarrow \mathbf{R}$ decreases most rapidly in the direction of the negative gradient $-\nabla \phi\left(x_{k}\right)$. The method is called the gradient or steepest descent method. Here we have

$$
\phi(x)=R[x]=\frac{x^{T} A x}{x^{T} B x} .
$$

It holds

$$
\begin{equation*}
\operatorname{Grad} \phi(x)=\frac{2\left[\left(x^{T} B x\right) A x-\left(x^{T} A x\right) B x\right]}{\left(x^{T} B x\right)^{2}}=\frac{2}{x^{T} B x}(A x-R[x] B x) \tag{6.25}
\end{equation*}
$$

Thus, $\operatorname{Grad} R[x](=\operatorname{Grad} \phi(x))=0 \Longleftrightarrow R[x]$ is the eigenvalue and x is the associated eigenvector $\stackrel{\text { def }}{\Longleftrightarrow} x$ is stationary point of $R[x]$.

Methods of steepest descent:
Given $y_{1} \neq 0 . y_{i+1}$ is determined by y_{i}.
(1) Search direction

$$
\begin{equation*}
p_{i}=\left(A-R\left[y_{i}\right] B\right) y_{i} \tag{6.26}
\end{equation*}
$$

If $p_{i}=0$ stop, otherwise
(2) Solve the basic problem with $x=y_{i}$ and $y=p_{i}$.

If x^{\prime} is the solution, then set

$$
\begin{equation*}
y_{i+1}=\frac{x^{\prime}}{\left\|x^{\prime}\right\|} \tag{6.27}
\end{equation*}
$$

Go to (1).
Lemma 6.6.11 Let $B=I$. Then holds

$$
\begin{array}{r}
p_{i}^{T}\left(A-R^{\prime} B\right) y_{i}=p_{i}^{T} p_{i}, R^{\prime}=R\left[y_{i+1}\right], \\
p_{i}^{T}\left(A-R^{\prime} B\right) p_{i}>0, \text { if } p_{i} \neq 0 \tag{6.29}
\end{array}
$$

Especially, it happens only normal case, thus the function $T\left(y_{i}\right)=y_{i+1}=T\left(y_{i}\right)$ is continuous.

Proof: Since $p_{i}^{T} y_{i}=0$ (by computation!), we have

$$
\begin{aligned}
p_{i}^{T}\left(A-R^{\prime} B\right) y_{i} & =p_{i}^{T}\left(A-R\left[y_{i}\right] B\right) y_{i}+\left(R\left[y_{i}\right]-R^{\prime}\right) p_{i}^{T} B y_{i} \\
& =p_{i}^{T} p_{i} .
\end{aligned}
$$

If $p_{i} \neq 0$, then $f-R^{\prime} g=p_{i}^{T} A y_{i}-R^{\prime} p_{i}^{T} B y_{i}=p_{i}^{T} p_{i}>0$ (by (6.28)). From (6.18) and $f-R^{\prime} g \neq 0 \Rightarrow \phi \neq 0$. Hence the minimum is not at $y=p_{i}$, so $R\left[p_{i}\right]>R^{\prime}$. Thus

$$
p_{i}^{T}\left(A-R^{\prime} B\right) y_{i}=p_{i}^{T}\left(A-R\left[p_{i}\right] B\right) p_{i}+\left(R\left[p_{i}\right]-R^{\prime}\right) p_{i}^{T} B p_{i}>0 .
$$

So (6.29) holds. i.e. $p-R^{\prime} q \neq 0 \Rightarrow$ normal case! $\Rightarrow T$ is continuous.

Theorem 6.6.12 Let $B=I$, and the sequence of vectors $\left\{y_{i}\right\}$ is obtained by the method of steepest descent (6.26),(6.27). Then it holds with $r_{i}=R\left[y_{i}\right]$ that
(1) $\lim _{i \rightarrow \infty} r_{i}=\lambda$ is an eigenvalue of A.
(2) Each accumulation point of $\left\{y_{i}\right\}$ is the eigenvector of A corresponding to λ.
(3) If $y_{1}=\sum_{k=1}^{n} \alpha_{k} x_{k}$ is the expansion of the starting vector by normalized eigenvectors $\left\{x_{k}\right\}_{k=1}^{n}$ of $A,\left(A x_{i}=\lambda_{i} x_{i}\right.$ with $\left.\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{1}\right)$ and $\alpha_{n} \neq 0$, then it holds

$$
\lim _{i \rightarrow \infty} r_{i}=\lambda_{n}
$$

Proof: Since $r_{1} \geq r_{2} \geq \cdots \geq \lambda_{n}$, there exists the limit point λ with $\lim _{i \rightarrow \infty} r_{i}=\lambda$. Let z be an accumulation point of $\left\{y_{i}\right\}_{i \in N}$, i.e.,

$$
z=\lim _{i \rightarrow \infty} y_{n(i)}, \quad R[z]=\lim _{i \rightarrow \infty} R\left[y_{n(i)}\right]=\lambda .
$$

Since $T\left(T: y_{i} \rightarrow y_{i+1}\right)$ is continuous, so

$$
\lim _{i \rightarrow \infty} T y_{n(i)}=\lim _{i \rightarrow \infty} y_{n(i)+1}=T \lim _{i \rightarrow \infty} y_{n(i)}=T z .
$$

This implies

$$
R[T z]=\lim _{i \rightarrow \infty} R\left[y_{n(i)+1}\right]=\lambda
$$

From $R[T z]=R[z]$ and $\gamma=0$ we have $T z=z$. (Since Grad $R[z]=0, z$ is the eigenvector to $R[z]=\lambda$). Thus (1),(2) are established.

Claim (3): Let $y_{i}=\sum_{k=1}^{n} \alpha_{k}^{i} x_{k}$. Prove that α_{k}^{i+1} is determined by α_{k}^{i}. Since

$$
p_{i}=\left(A-r_{i} I\right) y_{i}=\sum_{k=1}^{n}\left(\lambda_{k}-r_{i}\right) \alpha_{k}^{i} x_{k}
$$

from (6.28)(6.29) follows

$$
-\gamma_{i}=\frac{f-r_{i+1} g}{p-r_{i+1} q}=\frac{p_{i}^{T}\left(A-r_{i+1} B\right) y_{i}}{p_{i}^{T}\left(A-r_{i+1} B\right) p_{i}}>0
$$

Since

$$
y_{i}+\gamma_{i} p_{i}=\sum_{k=1}^{n} \alpha_{k}^{i}\left[1+\gamma_{i}\left(\lambda_{k}-r_{i}\right)\right] B x_{k}
$$

we get

$$
y_{i+1}=\frac{y_{i}+\gamma_{i} p_{i}}{\left\|y_{i}+\gamma_{i} p_{i}\right\|}=\sum_{k=1}^{n} \frac{\alpha_{i}^{k}\left(1+\gamma_{i}\left(\lambda_{k}-r_{i}\right)\right)}{\left(\sum_{s=1}^{n}\left(\alpha_{s}^{i}\right)^{2}\left(1+\gamma_{i}\left(\lambda_{k}-r_{i}\right)\right)^{2}\right)^{1 / 2}} B x_{k} .
$$

This implies

$$
\begin{equation*}
\alpha_{r}^{i+1}=\frac{\alpha_{r}^{i}\left(1+\gamma_{i}\left(\lambda_{r}-r_{i}\right)\right)}{\sqrt{\sum_{s=1}^{n}\left(\alpha_{s}^{i}\right)^{2}\left(1+\gamma_{i}\left(\lambda_{s}-r_{i}\right)\right)^{2}}} . \tag{6.30}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\frac{\alpha_{n}^{i+1}}{\alpha_{r}^{i+1}}=\frac{\alpha_{n}^{i}}{\alpha_{r}^{i}}\left(\frac{1+\gamma_{i}\left(\lambda_{n}-r_{i}\right)}{1+\gamma_{i}\left(\lambda_{r}-r_{i}\right)}\right) . \tag{6.31}
\end{equation*}
$$

Assume that $\left\{r_{i}\right\}$ does not converge to λ_{n}, but to $\lambda_{r}>\lambda_{n}$. Then

$$
y_{n(i)} \rightarrow \pm x_{r} \Longrightarrow \alpha_{r}^{n(i)} \rightarrow \pm 1 \text { and } \alpha_{n}^{n(i)} \rightarrow 0
$$

On the other hand, since

$$
\lambda_{r}-r_{i}<0, \quad \lambda_{n}-r_{i}<0, \quad \gamma_{i}<0 \text { and } \lambda_{n}-r_{i}<\lambda_{r}-r_{i},
$$

we have

$$
\frac{1+\gamma_{i}\left(\lambda_{n}-r_{i}\right)}{1+\gamma_{i}\left(\lambda_{r}-r_{i}\right)}>1
$$

From (6.31) follows that

$$
\left|\frac{\alpha_{n}^{i+1}}{\alpha_{r}^{i+1}}\right|>\left|\frac{\alpha_{n}^{i}}{\alpha_{r}^{i}}\right| .
$$

This contradicts that $\alpha_{n}^{n(i)} \rightarrow 0$.
$A, B \in \mathbf{R}^{n \times n}$ are symmetric and B is positive definite. Reduction to the ordinary eigenvalue problem:
(1) $B^{-1} A x=\lambda x$, the symmetry is lost.
(2) $B=L L^{T}, L^{-1} A L^{-T} z=\lambda z$ with $L^{T} x=z$, Cholesky method.

Remark: For a given vector z we can compute $L^{-1} A L^{-T} z$ as follow: Comupte z_{1} from $L^{T} z_{1}=z$ by backward substitution. Then $z_{2}=A z_{1}$. Compute z_{3} from $L z_{3}=z_{2}$ by forward substitution. We can use the sparsity of B (also L) and A.

Caution: $L^{-1} A L^{-T}$ is in general dense.
(3) Theoretically, B has (unique) positive definite square root $B^{1 / 2}$, i.e., $B^{1 / 2} B^{1 / 2}$ $=B, B^{-1 / 2} A B^{-1 / 2} z=\lambda z$. Computation of $B^{1 / 2}$ is expensive. Let $B=U D U^{T}$, where U is orthogonal and D is diagonal with $D>0$. Then

$$
B=\left(U D^{1 / 2} U^{T}\right)\left(U D^{1 / 2} U^{T}\right) \Rightarrow B^{1 / 2}=U D^{1 / 2} U^{T}
$$

where $D=\operatorname{diag}\left(d_{i}\right)$ and $D^{1 / 2}=\operatorname{diag}\left(\sqrt{d_{i}}\right)$.
Consider

$$
A x=\lambda B x, A, B \text { symmetric and } B \text { positive definite. }
$$

Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$ be the eigenvalues of (6.1). Recall that the power method and the inverse iteration for $B=I$:
Power method:

$$
\begin{align*}
& \text { Given } x_{0} \neq 0, \\
& \text { for } i=0,1,2, \cdots, \\
& y_{i+1}=A x_{i}, \quad k_{i+1}=\left\|y_{i+1}\right\|, \tag{6.32}\\
& x_{i+1}=y_{i+1} / k_{i+1} .
\end{align*}
$$

x_{i} converges to the eigenvector of the eigenvalue λ_{1} and $k_{i} \rightarrow\left|\lambda_{1}\right|$ as $i \rightarrow \infty$.
Inverse power method:
Given $x_{0} \neq 0$,
for $i=0,1,2, \cdots$,

$$
\begin{align*}
& \sigma_{i}=x_{i}^{T} A x_{i} / x_{i}^{T} x_{i} \text { Rayleigh quotient } \tag{6.33}\\
& \left(A-\sigma_{i} I\right) x_{i+1}=k_{i+1} x_{i}, \\
& k_{k+1} \text { is chosen so that }\left\|x_{i+1}\right\|=1 .
\end{align*}
$$

Cubic convergence.
Transfer to the problem (6.1):
Power method (6.32) $\Leftrightarrow A \leftrightarrow B^{-1} A$:

$$
\begin{align*}
& \text { Given } x_{0} \neq 0, \\
& \text { for } i=0,1,2, \cdots, \\
& B y_{i+1}=A x_{i}, k_{i+1}=\left\|y_{i+1}\right\| \tag{6.34}\\
& x_{i+1}=y_{i+1} / k_{i+1} .
\end{align*}
$$

We must solve one linear system in each step. In general, Cholesky decomposition of B is necessary.

Inverse power method for $A x=\lambda B x$:

$$
\text { Given } x_{0} \neq 0,
$$ for $i=0,1,2, \cdots$,

$$
\begin{align*}
& \sigma_{i}=x_{i}^{T} A x_{i} / x_{i}^{T} B x_{i} \tag{6.35}\\
& \left(A-\sigma_{i} B\right) x_{i+1}=k_{i+1} B x_{i} \\
& k_{i+1} \text { is chosen so that }\left\|x_{i+1}\right\|_{B}=1 .
\end{align*}
$$

Reduction: Let $B=L L^{T}$. Substitute A by $L^{-1} A L^{-T}$ in (6.33) then we have (here $\left.x_{i} \leftrightarrow z_{i}\right):$

$$
\sigma_{i}=\frac{z_{i}^{T} L^{-1} A L^{-T} z_{i}}{z_{i}^{T} z_{i}}=\frac{x_{i}^{T} A x_{i}}{x_{i}^{T} B x_{i}}, \text { where } L^{-T} z_{i}=x_{i}
$$

and

$$
\left(L^{-1} A L^{-T}-\sigma_{i} I\right) z_{i+1}=k_{i+1} z_{i} \Leftrightarrow\left(A-\sigma_{i} B\right) x_{i+1}=k_{i+1} B x_{i} .
$$

Let $\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of $A-\lambda B$. Then the power iteration (6.34) converges to λ_{1}. Let $\left\{\hat{x}_{i}\right\}_{i=1}^{n}$ be the complete system of eigenvectors,i.e.,

$$
\hat{x}_{i}^{T} B \hat{x}_{j}=\delta_{i j} \text { and } \hat{x}_{i}^{T} A \hat{x}_{j}=\lambda_{i} \delta_{i j} \text { for all } i, j=1, \cdots, n .
$$

Let $y_{1}=\sum_{j=1}^{n} c_{i}^{1} \hat{x}_{i}, y_{k}=\sum_{i=1}^{n} c_{i}^{k} \hat{x}_{i}$. Then it holds

$$
y_{k+1}=\sum_{i=1}^{n} c_{i}^{k+1} \hat{x}_{i}=B^{-1} A \sum_{i=1}^{n} c_{i}^{k} \hat{x}_{i}=\sum_{i=1}^{n} c_{i}^{k} \lambda_{i} \hat{x}_{i} .
$$

This implies that $c_{i}^{k+1}=\lambda_{i} c_{i}^{k}$, and thus $c_{i}^{k}=\lambda_{i}^{k} c_{i}^{1}$. Therefore, we have

$$
y_{k}=\lambda_{1}^{k}\left\{c_{1}^{1} \hat{x}_{1}+\sum_{\nu=2}^{n}\left(\frac{\lambda_{\nu}}{\lambda_{1}}\right)^{k} c_{\nu}^{1} \hat{x}_{\nu}\right\}
$$

Normalizing y_{k} we get that x_{k} converges to \hat{x}_{1}.
Cost of computation:
Matrix \times vector $A x_{i}$,
Solve the linear system $B y_{i+1}=A x_{i}$.
Determination of the eigenvalue: $k_{i+1} \rightarrow\left|\lambda_{1}\right|$.
Although we have $k_{i+1} \rightarrow\left|\lambda_{1}\right|$, the better approximation of λ_{1} is $R\left[x_{i}\right]$. Let $x_{i}=$ $\hat{x}_{1}+\epsilon d$, where $d \in \operatorname{span}\left\{\hat{x}_{2}, \cdots \hat{x}_{n}\right\}$ and $\|d\|=1$. Then

$$
\begin{aligned}
R\left[x_{i}\right] & =R\left[\hat{x}_{1}+\epsilon d\right]=\frac{\left(\hat{x}_{1}+\epsilon d\right)^{T} A\left(\hat{x}_{1}+\epsilon d\right)}{\left(\hat{x}_{1}+\epsilon d\right)^{T} B\left(\hat{x}_{1}+\epsilon d\right)} \\
& =\frac{\hat{x}_{1}^{T} A \hat{x}_{1}+\epsilon^{2} d^{T} A d}{\hat{x}_{1}^{T} B \hat{x}_{1}+\epsilon^{2} d^{T} B d}=\frac{\hat{x}_{1}^{T} A \hat{x}_{1}}{\hat{x}_{1}^{T} B \hat{x}_{1}}+O\left(\epsilon^{2}\right) \\
& =\lambda_{1}+O\left(\epsilon^{2}\right) .
\end{aligned}
$$

Error of eigenvalue $\approx(\text { error of eigenvector })^{2}$.

Compute the other eigenvalues and eigenvectors:

Suppose λ_{1}, \hat{x}_{1} are computed. Power method does not converge to λ_{1}, \hat{x}_{1}, if it satisfies

$$
\begin{equation*}
x_{i}^{T} B \hat{x}_{1}=0, \quad i=0,1,2, \cdots . \tag{6.36}
\end{equation*}
$$

If we start with x_{0} satisfying $x_{0}^{T} B \hat{x}_{1}=0$, then all iterate x_{i} satisfy (6.36) theoretically (since $c_{1}^{1}=0$). Because of roundoff error we shall perform the reorthogonalization:

$$
\begin{aligned}
& B \tilde{y}_{i+1}=A x_{i}, \\
& y_{i+1}=\tilde{y}_{i+1}-\left(\hat{x}_{i}^{T} B \tilde{y}_{i+1}\right) \hat{x}_{1}, \\
& x_{i+1}=y_{i+1} /\left\|y_{i+1}\right\|_{B} .
\end{aligned}
$$

In general: Suppose $\lambda_{1}, \cdots \lambda_{p}, \hat{x}_{1}, \cdots \hat{x}_{p}$ are computed, then we perofrm the following reorthogonalization:

$$
\begin{aligned}
& B \tilde{y}_{i+1}=A x_{i}, \\
& y_{i+1}=\tilde{y}_{i+1}-\sum_{j=1}^{p}\left(\hat{x}_{j}^{T} B \tilde{y}_{i+1}\right) \hat{x}_{j}, \\
& x_{i+1}=y_{i+1} /\left\|y_{i+1}\right\|_{B} .
\end{aligned}
$$

Here $x_{i}^{T} B \hat{x}_{j}=0$, for $j=1, \cdots, p$, and $i=0,1,2, \cdots$.
Simultaneous vector-iteration:
Determine the $p(p>1)$ largest eigenvalues and the associated eigenvectors of (6.1). Compute simultaneuously the approximations $x_{1}^{(i)}, \cdots, x_{p}^{(i)}$. Let

$$
\begin{equation*}
X^{(i)}=\left(x_{1}^{(i)}, \cdots, x_{p}^{(i)}\right) \in \mathbf{R}_{n \times p} \tag{6.37}
\end{equation*}
$$

We demand $X^{(i)}$ satisfies the following relation:

$$
\begin{equation*}
X^{(i)^{T}} B X^{(i)}=I_{p} \tag{6.38}
\end{equation*}
$$

Since $\hat{x}_{i}^{T} B x_{j}=\delta_{i j}$, the columns of $X^{(i)}$ are nearly B-orthogonal. From (6.34) we construct $X^{(i)}$ by

$$
\begin{equation*}
B Y^{(i)}=A X^{(i-1)} \tag{6.39}
\end{equation*}
$$

and then

$$
\begin{equation*}
X^{(i)}=Y^{(i)} C_{i}, \tag{6.40}
\end{equation*}
$$

where $C_{i} \in \mathbf{R}^{p \times p}$ and is chosen such that (6.38) is satisfied. We have the following methods for determining C_{i}.
(a) Apply orthogonalization algorithm to the columns of $Y^{(i)}$, then C_{i} is an upper triangular matrix.

Let $Y^{(i)}=\left(y_{1}^{(i)}, \cdots, y_{p}^{(i)}\right)$ and $X^{(i)}=\left(x_{1}^{(i)}, \cdots, x_{p}^{(i)}\right)$.
For $k=1, \cdots, p$,

$$
h_{k}=y_{k}^{(i)}-\sum_{\nu=1}^{k-1}\left(y_{k}^{(i)^{T}} B x_{\nu}^{(i)}\right) x_{\nu}^{(i)},
$$

$$
x_{k}^{(i)}=h_{k} /\left(h_{k}^{T} B h_{k}\right)^{1 / 2} .
$$ can be slow.

(b) Define $G_{i}=Y^{(i)^{T}} B Y^{(i)}$, then G_{i} is positive definite. There exists an orthogonal matrix V_{i} and $D_{i}=\operatorname{diag}\left(d_{j}\right)$ with $d_{1} \geq d_{2} \geq \cdots \geq d_{p}>0$ such that

$$
G_{i}=V_{i} D_{i} V_{i}^{T} .
$$

Let $X^{(i)}=Y^{(i)} C_{i}$ where

$$
\begin{equation*}
C_{i}=V_{i} D_{i}^{-1 / 2} \text { and } D_{i}^{-1 / 2}=\operatorname{diag}\left(1 / \sqrt{d_{1}}, \cdots, 1 / \sqrt{d_{p}}\right) . \tag{6.41}
\end{equation*}
$$

Check

$$
\begin{aligned}
X^{(i)^{T}} B X^{(i)} & =C_{i}^{T} Y^{(i)^{T}} B Y^{(i)} C_{i}=\left(V_{i} D_{i}^{-1 / 2}\right)^{T} G_{i}\left(V_{i} D_{i}^{-1 / 2}\right) \\
& =D_{i}^{-1 / 2} V_{i}^{T} G_{i} V_{i} D_{i}^{-1 / 2}=I_{p} .
\end{aligned}
$$

So the columns of $X^{(i)}$ are B-orthogonal. Method (b) brings the approximations in the correct order.

Example: Let $X^{(1)}=\left(x_{2}, x_{3}, x_{1}\right)$, where $x_{i}^{T} B x_{j}=\delta_{i j}$ and $A x_{i}=\lambda_{i} B x_{i}, i, j=1,2,3$. Method (a): $X^{(i)}=X^{(1)}, Y^{(2)}=B^{-1} A X^{(1)}=\left(\lambda_{2} x_{2}, \lambda_{3} x_{3}, \lambda_{1} x_{1}\right)$. Then

$$
X^{(2)}=\left(x_{2}, x_{3}, x_{1}\right)=X^{(1)}
$$

Method (b):

$$
\begin{gathered}
G_{2}=\left[\begin{array}{ccc}
\lambda_{2}^{2} & 0 & 0 \\
0 & \lambda_{3}^{2} & 0 \\
0 & 0 & \lambda_{1}^{2}
\end{array}\right], \quad D_{2}=\left[\begin{array}{ccc}
\lambda_{1}^{2} & 0 & 0 \\
0 & \lambda_{2}^{2} & 0 \\
0 & 0 & \lambda_{3}^{2}
\end{array}\right], \\
V_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad C_{2}=V_{2} D_{2}^{-1 / 2}=\left[\begin{array}{ccc}
0 & \lambda_{2}^{-1} & 0 \\
0 & 0 & \lambda_{3}^{-1} \\
\lambda_{1}^{-1} & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Then

$$
X^{(2)}=Y^{(2)} C_{2}=\left(x_{1}, x_{2}, x_{3}\right) .
$$

Method (b) forces the eigenvectors in the correct order.
(6.39) and (6.40) imply Treppen iteration (F.L. Bauer 1957) :

For $B=I$:

$$
\begin{equation*}
A X^{(i-1)}=Y^{(i)}=X^{(i)} C_{i}^{-1}=X^{(i)} R_{i}, \tag{6.42}
\end{equation*}
$$

where R_{i} is upper triangular.
$p=n$: See the connection with $Q R$ Algorithm.

$$
\begin{gathered}
A_{i}=X^{(i-1)^{T}} A X^{(i-1)}, \quad Q_{i}=X^{(i-1)^{T}} X^{(i)}, \\
A_{i}=Q_{i} R_{i}, \quad A_{i+1}=R_{i} Q_{i} .
\end{gathered}
$$

$p<n$: and $B=L L^{T}$ positive definite: Treppen iteration for $L^{-1} A L^{-T}$ leads to $Z^{(i)}$:

$$
\begin{equation*}
L^{-1} A L^{-T} Z^{(i-1)}=Z^{(i)} R_{i}, \quad Z^{(i)^{T}} Z^{(i)}=I_{p} \tag{6.43}
\end{equation*}
$$

Let $X^{(i)}=L^{-T} Z^{(i)}$, rewrite (6.43) to $X^{(i)}$:

$$
\begin{equation*}
A X^{(i-1)}=B X^{(i)} R_{i} \tag{6.44}
\end{equation*}
$$

and

$$
X^{(i)^{T}} L^{T} L X^{(i)}=I_{p}=X^{(i)^{T}} B X^{(i)}
$$

Improvement: $B=I$. Recall
Theorem 6.6.13 A is real and symmetric, $Q \in \mathbf{R}^{n \times p}$ orthogonal and $S \in \mathbf{R}^{p \times p}$ symmetric, then for an eigenvalue $\lambda_{i}(S)$ of S there exists an eigenvalue $\lambda_{k_{i}}(A)$ of A such that

$$
\left|\lambda_{i}(S)-\lambda_{k_{i}}(A)\right| \leq\|A Q-Q S\|_{2}, \quad i=1, \cdots, p
$$

Theorem 6.6.14 Let $S_{0}=Q^{T} A Q$, then

$$
\left\|A Q-Q S_{0}\right\|_{2, F} \leq\|A Q-Q S\|_{2, F}
$$

for all symmetric matrix $S \in R^{p \times p}$.
For given orthogonal matrix $X^{(i)}$, if we construct $S_{i}=X^{(i)^{T}} A X^{(i)}$, then the eigenvalues of S_{i} are the optimal approximations to the eigenvalues of A (optimal error estimation). Also good error estimation for eigenvectors. From $S_{i} z=\mu z$ follows that

$$
\begin{gathered}
A X^{(i)} z-\mu X^{(i)} z=\left(A X^{(i)}-X^{(i)} S_{i}\right) z \\
\left\|A\left(X^{(i)} z\right)-\mu\left(X^{(i)} z\right)\right\|_{2} \leq\left\|A X^{(i)}-X^{(i)} S_{i}\right\|_{2}\|z\|_{2} .
\end{gathered}
$$

So $X^{(i)} z$ is a good approximation to an eigenvector of A.
$B=$ positive definite:
Given $n \times p$ matrix S with $\operatorname{rank}(S)=p$. Let $\mathcal{S}=\operatorname{span}(S)$. Find a new base of \mathcal{S}, which presents a good approximation to eigenvectors of

$$
A x=\lambda B x .
$$

(6.1) is equivalent to :

$$
\begin{equation*}
\hat{A} \hat{x}=\lambda \hat{x} \text { with } \hat{A}=B^{-1 / 2} A B^{-1 / 2}, \hat{x}=B^{1 / 2} x \tag{6.45}
\end{equation*}
$$

Orthonormalize $B^{1 / 2} S\left(S \rightarrow B^{1 / 2} S\right)$ and results

$$
\begin{equation*}
\hat{S}=B^{1 / 2} S\left(S^{T} B S\right)^{-1 / 2} \tag{6.46}
\end{equation*}
$$

(Check $\hat{S}^{T} \hat{S}=I_{p}$). From above we know that the eigenvalue μ_{i} of $\hat{H}=\hat{S}^{T} \hat{A} \hat{S}$ are a good approximation to an eigenvalue of (6.45), so of (6.1) and \hat{g}_{i} is the associated
eigenvector, then $\hat{S} \hat{g}_{i}$ is a good approximation to an eigenvector of (6.45), so $B^{-1 / 2} \hat{S} \hat{g}_{i}$ an approximation to an eigenvector of (6.1). Rewrite A, B, S :

$$
\begin{aligned}
\hat{H} & =\left(S^{T} B S\right)^{-1 / 2} S^{T} B^{1 / 2} B^{-1 / 2} A B^{-1 / 2} B^{1 / 2} S\left(S^{T} B S\right)^{-1 / 2} \\
& =\left(S^{T} B S\right)^{-1 / 2}\left(S^{T} A S\right)\left(S^{T} B S\right)^{-1 / 2}
\end{aligned}
$$

Then $\hat{H} \hat{g}_{i}$ corresponds to

$$
\left(S^{T} A S-\mu_{i} S^{T} B S\right) \underbrace{\left(S^{T} B S\right)^{-1 / 2} \hat{g}_{i}}_{g_{i}}=0
$$

i.e.

$$
\left(A_{s}-\mu_{i} B_{s}\right) g_{i}=0 \text { with }\left\{\begin{array}{l}
A_{s}=S^{T} A S \tag{6.47}\\
B_{s}=S^{T} B S
\end{array}\right.
$$

If S is given, construct A_{s}, B_{s}. The eigenvalues of $A_{s} z=\mu B_{s} z$ are good approximations to eigenvalues of (6.1). Compute the eigenvectors g_{i} of (6.47), then $S g_{i}$ are approximations to the eigenvectors of (6.1).

Some variant simultaneuous vector iterations $(B=I)$:
(a)
(1) $Y^{(\nu)}=A X^{(\nu-1)}$,
(2) Orthonormalize $Y^{(\nu)}=Q_{\nu} R_{\nu}$ ($Q R$ decomposition),
(3) Compute $H_{\nu}=Q_{\nu}^{T} A Q_{\nu}$,
(4) Solve the complete eigenvalue system for H_{ν}, $H_{\nu}=G_{\nu} \Theta_{\nu} G_{\nu}^{T}, \quad G_{\nu}$: orthogonal and Θ_{ν} : diagonal,
(5) $X^{(\nu)}=Q_{\nu} G_{\nu}$ (The element of Θ_{ν} are in decreasing order).

The computation of (1) and (3) are expansive, it can be avoided by the following way. Since the invariant subspaces and eigenvectors of A and A^{-2} are equal, so we can consider the matrix A^{-2} instead of A. The eigenvectors of $Q_{\nu}^{T} A^{-2} Q_{\nu}$ are the good approximations for the eigenvectors of A.

Compute

$$
\begin{aligned}
Q_{\nu}^{T} A^{-2} Q_{\nu} & =\left(R_{\nu}^{-1}\right)^{T} \overbrace{X^{(\nu-1)^{T}} A A^{-2} A X^{(\nu-1)}}^{I_{p}} R_{\nu}^{-1} . \\
\text { (Here } Q_{\nu} & =A X^{(\nu-1)} R_{\nu}^{-1} \text { from (1) (2) above) } \\
& =R_{\nu}^{-T} R_{\nu}^{-1}=\left(R_{\nu} R_{\nu}^{T}\right)^{-1} .
\end{aligned}
$$

So we have the following new method:
(b)
(1) $Y^{(\nu)}=A X^{(\nu-1)}$,
(2) Orthonormalize $Y^{(\nu)}=Q_{\nu} R_{\nu}$,
(3) Compute $\tilde{H}_{\nu}=R_{\nu} R_{\nu}^{T}$,
(4) Solve $\tilde{H}_{\nu}=P_{\nu} \Delta_{\nu}^{2} P_{\nu}^{T}, \quad P_{\nu}$: orthogonal, Δ_{ν} : diagonal,
(5) $X^{(\nu)}=Q_{\nu} P_{\nu}$.
(c) Third variant compution of Q_{ν} :

Find F_{ν} such that $Y^{(\nu)} F_{\nu}$ is orthogonal. So

$$
\begin{equation*}
F_{\nu}^{T} Y^{(\nu)^{T}} Y^{(\nu)} F_{\nu}=I \tag{6.50}
\end{equation*}
$$

and

$$
Y^{(\nu)^{T}} Y^{(\nu)}=F_{\nu}^{-T} F_{\nu}^{-1}=\left(F_{\nu} F_{\nu}^{T}\right)^{-1}
$$

On the other hand $Y^{(\nu)} F_{\nu}$ diagonalize A^{-2}, i.e.,

$$
\begin{equation*}
F_{\nu}^{T} Y^{(\nu)} A^{-2} Y^{(\nu)^{T}} F_{\nu}=\Delta_{\nu}^{-2} \text { diagonal. } \tag{6.51}
\end{equation*}
$$

From (6.51) and because of $Y^{(\nu)}=A X^{(\nu-1)}$ follows

$$
\Delta_{\nu}^{-2}=F_{\nu}^{T} \underbrace{X^{(\nu-1)^{T}} A A^{-2} A X^{(\nu-1)}}_{I_{p}} F_{\nu}=F_{\nu}^{T} F_{\nu}
$$

Thus $I=\Delta_{\nu} F_{\nu}^{T} F_{\nu} \Delta_{\nu}$ and then $F_{\nu} \Delta_{\nu}$ is orthogonal. Using (6.50), we have

$$
\begin{aligned}
H_{\nu}=Y^{(\nu)^{T}} Y^{(\nu)} & =\left(F_{\nu}^{-T} \Delta_{\nu}^{-1}\right) \Delta_{\nu}^{2}\left(\Delta_{\nu}^{-1} F_{\nu}^{-1}\right) \\
& =(\underbrace{F_{\nu} \Delta_{\nu}}_{\text {ortho. }})^{-T} \underbrace{\Delta_{\nu}^{2}}_{\text {diag. ortho. }}(\underbrace{F_{\nu} \Delta_{\nu}})^{-1} .
\end{aligned}
$$

The diagonal elements of Δ_{ν}^{2} are the eigenvalues of H_{ν} and the column of $F_{\nu} \Delta_{\nu}$ are the eigenvectors of H_{ν}, therefore we can compute F_{ν} as follows:

$$
\begin{align*}
& \text { (1) } Y^{(\nu)}=A X^{(\nu-1)}, \\
& \text { (2)Compute } \hat{H}_{\nu}=Y^{(\nu)^{T}} Y^{(\nu)} \text {, } \\
& \text { (3)Compute } \hat{H}_{\nu}=B_{\nu} \Delta_{\nu}^{2} B_{\nu}^{T} \text { complete eigensystem of } \hat{H}_{\nu}, \tag{6.52}\\
& \text { (4) } X^{(\nu)}=Y^{(\nu)} B_{\nu} \Delta_{\nu}^{-1}\left(=Y^{(\nu)} F_{\nu}\right) \text {. }
\end{align*}
$$

The cost of computation of (6.52) is more favorable than of (6.49).

Chapter 7

Lanczos Methods

In this chapter we develop the Lanczos method, a technique that is applicable to large sparse, symmetric eigenproblems. The method involves tridiagonalizing the given matrix A. However, unlike the Householder approach, no intermediate (an full) submatrices are generated. Equally important, information about $A^{\prime} s$ extremal eigenvalues tends to emerge long before the tridiagonalization is complete. This makes the Lanczos algorithm particularly useful in situations where a few of A^{\prime} s largest or smallest eigenvalues are desired.

7.1 The Lanczos Algorithm

Suppose $A \in \mathbb{R}^{n \times n}$ is large, sparse and symmetric. There exists an orthogonal matrix Q, which transforms A to a tridiagonal matrix T.

$$
\begin{equation*}
Q^{T} A Q=T \equiv \text { tridiagonal. } \tag{7.1.1}
\end{equation*}
$$

Remark 7.1.1 (a) Such Q can be generated by Householder transformations or Givens rotations.
(b) Almost for all A (i.e. all eigenvalues are distinct) and almost for any $q_{1} \in \mathbb{R}^{n}$ with $\left\|q_{1}\right\|_{2}=1$, there exists an orthogonal matrix Q with first column q_{1} satisfying (7.1.1). q_{1} determines T uniquely up to the sign of the columns (that is, we can multiply each column with -1).

Let $\left(x \in \mathbb{R}^{n}\right)$

$$
\begin{equation*}
K[x, A, m]=\left[x, A x, A^{2} x, \cdots, A^{m-1} x\right] \in \mathbb{R}^{n \times m} . \tag{7.1.2}
\end{equation*}
$$

$K[x, A, m]$ is called a Krylov-matrix. Let

$$
\begin{equation*}
\mathcal{K}(x, A, m)=\operatorname{Range}(K[x, A, m])=\operatorname{Span}\left(x, A x, \cdots, A^{m-1} x\right) . \tag{7.1.3}
\end{equation*}
$$

$\mathcal{K}(x, A, m)$ is called the Krylov-subspace generated by $K[x, A, m]$.
Remark 7.1.2 For each $H \in \mathbb{C}^{n \times m}$ or $\mathbb{R}^{n \times m}(m \leq n)$ with $\operatorname{rank}(H)=m$, there exists an $Q \in \mathbb{C}^{n \times m}$ or $\mathbb{R}^{n \times m}$ and an upper triangular $R \in \mathbb{C}^{m \times m}$ or $\mathbb{R}^{m \times m}$ with $Q^{*} Q=I_{m}$ such that

$$
\begin{equation*}
H=Q R . \tag{7.1.4}
\end{equation*}
$$

Q is uniquely determined, if we require all $r_{i i}>0$.
Theorem 7.1.1 Let A be symmetric (Hermitian), $1 \leq m \leq n$ be given and $\operatorname{dim} \mathcal{K}(x, A, m)=$ m then
(a) If

$$
\begin{equation*}
K[x, A, m]=Q_{m} R_{m} \tag{7.1.5}
\end{equation*}
$$

is an $Q R$ factorization, then $Q_{m}^{*} A Q_{m}=T_{m}$ is an $m \times m$ tridiagonal matrix and satisfies

$$
\begin{equation*}
A Q_{m}=Q_{m} T_{m}+r_{m} e_{m}^{T}, \quad Q_{m}^{*} r_{m}=0 \tag{7.1.6}
\end{equation*}
$$

(b) Let $\|x\|_{2}=1$. If $Q_{m} \in \mathbb{C}^{n \times m}$ with the first column x and $Q_{m}^{*} Q_{m}=I_{m}$ and satisfies

$$
A Q_{m}=Q_{m} T_{m}+r_{m} e_{m}^{T}
$$

where T_{m} is tridiagonal, then

$$
\begin{equation*}
K[x, A, m]=\left[x, A x, \cdots, A^{m-1} x\right]=Q_{m}\left[e_{1}, T_{m} e_{1}, \cdots, T_{m}^{m-1} e_{1}\right] \tag{7.1.7}
\end{equation*}
$$

is an $Q R$ factorization of $K[x, A, m]$.
Proof: (a) Since

$$
\begin{equation*}
A \mathcal{K}(x, A, j) \subset \mathcal{K}(x, A, j+1), \quad j<m \tag{7.1.8}
\end{equation*}
$$

From (7.1.5), we have

$$
\begin{equation*}
\operatorname{Span}\left(q_{1}, \cdots, q_{i}\right)=\mathcal{K}(x, A, i), \quad i \leq m \tag{7.1.9}
\end{equation*}
$$

So we have

$$
q_{i+1} \perp \mathcal{K}(x, A, i) \stackrel{(7.1 .8)}{\supset} A \mathcal{K}(x, A, i-1)=A\left(\operatorname{span}\left(q_{1}, \cdots, q_{i-1}\right)\right) .
$$

This implies

$$
q_{i+1}^{*} A q_{j}=0, \quad j=1, \cdots, i-1, \quad i+1 \leq m .
$$

That is

$$
\left(Q_{m}^{*} A Q_{m}\right)_{i j}=\left(T_{m}\right)_{i j}=q_{i}^{*} A q_{j}=0 \text { for } i>j+1 .
$$

So T_{m} is upper Hessenberg and then tridiagonal (since T_{m} is Hermitian).
It remains to show (7.1.6). Since

$$
\left[x, A x, \cdots, A^{m-1} x\right]=Q_{m} R_{m}
$$

and

$$
A K[x, A, m]=K[x, A, m]\left[\begin{array}{cccc}
0 & & & 0 \\
1 & \ddots & & \\
& \ddots & \ddots & \\
0 & & 1 & 0
\end{array}\right]+A^{m} x e_{m}^{T}
$$

we have

$$
A Q_{m} R_{m}=Q_{m} R_{m}\left[\begin{array}{cccc}
0 & & & 0 \\
1 & \ddots & & \\
& \ddots & \ddots & \\
0 & & 1 & 0
\end{array}\right]+Q_{m} Q_{m}^{*} A^{m} x e_{m}^{T}+\left(I-Q_{m} Q_{m}^{*}\right) A^{m} x e_{m}^{T}
$$

Then

$$
\begin{aligned}
A Q_{m} & =Q_{m}\left[R_{m}\left[\begin{array}{cccc}
0 & & & 0 \\
1 & \ddots & & \\
& \ddots & \ddots & \\
0 & & 1 & 0
\end{array}\right]+Q_{m}^{*} A^{m} x e_{m}^{T}\right] R_{m}^{-1}+\left(I-Q_{m} Q_{m}^{*}\right) A^{m} x e_{m}^{T} R_{m}^{-1} \\
& =Q_{m}\left[R_{m}\left[\begin{array}{cccc}
0 & & & 0 \\
1 & \ddots & & \\
& \ddots & \ddots & \\
0 & & 1 & 0
\end{array}\right] R_{m}^{-1}+\gamma Q_{m}^{*} A^{m} x e_{m}^{T}\right]+\underbrace{\gamma\left(I-Q_{m} Q_{m}^{*}\right) A^{m} x}_{r_{m}} e_{m}^{T} \\
& =Q_{m} H_{m}+r_{m} e_{m}^{T} \text { with } Q_{m}^{*} r_{m}=0,
\end{aligned}
$$

where H_{m} is an upper Hessenberg matrix. But $Q_{m}^{*} A Q_{m}=H_{m}$ is Hermitian, so $H_{m}=T_{m}$ is tridiagonal.
(b) We check (7.1.7):
$x=Q_{m} e_{1}$ coincides the first column. Suppose that i-th columns are equal, i.e.

$$
\begin{aligned}
A^{i-1} x & =Q_{m} T_{m}^{i-1} e_{1} \\
A^{i} x & =A Q_{m} T_{m}^{i-1} e_{1} \\
& =\left(Q_{m} T_{m}+r_{m} e_{m}^{T}\right) T_{m}^{i-1} e_{1} \\
& =Q_{m} T_{m}^{i} e_{1}+r_{m} e_{m}^{T} T_{m}^{i-1} e_{1} .
\end{aligned}
$$

But $e_{m}^{T} T_{m}^{i-1} e_{1}=0$ for $i<m$. Therefore, $A^{i} x=Q_{m} T^{i} e_{1}$ the ($i+1$)-th columns are equal. It is clearly that $\left(e_{1}, T_{m} e_{1}, \cdots, T_{m}^{m-1} e_{1}\right)$ is an upper triangular matrix.

Theorem 7.1.1 If $x=q_{1}$ with $\left\|q_{1}\right\|_{2}=1$ satisfies

$$
\operatorname{rank}(K[x, A, n])=n
$$

(that is $\left\{x, A x, \cdots, A^{n-1} x\right\}$ are linearly independent), then there exists an unitary matrix Q with first column q_{1} such that $Q^{*} A Q=T$ is tridiagonal.

Proof: From Theorem 7.1.1(a) $m=n$, we have $Q_{m}=Q$ unitary and $A Q=Q T$.
Uniqueness: Let $Q^{*} A Q=T, \tilde{Q}^{*} A \tilde{Q}=\tilde{T}$ and $Q_{1} e_{1}=\tilde{Q} e_{1}$

$$
\begin{aligned}
& \Rightarrow \quad K\left[q_{1}, A, n\right]=Q R=\tilde{Q} \tilde{R} \\
& \Rightarrow \quad Q=\tilde{Q} D, \quad R=D \tilde{R} .
\end{aligned}
$$

Substitute Q by $Q D$, where $D=\operatorname{diag}\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)$ with $\left|\epsilon_{i}\right|=1$. Then

$$
(Q D)^{*} A(Q D)=D^{*} Q^{*} A Q D=D^{*} T D=\text { tridiagonal. }
$$

So Q is unique up to multiplying the columns of Q by a factor ϵ with $|\epsilon|=1$.
In the following paragraph we will investigate the Lanczos algorithm for the real case, i.e., $A \in \mathbb{R}^{n \times n}$.

How to find an orthogonal matrix $Q=\left(q_{1}, \cdots, q_{n}\right)$ with $Q^{T} Q=I_{n}$ such that $Q^{T} A Q=$ $T=$ tridiagonal and Q is almost uniquely determined. Let

$$
\begin{equation*}
A Q=Q T \tag{7.1.10}
\end{equation*}
$$

where

$$
Q=\left[q_{1}, \cdots, q_{n}\right] \text { and } T=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{1} & & 0 \\
\beta_{1} & \ddots & \ddots & \\
& \ddots & \ddots & \beta_{n-1} \\
0 & & \beta_{n-1} & \alpha_{n}
\end{array}\right]
$$

It implies that the j-th column of (7.1.10) forms:

$$
\begin{equation*}
A q_{j}=\beta_{j-1} q_{j-1}+\alpha_{j} q_{j}+\beta_{j} q_{j+1} \tag{7.1.11}
\end{equation*}
$$

for $j=1, \cdots, n$ with $\beta_{0}=\beta_{n}=0$. By multiplying (7.1.11) by q_{j}^{T} we obtain

$$
\begin{equation*}
q_{j}^{T} A q_{j}=\alpha_{j} . \tag{7.1.12}
\end{equation*}
$$

Define $r_{j}=\left(A-\alpha_{j} I\right) q_{j}-\beta_{j-1} q_{j-1}$. Then

$$
r_{j}=\beta_{j} q_{j+1}
$$

with

$$
\begin{equation*}
\beta_{j}= \pm\left\|r_{j}\right\|_{2} \tag{7.1.13}
\end{equation*}
$$

and if $\beta_{j} \neq 0$ then

$$
\begin{equation*}
q_{j+1}=r_{j} / \beta_{j} . \tag{7.1.14}
\end{equation*}
$$

So we can determine the unknown $\alpha_{j}, \beta_{j}, q_{j}$ in the following order:

$$
\text { Given } q_{1}, \alpha_{1}, r_{1}, \beta_{1}, q_{2}, \alpha_{2}, r_{2} \beta_{2}, q_{3}, \cdots
$$

The above formula define the Lanczos iterations:

$$
\begin{align*}
& j=0, r_{0}=q_{1}, \beta_{0}=1, q_{0}=0 \\
& \text { Do } \quad \text { while }\left(\beta_{j} \neq 0\right) \\
& \quad q_{j+1}=r_{j} / \beta_{j}, j:=j+1 \tag{7.1.15}\\
& \alpha_{j}=q_{j}^{T} A q_{j}, \\
& \\
& r_{j}=\left(A-\alpha_{j} I\right) q_{j}-\beta_{j-1} q_{j-1}, \\
& \beta_{j}=\left\|r_{j}\right\|_{2} .
\end{align*}
$$

There is no loss of generality in choosing the β_{j} to be positive. The q_{j} are called Lanczos vectors. With careful overwriting and use of the formula $\alpha_{j}=q_{j}^{T}\left(A q_{j}-\beta_{j-1} q_{j-1}\right)$, the whole process can be implemented with only a pair of n-vectors.

Algorithm 7.1.1 (Lanczos Algorithm) Given a symmetric $A \in \mathbb{R}^{n \times n}$ and $w \in \mathbb{R}^{n}$ having unit 2 -norm. The following algorithm computes a $j \times j$ symmetric tridiagonal matrix T_{j} with the property that $\sigma\left(T_{j}\right) \subset \sigma(A)$. The diagonal and subdiagonal elements of T_{j} are stored in $\alpha_{1}, \cdots, \alpha_{j}$ and $\beta_{1}, \cdots, \beta_{j-1}$ respectively.

$$
\begin{aligned}
& v_{i}:=0 \quad(i=1, \cdots, n) \\
& \beta_{0}:=1 \\
& j:=0 \\
& \text { Do while }\left(\beta_{j} \neq 0\right) \\
& \quad \text { if }(j \neq 0) \text {, then } \\
& \quad \text { for } i=1, \cdots, n, \\
& \quad t:=w_{i}, w_{i}:=v_{i} / \beta_{j}, v_{i}:=-\beta_{j} t . \\
& \quad \text { end for } \\
& \quad \text { end if } \\
& v:=A w+v, \\
& j:=j+1, \\
& \alpha_{j}:=w^{T} v, \\
& v:=v-\alpha_{j} w, \\
& \beta_{j}:=\|v\|_{2} .
\end{aligned}
$$

Remark 7.1.3 (a) If the sparity is exploited and only kn flops are involved in each call $(A w)(k \ll n)$, then each Lanczos step requires about ($4+k) n$ flops to execute.
(b) The iteration stops before complete tridiagonalizaton if q_{1} is contained in a proper invariant subspace. From the iteration (7.1.15) we have

$$
\begin{gathered}
A\left(q_{1}, \cdots, q_{m}\right)=\left(q_{1}, \cdots, q_{m}\right)\left[\begin{array}{cccc}
\alpha_{1} & \beta_{1} & & \\
\beta_{1} & \ddots & \ddots & \beta_{m-1} \\
& \ddots & \ddots & \\
& & \beta_{m-1} & \alpha_{m}
\end{array}\right]+\underbrace{(0, \cdots, 0, \overbrace{\beta_{m} q_{m+1}}^{r_{m}}}_{r_{m} e_{m}^{T}}) \\
\beta_{m}=0 \text { if and only if } r_{m}=0 .
\end{gathered}
$$

This implies

$$
A\left(q_{1}, \cdots, q_{m}\right)=\left(q_{1}, \cdots, q_{m}\right) T_{m}
$$

That is

$$
\operatorname{Range}\left(q_{1}, \cdots, q_{m}\right)=\operatorname{Range}\left(K\left[q_{1}, A, m\right]\right)
$$

is the invariant subspace of A and the eigenvalues of T_{m} are the eigenvalues of A.
Theorem 7.1.2 Let A be symmetric and q_{1} be a given vector with $\left\|q_{1}\right\|_{2}=1$. The Lanczos iterations (7.1.15) runs until $j=m$ where $m=\operatorname{rank}\left[q_{1}, A q_{1}, \cdots, A^{n-1} q_{1}\right]$. Moreover, for $j=1, \cdots$, m we have

$$
\begin{equation*}
A Q_{j}=Q_{j} T_{j}+r_{j} e_{j}^{T} \tag{7.1.16}
\end{equation*}
$$

with

$$
T_{j}=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{1} & & \\
\beta_{1} & \ddots & \ddots & \\
& \ddots & \ddots & \beta_{j-1} \\
& & \beta_{j-1} & \alpha_{j}
\end{array}\right] \text { and } Q_{j}=\left[q_{1}, \cdots, q_{j}\right]
$$

has orthonormal columns satisfying Range $\left(Q_{j}\right)=\mathcal{K}\left(q_{1}, A, j\right)$.
Proof: By induction on j. Suppose the iteration has produced $Q_{j}=\left[q_{1}, \cdots, q_{j}\right]$ such that Range $\left(Q_{j}\right)=\mathcal{K}\left(q_{1}, A, j\right)$ and $Q_{j}^{T} Q_{j}=I_{j}$. It is easy to see from (7.1.15) that (7.1.16) holds. Thus

$$
Q_{j}^{T} A Q_{j}=T_{j}+Q_{j}^{T} r_{j} e_{j}^{T}
$$

Since $\alpha_{i}=q_{i}^{T} A q_{i}$ for $i=1, \cdots, j$ and

$$
q_{i+1}^{T} A q_{i}=q_{i+1}^{T}\left(\beta_{i} q_{i+1}+\alpha_{i} q_{i}+\beta_{i-1} q_{i-1}\right)=q_{i+1}^{T}\left(\beta_{i} q_{i+1}\right)=\beta_{i}
$$

for $i=1, \cdots, j-1$ we have $Q_{j}^{T} A Q_{j}=T_{j}$. Consequently $Q_{j}^{T} r_{j}=0$.
If $r_{j} \neq 0$ then $q_{j+1}=r_{j} /\left\|r_{j}\right\|_{2}$ is orthogonal to q_{1}, \cdots, q_{j} and

$$
q_{j+1} \in \operatorname{Span}\left\{A q_{j}, q_{j}, q_{j-1}\right\} \subset \mathcal{K}\left(q_{1}, A, j+1\right)
$$

Thus $Q_{j+1}^{T} Q_{j+1}=I_{j+1}$ and Range $\left(Q_{j+1}\right)=\mathcal{K}\left(q_{1}, A, j+1\right)$.
On the other hand, if $r_{j}=0$, then $A Q_{j}=Q_{j} T_{j}$. This says that $\operatorname{Range}\left(Q_{j}\right)=$ $\mathcal{K}\left(q_{1}, A, j\right)$ is invariant. From this we conclude that $j=m=\operatorname{dim}\left[\mathcal{K}\left(q_{1}, A, n\right)\right]$.

Encountering a zero β_{j} in the Lanczos iteration is a welcome event in that it signals the computation of an exact invariant subspace. However an exactly zero or even small β_{j} is rarely in practice. Consequently, other explanations for the convergence of $T_{j}^{\prime} s$ eigenvalues must be sought.

Theorem 7.1.3 Suppose that j steps of the Lanczos algorithm have been performed and that

$$
S_{j}^{T} T_{j} S_{j}=\operatorname{diag}\left(\theta_{1}, \cdots, \theta_{j}\right)
$$

is the Schur decomposition of the tridiagonal matrix T_{j}, if $Y_{j} \in \mathbb{R}^{n \times j}$ is defined by

$$
Y_{j}=\left[y_{1}, \cdots, y_{j}\right]=Q_{j} S_{j}
$$

then for $i=1, \cdots, j$ we have

$$
\left\|A y_{i}-\theta_{i} y_{i}\right\|_{2}=\left|\beta_{j}\right|\left|s_{j i}\right|
$$

where $S_{j}=\left(s_{p q}\right)$.
Proof: Post-multiplying (7.1.16) by S_{j} gives

$$
A Y_{j}=Y_{j} \operatorname{diag}\left(\theta_{1}, \cdots, \theta_{j}\right)+r_{j} e_{j}^{T} S_{j}
$$

i.e.,

$$
A y_{i}=\theta_{i} y_{i}+r_{j}\left(e_{j}^{T} S_{j} e_{i}\right), \quad i=1, \cdots, j
$$

The proof is complete by taking norms and recalling $\left\|r_{j}\right\|_{2}=\left|\beta_{j}\right|$.
Remark 7.1.4 The theorem provides error bounds for T_{j}^{\prime} s eigenvalues:

$$
\min _{\mu \in \sigma(A)}\left|\theta_{i}-\mu\right| \leq\left|\beta_{j}\right|\left|s_{j i}\right| \quad i=1, \cdots, j .
$$

Note that in section 10 the $\left(\theta_{i}, y_{i}\right)$ are Ritz pairs for the subspace $R\left(Q_{j}\right)$.
If we use the Lanczos method to compute $A Q_{j}=Q_{j} T_{j}+r_{j} e_{j}^{T}$ and set $E=\tau w w^{T}$ where $\tau= \pm 1$ and $w=a q_{j}+b r_{j}$, then it can be shown that

$$
(A+E) Q_{j}=Q_{j}\left(T_{j}+\tau a^{2} e_{j} e_{j}^{T}\right)+(1+\tau a b) r_{j} e_{j}^{T} .
$$

If $0=1+\tau a b$, then the eigenvalues of the tridiagonal matrix

$$
\tilde{T}_{j}=T_{j}+\tau a^{2} e_{j} e_{j}^{T}
$$

are also eigenvalues of $A+E$. We may then conclude from theorem 6.1.2 that the interval $\left[\lambda_{i}\left(T_{j}\right), \lambda_{i-1}\left(T_{j}\right)\right]$ where $i=2, \cdots, j$, each contains an eigenvalue of $A+E$.

Suppose we have an approximate eigenvalue $\tilde{\lambda}$ of A. One possibility is to choose τa^{2} so that

$$
\operatorname{det}\left(\tilde{T}_{j}-\tilde{\lambda} I_{j}\right)=\left(\alpha_{j}+\tau a^{2}-\tilde{\lambda}\right) p_{j-1}(\tilde{\lambda})-\beta_{j-1}^{2} p_{j-2}(\tilde{\lambda})=0
$$

where the polynomial $p_{i}(x)=\operatorname{det}\left(T_{i}-x I_{i}\right)$ can be evaluated at $\tilde{\lambda}$ using (5.3).
The following theorems are known as the Kaniel-Paige theory for the estimation of eigenvalues which obtained via the Lanczos algorithm.

Theorem 7.1.4 Let A be $n \times n$ symmetric matrix with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ and corresponding orthonormal eigenvectors z_{1}, \cdots, z_{n}. If $\theta_{1} \geq \cdots \geq \theta_{j}$ are the eigenvalues of T_{j} obtained after j steps of the Lanczos iteration, then

$$
\lambda_{1} \geq \theta_{1} \geq \lambda_{1}-\frac{\left(\lambda_{1}-\lambda_{n}\right) \tan \left(\phi_{1}\right)^{2}}{\left[c_{j-1}\left(1+2 \rho_{1}\right)\right]^{2}}
$$

where $\cos \phi_{1}=\left|q_{1}^{T} z_{1}\right|$, $\rho_{1}=\left(\lambda_{1}-\lambda_{2}\right) /\left(\lambda_{2}-\lambda_{n}\right)$ and c_{j-1} is the Chebychev polynomial of degree $j-1$.

Proof: From Courant-Fischer theorem we have

$$
\theta_{1}=\max _{y \neq 0} \frac{y^{T} T_{j} y}{y^{T} y}=\max _{y \neq 0} \frac{\left(Q_{j} y\right)^{T} A\left(Q_{j} y\right)}{\left(Q_{j} y\right)^{T}\left(Q_{j} y\right)}=\max _{0 \neq w \in \mathcal{K}\left(q_{1}, A, j\right)} \frac{w^{T} A w}{w^{T} w} .
$$

Since λ_{1} is the maximum of $w^{T} A w / w^{T} w$ over all nonzero w, it follows that $\lambda_{1} \geq \theta_{1}$. To obtain the lower bound for θ_{1}, note that

$$
\theta_{1}=\max _{p \in P_{j-1}} \frac{q_{1}^{T} p(A) A p(A) q_{1}}{q_{1}^{T} p(A)^{2} q_{1}}
$$

where P_{j-1} is the set of all $j-1$ degree polynomials. If

$$
q_{1}=\sum_{i=1}^{n} d_{i} z_{i}
$$

then

$$
\frac{q_{1}^{T} p(A) A p(A) q_{1}}{q_{1}^{T} p(A)^{2} q_{1}}=\frac{\sum_{i=1}^{n} d_{i}^{2} p\left(\lambda_{i}\right)^{2} \lambda_{i}}{\sum_{i=1}^{n} d_{i}^{2} p\left(\lambda_{i}\right)^{2}}
$$

$$
\geq \lambda_{1}-\left(\lambda_{1}-\lambda_{n}\right) \frac{\sum_{i=2}^{n} d_{i}^{2} p\left(\lambda_{i}\right)^{2}}{d_{1}^{2} p\left(\lambda_{1}\right)^{2}+\sum_{i=2}^{n} d_{i}^{2} p\left(\lambda_{i}\right)^{2}}
$$

We can make the lower bound tight by selecting a polynomial $p(x)$ that is large at $x=\lambda_{1}$ in comparison to its value at the remaining eigenvalues. Set

$$
p(x)=c_{j-1}\left[-1+2 \frac{x-\lambda_{n}}{\lambda_{2}-\lambda_{n}}\right]
$$

where $c_{j-1}(z)$ is the $(j-1)$-th Chebychev polynomial generated by

$$
c_{j}(z)=2 z c_{j-1}(z)-c_{j-2}(z), \quad c_{0}=1, c_{1}=z
$$

These polynomials are bounded by unity on $[-1,1]$. It follows that $\left|p\left(\lambda_{i}\right)\right|$ is bounded by unity for $i=2, \cdots, n$ while $p\left(\lambda_{1}\right)=c_{j-1}\left(1+2 \rho_{1}\right)$. Thus,

$$
\theta_{1} \geq \lambda_{1}-\left(\lambda_{1}-\lambda_{n}\right) \frac{\left(1-d_{1}^{2}\right)}{d_{1}^{2}} \frac{1}{c_{j-1}^{2}\left(1+2 \rho_{1}\right)} .
$$

The desired lower bound is obtained by noting that $\tan \left(\phi_{1}\right)^{2}=\left(1-d_{1}^{2}\right) / d_{1}^{2}$.

Corollary 7.1.5 Using the same notation as Theorem 7.1.4

$$
\lambda_{n} \leq \theta_{j} \leq \lambda_{n}+\frac{\left(\lambda_{1}-\lambda_{n}\right) \tan ^{2}\left(\phi_{n}\right)}{c_{j-1}^{2}\left(1+2 \rho_{n}\right)},
$$

where $\rho_{n}=\left(\lambda_{n-1}-\lambda_{n}\right) /\left(\lambda_{1}-\lambda_{n-1}\right)$ and $\cos \left(\phi_{n}\right)=\left|q_{1}^{T} z_{n}\right|$.

Proof: Apply Theorem 7.1.4 with A replaced by $-A$.

Example 7.1.1

$$
\begin{aligned}
L_{j-1} & \equiv \frac{1}{\left[C_{j-1}\left(2 \frac{\lambda_{1}}{\lambda_{2}}-1\right)\right]^{2}} \geq \frac{1}{\left[C_{j-1}\left(1+2 \rho_{1}\right)\right]^{2}} \\
R_{j-1} & =\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2(j-1)} \quad \text { power method }
\end{aligned}
$$

$\lambda_{1} / \lambda_{2}$	$j=5$	$j=25$	
1.5	$1.1 \times 10^{-4} / 3.9 \times 10^{-2}$	$1.4 \times 10^{-27} / 3.5 \times 10^{-9}$	L_{j-1} / R_{j-1}
1.01	$5.6 \times 10^{-1} / 9.2 \times 10^{-1}$	$2.8 \times 10^{-4} / 6.2 \times 10^{-1}$	L_{j-1} / R_{j-1}

Rounding errors greatly affect the behavior of algorithm 7.1.1, the Lanczos iteration. The basic difficulty is caused by loss of orthogonality among the Lanczos vectors. To avoid these difficulties we can reorthogonalize the Lanczos vectors.

7.1.1 Reorthogonalization

Since

$$
A Q_{j}=Q_{j} T_{j}+r_{j} e_{j}^{T}
$$

let

$$
\begin{align*}
A Q_{j}-Q_{j} T_{j} & =r_{j} e_{j}^{T}+F_{j} \tag{7.1.17}\\
I-Q_{j}^{T} Q_{j} & =C_{j}^{T}+\Delta_{j}+C_{j} \tag{7.1.18}
\end{align*}
$$

where C_{j} is strictly upper triangular and Δ_{j} is diagonal. (For simplicity, suppose $\left(C_{j}\right)_{i, i+1}=$ 0 and $\Delta_{i}=0$.)

Definition 7.1.1 θ_{i} and $y_{i} \equiv Q_{j} s_{i}$ are called Ritz value and Ritz vector, respectively, if $T_{j} s_{i}=\theta_{i} s_{i}$.

Let $\Theta_{j} \equiv \operatorname{diag}\left(\theta_{1}, \cdots, \theta_{j}\right)=S_{j}^{T} T_{j} S_{j}$, where $S_{j}=\left[\begin{array}{lll}s_{1} & \cdots & s_{j}\end{array}\right]$.
Theorem 7.1.6 (Paige Theorem) Assume that (a) S_{j} and Θ_{j} are exact! (Since $j \ll$ n). (b) local orthogonality is maintained. (i.e. $q_{i+1}^{T} q_{i}=0, i=1, \ldots, j-1, r_{j}^{T} q_{j}=0$, and $\left.\left(C_{j}\right)_{i, i+1}=0\right)$. Let

$$
\begin{aligned}
F_{j}^{T} Q_{j}-Q_{j}^{T} F_{j} & =K_{j}-K_{j}^{T} \\
\Delta_{j} T_{j}-T_{j} \Delta_{j} & \equiv N_{j}-N_{j}^{T} \\
G_{j} & =S_{j}^{T}\left(K_{j}+N_{j}\right) S_{j} \equiv\left(r_{i k}\right)
\end{aligned}
$$

Then
(a) $y_{i}^{T} q_{j+1}=r_{i i} / \beta_{j i}$, where $y_{i}=Q_{j} s_{i}, \beta_{j i}=\beta_{j} s_{j i}$.
(b) For $i \neq k$,

$$
\begin{equation*}
\left(\theta_{i}-\theta_{k}\right) y_{i}^{T} y_{k}=r_{i i}\left(\frac{s_{j k}}{s_{j i}}\right)-r_{k k}\left(\frac{s_{j i}}{s_{j k}}\right)-\left(r_{i k}-r_{k i}\right) \tag{7.1.19}
\end{equation*}
$$

Proof: Multiplied (7.1.17) from left by Q_{j}^{T}, we get

$$
\begin{equation*}
Q_{j}^{T} A Q_{j}-Q_{j}^{T} Q_{j} T_{j}=Q_{j}^{T} r_{j} e_{j}^{T}+Q_{j}^{T} F_{j} \tag{7.1.20}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
Q_{j}^{T} A^{T} Q_{j}-T_{j} Q_{j}^{T} Q_{j}=e_{j} r_{j}^{T} Q_{j}+F_{j}^{T} Q_{j} \tag{7.1.21}
\end{equation*}
$$

Subtracted (7.1.20) from (7.1.21), we have

$$
\begin{aligned}
& \left(Q_{j}^{T} \gamma_{j}\right) e_{j}^{T}-e_{j}\left(Q_{j}^{T} \gamma_{j}\right)^{T} \\
= & \left(C_{j}^{T} T_{j}-T_{j} C_{j}^{T}\right)+\left(C_{j} T_{j}-T_{j} C_{j}\right)+\left(\Delta_{j} T_{j}-T_{j} \Delta_{j}\right)+F_{j}^{T} Q_{j}-Q_{j} F_{j}^{T} \\
= & \left(C_{j}^{T} T_{j}-T_{j} C_{j}^{T}\right)+\left(C_{j} T_{j}-T_{j} C_{j}\right)+\left(N_{j}-N_{j}^{T}\right)+\left(K_{j}-K_{j}^{T}\right) .
\end{aligned}
$$

This implies that

$$
\left(Q_{j}^{T} r_{j}\right) e_{j}^{T}=C_{j} T_{j}-T_{j} C_{j}+N_{j}+K_{j} .
$$

Thus,

$$
\begin{aligned}
y_{i}^{T} q_{j+1} \beta_{j i}=s_{i}^{T}\left(Q_{j}^{T} r_{j}\right) e_{j}^{T} s_{i} & =s_{i}^{T}\left(C_{j} T_{j}-T_{j} C_{j}\right) s_{i}+s_{i}^{T}\left(N_{j}+K_{j}\right) s_{i} \\
& =\left(s_{i}^{T} C_{j} s_{i}\right) \theta_{i}-\theta_{i}\left(s_{i}^{T} C_{j} s_{i}\right)+r_{i i},
\end{aligned}
$$

which implies that

$$
y_{i}^{T} q_{j+1}=\frac{r_{i i}}{\beta_{j i}}
$$

Similarly, (7.1.19) can be obtained by multiplying (7.1.20) from left and right by s_{i}^{T} and s_{i}, respectively.

Remark 7.1.5 Since

$$
y_{i}^{T} q_{j+1}=\frac{r_{i i}}{\beta_{j i}}= \begin{cases}O(\text { esp }), & \text { if }\left|\beta_{j i}\right|=O(1), \text { (not converge!) } \\ O(1), & \text { if }\left|\beta_{j i}\right|=O(\text { esp }),\left(\text { converge for }\left(\theta_{j}, y_{j}\right)\right)\end{cases}
$$

we have that $q_{j+1}^{T} y_{i}=O(1)$ when the algorithm converges, i.e., q_{j+1} is not orthogonal to $<Q_{j}>$ where $Q_{j} s_{i}=y_{i}$.
(i) Full Reorthogonalization by MGS:

Orthogonalize q_{j+1} to all q_{1}, \cdots, q_{j} by

$$
q_{j+1}:=q_{j+1}-\sum_{i=1}^{j}\left(q_{j+1}^{T} q_{i}\right) q_{i} .
$$

If we incorporate the Householder computations into the Lanczos process, we can produce Lanczos vectors that are orthogonal to working accuracy:
$r_{0}:=q_{1}$ (given unit vector)
Determine $P_{0}=I-2 v_{0} v_{0}^{T} / v_{0}^{T} v_{0}$ so that $P_{0} r_{0}=e_{1}$;
$\alpha_{1}:=q_{1}^{T} A q_{1}$;
Do $j=1, \cdots, n-1$,

$$
\begin{aligned}
r_{j} & :=\left(A-\alpha_{j}\right) q_{j}-\beta_{j-1} q_{j-1} \quad\left(\beta_{0} q_{0} \equiv 0\right), \\
w & :=\left(P_{j-1} \cdots P_{0}\right) r_{j},
\end{aligned}
$$

Determine $P_{j}=I-2 v_{j} v_{j}^{T} / v_{j}^{T} v_{j}$ such that $P_{j} w=\left(w_{1}, \cdots, w_{j}, \beta_{j}, 0, \cdots, 0\right)^{T}$, $q_{j+1}:=\left(P_{0} \cdots P_{j}\right) e_{j+1}$, $\alpha_{j+1}:=q_{j+1}^{T} A q_{j+1}$.

This is the complete reorthogonalization Lanczos scheme.
(ii) Selective Reorthogonalization by MGS

If $\left|\beta_{j i}\right|=O(\sqrt{e p s}),\left(\theta_{j}, y_{j}\right)$ "good" Ritz pair
Do $q_{j+1} \perp q_{1}, \ldots, q_{j}$
Else not to do Reorthogonalization
(iii) Restart after m-steps
(Do full Reorthogonalization)
(iv) Partial Reorthogonalization

Do reorthogonalization with previous (e.g. $k=5$) Lanczos vectors $\left\{q_{1}, \ldots, q_{k}\right\}$
For details see the books:
Parlett: "Symmetric Eigenvalue problem" (1980) pp.257-
Golub \& Van Loan: "Matrix computation" (1981) pp.332-
To (7.1.19): The duplicate pairs can occur!

$$
i \neq k,\left(\theta_{i}-\theta_{k}\right) \underbrace{y_{i}^{T} y_{k}}_{\mathrm{O}(1), \text { if } y_{i}=y_{k} \Rightarrow Q_{i} \approx Q_{k}}=O(e s p)
$$

How to avoid the duplicate pairs ? The answer is using the implicit Restart

Lanczos algorithm:

Let

$$
A Q_{j}=Q_{j} T_{j}+r_{j} e_{j}^{T}
$$

be a Lanczos decomposition.

- In principle, we can keep expanding the Lanczos decomposition until the Ritz pairs have converged.
- Unfortunately, it is limited by the amount of memory to storage of Q_{j}.
- Restarted the Lanczos process once j becomes so large that we cannot store Q_{j}.
- Implicitly restarting method
- Choose a new starting vector for the underlying Krylov sequence
- A natural choice would be a linear combination of Ritz vectors that we are interested in.

7.1.2 Filter polynomials

Assume A has a complete system of eigenpairs $\left(\lambda_{i}, x_{i}\right)$ and we are interested in the first k of these eigenpairs. Expand u_{1} in the form

$$
u_{1}=\sum_{i=1}^{k} \gamma_{i} x_{i}+\sum_{i=k+1}^{n} \gamma_{i} x_{i} .
$$

If p is any polynomial, we have

$$
p(A) u_{1}=\sum_{i=1}^{k} \gamma_{i} p\left(\lambda_{i}\right) x_{i}+\sum_{i=k+1}^{n} \gamma_{i} p\left(\lambda_{i}\right) x_{i} .
$$

- Choose p so that the values $p\left(\lambda_{i}\right)(i=k+1, \ldots, n)$ are small compared to the values $p\left(\lambda_{i}\right)(i=1, \ldots, k)$.
- Then $p(A) u_{1}$ is rich in the components of the x_{i} that we want and deficient in the ones that we do not want.
- p is called a filter polynomial.
- Suppose we have Ritz values μ_{1}, \ldots, μ_{m} and $\mu_{k+1}, \ldots, \mu_{m}$ are not interesting. Then take

$$
p(t)=\left(t-\mu_{k+1}\right) \cdots\left(t-\mu_{m}\right) .
$$

7.1.3 Implicitly restarted algorithm

Let

$$
\begin{equation*}
A Q_{m}=Q_{m} T_{m}+\beta_{m} q_{m+1} e_{m}^{T} \tag{7.1.22}
\end{equation*}
$$

be a Lanczos decomposition with order m. Choose a filter polynomial p of degree $m-k$ and use the implicit restarting process to reduce the decomposition to a decomposition

$$
A \tilde{Q}_{k}=\tilde{Q}_{k} \tilde{T}_{k}+\tilde{\beta}_{k} \tilde{q}_{k+1} e_{k}^{T}
$$

of order k with starting vector $p(A) u_{1}$.
Let ν_{1}, \ldots, ν_{m} be eigenvalues of T_{m} and suppose that $\nu_{1}, \ldots, \nu_{m-k}$ correspond to the part of the spectrum we are not interested in. Then take

$$
p(t)=\left(t-\nu_{1}\right)\left(t-\nu_{2}\right) \cdots\left(t-\nu_{m-k}\right) .
$$

The starting vector $p(A) u_{1}$ is equal to

$$
\begin{aligned}
p(A) u_{1} & =\left(A-\nu_{m-k} I\right) \cdots\left(A-\nu_{2} I\right)\left(A-\nu_{1} I\right) u_{1} \\
& =\left(A-\nu_{m-k} I\right)\left[\cdots\left[\left(A-\nu_{2} I\right)\left[\left(A-\nu_{1} I\right) u_{1}\right]\right]\right] .
\end{aligned}
$$

In the first, we construct a Lanczos decomposition with starting vector $\left(A-\nu_{1} I\right) u_{1}$. From (7.1.22), we have

$$
\begin{align*}
\left(A-\nu_{1} I\right) Q_{m} & =Q_{m}\left(T_{m}-\nu_{1} I\right)+\beta_{m} q_{m+1} e_{m}^{T} \tag{7.1.23}\\
& =Q_{m} U_{1} R_{1}+\beta_{m} q_{m+1} e_{m}^{T}
\end{align*}
$$

where

$$
T_{m}-\nu_{1} I=U_{1} R_{1}
$$

is the $Q R$ factorization of $T_{m}-\kappa_{1} I$. Postmultiplying by U_{1}, we get

$$
\left(A-\nu_{1} I\right)\left(Q_{m} U_{1}\right)=\left(Q_{m} U_{1}\right)\left(R_{1} U_{1}\right)+\beta_{m} q_{m+1}\left(e_{m}^{T} U_{1}\right)
$$

It implies that

$$
A Q_{m}^{(1)}=Q_{m}^{(1)} T_{m}^{(1)}+\beta_{m} q_{m+1} b_{m+1}^{(1) T},
$$

where

$$
Q_{m}^{(1)}=Q_{m} U_{1}, \quad T_{m}^{(1)}=R_{1} U_{1}+\nu_{1} I, \quad b_{m+1}^{(1) T}=e_{m}^{T} U_{1} .
$$

$\left(Q_{m}^{(1)}\right.$: one step of single shifted $Q R$ algorithm)

Remark 7.1.6

- $Q_{m}^{(1)}$ is orthonormal.
- By the definition of $T_{m}^{(1)}$, we get

$$
\begin{equation*}
U_{1} T_{m}^{(1)} U_{1}^{T}=U_{1}\left(R_{1} U_{1}+\nu_{1} I\right) U_{1}^{T}=U_{1} R_{1}+\nu_{1} I=T_{m} \tag{7.1.24}
\end{equation*}
$$

Therefore, $\nu_{1}, \nu_{2}, \ldots, \nu_{m}$ are also eigenvalues of $T_{m}^{(1)}$.

- Since T_{m} is tridiagonal and U_{1} is the Q-factor of the $Q R$ factorization of $T_{m}-\nu_{1} I$, it implies that U_{1} and $T_{m}^{(1)}$ are upper Hessenberg. From (7.1.24), $T_{m}^{(1)}$ is symmetric. Therefore, $T_{m}^{(1)}$ is also tridiagonal.
- The vector $b_{m+1}^{(1) T}=e_{m}^{T} U_{1}$ has the form

$$
b_{m+1}^{(1) T}=\left[\begin{array}{lllll}
0 & \cdots & 0 & U_{m-1, m}^{(1)} & U_{m, m}^{(1)}
\end{array}\right] ;
$$

i.e., only the last two components of $b_{m+1}^{(1)}$ are nonzero.

- For on postmultiplying (7.1.23) by e_{1}, we get

$$
\left(A-\nu_{1} I\right) q_{1}=\left(A-\nu_{1} I\right)\left(Q_{m} e_{1}\right)=Q_{m}^{(1)} R_{1} e_{1}=r_{11}^{(1)} q_{1}^{(1)} .
$$

Since T_{m} is unreduced, $r_{11}^{(1)}$ is nonzero. Therefore, the first column of $Q_{m}^{(1)}$ is a multiple of $\left(A-\kappa_{1} I\right) q_{1}$.

Repeating this process with $\nu_{2}, \ldots, \nu_{m-k}$, the result will be a Krylov decomposition

$$
A Q_{m}^{(m-k)}=Q_{m}^{(m-k)} T_{m}^{(m-k)}+\beta_{m} q_{m+1} b_{m+1}^{(m-k) T}
$$

with the following properties
i. $Q_{m}^{(m-k)}$ is orthonormal.
ii. $T_{m}^{(m-k)}$ is tridiagonal.
iii. The first $k-1$ components of $b_{m+1}^{(m-k) T}$ are zero.
iv. The first column of $Q_{m}^{(m-k)}$ is a multiple of $\left(A-\nu_{1} I\right) \cdots\left(A-\nu_{m-k} I\right) q_{1}$.

Corollary 7.1.1 Let ν_{1}, \ldots, ν_{m} be eigenvalues of T_{m}. If the implicitly restarted $Q R$ step is performed with shifts $\nu_{1}, \ldots, \nu_{m-k}$, then the matrix $T_{m}^{(m-k)}$ has the form

$$
T_{m}^{(m-k)}=\left[\begin{array}{cc}
T_{k k}^{(m-k)} & T_{k, m-k}^{(m-k)} \\
0 & T_{k+1, k+1}^{(m-k)}
\end{array}\right],
$$

where $T_{k+1, k+1}^{(m-k)}$ is an upper triangular matrix with Ritz value $\nu_{1}, \ldots, \nu_{m-k}$ on its diagonal.

Therefore, the first k columns of the decomposition can be written in the form

$$
A Q_{k}^{(m-k)}=Q_{k}^{(m-k)} T_{k k}^{(m-k)}+t_{k+1, k} q_{k+1}^{(m-k)} e_{k}^{T}+\beta_{k} u_{m k} q_{m+1} e_{k}^{T}
$$

where $Q_{k}^{(m-k)}$ consists of the first k columns of $Q_{m}^{(m-k)}, T_{k k}^{(m-k)}$ is the leading principal submatrix of order k of $T_{m}^{(m-k)}$, and $u_{k m}$ is from the matrix $U=U_{1} \cdots U_{m-k}$. Hence if we set

$$
\begin{aligned}
\tilde{Q}_{k} & =Q_{k}^{(m-k)} \\
\tilde{T}_{k} & =T_{k}^{(m-k)}, \\
\tilde{\beta}_{k} & =\left\|t_{k+1, k} q_{k+1}^{(m-k)}+\beta_{k} u_{m k} q_{m+1}\right\|_{2} \\
\tilde{q}_{k+1} & =\tilde{\beta}_{k}^{-1}\left(t_{k+1, k} q_{k+1}^{(m-k)}+\beta_{k} u_{m k} q_{m+1}\right),
\end{aligned}
$$

then

$$
A \tilde{Q}_{k}=\tilde{Q}_{k} \tilde{T}_{k}+\tilde{\beta}_{k} \tilde{q}_{k+1} e_{k}^{T}
$$

is a Lanczos decomposition whose starting vector is proportional to $\left(A-\nu_{1} I\right) \cdots(A-$ $\left.\nu_{m-k} I\right) q_{1}$.

- Avoid any matrix-vector multiplications in forming the new starting vector.
- Get its Lanczos decomposition of order k for free.
- For large n the major cost will be in computing $Q U$.

7.2 Approximation from a subspace

Assume that A is symmetric and $\left\{\left(\alpha_{i}, z_{i}\right)\right\}_{i=1}^{n}$ be eigenpairs of A with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}$. Define

$$
\rho(x)=\rho(x, A)=\frac{x^{T} A x}{x^{T} x} .
$$

Algorithm 7.2.1 (Rayleigh-Ritz-Quotient procedure)

```
Give a subspace \(S^{(m)}=\operatorname{span}\{Q\}\) with \(Q^{T} Q=I_{m}\);
Set \(H:=\rho(Q)=Q^{T} A Q\);
Compute the \(p(\leq m)\) eigenpairs of \(H\), which are of interest,
    say \(H g_{i}=\theta_{i} g_{i}\) for \(i=1, \ldots, p\);
Compute Ritz vectors \(y_{i}=Q g_{i}\), for \(i=1, \ldots, p\);
Check \(\left\|A y_{i}-\theta_{i} y_{i}\right\|_{2} \leq\) Tol, for \(i=1, \ldots, p\).
```

By the minimax characterization of eigenvalues, we have

$$
\alpha_{j}=\lambda_{j}(A)=\min _{F^{j} \subseteq \mathbb{R}^{n}} \max _{f \in F^{j}} \rho(f, A) .
$$

Define

$$
\beta_{j}=\min _{G^{j} \subseteq S^{m}} \max _{g \in G^{j}} \rho(g, A), \text { for } j \leq m .
$$

Since $G^{j} \subseteq S^{m}$ and $S^{(m)}=\operatorname{span}\{Q\}$, it implies that $G^{j}=Q \widetilde{G}^{j}$ for some $\widetilde{G}^{j} \subseteq \mathbb{R}^{m}$. Therefore,

$$
\beta_{j}=\min _{\widetilde{G}^{j} \subseteq \mathbb{R}^{m}} \max _{s \in \widetilde{G}^{j}} \rho(s, H)=\lambda_{j}(H) \equiv \theta_{j}
$$

for $j=1, \ldots, m$.
For any m by m matrix B, there is associated a residual matrix $R(B) \equiv A Q-Q B$.
Theorem 7.2.1 For given orthonormal n by m matrix Q,

$$
\|R(H)\| \leq\|R(B)\|
$$

for all m by m matrix B.
Proof: Since

$$
\begin{aligned}
R(B)^{*} R(B) & =Q^{*} A^{2} Q-B^{*}\left(Q^{*} A Q\right)-\left(Q^{*} A Q\right) B+B^{*} B \\
& =Q^{*} A^{2} Q-H^{2}+(H-B)^{*}(H-B) \\
& =R(H)^{*} R(H)+(H-B)^{*}(H-B)
\end{aligned}
$$

and $(H-B)^{*}(H-B)$ is positive semidefinite, it implies that $\|R(B)\|^{2} \geq\|R(H)\|^{2}$.
Since

$$
H g_{i}=\theta_{i} g_{i}, \quad \text { for } i=1, \ldots, m
$$

we have that

$$
Q^{T} A Q g_{i}=\theta_{i} g_{i}
$$

which implies that

$$
Q Q^{T} A\left(Q g_{i}\right)=\theta_{i}\left(Q g_{i}\right)
$$

Let $y_{i}=Q g_{i}$. Then $Q Q^{T} y_{i}=Q\left(Q^{T} Q\right) g_{i}=y_{i}$. Take $P_{Q}=Q Q^{T}$ which is a projection on $\operatorname{span}\{Q\}$. Then

$$
\left(Q Q^{T}\right) A y_{i}=\theta_{i}\left(Q Q^{T}\right) y_{i}
$$

which implies that

$$
P_{Q}\left(A y_{i}-\theta_{i} y_{i}\right)=0
$$

i.e., $r_{i}=A y_{i}-\theta_{i} y_{i} \perp S^{m}=\operatorname{span}\{Q\}$.

Theorem 7.2.1 Let θ_{j} for $j=1, \ldots, m$ be eigenvalues of $H=Q^{T} A Q$. Then there is $\alpha_{j^{\prime}} \in \sigma(A)$ such that

$$
\left|\theta_{j}-\alpha_{j^{\prime}}\right| \leq\|R\|_{2}=\|A Q-Q H\|_{2}, \quad \text { for } j=1, \ldots, m
$$

Furthermore,

$$
\sum_{j=1}^{m}\left(\theta_{j}-\alpha_{j^{\prime}}\right)^{2} \leq 2\|R\|_{F}^{2} .
$$

Proof: See the detail in Chapter 11 of "The symmetric eigenvalue problem , Parlett(1981)".

Theorem 7.2.2 Let y be a unit vector $\theta=\rho(y), \alpha$ be an eigenvalue of A closest to θ and z be its normalized eigenvector. Let $r=\min _{\lambda_{i} \neq \alpha}\left|\lambda_{i}(A)-\theta\right|$ and $\psi=\angle(y, z)$. Then

$$
|\theta-\alpha| \leq\|r(y)\|^{2} / r, \quad|\sin \psi| \leq\|r(y)\| / r,
$$

where $r(y)=A y-\theta y$.
Proof: Decompose $y=z \cos \psi+w \sin \psi$ with $z^{T} w=0$ and $\|w\|_{2}=1$. Hence

$$
r(y)=z(\alpha-\theta) \cos \psi+(A-\theta) w \sin \psi
$$

Since $A z=\alpha z$ and $z^{T} w=0$, we have $z^{T}(A-\theta) w=0$ and so

$$
\begin{equation*}
\|r(y)\|_{2}^{2}=(\alpha-\theta)^{2} \cos ^{2} \psi+\|(A-\theta) w\|_{2}^{2} \sin ^{2} \psi \geq\|(A-\theta) w\|_{2}^{2} \sin ^{2} \psi . \tag{7.2.25}
\end{equation*}
$$

Let $w=\sum_{\alpha_{i} \neq \alpha} \xi_{i} z_{i}$. Then

$$
\|(A-\theta) w\|_{2}^{2}=\left|w^{T}(A-\theta)(A-\theta) w\right|=\sum_{\alpha_{i} \neq \alpha}\left(\alpha_{i}-\theta\right)^{2} \xi_{i}^{2} \geq r_{2}\left(\sum_{\alpha_{i} \neq \alpha} \xi_{i}^{2}\right)=r^{2} .
$$

Therefore,

$$
|\sin \psi| \leq \frac{\|r(y)\|_{2}}{r}
$$

Since $r(y) \perp y$, we have

$$
0=y^{T} r(y)=(\alpha-\theta) \cos ^{2} \psi+w^{T}(A-\theta) w \sin ^{2} \psi,
$$

which implies that

$$
k \equiv \frac{\cos ^{2} \psi}{\sin ^{2} \psi}=\frac{w^{T}(A-\theta) w}{\theta-\alpha} .
$$

From above equation, we get

$$
\begin{equation*}
\sin ^{2} \psi=\frac{1}{k+1}=\frac{\alpha-\theta}{w^{T}(A-\alpha) w}, \quad \cos ^{2} \psi=\frac{k}{k+1}=\frac{w^{T}(A-\theta) w}{w^{T}(A-\alpha) w} . \tag{7.2.26}
\end{equation*}
$$

Substituting (7.2.26) into (7.2.25), $\|r(y)\|_{2}^{2}$ can be rewritten as

$$
\begin{equation*}
\|r(y)\|_{2}^{2}=(\theta-\alpha) w^{T}(A-\alpha)(A-\theta) w / w^{T}(A-\alpha) w \tag{7.2.27}
\end{equation*}
$$

By assumption there are no eigenvalues of A separating α and θ. Thus $(A-\alpha I)(A-\theta I)$ is positive definite and so

$$
\begin{align*}
w^{T}(A-\alpha)(A-\theta) w & =\sum_{\alpha_{i} \neq \alpha}\left|\alpha_{i}-\alpha\right|\left|\alpha_{i}-\theta\right| \xi_{i}^{2} \\
& \geq r \sum_{\alpha_{i} \neq \alpha}\left|\alpha_{i}-\alpha\right| \xi_{i}^{2} \\
& \geq r\left|\sum_{\alpha_{i} \neq \alpha}\left(\alpha_{i}-\alpha\right) \xi_{i}^{2}\right|=r\left|w^{T}(A-\alpha) w\right| . \tag{7.2.28}
\end{align*}
$$

Substituting (7.2.28) into (7.2.27), the theorem's first inequality appears. 100 years old and still alive : Eigenvalue problems Hank / G. Gloub / Van der Vorst / 2000

7.2.1 A priori bounds for interior Ritz approximations

Given subspace $S^{m}=\operatorname{span}\{Q\}$, let $\left\{\left(\theta_{i}, y_{i}\right)\right\}_{i=1}^{m}$ be Ritz pairs of $H=Q^{T} A Q$ and $A z_{i}=$ $\alpha_{i} z_{i}, i=1, \ldots, n$.

Lemma 7.2.3 For each $j \leq m$ for any unit $s \in S^{m}$ satisfying $s^{T} z_{i}=0, i=1, \ldots, j-1$. Then

$$
\begin{align*}
\alpha_{j} \leq \theta_{j} & \leq \rho(s)+\sum_{i=1}^{j-1}\left(\alpha_{-1}-\theta_{i}\right) \sin ^{2} \psi_{i} \tag{7.2.29}\\
& \leq \rho(s)+\sum_{i=1}^{j-1}\left(\alpha_{-1}-\alpha_{i}\right) \sin ^{2} \psi_{i}
\end{align*}
$$

where $\psi_{i}=\angle\left(y_{i}, z_{i}\right)$.
Proof: Take

$$
s=t+\sum_{i=1}^{j-1} r_{i} y_{i}
$$

where $t \perp y_{i}$ for $i=1, \ldots, j-1$ and $\|s\|_{2}=1$. Assumption $s^{T} z_{i}=0$ for $i=1, \ldots, j-1$ and

$$
\begin{aligned}
\left\|y_{i}-z_{i} \cos \psi_{i}\right\|_{2}^{2} & =\left(y_{i}-z_{i} \cos \psi_{i}\right)^{T}\left(y_{i}-z_{i} \cos \psi_{i}\right) \\
& =1-\cos ^{2} \psi_{i}-\cos ^{2} \psi_{i}+\cos ^{2} \psi_{i} \\
& =1-\cos ^{2} \psi_{i}=\sin ^{2} \psi_{i}
\end{aligned}
$$

lead to

$$
\left|r_{i}\right|=\left|s^{T} y_{i}\right|=\left|s^{T}\left(y_{i}-z_{i} \cos \psi\right)\right| \leq\|s\|_{2}|\sin \psi| .
$$

Let $\left(\theta_{i}, g_{i}\right)$ for $i=1, \ldots, m$ be eigenpairs of symmetric H with $g_{i}^{T} g_{k}=0$ for $i \neq k$ and $y_{i}=Q g_{i}$. Then

$$
\begin{equation*}
0=g_{i}^{T}\left(Q^{T} A Q\right) g_{k}=y_{i}^{T} A y_{k} \text { for } i \neq k \tag{7.2.30}
\end{equation*}
$$

Combining (7.2.30) with $t^{T} A y_{i}=0$, we get

$$
\rho(s)=t^{T} A t+\sum_{i=1}^{j-1}\left(y_{i}^{T} A y_{i}\right) r_{i}^{2} .
$$

Thus

$$
\begin{aligned}
\rho(s)-\alpha_{-1} & =t^{T}\left(A-\alpha_{-1}\right) t+\sum_{i=1}^{j-1}\left(\theta_{i}-\alpha_{-1}\right) r_{i}^{2} \\
& \geq \frac{t^{T}\left(A-\alpha_{-1}\right) t}{t^{T} t}+\sum_{i=1}^{j-1}\left(\theta_{i}-\alpha_{-1} r_{i}^{2}\right. \\
& \geq \rho(t)-\alpha_{-1}+\sum_{i=1}^{j-1}\left(\theta_{i}-\alpha_{-1}\right) \sin ^{2} \varphi_{i} .
\end{aligned}
$$

Note that $\rho(t) \geq \theta_{j}=\min \left\{\rho(u) ; u \in S^{(m)}, u \perp y_{i}, i<j\right\}$. Therefore, the second inequality in (7.2.29) appears.

Let $\varphi_{i j}=\angle\left(z_{i}, y_{j}\right)$ for $i=1, \ldots, n$ and $j=1, \ldots, m$. Then $\varphi_{i i}=\varphi_{i}$ and

$$
\begin{align*}
y_{j} & =\sum_{i=1}^{n} z_{i} \cos \varphi_{i j} \tag{7.2.31}\\
\left|\cos \varphi_{i j}\right| & \leq\left|\sin \varphi_{i}\right| \tag{7.2.32}\\
\sum_{i=j+1}^{n} \cos ^{2} \varphi_{i j} & =\sin ^{2} \varphi_{j}-\sum_{i=1}^{j-1} \cos ^{2} \varphi_{i j} \tag{7.2.33}
\end{align*}
$$

Proof: Since $y_{j}^{T} y_{i}=0$ for $i \neq j$ and

$$
\left|\left(y_{i} \cos \varphi_{i}-z_{i}\right)^{T}\left(y_{i} \cos \varphi_{i}-z_{i}\right)\right|=\sin ^{2} \varphi_{i},
$$

we have

$$
\begin{aligned}
\left|\cos \varphi_{i j}\right| & =\left|y_{j}^{T} z_{i}\right|=\left|y_{j}^{T}\left(y_{i} \cos \varphi_{i}-z_{i}\right)\right| \\
& \leq\left\|y_{j}\right\|_{2}\left\|y_{i} \cos \varphi_{i}-z_{i}\right\|_{2} \leq\left|\sin \varphi_{i}\right| .
\end{aligned}
$$

From (7.2.31),

$$
1=\left(y_{j}, y_{j}\right)=\sum_{i=1}^{n} \cos ^{2} \varphi_{i j}
$$

which implies that

$$
\begin{equation*}
\sin ^{2} \varphi_{j}=1-\cos ^{2} \varphi_{j j}=\sum_{i=1}^{j-1} \cos ^{2} \varphi_{i j}+\sum_{i=j+1}^{n} \cos ^{2} \varphi_{i j} \tag{7.2.34}
\end{equation*}
$$

Lemma 7.2.4 For each $j=1, \ldots, m$,

$$
\begin{equation*}
\sin \varphi_{j} \leq\left[\left(\theta_{j}-\alpha_{j}\right)+\sum_{i=1}^{j-1}\left(\alpha_{j+1}-\alpha_{i}\right) \sin ^{2} \varphi_{i}\right] /\left(\alpha_{j+1}-\alpha_{j}\right) \tag{7.2.35}
\end{equation*}
$$

Proof: By (7.2.31),

$$
\rho\left(y_{j}, A-\alpha_{j} I\right)=\theta_{j}-\alpha_{j}=\sum_{i=1}^{n}\left(\alpha_{i}-\alpha_{j}\right) \cos ^{2} \varphi_{i j} .
$$

It implies that

$$
\begin{aligned}
& \theta_{j}-\alpha_{j}+\sum_{i=1}^{j-1}\left(\alpha_{j}-\alpha_{i}\right) \cos ^{2} \varphi_{i j} \\
= & \sum_{i=j+1}^{n}\left(\alpha_{i}-\alpha_{j}\right) \cos ^{2} \varphi_{i j} \\
\geq & \left(\alpha_{j+1}-\alpha_{j}\right) \sum_{i=j+1}^{n} \cos ^{2} \varphi_{i j} \\
= & \left(\alpha_{j+1}-\alpha_{j}\right)\left(\sin ^{2} \varphi_{j}-\sum_{i=1}^{j-1} \cos ^{2} \varphi_{i j}\right) . \quad(\text { from }(7.2 .35))
\end{aligned}
$$

Solve $\sin ^{2} \varphi_{j}$ and use (9.3.10) to obtain inequality (7.2.35)
Explanation: By Lemmas 7.2.3 and 7.2.4, we have

$$
\begin{aligned}
& j=1: \quad \theta_{1} \leq \rho(s), s^{T} z_{1}=0 . \quad \text { (Lemma 7.2.3) } \\
& j=1: \quad \sin ^{2} \varphi_{1} \leq \frac{\theta_{1}-\alpha_{1}}{\alpha_{2}-\alpha_{1}} \leq \frac{\rho(s)-\alpha_{1}}{\alpha_{2}-\alpha_{1}}, s^{T} z_{1}=0 . \quad(\text { Lemma 7.2.4) } \\
& j=2: \quad \theta_{2} \leq \rho(s)+\left(\alpha_{-1}-\alpha_{1}\right) \sin ^{2} \varphi_{1} \leq \rho(s)+\left(\alpha_{-1}-\alpha_{1}\right) \frac{\rho(\xi)-\alpha_{1}}{\alpha_{2}-\alpha_{1}}, \\
& s^{T} z_{1}=s^{T} z_{2}=0, \xi^{T} z_{1}=0 . \quad \text { (Lemma 7.2.3) } \\
& j=2: \quad \sin ^{2} \varphi_{2} \stackrel{\text { (Lemma7.2.4) }}{\leq}\left(\theta_{2}-\alpha_{2}\right)+\frac{\left(\alpha_{3}-\alpha_{1}\right) \sin ^{2} \varphi_{1}}{\alpha_{3}-\alpha_{2}} \\
& \stackrel{j=1, j=2}{\leq}\left[\rho(s)+\left(\alpha_{-1}-\alpha_{1}\right)\left(\frac{\rho(t)-\alpha_{1}}{\alpha_{2}-\alpha_{1}}\right)-\alpha_{2}\right]+\frac{\alpha_{3}-\alpha_{1}}{\alpha_{3}-\alpha_{2}}\left(\frac{\rho(t)-\alpha_{1}}{\alpha_{2}-\alpha_{1}}\right)
\end{aligned}
$$

7.3 Krylov subspace

Definition 7.3.1 Given a nonzero vector $f, K^{m}(f)=\left[f, A f, \ldots, A^{m-1} f\right]$ is called Krylov matrix and $S_{m}=\mathcal{K}^{m}(f)=\left\langle f, A f, \ldots, A^{m-1} f\right\rangle$ is called Krylov subspace which are created by Lanczos if A is symmetric or Arnoldi if A is unsymmetric.

Lemma 7.3.1 Let $\left\{\left(\theta_{i}, y_{i}\right)\right\}_{i=1}^{m}$ be Ritz pairs of $K^{m}(f)$. If ω is a polynomial with degree $m-1$ (i.e., $\omega \in \mathcal{P}^{m-1}$), then $\omega(A) f \perp y_{k}$ if and only if $\omega\left(\theta_{k}\right)=0, k=1, \ldots, m$.

Proof: $" \Leftarrow "$ Let

$$
\omega(\xi)=\left(\xi-\theta_{k}\right) \pi(\xi)
$$

where $\pi(\xi) \in \mathcal{P}^{m-2}$. Thus

$$
\pi(A) f \in K^{m}(f)
$$

and

$$
\begin{aligned}
y_{k}^{T} \omega(A) f & =y_{k}^{T}\left(A-\theta_{k}\right) \pi(A) f \\
& =r_{k}^{T} \pi(A) f \\
& =0 . \quad\left(\because r_{k} \perp\langle Q\rangle=\mathcal{K}^{m}(f)\right)
\end{aligned}
$$

$" \Rightarrow$ " exercise!
Define

$$
\mu(\xi) \equiv \prod_{i=1}^{m}\left(\xi-\theta_{i}\right) \quad \text { and } \quad \pi_{k}(\xi) \equiv \frac{\mu(\xi)}{\left(\xi-\theta_{k}\right)}
$$

Corollary 7.3.2

$$
y_{k}=\frac{\pi_{k}(A) f}{\left\|\pi_{k}(A) f\right\|} .
$$

Proof: Since $\pi_{k}\left(\theta_{i}\right)=0$ for $\theta_{i} \neq \theta_{k}$, from Lemma 7.3.1,

$$
\pi_{k}(A) f \perp y_{i}, \forall i \neq k
$$

Thus, $\pi_{k}(A) f / / y_{k}$ and then $y_{k}=\frac{\pi_{k}(A) f}{\left\|\pi_{k}(A) f\right\|}$.
Lemma 7.3.3 Let h be the normalized projection of f orthogonal to $Z^{j}, Z^{j} \equiv \operatorname{span}\left(z_{1}, \ldots, z_{j}\right)$. For each $\pi \in \mathcal{P}^{m-1}$ and each $j \leq m$,

$$
\begin{equation*}
\rho\left(\pi(A) f, A-\alpha_{j} I\right) \leq\left(\alpha_{n}-\alpha_{j}\right)\left[\frac{\sin \angle\left(f, Z^{j}\right)}{\cos \angle\left(f, Z^{j}\right)} \frac{\|\pi(A) h\|}{\mid \pi\left(\alpha_{j} \mid\right)}\right]^{2} \tag{7.3.36}
\end{equation*}
$$

Proof: Let $\psi=\angle\left(f, Z^{j}\right)=\cos ^{-1}\left\|f^{*} Z^{j}\right\|$ and let g be the normalized projection of f onto Z^{j} so that

$$
f=g \cos \psi+h \sin \psi .
$$

Since Z^{j} is invariant under A,

$$
s \equiv \pi(A) f=\pi(A) g \cos \psi+\pi(A) h \sin \psi,
$$

where $\pi(A) g \in Z^{j}$ and $\pi(A) h \in\left(Z^{j}\right)^{\perp}$. A little calculation yields

$$
\begin{equation*}
\rho\left(s, A-\alpha_{j} I\right)=\frac{g^{*}\left(A-\alpha_{j} I\right) \pi^{2}(A) g \cos ^{2} \psi+h^{*}\left(A-\alpha_{j} I\right) \pi^{2}(A) h \sin ^{2} \psi}{\|\pi(A) f\|^{2}} . \tag{7.3.37}
\end{equation*}
$$

The eigenvalues of A are labeled so that $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}$ and
(a) $v^{*}\left(A-\alpha_{j} I\right) v \leq 0$ for all $v \in Z^{j}$, in particular, $v=\pi(A) g$;
(b) $w^{*}\left(A-\alpha_{j} I\right) w \leq\left(\alpha_{n}-\alpha_{j}\right)\|w\|^{2}$ for all $w \in\left(Z^{j}\right)^{\perp}$, in particular, $w=\pi(A) h$.

Used (a) and (b) to simplify (7.3.37), it becomes

$$
\rho\left(s, A-\alpha_{j} I\right) \leq\left(\alpha_{n}-\alpha_{j}\right)\left[\frac{\|\pi(A) h\| \sin \psi}{\|\pi(A) f\|}\right]^{2} .
$$

The proof is completed by using

$$
\|s\|^{2}=\|\pi(A) f\|^{2}=\sum_{i=1}^{n} \pi^{2}\left(\alpha_{i}\right) \cos ^{2} \angle\left(f, z_{i}\right) \geq \pi^{2}\left(\alpha_{j}\right) \cos ^{2} \angle\left(f, z_{j}\right)
$$

7.3.1 The Error Bound of Kaniel and Saad

The error bounds come from choosing $\pi \in \mathcal{P}^{m-1}$ in Lemma 7.3.3 such that
(i) $\left|\pi\left(\alpha_{j}\right)\right|$ is large, while $\|\pi(A) h\|$ is small as possible, and
(ii) $\rho\left(s, A-\alpha_{j} I\right) \geq 0$ where $s=\pi(A) f$.

To (i): Note that

$$
\|\pi(A) h\|^{2}=\frac{\sum_{i=j+1}^{n} \pi^{2}\left(\alpha_{i}\right) \cos ^{2} \angle\left(f, z_{j}\right)}{\sum_{i=j+1}^{n} \cos ^{2} \angle\left(f, z_{j}\right)} \leq \max _{i>j} \pi^{2}\left(\alpha_{i}\right) \leq \max _{\tau \in\left[\alpha_{j+1}, \alpha_{n}\right]} \pi^{2}(\tau) .
$$

Chebychev polynomial solves $\min _{\pi \in \mathcal{P}^{n-j}} \max _{\tau \in\left[\alpha_{j+1}, \alpha_{n}\right]} \pi^{2}(\tau)$.
To (ii): The following facts are known:
(a) $0 \leq \theta_{j}-\alpha_{j}, \quad$ (Cauchy interlace Theorem)
(b) $\theta_{j}-\alpha_{j} \leq \rho\left(s, A-\alpha_{j} I\right)$, if $s \perp y_{i}$, for all $i<j, \quad$ (By minimax Theorem)
(c) $\theta_{j}-\alpha_{j} \leq \rho\left(s, A-\alpha_{j} I\right)+\sum_{i=1}^{j-1}\left(\alpha_{n}-\alpha_{i}\right) \sin ^{2} \angle\left(y_{i}, z_{i}\right)$, if $s \perp z_{i}$, for all $i<j$. (Lemma 7.2.3)

Theorem 7.3.4 (Saad) Let $\theta_{1} \leq \cdots \leq \theta_{m}$ be the Ritz values from $\mathcal{K}^{m}(f)$ (by Lanczos or Arnoldi) and let $\left(\alpha_{i}, z_{i}\right)$ be the eigenpairs of A. For $j=1, \ldots, m$,

$$
0 \leq \theta_{j}-\alpha_{j} \leq\left(\alpha_{n}-\alpha_{j}\right)\left[\frac{\sin \angle\left(f, Z^{j}\right) \prod_{k=1}^{j-1}\left(\frac{\theta_{k}-\alpha_{n}}{\theta_{k}-\alpha_{j}}\right)}{\cos \angle\left(f, Z^{j}\right) T_{m-j}(1+2 r)}\right]^{2}
$$

and

$$
\tan \angle\left(z_{j}, \mathcal{K}^{m}\right) \leq \frac{\sin \angle\left(f, Z^{j}\right) \prod_{k=1}^{j-1}\left(\frac{\alpha_{k}-\alpha_{n}}{\alpha_{k}-\alpha_{j}}\right)}{\cos \angle\left(f, Z^{j}\right) T_{m-j}(1+2 r)},
$$

where $r=\left(\alpha_{j}-\alpha_{j+1}\right) /\left(\alpha_{j+1}-\alpha_{n}\right)$.

Proof: Apply Lemmas 7.3.3 and 7.3.1. To ensure (b), it requires $s \perp y_{i}$ for $i=1, \ldots, j-1$. By Lemma 7.3.1, we construct

$$
\pi(\xi)=\left(\xi-\theta_{1}\right) \cdots\left(\xi-\theta_{j-1}\right) \tilde{\pi}(\xi), \quad \tilde{\pi} \in \mathcal{P}^{m-j}
$$

By Lemma 7.3.3 for this $\pi(\xi)$:

$$
\begin{align*}
\frac{\|\pi(A) h\|}{\left|\pi\left(\alpha_{j}\right)\right|} & \leq \frac{\left\|\left(A-\theta_{1}\right) \cdots\left(A-\theta_{j-1}\right) \mid\right\|\|\tilde{\pi}(A) h\|}{\left|\left(\alpha_{j}-\theta_{1}\right) \cdots\left(\alpha_{j}-\theta_{j-1}\right)\right|\left|\tilde{\pi}\left(\alpha_{j}\right)\right|} \\
& \leq \prod_{k=1}^{j-1}\left|\frac{\alpha_{n}-\alpha_{k}}{\alpha_{n}-\theta_{k}}\right| \max _{\tau \in\left[\alpha_{j+1}, \alpha_{j}\right]} \frac{|\tilde{\pi}(\tau)|}{\left|\tilde{\pi}\left(\alpha_{j}\right)\right|} \\
& \leq \prod_{k=1}^{j-1}\left|\frac{\alpha_{n}-\alpha_{k}}{\alpha_{j}-\alpha_{k}}\right| \min _{\tilde{\pi} \in \mathcal{P} m-j} \max _{j} \frac{|\tilde{\pi}(\tau)|}{\left|\tilde{\pi}\left(\alpha_{j}\right)\right|} \\
& =\prod_{k=1}^{j-1}\left|\frac{\alpha_{n}-\alpha_{k}}{\alpha_{j}-\alpha_{k}}\right| \frac{1}{T_{m-j}(1+2 r)} . \tag{7.3.38}
\end{align*}
$$

since $h \perp Z^{j}$. On combining (b), Lemma 7.3.3 and (7.3.38), the first of the results is obtained.
To prove the second inequality:
π is chosen to satisfy $\pi\left(\alpha_{i}\right)=0$ for $i=1, \ldots, j-1$ so that

$$
s=\pi(A) f=z_{j} \pi\left(\alpha_{j}\right) \cos \angle\left(f, z_{j}\right)+\pi(A) h \sin \psi .
$$

Therefore,

$$
\tan \angle\left(s, z_{j}\right)=\frac{\sin \angle\left(f, Z^{j}\right)\|\pi(A) h\|}{\cos \angle\left(f, z_{j}\right)\left|\pi\left(\alpha_{j}\right)\right|}
$$

where $\pi(\xi)=\left(\xi-\alpha_{1}\right) \cdots\left(\xi-\alpha_{j-1}\right) \tilde{\pi}(\xi)$ with $\tilde{\pi}(\xi) \in \mathcal{P}^{m-j}$. The proof is completed by choosing $\tilde{\pi}$ by Chebychev polynomial as above.

Theorem 7.3.5 Let $\theta_{-m} \leq \ldots \leq \theta_{-1}$ be Royleigh-Ritz values of $\mathcal{K}^{m}(f)$ and $A z_{-j}=$ $\alpha_{-j} z_{-j}$ for $j=n, \ldots, 1$ with $\alpha_{-n} \leq \cdots \leq \alpha_{-1}$, then

$$
0 \leq \alpha_{-j}-\theta_{-j} \leq\left(\alpha_{-j}-\alpha_{-1}\right)\left[\frac{\sin \angle\left(f, Z^{-j}\right) \prod_{k=-j+1}^{-1}\left(\frac{\alpha_{-n}-\theta_{-k}}{\alpha_{-k}-\theta_{-j}}\right)}{\cos \angle\left(f, z_{-j}\right) T_{m-j}(1+2 r)}\right]^{2}
$$

and

$$
\tan \left(z_{-j}, \mathcal{K}^{m}\right) \leq \frac{\sin \angle\left(f, Z^{-j}\right)}{\cos \angle\left(f, z_{-j}\right)}\left[\frac{\prod_{k=-j+1}^{-1}\left(\frac{\alpha_{-k}-\alpha_{-n}}{\alpha_{-k}-\alpha_{-j}}\right)}{T_{m-j}(1+2 r)}\right]^{2}
$$

where $r=\left(\alpha_{-j-1}-\alpha_{-j}\right) /\left(\alpha_{-n}-\alpha_{-j-1}\right)$.

Theorem 7.3.6 (Kaniel) The Rayleigh-Ritz $\left(\theta_{j}, y_{j}\right)$ from $\mathcal{K}^{m}(f)$ to $\left(\alpha_{j}, z_{j}\right)$ satisfy

$$
\begin{aligned}
0 \leq \theta_{j}-\alpha_{j} \leq & \left(\alpha_{n}-\alpha_{j}\right)\left[\frac{\sin \angle\left(f, Z^{j}\right) \prod_{k=1}^{j-1}\left(\frac{\alpha_{k}-\alpha_{n}}{\alpha_{k}-\alpha_{j}}\right)}{\cos \angle\left(f, z_{j}\right) T_{m-j}(1+2 r)}\right]^{2} \\
& +\sum_{k=1}^{j-1}\left(\alpha_{n}-\alpha_{k}\right) \sin ^{2} \angle\left(y_{k}, z_{k}\right)
\end{aligned}
$$

and

$$
\sin ^{2} \angle\left(y_{j}, z_{j}\right) \leq \frac{\left(\theta_{j}-\alpha_{j}\right)+\sum_{k=1}^{j-1}\left(\alpha_{j+1}-\alpha_{k}\right) \sin ^{2} \angle\left(y_{k}, z_{k}\right)}{\alpha_{j+1}-\alpha_{j}},
$$

where $r=\left(\alpha_{j}-\alpha_{j+1}\right) /\left(\alpha_{j+1}-\alpha_{n}\right)$.

7.4 Applications to linear Systems and Least Squares

7.4.1 Symmetric Positive Definite System

Recall: Let A be symmetric positive definite and $A x^{*}=b$. Then x^{*} minimizes the functional

$$
\begin{equation*}
\phi(x)=\frac{1}{2} x^{T} A x-b^{T} x . \tag{7.4.1}
\end{equation*}
$$

An approximate minimizer of ϕ can be regarded as an approximate solution to $A x=b$.
One way to produce a sequence $\left\{x_{j}\right\}$ that converges to x^{*} is to generate a sequence of orthonormal vectors $\left\{q_{j}\right\}$ and to let x_{j} minimize ϕ over $\operatorname{span}\left\{q_{1}, \cdots, q_{j}\right\}$, where $j=$ $1, \cdots, n$. Let $Q_{j}=\left[q_{1}, \cdots, q_{j}\right]$. Since

$$
x \in \operatorname{span}\left\{q_{1}, \cdots, q_{j}\right\} \Rightarrow \phi(x)=\frac{1}{2} y^{T}\left(Q_{j}^{T} A Q_{j}\right) y-y^{T}\left(Q_{j}^{T} b\right)
$$

for some $y \in R^{j}$, it follows that

$$
\begin{equation*}
x_{j}=Q_{j} y_{j}, \tag{7.4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(Q_{j}^{T} A Q_{j}\right) y_{j}=Q_{j}^{T} b \tag{7.4.3}
\end{equation*}
$$

Note that $A x_{n}=b$.
We now consider how this approach to solving $A x=b$ can be made effective when A is large and sparse. There are two hurdles to overcome:
(i) the linear system (7.4.3) must be easily solved;
(ii) we must be able to compute x_{j} without having to refer to q_{1}, \cdots, q_{j} explicitly as (7.4.2) suggests.

To (i): we use Lanczos algorithm algorithm 7.1.1 to generate the q_{i}. After j steps we obtain

$$
\begin{equation*}
A Q_{j}=Q_{j} T_{j}+r_{j} e_{j}^{T} \tag{7.4.4}
\end{equation*}
$$

where

$$
T_{j}=Q_{j}^{T} A Q_{j}=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{1} & & 0 \tag{7.4.5}\\
\beta_{1} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \beta_{j-1} \\
0 & & \beta_{j-1} & \alpha_{j}
\end{array}\right] \text { and } T_{j} y_{j}=Q_{j}^{T} b
$$

With this approach, (7.4.3) becomes a symmetric positive definite tridiagonal system which may be solved by $L D L^{T}$ Cholesky decomposition, i.e.,

$$
\begin{equation*}
T_{j}=L_{j} D_{j} L_{j}^{T}, \tag{7.4.6}
\end{equation*}
$$

where

$$
L_{j}=\left[\begin{array}{cccc}
1 & & & 0 \\
\mu_{2} & \ddots & & \vdots \\
& \ddots & \ddots & 0 \\
0 & & \mu_{j} & 1
\end{array}\right] \quad \text { and } \quad D_{j}=\left[\begin{array}{ccc}
d_{1} & & 0 \\
& \ddots & 0 \\
0 & & d_{j}
\end{array}\right]
$$

Compared the entries of (7.4.6), we get

$$
\begin{align*}
& d_{1}=\alpha_{1}, \\
& \text { for } \quad i=2, \cdots, j, \\
& \quad \mu_{i}=\beta_{i-1} / d_{i-1}, \tag{7.4.7}\\
& d_{i}=\alpha_{i}-\beta_{i-1} \mu_{i} .
\end{align*}
$$

Note that we need only calculate

$$
\begin{align*}
\mu_{j} & =\beta_{j-1} / d_{j-1} \tag{7.4.8}\\
d_{j} & =\alpha_{j}-\beta_{j-1} \mu_{j}
\end{align*}
$$

in order to obtain L_{j} and D_{j} from L_{j-1} and D_{j-1}.
To (ii): Trick: we define $C_{j}=\left[c_{1}, \cdots, c_{j}\right] \in \mathbb{R}^{n \times j}$ and $p_{j} \in \mathbb{R}^{j}$ by the equations

$$
\begin{align*}
C_{j} L_{j}^{T} & =Q_{j}, \\
L_{j} D_{j} p_{j} & =Q_{j}^{T} b \tag{7.4.9}
\end{align*}
$$

and observe that

$$
x_{j}=Q_{j} T_{j}^{-1} Q_{j}^{T} b=Q_{j}\left(L_{j} D_{j} L_{j}^{T}\right)^{-1} Q_{j}^{T} b=C_{j} p_{j} .
$$

It follows from (7.4.9) that

$$
\left[c_{1}, \mu_{2} c_{1}+c_{2}, \cdots, \mu_{j} c_{j-1}+c_{j}\right]=\left[q_{1}, \cdots, q_{j}\right],
$$

and therefore

$$
C_{j}=\left[C_{j-1}, c_{j}\right], \quad c_{j}=q_{j}-\mu_{j} c_{j-1} .
$$

If we set $p_{j}=\left[\rho_{1}, \cdots, \rho_{j}\right]^{T}$ in $L_{j} D_{j} p_{j}=Q_{j}^{T} b$, then that equation becomes

$$
\left[\begin{array}{c|c}
L_{j-1} D_{j-1} & 0 \\
\hline 0 \cdots 0 \mu_{j} d_{j-1} & d_{j}
\end{array}\right]\left[\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{j-1} \\
\rho_{j}
\end{array}\right]=\left[\begin{array}{c}
q_{1}^{T} b \\
q_{2}^{T} b \\
\vdots \\
q_{j-1}^{T} b \\
q_{j}^{T} b
\end{array}\right] .
$$

Since $L_{j-1} D_{j-1} p_{j-1}=Q_{j-1}^{T} b$, it follows that

$$
p_{j}=\left[\begin{array}{c}
p_{j-1} \\
\rho_{j}
\end{array}\right], \quad \rho_{j}=\left(q_{j}^{T} b-\mu_{j} d_{j-1} \rho_{j-1}\right) / d_{j}
$$

and thus

$$
x_{j}=C_{j} p_{j}=C_{j-1} p_{j-1}+\rho_{j} c_{j}=x_{j-1}+\rho_{j} c_{j} .
$$

This is precisely the kind of recursive formula for x_{j} that we need. Together with (7.4.8) and (7.4.9) it enables us to make the transition from $\left(q_{j-1}, c_{j-1}, x_{j-1}\right)$ to $\left(q_{j}, c_{j}, x_{j}\right)$ with a minimal amount of work and storage.

A further simplification results if we set $q_{1}=b / \beta_{0}$ where $\beta_{0}=\|b\|_{2}$. For this choice of a Lanczos starting vector we see that $q_{i}^{T} b=0$ for $i=2,3, \cdots$. It follows from (7.4.4) that

$$
A x_{j}=A Q_{j} y_{j}=Q_{j} T_{j} y_{j}+r_{j} e_{j}^{T} y_{j}=Q_{j} Q_{j}^{T} b+r_{j} e_{j}^{T} y_{j}=b+r_{j} e_{j}^{T} y_{j} .
$$

Thus, if $\beta_{j}=\left\|r_{j}\right\|_{2}=0$ in the Lanczos iteration, then $A x_{j}=b$. Moreover, since $\| A x_{j}-$ $b \|_{2}=\beta_{j}\left|e_{j}^{T} y_{j}\right|$, the iteration provides estimates of the current residual.

Algorithm 7.4.1 Given $b \in \mathbb{R}^{n}$ and a symmetric positive definite $A \in R^{n \times n}$. The following algorithm computes $x \in \mathbb{R}^{n}$ such that $A x=b$.

$$
\begin{aligned}
& \beta_{0}=\|b\|_{2}, q_{1}=b / \beta_{0}, \alpha_{1}=q_{1}^{T} A q_{1}, d_{1}=\alpha_{1}, c_{1}=q_{1}, x_{1}=b / \alpha_{1} \text {. } \\
& \text { For } j=1, \cdots, n-1 \text {, } \\
& r_{j}=\left(A-\alpha_{j}\right) q_{j}-\beta_{j-1} q_{j-1} \quad\left(\beta_{0} q_{0} \equiv 0\right), \\
& \beta_{j}=\left\|r_{j}\right\|_{2} \text {, } \\
& \text { If } \beta_{j}=0 \text { then } \\
& \text { Set } x^{*}=x_{j} \text { and stop; } \\
& \text { else } \\
& q_{j+1}=r_{j} / \beta_{j}, \\
& \alpha_{j+1}=q_{j+1}^{T} A q_{j+1}, \\
& \mu_{j+1}=\beta_{j} / d_{j} \text {, } \\
& d_{j+1}=\alpha_{j+1}-\mu_{j+1} \beta_{j}, \\
& \rho_{j+1}=-\mu_{j+1} d_{j} \rho_{j} / d_{j+1}, \\
& c_{j+1}=q_{j+1}-\mu_{j+1} c_{j}, \\
& x_{j+1}=x_{j}+\rho_{j+1} c_{j+1}, \\
& \text { end if } \\
& \text { end for } \\
& x^{*}=x_{n} \text {. }
\end{aligned}
$$

This algorithm requires one matrix-vector multiplication and $5 n$ flops per iteration.

7.4.2 Symmetric Indefinite Systems

A key feature in the above development is the idea of computing $L D L^{T}$ Cholesky decomposition of tridiagonal T_{j}. Unfortunately, this is potentially unstable if A, and consequently T_{j}, is not positive definite. Paige and Saunders (1975) had developed the recursion for x_{j} by an $L Q$ decomposition of T_{j}. At the j-th step of the iteration we will Given rotations J_{1}, \cdots, J_{j-1} such that

$$
T_{j} J_{1} \ldots J_{j-1}=L_{j}=\left[\begin{array}{cccccc}
d_{1} & & & & 0 \\
e_{2} & d_{2} & & & \\
f_{3} & e_{3} & d_{3} & & \\
& \ddots & \ddots & \ddots & \\
0 & & f_{j} & e_{j} & d_{j}
\end{array}\right]
$$

Note that with this factorization, x_{j} is given by

$$
x_{j}=Q_{j} y_{j}=Q_{j} T_{j}^{-1} Q_{j}^{T} b=W_{j} s_{j}
$$

where $W_{j} \in R^{n \times j}$ and $s_{j} \in R^{j}$ are defined by

$$
W_{j}=Q_{j} J_{1} \cdots J_{j-1} \quad \text { and } \quad L_{j} s_{j}=Q_{j}^{T} b .
$$

Scrutiny of these equations enables one to develop a formula for computing x_{j} from x_{j-1} and an easily computed multiple of w_{j}, the last column of W_{j}.

7.4.3 Connection of Algorithm 7.4.1 and CG method

Let
$x_{j}^{L} \quad$: Iterative vector generated by Algorithm 7.4.1
$x_{i}^{C G}$: Iterative vector generated by CG method with,$x_{0}^{C G}=0$.
Since $r_{0}^{C G}=b-A x_{0}=b=p_{0}^{C G}$, then

$$
x_{1}^{C G}=\alpha_{0}^{C G} p_{0}=\frac{b^{T} b}{b^{T} A b} b=x_{1}^{L}
$$

Claim: $x_{i}^{C G}=x_{i}^{L}$ for $i=1,2, \cdots$,
(a) CG method (A variant version):

$$
\begin{align*}
& x_{0}=0, r_{0}=b, \\
& \text { For } k=1, \cdots, n, \\
& \text { if } r_{k-1}=0 \text { then set } x=x_{k-1} \text { and quit. } \\
& \text { else } \beta_{k}=r_{k-1}^{T} r_{k-1} / r_{k-2}^{T} r_{k-2}\left(\beta_{1} \equiv 0\right), \\
& \quad p_{k}=r_{k-1}+\beta_{k} p_{k-1} \quad\left(p_{1} \equiv r_{0}\right), \\
& \quad \alpha_{k}=r_{k-1}^{T} r_{k-1} / p_{k}^{T} A p_{k}, \tag{7.4.10}\\
& \quad x_{k}=x_{k-1}+\alpha_{k} p_{k}, \\
& \quad r_{k}=r_{k-1}-\alpha_{k} A p_{k}, \\
& \text { end if }
\end{align*}
$$

Define $R_{k}=\left[r_{0}, \cdots, r_{k-1}\right] \in \mathbb{R}^{n \times k}$ and

$$
B_{k}=\left[\begin{array}{cccc}
1 & -\beta_{2} & & 0 \\
& 1 & \ddots & \\
& & \ddots & -\beta_{k} \\
0 & & & 1
\end{array}\right]
$$

From $p_{j}=r_{j-1}+\beta_{j} p_{j-1}(j=2, \cdots, k)$ and $p_{1}=r_{0}$, it follows $R_{k}=P_{k} B_{k}$. Since the columns of $P_{k}=\left[p_{1}, \cdots, p_{k}\right]$ are A-conjugate, we see that

$$
R_{k}^{T} A R_{k}=B_{k}^{T} \operatorname{diag}\left(p_{1}^{T} A p_{1}, \cdots, p_{k}^{T} A p_{k}\right) B_{k}
$$

is tridiagonal. Since $\operatorname{span}\left\{p_{1}, \cdots, p_{k}\right\}=\operatorname{span}\left\{r_{0}, \cdots, r_{k-1}\right\}=\operatorname{span}\left\{b, A b, \cdots, A^{k-1} b\right\}$ and r_{0}, \cdots, r_{k-1} are mutually orthogonal, it follows that if

$$
\triangle_{k}=\operatorname{diag}\left(\beta_{0}, \cdots, \beta_{k-1}\right), \quad \beta_{i}=\left\|r_{i}\right\|_{2}
$$

then the columns of $R_{k} \triangle_{k}^{-1}$ form an orthonormal basis for $\operatorname{span}\left\{b, A b, \cdots, A^{k-1} b\right\}$. Consequently the columns of this matrix are essentially the Lanczos vectors of algorithm 7.4.1, i.e., $q_{i}^{L}= \pm r_{i-1}^{C G} / \beta_{i-1}(i=1, \cdots, k)$. Moreover,

$$
T_{k}=\triangle_{k}^{-1} B_{k}^{T} \operatorname{diag}\left(p_{i}^{T} A p_{i}\right) B_{k} \triangle_{k}^{-1}
$$

The diagonal and subdiagonal of this matrix involve quantities that are readily available during the conjugate gradient iteration. Thus, we can obtain good estimate of $A^{\prime} s$ extremal eigenvalues (and condition number) as we generate the x_{k} in (7.4.11).

$$
p_{i}^{C G}=c_{i}^{L} \cdot \text { constant }
$$

Show that c_{i}^{L} are A-orthogonal. Since

$$
C_{j} L_{j}^{T}=Q_{j} \Rightarrow C_{j}=Q_{j} L_{j}^{-T}
$$

it implies that

$$
\begin{aligned}
C_{j}^{T} A C_{j} & =L_{j}^{-1} Q_{j}^{T} A Q_{j} L_{j}^{-T}=L_{j}^{-1} T_{j} L_{j}^{-T} \\
& =L_{j}^{-1} L_{j} D_{j} L_{j}^{T} L_{j}^{-T}=D_{j} .
\end{aligned}
$$

So $\left\{c_{i}\right\}_{i=1}^{j}$ are A-orthogonal.
(b) It is well known that $x_{j}^{C G}$ minimizes the functional $\phi(x)=\frac{1}{2} x^{T} A x-b^{T} x$ in the subspace span $\left\{r_{0}, A r_{0}, \cdots, A^{j-1} r_{0}\right\}$ and x_{j}^{L} minimize $\phi(x)=\frac{1}{2} x^{T} A x-b^{T} x$ in the subspace $\operatorname{span}\left\{q_{1}, \cdots, q_{j}\right\}$. We also know that $K\left[q_{1}, A, j\right]=Q_{j} R_{j}$ which implies $\mathcal{K}\left(q_{1}, A, j\right)=$ span $\left\{q_{1}, \cdots, q_{j}\right\}$. But $q_{1}=b /\|b\|_{2}, r_{0}=b$, so span $\left\{r_{0}, A r_{0}, \cdots, A^{j-1} r_{0}\right\}=\mathcal{K}\left(q_{1}, A, j\right)=$ span $\left\{q_{1}, \cdots, q_{j}\right\}$ therefore we have $x_{j}^{C G}=x_{j}^{L}$.

7.4.4 Bidiagonalization and the SVD

Suppose $U^{T} A V=B$ the bidiagonalization of $A \in \mathbb{R}^{m \times n}$ and that

$$
\begin{align*}
U & =\left[u_{1}, \cdots, u_{m}\right], \\
V & =\left[U^{T} U=I_{m},\right. \tag{7.4.11}\\
\left.v_{1}, \cdots, v_{n}\right], & V^{T} V=I_{n},
\end{align*}
$$

and

$$
B=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{1} & & 0 \tag{7.4.12}\\
& \ddots & \ddots & \\
& & \ddots & \beta_{n-1} \\
0 & & & \alpha_{n} \\
\hline 0 & \cdots & \cdots & 0
\end{array}\right]
$$

Recall that this decomposition serves as a front end for the $S V D$ algorithm. Unfortunately, if A is large and sparse, then we can expect large, dense submatrices to arise during the Householder transformation for the bidiagonalization. It would be nice to develop a method for computing B directly without any orthogonal update of the matrix A.

We compare columns in the equations $A V=U B$ and $A^{T} U=V B^{T}$:

$$
A v_{j}=\alpha_{j} u_{j}+\beta_{j-1} u_{j-1}, \quad \beta_{0} u_{0} \equiv 0, A^{T} u_{j}=\alpha_{j} v_{j}+\beta_{j} v_{j+1}, \quad \beta_{n} v_{n+1} \equiv 0
$$

for $j=1, \cdots, n$. Define

$$
r_{j}=A v_{j}-\beta_{j-1} u_{j-1} \text { and } p_{j}=A^{T} u_{j}-\alpha_{j} v_{j} .
$$

We may conclude that

$$
\begin{array}{ll}
\alpha_{j}= \pm\left\|r_{j}\right\|_{2}, & u_{j}=r_{j} / \alpha_{j} \\
v_{j+1}=p_{j} / \beta_{j}, & \beta_{j}= \pm\left\|p_{j}\right\|_{2} .
\end{array}
$$

These equations define the Lanczos method for bidiagonaling a rectangular matrix (by Paige (1974)):

Given $v_{1} \in \mathbb{R}^{n}$ with unit 2-norm.
$r_{1}=A v_{1}, \quad \alpha_{1}=\left\|r_{1}\right\|_{2}$.
For $j=1, \cdots, n$,
If $\alpha_{j}=0$ then stop;
else
$u_{j}=r_{j} / \alpha_{j}, p_{j}=A^{T} u_{j}-\alpha_{j} v_{j}, \beta_{j}=\left\|p_{j}\right\|_{2}$,
If $\beta_{j}=0$ then stop;
else
$v_{j+1}=p_{j} / \beta_{j}, r_{j+1}=A v_{j+1}-\beta_{j} u_{j}, \alpha_{j+1}=\left\|r_{j+1}\right\|_{2}$.
end if
end if
end for

It is essentially equivalent to applying the Lanczos tridiagonalization scheme to the symmetric matrix $C=\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]$. We know that

$$
\lambda_{i}(C)=\sigma_{i}(A)=-\lambda_{n+m-i+1}(C)
$$

for $i=1, \cdots, n$. Because of this, the large singular values of the bidiagonal matrix $B_{j}=\left[\begin{array}{cccc}\alpha_{1} & \beta_{1} & & 0 \\ & \ddots & \ddots & \\ & & \ddots & \beta_{j-1} \\ 0 & & & \alpha_{j}\end{array}\right]$ tend to be very good approximations to the large singular values of A.

7.4.5 Least square problems

As detailed in chapter III the full-rank LS problem $\min \|A x-b\|_{2}$ can be solved by the bidiagonalization (7.4.11)-(7.4.12). In particular,

$$
x_{L S}=V y_{L S}=\sum_{i=1}^{n} a_{i} v_{i}
$$

where $y=\left(a_{1}, \cdots, a_{n}\right)^{T}$ solves the bidiagonal system $B y=\left(u_{1}^{T} b, \cdots, u_{n}^{T} b\right)^{T}$.
Disadvantage: Note that because B is upper bidiagonal, we cannot solve for y until the bidiagonalization is complete. We are required to save the vectors v_{1}, \cdots, v_{n} an unhappy circumstance if n is very large.
Modification: It can be accomplished more favorably if A is reduced to lower bidiagonal form:

$$
U^{T} A V=B=\left[\begin{array}{cccc}
\alpha_{1} & & & 0 \\
\beta_{1} & \alpha_{2} & & \\
& \ddots & \ddots & \\
& & \ddots & \alpha_{n} \\
0 & & & \beta_{n} \\
\hline 0 & \cdots & \cdots & 0
\end{array}\right], \quad m \geq n+1
$$

where $V=\left[v_{1}, \cdots, v_{n}\right]$ and $U=\left[u_{1}, \cdots, u_{m}\right]$. It is straightforward to develop a Lanczos procedure which is very similar to (7.4.13). Let $V_{j}=\left[v_{1}, \cdots, v_{j}\right], U_{j}=\left[u_{1}, \cdots, u_{j}\right]$ and

$$
B_{j}=\left[\begin{array}{cccc}
\alpha_{1} & & & 0 \\
\beta_{1} & \alpha_{2} & & \\
& \ddots & \ddots & \\
& & \ddots & \alpha_{j} \\
0 & & & \beta_{j}
\end{array}\right] \in \mathbb{R}^{(j+1) \times j}
$$

and consider minimizing $\|A x-b\|_{2}$ over all vectors of the form $x=V_{j} y, y \in \mathbb{R}^{j}$. Since

$$
\left\|A V_{j} y-b\right\|_{2}=\left\|U^{T} A V_{j} y-U^{T} b\right\|_{2}=\left\|B_{j} y-U_{j+1}^{T} b\right\|_{2}+\sum_{i=j+2}^{m}\left(u_{i}^{T} b\right)^{2}
$$

it follows that $x_{j}=V_{j} y_{j}$ is the minimizer of the LS problem over $\operatorname{span}\left\{V_{j}\right\}$, where y_{j} minimizes the $(j+1) \times j$ LS problem $\min \left\|B_{j} y-U_{j+1}^{T} b\right\|_{2}$. Since B_{j} is lower bidiagonal, it is easy to compute Jacobi rotations J_{1}, \cdots, J_{j} such that

$$
J_{j} \cdots J_{1} B_{j}=\left[\begin{array}{c}
R_{j} \\
0
\end{array}\right]
$$

is upper bidiagonal. Let $J_{j} \cdots J_{1} U_{j+1}^{T} b=\left[\begin{array}{c}d_{j} \\ u\end{array}\right]$, then

$$
\left\|B_{j} y-U_{j+1}^{T} b\right\|_{2}=\left\|J_{j} \cdots J_{1} y-J_{j} \cdots J_{1} U_{j+1}^{T} b\right\|_{2}=\left\|\left[\begin{array}{c}
R_{j} \\
0
\end{array}\right] y-\left[\begin{array}{c}
d_{j} \\
u
\end{array}\right]\right\|_{2} .
$$

So $y_{j}=R_{j}^{-1} d_{j}, x_{j}=V_{j} y_{j}=V_{j} R_{j}^{-1} d_{j}=W_{j} d_{j}$. Let

$$
W_{j}=\left(W_{j-1}, w_{j}\right), w_{j}=\left(v_{j}-w_{j-1} r_{j-1, j}\right) / r_{j j}
$$

where $r_{j-1, j}$ and $r_{j j}$ are elements of R_{j}. R_{j} can be computed from R_{j-1}. Similarly, $d_{j}=\left[\begin{array}{c}d_{j-1} \\ \delta_{j}\end{array}\right], x_{j}$ can be obtained from $x_{j-1}:$

$$
x_{j}=W_{j} d_{j}=\left(W_{j-1}, w_{j}\right)\left[\begin{array}{c}
d_{j-1} \\
\delta_{j}
\end{array}\right]=W_{j-1} d_{j-1}+w_{j} \delta_{j} .
$$

Thus

$$
x_{j}=x_{j-1}+w_{j} \delta_{j} .
$$

For details see Paige-Saunders (1978).

7.4.6 Error Estimation of least square problems

Continuity of A^{+}of the function: $\mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$ defined by $A \longmapsto A^{+}$.
Lemma 7.4.2 If $\left\{A_{i}\right\}$ converges to A and $\operatorname{rank}\left(A_{i}\right)=\operatorname{rank}(A)=n$, then $\left\{A_{i}^{+}\right\}$also converges to A^{+}.

Proof: Since $\lim _{i \rightarrow \infty} A_{i}^{T} A_{i}=A^{T} A$ nonsingular, so

$$
A_{i}^{+}=\left(A_{i}^{T} A_{i}\right)^{-1} A_{i}^{T} \xrightarrow{i \rightarrow \infty}\left(A^{T} A\right)^{-1} A^{T}=A^{+} .
$$

Example 7.4.1 Let $A_{\varepsilon}=\left[\begin{array}{ll}1 & 0 \\ 0 & \varepsilon \\ 0 & 0\end{array}\right]$ with $\varepsilon>0$ and $A_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$, then $A_{\varepsilon} \rightarrow A_{0}$ as $\varepsilon \rightarrow 0, \operatorname{rank}\left(A_{0}\right)<2$. But $A_{\varepsilon}^{+}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / \varepsilon & 0\end{array}\right] \nrightarrow A_{0}^{+}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ as $\varepsilon \rightarrow 0$.

Theorem 7.4.3 Let $A, B \in \mathbb{R}^{m \times n}$, then holds

$$
\left\|A^{+}-B^{+}\right\|_{F} \leq \sqrt{2}\|A-B\|_{F} \max \left\{\left\|A^{+}\right\|_{2}^{2},\left\|B^{+}\right\|_{2}^{2}\right\}
$$

Without proof.
Remark 7.4.1 It does not follow that $A \rightarrow B$ implies $A^{+} \rightarrow B^{+}$. Because A^{+}can diverges to ∞, see example.

Theorem 7.4.4 If $\operatorname{rank}(A)=\operatorname{rank}(B)$ then

$$
\left\|A^{+}-B^{+}\right\|_{F} \leq \mu\left\|A^{+}\right\|_{2}\left\|B^{+}\right\|_{2}\|A-B\|_{F}
$$

where

$$
\mu=\left\{\begin{array}{cc}
\sqrt{2}, & \text { if } \operatorname{rank}(A)<\min (m, n) \\
1, & \text { if } \operatorname{rank}(A)=\min (m, n) .
\end{array}\right.
$$

Pseudo-Inverse of $A: A^{+}$is the unique solution of equations

$$
\begin{aligned}
& A^{+} A A^{+}=A^{+}, \quad\left(A A^{+}\right)^{*}=A A^{+} \\
& A A^{+} A=A, \quad\left(A^{+} A\right)^{*}=A^{+} A
\end{aligned}
$$

$P_{A}=A A^{+}$is Hermitian. P_{A} is idempotent, and $R\left(P_{A}\right)=R(A) . P_{A}$ is the orthogonal projection onto $R(A)$. Similarly, $R(A)=A^{+} A$ is the projection onto $R\left(A^{*}\right)$. Furthermore,

$$
\rho_{L S}^{2}=\left\|b-A A^{+} b\right\|_{2}^{2}=\left\|\left(I-A A^{+}\right) b\right\|_{2}^{2} .
$$

Lemma 7.4.1 (Banach Lemma) $\left\|B^{-1}-A^{-1}\right\| \leq\|A-B\|\left\|A^{-1}\right\|\left\|B^{-1}\right\|$.
Proof: From $\left((A+\delta A)^{-1}-A^{-1}\right)(A+\delta A)=I-I-A^{-1} \delta A$, follows lemma immediately.

Theorem 7.4.5 (i) The product $P_{B} P_{A}^{\perp}$ can be written in the form

$$
P_{B} P_{A}^{\perp}=\left(B^{+}\right)^{*} R_{B} E^{*} P_{A}^{\perp}
$$

where $P_{A}^{\perp}=I-P_{A}, B=A+E$. Thus $\left\|P_{B} P_{A}^{\perp}\right\| \leq\left\|B^{+}\right\|_{2}\|E\|$.
(ii) If $\operatorname{rank}(A)=\operatorname{rank}(B)$, then $\left\|P_{B} P_{A}^{\perp}\right\| \leq \min \left\{\left\|B^{+}\right\|_{2},\left\|A^{+}\right\|_{2}\right\}\|E\|$.

Proof:

$$
\begin{aligned}
P_{B} P_{A}^{\perp} & =P_{B}^{*} P_{A}^{\perp}=\left(B^{+}\right)^{*} B^{*} P_{A}^{\perp}=\left(B^{+}\right)^{*}(A+E)^{*} P_{A}^{\perp}=\left(B^{+}\right)^{*} E^{*} P_{A}^{\perp} \\
& =\left(B^{+}\right)^{*} B^{*}\left(B^{+}\right)^{*} E^{*} P_{A}^{\perp}=\left(B^{+}\right)^{*} R_{B} E^{*} P_{A}^{\perp} \quad\left(\left\|R_{B}\right\| \leq 1,\left\|P_{A}^{\perp}\right\| \leq 1\right)
\end{aligned}
$$

Part (ii) follows from the fact that $\operatorname{rank}(A) \leq \operatorname{rank}(B) \Rightarrow\left\|P_{B} P_{A}^{\perp}\right\| \leq\left\|P_{B}^{\perp} P_{A}\right\|$. Exercise! (Using C-S decomposition).

Theorem 7.4.6 It holds

$$
\begin{aligned}
& B^{+}-A^{+}=-\overbrace{B^{+} P_{B} E R_{A} A^{+}}^{F_{1}}+\overbrace{B^{+} P_{B} P_{A}^{\perp}}^{F_{2}}-\overbrace{R_{B}^{\perp} R_{A} A^{+}}^{F_{3}} . \\
& B^{+}-A^{+}=-B^{+} P_{B} E R_{A} A^{+}+\left(B^{*} B\right)^{+} R_{B} E^{*} P_{A}^{\perp}-R_{B}^{\perp} E^{*} P_{A}\left(A A^{*}\right)^{+} .
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& -B^{+} B B^{+}(B-A) A^{+} A A^{+}+B^{+} B B^{+}\left(I-A A^{+}\right)-\left(I-B^{+} B\right)\left(A^{+} A\right) A^{+} \\
= & -B^{+}(B-A) A^{+}+B^{+}\left(I-A A^{+}\right)-\left(I-B^{+} B\right) A^{+} \\
= & B^{+}-A^{+}\left(\text {Substitute } P_{B}=B B^{+}, E=B-A, R_{A}=A A^{+}, \cdots .\right) .
\end{aligned}
$$

Theorem 7.4.7 If $B=A+E$, then

$$
\left\|B^{+}-A^{+}\right\|_{F} \leq \sqrt{2}\|E\|_{F} \max \left\{\left\|A^{+}\right\|_{2}^{2},\left\|B^{+}\right\|_{2}^{2}\right\}
$$

Proof: Suppose $\operatorname{rank}(B) \leq \operatorname{rank}(A)$. Then the column spaces of F_{1} and F_{2} are orthogonal to the column space of F_{3}. Hence

$$
\left\|B^{+}-A^{+}\right\|_{F}^{2}=\left\|F_{1}+F_{2}\right\|_{F}^{2}+\left\|F_{3}\right\|_{F}^{2} \quad\left(\left(I-B^{+} B\right) B^{+}=0\right) .
$$

Since $F_{1}+F_{2}=B^{+}\left(P_{B} E A^{+} P_{A}+P_{B} P_{A}^{\perp}\right)$, we have

$$
\left\|F_{1}+F_{2}\right\|_{F}^{2} \leq\left\|B^{+}\right\|_{2}^{2}\left(\left\|P_{B} E A^{+} P_{A}\right\|_{F}^{2}+\left\|P_{B} P_{A}^{\perp}\right\|_{F}^{2}\right) .
$$

By Theorems 7.4.5 and 7.4.6 follows that

$$
\begin{aligned}
\left\|P_{B} E A^{+} P_{A}\right\|_{F}^{2}+\left\|P_{B} P_{A}^{\perp}\right\|_{F}^{2} & \leq\left\|P_{B} E A^{+}\right\|_{F}^{2}+\left\|P_{B}^{\perp} P_{A}\right\|_{F}^{2} \\
& =\left\|P_{B} E A^{+}\right\|_{F}^{2}+\left\|P_{B}^{\perp} E A^{+}\right\|_{F}^{2} \\
& =\left\|E A^{+}\right\|_{F}^{2} \leq\|E\|_{F}^{2}\left\|A^{+}\right\|_{2}^{2} .
\end{aligned}
$$

Thus

$$
\left\|F_{1}+F_{2}\right\|_{F} \leq\left\|A^{+}\right\|_{2}\left\|B^{+}\right\|_{2}\|E\|_{F} \quad\left(P_{B}^{\perp} P_{A}=P_{B}^{\perp} E R_{A} A^{+}=P_{B}^{\perp} E A^{+}\right) .
$$

By Theorem 7.4.6 we have

$$
\begin{aligned}
\left\|F_{3}\right\|_{F} & \leq\left\|A^{+}\right\|_{2}\left\|R_{B}^{\perp} R_{A}\right\|_{F}=\left\|A^{+}\right\|_{2}\left\|R_{A} R_{B}^{\perp}\right\|_{F}=\left\|A^{+}\right\|_{2}\left\|A^{+} E R_{B}^{\perp}\right\| \\
& \leq\left\|A^{+}\right\|_{2}^{2}\|E\|_{F} .
\end{aligned}
$$

The final bound is symmetric in A and B, it also holds when $\operatorname{rank}(B) \geq \operatorname{rank}(A)$.
Theorem 7.4.8 If $\operatorname{rank}(A)=\operatorname{rank}(B)$, then

$$
\left\|B^{+}-A^{+}\right\|_{F} \leq \sqrt{2}\left\|A^{+}\right\|_{2}\left\|B^{+}\right\|_{2}\|E\|_{F} . \quad \text { (see Wedin (1973)) }
$$

From above we have

$$
\frac{\left\|B^{+}-A^{+}\right\|_{F}}{\left\|B^{+}\right\|_{2}} \leq \sqrt{2} k_{2}(A) \frac{\|E\|_{F}}{\|A\|_{2}} .
$$

This bound implies that as E approaches zero, the relative error in B^{+}approaches zero, which further implies that B^{+}approach A^{+}.
Corollary 7.4.9 $\lim _{B \rightarrow A} B^{+}=A^{+} \Longleftrightarrow \operatorname{rank}(A)=\operatorname{rank}(B)$ as B approaches A.
(See Stewart 1977)

7.4.7 Perturbation of solutions of the least square problems

We first state two corollaries of Theorem (SVD).
Theorem 7.4.10 (SVD) If $A \in \mathbb{R}^{m \times n}$ then there exists orthogonal matrices $U=\left[u_{1}, \cdots, u_{m}\right] \in$ $\mathbb{R}^{m \times m}$ and $V=\left[v_{1}, \cdots, v_{n}\right] \in \mathbb{R}^{n \times n}$ such that $U^{T} A V=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{p}\right)$ where $p=$ $\min (m, n)$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0$.

Corollary 7.4.11 If the $S V D$ is given by Theorem 7.4.10 and $\sigma_{1} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}$ $=\cdots=\sigma_{p}=0$, then
(a) $\operatorname{rank}(A)=r$.
(b) $\mathcal{N}(A)=\operatorname{span}\left\{v_{r+1}, \cdots, v_{n}\right\}$.
(c) $\operatorname{Range}(A)=\operatorname{span}\left\{u_{1}, \cdots, u_{r}\right\}$.
(d) $A=\Sigma_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}=U_{r} \Sigma_{r} V_{r}^{T}$, where $U_{r}=\left[u_{1}, \cdots, u_{r}\right], V_{r}=\left[v_{1}, \cdots, v_{r}\right]$ and $\Sigma_{r}=$ $\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}\right)$.
(e) $\|A\|_{F}^{2}=\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}$.
(f) $\|A\|_{2}=\sigma_{1}$.

Proof: exercise!
Corollary 7.4.12 Let $S V D$ of $A \in \mathbb{R}^{m \times n}$ is given by Theorem 7.4.10. If $k<r=$ $\operatorname{rank}(A)$ and $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}$, then

$$
\begin{equation*}
\min _{\operatorname{rank}(X)=k, X \in \mathbb{R}^{m \times n}}\|A-X\|_{2}=\left\|A-A_{k}\right\|_{2}=\sigma_{k+1} . \tag{7.4.14}
\end{equation*}
$$

Proof: Let $X \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(X)=k$. Let $\tau_{1}, \cdots, \tau_{n}$ with $\tau_{1} \geq \cdots \geq \tau_{n} \geq 0$ be the singular values of X. Since $A=X+(A-X)$ and $\tau_{k+1}=0$, then $\sigma_{k+1}=\left|\tau_{k+1}-\sigma_{k+1}\right| \leq$ $\|A-X\|_{2}$. For the matrix $A_{k}=U \tilde{\Sigma} V^{T}\left(\tilde{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{k}, 0, \cdots, 0\right)\right)$ we have

$$
\left\|A-A_{k}\right\|_{2}=\left\|U(\Sigma-\tilde{\Sigma}) V^{T}\right\|_{2}=\|\Sigma-\tilde{\Sigma}\|_{2}=\sigma_{k+1} .
$$

LS-problem: $\|A x-b\|_{2}=\min !\Rightarrow x_{L S}=A^{+} b$.
Perturbated LS-problem: $\|(A+E) y-(b+f)\|_{2}=\min !\Rightarrow \quad y=(A+E)^{+}(b+f)$.
Lemma 7.4.13 Let $A, E \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=r$.
(a) If $\operatorname{rank}(A+E)>r$ then holds $\left\|(A+E)^{+}\right\|_{2} \geq \frac{1}{\|E\|_{2}}$.
(b) If $\operatorname{rank}(A+E) \leq r$ and $\left\|A^{+}\right\|_{2}\|E\|_{2}<1$ then $\operatorname{rank}(A+E)=r$ and

$$
\left\|(A+E)^{+}\right\|_{2} \leq \frac{\left\|A^{+}\right\|_{2}}{1-\left\|A^{+}\right\|_{2}\|E\|_{2}} .
$$

Proof: Let $\tau_{1} \geq \cdots \geq \tau_{n}$ be the singular values of $A+E$.
To (a): If τ_{k} is the smallest nonzero singular value, then $k \geq r+1$ because of $\operatorname{rank}(A+$ $E)>r$. By Corollary 7.4.6, we have $\|E\|_{2}=\|(A+E)-A\|_{2} \geq \tau_{r+1} \geq \tau_{k}$ and therefore $\left\|(A+E)^{+}\right\|_{2}=1 / \tau_{k} \geq 1 /\|E\|_{2}$.

To (b): Let $\sigma_{1} \geq \cdots \geq \sigma_{n}$ be the singular values of A, then $\sigma_{r} \neq 0$ because of $\operatorname{rank}(A)=r$ and $\left\|A^{+}\right\|_{2}=1 / \sigma_{r}$. Since $\left\|A^{+}\right\|_{2}\|E\|_{2}<1$ so $\|E\|_{2}<\sigma_{r}$, and then by Corollary 7.4.6 it must be $\operatorname{rank}(A+E) \geq r$, so we have $\operatorname{rank}(A+E)=r$. By Weyl's theorem (Theorem 6.1.5) we have $\tau_{r} \geq \sigma_{r}-\|E\|_{2}$ and furthermore here $\sigma_{r}-\|E\|_{2}>0$, so one obtains

$$
\left\|(A+E)^{+}\right\|_{2}=1 / \tau_{r} \leq 1 /\left(\sigma_{r}-\|E\|_{2}\right)=\left\|A^{+}\right\|_{2} /\left(1-\left\|A^{+}\right\|_{2}\|E\|_{2}\right) .
$$

Lemma 7.4.14 Let $A, E \in \mathbb{R}^{m \times n}, b, f \in \mathbb{R}^{m}$ and $x=A^{+} b, y=(A+E)^{+}(b+f)$ and $r=b-A x$, then holds

$$
\begin{aligned}
y-x= & {\left[-(A+E)^{+} E A^{+}+(A+E)^{+}\left(I-A A^{+}\right)\right.} \\
& +\left(I-(A+E)^{+}(A+E) A^{+}\right] b+(A+E)^{+} f \\
= & -(A+E)^{+} E x+(A+E)^{+}(A+E)^{+T} E^{T} r \\
& +\left(I-(A+E)^{+}(A+E)\right) E^{T} A^{+T} x+(A+E)^{+} f .
\end{aligned}
$$

Proof: $y-x=\left[(A+E)^{+}-A^{+}\right] b+(A+E)^{+} f$ and for $(A+E)^{+}-A^{+}$one has the decomposition

$$
\begin{aligned}
(A+E)^{+}-A^{+}= & -(A+E)^{+} E A^{+}+(A+E)^{+}-A^{+} \\
& +(A+E)^{+}(A+E-A) A^{+} \\
= & -(A+E)^{+} E A^{+}+(A+E)^{+}\left(I-A A^{+}\right) \\
& -\left(I-(A+E)^{+}(A+E)\right) A^{+} .
\end{aligned}
$$

Let $C:=A+E$ and apply the generalized inverse to C we obtain $C^{+}=C^{+} C C^{+}=$ $C^{+} C^{+{ }^{T}} C^{+}$and

$$
A^{T}\left(I-A A^{+}\right)=A^{T}-A^{T} A A^{+}=A^{T}-A^{T} A^{+^{T}} A^{T}=A^{T}-A^{T} A^{T^{+}} A^{T}=0
$$

also $A^{+}=A^{T} A^{+^{T}} A^{+}$and $\left(I-C^{+} C\right) C^{T}=0$. Hence it holds

$$
C^{+}\left(I-A A^{+}\right)=C^{+} C^{+^{T}} E^{T}\left(I-A A^{+}\right)
$$

and

$$
\left(I-C^{+} C\right) A^{+}=\left(I-C^{+} C\right) E^{T} A^{+^{T}} A^{+}
$$

If we substitute this into the second and third terms in the decomposition of $(A+E)^{+}-A^{+}$ then we have the result ($r=\left(I-A A^{+}\right) b, x=A^{+} b$):

$$
\begin{aligned}
y-x= & {\left[-(A+E)^{+} E A^{+}+(A+E)^{+}(A+E)^{+^{T}} E^{T}\left(I-A A^{T}\right)\right.} \\
& \left.+\left(I-(A+E)^{+}(A+E)\right) E^{T} A^{+^{T}} A^{+}\right] b+(A+E)^{+} f \\
= & -(A+E)^{+} E x+(A+E)^{+}(A+E)^{+^{T}} E^{T} r \\
& +\left(I-(A+E)^{+}(A+E)\right) E^{T} A^{+^{T}} x+(A+E)^{+} f .
\end{aligned}
$$

Theorem 7.4.15 Let $A, E \in \mathbb{R}^{m \times n}, b, f \in \mathbb{R}^{m}$, and $x=A^{+} b \neq 0, y=(A+E)^{+}(b+f)$ and $r=b-A x$. If $\operatorname{rank}(A)=r, \operatorname{rank}(A+E) \leq r$ and $\left\|A^{+}\right\|_{2}\|E\|_{2}<1$, then holds

$$
\frac{\|y-x\|_{2}}{\|x\|_{2}} \leq \frac{\|A\|_{2}\left\|A^{+}\right\|_{2}}{1-\left\|A^{+}\right\|_{2}\|E\|_{2}}\left[2 \frac{\|E\|_{2}}{\|A\|_{2}}+\frac{\left\|A^{+}\right\|_{2}}{1-\left\|A^{+}\right\|_{2}\|E\|_{2}} \frac{\|E\|_{2}}{\|A\|_{2}} \frac{\|r\|_{2}}{\|x\|_{2}}+\frac{\|f\|_{2}}{\|A\|_{2}\|x\|_{2}}\right]
$$

Proof: From Lemma 7.4.14 follows

$$
\begin{aligned}
\|y-x\|_{2} \leq & \left\|(A+E)^{+}\right\|_{2}\left[\|E\|_{2}\|x\|_{2}+\left\|(A+E)^{+}\right\|_{2}\|E\|_{2}\|r\|_{2}+\|f\|_{2}\right] \\
& +\left\|I-(A+E)^{+}(A+E)\right\|_{2}\|E\|_{2}\left\|A^{+}\right\|_{2}\|x\|_{2} .
\end{aligned}
$$

Since $I-(A+E)^{+}(A+E)$ is symmetric and it holds

$$
\left(I-(A+E)^{+}(A+E)\right)^{2}=I-(A+E)^{+}(A+E)
$$

From this follows $\left\|I-(A+E)^{+}(A+E)\right\|_{2}=1$, if $(A+E)^{+}(A+E) \neq I$. Together with the estimation of Lemma 7.4.13(b), we obtain

$$
\|y-x\|_{2} \leq \frac{\left\|A^{+}\right\|_{2}}{1-\left\|A^{+}\right\|_{2}\|E\|_{2}}\left[2\|E\|_{2}\|x\|_{2}+\|f\|_{2}+\frac{\left\|A^{+}\right\|_{2}}{1-\left\|A^{+}\right\|_{2}\|E\|_{2}}\|E\|_{2}\|r\|_{2}\right]
$$

and

$$
\frac{\|y-x\|_{2}}{\|x\|_{2}} \leq \frac{\|A\|_{2}\left\|A^{+}\right\|_{2}}{1-\left\|A^{+}\right\|_{2}\|E\|_{2}}\left[2 \frac{\|E\|_{2}}{\|A\|_{2}}+\frac{\|f\|_{2}}{\|A\|_{2}\|x\|_{2}}+\frac{\left\|A^{+}\right\|_{2}}{1-\left\|A^{+}\right\|_{2}\|E\|_{2}} \frac{\|E\|_{2}}{\|A\|_{2}} \frac{\|r\|_{2}}{\|x\|_{2}}\right]
$$

7.5 Unsymmetric Lanczos Method

Suppose $A \in \mathbb{R}^{n \times n}$ and that a nonsingular matrix X exists such that

$$
X^{-1} A X=T=\left[\begin{array}{cccc}
\alpha_{1} & \gamma_{1} & & 0 \\
\beta_{1} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \gamma_{n-1} \\
0 & & \beta_{n-1} & \alpha_{n}
\end{array}\right]
$$

Let

$$
X=\left[x_{1}, \cdots, x_{n}\right] \text { and } X^{-T}=Y=\left[y_{1}, \cdots, y_{n}\right]
$$

Compared columns in $A X=X T$ and $A^{T} Y=Y T^{T}$, we find that

$$
A x_{j}=\gamma_{j-1} x_{j-1}+\alpha_{j} x_{j}+\beta_{j} x_{j+1}, \quad \gamma_{0} x_{0} \equiv 0
$$

and

$$
A^{T} y_{j}=\beta_{j-1} y_{j-1}+\alpha_{j} y_{j}+\gamma_{j} y_{j+1}, \quad \beta_{0} y_{0} \equiv 0
$$

for $j=1, \cdots, n-1$. These equations together with $Y^{T} X=I_{n}$ imply $\alpha_{j}=y_{j}^{T} A x_{j}$ and

$$
\begin{align*}
& \beta_{j} x_{j+1}=\gamma_{j} \equiv\left(A-\alpha_{j}\right) x_{j}-\gamma_{j-1} x_{j-1} \\
& \gamma_{j} y_{j+1}=p_{j} \equiv\left(A-\alpha_{j}\right)^{T} y_{j}-\beta_{j-1} y_{j-1} . \tag{7.5.1}
\end{align*}
$$

These is some flexibility in choosing the scale factors β_{j} and γ_{j}. A "canonical" choice is to set $\beta_{j}=\left\|\gamma_{j}\right\|_{2}$ and $\gamma_{j}=x_{j+1}^{T} p_{j}$ giving:

Algorithm 7.5.1 (Biorthogonalization method of Lanczos)

$$
\begin{align*}
& \text { Given } x_{1}, y_{1} \in \mathbb{R}^{n} \text { with } x_{1}^{T} x_{1}=y_{1}^{T} y_{1}=1 \text {. } \\
& \text { For } j=1, \cdots, n-1, \\
& \quad \alpha_{j}=y_{j}^{T} A x_{j}, \\
& \quad r_{j}=\left(A-\alpha_{j}\right) x_{j}-\gamma_{j-1} x_{j-1} \quad\left(\gamma_{0} x_{0} \equiv 0\right), \\
& \quad \beta_{j}=\left\|r_{j}\right\|_{2} \text {. } \\
& \quad \text { If } \beta_{j}>0 \text { then } \\
& \quad x_{j+1}=r_{j} / \beta_{j}, \tag{7.5.2}\\
& \quad p_{j}=\left(A-\alpha_{j}\right)^{T} y_{j}-\beta_{j-1} y_{j-1} \quad\left(\beta_{0} y_{0} \equiv 0\right), \\
& \quad \gamma_{j}=x_{j+1}^{T} p_{j}, \\
& \quad \text { else stop; } \\
& \text { If } \gamma_{j} \neq 0 \text { then } y_{j+1}=p_{j} / \gamma_{j} \text { else stop; } \\
& \text { end for } \\
& \alpha_{n}=x_{n}^{T} A y_{n} .
\end{align*}
$$

Define $X_{j}=\left[x_{1}, \cdots, x_{j}\right], Y_{j}=\left[y_{1}, \cdots, y_{j}\right]$ and T_{j} to be the leading $j \times j$ principal submatrix of T, it is easy to verify that

$$
\begin{align*}
& A X_{j}=X_{j} T_{j}+\gamma_{j} e_{j}^{T}, \\
& A^{T} Y_{j}=Y_{j} T_{j}^{T}+p_{j} e_{j}^{T} . \tag{7.5.3}
\end{align*}
$$

Remark 7.5.1 (i) $p_{j}^{T} \gamma_{j}=\beta_{j} \gamma_{j} x_{j+1}^{T} y_{j+1}=\beta_{j} \gamma_{j}$ from (7.5.1).
(ii) Break of the algorithm (7.5.2) occurs if $p_{j}^{T} \gamma_{j}=0$:
(a) $\gamma_{j}=0 \Rightarrow \beta_{j}=0$. Then X_{j} is an invariant subspace of A (by (7.5.3)).
(b) $p_{j}=0 \Rightarrow \gamma_{j}=0$. Then Y_{j} is an invariant subspace of A^{T} (by (7.5.3)).
(c) $p_{j}^{T} \gamma_{j}=0$ but $\left\|p_{j}\right\|\left\|\gamma_{j}\right\| \neq 0$, then (7.5.2) breaks down. We begin the algorithm (7.5.2) with a new starting vector.
(iii) If $p_{j}^{T} \gamma_{j}$ is very small, then γ_{j} or β_{j} small. Hence y_{j+1} or x_{j+1} are large, so the algorithm (7.5.2) is unstable.

Definition 7.5.1 An upper Hessenberg matrix $H=\left(h_{i j}\right)$ is called unreducible, if $h_{i+1, i} \neq$ 0 , for $i=1, \cdots, n-1$ (that is subdiagonal entries are nonzero). A tridiagonal matrix $T=$ $\left(t_{i j}\right)$ is called unreducible, if $t_{i, i-1} \neq 0$ for $i=2, \cdots, n$ and $t_{i, i+1} \neq 0$ for $i=1, \cdots, n-1$.

Theorem 7.5.2 Let $A \in \mathbb{R}^{n \times n}$. Then
(i) If $x \neq 0$ so that $K\left[x_{1}, A, n\right]=\left[x_{1}, A x_{1}, \cdots, A^{n-1} x_{1}\right]$ nonsingular and if X is a nonsingular matrix such that $K\left[x_{1}, A, n\right]=X R$, where R is an upper triangular matrix, then $H=X^{-1} A X$ is an upper unreducible Hessenberg matrix.
(ii) Let X be a nonsingular matrix with first column x_{1} and if $H=X^{-1} A X$ is an upper Hessenberg matrix, then holds

$$
K\left[x_{1}, A, n\right]=X K\left[e_{1}, H, n\right] \equiv X R,
$$

where R is an upper triangular matrix. Furthermore, if H is unreducible, then R is nonsingular.
(iii) If $H=X^{-1} A X$ and $\tilde{H}=Y^{-1} A Y$ where H and \tilde{H} are both upper Hessenberg matrices, H is unreducible and the first columns x_{1} and y_{1} of X and Y, respectively, are linearly dependent, then $J=X^{-1} Y$ is an upper triangular matrix and $\tilde{H}=$ $J^{-1} H J$.

Proof: ad(i): Since $x_{1}, A x_{1}, \cdots, A^{n-1} x_{1}$ are linearly independent, so $A^{n} x_{1}$ is the linear combination of $\left\{x_{1}, A x_{1}, \cdots, A^{n-1} x_{1}\right\}$, i.e., there exists c_{0}, \cdots, c_{n-1} such that

$$
A^{n} x_{1}=\sum_{i=0}^{n-1} c_{i} A^{i} x_{1}
$$

Let

$$
C=\left[\begin{array}{cccc}
0 & \cdots & 0 & c_{0} \\
1 & \ddots & & c_{1} \\
& \ddots & 0 & \vdots \\
0 & & 1 & c_{n-1}
\end{array}\right]
$$

Then we have $K\left[x_{1}, A, n\right] C=\left[A x_{1}, A^{2} x_{1}, \cdots, A^{n-1} x_{1}, A^{n} x_{1}\right]=A K\left[x_{1}, A, n\right]$. Thus $X R C=A X R$. We then have

$$
X^{-1} A X=R C R^{-1}=H
$$

is an unreducible Hessenberg matrix.
$\operatorname{ad}(i i)$: From $A=X H X^{-1}$ follows that $A^{i} x_{1}=X H^{i} X^{-1} x_{1}=X H^{i} e_{1}$. Then

$$
\begin{aligned}
K\left[x_{1}, A, n\right] & =\left[x_{1}, A x_{1}, \cdots, A^{n-1} x_{1}\right]=\left[X e_{1}, X H e_{1}, \cdots, X H^{n-1} e_{1}\right] \\
& =X\left[e_{1}, H e_{1}, \cdots, H^{n-1} e_{1}\right] .
\end{aligned}
$$

If H is upper Hessenberg, then $R=\left[e_{1}, H e_{1}, \cdots, H^{n-1} e_{1}\right]$ is upper triangular. If H is unreducible upper Hessenberg, then R is nonsingular, since $r_{11}=1, r_{22}=h_{21}$, $r_{33}=h_{21} h_{32}, \cdots$, and so on.
$\operatorname{ad}\left(\right.$ iii : Let $y_{1}=\lambda x_{1}$. We apply (ii) to the matrix H. It follows $K\left[x_{1}, A, n\right]=X R_{1}$. Applying (ii) to \tilde{H}, we also have $K\left[y_{1}, A, n\right]=Y R_{2}$. Here R_{1} and R_{2} are upper triangular. Since $y_{1}=\lambda x_{1}$, so

$$
\lambda K\left[x_{1}, A, n\right]=\lambda X R_{1}=Y R_{2}
$$

Since R_{1} is nonsingular, by (ii) we have R_{2} is nonsingular and $X^{-1} Y=\lambda R_{1} R_{2}^{-1}=J$ is upper triangular. So

$$
\tilde{H}=Y^{-1} A Y=\left(Y^{-1} X\right) X^{-1} A X\left(X^{-1} Y\right)=J^{-1} H J
$$

Theorem 7.5.3 Let $A \in \mathbb{R}^{n \times n}, x, y \in \mathbb{R}^{n}$ with $K[x, A, n]$ and $K\left[y, A^{T}, n\right]$ nonsingular. Then
(i) If $B=K\left[y, A^{T}, n\right]^{T} K[x, A, n]=\left(y^{T} A^{i+j-2} x\right)_{i, j=1, \cdots, n}$ has a decomposition $B=$ $L D L^{T}$, where L is a lower triangular with $l_{i i}=1$ and D is diagonal (that is all principal determinants of B are nonzero) and if $X=K[x, A, n] L^{-1}$, then $T=X^{-1} A X$ is an unreducible tridiagonal matrix.
(ii) Let X, Y be nonsingular with
(a) $T=X^{-1} A X, \tilde{T}=Y^{-1} A Y$ unreducible tridiagonal,
(b) the first column of X and Y are linearly dependent,
(c) the first row of X and Y are linearly dependent.

Then $X^{-1} Y=D$ diagonal and $\tilde{T}=D^{-1} T D$.
(iii) If $T=X^{-1} A X$ is unreducible tridiagonal, x is the first column of X and Y is the first row of X^{-1}, then

$$
B=K\left[y, A^{T}, n\right]^{T} K[x, A, n]
$$

has a $L D L^{T}$ decomposition.
Proof: ad(i):

$$
\begin{equation*}
X=K[x, A, n] L^{-T} \Rightarrow X L^{T}=K[x, A, n] . \tag{7.5.4}
\end{equation*}
$$

So the first column of X is x. From $B=L D L^{T}$ follows

$$
K\left[y, A^{T}, n\right]^{T}=L D L^{T} K[x, A, n]^{-1}
$$

and then

$$
\begin{equation*}
K\left[y, A^{T}, n\right]=K[x, A, n]^{-T} L D L^{T}=X^{-T} D L^{T} . \tag{7.5.5}
\end{equation*}
$$

Applying Theorem 7.5.2(i) to (7.5.4), we get that $X^{-1} A X$ is unreducible upper Hessenberg. Applying Theorem 7.5.2(i) to (7.5.5), we get that

$$
X^{T} A^{T} X^{-T}=\left(X^{-1} A X\right)^{T}
$$

is unreducible upper Hessenberg. So $X^{-1} A X$ is an unreducible tridiagonal matrix.
$\operatorname{ad}(\mathrm{ii}): T$ and \tilde{T} are unreducible upper Hessenberg, by Theorem $7.5 .2(3)$ we have $X^{-1} Y$ upper triangular on the other hand. Since $T^{T}=X^{T} A^{T} X^{-T}$ and $\tilde{T}^{T}=Y^{T} A^{T} Y^{-T}$ are unreducible upper Hessenberg, then by Theorem 7.5.2(iii) we also have $Y^{T} X^{-T}=$ $\left(X^{-1} Y\right)^{T}$ is upper triangular. Thus $X^{-1} Y$ is upper triangular, also lower triangular so the matrix $X^{-1} Y$ is diagonal.
ad(iii): exercise!

Chapter 8

Arnoldi Method

8.1 Arnoldi decompositions

Suppose that the columns of K_{k+1} are linearly independent and let

$$
K_{k+1}=U_{k+1} R_{k+1}
$$

be the $Q R$ factorization of K_{k+1}.
Theorem 8.1.1 Let $\left\|u_{1}\right\|_{2}=1$ and the columns of $K_{k+1}\left(A, u_{1}\right)$ be linearly independent. Let $U_{k+1}=\left[\begin{array}{lll}u_{1} & \cdots & u_{k+1}\end{array}\right]$ be the Q-factor of K_{k+1}. Then there is a $(k+1) \times k$ unreduced upper Hessenberg matrix

$$
\hat{H}_{k} \equiv\left[\begin{array}{cccc}
\hat{h}_{11} & \cdots & \cdots & \hat{h}_{1 k} \\
\hat{h}_{21} & \hat{h}_{22} & \cdots & \hat{h}_{2 k} \\
& \ddots & \ddots & \vdots \\
& & \hat{h}_{k, k-1} & \hat{h}_{k k} \\
\hline & & & \hat{h}_{k+1, k}
\end{array}\right] \quad \text { with } \quad \hat{h}_{i+1, i} \neq 0
$$

such that

$$
\begin{equation*}
A U_{k}=U_{k+1} \hat{H}_{k} \tag{8.1.1}
\end{equation*}
$$

Conversely, if U_{k+1} is orthonormal and satisfies (8.1.1), where \hat{H}_{k} is a $(k+1) \times k$ unreduced upper Hessenberg matrix, then U_{k+1} is the Q-factor of $K_{k+1}\left(A, u_{1}\right)$.

Proof: (" \Rightarrow ") Let $K_{k}=U_{k} R_{k}$ be the $Q R$ factorization and $S_{k}=R_{k}^{-1}$. Then

$$
A U_{k}=A K_{k} S_{k}=K_{k+1}\left[\begin{array}{c}
0 \\
S_{k}
\end{array}\right]=U_{k+1} R_{k+1}\left[\begin{array}{c}
0 \\
S_{k}
\end{array}\right]=U_{k+1} \hat{H}_{k}
$$

where

$$
\hat{H}_{k}=R_{k+1}\left[\begin{array}{c}
0 \\
S_{k}
\end{array}\right] .
$$

It implies that \hat{H}_{k} is a $(k+1) \times k$ Hessenberg matrix and

$$
\hat{h}_{i+1, i}=r_{i+1, i+1} s_{i i}=\frac{r_{i+1, i+1}}{r_{i i}} .
$$

Thus by the nonsingularity of R_{k}, \hat{H}_{k} is unreduced.
(" \Leftarrow ") If $k=1$, then

$$
A u_{1}=\hat{h}_{11} u_{1}+\hat{h}_{21} u_{2} .
$$

It follows that

$$
K_{2}\left(A, u_{1}\right)=\left[\begin{array}{ll}
u_{1} & A u_{1}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & \hat{h}_{11} \\
0 & \hat{h}_{21}
\end{array}\right] .
$$

Since $\left[u_{1} u_{2}\right]$ is orthonormal, $\left[u_{1} u_{2}\right]$ is the Q-factor of K_{2}.
Assume U_{k} is the Q-factor of $K_{k}\left(A, u_{1}\right)$, i.e.

$$
K_{k}\left(A, u_{1}\right)=U_{k} R_{k},
$$

where R_{k} is upper triangular. If we partition

$$
\hat{H}_{k}=\left[\begin{array}{cc}
\hat{H}_{k-1} & \hat{h}_{k} \\
0 & \hat{h}_{k+1, k}
\end{array}\right],
$$

then from (8.1.1)

$$
\begin{aligned}
K_{k+1}\left(A, u_{1}\right) & =\left[\begin{array}{ll}
K_{k}\left(A, u_{1}\right) & A u_{k}
\end{array}\right] \\
& =\left[\begin{array}{ll}
U_{k} R_{k} & U_{k} \hat{h}_{k}+\hat{h}_{k+1, k} u_{k+1}
\end{array}\right] \\
& =\left[\begin{array}{ll}
U_{k} & u_{k+1}
\end{array}\right]\left[\begin{array}{cc}
R_{k} & \hat{h}_{k} \\
0 & \hat{h}_{k+1, k}
\end{array}\right] .
\end{aligned}
$$

Hence U_{k+1} is the Q-factor of K_{k+1}.
Definition 8.1.1 Let $U_{k+1} \in \mathbb{C}^{n \times(k+1)}$ be orthonormal. If there is a $(k+1) \times k$ unreduced upper Hessenberg matrix \hat{H}_{k} such that

$$
\begin{equation*}
A U_{k}=U_{k+1} \hat{H}_{k}, \tag{8.1.2}
\end{equation*}
$$

then (8.1.2) is called an Arnoldi decomposition of order k. If \hat{H}_{k} is reduced, we say the Arnoldi decomposition is reduced.

Partition

$$
\hat{H}_{k}=\left[\begin{array}{c}
H_{k} \\
\hat{h}_{k+1, k} e_{k}^{T}
\end{array}\right],
$$

and set

$$
\beta_{k}=\hat{h}_{k+1, k} .
$$

Then (8.1.2) is equivalent to

$$
A U_{k}=U_{k} H_{k}+\beta_{k} u_{k+1} e_{k}^{T}
$$

Theorem 8.1.2 Suppose the Krylov sequence $K_{k+1}\left(A, u_{1}\right)$ does not terminate at $k+1$. Then up to scaling of the columns of U_{k+1}, the Arnoldi decomposition of K_{k+1} is unique.

Proof: Since the Krylov sequence $K_{k+1}\left(A, u_{1}\right)$ does not terminate at $k+1$, the columns of $K_{k+1}\left(A, u_{1}\right)$ are linearly independent. By Theorem 8.1.1, there is an unreduced matrix H_{k} and $\beta_{k} \neq 0$ such that

$$
\begin{equation*}
A U_{k}=U_{k} H_{k}+\beta_{k} u_{k+1} e_{k}^{T} \tag{8.1.3}
\end{equation*}
$$

where $U_{k+1}=\left[U_{k} u_{k+1}\right]$ is an orthonormal basis for $\mathcal{K}_{k+1}\left(A, u_{1}\right)$. Suppose there is another orthonormal basis $\tilde{U}_{k+1}=\left[\begin{array}{ll}\tilde{U}_{k} & \tilde{u}_{k+1}\end{array}\right]$ for $\mathcal{K}_{k+1}\left(A, u_{1}\right)$, unreduced matrix \tilde{H}_{k} and $\tilde{\beta}_{k} \neq 0$ such that

$$
A \tilde{U}_{k}=\tilde{U}_{k} \tilde{H}_{k}+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{T}
$$

Then we claim that

$$
\tilde{U}_{k}^{H} u_{k+1}=0
$$

For otherwise there is a column \tilde{u}_{j} of \tilde{U}_{k} such that

$$
\tilde{u}_{j}=\alpha u_{k+1}+U_{k} a, \quad \alpha \neq 0 .
$$

Hence

$$
A \tilde{u}_{j}=\alpha A u_{k+1}+A U_{k} a
$$

which implies that $A \tilde{u}_{j}$ contains a component along $A^{k+1} u_{1}$. Since the Krylov sequence $K_{k+1}\left(A, u_{1}\right)$ does not terminate at $k+1$, we have

$$
\mathcal{K}_{k+2}\left(A, u_{1}\right) \neq \mathcal{K}_{k+1}\left(A, u_{1}\right)
$$

Therefore, $A \tilde{u}_{j}$ lies in $\mathcal{K}_{k+2}\left(A, u_{1}\right)$ but not in $\mathcal{K}_{k+1}\left(A, u_{1}\right)$ which is a contradiction.
Since U_{k+1} and \tilde{U}_{k+1} are orthonormal bases for $\mathcal{K}_{k+1}\left(A, u_{1}\right)$ and $\tilde{U}_{k}^{H} u_{k+1}=0$, it follows that

$$
\mathcal{R}\left(U_{k}\right)=\mathcal{R}\left(\tilde{U}_{k}\right) \quad \text { and } \quad U_{k}^{H} \tilde{u}_{k+1}=0
$$

that is

$$
U_{k}=\tilde{U}_{k} Q
$$

for some unitary matrix Q. Hence

$$
A\left(\tilde{U}_{k} Q\right)=\left(\tilde{U}_{k} Q\right)\left(Q^{H} \tilde{H}_{k} Q\right)+\tilde{\beta}_{k} \tilde{u}_{k+1}\left(e_{k}^{T} Q\right)
$$

or

$$
\begin{equation*}
A U_{k}=U_{k}\left(Q^{H} \tilde{H}_{k} Q\right)+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{T} Q \tag{8.1.4}
\end{equation*}
$$

On premultiplying (8.1.3) and (8.1.4) by U_{k}^{H}, we obtain

$$
H_{k}=U_{k}^{H} A U_{k}=Q^{H} \tilde{H}_{k} Q
$$

Similarly, premultiplying by u_{k+1}^{H}, we obtain

$$
\beta_{k} e_{k}^{T}=u_{k+1}^{H} A U_{k}=\tilde{\beta}_{k}\left(u_{k+1}^{H} \tilde{u}_{k+1}\right) e_{k}^{T} Q .
$$

It follows that the last row of Q is $\omega_{k} e_{k}^{T}$, where $\left|\omega_{k}\right|=1$. Since the norm of the last column of Q is one, the last column of Q is $\omega_{k} e_{k}$. Since H_{k} is unreduced, it follows from the implicit Q theorem that

$$
Q=\operatorname{diag}\left(\omega_{1}, \cdots, \omega_{k}\right), \quad\left|\omega_{j}\right|=1, j=1, \ldots, k .
$$

Thus up to column scaling $U_{k}=\tilde{U}_{k} Q$ is the same as \tilde{U}_{k}. Subtracting (8.1.4) from (8.1.3), we find that

$$
\beta_{k} u_{k+1}=\omega_{k} \tilde{\beta}_{k} \tilde{u}_{k+1}
$$

so that up to scaling u_{k+1} and \tilde{u}_{k+1} are the same.
Theorem 8.1.3 Let the orthonormal matrix U_{k+1} satisfy

$$
A U_{k}=U_{k+1} \hat{H}_{k},
$$

where \hat{H}_{k} is Hessenberg. Then \hat{H}_{k} is reduced if and only if $\mathcal{R}\left(U_{k}\right)$ contains an eigenspace of A.

Proof: (" \Rightarrow ") Suppose that \hat{H}_{k} is reduced, say that $h_{j+1, j}=0$. Partition

$$
\hat{H}_{k}=\left[\begin{array}{cc}
H_{11} & H_{12} \\
0 & H_{22}
\end{array}\right] \quad \text { and } \quad U_{k}=\left[\begin{array}{cc}
U_{11} & U_{12}
\end{array}\right],
$$

where H_{11} is an $j \times j$ matrix and U_{11} is consisted the first j columns of U_{k+1}. Then

$$
A\left[\begin{array}{ll}
U_{11} & U_{12}
\end{array}\right]=\left[\begin{array}{lll}
U_{11} & U_{12} & u_{k+1}
\end{array}\right]\left[\begin{array}{cc}
H_{11} & H_{12} \\
0 & H_{22}
\end{array}\right] .
$$

It implies that

$$
A U_{11}=U_{11} H_{11}
$$

so that U_{11} is an eigenbasis of A.
(" \Leftarrow ") Suppose that A has an eigenspace that is a subset of $\mathcal{R}\left(U_{k}\right)$ and \hat{H}_{k} is unreduced. Let $\left(\lambda, U_{k} w\right)$ for some w be an eigenpair of A. Then

$$
\begin{aligned}
0 & =(A-\lambda I) U_{k} w=\left(U_{k+1} \hat{H}_{k}-\lambda U_{k}\right) w \\
& =\left(U_{k+1} \hat{H}_{k}-\lambda U_{k+1}\left[\begin{array}{l}
I \\
0
\end{array}\right]\right) w=U_{k+1} \hat{H}_{\lambda} w,
\end{aligned}
$$

where

$$
\hat{H}_{\lambda}=\left[\begin{array}{c}
H_{k}-\lambda I \\
h_{k+1, k} e_{k}^{T}
\end{array}\right] .
$$

Since \hat{H}_{λ} is unreduced, the matrix $U_{k+1} \hat{H}_{\lambda}$ is of full column rank. It follows that $w=0$ which is a contradiction.

Write the k-th column of the Arnoldi decomposition

$$
A U_{k}=U_{k} H_{k}+\beta_{k} u_{k+1} e_{k}^{T}
$$

in the form

$$
A u_{k}=U_{k} h_{k}+\beta_{k} u_{k+1}
$$

Then from the orthonormality of U_{k+1}, we have

$$
h_{k}=U_{k}^{H} A u_{k} .
$$

Since

$$
\beta_{k} u_{k+1}=A u_{k}-U_{k} h_{k}
$$

and $\left\|u_{k+1}\right\|_{2}=1$, we must have

$$
\beta_{k}=\left\|A u_{k}-U_{k} h_{k}\right\|_{2}
$$

and

$$
u_{k+1}=\beta_{k}^{-1}\left(A u_{k}-U_{k} h_{k}\right)
$$

Algorithm 8.1.1 (Arnoldi process)

1. For $k=1,2, \ldots$
2. $h_{k}=U_{k}^{H} A u_{k}$.
3. $v=A u_{k}-U_{k} h_{k}$
4. $\beta_{k}=h_{k+1, k}=\|v\|_{2}$
5. $u_{k+1}=v / \beta_{k}$
6. $\hat{H}_{k}=\left[\begin{array}{cc}\hat{H}_{k-1} & h_{k} \\ 0 & h_{k+1, k}\end{array}\right]$
7. end for k

The computation of u_{k+1} is actually a form of the well-known Gram-Schmidt algorithm. In the presence of inexact arithmetic cancelation in statement 3 can cause it to fail to produce orthogonal vectors. The cure is process called reorthogonalization.

Algorithm 8.1.2 (Reorthogonalized Arnoldi process)

For $k=1,2, \ldots$

$$
\begin{aligned}
& h_{k}=U_{k}^{H} A u_{k} . \\
& v=A u_{k}-U_{k} h_{k} . \\
& w=U_{k}^{H} v . \\
& h_{k}=h_{k}+w . \\
& v=v-U_{k} w . \\
& \beta_{k}=h_{k+1, k}=\|v\|_{2} \\
& u_{k+1}=v / \beta_{k} \\
& \hat{H}_{k}=\left[\begin{array}{cc}
\hat{H}_{k-1} & h_{k} \\
0 & h_{k+1, k}
\end{array}\right]
\end{aligned}
$$

end for k

Let $y_{i}^{(k)}$ be an eigenvector of H_{k} associated with the eigenvalue $\lambda_{i}^{(k)}$ and $x_{i}^{(k)}=U_{k} y_{i}^{(k)}$ the Ritz approximate eigenvector.

Theorem 8.1.4

$$
\left(A-\lambda_{i}^{(k)} I\right) x_{i}^{(k)}=h_{k+1, k} e_{k}^{T} y_{i}^{(k)} u_{k+1} .
$$

and therefore,

$$
\left\|\left(A-\lambda_{i}^{(k)} I\right) x_{i}^{(k)}\right\|_{2}=\left|h_{k+1, k}\right|\left|e_{k}^{T} y_{i}^{(k)}\right| .
$$

8.2 Krylov decompositions

Definition 8.2.1 Let $u_{1}, u_{2}, \ldots, u_{k+1}$ be linearly independent and let $U_{k}=\left[\begin{array}{lll}u_{1} & \cdots & u_{k}\end{array}\right]$.

$$
A U_{k}=U_{k} B_{k}+u_{k+1} b_{k+1}^{H}
$$

is called a Krylov decomposition of order $k . \mathcal{R}\left(U_{k+1}\right)$ is called the space spanned by the decomposition. Two Krylov decompositions spanning the same spaces are said to be equivalent.

Let $\left[\begin{array}{l}V\end{array}\right]^{H}$ be any left inverse for U_{k+1}. Then it follows that

$$
B_{k}=V^{H} A U_{k} \quad \text { and } \quad b_{k+1}^{H}=v^{H} A U_{k} .
$$

In particular, B_{k} is a Rayleigh quotient of A.
Let

$$
A U_{k}=U_{k} B_{k}+u_{k+1} b_{k+1}^{H}
$$

be a Krylov decomposition and Q be nonsingular. That is

$$
A U_{k}=U_{k+1} \hat{B}_{k} \quad \text { with } \quad \hat{B}_{k}=\left[\begin{array}{c}
B_{k} \tag{8.2.5}\\
b_{k+1}^{H}
\end{array}\right] .
$$

Then we get an equivalent Krylov decomposition of (8.2.5) in the form

$$
\begin{align*}
A\left(U_{k} Q\right) & =\left(U_{k+1}\left[\begin{array}{cc}
Q & 0 \\
0 & 1
\end{array}\right]\right)\left(\left[\begin{array}{cc}
Q & 0 \\
0 & 1
\end{array}\right]^{-1} \hat{B}_{k} Q\right) \\
& =\left[\begin{array}{ll}
U_{k} Q & u_{k+1}
\end{array}\right]\left[\begin{array}{c}
Q^{-1} B_{k} Q \\
b_{k+1}^{H} Q
\end{array}\right] \\
& =\left(U_{k} Q\right)\left(Q^{-1} B Q\right)+u_{k+1}\left(b_{k+1}^{H} Q\right) . \tag{8.2.6}
\end{align*}
$$

The two Krylov decompositions (8.2.5) and (8.2.6) are said to be similar.
Let

$$
\gamma \tilde{u}_{k+1}=u_{k+1}-U_{k} a .
$$

Since $u_{1}, \ldots, u_{k}, u_{k+1}$ are linearly independent, we have $\gamma \neq 0$. Then it follows that

$$
A U_{k}=U_{k}\left(B_{k}+a b_{k+1}^{H}\right)+\tilde{u}_{k+1}\left(\gamma b_{k+1}^{H}\right)
$$

Since $\mathcal{R}\left(\left[U_{k} u_{k+1}\right]\right)=\mathcal{R}\left(\left[U_{k} \tilde{u}_{k+1}\right]\right)$, this Krylov decomposition is equivalent to (8.2.5).

Theorem 8.2.1 Every Krylov decomposition is equivalent to a (possibly reduced) Arnoldi decomposition.

Proof: Let

$$
A U=U B+u b^{H}
$$

be a Krylov decomposition and let

$$
U=\tilde{U} R
$$

be the $Q R$ factorization of U. Then

$$
A \tilde{U}=A\left(U R^{-1}\right)=\left(U R^{-1}\right)\left(R B R^{-1}\right)+u\left(b^{H} R^{-1}\right) \equiv \tilde{U} \tilde{B}+u \tilde{b}^{H}
$$

is an equivalent decomposition. Let

$$
\tilde{u}=\gamma^{-1}(u-U a)
$$

be a vector with $\|\tilde{u}\|_{2}=1$ such that $U^{H} \tilde{u}=0$. Then

$$
A \tilde{U}=\tilde{U}\left(\tilde{B}+a \tilde{b}^{H}\right)+\tilde{u}\left(\gamma \tilde{b}^{H}\right) \equiv \tilde{U} \hat{B}+\tilde{u} \hat{b}^{H}
$$

is an equivalent orthonormal Krylov decomposition. Let Q be a unitary matrix such that

$$
\hat{b}^{H} Q=\|\hat{b}\|_{2} e_{k}^{T}
$$

and $Q^{H} \hat{B} Q$ is upper Hessenberg. Then the equivalent decomposition

$$
A \hat{U} \equiv A(\tilde{U} Q)=(\tilde{U} Q)\left(Q^{H} \hat{B} Q\right)+\tilde{u}\left(\hat{b}^{H} Q\right) \equiv \hat{U} \bar{B}+\|\hat{b}\|_{2} \hat{u} e_{k}^{T}
$$

is a possibly reduced Arnoldi decomposition where

$$
\hat{U}^{H} \hat{u}=Q^{H} \tilde{U}^{H} \tilde{u}=Q^{H} R^{-H} U^{H} \tilde{u}=0
$$

8.2.1 Reduction to Arnoldi form

Let

$$
A U=U B+u b^{H}
$$

be the Krylov decomposition with $B \in \mathbb{C}^{k \times k}$. Let H_{1} be a Householder transformation such that

$$
b^{H} H_{1}=\beta e_{k} .
$$

Reduce $H_{1}^{H} B H_{1}$ to Hessenberg form as the following illustration:

$$
\begin{aligned}
& B:=\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right] \Rightarrow B:=B H_{2}=\left[\begin{array}{cccc}
\otimes & \otimes & \otimes & \times \\
\otimes & \otimes & \otimes & \times \\
\otimes & \otimes & \otimes & \times \\
0 & 0 & \otimes & \times
\end{array}\right] \\
\Rightarrow & B:=H_{2}^{H} B=\left[\begin{array}{cccc}
+ & + & + & + \\
+ & + & + & + \\
+ & + & + & + \\
0 & 0 & \otimes & \times
\end{array}\right] \Rightarrow B:=B H_{3}=\left[\begin{array}{ccc}
\oplus & \oplus & + \\
\oplus & \oplus & + \\
0 & \oplus & + \\
0 & 0 & \otimes \\
0
\end{array}\right] \\
\Rightarrow & B:=H_{3}^{H} B=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
0 & \oplus & + & + \\
0 & 0 & \otimes & \times
\end{array}\right]
\end{aligned}
$$

Let

$$
Q=H_{1} H_{2} \cdots H_{k-1} .
$$

Then $Q^{H} B Q$ is upper Hessenberg and

$$
b^{H} Q=\left(b^{H} H_{1}\right)\left(H_{2} \cdots H_{k-1}\right)=\beta e_{k}^{T}\left(H_{2} \cdots H_{k-1}\right)=\beta e_{k}^{T} .
$$

Therefore, the Krylov decomposition

$$
\begin{equation*}
A(U Q)=(U Q)\left(Q^{H} B Q\right)+\beta u e_{k}^{T} \tag{8.2.7}
\end{equation*}
$$

is an Arnoldi decomposition.

8.3 The implicitly restarted Arnoldi method

Let

$$
A U_{k}=U_{k} H_{k}+\beta_{k} u_{k+1} e_{k}^{T}
$$

be an Arnoldi decomposition.

- In principle, we can keep expanding the Arnoldi decomposition until the Ritz pairs have converged.
- Unfortunately, it is limited by the amount of memory to storage of U_{k}.
- Restarted the Arnoldi process once k becomes so large that we cannot store U_{k}.
- Implicitly restarting method
- Krylov-Schur decomposition
- Choose a new starting vector for the underlying Krylov sequence
- A natural choice would be a linear combination of Ritz vectors that we are interested in.

8.3.1 Filter polynomials

Assume A has a complete system of eigenpairs $\left(\lambda_{i}, x_{i}\right)$ and we are interested in the first k of these eigenpairs. Expand u_{1} in the form

$$
u_{1}=\sum_{i=1}^{k} \gamma_{i} x_{i}+\sum_{i=k+1}^{n} \gamma_{i} x_{i}
$$

If p is any polynomial, we have

$$
p(A) u_{1}=\sum_{i=1}^{k} \gamma_{i} p\left(\lambda_{i}\right) x_{i}+\sum_{i=k+1}^{n} \gamma_{i} p\left(\lambda_{i}\right) x_{i} .
$$

- Choose p so that the values $p\left(\lambda_{i}\right)(i=k+1, \ldots, n)$ are small compared to the values $p\left(\lambda_{i}\right)(i=1, \ldots, k)$.
- Then $p(A) u_{1}$ is rich in the components of the x_{i} that we want and deficient in the ones that we do not want.
- p is called a filter polynomial.
- Suppose we have Ritz values μ_{1}, \ldots, μ_{m} and $\mu_{k+1}, \ldots, \mu_{m}$ are not interesting. Then take

$$
p(t)=\left(t-\mu_{k+1}\right) \cdots\left(t-\mu_{m}\right) .
$$

8.3.2 Implicitly restarted Arnoldi

Let

$$
\begin{equation*}
A U_{m}=U_{m} H_{m}+\beta_{m} u_{m+1} e_{m}^{T} \tag{8.3.8}
\end{equation*}
$$

be an Arnoldi decomposition with order m. Choose a filter polynomial p of degree $m-k$ and use the implicit restarting process to reduce the decomposition to a decomposition

$$
A \tilde{U}_{k}=\tilde{U}_{k} \tilde{H}_{k}+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{T}
$$

of order k with starting vector $p(A) u_{1}$.
Let $\kappa_{1}, \ldots, \kappa_{m}$ be eigenvalues of H_{m} and suppose that $\kappa_{1}, \ldots, \kappa_{m-k}$ correspond to the part of the spectrum we are not interested in. Then take

$$
p(t)=\left(t-\kappa_{1}\right)\left(t-\kappa_{2}\right) \cdots\left(t-\kappa_{m-k}\right) .
$$

The starting vector $p(A) u_{1}$ is equal to

$$
\begin{aligned}
p(A) u_{1} & =\left(A-\kappa_{m-k} I\right) \cdots\left(A-\kappa_{2} I\right)\left(A-\kappa_{1} I\right) u_{1} \\
& =\left(A-\kappa_{m-k} I\right)\left[\cdots\left[\left(A-\kappa_{2} I\right)\left[\left(A-\kappa_{1} I\right) u_{1}\right]\right]\right] .
\end{aligned}
$$

In the first, we construct an Arnoldi decomposition with starting vector $\left(A-\kappa_{1} I\right) u_{1}$. From (8.3.8), we have

$$
\begin{align*}
\left(A-\kappa_{1} I\right) U_{m} & =U_{m}\left(H_{m}-\kappa_{1} I\right)+\beta_{m} u_{m+1} e_{m}^{T} \tag{8.3.9}\\
& =U_{m} Q_{1} R_{1}+\beta_{m} u_{m+1} e_{m}^{T},
\end{align*}
$$

where

$$
H_{m}-\kappa_{1} I=Q_{1} R_{1}
$$

is the $Q R$ factorization of $H_{m}-\kappa_{1} I$. Postmultiplying by Q_{1}, we get

$$
\left(A-\kappa_{1} I\right)\left(U_{m} Q_{1}\right)=\left(U_{m} Q_{1}\right)\left(R_{1} Q_{1}\right)+\beta_{m} u_{m+1}\left(e_{m}^{T} Q_{1}\right)
$$

It implies that

$$
A U_{m}^{(1)}=U_{m}^{(1)} H_{m}^{(1)}+\beta_{m} u_{m+1} b_{m+1}^{(1) H}
$$

where

$$
U_{m}^{(1)}=U_{m} Q_{1}, \quad H_{m}^{(1)}=R_{1} Q_{1}+\kappa_{1} I, \quad b_{m+1}^{(1) H}=e_{m}^{T} Q_{1} .
$$

($H_{m}^{(1)}$: one step of single shifted $Q R$ algorithm)
Theorem 8.3.1 Let H_{m} be an unreduced Hessenberg matrix. Then $H_{m}^{(1)}$ has the form

$$
H_{m}^{(1)}=\left[\begin{array}{cc}
\hat{H}_{m}^{(1)} & \hat{h}_{12} \\
0 & \kappa_{1}
\end{array}\right],
$$

where $\hat{H}_{m}^{(1)}$ is unreduced.
Proof: Let

$$
H_{m}-\kappa_{1} I=Q_{1} R_{1}
$$

be the $Q R$ factorization of $H_{m}-\kappa_{1} I$ with

$$
Q_{1}=G\left(1,2, \theta_{1}\right) \cdots G\left(m-1, m, \theta_{m-1}\right)
$$

where $G\left(i, i+1, \theta_{i}\right)$ for $i=1, \ldots, m-1$ are Given rotations. Since H_{m} is unreduced upper Hessenberg, i.e., the subdiagonal elements of H_{m} are nonzero, we get

$$
\begin{equation*}
\theta_{i} \neq 0 \quad \text { for } \quad i=1, \ldots, m-1 \tag{8.3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(R_{1}\right)_{i i} \neq 0 \quad \text { for } \quad i=1, \ldots, m-1 . \tag{8.3.11}
\end{equation*}
$$

Since κ_{1} is an eigenvalue of H_{m}, we have that $H_{m}-\kappa_{1} I$ is singular and then

$$
\begin{equation*}
\left(R_{1}\right)_{m m}=0 \tag{8.3.12}
\end{equation*}
$$

Using the results of (8.3.10), (8.3.11) and (8.3.12), we get

$$
\begin{aligned}
H_{m}^{(1)} & =R_{1} Q_{1}+\kappa_{1} I=R_{1} G\left(1,2, \theta_{1}\right) \cdots G\left(m-1, m, \theta_{m-1}\right)+\kappa_{1} I \\
& =\left[\begin{array}{cc}
\hat{H}_{m}^{(1)} & \hat{h}_{12} \\
0 & \kappa_{1}
\end{array}\right],
\end{aligned}
$$

where $\hat{H}_{m}^{(1)}$ is unreduced.

Remark 8.3.1

- $U_{m}^{(1)}$ is orthonormal.
- Since H_{m} is upper Hessenberg and Q_{1} is the Q-factor of the $Q R$ factorization of $H_{m}-\kappa_{1} I$, it implies that Q_{1} and $H_{m}^{(1)}$ are also upper Hessenberg.
- The vector $b_{m+1}^{(1) H}=e_{m}^{T} Q_{1}$ has the form

$$
b_{m+1}^{(1) H}=\left[\begin{array}{lllll}
0 & \cdots & 0 & q_{m-1, m}^{(1)} & q_{m, m}^{(1)}
\end{array}\right] ;
$$

i.e., only the last two components of $b_{m+1}^{(1)}$ are nonzero.

- For on postmultiplying (8.3.9) by e_{1}, we get

$$
\left(A-\kappa_{1} I\right) u_{1}=\left(A-\kappa_{1} I\right)\left(U_{m} e_{1}\right)=U_{m}^{(1)} R_{1} e_{1}=r_{11}^{(1)} u_{1}^{(1)} .
$$

Since H_{m} is unreduced, $r_{11}^{(1)}$ is nonzero. Therefore, the first column of $U_{m}^{(1)}$ is a multiple of $\left(A-\kappa_{1} I\right) u_{1}$.

- By the definition of $H_{m}^{(1)}$, we get

$$
Q_{1} H_{m}^{(1)} Q_{1}^{H}=Q_{1}\left(R_{1} Q_{1}+\kappa_{1} I\right) Q_{1}^{H}=Q_{1} R_{1}+\kappa_{1} I=H_{m}
$$

Therefore, $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{m}$ are also eigenvalues of $H_{m}^{(1)}$.
Similarly,

$$
\begin{align*}
\left(A-\kappa_{2} I\right) U_{m}^{(1)} & =U_{m}^{(1)}\left(H_{m}^{(1)}-\kappa_{2} I\right)+\beta_{m} u_{m+1} b_{m+1}^{(1) H} \tag{8.3.13}\\
& =U_{m}^{(1)} Q_{2} R_{2}+\beta_{m} u_{m+1} b_{m+1}^{(1) H},
\end{align*}
$$

where

$$
H_{m}^{(1)}-\kappa_{2} I=Q_{2} R_{2}
$$

is the $Q R$ factorization of $H_{m}^{(1)}-\kappa_{2} I$ with upper Hessenberg matrix Q_{2}. Postmultiplying by Q_{2}, we get

$$
\left(A-\kappa_{2} I\right)\left(U_{m}^{(1)} Q_{2}\right)=\left(U_{m}^{(1)} Q_{2}\right)\left(R_{2} Q_{2}\right)+\beta_{m} u_{m+1}\left(b_{m+1}^{(1) H} Q_{2}\right)
$$

It implies that

$$
A U_{m}^{(2)}=U_{m}^{(2)} H_{m}^{(2)}+\beta_{m} u_{m+1} b_{m+1}^{(2) H},
$$

where

$$
U_{m}^{(2)} \equiv U_{m}^{(1)} Q_{2}
$$

is orthonormal,

$$
H_{m}^{(2)} \equiv R_{2} Q_{2}+\kappa_{2} I=\left[\begin{array}{c|cc}
H_{m-2}^{(2)} & * & * \\
\hline & \kappa_{2} & * \\
& & \kappa_{1}
\end{array}\right]
$$

is upper Hessenberg with unreduced matrix $H_{m-2}^{(2)}$ and

$$
\begin{aligned}
b_{m+1}^{(2) H} & \equiv b_{m+1}^{(1) H} Q_{2}=q_{m-1, m}^{(1)} e_{m-1}^{H} Q_{2}+q_{m, m}^{(1)} e_{m}^{T} Q_{2} \\
& =\left[\begin{array}{lllll}
0 & \cdots & 0 & \times & \times
\end{array}\right] .
\end{aligned}
$$

For on postmultiplying (8.3.13) by e_{1}, we get

$$
\left(A-\kappa_{2} I\right) u_{1}^{(1)}=\left(A-\kappa_{2} I\right)\left(U_{m}^{(1)} e_{1}\right)=U_{m}^{(2)} R_{2} e_{1}=r_{11}^{(2)} u_{1}^{(2)} .
$$

Since $H_{m}^{(1)}$ is unreduced, $r_{11}^{(2)}$ is nonzero. Therefore, the first column of $U_{m}^{(2)}$ is a multiple of $\left(A-\kappa_{2} I\right) u_{1}^{(1)}=1 / r_{11}^{(1)}\left(A-\kappa_{2} I\right)\left(A-\kappa_{1} I\right) u_{1}$.

Repeating this process with $\kappa_{3}, \ldots, \kappa_{m-k}$, the result will be a Krylov decomposition

$$
A U_{m}^{(m-k)}=U_{m}^{(m-k)} H_{m}^{(m-k)}+\beta_{m} u_{m+1} b_{m+1}^{(m-k) H}
$$

with the following properties
i. $U_{m}^{(m-k)}$ is orthonormal.
ii. $H_{m}^{(m-k)}$ is upper Hessenberg.
iii. The first $k-1$ components of $b_{m+1}^{(m-k) H}$ are zero.
iv. The first column of $U_{m}^{(m-k)}$ is a multiple of $\left(A-\kappa_{1} I\right) \cdots\left(A-\kappa_{m-k} I\right) u_{1}$.

Corollary 8.3.1 Let $\kappa_{1}, \ldots, \kappa_{m}$ be eigenvalues of H_{m}. If the implicitly restarted $Q R$ step is performed with shifts $\kappa_{1}, \ldots, \kappa_{m-k}$, then the matrix $H_{m}^{(m-k)}$ has the form

$$
H_{m}^{(m-k)}=\left[\begin{array}{cc}
H_{k k}^{(m-k)} & H_{k, m-k}^{(m-k)} \\
0 & T^{(m-k)}
\end{array}\right],
$$

where $T^{(m-k)}$ is an upper triangular matrix with Ritz value $\kappa_{1}, \ldots, \kappa_{m-k}$ on its diagonal.
For $k=3$ and $m=6$,

$$
\begin{aligned}
& A\left[\begin{array}{lll|lll}
u & u & u & u & u & u
\end{array}\right] \\
= & {\left[\begin{array}{lll|lll}
u & u & u & u & u & u
\end{array}\right]\left[\begin{array}{ccc|ccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
\hline 0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array}\right] } \\
& +u\left[\begin{array}{llll|lll}
0 & 0 & q & q & q & q
\end{array}\right] .
\end{aligned}
$$

Therefore, the first k columns of the decomposition can be written in the form

$$
A U_{k}^{(m-k)}=U_{k}^{(m-k)} H_{k k}^{(m-k)}+h_{k+1, k} u_{k+1}^{(m-k)} e_{k}^{T}+\beta_{k} q_{m k} u_{m+1} e_{k}^{T},
$$ submatrix of order k of $H_{m}^{(m-k)}$, and $q_{k m}$ is from the matrix $Q=Q_{1} \cdots Q_{m-k}$. Hence if we set

$$
\begin{aligned}
\tilde{U}_{k} & =U_{k}^{(m-k)} \\
\tilde{H}_{k} & =H_{k k}^{(m-k)} \\
\tilde{\beta}_{k} & =\left\|h_{k+1, k} u_{k+1}^{(m-k)}+\beta_{k} q_{m k} u_{m+1}\right\|_{2} \\
\tilde{u}_{k+1} & =\tilde{\beta}_{k}^{-1}\left(h_{k+1, k} u_{k+1}^{(m-k)}+\beta_{k} q_{m k} u_{m+1}\right),
\end{aligned}
$$

then

$$
A \tilde{U}_{k}=\tilde{U}_{k} \tilde{H}_{k}+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{T}
$$

is an Arnoldi decomposition whose starting vector is proportional to $\left(A-\kappa_{1} I\right) \cdots(A-$ $\left.\kappa_{m-k} I\right) u_{1}$.

- Avoid any matrix-vector multiplications in forming the new starting vector.
- Get its Arnoldi decomposition of order k for free.
- For large n the major cost will be in computing $U Q$.

Chapter 9

Jacobi-Davidson method

References:

(i) Sleijpon, Henk and Van der Vorst, SIAM Matrix Anal, Appl, Vol.17, PP.401-425, 1996
(ii) BIT, Vol.36, PP.595-633, 1996.
(iii) SIAM Sci comp, Vol.20, PP.94-125, 1998
(iv) Lehoucg and Meerbergen, Using generalized Cauchy Transformation within an inexact rational Krylov subspace method, 2001

9.1 JOCC(Jacobi Orthogonal Component Correction)

Consider

$$
A x=\lambda x
$$

where A is a nonsymmetric diagonal dominant matrix (i.e., $\left.\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|\right)$. Let

$$
A=\left[\begin{array}{ll}
\alpha & C^{T} \\
b & F
\end{array}\right]
$$

with α being the largest diagonal element. Then

$$
A\left[\begin{array}{l}
1 \tag{9.1.1}\\
z
\end{array}\right]=\left[\begin{array}{ll}
\alpha & C^{T} \\
b & F
\end{array}\right]\left[\begin{array}{l}
1 \\
z
\end{array}\right]=\lambda\left[\begin{array}{l}
1 \\
z
\end{array}\right] .
$$

That is

$$
\left\{\begin{array}{l}
\lambda=\alpha+C^{T} z, \tag{9.1.2}\\
(F-\lambda I) z=-b .
\end{array}\right.
$$

Jacobi proposed to solve (9.1.2) by the following Jacobi iteration with $z_{1}=0$

$$
\begin{array}{ll}
\text { for } \quad & k=1,2, \ldots \\
& \theta_{k}=\alpha+C^{T} z_{k} \\
& \left(D-\theta_{k} I\right) z_{k+1}=(D-F) z_{k}-b \tag{9.1.3}
\end{array}
$$

where $D=\operatorname{diag}(F)$.

Remark 9.1.1 θ_{k} is not a Ritz value.

9.2 Davidson method

(Davidson's method as an accelerated JOCC method)
Assume $u_{k}=\left[\begin{array}{r}1 \\ z_{k}\end{array}\right]$ is an approximated eigenvector and θ_{k} is the associated approximated eigenvalue. The residual is given by

$$
r_{k}=\left(A-\theta_{k} I\right) u_{k}=\left[\begin{array}{l}
\alpha-\theta_{k}+c^{T} z_{k} \tag{9.2.4}\\
\left(F-\theta_{k} I\right) z_{k}+b
\end{array}\right] .
$$

Davidson(1975) proposed computing t_{k} from

$$
\begin{equation*}
\left(D_{A}-\theta_{k} I\right) t_{k}=-r_{k}, \tag{9.2.5}
\end{equation*}
$$

where $D_{A}=\operatorname{diag}(A)$. It implies that

$$
\left(\left[\begin{array}{cc}
\alpha & 0 \\
0 & D
\end{array}\right]-\theta_{k} I\right)\left[\begin{array}{l}
* \\
y_{k}
\end{array}\right]=\left[\begin{array}{c}
* \\
-\left(F-\theta_{k} I\right) z_{k}-b
\end{array}\right] .
$$

For the component $\hat{y}_{k}=\left[\begin{array}{ll}0 & y_{k}^{T}\end{array}\right]^{T}$ of t_{k} orthogonal to $u_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$, it follows that

$$
\begin{equation*}
\left(D-\theta_{k} I\right) y_{k}=-\left(F-\theta_{k} I\right) z_{k}-b=(D-F) z_{k}-\left(D-\theta_{k} I\right) z_{k}-b, \tag{9.2.6}
\end{equation*}
$$

where D is the diagonal of F, or equivalently,

$$
\begin{equation*}
\left(D-\theta_{k} I\right)\left(z_{k}+y_{k}\right)=(D-F) z_{k}-b . \tag{9.2.7}
\end{equation*}
$$

Comparing (9.2.7) with (9.1.3), we see that $z_{k}+y_{k}$ is the z_{k+1} that we would have obtained with one step JOCC starting with z_{k}.

Instead of taking $\hat{u}_{k+1}:=\left[1,\left(z_{k}+y_{k}\right)^{T}\right]^{T}=u_{k}+\hat{y}_{k}$ as the next approximating eigenvector, Davidson suggested computing Ritz vector of A with respect to

$$
\begin{aligned}
S_{k+1} & \left.=<u_{1}, \cdots, u_{k}, \hat{u}_{k+1}>=<u_{1}, \cdots, u_{k}, t_{k}\right\rangle \\
& =<v_{1}, \ldots, v_{k+1}>, \quad \text { (orthogonal basis) }
\end{aligned}
$$

where $u_{1}=e_{1}$,

$$
\hat{u}_{k+1}=u_{k}+\hat{y}_{k}=u_{k}+\left[\begin{array}{l}
0 \\
y_{k}
\end{array}\right], \quad t_{k}=\left[\begin{array}{l}
* \\
y_{k}
\end{array}\right]=\left[\begin{array}{l}
* \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
y_{k}
\end{array}\right],
$$

i.e., compute a Ritz pair $\left(\theta_{k+1}, u_{k+1}\right)$ which is "nearest" the target value. Then compute $r_{k+1}=\left(A-\theta_{k+1} I\right) u_{k+1}$ and GOTO (9.2.4).

9.3 Jacobi Davidson method

In fact, we want to find the orthogonal complement for the current approximation u_{k} with respect to the desired eigenvector u of A. We are interested in seeing explicitly what happens in the subspace $u_{k}{ }^{\perp}$. Let

$$
B=\left(I-u_{k} u_{k}^{T}\right) A\left(I-u_{k} u_{k}^{T}\right), u_{k}^{T} u_{k}=1
$$

It follows that

$$
\begin{equation*}
\Rightarrow A=B+A u_{k} u_{k}^{T}+u_{k} u_{k}^{T} A-\theta_{k} u_{k} u_{k}^{T} . \tag{9.3.8}
\end{equation*}
$$

where $\left(\theta_{k}, u_{k}\right)$ is a given Ritz pair $\theta_{k}=\frac{u_{k}^{T} A u_{k}}{u_{k}{ }^{T} u_{k}}$.
When we are in search of eigenvalue λ of A choose to θ_{k}, then we want to have the correction $v \perp u_{k}$ such that

$$
\begin{equation*}
A\left(u_{k}+v\right)=\lambda\left(u_{k}+v\right) \tag{9.3.9}
\end{equation*}
$$

By (9.3.8) and $B u_{k}=0$, we have

$$
\begin{equation*}
(B-\lambda I) v=-r+\left(\lambda-\theta_{k}-u_{k}^{T} A v\right) u_{k} . \tag{9.3.10}
\end{equation*}
$$

Since

$$
(B-\lambda I) v \in<u_{k}^{\perp}>\quad \text { and } \quad r=A u_{k}-\theta_{k} u_{k} \perp u_{k},
$$

it follows that

$$
\begin{equation*}
(B-\lambda I) v=-r . \tag{9.3.11}
\end{equation*}
$$

Replacing λ in (9.3.11) by θ_{k}, it holds that

$$
\begin{equation*}
\left(B-\theta_{k} I\right) v=-r \tag{9.3.12}
\end{equation*}
$$

that is

$$
\begin{equation*}
\left(I-u_{k} u_{k}^{T}\right)\left(A-\theta_{k} I\right) t=-r, t \perp u_{k} \tag{9.3.13}
\end{equation*}
$$

Remark 9.3.1 (a) If we take $v=-r$, then we obtain the same results as with the Arnoldi or Lanzcos method.
(b) If we take $v=-\left(D_{A}-\theta_{k} I\right)^{-1} r_{k}$, then we obtain the original Davidson method.
(c) Select suitable approximations $\tilde{t} \perp u_{k}$ for the solution of $\left(B-\theta_{k} I\right) t=-r_{k}$ with $t \perp u_{k}$.

Algorithm 9.3.1 (Jacobi-Davidson Algorithm)

Given a vector v_{1} with $\left\|v_{1}\right\|_{2}=1$; set $V_{1}=\left[v_{1}\right]$.
Compute $W_{1}=A V_{1}$ and $M_{1}=V_{1}^{*} W_{1}$.
Do $k=1,2,3, \ldots$
(i) Compute all the eigenpairs of the small size problem

$$
\left(M_{k}-\theta I_{k}\right) s=0 .
$$

(ii) Select the desired (target) eigenvalue θ_{k} and let s_{k} be the associated normalized eigenvector.
(iii) Compute $u_{k}=V_{k} s_{k}$ and $r_{k}=\left(A-\theta_{k} I\right) u_{k}$.
(iv) If $\left(\left\|r_{k}\right\|_{2}<\varepsilon\right)$, Set $\lambda=\theta_{k}, x=u_{k}$, Stop.
(v) Solve (approximately) a $t \perp u_{k}$ from

$$
\left(I-u_{k} u_{k}^{*}\right)\left(A-\theta_{k} I\right)\left(I-u_{k} u_{k}^{*}\right) t=-r_{k} .
$$

(vi) Orthogonalize t against V_{k}; Set $v_{k+1}=t /\|t\|_{2}$.
(vii) Compute $w_{k+1}=A v_{k+1}, M_{k+1}=\left[\begin{array}{cc}M_{k} & V_{k}^{*} w_{k+1} \\ v_{k+1}^{*} W_{k} & v_{k+1}^{*} w_{k+1}\end{array}\right]$,
(viii) Expand $W_{k+1}=\left[W_{k}, w_{k+1}\right]$ and $V_{k+1}=\left[V_{k}, v_{k+1}\right]$

In the Jacobi-Davidson method, we must solve correction vector t with $t \perp u_{k}$ from the correction equation

$$
\begin{equation*}
\left(I-u_{k} u_{k}^{T}\right) \mathbf{A}\left(\theta_{k}\right)\left(I-u_{k} u_{k}^{T}\right) t=-r_{k}, \tag{9.3.14}
\end{equation*}
$$

where $\mathbf{A}\left(\theta_{k}\right)=A-\theta_{k} I$. In the following, we discuss how to construct approximate solution t in (9.3.14) with three different methods.
(a) Method I: Use preconditioning iterative approximations, e.g., GMRES, to solve (9.3.14). The method uses a preconditioner

$$
\mathcal{M}_{p} \equiv\left(I-u_{k} u_{k}^{T}\right) \mathcal{M}\left(I-u_{k} u_{k}^{T}\right) \approx\left(I-u_{k} u_{k}^{T}\right) \mathbf{A}\left(\theta_{k}\right)\left(I-u_{k} u_{k}^{T}\right),
$$

where \mathcal{M} is an approximation of $\mathbf{A}\left(\theta_{k}\right)$ and an iterative method to solve Eq. (9.3.14). In each of the iterative steps, it needs to solve the linear system

$$
\begin{equation*}
\mathcal{M}_{p} t=y, \quad t \perp u_{k} \tag{9.3.15}
\end{equation*}
$$

for a given y. Since $t \perp u_{k}$, Eq. (9.3.15) can be rewritten as

$$
\left(I-u_{k} u_{k}^{T}\right) \mathcal{M} t=y \Rightarrow \mathcal{M} t=\left(u_{k}^{T} \mathcal{M} t\right) u_{k}+y \equiv \eta_{k} u_{k}+y
$$

Hence

$$
t=\mathcal{M}^{-1} y+\eta_{k} \mathcal{M}^{-1} u_{k}
$$

where

$$
\eta_{k}=-\frac{u_{k}^{T} \mathcal{M}^{-1} y}{u_{k}^{T} \mathcal{M}^{-1} u_{k}} .
$$

Note that if we set $\mathbf{A}\left(\theta_{k}\right)=L+D+U$, then

$$
\mathcal{M}=(D+\omega L) D^{-1}(D+\omega U)
$$

is a SSOR preconditioner of $\mathbf{A}\left(\theta_{k}\right)$.
(b) Method II: Since $t \perp u_{k}$, Eq. (9.3.14) can be rewritten as

$$
\begin{equation*}
\mathbf{A}\left(\theta_{k}\right) t=\left(u_{k}^{T} \mathbf{A}\left(\theta_{k}\right) t\right) u_{k}-r_{k} \equiv \varepsilon u_{k}-r_{k} \tag{9.3.16}
\end{equation*}
$$

Let t_{1} and t_{2} be approximated solutions of the following linear systems:

$$
\mathbf{A}\left(\theta_{k}\right) t=-r_{k} \quad \text { and } \quad \mathbf{A}\left(\theta_{k}\right) t=u_{k},
$$

respectively. Then the approximated solution \tilde{t} for (9.3.16) is

$$
\tilde{t}=t_{1}+\varepsilon t_{2} \quad \text { for } \quad \varepsilon=-\frac{u_{k}^{T} t_{1}}{u_{k}^{T} t_{2}} .
$$

For the special case, the approximated solution \tilde{t} for (9.3.16) can be

$$
\begin{equation*}
\tilde{t}=-\mathcal{M}^{-1} r_{k}+\varepsilon \mathcal{M}^{-1} u_{k} \quad \text { for } \quad \varepsilon=\frac{u_{k}^{T} \mathcal{M}^{-1} r_{k}}{u_{k}^{T} \mathcal{M}^{-1} u_{k}} \tag{9.3.17}
\end{equation*}
$$

where \mathcal{M} is an approximation of $\mathbf{A}\left(\theta_{k}\right)$.
(c) Method III: Eq. (9.3.16) implies that

$$
\begin{equation*}
t=\varepsilon \mathbf{A}\left(\theta_{k}\right)^{-1} u_{k}-\mathbf{A}\left(\theta_{k}\right)^{-1} r_{k}=\varepsilon \mathbf{A}\left(\theta_{k}\right)^{-1} u_{k}-u_{k} \tag{9.3.18}
\end{equation*}
$$

Let t_{1} be approximated solution of the following linear system:

$$
\mathbf{A}\left(\theta_{k}\right) t=u_{k}
$$

Then the approximated solution \tilde{t} for (9.3.16) is

$$
\tilde{t}=\varepsilon t_{1}-u_{k} \quad \text { for } \quad \varepsilon=\left(u_{k}^{T} t_{1}\right)^{-1}
$$

Remark 9.3.2 (i) If we choose $\varepsilon=0$ in (9.3.17) and $\mathcal{M}=D_{A}-\theta_{k} I$, then we obtain Davidson method. In this case, $\tilde{t}=-\mathcal{M}^{-1} r_{k}$ will not be orthogonal to u_{k}.
(ii) Since t is make orthogonal to u_{k}, the choice in (9.3.18) is equivalent with $t=$ $\varepsilon\left(A-\theta_{k} I\right)^{-1} u_{k}$. In this case, the method is just mathematically equivalent to shift-invert iteration which converges locally quadratically. In finite arithmetics, the vector $\left(A-\theta_{k} I\right)^{-1} u_{k}$ may make a "very small" angle with u_{k}, so that it will be impossible to compute a significant orthogonal search direction.

Assume that A is strongly diagonally dominant. We write

$$
A=D_{A}+E,
$$

where D_{A} denotes the diagonal of A and assume that $\|E\| \ll\left\|D_{A}\right\|$ and a_{11} is the largest diagonal element in absolute value.

With Davidson's method, from

$$
r=A u_{k}-\theta_{k} u_{k}=\left(D_{A}+E\right) u_{k}-\theta_{k} u_{k},
$$

we obtain

$$
\tilde{t}=\left(D_{A}-\theta_{k} I\right)^{-1} r=u_{k}+\left(D_{A}-\theta_{k} I\right)^{-1} E u_{k}
$$

and $\left(D_{A}-\theta_{k} I\right)^{-1} E u_{k}$ is not small compared with u_{k}. This means that \tilde{t} is expected to recover some part of significant digits and this makes Davidson's method work well for diagonally dominant problems.

In Jacobi-Davidson method, we compute

$$
\tilde{t}=\varepsilon\left(D_{A}-\theta_{k} I\right)^{-1} u_{k}-\left(D_{A}-\theta_{k} I\right)^{-1} r, \tilde{t} \perp u_{k} .
$$

The factor ε is well-determined by

$$
\varepsilon=\frac{u_{k}^{T} \mathcal{M}^{-1} r}{u_{k}^{T} \mathcal{M}^{-1} u_{k}} \text { with } \mathcal{M}=\left(D_{A}-\theta_{k} I\right) .
$$

Since A is strongly diagonally dominant,

$$
\begin{aligned}
\left\|\varepsilon\left(D_{A}-\theta_{k} I\right)^{-1} u_{k}\right\| & =\left\|\frac{u_{k}^{T} M^{-1} r}{u_{k}^{T} M^{-1} u_{k}}\left(D_{A}-\theta_{k} I\right)^{-1} u_{k}\right\| \\
& \lesssim \frac{\left\|u_{k}\right\|\left\|\left(D_{A}-\theta_{k} I\right)^{-1} r\right\|}{\left\|u_{k}\right\|\left\|\left(D_{A}-\theta_{k} I\right)^{-1} u_{k}\right\|}\left\|\left(D_{A}-\theta_{k} I\right)^{-1} u_{k}\right\| \\
& =\left\|\left(D_{A}-\theta_{k} I\right)^{-1} r\right\| .
\end{aligned}
$$

Furthermore, since $u_{k} \perp r$, we have that $\left\{\varepsilon\left(D_{A}-\theta_{k} I\right)^{-1} u_{k},\left(D_{A}-\theta_{k} I\right)^{-1} r\right\}$ is linearly independent, and therefore there will be hardly any cancelation in the computation of \tilde{t}.

Remark 9.3.3 \tilde{t} is the combination of Shift-Invert and Davidson's methods, where ShiftInvert method is the part $\varepsilon\left(D_{A}-\theta_{k} I\right)^{-1} u_{k}$ and Davidson's method is $\left(D_{A}-\theta_{k}\right)^{-1} r$.

Consider $A x=\lambda x$ and assume that λ is simple.
Lemma 9.3.1 Consider w with $w^{T} x \neq 0$. Then the map

$$
F_{p} \equiv\left(I-\frac{x w^{T}}{w^{T} x}\right)(A-\lambda I)\left(I-\frac{x w^{T}}{w^{T} x}\right)
$$

is a bijection from w^{\perp} to w^{\perp}.
(Extension : $\left.F_{p}=\left(I-\frac{u u^{T}}{u^{T} u}\right)(A-\theta I)\left(I-\frac{u u^{T}}{u^{T} u}\right) t=-r . \quad t \perp u, r \perp u, t \in u^{\perp} \underset{F_{p}}{\rightarrow} r \in u^{\perp}.\right)$
Proof: Suppose $y \perp w$ and $F_{p} y=0$. That is

$$
\left(I-\frac{x w^{T}}{w^{T} x}\right)(A-\lambda I)\left(I-\frac{x w^{T}}{w^{T} x}\right) y=0 .
$$

Then it holds that

$$
(A-\lambda I) y=\varepsilon x .
$$

Therefore, both y and x belong to the kernel of $(A-\lambda I)^{2}$. The simplicity of λ implies that y is a scale multiple of x. The fact that $y \perp w$ and $x^{T} w \neq 0$ implies $y=0$, which proves the injectivity of F_{p}. An obvious dimension argument implies bijectivity.

Theorem 9.3.2 Assume that the correction equation

$$
\begin{equation*}
\left(I-u u^{T}\right)(A-\theta I)\left(I-u u^{T}\right) t=-r, \quad t \perp u \tag{9.3.19}
\end{equation*}
$$

is solved exactly in each step of Algorithm 9.3.2. Assume $u_{k}=u \rightarrow x$ and $u_{k}^{T} x$ has nontrivial limit. Then if u_{k} is sufficiently chosen to x, then $u_{k} \rightarrow x$ with locally quadratical convergence and

$$
\theta_{k}=u_{k}^{T} A u_{k} \rightarrow \lambda .
$$

Proof: Suppose $A x=\lambda x$ with x such that $x=u+z$ for $z \perp u$. Then

$$
\begin{equation*}
(A-\theta I) z=-(A-\theta I) u+(\lambda-\theta) x=-r+(\lambda-\theta) x . \tag{9.3.20}
\end{equation*}
$$

Consider the exact solution $z_{1} \perp u$ of (9.3.19):

$$
\begin{equation*}
(I-P)(A-\theta I) z_{1}=-(I-P) r \tag{9.3.21}
\end{equation*}
$$

where $P=u u^{T}$. Note that $(I-P) r=r$ since $u \perp r$. Since $x-\left(u+z_{1}\right)=z-z_{1}$ and $z=x-u$, for quadratic convergence, it suffices to show that

$$
\begin{equation*}
\left\|x-\left(u+z_{1}\right)\right\|=\left\|z-z_{1}\right\|=O\left(\|z\|^{2}\right) . \tag{9.3.22}
\end{equation*}
$$

Multiplying (9.3.20) by $(I-P)$ and subtracting the result from (9.3.21) yields

$$
\begin{equation*}
(I-P)(A-\theta I)\left(z-z_{1}\right)=(\lambda-\theta)(I-P) z+(\lambda-\theta)(I-P) u . \tag{9.3.23}
\end{equation*}
$$

Multiplying (9.3.20) by u^{T} and using $r \perp u$ leads to

$$
\begin{equation*}
\lambda-\theta=\frac{u^{T}(A-\theta I) z}{u^{T} x} . \tag{9.3.24}
\end{equation*}
$$

Since $u_{k}^{T} x$ has non-trivial limit, we obtain

$$
\begin{equation*}
\|(\lambda-\theta)(I-P) z\|=\left\|\frac{u^{T}(A-\theta I) z}{u^{T} x}(I-P) z\right\| . \tag{9.3.25}
\end{equation*}
$$

From (9.3.23), Lemma 9.3.1 and $(I-P) u=0$, we have

$$
\begin{aligned}
\left\|z-z_{1}\right\| & =\left\|\left[\left.(I-P)\left(A-\theta_{k} I\right)\right|_{u_{k}^{\frac{1}{k}}}\right]^{-1}(\lambda-\theta)(I-P) z\right\| \\
& =\left\|\left[\left.(I-P)\left(A-\theta_{k} I\right)\right|_{u_{k}^{\perp}}\right]^{-1} \frac{u_{k}^{T}\left(A-\theta_{k} I\right) z}{u_{k}^{T} x}(I-P) z\right\| \\
& =O\left(\|z\|^{2}\right) .
\end{aligned}
$$

9.3.1 Jacobi Davidson method as on accelerated Newton Scheme

Consider $A x=\lambda x$ and assume that λ is simple. Choose $w^{T} x=1$. Consider nonlinear equation

$$
F(u)=A u-\theta(u) u=0 \quad \text { with } \quad \theta(u)=\frac{w^{T} A u}{w^{T} u}
$$

where $\|u\|=1$ or $w^{T} u=1$. Then $F:\left\{u \mid w^{T} u=1\right\} \rightarrow w^{\perp}$. In particular, $r \equiv F(u)=$ $A u-\theta(u) u \perp w$.

Suppose $u_{k} \approx x$ and the next Newton approximation u_{k+1} :

$$
u_{k+1}=u_{k}-\left(\left.\frac{\partial F}{\partial u}\right|_{u=u_{k}}\right)^{-1} F\left(u_{k}\right)
$$

is given by $u_{k+1}=u_{k}+t$, i.e., t satisfies that

$$
\left(\left.\frac{\partial F}{\partial u}\right|_{u=u_{k}}\right) t=F\left(u_{k}\right)=-r .
$$

Since $1=u_{k+1}^{T} w=\left(u_{k}+t\right)^{T} w=1+t^{T} w$, it implies that $w^{T} t=0$. By the definition of F, we have

$$
\begin{aligned}
\frac{\partial F}{\partial u} & =A-\theta(u) I-\frac{-\left(w^{T} A u\right) u w^{T}+\left(w^{T} u\right) u w^{T} A}{\left(w^{T} u\right)^{2}} \\
& =A-\theta I+\frac{w^{T} A u}{\left(w^{T} u\right)^{2}} u w^{T}-\frac{u w^{T} A}{w^{T} u}=\left(I-\frac{u_{k} w^{T}}{w^{T} u_{k}}\right)\left(A-\theta_{k} I\right) .
\end{aligned}
$$

consequently, the Jacobian of F acts on w^{\perp} and is given by

$$
\left(\left.\frac{\partial F}{\partial u}\right|_{u=u_{k}}\right) t=\left(I-\frac{u_{k} w^{T}}{w^{T} u_{k}}\right)\left(A-\theta_{k} I\right) t, t \perp w .
$$

Hence the correction equation of Newton method read as

$$
t \perp w, \quad\left(I-\frac{u_{k} w^{T}}{w^{T} u_{k}}\right)\left(A-\theta_{k} I\right) t=-r
$$

which is the correction equation of Jacobi-Davidson method in (9.3.19) with $w=u$.

9.3.2 Jacobi-Davidson with harmonic Ritz values

Definition 9.3.1 (Ritz value) If $\mathcal{V}_{k} \subseteq \mathbb{C}^{n}$, then $\left(\theta_{k}, u_{k}\right)$ is a Ritz pair if

$$
\begin{equation*}
u_{k} \in \mathcal{V}_{k}, u_{k} \neq 0, \quad A u_{k}-\theta_{k} u_{k} \perp \mathcal{V}_{k} . \tag{9.3.26}
\end{equation*}
$$

Definition 9.3.2 (Harmonic Ritz value) (Inverse of A implicitly) $\theta_{k} \in \mathbb{C}$ is a harmonic Ritz value of A with respect to \mathcal{W}_{k}, if θ_{k}^{-1} is a Ritz value of A^{-1} with respect to \mathcal{W}_{k}.

Remark 9.3.4 A is a normal matrix. A^{-1} is normal.
How to avoid computing A^{-1} or solving linear system involving A ?
Theorem 9.3.3 Let $\mathcal{V}_{k}=<v_{1}, v_{2}, \ldots, v_{k}>. \theta_{k} \in \mathbb{C}$ is a harmonic Ritz value of A with respect to $\mathcal{W}_{k}=A \mathcal{V}_{k}$ if and only if

$$
\begin{equation*}
A u_{k}-\theta_{k} u_{k} \perp A \mathcal{V}_{k} \quad \text { for some nonzero } u_{k} \in \mathcal{V}_{k} . \tag{9.3.27}
\end{equation*}
$$

If $A \mathcal{V}_{k}=\mathcal{W}_{k}=<w_{1}, \ldots, w_{k}>$ with $V_{k}=\left[v_{1}, \cdots, v_{k}\right], W_{k}=\left[w_{1}, \cdots, w_{k}\right]$ and

$$
\begin{equation*}
H_{k}=\left(W_{k}^{T} V_{k}^{T}\right)^{-1}\left(W_{k}^{T} A V_{k}\right) \tag{9.3.28}
\end{equation*}
$$

then (9.3.27) is equivalent to

$$
H_{k} s=\theta_{k} s, u_{k}=V_{k} s \text { for some } s \in \mathbb{C}^{k} .
$$

The eigenvalues of H_{k} are the harmonic Ritz values of A.
Proof: By (9.3.26), $\left(\theta_{k}^{-1}, A u_{k}\right)$ is a Ritz pair of A^{-1} with respect to $\mathcal{W}_{k}=A \mathcal{V}_{k}$ if and only if

$$
\left(A^{-1}-\theta_{k}^{-1} I\right)\left(A u_{k}\right)=-\theta_{k}^{-1}\left(A u_{k}-\theta_{k} u_{k}\right) \perp A \mathcal{V}_{k}
$$

for some $u_{k} \in \mathcal{V}_{k}$. Note that (9.3.27) is equivalent to

$$
A V_{k} s-\theta_{k} V_{k} s \perp \mathcal{W}_{k} \text { for some } s \neq 0
$$

which is equivalent to

$$
W_{k}^{T}\left(A V_{k} S-\theta_{k} V_{k} S\right)=0 \Leftrightarrow\left(W_{k}^{T} A V_{k}\right) S=\theta_{k}\left(W_{k}^{T} V_{k}\right) S
$$

or $H_{k} s-\theta_{k} s=0$.
Remark 9.3.5 (a) The vector u_{k} in (9.3.27) is called the harmonic Ritz vector associated with the harmonic Ritz value θ_{k}.
(b) If $V_{k} \in \mathbb{R}^{n \times n}$ (in general, $V_{k} \in \mathbb{R}^{n \times k}$), then

$$
H_{k}:=\left(W_{k}^{T} V_{k}\right)^{-1}\left(W_{k}^{T} A V_{k}\right)=V_{k}^{-1} W_{k}^{-T} W_{k}^{T} A V_{k}
$$

It implies that $H_{k}^{-1} \approx A^{-1}$.

Bi-orthogonalization basis construction:

Suppose that $\mathcal{V}_{k}=<v_{1}, \cdots, v_{k}>$ and $A \mathcal{V}_{k}=\mathcal{W}_{k}=<w_{1}, \cdots, w_{k}>$ with $V_{k}=$ $\left[v_{1}, \cdots, v_{k}\right]$ and $W_{k}=\left[w_{1}, \cdots, w_{k}\right]$ in such way that

$$
A V_{k}=W_{k}
$$

and

$$
L_{k}=W_{k}^{T} V_{k}
$$

is lower triangular. We say V_{k} and W_{k} are bi-orthogonal.
Let

$$
H_{k}=L_{k}^{-1}\left(W_{k}^{T} W_{k}\right)
$$

Hence, if $\left(\theta_{k}, s\right)$ is an eigenpair of H_{k}, then $\left(\theta_{k}, V_{k} s\right)$ is a harmonic Ritz pair.
We bi-orthogonalize t with respect to V_{k} and W_{k} :

$$
\tilde{t}:=t-V_{k} L_{k}^{-1} W_{k}^{T} t \quad \text { and } \quad v_{k+1}=\frac{\tilde{t}}{\|\tilde{t}\|_{2}} .
$$

Then $V_{k+1}=\left[V_{k}, v_{k+1}\right]$ and $W_{k+1}=\left[W_{k}, A v_{k+1}\right]$.
Correction equation:

$$
\left\{\begin{array}{l}
\left(I-\frac{u_{k} w_{k}^{T}}{w_{k}^{T} u_{k}}\right)\left(A-\theta_{k} I\right)\left(I-\frac{u_{k} w_{k}^{T}}{w_{k}^{T} u_{k}}\right) t=-r, \\
t \perp w_{k}=A u_{k}, \quad \text { where } \quad H_{k} s=\theta_{k} s, \quad u_{k}=V_{k} s .
\end{array}\right.
$$

Using the assumption $t \perp w_{k}$, the correction equation can be rewritten as

$$
\left(A-\theta_{k} I\right) t=\varepsilon u_{k}-r,
$$

which is equivalent to

$$
t=\varepsilon\left(A-\theta_{k} I\right)^{-1} u_{k}-\left(A-\theta_{k} I\right)^{-1} r .
$$

Let $M \approx A-\theta_{k} I$ be a preconditioner of $A-\theta_{k} I$. Then the approximated solution \tilde{t} of correction equation can be computed by

$$
\tilde{t}=\varepsilon M^{-1} u_{k}-M^{-1} r \text { with } \varepsilon=\frac{w_{k}^{T} M^{-1} r}{w_{k}^{T} M^{-1} u_{k}} .
$$

Algorithm 9.3.2 (JD with harmonic Ritz value and bi-orthogonal)

Start: choose v_{1} with $\left\|v_{1}\right\|_{2}=1$, compute $w_{1}=A v_{1}, l_{11}=w_{1}^{T} v_{1}, h_{11}=w_{1}^{T} w_{1}$,
set $l=1, V_{1}=\left[v_{1}\right], W_{1}=\left[w_{1}\right], L_{1}=\left[l_{11}\right], H_{1}=\left[h_{11}\right]$,
$u=v_{1}, w=w_{1}, \theta=\frac{h_{11}}{l_{11}}$, compute $r=w-\theta u$.
Iterate: Until convergence do:
Inner loop: For $k=l, \ldots, m-1$,
(i) Solve approximation $t \perp w$,

$$
\left(I-\frac{u w^{T}}{w^{T} u}\right)(A-\theta I)\left(I-\frac{u w^{T}}{w^{T} u}\right) t=-r .
$$

(ii) Bi-orthogonalize t against V_{k} and W_{k}

$$
\tilde{t}=t-V_{k} L_{k}^{-1} W_{k}^{T} t, \quad v_{k+1}=\tilde{t} /\|\tilde{t}\|_{2} .
$$

(iii) Compute $w_{k+1}=A v_{k+1}$, set $W_{k+1}=\left[W_{k}, w_{k+1}\right]$ and $V_{k+1}=\left[V_{k}, v_{k+1}\right]$.
(iv) Compute $L_{k+1}(k+1,:)=w_{k+1}^{T} V_{k+1}, H_{k+1}(k+1,:)=w_{k+1}^{T} W_{k+1}$.
(v) Compute the smallest eigenpair $\left(\theta_{k}, s\right)$ of H_{k+1}.
(vi) Compute the harmonic Ritz vector $u=V_{k+1} s /\left\|V_{k+1} s\right\|, w=A u$, and $r:=A u-\theta u(=w-\theta u)$.
(vii) Test for convergence. Stop if satisfied.

Restart

9.4 Jacobi-Davidson Type method for Generalized Eigenproblems

Consider the generalized eigenvalue problem

$$
\mu A x=\lambda B x \quad\left(|\mu|^{2}+|\lambda|^{2}=1\right)
$$

9.4.1 The updating process for approximate eigenvector

Let (θ, u) be a Ritz pair of (A, B). Then

$$
r \equiv A u-\theta B u \perp u
$$

The goal is to find an update z for u such that

$$
\begin{equation*}
z \perp u \text { and } A(u+z)=\lambda B(u+z) . \tag{9.4.29}
\end{equation*}
$$

By projecting the equation in (9.4.29) onto the space orthogonal to u with the projector $I-\frac{u u^{*}}{u^{*} u}$, we obtain

$$
\begin{align*}
& \lambda=\frac{u^{*} A(u+z)}{u^{*} B(u+z)} \tag{9.4.30a}\\
& z \perp u \text { and }\left(I-\frac{u u^{*}}{u^{*} u}\right)(A-\lambda B)\left(I-\frac{u u^{*}}{u^{*} u}\right) z=-r \equiv-(A u-\lambda B u) . \tag{9.4.30b}
\end{align*}
$$

In practice, $\theta=\frac{u^{*} A u}{u^{*} B u}, z \perp u$ and

$$
\left.\left(I-\frac{u u^{*}}{u^{*} u}\right)(A-\theta B)\right|_{u^{\perp}} z=-r \equiv-(A u-\theta B u) .
$$

9.4.2 Other projections for the eigenvector approximations

Assume

$$
r \equiv A u-\theta B u \perp w \quad \text { for some } w .
$$

We look for an update z of u which is orthogonal to $\tilde{u}(\tilde{u} \perp u)$, i.e.,

$$
z \perp \tilde{u} \text { and } A(u+z)=\lambda B(u+z) .
$$

For convenience, $\tilde{u}=B u$. Similarly, select $\tilde{w} \perp w$ and consider

$$
P=\frac{\tilde{w} w^{*}}{w^{*} \tilde{w}} \text { and } Q=\frac{u \tilde{u}^{*}}{\tilde{u}^{*} u} .
$$

The projections can be used to decompose the eigenproblem:

$$
(A-\lambda B) x=0 \Longleftrightarrow\left\{\begin{array}{l}
P(A-\lambda B)(Q x+(I-Q) x)=0 \\
(I-P)(A-\lambda B)(Q x+(I-Q) x)=0
\end{array}\right.
$$

$$
\alpha \equiv \frac{w^{*} A u}{w^{*} u}, \beta=\frac{w^{*} B u}{w^{*} u}, a=A u-\alpha u, b=B u-\beta u
$$

and

$$
u^{\prime} \equiv\left(I-\frac{\tilde{w} w^{*}}{w^{*} \tilde{w}}\right) u
$$

(9.4.30) is equivalent to

$$
\begin{aligned}
& \lambda=\frac{w^{*} A(u+z)}{w^{*} B(u+z)} \\
& z \perp \tilde{u} \text { and }\left(I-\frac{\tilde{w} w^{*}}{w^{*} \tilde{w}}\right)(A-\lambda B)_{\tilde{u}^{\perp}} z=-(a-\lambda b)-(\alpha-\lambda \beta) u^{\prime}
\end{aligned}
$$

In practice, let

$$
\theta=\frac{\alpha}{\beta} \text { and } r=a-\theta b=A u-\theta B u .
$$

Lemma 9.4.1 Let $(A-\lambda B) x=0$. Consider w and \tilde{u} with $\tilde{u}^{*} x \neq 0$ and $(B x)^{*} w \neq 0$. Then the map

$$
F_{p} \equiv\left(I-\frac{B x w^{*}}{w^{*} B x}\right)(A-\lambda B)\left(I-\frac{x \tilde{u}^{*}}{\tilde{u}^{*} x}\right)
$$

is a bijection from \tilde{u}^{\perp} onto w^{\perp}.
Proof: Suppose $y \perp \tilde{u}$ and $F_{p} y=0 \Longrightarrow y=0$.
Theorem 9.4.1 Choose $\tilde{w}=B u$. Assume \tilde{u} and w converge and $\tilde{u}^{*} x$ and $w^{*} B x \nrightarrow$ 0 . Then, if the initial $u \approx x$, the sequence of u converges to x quadratically and $\theta=$ $w^{*} A u / w^{*} B u \longrightarrow \lambda$.

Proof: Suppose $(A-\lambda B) x=0$, with $x=u+z$ for $z \perp \tilde{u}$. Then

$$
\begin{equation*}
(A-\theta B) z=-(A-\theta B) u+(\lambda-\theta) B x=-r+(\lambda-\theta) B x . \tag{9.4.31}
\end{equation*}
$$

Consider the exact solution $z_{1} \perp \tilde{u}$ of the correction equation:

$$
\begin{equation*}
\left.(I-P)(A-\theta B)\right|_{\tilde{u}^{\perp}} z_{1}=-(I-P) r . \tag{9.4.32}
\end{equation*}
$$

Since $x-\left(u+z_{1}\right)=z-z_{1}$ and $z=x-u$, for quadratic convergence, it suffices to show

$$
\left\|x-\left(u+z_{1}\right)\right\|=\left\|z-z_{1}\right\|=O\left(\|z\|^{2}\right) .
$$

Multiplying (9.4.31) by $(I-P)$ and subtracting the result from (9.4.32) yields

$$
(I-P)(A-\theta B)\left(z-z_{1}\right)=(\lambda-\theta)(I-P) B z+(\lambda-\theta)(I-P) B u
$$

Multiplying (9.4.31) by w and using $r \perp w$ leads to

$$
\begin{equation*}
\lambda-\theta=\frac{w^{*}(A-\theta B) z}{w^{*} B x} \tag{9.4.33}
\end{equation*}
$$

By assumption and (9.4.33), we obtain

$$
\|(\lambda-\theta)(I-P) B z\|=\left\|\frac{w^{*}(A-\theta B) z}{w^{*} B x}(I-P) B z\right\|=O\left(\|z\|^{2}\right)
$$

provided $\left.(I-P)(A-\theta B)\right|_{\tilde{u}^{\perp}}$ to be nonsingular (by Lemma 9.4.1) and $(I-P) B u=0$ (since $\tilde{w}=B u$).

In practice, $w=\tilde{w}=B u, \tilde{u}=B^{*} w$.

9.4.3 Equivalent formulations for the correction equation

The correction equation

$$
\begin{equation*}
\left.\left(I-\frac{\tilde{w} w^{*}}{w^{*} \tilde{w}}\right)(A-\theta B)\right|_{\tilde{u}^{\perp} z_{1}}=-r, \quad z_{1} \perp \tilde{u} \tag{9.4.34}
\end{equation*}
$$

is equivalent to

$$
\left[\begin{array}{cc}
A-\theta B & \tilde{w} \\
\tilde{u}^{*} & 0
\end{array}\right]\left[\begin{array}{l}
z \\
\varepsilon
\end{array}\right]=\left[\begin{array}{c}
-r \\
0
\end{array}\right],
$$

where $\varepsilon=-w^{*}(A-\theta B) z / w^{*} \tilde{w}$.
Theorem 9.4.2 The solution (9.4.34) is given by

$$
\begin{equation*}
z=(A-\theta B)^{-1}(-r+\varepsilon \tilde{w})=-u+\varepsilon(A-\theta B)^{-1} \tilde{w} \tag{9.4.35}
\end{equation*}
$$

with $\varepsilon=\frac{\tilde{u}^{*} u}{\tilde{u}^{*}(A-\theta B)^{-1} \tilde{w}}$.
Proof: With z in (9.4.35), it holds that $\tilde{u} \perp z$, and $(A-\theta B) z=-r+\varepsilon \tilde{w}$. Since $r \perp w \Rightarrow$ (9.4.34) holds.

Bibliography

[1] R. Barrett, M. Berry, T. F. Chan, and J. Demmel, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems, SIAM, Philadelphia, 2000.
[3] B. N. Datta, Numerical linear algebra and applications, Pacific Grove :Brooks/Cole Pub., 1995.
[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed, The Johns Hopkins University Press, 1996.
[5] L. A. Hageman, D. M. Young, Applied iterative methods, New York, Academic Press, 1981.
[6] N. J. Higham, Accuracy and stability of numerical algorithms, 2nd ed., SIAM, , Philadelphia, 2002.
[7] G. W. Stewart, Introduction to matrix computations, New York, Academic Press, 1973.
[8] G. W. Stewart, Matrix algorithms, SIAM, Philadelphia, 1998.
[9] J. H. Wilkinson, The Algebraic Eigenvalue Problems, Oxford Science Publications, 1965.

Index

A-conjugate, 106
$L L^{T}$ factorization, 29
2-consistly ordered, 79
2-cyclic, 79
Backward error, 16
Backward stable, 16
BCG method, 137
Bi-Conjugate Gradient algorithm, 141
Cholesky factorization, 29
Classical Gram-Schmidt Algorithm, 48
compact method, 29
Condition number, 17, 20
Conjugate gradient method, 106
Crout's factorization, 29
Durbin algorithm, 41
Forward stable, 17
Forward error, 16
Gauss-Seidel method, 62
GCG method, 134
Givens rotation, 49
Gradient Mmethod, 103
H-matrix, 123
Implicit Q Theorem, 197
irreducible, 65
Jacobi method, 62
Kronecker product, 189
LDR factorization, 29
LR factorization, 24
Modified Gram-Schmidt, 48
Norms
dual, 10
matrix, 7
Frobenius norm, 8
operator, 8
vector, 6
Numerical stable, 16
Perron root, 67
Perron Lemma, 67
Perron vector, 67
Perron-Frobenius Theorem, 66
Persymmetric matrix, 40
Preconditioned CG-method, 114
property A, 79
reducible, 65
Schur Theorem, 6
Sherman-Morrison Formula, 4
Sherman-Morrison-Woodburg Formula, 4
Single-step method, 62
Singular Value Decomposition (SVD), 10
SOR, 77
Steepest descent method, 103
Stein-Rosenberg, 73
Toeplitz matrix, 40
Total-step method, 62
Yule-Walker system, 41

