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Chapter 1

Introduction

1.1 Mathematical auxiliary, definitions and relations

1.1.1 Vectors and matrices

A ∈ Km×n, where K = R or C ⇔ A = [aij] =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 , aij ∈ K,

• Product of matrices (Km×n × Kn×p → Km×p): C = AB, where cij =
∑n

k=1 aikbkj,
i = 1, · · · ,m, j = 1, · · · , p.

• Transpose (Rm×n → Rn×m): C = AT , where cij = aji ∈ R.

• Conjugate transpose (Cm×n → Cn×m): C = A∗ or C = AH , where cij = āji ∈ C.

• Differentiation (Rm×n → Rm×n): Let C(t) = (cij(t)). Then Ċ(t) = [ċij(t)].

• If A,B ∈ Kn×n satisfy AB = I, then B is the inverse of A and is denoted by
A−1. If A−1 exists, then A is said to be nonsingular; otherwise, A is singular. A is
nonsingular if and only if det(A) ̸= 0.

• If A ∈ Km×n, x ∈ Kn and y = Ax, then yi =
∑n

j=1 aijxj, i = 1, · · · ,m.

• Outer product of x ∈ Km and y ∈ Kn:

xy∗ =

 x1ȳ1 · · · x1ȳn
...

. . .
...

xmȳ1 · · · xmȳn

 ∈ Km×n.

• Inner product of x and y ∈ Kn:

(x, y) := xTy =
n∑

i=1

xiyi = yTx ∈ R

(x, y) := x∗y =
n∑

i=1

x̄iyi = y∗x ∈ C
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• Sherman-Morrison Formula:
Let A ∈ Rn×n be nonsingular, u, v ∈ Rn. If vTA−1u ̸= −1, then

(A+ uvT )−1 = A−1 − A−1u(1 + vTA−1u)−1vTA−1. (1.1.1)

• Sherman-Morrison-Woodbury Formula:
Let A ∈ Rn×n, be nonsingular U , V ∈ Rn×k. If (I + V TA−1U) is invertible, then

(A+ UV T )−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1,

Proof of (1.1.1):

(A+ uvT )[A−1 − A−1u(1 + vTA−1u)vTA−1]

= I +
1

1 + vTA−1u
[uvTA−1(1 + vTA−1u)− uvTA−1 − uvTA−1uvTA−1]

= I +
1

1 + vTA−1u
[u(vTA−1u)vTA−1 − uvTA−1uvTA−1] = I.

Note that these formulae also hold for the complex case with T = transpose or conjugate
transpose.

Example 1.1.1

A =


3 −1 1 1 1
0 1 2 2 2
0 −1 4 1 1
0 0 0 3 0
0 0 0 0 3

 = B +


0
0
−1
0
0

 [ 0 1 0 0 0
]
.

1.1.2 Rank and orthogonality

Let A ∈ Rm×n. Then

• R(A) = {y ∈ Rm | y = Ax for some x ∈ Rn } ⊆ Rm is the range space of A.

• N (A) = {x ∈ Rn | Ax = 0 } ⊆ Rn is the null space of A.

• rank(A) = dim [R(A)] = The number of maximal linearly independent columns of
A.

• rank(A) = rank(AT ).

• dim(N (A)) + rank(A) = n.

• If m = n, then A is nonsingular ⇔ N (A) = {0} ⇔ rank(A) = n.

• Let {x1, · · · , xp} ⊆ Rn. Then {x1, · · · , xp} is said to be orthogonal if xTi xj = 0, for
i ̸= j and orthonormal if xTi xj = δij, where δij = 0 if i ̸= j and δij = 1 if i = j.

• S⊥ = {y ∈ Rm | yTx = 0, for x ∈ S} = orthogonal complement of S.

• Rn = R(AT )⊕N (A), Rm = R(A)⊕N (AT ).

• R(AT ) ⊥ N (A), R(A)⊥ = N (AT ).
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A ∈ Rn×n A ∈ Cn×n

Symmetric: AT = A Hermitian: A∗ = A(AH = A)
skew-symmetric: AT = −A skew-Hermitian: A∗ = −A
positive definite: xTAx > 0, x ̸= 0 positive definite: x∗Ax > 0, x ̸= 0
non-negative definite: xTAx ≥ 0 non-negative definite: x∗Ax ≥ 0
indefinite: (xTAx)(yTAy) < 0 for some x, y indefinite: (x∗Ax)(y∗Ay) < 0 for some x, y
orthogonal: ATA = In unitary: A∗A = In
normal: ATA = AAT normal: A∗A = AA∗

positive: aij > 0
non-negative: aij ≥ 0.

Table 1.1: Some definitions for matrices.

1.1.3 Special matrices

Let A ∈ Kn×n. Then the matrix A is

• diagonal if aij = 0, for i ̸= j. Denote D = diag(d1, · · · , dn) ∈ Dn the set of diagonal
matrices;

• tridiagonal if aij = 0, |i− j| > 1;

• upper bi-diagonal if aij = 0, i > j or j > i+ 1;

• (strictly) upper triangular if aij = 0, i > j (i ≥ j);

• upper Hessenberg if aij = 0, i > j + 1.
(Note: the lower case is the same as above.)

Sparse matrix: n1+r, where r < 1 (usually between 0.2 ∼ 0.5). If n = 1000, r = 0.9, then
n1+r = 501187.

Example 1.1.2 If S is skew-symmetric, then I −S is nonsingular and (I −S)−1(I +S)
is orthogonal (Cayley transformation of S).

1.1.4 Eigenvalues and Eigenvectors

Definition 1.1.1 Let A ∈ Cn×n. Then λ ∈ C is called an eigenvalue of A, if there exists
x ̸= 0, x ∈ Cn with Ax = λx and x is called an eigenvector of A corresponding to λ.

Notations:

σ(A) := Spectrum of A = The set of eigenvalues of A.

ρ(A) := Radius of A = max{|λ| : λ ∈ σ(A)}.

• λ ∈ σ(A) ⇔ det(A− λI) = 0.

• p(λ) = det(λI − A) = The characteristic polynomial of A.

• p(λ) =
∏s

i=1(λ− λi)m(λi), where λi ̸= λj (for i ̸= j) and
∑s

i=1m(λi) = n.
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• m(λi) = The algebraic multiplicity of λi.

• n(λi) = n− rank(A− λiI) = The geometric multiplicity of λi.

• 1 ≤ n(λi) ≤ m(λi).

Definition 1.1.2 If there is some i such that n(λi) < m(λi), then A is called degenerated.

The following statements are equivalent:

(1) There are n linearly independent eigenvectors;

(2) A is diagonalizable, i.e., there is a nonsingular matrix T such that T−1AT ∈ Dn;

(3) For each λ ∈ σ(A), it holds that m(λ) = n(λ).

If A is degenerated, then eigenvectors and principal vectors derive the Jordan form of A.
(See Gantmacher: Matrix Theory I, II)

Theorem 1.1.1 (Schur) (1) Let A ∈ Cn×n. There is a unitary matrix U such that
U∗AU(= U−1AU) is upper triangular.

(2) Let A ∈ Rn×n. There is an orthogonal matrix Q such that QTAQ(= Q−1AQ)
is quasi-upper triangular, i.e., an upper triangular matrix possibly with nonzero
subdiagonal elements in non-consecutive positions.

(3) A is normal if and only if there is a unitary U such that U∗AU = D diagonal.

(4) A is Hermitian if and only if A is normal and σ(A) ⊆ R.

(5) A is symmetric if and only if there is an orthogonal U such that UTAU = D diagonal
and σ(A) ⊆ R.

1.2 Norms and eigenvalues

Let X be a vector space over K = R or C.

Definition 1.2.1 (Vector norms) Let N be a real-valued function defined on X (N :
X → R+). Then N is a (vector) norm, if

N1: N(αx) = |α|N(x), α ∈ K, for x ∈ X;

N2: N(x+ y) ≤ N(x) +N(y), for x, y ∈ X;

N3: N(x) = 0 if and only if x = 0.

The usual notation is ∥x∥ = N(x).
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Example 1.2.1 Let X = Cn, p ≥ 1. Then ∥x∥p = (
∑n

i=1 |xi|p)1/p is a p-norm. Espe-
cially,

∥x∥1 =
n∑

i=1

|xi| ( 1-norm),

∥x∥2 = (
n∑

i=1

|xi|2)1/2 (2-norm = Euclidean-norm),

∥x∥∞ = max
1≤i≤n

|xi| (∞-norm = maximum norm).

Lemma 1.2.1 N(x) is a continuous function in the components x1, · · · , xn of x.

Proof:

|N(x)−N(y)| ≤ N(x− y) ≤
n∑

j=1

|xj − yj|N(ej)

≤ ∥x− y∥∞
n∑

j=1

N(ej),

in which ej is the jth column of the identity matrix In.

Theorem 1.2.1 (Equivalence of norms) Let N and M be any two norms on Cn.
Then there are constants c1, c2 > 0 such that

c1M(x) ≤ N(x) ≤ c2M(x), for all x ∈ Cn.

Proof: Without loss of generality (W.L.O.G.) we can assume that M(x) = ∥x∥∞ and N
is arbitrary. We claim that

c1∥x∥∞ ≤ N(x) ≤ c2∥x∥∞,

equivalently,
c1 ≤ N(z) ≤ c2,∀ z ∈ S = {z ∈ Cn|∥z∥∞ = 1}.

From Lemma 1.2.1, N is continuous on S (closed and bounded). By maximum and
minimum principle, there are c1, c2 ≥ 0 and z1, z2 ∈ S such that

c1 = N(z1) ≤ N(z) ≤ N(z2) = c2.

If c1 = 0, then N(z1) = 0, and thus, z1 = 0. This contradicts that z1 ∈ S.

Remark 1.2.1 Theorem 1.2.1 does not hold in infinite dimensional space.

Definition 1.2.2 (Matrix-norms) Let A ∈ Cm×n. A real-valued function ∥·∥ : Cm×n →
R+ satisfying

N1: ∥αA∥ = |α|∥A∥;

N2: ∥A+B∥ ≤ ∥A∥+ ∥B∥ ;
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N3: ∥A∥ = 0 if and only if A = 0;

N4: ∥AB∥ ≤ ∥A∥∥B∥ ;

N5: ∥Ax∥v ≤ ∥A∥∥x∥v (matrix and vector norms are compatible for some ∥ · ∥v)

is called a matrix norm. If ∥ · ∥ satisfies N1 to N4, then it is called a multiplicative or
algebra norm.

Example 1.2.2 (Frobenius norm) Let ∥A∥F = [
∑n

i,j=1 |ai,j|2]1/2.

∥AB∥F = (
∑
i,j

|
∑
k

aikbkj|2)
1
2

≤ (
∑
i,j

{
∑
k

|aik|2}{
∑
k

|bkj|2})
1
2 (Cauchy-Schwartz Ineq.)

= (
∑
i

∑
k

|aik|2)
1
2 (
∑
j

∑
k

|bkj|2)
1
2

= ∥A∥F∥B∥F . (1.2.1)

This implies that N4 holds. Furthermore, by Cauchy-Schwartz inequality we have

∥Ax∥2 = (
∑
i

|
∑
j

aijxj|2)
1
2

≤

(∑
i

(
∑
j

|aij|2)(
∑
j

|xj|2)

) 1
2

= ∥A∥F∥x∥2. (1.2.2)

This implies that N5 holds. Also, N1, N2 and N3 hold obviously. (Here, ∥I∥F =
√
n).

Example 1.2.3 (Operator norm) Given a vector norm ∥ · ∥. An associated (induced)
matrix norm is defined by

∥A∥ = sup
x ̸=0

∥Ax∥
∥x∥

= max
x ̸=0

∥Ax∥
∥x∥

. (1.2.3)

Then N5 holds immediately. On the other hand,

∥(AB)x∥ = ∥A(Bx)∥ ≤ ∥A∥∥Bx∥
≤ ∥A∥∥B∥∥x∥ (1.2.4)

for all x ̸= 0. This implies that

∥AB∥ ≤ ∥A∥∥B∥. (1.2.5)

It holds N4. (Here ∥I∥ = 1).
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In the following, we represent and verify three useful matrix norms:

∥A∥1 = sup
x̸=0

∥Ax∥1
∥x∥1

= max
1≤j≤n

n∑
i=1

|aij| (1.2.6)

∥A∥∞ = sup
x ̸=0

∥Ax∥∞
∥x∥∞

= max
1≤i≤n

n∑
j=1

|aij| (1.2.7)

∥A∥2 = sup
x̸=0

∥Ax∥2
∥x∥2

=
√
ρ(A∗A) (1.2.8)

Proof of (1.2.6):

∥Ax∥1 =
∑
i

|
∑
j

aijxj| ≤
∑
i

∑
j

|aij||xj|

=
∑
j

|xj|
∑
i

|aij|.

Let C1 :=
∑

i |aik| = maxj
∑

i |aij|. Then ∥Ax∥1 ≤ C1∥x∥1, thus ∥A∥1 ≤ C1. On the
other hand, ∥ek∥1 = 1 and ∥Aek∥1 =

∑n
i=1 |aik| = C1.

Proof of (1.2.7):

∥Ax∥∞ = max
i
|
∑
j

aijxj|

≤ max
i

∑
j

|aijxj|

≤ max
i

∑
j

|aij|∥x∥∞

≡
∑
j

|akj|∥x∥∞

≡ C∞∥x∥∞.

This implies that ∥A∥∞ ≤ C∞. If A = 0, there is nothing to prove. Assume that A ̸= 0
and the k-th row of A is nonzero. Define z = [zj] ∈ Cn by

zj =

{
ākj
|akj |

if akj ̸= 0,

1 if akj = 0.

Then ∥z∥∞ = 1 and akjzj = |akj|, for j = 1, . . . , n. It follows that

∥A∥∞ ≥ ∥Az∥∞ = max
i
|
∑
j

aijzj| ≥ |
∑
j

akjzj| =
n∑

j=1

|akj| ≡ C∞.

Thus, ∥A∥∞ ≥ max1≤i≤n
∑n

j=1 |aij| ≡ C∞.
Proof of (1.2.8): Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of A∗A. There
are mutually orthonormal vectors vj, j = 1, . . . , n such that (A∗A)vj = λjvj. Let x =∑

j αjvj. Since ∥Ax∥22 = (Ax,Ax) = (x,A∗Ax),

∥Ax∥22 =

(∑
j

αjvj,
∑
j

αjλjvj

)
=
∑
j

λj|αj|2 ≤ λ1∥x∥22.
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Therefore, ∥A∥22 ≤ λ1. Equality follows by choosing x = v1 and ∥Av1∥22 = (v1, λ1v1) = λ1.
So, we have ∥A∥2 =

√
ρ(A∗A).

Example 1.2.4 (Dual norm) Let 1
p
+ 1

q
= 1. Then ∥ · ∥∗p = ∥ · ∥q, (p = ∞, q = 1).

(It concludes from the application of the Hölder inequality that |y∗x| ≤ ∥x∥p∥y∥q. See
Appendix later!)

Theorem 1.2.2 Let A ∈ Cn×n. Then for any operator norm ∥ · ∥, it holds

ρ(A) ≤ ∥A∥.

Moreover, for any ε > 0, there exists an operator norm ∥ · ∥ε such that

∥ · ∥ε ≤ ρ(A) + ε.

Proof: Let |λ| = ρ(A) ≡ ρ and x be the associated eigenvector with ∥x∥ = 1. Then,

ρ(A) = |λ| = ∥λx∥ = ∥Ax∥ ≤ ∥A∥∥x∥ = ∥A∥.

On the other hand, there is a unitary matrix U such that A = U∗RU , where R is
upper triangular. Let Dt = diag(t, t2, . . . , tn). Compute

DtRD
−1
t =


λ1 t−1r12 t−2r13 · · · t−n+1r1n

λ2 t−1r23 · · · t−n+2r2n

λ3
...

. . . t−1rn−1,n
λn

 .

For t > 0 sufficiently large, the sum of all absolute values of the off-diagonal elements of
DtRD

−1
t is less than ε. So, it holds ∥DtRD

−1
t ∥1 ≤ ρ(A)+ ε for sufficiently large t(ε) > 0.

Define ∥ · ∥ε for any B by

∥B∥ε = ∥DtUBU
∗D−1t ∥1

= ∥(UD−1t )−1B(UD−1t )∥1.

This implies that

∥A∥ε = ∥DtRD
−1
t ∥ ≤ ρ(A) + ε.

Remark 1.2.2

∥UAV ∥F = ∥A∥F (by ∥UA∥F =
√
∥Ua1∥22 + · · ·+ ∥Uan∥22), (1.2.9)

∥UAV ∥2 = ∥A∥2 (by ρ(A∗A) = ρ(AA∗)), (1.2.10)

where U and V are unitary.
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Theorem 1.2.3 (Singular Value Decomposition (SVD)) Let A ∈ Cm×n. Then there
exist unitary matrices U = [u1, · · · , um] ∈ Cm×m and V = [v1, · · · , vn] ∈ Cn×n such that

U∗AV = diag(σ1, · · · , σp) = Σ,

where p = min{m,n} and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. (Here, σi denotes the i-th largest
singular value of A).

Proof: There are x ∈ Cn, y ∈ Cm with ∥x∥2 = ∥y∥2 = 1 such that Ax = σy, where
σ = ∥A∥2 (∥A∥2 = sup∥x∥2=1 ∥Ax∥2). Let V = [x, V1] ∈ Cn×n, and U = [y, U1] ∈ Cm×m

be unitary. Then

A1 ≡ U∗AV =

[
σ w∗

0 B

]
.

Since ∥∥∥∥A1

(
σ
w

)∥∥∥∥2
2

≥ (σ2 + w∗w)2,

it follows that

∥A1∥22 ≥ σ2 + w∗w from

∥∥∥∥A1

(
σ
w

)∥∥∥∥2
2∥∥∥∥( σ

w

)∥∥∥∥2
2

≥ σ2 + w∗w.

But σ2 = ∥A∥22 = ∥A1∥22, it implies w = 0. Hence, the theorem holds by induction.

Remark 1.2.3 ∥A∥2 =
√
ρ(A∗A) = σ1 = The maximal singular value of A.

Let A = UΣV ∗. Then we have

∥ABC∥F = ∥UΣV ∗BC∥F = ∥ΣV ∗BC∥F
≤ σ1∥BC∥F = ∥A∥2∥BC∥F .

This implies
∥ABC∥F ≤ ∥A∥2∥B∥F∥C∥2. (1.2.11)

In addition, by (1.2.2) and (1.2.11), we get

∥A∥2 ≤ ∥A∥F ≤
√
n∥A∥2. (1.2.12)

Theorem 1.2.4 Let A ∈ Cn×n. The following statements are equivalent:
(1) lim

m→∞
Am = 0;

(2) lim
m→∞

Amx = 0 for all x;

(3) ρ(A) < 1.

Proof: (1) ⇒ (2): Trivial. (2) ⇒ (3): Let λ ∈ σ(A), i.e., Ax = λx, x ̸= 0. This implies
Amx = λmx → 0, as λm → 0. Thus |λ| < 1, i.e., ρ(A) < 1. (3) ⇒ (1): There is a norm
∥ · ∥ with ∥A∥ < 1 (by Theorem 1.2.2). Therefore, ∥Am∥ ≤ ∥A∥m → 0, i.e., Am → 0.
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Theorem 1.2.5 It holds that

ρ(A) = lim
k→∞
∥Ak∥1/k

where ∥ ∥ is an operator norm.

Proof: Since

ρ(A)k = ρ(Ak) ≤ ∥Ak∥ ⇒ ρ(A) ≤ ∥Ak∥1/k,

for k = 1, 2, . . .. If ε > 0, then Ã = [ρ(A) + ε]−1A has spectral radius < 1 and by
Theorem 1.2.4 we have ∥Ãk∥ → 0 as k → ∞. There is an N = N(ε, A) such that
∥Ãk∥ < 1 for all k ≥ N . Thus, ∥Ak∥ ≤ [ρ(A) + ε]k, for all k ≥ N or ∥Ak∥1/k ≤ ρ(A) + ε
for all k ≥ N . Since ρ(A) ≤ ∥Ak∥1/k, and k, ε are arbitrary, limk→∞ ∥Ak∥1/k exists and
equals ρ(A).

Theorem 1.2.6 Let A ∈ Cn×n, and ρ(A) < 1. Then (I − A)−1 exists and

(I − A)−1 = I + A+ A2 + · · · .

Proof: Since ρ(A) < 1, the eigenvalues of (I − A) are nonzero. Therefore, by Theorem
2.5, (I − A)−1 exists and

(I − A)(I + A+ A2 + · · ·+ Am) = I − Am → 0.

Corollary 1.2.1 If ∥A∥ < 1, then (I − A)−1 exists and

∥(I − A)−1∥ ≤ 1

1− ∥A∥

Proof: Since ρ(A) ≤ ∥A∥ < 1 (by Theorem 1.2.2),

∥(I − A)−1∥ = ∥
∞∑
i=0

Ai∥ ≤
∞∑
i=0

∥A∥i = (1− ∥A∥)−1.

Theorem 1.2.7 (Without proof) For A ∈ Kn×n the following statements are equivalent:

(1) There is a multiplicative norm p with p(Ak) ≤ 1, k = 1, 2, . . ..

(2) For each multiplicative norm p the power p(Ak) are uniformly bounded, i.e., there
exists a M(p) <∞ such that p(Ak) ≤M(p), k = 0, 1, 2, . . ..

(3) ρ(A) ≤ 1 and all eigenvalue λ with |λ| = 1 are not degenerated. (i.e., m(λ) = n(λ).)

(See Householder’s book: The theory of matrix, pp.45-47.)
In the following we prove some important inequalities of vector norms and matrix

norms. We let 1/p+ 1/q = 1.
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(a) It holds that

1 ≤ ∥x∥p
∥x∥q

≤ n(q−p)/pq, (p ≤ q). (1.2.13)

Proof: Claim ∥x∥q ≤ ∥x∥p, (p ≤ q): It holds

∥x∥q =
∥∥∥∥∥x∥p x

∥x∥p

∥∥∥∥
q

= ∥x∥p
∥∥∥∥ x

∥x∥p

∥∥∥∥
q

≤ Cp,q∥x∥p,

where
Cp,q = max

∥e∥p=1
∥e∥q, e = (e1, · · · , en)T .

We now show that Cp,q ≤ 1. From p ≤ q, we have

∥e∥qq =
n∑

i=1

|ei|q ≤
n∑

i=1

|ei|p = 1 (by |ei| ≤ 1).

Hence, Cp,q ≤ 1, thus ∥x∥q ≤ ∥x∥p.
To prove the second inequality: Let α = q/p > 1. Then the Jensen inequality holds
for the convex function φ(x):

φ(

∫
Ω

fdµ) ≤
∫
Ω

(φ ◦ f)dµ, µ(Ω) = 1.

If we take φ(x) = xα, then we have∫
Ω

|f |qdx =

∫
Ω

(|f |p)q/p dx ≥
(∫

Ω

|f |pdx
)q/p

with |Ω| = 1. Consider the discrete measure
∑n

i=1
1
n
= 1 and f(i) = |xi|. It follows

that
n∑

i=1

|xi|q
1

n
≥

(
n∑

i=1

|xi|p
1

n

)q/p

.

Hence, we have

n−
1
q ∥x∥q ≥ n−

1
p∥x∥p.

Thus,
n(q−p)/pq∥x∥q ≥ ∥x∥p.

(b) It holds that

1 ≤ ∥x∥p
∥x∥∞

≤ n
1
p . (1.2.14)

Proof: Let q →∞ and lim
q→∞
∥x∥q = ∥x∥∞:

∥x∥∞ = |xk| = (|xk|q)
1
q ≤

(
n∑

i=1

|xi|q
) 1

q

= ∥x∥q.
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On the other hand, we have

∥x∥q =

(
n∑

i=1

|xi|q
) 1

q

≤ (n∥x∥q∞)
1
q ≤ n

1
q ∥x∥∞

which implies that limq→∞ ∥x∥q = ∥x∥∞.

(c) It holds that

max
1≤j≤n

∥aj∥p ≤ ∥A∥p ≤ n(p−1)/p max
1≤j≤n

∥aj∥p, (1.2.15)

where A = [a1, · · · , an] ∈ Rm×n.

Proof: The first inequality holds obviously. To show the second inequality, for
∥y∥p = 1 we have

∥Ay∥p ≤
n∑

j=1

|yj|∥aj∥p ≤
n∑

j=1

|yj|max
j
∥aj∥p

= ∥y∥1 max
j
∥aj∥p ≤ n(p−1)/p max

j
∥aj∥p (by (1.2.13)).

(d) It holds that

max
i,j
|aij| ≤ ∥A∥p ≤ n(p−1)/pm1/p max

i,j
|aij|, (1.2.16)

where A ∈ Rm×n.

Proof: By (1.2.14) and (1.2.15) immediately.

(e) It holds that

m(1−p)/p∥A∥1 ≤ ∥A∥p ≤ n(p−1)/p∥A∥1. (1.2.17)

Proof: By (1.2.15) and (1.2.13) immediately.

(f) By Hölder inequality, we have (see Appendix later!)

|y∗x| ≤ ∥x∥p∥y∥q,

where 1
p
+ 1

q
= 1 or

max{|x∗y| : ∥y∥q = 1} = ∥x∥p. (1.2.18)

Then it holds that

∥A∥p = ∥AT∥q. (1.2.19)

Proof: By (1.2.18) we have

max
∥x∥p=1

∥Ax∥p = max
∥x∥p=1

max
∥y∥q=1

|(Ax)Ty|

= max
∥y∥q=1

max
∥x∥p=1

|xT (ATy)| = max
∥y∥q=1

∥ATy∥q = ∥AT∥q.
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(g) It holds that

n−
1
p∥A∥∞ ≤ ∥A∥p ≤ m

1
p∥A∥∞. (1.2.20)

Proof: By (1.2.17) and (1.2.19), we get

m
1
p∥A∥∞ = m

1
p∥AT∥1 = m1− 1

q ∥AT∥1
= m(q−1)/q∥AT∥1 ≥ ∥AT∥q = ∥A∥p.

(h) It holds that

∥A∥2 ≤
√
∥A∥p∥A∥q, (

1

p
+

1

q
= 1). (1.2.21)

Proof: By (1.2.19) we have

∥A∥p∥A∥q = ∥AT∥q∥A∥q ≥ ∥ATA∥q ≥ ∥ATA∥2.

The last inequality holds by the following statement: Let S be a symmetric matrix.
Then ∥S∥2 ≤ ∥S∥, for any matrix operator norm ∥ ∥. Since |λ| ≤ ∥S∥,

∥S∥2 =
√
ρ(S∗S) =

√
ρ(S2) = max

λ∈σ(S)
|λ| = |λmax|.

This implies, ∥S∥2 ≤ ∥S∥.

(i) For A ∈ Rm×n and q ≥ p ≥ 1, it holds that

n(p−q)/pq∥A∥q ≤ ∥A∥p ≤ m(q−p)/pq∥A∥q. (1.2.22)

Proof: By (1.2.13), we get

∥A∥p = max
∥x∥p=1

∥Ax∥p ≤ max
∥x∥q≤1

m(q−p)/pq∥Ax∥q

= m(q−p)/pq∥A∥q.

Appendix: To show Hölder inequality and (1.2.18)

Taking φ(x) = ex in Jensen’s inequality we have

exp

{∫
Ω

fdµ

}
≤
∫
Ω

efdµ.

Let Ω = finite set = {p1, . . . , pn}, µ({pi}) = 1
n
, f(pi) = xi. Then

exp

{
1

n
(x1 + · · ·+ xn)

}
≤ 1

n
(ex1 + · · ·+ exn) .

Taking yi = exi , we have

(y1 · · · yn)1/n ≤
1

n
(y1 + · · ·+ yn).
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Taking µ({pi}) = qi > 0,
∑n

i=1 qi = 1 we have

yq11 · · · yqnn ≤ q1y1 + · · ·+ qnyn. (1.2.23)

Let αi = xi/∥x∥p, βi = yi/∥y∥q, where x = [x1, · · · , xn]T , y = [y1, · · · , yn]T , α =
[α1, · · · , αn]

T and β = [β1, · · · , βn]T . By (1.2.23) we have

αiβi ≤
1

p
αp
i +

1

q
βq
i .

Since ∥α∥p = 1, ∥β∥q = 1, it holds

n∑
i=1

αiβi ≤
1

p
+

1

q
= 1.

Thus,

|xTy| ≤ ∥x∥p∥y∥q.

To show max{|xTy|; ∥x∥p = 1} = ∥y∥q. Taking xi = yq−1i /∥y∥q/pq we have

∥x∥pp =
∑n

i=1 |yi|(q−1)p

∥y∥qq
= 1.

Note (q − 1)p = q. Then∣∣∣∣∣
n∑

i=1

xTi yi

∣∣∣∣∣ =
∑n

i=1 |yi|q

∥y∥q/pq

=
∥y∥qq
∥y∥q/pq

= ∥y∥q.

The following two properties are useful in the following sections.

(i) There exists ẑ with ∥ẑ∥p = 1 such that ∥y∥q = ẑTy. Let z = ẑ/∥y∥q. Then we have
zTy = 1 and ∥z∥p = 1

∥y∥q .

(ii) From the duality, we have ∥y∥ = (∥y∥∗)∗ = max∥u∥∗=1 |yTu| = yT ẑ and ∥ẑ∥∗ = 1.
Let z = ẑ/∥y∥. Then we have zTy = 1 and ∥z∥∗ = 1

∥y∥ .

1.3 The Sensitivity of Linear System Ax = b

1.3.1 Backward error and Forward error

Let x = F (a). We define backward and forward errors in Figure 1.1. In Figure 1.1,
x̂ + ∆x = F (a + ∆a) is called a mixed forward-backward error, where |∆x| ≤ ε|x|,
|∆a| ≤ η|a|.

Definition 1.3.1 (i) An algorithm is backward stable, if for all a, it produces a computed
x̂ with a small backward error, i.e., x̂ = F (a+∆a) with ∆a small.

(ii) An algorithm is numerical stable, if it is stable in the mixed forward-backward error
sense, i.e., x̂+∆x = F (a+∆a) with both ∆a and ∆x small.
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backward error forward error

xD

�� ( )x F a a= + Da a+ D

a ( )x F a=
Input Output

( )F a a+ D

Figure 1.1: Relationship between backward and forward errors.

(iii) If a method which produces answers with forward errors of similar magnitude to
those produced by a backward stable method, is called a forward stable.

Remark 1.3.1 (i) Backward stable ⇒ forward stable, not vice versa!

(ii) Forward error ≤ condition number × backward error

Consider

x̂− x = F (a+∆a)− F (a) = F ′(a)∆a+
F ′′(a+ θ∆a)

2
(∆a)2, θ ∈ (0, 1).

Then we have

x̂− x
x

=

(
aF ′(a)

F (a)

)
∆a

a
+O

(
(∆a)2

)
.

The quantity C(a) =
∣∣∣aF ′(a)

F (a)

∣∣∣ is called the condition number of F. If x or F is a vector,

then the condition number is defined in a similar way using norms and it measures the
maximum relative change, which is attained for some, but not all ∆a.{

Àpriori error estimate !

P̀posteriori error estimate !

1.3.2 An SVD Analysis

Let A =
∑n

i=1 σiuivi
T = UΣV T be a singular value decomposition (SVD) of A. Then

x = A−1b = (UΣV T )−1b =
n∑

i=1

ui
T b

σi
vi.

If cos(θ) =| unT b | / ∥ b ∥2 and

(A− εunvnT )y = b+ ε(un
T b)un, σn > ε ≥ 0.
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Then we have
∥ y − x ∥2≥ (

ε

σn
) ∥ x ∥2 cos(θ).

Let E = diag{0, · · · , 0, ε}. Then it holds

(Σ− E)V Ty = UT b+ ε(un
T b)en.

Therefore,

y − x = V (Σ− E)−1UT b+ ε(un
T b)(σn − ε)−1vn − V Σ−1UT b

= V ((Σ− E)−1 − Σ−1)UT b+ ε(un
T b)(σn − ε)−1vn

= V (Σ−1E(Σ− E)−1)UT b+ ε(un
T b)(σn − ε)−1vn

= V diag

(
0, · · · , 0, ε

σn(σn − ε)

)
UT b+ ε(un

T b)(σn − ε)−1vn

=
ε

σn(σn − ε)
vn(un

T b) + ε(un
T b)(σn − ε)−1vn

= un
T bvn(

ε

σn(σn − ε)
+ ε(σn − ε)−1)

=
ε(1 + σn)

σn(σn − ε)
un

T bvn.

From the inequality ∥x∥2 ≤ ∥b∥2∥A−1∥2 we have

∥ y − x ∥2
∥ x ∥2

≥
| unT b | ε

σn
(1+σ
σ−ε)

∥ b ∥2
≥ | un

T b |
∥ b ∥2

ε

σn
.

Theorem 1.3.1 A is nonsingular and ∥ A−1E ∥= r < 1. Then A + E is nonsingular
and ∥ (A+ E)−1 − A−1 ∥≤∥ E ∥ ∥ A−1 ∥2 /(1− r).

Proof:: Since A is nonsingular, A+E = A(I−F ), where F = −A−1E. Since ∥ F ∥= r < 1,
it follows that I − F is nonsingular (by Corollary 1.2.1) and ∥ (I − F )−1 ∥< 1

1−r . Then

(A+ E)−1 = (I − F )−1A−1 =⇒∥ (A+ E)−1 ∥≤ ∥A
−1∥

1− r
and

(A+ E)−1 − A−1 = −A−1E(A+ E)−1.

It follows that

∥ (A+ E)−1 − A−1 ∥≤∥ A−1 ∥∥ E ∥∥ (A+ E)−1 ∥≤ ∥ A
−1 ∥2∥ E ∥
1− r

.

Lemma 1.3.1 Let {
Ax = b,
(A+∆A)y = b+∆b,

where ∥ ∆A ∥≤ δ ∥ A ∥ and ∥ ∆b ∥≤ δ∥b∥. If δκ(A) = r < 1, then A+∆A is nonsingular

and ∥y∥∥x∥ ≤
1+r
1−r , where κ(A) = ∥A∥∥A

−1∥.
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Proof: Since ∥ A−1∆A ∥< δ∥A−1∥∥A∥ = r < 1, it follows that A + ∆A is nonsingular.
From the equality (I + A−1∆A)y = x+ A−1∆b follows that

∥y∥ ≤ ∥ (I + A−1∆A)−1 ∥ (∥x∥+ δ∥A−1∥∥b∥)

≤ 1

1− r
(∥x∥+ δ∥A−1∥∥b∥)

=
1

1− r
(∥x∥+ r

∥ b ∥
∥A∥

).

From ∥b∥ =∥ Ax ∥≤ ∥A∥∥x∥ follows the lemma.

1.3.3 Normwise Forward Error Bound

Theorem 1.3.2 If the assumption of Lemma 1.3.1 holds, then ∥x−y∥∥x∥ ≤
2δ
1−rκ(A).

Proof:: Since y − x = A−1∆b− A−1∆Ay, we have

∥ y − x ∥≤ δ∥A−1∥∥b∥+ δ∥A−1∥∥A∥∥y∥.

So by Lemma 1.3.1 it holds

∥ y − x ∥
∥x∥

≤ δκ(A)
∥b∥
∥A∥∥x∥

+ δκ(A)
∥y∥
∥x∥

≤ δκ(A)(1 +
1 + r

1− r
) =

2δ

1− r
κ(A).

1.3.4 Componentwise Forward Error Bound

Theorem 1.3.3 Let Ax = b and (A + ∆A)y = b + ∆b, where | ∆A |≤ δ | A | and
| ∆b |≤ δ | b |. If δκ∞(A) = r < 1, then (A + ∆A) is nonsingular and ∥y−x∥∞∥x∥∞ ≤ 2δ

1−r ∥|
A−1 || A |∥∞. Here ∥ | A−1 || A | ∥∞ is called a Skeel condition number.

Proof:: Since ∥ ∆A ∥∞≤ δ∥A∥∞ and ∥ ∆b ∥∞≤ δ∥b∥∞, the assumptions of Lemma 1.3.1

are satisfied in ∞-norm. So, A+∆A is nonsingular and ∥y∥∞∥x∥∞ ≤
1+r
1−r .

Since y − x = A−1∆b− A−1∆Ay, we have

| y − x | ≤ | A−1 || ∆b | + | A−1 || ∆A || y |
≤ δ | A−1 || b | +δ | A−1 || A || y |
≤ δ | A−1 || A | (| x | + | y |).

By taking ∞-norm, we have

∥ y − x ∥∞ ≤ δ ∥| A−1 || A |∥∞ (∥x∥∞ +
1 + r

1− r
∥x∥∞)

=
2δ

1− r
∥| A−1 || A |∥∞.
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1.3.5 Derivation of Condition Number of Ax = b

Let
(A+ εF )x(ε) = b+ εf with x(0) = x.

Then we have ẋ(0) = A−1(f − Fx) and x(ε) = x+ εẋ(0) + o(ε2). Therefore,

∥ x(ε)− x ∥
∥x∥

≤ ε∥A−1∥{∥ f ∥
∥x∥

+ ∥ F ∥}+ o(ε2).

Define condition number κ(A) := ∥A∥∥A−1∥. Then we have

∥ x(ε)− x ∥
∥x∥

≤ κ(A)(ρA + ρb) + o(ε2),

where ρ
A
= ε∥F∥/∥A∥ and ρb = ε∥f∥/∥b∥.

1.3.6 Normwise Backward Error

Theorem 1.3.4 Let y be the computed solution of Ax = b. Then the normwise backward
error bound

η(y) := min
{
ε|(A+∆A)y = b+∆b, ∥∆A∥ ≤ ε∥A∥, ∥∆b∥ ≤ ε∥b∥

}
is given by

η(y) =
∥r∥

∥A∥∥y∥+ ∥b∥
, (1.3.24)

where r = b− Ay is the residual.

Proof: The right hand side of (1.3.24) is a upper bound of η(y). This upper bound is
attained for the perturbation (by construction!)

∆Amin =
∥A∥∥y∥rzT

∥A∥∥y∥+ ∥b∥
, ∆bmin = − ∥b∥

∥A∥∥y∥+ ∥b∥
r,

where z is the dual vector of y, i.e. zTy = 1 and ∥z∥∗ = 1
∥y∥ .

Check:
∥∆Amin∥ = η(y)∥A∥,

or

∥∆Amin∥ =
∥A∥∥y∥∥rzT∥
∥A∥∥y∥+ ∥b∥

=

(
∥r∥

∥A∥∥y∥+ ∥b∥

)
∥A∥.

That is, to prove

∥rzT∥ = ∥r∥
∥y∥

.

Since

∥rzT∥ = max
∥u∥=1

∥(rzT )u∥ = ∥r∥ max
∥u∥=1

|zTu| = ∥r∥∥z∥∗ = ∥r∥
1

∥y∥
,

we have done. Similarly, ∥∆bmin∥ = η(y)∥b∥.
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1.3.7 Componentwise Backward Error

Theorem 1.3.5 The componentwise backward error bound

ω(y) := min
{
ε|(A+∆A)y = b+∆b, |∆A| ≤ ε|A|, |∆b| ≤ ε|b|

}
is given by

ω(y) = max
i

|r|i
(A|y|+ b)i

, (1.3.25)

where r = b− Ay. (note: ξ/0 = 0 if ξ = 0; ξ/0 =∞ if ξ ̸= 0.)

Proof: The right hand side of (1.3.25) is a upper bound for ω(y). This bound is at-
tained for the perturbations ∆A = D1AD2 and ∆b = −D1b, where D1 = diag(ri/(A|y|+
b)i) and D2 = diag(sign(yi)).

Remark 1.3.2 Theorems 1.3.4 and 1.3.5 are posterior error estimation approach.

1.3.8 Determinants and Nearness to Singularity

Bn =


1 −1 · · · −1

1
. . .

...
1 −1

0 1

 , B−1n =


1 1 · · · 2n−2

. . . . . .
...

. . . 1
0 1

 .
Then det(Bn) = 1, κ∞(Bn) = n2n−1, σ30(B30) ≈ 10−8.

Dn =

 10−1 0
. . .

0 10−1

 .
Then det(Dn) = 10−n, κp(Dn) = 1 and σn(Dn) = 10−1.
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Chapter 2

Numerical methods for solving
linear systems

Let A ∈ Cn×n be a nonsingular matrix. We want to solve the linear system Ax = b by
(a) Direct methods (finite steps); Iterative methods (convergence). (See Chapter 4)

2.1 Elementary matrices

Let X = Kn and x, y ∈ X. Then y∗x ∈ K, xy∗ =

 x1ȳ1 · · · x1ȳn
...

...
xnȳ1 · · · xnȳn

. The eigenvalues

of xy∗ are {0, · · · , 0, y∗x}, since rank(xy∗) = 1 by (xy∗)z = (y∗z)x and (xy∗)x = (y∗x)x.

Definition 2.1.1 A matrix of the form

I − αxy∗ (α ∈ K, x, y ∈ Kn) (2.1.1)

is called an elementary matrix.

The eigenvalues of (I − αxy∗) are {1, 1, · · · , 1, 1− αy∗x}. Compute

(I − αxy∗)(I − βxy∗) = I − (α+ β − αβy∗x)xy∗. (2.1.2)

If αy∗x− 1 ̸= 0 and letβ = α
αy∗x−1 , then α+ β − αβy∗x = 0. We have

(I − αxy∗)−1 = (I − βxy∗), 1

α
+

1

β
= y∗x. (2.1.3)

Example 2.1.1 Let x ∈ Kn, and x∗x = 1. Let H = {z : z∗x = 0} and

Q = I − 2xx∗ (Q = Q∗, Q−1 = Q).

Then Q reflects each vector with respect to the hyperplane H. Let y = αx + w, w ∈ H.
Then, we have

Qy = αQx+Qw = −αx+ w − 2(x∗w)x = −αx+ w.
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Example 2.1.2 Let y = ei = the i-th column of unit matrix and x = li = [0, · · · , 0, li+1,i, · · · ,
ln,i]

T . Then,

I + lie
T
i =



1
. . .

1
li+1,i
...

. . .

ln,i 1


(2.1.4)

Since eTi li = 0, we have
(I + lie

T
i )
−1 = (I − lieTi ). (2.1.5)

From the equality

(I + l1e
T
1 )(I + l2e

T
2 ) = I + l1e

T
1 + l2e

T
2 + l1(e

T
1 l2)e

T
2 = I + l1e

T
1 + l2e

T
2

follows that

(I + l1e
T
1 ) · · · (I + lie

T
i ) · · · (I + ln−1e

T
n−1) = I + l1e

T
1 + l2e

T
2 + · · ·+ ln−1e

T
n−1

=


1

l21
. . . 0

...
. . . . . .

ln1 · · · ln,n−1 1

 . (2.1.6)

Theorem 2.1.1 A lower triangular with “1” on the diagonal can be written as the prod-
uct of n− 1 elementary matrices of the form (2.1.4).

Remark 2.1.1 (I + l1e
T
1 + . . .+ ln−1e

T
n−1)

−1 = (l− ln−1eTn−1) . . . (I − l1eT1 ) which can not
be simplified as in (2.1.6).

2.2 LR-factorization

Definition 2.2.1 Given A ∈ Cn×n, a lower triangular matrix L and an upper triangu-
lar matrix R. If A = LR, then the product LR is called a LR-factorization (or LR-
decomposition) of A.

Basic problem:
Given b ̸= 0, b ∈ Kn. Find a vector l1 = [0, l21, . . . , ln1]

T and c ∈ K such that

(I − l1eT1 )b = ce1.

Solution: {
b1 = c,
bi − li1b1 = 0, i = 2, . . . , n.{
b1 = 0, it has no solution (since b ̸= 0),
b1 ̸= 0, then c = b1, li1 = bi/b1, i = 2, . . . , n.
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Construction of LR-factorization:
Let A = A(0) = [a

(0)
1 | . . . | a

(0)
n ]. Apply basic problem to a

(0)
1 : If a

(0)
11 ̸= 0, then there

exists L1 = I − l1eT1 such that (I − l1eT1 )a
(0)
1 = a

(0)
11 e1. Thus

A(1) = L1A
(0) = [L1a

(0)
1 | . . . | L1a

(0)
n ] =


a
(0)
11 a

(0)
12 . . . a

(0)
1n

0 a
(1)
22 a

(1)
2n

...
...

...

0 a
(1)
n2 . . . a

(1)
nn

 . (2.2.1)

The i-th step:

A(i) = LiA
(i−1) = LiLi−1 . . . L1A

(0)

=



a
(0)
11 · · · · · · · · · · · · a

(0)
1n

0 a
(1)
22 · · · · · · · · · a

(1)
2n

... 0
. . .

...
...

... a
(i−1)
ii · · · · · · a

(i−1)
in

...
... 0 a

(i)
i+1,i+1 · · · a

(i)
i+1,n

...
...

...
...

...

0 0 · · · a
(i)
n,i+1 · · · a

(i)
nn


(2.2.2)

If a
(i−1)
ii ̸= 0, for i = 1, . . . , n− 1, then the method is executable and we have that

A(n−1) = Ln−1 . . . L1A
(0) = R (2.2.3)

is an upper triangular matrix. Thus, A = LR. Explicit representation of L:

Li = I − lieTi , L−1i = I + lie
T
i

L = L−11 . . . L−1n−1 = (I + l1e
T
1 ) . . . (I + ln−1e

T
n−1)

= I + l1e
T
1 + . . .+ ln−1e

T
n−1 (by (2.1.6)).

Theorem 2.2.1 Let A be nonsingular. Then A has an LR-factorization (A=LR) if and
only if ki := det(Ai) ̸= 0, where Ai is the leading principal matrix of A, i.e.,

Ai =

 a11 . . . a1i
...

...
ai1 . . . aii

 ,
for i = 1, . . . , n− 1.

Proof: (Necessity “⇒” ): Since A = LR, we have a11 . . . a1i
...

...
ai1 . . . aii

 =

 l11
...

. . . O
li1 . . . lii


 r11 r1i

O
. . .

rii

 .
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From det(A) ̸= 0 follows that det(L) ̸= 0 and det(R) ̸= 0. Thus, ljj ̸= 0 and rjj ̸= 0, for
j = 1, . . . , n. Hence ki = l11 . . . liir11 . . . rii ̸= 0.

(Sufficiency “⇐”): From (2.2.2) we have

A(0) = (L−11 . . . L−1i )A(i).

Consider the (i+ 1)-th leading principle determinant. From (2.2.3) we have a11 . . . ai,i+1
...

...
ai+1 . . . ai+1,i+1



=


1 0

l21
. . .

...
. . . . . .

...
. . . . . .

li+1,1 · · · · · · li+1,i 1




a
(0)
11 a

(0)
12 · · · · · · ∗
a
(1)
22 · · · · · · ...

. . .
...

a
(i−1)
ii a

(i−1)
i,i+1

0 a
(i)
i+1,i+1

 .

Thus, ki = 1 · a(0)11 a
(1)
22 . . . a

(i)
i+1,i+1 ̸= 0 which implies a

(i)
i+1,i+1 ̸= 0. Therefore, the LR-

factorization of A exists.

Theorem 2.2.2 If a nonsingular matrix A has an LR-factorization with A = LR and
l11 = · · · = lnn = 1, then the factorization is unique.

Proof: Let A = L1R1 = L2R2. Then L
−1
2 L1 = R2R

−1
1 = I.

Corollary 2.2.1 If a nonsingular matrix A has an LR-factorization with A = LDR,
where D is diagonal, L and RT are unit lower triangular (with one on the diagonal) if
and only if ki ̸= 0.

Theorem 2.2.3 Let A be a nonsingular matrix. Then there exists a permutation P , such
that PA has an LR-factorization.

(Proof): By construction! Consider (2.2.2): There is a permutation Pi, which inter-

changes the i-th row with a row of index large than i, such that 0 ̸= a
(i−1)
ii (∈ PiA

(i−1)).
This procedure is executable, for i = 1, . . . , n− 1. So we have

Ln−1Pn−1 . . . LiPi . . . L1P1A
(0) = R. (2.2.4)

Let P be a permutation which affects only elements i+ 1, · · · , n. It holds

P (I − lieTi )P−1 = I − (Pli)e
T
i = I − l̃ieTi = L̃i, (eTi P

−1 = eTi )

where L̃i is lower triangular. Hence we have

PLi = L̃iP. (2.2.5)

Now write all Pi in (2.2.4) to the right as

Ln−1L̃n−2 . . . L̃1Pn−1 . . . P1A
(0) = R.

Then we have PA = LR with L−1 = Ln−1L̃n−2 · · · L̃1 and P = Pn−1 · · ·P1.
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2.3 Gaussian elimination

2.3.1 Practical implementation

Given a linear system

Ax = b (2.3.1)

with A nonsingular. We first assume that A has an LR-factorization. i.e., A = LR. Thus

LRx = b.

We then (i) solve Ly = b; (ii) solve Rx = y. These imply that LRx = Ly = b. From
(2.2.4), we have

Ln−1 . . . L2L1(A | b) = (R | L−1b).

Algorithm 2.3.1 (without permutation)
For k = 1, . . . , n− 1,

if akk = 0 then stop (∗);
else ωj := akj (j = k + 1, . . . , n);
for i = k + 1, . . . , n,

η := aik/akk, aik := η;
for j = k + 1, . . . , n,

aij := aij − ηωj, bj := bj − ηbk.
For x: (back substitution!)

xn = bn/ann;
for i = n− 1, n− 2, . . . , 1,

xi = (bi −
∑n

j=i+1 aijxj)/aii.

Cost of computation (one multiplication + one addition ≡ one flop):

(i) LR-factorization: n3/3− n/3 flops;

(ii) Computation of y: n(n− 1)/2 flops;

(iii) Computation of x: n(n+ 1)/2 flops.

For A−1: 4/3n3 ≈ n3/3 + kn2 (k = n linear systems).

Pivoting: (a) Partial pivoting; (b) Complete pivoting.
From (2.2.2), we have

A(k−1) =



a
(0)
11 · · · · · · · · · · · · a

(0)
1n

0
. . .

...
... a

(k−2)
k−1,k−1 · · · · · · a

(k−2)
k−1,n

... 0 a
(k−1)
kk · · · a

(k−1)
kn

...
...

...
...

0 . . . 0 a
(k−1)
nk · · · a

(k−1)
nn


.
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For (a): 
Find a p ∈ {k, . . . , n} such that

|apk| = maxk≤i≤n |aik| (rk = p)
swap akj, bk and apj, bp respectively, (j = 1, . . . , n).

(2.3.2)

Replacing (∗) in Algorithm 2.3.1 by (2.3.2), we have a new factorization of A with
partial pivoting, i.e., PA = LR (by Theorem 2.2.1) and |lij| ≤ 1 for i, j = 1, . . . , n. For
solving linear system Ax = b, we use

PAx = Pb⇒ L(Rx) = P T b ≡ b̃.

It needs extra n(n− 1)/2 comparisons.
For (b): 

Find p, q ∈ {k, . . . , n} such that
|apq| ≤ max

k≤i,j≤n
|aij|, (rk := p, ck := q)

swap akj, bk and apj, bp respectively, (j = k, . . . , n),
swap aik and aiq(i = 1, . . . , n).

(2.3.3)

Replacing (∗) in Algorithm 2.3.1 by (2.3.3), we also have a new factorization of A with
complete pivoting, i.e., PAΠ = LR (by Theorem 2.2.1) and |lij| ≤ 1, for i, j = 1, . . . , n.
For solving linear system Ax = b, we use

PAΠ(ΠTx) = Pb⇒ LRx̃ = b̃⇒ x = Πx̃.

It needs n3/3 comparisons.

Example 2.3.1 Let A =

[
10−4 1
1 1

]
be in three decimal-digit floating point arithmetic.

Then κ(A) = ∥A∥∞∥A−1∥∞ ≈ 4. A is well-conditioned.
• Without pivoting:

L =

[
1 0

fl(1/10−4) 1

]
, f l(1/10−4) = 104,

R =

[
10−4 1
0 fl(1− 104 · 1)

]
, f l(1− 104 · 1) = −104.

LR =

[
1 0
104 1

] [
10−4 1
0 −104

]
=

[
10−4 1
1 0

]
̸=
[
10−4 1
1 1

]
= A.

Here a22 entirely “lost” from computation. It is numerically unstable. Let Ax =

[
1
2

]
.

Then x ≈
[
1
1

]
. But Ly =

[
1
2

]
solves y1 = 1 and y2 = fl(2− 104 · 1) = −104, Rx̂ = y

solves x̂2 = fl((−104)/(−104)) = 1, x̂1 = fl((1 − 1)/10−4) = 0. We have an erroneous
solution with cond(L), cond(R) ≈ 108.
• Partial pivoting:

L =

[
1 0

fl(10−4/1) 1

]
=

[
1 0

10−4 1

]
,

R =

[
1 1
0 fl(1− 10−4)

]
=

[
1 1
0 1

]
.

L and R are both well-conditioned.
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2.3.2 LDR- and LLT -factorizations

Let A = LDR as in Corollary 2.2.1.

Algorithm 2.3.2 (Crout’s factorization or compact method)
For k = 1, . . . , n,

for p = 1, 2, . . . , k − 1,
rp := dpapk,
ωp := akpdp,

dk := akk −
∑k−1

p=1 akprp,
if dk = 0, then stop; else

for i = k + 1, . . . , n,
aik := (aik −

∑k−1
p=1 aiprp)/dk,

aki := (aki −
∑k−1

p=1 ωpapi)/dk.

Cost: n3/3 flops.

• With partial pivoting: see Wilkinson EVP pp.225-.

• Advantage: One can use double precision for inner product.

Theorem 2.3.1 If A is nonsingular, real and symmetric, then A has a unique LDLT -
factorization, where D is diagonal and L is a unit lower triangular matrix (with one on
the diagonal).

Proof: A = LDR = AT = RTDLT . It implies L = RT .

Theorem 2.3.2 If A is symmetric and positive definite, then there exists a lower trian-
gular G ∈ Rn×n with positive diagonal elements such that A = GGT .

Proof: A is symmetric positive definite ⇔ xTAx ≥ 0, for all nonzero vector x ∈ Rn×n

⇔ ki ≥ 0, for i = 1, · · · , n, ⇔ all eigenvalues of A are positive.
From Corollary 2.2.1 and Theorem 2.3.1 we have A = LDLT . From L−1AL−T = D

follows that dk = (eTkL
−1)A(L−T ek) > 0. Thus, G = Ldiag{d1/21 , · · · , d1/2n } is real, and

then A = GGT .

Algorithm 2.3.3 (Cholesky factorization) Let A be symmetric positive definite. To
find a lower triangular matrix G such that A = GGT .

For k = 1, 2, . . . , n,
akk := (akk −

∑k−1
p=1 a

2
kp)

1/2;
for i = k + 1, . . . , n,

aik = (aik −
∑k−1

p=1 aipakp)/akk.

Cost: n3/6 flops.

Remark 2.3.1 For solving symmetric, indefinite systems: See Golub/ Van Loan Matrix
Computation pp. 159-168. PAP T = LDLT , D is 1 × 1 or 2 × 2 block-diagonal matrix,
P is a permutation and L is lower triangular with one on the diagonal.
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2.3.3 Error estimation for linear systems

Consider the linear system
Ax = b, (2.3.4)

and the perturbed linear system

(A+ δA)(x+ δx) = b+ δb, (2.3.5)

where δA and δb are errors of measure or round-off in factorization.

Definition 2.3.1 Let ∥ ∥ be an operator norm and A be nonsingular. Then κ ≡ κ(A) =
∥A∥∥A−1∥ is a condition number of A corresponding to ∥ ∥.

Theorem 2.3.3 (Forward error bound) Let x be the solution of the (2.3.4) and x+δx
be the solution of the perturbed linear system (2.3.5). If ∥δA∥∥A−1∥ < 1, then

∥δx∥
∥x∥

≤ κ

1− κ∥δA∥∥A∥

(
∥δA∥
∥A∥

+
∥δb∥
∥b∥

)
. (2.3.6)

Proof: From (2.3.5) we have

(A+ δA)δx+ Ax+ δAx = b+ δb.

Thus,
δx = −(A+ δA)−1[(δA)x− δb]. (2.3.7)

Here, Corollary 2.7 implies that (A+ δA)−1 exists. Now,

∥(A+ δA)−1∥ = ∥(I + A−1δA)−1A−1∥ ≤ ∥A−1∥ 1

1− ∥A−1∥∥δA∥
.

On the other hand, b = Ax implies ∥b∥ ≤ ∥A∥∥x∥. So,

1

∥x∥
≤ ∥A∥
∥b∥

. (2.3.8)

From (2.3.7) follows that ∥δx∥ ≤ ∥A−1∥
1−∥A−1∥∥δA∥(∥δA∥∥x∥ + ∥δb∥). By using (2.3.8), the

inequality (2.3.6) is proved.

Remark 2.3.2 If κ(A) is large, then A (for the linear system Ax = b) is called ill-
conditioned, else well-conditioned.

2.3.4 Error analysis for Gaussian algorithm

A computer in characterized by four integers: (a) the machine base β; (b) the precision
t; (c) the underflow limit L; (d) the overflow limit U . Define the set of floating point
numbers.

F = {f = ±0.d1d2 · · · dt × βe | 0 ≤ di < β, d1 ̸= 0, L ≤ e ≤ U} ∪ {0}. (2.3.9)
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Let G = {x ∈ R | m ≤ |x| ≤ M} ∪ {0}, where m = βL−1 and M = βU(1 − β−t) are the
minimal and maximal numbers of F \ {0} in absolute value, respectively. We define an
operator fl : G→ F by

fl(x) = the nearest c ∈ F to x by rounding arithmetic.

One can show that fl satisfies

fl(x) = x(1 + ε), |ε| ≤ eps, (2.3.10)

where eps = 1
2
β1−t. (If β = 2, then eps = 2−t). It follows that

fl(a ◦ b) = (a ◦ b)(1 + ε)

or
fl(a ◦ b) = (a ◦ b)/(1 + ε),

where |ε| ≤ eps and ◦ = +,−,×, /.

Algorithm 2.3.4 Given x, y ∈ Rn. The following algorithm computes xTy and stores
the result in s.

s = 0,
for k = 1, . . . , n,

s = s+ xkyk.

Theorem 2.3.4 If n2−t ≤ 0.01, then

fl(
n∑

k=1

xkyk) =
n∑

k=1

xkyk[1 + 1.01(n+ 2− k)θk2−t], |θk| ≤ 1

Proof: Let sp = fl(
∑p

k=1 xkyk) be the partial sum in Algorithm 2.3.4. Then

s1 = x1y1(1 + δ1)

with |δ1| ≤ eps and for p = 2, . . . , n,

sp = fl[sp−1 + fl(xpyp)] = [sp−1 + xpyp(1 + δp)](1 + εp)

with |δp|, |εp| ≤ eps. Therefore

fl(xTy) = sn =
n∑

k=1

xkyk(1 + γk),

where (1 + γk) = (1 + δk)
∏n

j=k(1 + εj), and ε1 ≡ 0. Thus,

fl(
n∑

k=1

xkyk) =
n∑

k=1

xkyk[1 + 1.01(n+ 2− k)θk2−t]. (2.3.11)

The result follows immediately from the following useful Lemma.
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Lemma 2.3.5 If (1 + α) =
∏n

k=1(1 + αk), where |αk| ≤ 2−t and n2−t ≤ 0.01, then

n∏
k=1

(1 + αk) = 1 + 1.01nθ2−t with |θ| ≤ 1.

Proof: From assumption it is easily seen that

(1− 2−t)n ≤
n∏

k=1

(1 + αk) ≤ (1 + 2−t)n. (2.3.12)

Expanding the Taylor expression of (1− x)n as −1 < x < 1, we get

(1− x)n = 1− nx+ n(n− 1)

2
(1− θx)n−2x2 ≥ 1− nx.

Hence

(1− 2−t)n ≥ 1− n2−t. (2.3.13)

Now, we estimate the upper bound of (1 + 2−t)n:

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · = 1 + x+

x

2
x(1 +

x

3
+

2x2

4!
+ · · · ).

If 0 ≤ x ≤ 0.01, then

1 + x ≤ ex ≤ 1 + x+ 0.01x
1

2
ex ≤ 1 + 1.01x (2.3.14)

(Here, we use the fact e0.01 < 2 to the last inequality.) Let x = 2−t. Then the left
inequality of (2.3.14) implies

(1 + 2−t)n ≤ e2
−tn (2.3.15)

Let x = 2−tn. Then the second inequality of (2.3.14) implies

e2
−tn ≤ 1 + 1.01n2−t (2.3.16)

From (2.3.15) and (2.3.16) we have

(1 + 2−t)n ≤ 1 + 1.01n2−t.

Let the exact LR-factorization of A be L and R (A = LR) and let L̃, R̃ be the
LR-factorization of A by using Gaussian Algorithm (without pivoting). There are two
possibilities:

(i) Forward error analysis: Estimate |L− L̃| and |R− R̃|.

(ii) Backward error analysis: Let L̃R̃ be the exact LR-factorization of a perturbed
matrix Ã = A+ F . Then F will be estimated, i.e., |F | ≤ ?.
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2.3.5 Àpriori error estimate for backward error bound of LR-
factorization

From (2.2.2) we have
A(k+1) = LkA

(k),

for k = 1, 2, . . . , n − 1 (A(1) = A). Denote the entries of A(k) by a
(k)
ij and let lik =

fl(a
(k)
ik /a

(k)
kk ), i ≥ k + 1. From (2.2.2) we know that

a
(k+1)
ij =


0; for i ≥ k + 1, j = k

fl(a
(k)
ij − fl(lika

(k)
kj )); for i ≥ k + 1, j ≥ k + 1

a
(k)
ij ; otherwise.

(2.3.17)

From (2.3.10) we have lik = (a
(k)
ik /a

(k)
kk )(1 + δik) with |δik| ≤ 2−t. Then

a
(k)
ik − lika

(k)
kk + a

(k)
ij δik = 0, for i ≥ k + 1. (2.3.18)

Let a
(k)
ik δik ≡ ε

(k)
ik . From (2.3.10) we also have

a
(k+1)
ij = fl(a

(k)
ij − fl(lika

(k)
kj )) (2.3.19)

= (a
(k)
ij − (lika

(k)
kj (1 + δij)))/(1 + δ

′

ij)

with |δij|, |δ
′
ij| ≤ 2−t. Then

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj − lika

(k)
kj δij + a

(k+1)
ij δ

′

ij, for i, j ≥ k + 1. (2.3.20)

Let ε
(k)
ij ≡ −lika

(k)
kj δij + a

(k+1)
ij δ

′
ij which is the computational error of a

(k)
ij in A(k+1). From

(2.3.17), (2.3.18) and (2.3.20) we obtain

a
(k+1)
ij =


a
(k)
ij − lika

(k)
kk + ε

(k)
ij ; for i ≥ k + 1, j = k

a
(k)
ij − lika

(k)
kj + ε

(k)
ij ; for i ≥ k + 1, j ≥ k + 1

a
(k)
ij + ε

(k)
ij ; otherwise,

(2.3.21)

where

ε
(k)
ij =


a
(k)
ij δij; for i ≥ k + 1, j = k,

−lika(k)kj δij − a
(k+1)
ij δ

′
ij; for i ≥ k + 1, j ≥ k + 1

0; otherwise.

(2.3.22)

Let E(k) be the error matrix with entries ε
(k)
ij . Then (2.3.21) can be written as

A(k+1) = A(k) −MkA
(k) + E(k), (2.3.23)

where

Mk =



0
. . .

0
lk+1,k
...

. . .

ln,k 0


(2.3.24)
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For k = 1, 2 . . . , n− 1, we add the n− 1 equations in (2.3.23) together and get

M1A
(1) + M2A

(2) + · · ·+Mn−1A
(n−1) + A(n)

= A(1) + E(1) + · · ·+ E(n−1).

From (2.3.17) we know that the k-th row ofA(k) is equal to the k-th row ofA(k+1), · · · , A(n),
respectively and from (2.3.24) we also have

MkA
(k) =MkA

(n) =MkR̃.

Thus,
(M1 +M2 + · · ·+Mn−1 + I)R̃ = A(1) + E(1) + · · ·+ E(n−1).

Then

L̃R̃ = A+ E, (2.3.25)

where

L̃ =


1
l21 1 O
...

. . .

ln1 . . . ln,n−1 1

 and E = E(1) + · · ·+ E(n−1). (2.3.26)

Now we assume that the partial pivotings in Gaussian Elimination are already ar-
ranged such that pivot element a

(k)
kk has the maximal absolute value. So, we have |lik| ≤ 1.

Let
ρ = max

i,j,k
|a(k)ij |/∥A∥∞. (2.3.27)

Then
|a(k)ij | ≤ ρ∥A∥∞. (2.3.28)

From (2.3.22) and (2.3.28) follows that

|ε(k)ij | ≤ ρ∥A∥∞


2−t; for i ≥ k + 1, j = k,
21−t; for i ≥ k + 1, j ≥ k + 1,
0; otherwise.

(2.3.29)

Therefore,

|E(k)| ≤ ρ∥A∥∞2−t ·


0 0 0 · · · 0
0 1 2 · · · 2
...

...
...

...
0 1 2 · · · 2

 . (2.3.30)

From (2.3.26) we get

|E| ≤ ρ∥A∥∞ · 2−t



0 0 0 · · · 0 0
1 2 2 · · · 2 2
1 3 4 · · · 4 4
...

...
...

...
...

1 3 5 · · · 2n− 4 2n− 4
1 3 5 · · · 2n− 3 2n− 2


(2.3.31)

Hence we have the following theorem.
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Theorem 2.3.6 The LR-factorization L̃ and R̃ of A using Gaussian Elimination with
partial pivoting satisfies

L̃R̃ = A+ E,

where

∥E∥∞ ≤ n2ρ∥A∥∞2−t (2.3.32)

Proof:

∥E∥∞ ≤ ρ∥A∥∞2−t(
n∑

j=1

(2j − 1)− 1) < n2ρ∥A∥∞2−t.

Now we shall solve the linear system Ax = b by using the factorization L̃ and R̃, i.e.,
L̃y = b and R̃x = y.

• For Ly = b: From Algorithm 2.3.1 we have

y1 = fl(b1/l11),

yi = fl

(
−li1y1 − li2y2 − · · · − li,i−1yi−1 + bi

lii

)
, (2.3.33)

for i = 2, 3, . . . , n. From (2.3.10) we have

y1 = b1/l11(1 + δ11), with |δ11| ≤ 2−t

yi = fl(
fl(−li1y1−li2y2−···−li,i−1yi−1)+bi

lii(1+δii)
)

=
fl(−li1y1−li2y2−···−li,i−1yi−1)+bi

lii(1+δii)(1+δ
′
ii)

, with |δii|, |δ
′
ii| ≤ 2−t.

(2.3.34)

Applying Theorem 2.3.4 we get

fl(−li1y1 − li2y2 − · · · − li,i−1yi−1) = −li1(1 + δi1)y1 − · · · − li,i−1(1 + δi,i−1)yi−1,

where

|δi1| ≤ (i− 1)1.01 · 2−t; for i = 2, 3, · · · , n,

|δij| ≤ (i+ 1− j)1.01 · 2−t; for

{
i = 2, 3, · · · , n,
j = 2, 3, · · · , i− 1.

(2.3.35)

So, (2.3.34) can be written as
l11(1 + δ11)y1 = b1,
li1(1 + δi1)y1 + · · ·+ li,i−1(1 + δi,i−1)yi−1 + lii(1 + δii)(1 + δ

′
ii)yi = bi,

for i = 2, 3, · · · , n.
(2.3.36)

or

(L+ δL)y = b. (2.3.37)
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From (2.3.35) (2.3.36) and (2.3.37) follow that

|δL| ≤ 1.01 · 2−t



|l11| 0
|l21| 2|l22|
2|l31| 2|l32| 2|l33|
3|l41| 3|l42| 2|l43|

. . .
...

...
...

. . . . . .

(n− 1)|ln1| (n− 1)|ln2| (n− 2)|ln3| · · · 2|ln,n−1| 2|lnn|


.

(2.3.38)
This implies,

∥δL∥∞ ≤
n(n+ 1)

2
· 1.01 · 2−tmax

i,j
|lij| ≤

n(n+ 1)

2
· 1.01 · 2−t. (2.3.39)

Theorem 2.3.7 For lower triangular linear system Ly = b, if y is the exact solution of
(L+ δL)y = b, then δL satisfies (2.3.38) and (2.3.39).

Applying Theorem 2.3.7 to the linear system L̃y = b and R̃x = y, respectively, the
solution x satisfies

(L̃+ δL̃)(R̃ + δR̃)x = b

or
(L̃R̃ + (δL̃)R̃ + L̃(δR̃) + (δL̃)(δR̃))x = b. (2.3.40)

Since L̃R̃ = A+ E, substituting this equation into (2.3.40) we get

[A+ E + (δL̃)R̃ + L̃(δR̃) + (δL̃)(δR̃)]x = b. (2.3.41)

The entries of L̃ and R̃ satisfy

|l̃ij| ≤ 1, and |r̃ij| ≤ ρ∥A∥∞.

Therefore, we get 

∥L̃∥∞ ≤ n,

∥R̃∥∞ ≤ nρ∥A∥∞,

∥δL̃∥∞ ≤ n(n+1)
2

1.01 · 2−t,

∥δR̃∥∞ ≤ n(n+1)
2

1.01ρ2−t.

(2.3.42)

In practical implementation we usually have n22−t << 1. So it holds

∥δL̃∥∞∥δR̃∥∞ ≤ n2ρ∥A∥∞2−t.

Let
δA = E + (δL̃)R̃ + L̃(δR̃) + (δL̃)(δR̃). (2.3.43)

Then, (2.3.32) and (2.3.42) we get

∥δA∥∞ ≤ ∥E∥∞ + ∥δL̃∥∞∥R̃∥∞ + ∥L̃∥∞∥δR̃∥∞ + ∥δL̃∥∞∥δR̃∥∞
≤ 1.01(n3 + 3n2)ρ∥A∥∞2−t (2.3.44)
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Theorem 2.3.8 For a linear system Ax = b the solution x computed by Gaussian Elim-
ination with partial pivoting is the exact solution of the equation (A + δA)x = b and δA
satisfies (2.3.43) and (2.3.44).

Remark 2.3.3 The quantity ρ defined by (2.3.27) is called a growth factor. The growth
factor measures how large the numbers become during the process of elimination. In
practice, ρ is usually of order 10 for partial pivot selection. But it can be as large as
ρ = 2n−1, when

A =



1 0 · · · · · · 0 1
−1 1 0 · · · 0 1
... −1 . . . . . .

... 1
...

...
. . . . . . 0 1

−1 −1 · · · −1 1 1
−1 −1 · · · · · · −1 1


.

Better estimates hold for special types of matrices. For example in the case of upper
Hessenberg matrices, that is, matrices of the form

A =


× · · · · · · ×
× . . . . . .

...
. . . . . .

...
0 × ×


the bound ρ ≤ (n−1) can be shown. (Hessenberg matrices arise in eigenvalus problems.)

For tridiagonal matrices

A =


α1 β2 0

γ2
. . . . . .
. . . . . . . . .

. . . . . . βn
0 γn αn


it can even be shown that ρ ≤ 2 holds for partial pivot selection. Hence, Gaussian
elimination is quite numerically stable in this case.
For complete pivot selection, Wilkinson (1965) has shown that

|akij| ≤ f(k)max
i,j
|aij|

with the function
f(k) := k

1
2 (21 3

1
2 4

1
3 · · · k

1
(k−1) )

1
2 .

This function grows relatively slowly with k:

k 10 20 50 100
f(k) 19 67 530 3300
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Even this estimate is too pessimistic in practice. Up until now, no matrix has been found
which fails to satisfy

|a(k)ij | ≤ (k + 1)max
i,j
|aij| k = 1, 2, ..., n− 1,

when complete pivot selection is used. This indicates that Gaussian elimination with
complete pivot selection is usually a stable process. Despite this, partial pivot selection
is preferred in practice, for the most part, because:

(i) Complete pivot selection is more costly than partial pivot selection. (To compute
A(i), the maximum from among (n− i + 1)2 elements must be determined instead
of n− i+ 1 elements as in partial pivot selection.)

(ii) Special structures in a matrix, i.e. the band structure of a tridiagonal matrix, are
destroyed in complete pivot selection.

2.3.6 Improving and Estimating Accuracy

• Iterarive Improvement:
Suppose that the linear system Ax = b has been solved via the LR-factorization

PA = LR. Now we want to improve the accuracy of the computed solution x. We
compute 

r = b− Ax,
Ly = Pr, Rz = y,

xnew = x+ z.
(2.3.45)

Then in exact arithmatic we have

Axnew = A(x+ z) = (b− r) + Az = b.

Unfortunately, r = fl(b − Ax) renders an xnew that is no more accurate than x. It is
necessary to compute the residual b− Ax with extended precision floating arithmetic.

Algorithm 2.3.5
Compute PA = LR (t-digit)
Repeat: r := b− Ax (2t-digit)

Solve Ly = Pr for y (t-digit)
Solve Rz = y for z (t-digit)
Update x = x+ z (t-digit)

This is referred to as an iterative improvement. From (2.3.45) we have

ri = bi − ai1x1 − ai2x2 − · · · − ainxn. (2.3.46)

Now, ri can be roughly estimated by 2−tmaxj |aij| |xj|. That is

∥r∥ ≈ 2−t∥A∥∥x∥. (2.3.47)
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Let e = x− A−1b = A−1(Ax− b) = −A−1r. Then we have

∥e∥ ≤ ∥A−1∥∥r∥. (2.3.48)

From (2.3.47) follows that

∥e∥ ≈ ∥A−1∥ · 2−t∥A∥∥x∥ = 2−tcond(A)∥x∥.

Let
cond(A) = 2p, 0 < p < t, (p is integer). (2.3.49)

Then we have
∥e∥/∥x∥ ≈ 2−(t−p). (2.3.50)

From (2.3.50) we know that x has q = t−p correct significant digits. Since r is computed
by double precision, so we can assume that it has at least t correct significant digits.
Therefore for solving Az = r according to (2.3.50) the solution z (comparing with −e =
A−1r) has q-digits accuracy so that xnew = x + z has usually 2q-digits accuracy. From
above discussion, the accuracy of xnew is improved about q-digits after one iteration.
Hence we stop the iteration, when the number of the iterates k (say!) satifies kq ≥ t.
From above we have

∥z∥/∥x∥ ≈ ∥e∥/∥x∥ ≈ 2−q = 2−t2p. (2.3.51)

From (2.3.49) and (2.3.51) we have

cond(A) = 2t · (∥z∥/∥x∥).

By (2.3.51) we get

q = log2(
∥x∥
∥z∥

) and k =
t

log2(
∥x∥
∥z∥ )

.

In the following we shall give a further discussion of convergence of the iterative improve-
ment. From Theorem 2.3.8 we know that z in Algorithm 5.5 is computed by (A+δA)z = r.
That is

A(I + F )z = r, (2.3.52)

where F = A−1δA.

Theorem 2.3.9 Let the sequence of vectors {xv} be the sequence of improved solutions
in Algorithm 5.5 for solving Ax = b and x∗ = A−1b be the exact solution. Assume that
Fk in (2.3.52) satisfies ∥Fk∥ ≤ σ < 1/2 for all k. Then {xk} converges to x∗, i.e.,
limv→∞ ∥xk − x∗∥ = 0.

Proof: From (2.3.52) and rk = b− Axk we have

A(I + Fk)zk = b− Axk. (2.3.53)

Since A is nonsingular, multiplying both sides of (2.3.53) by A−1 we get

(I + Fk)zk = x∗ − xk.
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From xk+1 = xk + zk we have (I + Fk)(xk+1 − xk) = x∗ − xk, i.e.,

(I + Fk)xk+1 = Fkxk + x∗. (2.3.54)

Subtracting both sides of (2.3.54) from (I + Fk)x
∗ we get

(I + Fk)(xk+1 − x∗) = Fk(xk − x∗).

Applying Corollary 1.2.1 we have

xk+1 − x∗ = (I + Fk)
−1Fk(xk − x∗).

Hence,

∥xk+1 − x∗∥ ≤ ∥Fk∥
∥xk − x∗∥
1− ∥Fk∥

≤ σ

1− σ
∥xk − x∗∥.

Let τ = σ/(1− σ). Then
∥xk − x∗∥ ≤ τ k−1∥x1 − x∗∥.

But σ < 1/2 follows τ < 1. This implies convergence of Algorithm 2.3.5.

Corollary 2.3.1 If

1.01(n3 + 3n2)ρ2−t∥A∥ ∥A−1∥ < 1/2,

then Algorithm 2.3.5 converges.

Proof: From (2.3.52) and (2.3.44) follows that

∥Fk∥ ≤ 1.01(n3 + 3n2)ρ2−tcond(A) < 1/2.

2.4 Special Linear Systems

2.4.1 Toeplitz Systems

Definition 2.4.1 (i) T ∈ Rn×n is called a Toeplitz matrix if there exists r−n+1, · · · , r0, · · · , rn−1
such that aij = rj−i for all i, j. e.g.,

T =


r0 r1 r2 r3
r−1 r0 r1 r2
r−2 r−1 r0 r1
r−3 r−2 r−1 r0

 , (n = 4).

(ii) B ∈ Rn×n is called a Persymmetric matrix if it is symmetric about northest-southwest
diagonal, i.e., bij = bn−j+1,n−i+1 for all i, j. That is,

B = EBTE, where E = [en, · · · e1].
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Given scalars r1, · · · , rn−1 such that the matrices

Tk =


1 r1 r2 · · · rk−1

r1 1 r1
...

...
. . .

rk−1 · · · · · · 1


are all positive definite, for k = 1, . . . , n. Three algorithms will be described:

(a) Durbin’s Algorithm for the Yule-Walker problem

Tny = −(r1, . . . , rn)T .

(b) Levinson’s Algorithm for the general right hand side Tnx = b.

(c) Trench’s Algorithm for computing B = T−1n .

• To (a): Let Ek = [e
(k)
k , . . . , e

(k)
1 ]. Suppose the k-th order Yule-Walker system

Tky = −(r1, . . . , rk)T = −rT

has been solved. Consider the (k + 1)-st order system[
Tk Ekr
rTEk 1

] [
z
α

]
=

[
−r
−rk+1

]
can be solved in O(k) flops. Observe that

z = T−1k (−r − αEkr) = y − αT−1k Ekr (2.4.55)

and
α = −rk+1 − rTEkz. (2.4.56)

Since T−1k is persymmetric, T−1k Ek = EkT
−1
k and z = y+αEky. Substituting into (2.4.56)

we get
α = −rk+1 − rTEk(y + αEky) = −(rk+1 + rTEky)/(1 + rTy).

Here (1 + rTy) is positive, because Tk+1 is positive definite and[
I Eky
0 1

]T [
Tk Ekr
rTEk 1

] [
I Eky
0 1

]
=

[
Tk 0
0 1 + rTy

]
.

Algorithm 2.4.1 (Durbin Algorithm, 1960) Let Tky
(k) = −r(k) = −(r1, . . . , rk)T .

For k = 1, . . . , n,
y(1) = −r1,
for k = 1, . . . , n− 1,

βk = 1 + r(k)Ty(k),
αk = −(rk+1 + r(k)TEky

(k))/βk,
z(k) = y(k) + αkEky

(k),

y(k+1) =

[
z(k)

αk

]
.
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This algorithm requires 3
2
n2 flops to generate y = y(n).

Further reduction:

βk = 1 + r(k)Ty(k)

= 1 + [r(k−1)T , r(k)]

[
y(k−1) + αk−1Ek−1y

(k−1)

αk−1

]
= 1 + r(k−1)Ty(k−1) + αk−1(r

(k−1)TEk−1y
(k−1) + rk)

= βk−1 + αk−1(−βk−1αk−1) = (1− α2
k−1)βk−1.

• To (b):
Tkx = b = (b1, · · · , bk)T , for 1 ≤ k ≤ n. (2.4.57)

Want to solve [
Tk Ekr
rTEk 1

] [
ν
µ

] [
b

bk+1

]
, (2.4.58)

where r = (r1, · · · , rk)T . Since ν = T−1k (b− µEkr) = x+ µEky, it follows that

µ = bk+1 − rTEkν = bk+1 − rTEkx− µrTy
= (bk+1 − rTEkx)/(1 + rTy).

We can effect the transition form (2.4.57) to (2.4.58) in O(k) flops. We can solve the
system Tnx = b by solving

Tkx
(k) = b(k) = (b1, . . . , bk)

T

and
Tky

(k) = −r(k) = −(r1, . . . , rk)T .
It needs 2n2 flops. See Algorithm Levinson (1947) in Matrix Computations, pp.128-129
for details.
• To (c):

T−1n =

[
A Er
rTE 1

]−1
=

[
B ν
νT γ

]
,

where A = Tn−1, E = En−1 and r = (r1, . . . , rn−1)
T . From the equation[

A Er
rTE 1

]
=

[
ν
γ

]
=

[
0
1

]
follows that

Aν = −γEr = −γE(r1, . . . , rn−1)T and γ = 1− rTEν.
If y is the solution of (n− 1)-st Yule-Walker system Ay = −r, then

γ = 1/(1 + rTy) and ν = γEy.

Thus the last row and column of T−1n are readily obtained. Since AB +ErνT = In−1, we
have

B = A−1 − (A−1Er)νT = A−1 +
ννT

γ
.
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Since A = Tn−1 is nonsingular and Toeplitz, its inverse is persymmetric. Thus

bij = (A−1)ij +
νiνj
γ

= (A−1)n−j,n−i +
νiνj
γ

= bn−j,n−i −
νn−iνn−j

γ
+
νiνj
γ

= bn−j,n−i −
1

γ
(νiνj − νn−iνn−j).

It needs 7
4
n2 flops. See Algorithm Trench (1964) in Matrix Computations, pp.132 for

details.

2.4.2 Banded Systems

Definition 2.4.2 Let A be a n× n matrix. A is called a (p, q)-banded matrix, if aij = 0
whenever i− j > p or j − i > q. A has the form

A =


× · · ·
...

. . .

×
. . .

O

× O
. . .

. . . ×
. . .

...
× · · · ×


︸ ︷︷ ︸

p

⊤
q
⊥

,

where p and q are the lower and upper band widthes, respectively.

Example 2.4.1 (1, 1): tridiagonal matrix; (1, n−1): upper Hessenberg matrix; (n−1, 1):
lower Hessenberg matrix.

Theorem 2.4.1 Let A be a (p, q)-banded matrix. Suppose A has a LR-factorization
(A = LR). Then L = (p, 0) and R = (0, q)-banded matrix, respectively.

Algorithm 2.4.2 See Algorithm 4.3.1 in Matrix Computations, pp.150.

Theorem 2.4.2 Let A be a (p, q)-banded nonsingular matrix. If Gaussian Elimination
with partial pivoting is used to compute Gaussian transformations Lj = I − lje

T
j , for

j = 1,. . ., n− 1, and permutations P1, . . ., Pn−1 such that

Ln−1Pn−1 · · ·L1P1A = R

is upper triangular, then R is a (0, p + q)-banded matrix and lij = 0 whenever i ≤ j or
i > j + p. (Since the j-th column of L is a permutation of the Gaussian vector lj, it
follows that L has at most p+ 1 nonzero elements per column.)
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2.4.3 Symmetric Indefinite Systems

Consider the linear system Ax = b, where A ∈ Rn×n is symmetric but indefinite. There
are a method using n3/6 flops due to Aasen (1971) that computes the factorization
PAP T = LTLT , where L = [lij] is unit lower triangular, P is a permutation chosen such
that | lij |≤ 1, and T is tridiagonal.

Rather than the above factorization PAP T = LTLT we have the calculation of

PAP T = LDLT ,

where D is block diagonal with 1 by 1 and 2 by 2 blocks on diagonal, L = [lij] is unit
lower triangular, and P is a permutation chosen such that | lij |≤ 1.

Bunch and Parlett (1971) has proposed a pivot strategy to do this, n3/6 flops are
required. Unfortunately the overall process requires n3/12 ∼ n3/6 comparisons. A bet-
ter method described by Bunch and Kaufmann (1977) requires n3/6 flops and O(n2)
comparisons.

A detailed discussion of this subsection see p.159-168 in Matrix Computations.



Chapter 3

Orthogonalization and least squares
methods

3.1 QR-factorization (QR-decomposition)

3.1.1 Householder transformation

Definition 3.1.1 A complex m×n-matrix R = [rij] is called an upper (lower) triangular
matrix, if rij = 0 for i > j (i < j).

Example 3.1.1

(1)m = n : R =

 r11 · · · r1n
. . .

...
0 rnn

, (2)m < n : R =

 r11 · · · · · · · · · r1n
. . .

...
0 rmm · · · rmn

,

(3) m > n : R =


r11 · · · r1n

. . .
...

0 rnn
0

.
Definition 3.1.2 Given A ∈ Cm×n, Q ∈ Cm×m unitary and R ∈ Cm×n upper triangular
as in Examples such that A = QR. Then the product is called a QR-factorization of A.

Basic problem:
Given b ̸= 0, b ∈ Cn. Find a vector w ∈ Cn with w∗w = 1 and c ∈ C such that

(I − 2ww∗)b = ce1. (3.1.1)

Solution (Householder transformation):

(1) b = 0: w arbitrary (in general w = 0) and c = 0.

(2) b ̸= 0:

c =

{
− b1
|b1|∥b∥2, if b1 ̸= 0,

∥b∥2, if b1 = 0,
(3.1.2){

w = 1
2k
(b1 − c, b2, . . . , bn)T := 1

2k
u

with 2k =
√
2∥b∥2(∥b∥2 + |b1|)

(3.1.3)
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Theorem 3.1.1 Any complex m×n matrix A can be factorized by the product A = QR,
where Q is m×m-unitary. R is m× n upper triangular.

Proof: Let A(0) = A = [a
(0)
1 |a

(0)
2 | · · · |a

(0)
n ]. Find Q1 = (I−2w1w

∗
1) such that Q1a

(0)
1 = ce1.

Then

A(1) = Q1A
(0) = [Q1a

(0)
1 , Q1a

(0)
2 , · · · , Q1a

(0)
n ] =


c1 ∗ · · · ∗
0
... a

(1)
2 · · · a

(1)
n

0

 . (3.1.4)

Find Q2 =

 1 0

0 I − w2w
∗
2

 such that (I − 2w2w
∗
2)a

(1)
2 = c2e1. Then

A(2) = Q2A
(1) =


c1 ∗ ∗ · · · ∗
0 c2 ∗ · · · ∗
0 0
...

... a
(2)
3 · · · a

(2)
n

0 0

 .

We continue this process. Then after l = min(m,n) steps A(l) is an upper triangular
matrix satisfying

A(l−1) = R = Ql−1 · · ·Q1A.

Then A = QR, where Q = Q∗1 · · ·Q∗l−1.

Remark 3.1.1 We usually call the method in Theorem 3.1.1 as Householder method.

Theorem 3.1.2 Let A be a nonsingular n × n matrix. Then the QR- factorization is
essentially unique. That is, if A = Q1R1 = Q2R2, then there is a unitary diagonal matrix
D = diag(di) with |di| = 1 such that Q1 = Q2D and DR1 = R2.

Proof: Let A = Q1R1 = Q2R2. Then Q∗2Q1 = R2R
−1
1 = D must be a diagonal unitary

matrix.

Remark 3.1.2 The QR-factorization is unique, if it is required that the diagonal ele-
ments of R are positive.

Corollary 3.1.1 A is an arbitrary m× n-matrix. The following factorizations exist:

(i) A = LQ, where Q is n× n unitary and L is m× n lower triangular.

(ii) A = QL, where Q is m×m unitary and L is m× n lower triangular.

(iii) A = RQ, where Q is n× n unitary and R is m× n upper triangular.
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Proof: (i) A∗ has a QR-factorization. Then

A∗ = QR⇒ A = R∗Q∗ ⇒ (i).

(ii) Let Pm =

 O 1

1 O

. Then by Theorem 3.1.1 we have PmAPn = QR. This implies

A = (PmQPm)(PmRPn) ≡ Q̃L⇒ (ii).

(iii) A∗ has a QL-factorization (from (ii)), i.e., A∗ = QL. This implies

A = L∗Q∗ ⇒ (iii).

Cost of Householder method
Consider that the multiplications in (3.1.4) can be computed in the form

(I − 2w1w
∗
1)A = (I − u1

∥b∥22 + |b1|∥b∥2
u∗1)A = (I − vu∗1)A

= A− vu∗1A := A− vw∗.

So the first step for a m× n-matrix A requires;
c1: m multiplications, 1 root;
4k2: 1 multiplication;
v: m divisions (= multiplications);
w: mn multiplications;
A(1) = A− vw∗: m(n− 1) multiplications.

Similarly, for the j-th stepm and n are replaced bym−j+1 and n−j+1, respectively.
Let l = min(m,n). Then the number of multiplications is

l−1∑
j=1

[2(m− j + 1)(n− j + 1) + (m− j + 2)] (3.1.5)

= l(l − 1)[
2l − 1

3
− (m+ n)− 5/2] + (l − 1)(2mn+ 3m+ 2n+ 4)

(= mn2 − 1/3n3, if m ≥ n).

Especially, for m = n, it needs

n−1∑
j=1

[2(n− j + 1)2 +m− j + 2] = 2/3n3 + 3/2n2 + 11/6n− 4 (3.1.6)

flops and (l + n− 2) roots. To compute Q = Q∗1 · · ·Q∗l−1, it requires

2(m2n−mn2 + n3/3) multiplications (m ≥ n). (3.1.7)

Remark 3.1.3 Let A = QR be a QR-factorization A. Then we have

A∗A = R∗Q∗QR = R∗R.

If A has full column rank and we require that the diagonal elements of R are positive,
then we obtain the Cholesky factorization of A∗A.
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3.1.2 Gram-Schmidt method

Remark 3.1.4 Theorem 3.1.1 (or Algorithm ??) can be used to solved orthonormal basis
(OB) problem.

(OB) : Given linearly independent vectors a1, · · · , an ∈ Rn×1. Find an orthonormal
basis for span{a1, · · · , an}.

If A = [a1, · · · , an] = QR with Q = [q1, · · · , qn], and R = [rij], then

ak =
k∑

i=1

rikqi. (3.1.8)

By assumption rank(A) = n and (3.1.8) it implies rkk ̸= 0. So, we have

qk =
1

rkk
(ak −

k−1∑
i=1

rikqi). (3.1.9)

The vector qk can be thought as a unit vector in the direction of zk = ak −
∑k−1

i=1 sikqi.
To ensure that zk ⊥ q1, · · · , qk−1 we choose sik = qTi ak, for i = 1, · · · , k − 1. This leads
to the Classical Gram-Schmidt (CGS) Algorithm for solving (OB) problem.

Algorithm 3.1.1 (Classical Gram-Schmidt (CGS) Algorithm) Given A ∈ Rm×n

with rank(A) = n. We compute A = QR, where Q ∈ Rm×n has orthonormal columns and
R ∈ Rn×n.

For i = 1, · · · , n,
qi = ai;
For j = 1, · · · , i− 1

rji = qTj ai,
qi = qi − rjiqj,

end for
rii = ∥qi∥2,
qi = qi/rii,

end for

Disadvantage : The CGS method has very poor numerical properties, if some columns
of A are nearly linearly independent.

Advantage : The method requires mn2 multiplications (m ≥ n).

Remark 3.1.5 Modified Gram-Schmidt (MGS):

Write A =
∑n

i=1 qir
T
i . Define A

(k) by

[0, A(k)] = A−
k−1∑
i=1

qir
T
i =

n∑
i=k

qir
T
i (3.1.10)

It follows that if A(k) = [z, B], z ∈ Rm, B ∈ Rm×(n−k) then rkk = ∥z∥2 and qk = z/rkk by
(3.1.9). Compute

[rk,k+1, · · · , rkn] = qTkB.

Next step: A(k+1) = B − qk[rk,k+1, · · · , rkn].
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Algorithm 3.1.2 (MGS) Given A ∈ Rm×n with rank(A) = n. We compute A = QR,
where Q ∈ Rm×n has orthonormal columns and R ∈ Rn×n is upper triangular.

For i = 1, · · · , n,
qi = ai;
For j = 1, · · · , i− 1

rji = qTj qi,
qi = qi − rjiqj,

end for
rii = ∥qi∥2,
qi = qi/rii,

end for

The MGS requires mn2 multiplications.

Remark 3.1.6 MGS computes the QR factorization at the kth step, the kth column of
Q and the kth row of R are computed. CGS at the kth step, the kth column of Q and the
kth column of R are computed.

Advantage for OB problem (m ≥ n): (i) Householder method requires mn2− n3/3 flops
to get factorization. A = QR and mn2 − n3/3 flops to get the first n columns of Q. But
MGS requires only mn2 flops. Thus for the problem of finding an orthonormal basis of
range(A), MGS is about twice as efficient as Householder orthogonalization. (ii) MGS is
numerically stable.

3.1.3 Givens method

Basic problem: Given (a, b)T ∈ R2, find c, s ∈ R with c2 + s2 = 1 such that[
c s
−s c

] [
a
b

]
=

[
k
0

]
,

where c = cosα and s = sinα.
Solution: {

c = 1, s = 0, k = a; if b = 0,

c = a√
a2+b2

, s = b√
a2+b2

, k =
√
a2 + b2; if b ̸= 0.

(3.1.11)

Let

G(i, j, α) =



1
. . .

...
...

· · · cosα · · · sinα · · ·
...

...
· · · − sinα · · · cosα · · ·

...
...

. . .

1


.

Then G(i, j, α) is called a Givens rotation in the (i, j)-coordinate plane. In the matrix
Ã = G(i, j, α)A, the rows with index ̸= i, j are the same as in A and

ãik = cos(α)aik + sin(α)ajk, for k = 1, . . . , n,

ãjk = − sin(α)aik + cos(α)ajk, for k = 1, . . . , n.
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Algorithm 3.1.3 (Givens orthogonalization) Given A ∈ Rm×n. The folllowing Al-
gorithm overwrites A with QTA = R, where Q is orthonormal and R is upper triangular.
For q = 2, · · · ,m,

for p = 1, 2, · · · ,min{q − 1, n},

Find c = cosα and s = sinα as in (3.1.11) such that[
c s
−s c

] [
app
aqp

]
=

[
∗
0

]
.

A := G(p, q, α)A.

This algorithm requires 2n2(m− n/3) flops.
Fast Givens method (See Matrix Computations, pp.205-209):

A modification of Givens method bases on the fast Givens rotations and requires
about n2(m− n/3) flops.

3.2 Overdetermined linear Systems - Least Squares

Methods

Given A ∈ Rm×n, b ∈ Rm and m > n. Consider the least squares(LS) problem:

min
x∈Rn
∥Ax− b∥2. (3.2.1)

Let X be the set of minimizers defined by X = {x ∈ Rn | ∥Ax− b∥2 = min!}. It is easy
to see the following properties:

• x ∈ X ⇐⇒ AT (b− Ax) = 0. (3.2.2)

• X is convex. (3.2.3)

• X has a unique element xLS having minimal 2-norm. (3.2.4)

• X = {xLS} ⇐⇒ rank(A) = n. (3.2.5)

For x ∈ Rn, we refer to r = b − Ax as its residual. AT (b − Ax) = 0 is refered to as
the normal equation. The minimum sum is defined by ρ2LS = ∥AxLS − b∥22. If we let
φ(x) = 1

2
∥Ax− b∥22, then ∇φ(x) = AT (Ax− b).

Theorem 3.2.1 Let A =
r∑

i=1

σiuiv
T
i , with r =rank(A), U = [u1, . . . , um] and V =

[v1, · · · , vn] be the SVD of A ∈ Rm×n (m ≥ n). If b ∈ Rm, then

xLS =
r∑

i=1

(uTi b/σi)vi (3.2.6)

and

ρ2LS =
m∑

i=r+1

(uTi b)
2 (3.2.7)



3.2 Overdetermined linear Systems - Least Squares Methods 51

Proof: For any x ∈ Rn we have

∥Ax− b∥22 = ∥UTAV (V Tx)− UT b∥22 =
r∑

i=1

(σiαi − uTi b)2 +
m∑

i=r+1

(uTi b)
2,

where α = V Tx. Clearly, if x solves the LS-problem, then αi = (uTi b/σi), for i = 1, . . . , r.
If we set αr+1 = · · · = αn = 0, then x = xLS.

Remark 3.2.1 If we define A+ by A+ = V Σ+UT , where Σ+ = diag(σ−11 , .., σ−1r , 0, .., 0)

∈ Rn×m then xLS = A+b and ρLS = ∥(I−AA+)b∥2 . A+ is refered to as the pseudo-inverse
of A. A+ is defined to be the unique matrix X ∈ Rn×m that satisfies Moore-Penrose
conditions :

(i)AXA = A, (iii) (AX)T = AX,
(ii)XAX = X, (iv) (XA)T = XA.

(3.2.8)

Existence of X is easy to check by taking X = A+. Now, we show the uniqueness of X.
Suppose X and Y satisfying the conditions (i)–(iv). Then

X = XAX = X(AY A)X = X(AY A)Y (AY A)X

= (XA)(Y A)Y (AY )(AX) = (XA)T (Y A)TY (AY )T (AX)T

= (AXA)TY TY Y T (AXA)T = ATY TY Y TAT

= Y (AY A)Y = Y AY = Y.

If rank(A) = n (m ≥ n), then A+ = (ATA)−1AT . If rank(A) = m (m ≤ n), then
A+ = AT (AAT )−1. If m = n = rank(A), then A+ = A−1.

• For the case rank(A)=n:

Algorithm 3.2.1 (Normal equations) Given A ∈ Rm×n (m ≥ n) with rank(A) = n
and b ∈ Rm. This Algorithm computes the solution to the LS-problem: min{∥Ax −
b∥2;x ∈ Rn}.
Compute d := AT b, and form C := ATA by computing the Cholesky factorization C =
RTR (see Remark 6.1). Solve RTy = d and RxLS = y.

Algorithm 3.2.2 (Householder and Givens orthogonalizations) Given A ∈ Rm×n

(m ≥ n) with rank(A) = n and b ∈ Rm. This Algorithm computes the solutins to the
LS-problem: min{∥Ax− b∥2; x ∈ Rn}.

Compute QR-factorization QTA =

[
R1

0

]
by using Householder and Givens methods

respectively. (Here R1 is upper triangular). Then

∥Ax− b∥22 = ∥QTAx−QT b∥22 = ∥R1x− c∥22 + ∥d∥22,

where QT b =

[
c
d

]
. Thus, xLS = R−11 c, (since rank(A) =rank(R1) = n) and ρ2LS = ∥d∥22 .
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Algorithm 3.2.3 (Modified Gram-Schmidt) Given A ∈ Rm×n (m ≥ n) with rank(A) =
n and b ∈ Rm. The solution of min ∥Ax− b∥2 is given by:
Compute A = Q1R1, where Q1 ∈ Rm×n with QT

1Q1 = In and R1 ∈ Rn×n upper tri-
angular. Then the normal equation (ATA)x = AT b is transformed to the linear system
R1x = QT

1 b⇒ xLS = R−11 QT
1 b.

• For the case rank(A) < n:

Problem:

(i) How to find a solution to the LS-problem?

(ii) How to find the unique solution having minimal 2-norm?

(iii) How to compute xLS reliably with infinite conditioned A ?

Definition 3.2.1 Let A be a m× n matrix with rank(A) = r (r ≤ m,n). The factoriza-
tion A = BC with B ∈ Rm×r and C ∈ Rr×n is called a full rank factorization, provided
that B has full column rank and C has full row rank.

Theorem 3.2.2 If A = BC is a full rank factorization, then

A+ = C+B+ = CT (CCT )−1(BTB)−1BT . (3.2.9)

Proof: From assumption follows that

B+B = (BTB)−1BTB = Ir,

CC+ = CCT (CCT )−1 = Ir.

We calculate (3.2.8) with

A(C+B+)A = BCC+B+BC = BC = A,

(C+B+)A(C+B+) = C+B+BCC+B+ = C+B+,

A(C+B+) = BCC+B+ = BB+ symmetric,

(C+B+)A = C+B+BC = C+C symmetric.

These imply that X = C+B+ satisfies (3.2.8). It follows A+ = C+B+.

Unfortunately, if rank(A) < n, then the QR-factorization does not necessarily produce
a full rank factorization of A. For example

A = [a1, a2, a3] = [q1, q2, q3]

 1 1 1
0 0 1
0 0 1

 .
Fortunately,we have the following two methods to produce a full rank factorization of A.
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3.2.1 Rank Deficiency I : QR with column pivoting

Householder method can be modified in a simple way so as to produce a full rank factor-
ization of A.

AΠ = QR, R =

[
R11

0︸ ︷︷ ︸
r

R12

0

]
︸ ︷︷ ︸

n−r

}r

}m-r
, (3.2.10)

where r = rank(A) < n (m ≥ n), Q is orthogonal, R11 is nonsingular upper triangular
and Π is a permuatation. Once (3.2.10) is computed, then the LS-problem can be readily
solved by

∥Ax− b∥22 = ∥(QTAΠ)(ΠTx)−QT b∥22 = ∥R11y − (c−R12z)∥22 + ∥d∥22,

where ΠTx =

[
y
z

]
}r

}n-r
and QT b =

[
c
d

]
}r

}m-r
. Thus if ∥Ax − b∥2 = min!, then we

must have

x = Π

[
R−111 (c−R12z)

z

]
.

If z is set to be zero, then we obtain the basic solution

xB = Π

[
R−111 c
0

]
.

The basic solution is not the solution with minimal 2-norm, unless the submatrix R12 is
zero. Since

∥xLS∥2 = min
z∈Rn−r

∥∥∥∥xB − Π

[
R−111 R12

−In−r

]
z

∥∥∥∥
2

. (3.2.11)

We now solve the LS-problem (3.2.11) by using Algorithms 3.2.1 to 3.2.3.

Algorithm 3.2.4 Given A ∈ Rm×n, with rank(A) = r < n. The following algorithm
computes the factorization AΠ = QR defined by (3.2.10). The element aij is overwritten
by rij (i ≤ j). The permutation Π = [ec1 , . . . , ecn ] is determined according to choosing the
maximum of column norm in the current step.

cj := j (j = 1, 2, . . . , n),

rj :=
m∑
i=1

a2ij (j = 1, . . . , n),

For k = 1, . . . , n,
Detemine p with (k ≤ p ≤ n) so that rp = max

k≤j≤n
rj.

If rp = 0 then stop; else
Interchange ck and cp, rk and rp, and aik and aip, for i = 1, . . . ,m.

Determine a Householder Q̂k such that

Q̂k


akk
...
...
amk

 =


∗
0
...
0

 .
A := diag(Ik−1, Q̂k)A; rj := rj − a2kj(j = k + 1, . . . , n).
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This algorithm requires 2mnr − r2(m+ n) + 2r3/3 flops.

Algorithm 3.2.4 produces the full rank factorization (3.2.10) of A. We have the fol-
lowing important relations:{

|r11| ≥ |r22| ≥ . . . ≥ |rrr|, rjj = 0, j = r + 1, . . . , n,
|rii| ≥ |rik|, i = 1, . . . , r, k = i+ 1, . . . , n.

(3.2.12)

Here, r = rank(A) < n, and R = (rjj). In the following we show another application of
the full rank factorization for solving the LS-problem.

Algorithm 3.2.5 (Compute xLS = A+b directly)

(i) Compute (3.2.10): AΠ = QR ≡ (Q(1)︸︷︷︸
r

| Q(2))

(
R1

0

)
}r

}m-r
, ⇒ AΠ = Q(1)R1.

(ii) (AΠ)+ = R+
1 Q

(1)+ = R+
1 Q

(1)T .

(iii) Compute R+
1 :

Either: R+
1 = RT

1 (R1R
T
1 )
−1 (since R1 has full row rank)

⇒ (AΠ)+ = RT
1 (R1R

T
1 )
−1Q(1)T .

Or: Find ̂̇Q using Householder transformation (Algorithm ??) such that ̂̇QRT
1 =[

T
0

]
, where T ∈ Rr×r is upper triangular.

Let Q̂T := (Q̂(1), Q̂(2)) ⇒ RT
1 = Q̂(1)T + Q̂(2)0 = Q̂(1)T .

R1 = T T Q̂(1)T ⇒ R+
1 = (Q̂(1)T )+(T T )+ = Q̂(1)(T T )−1.

⇒ (AΠ)+ = Q̂(1)(T T )−1Q(1)T .

(iv) Since min ∥Ax− b∥2 = min ∥AΠ(ΠTx)− b∥2 ⇒ (Π Tx )LS = (AΠ )+b

⇒ xLS = Π (AΠ )+b .

Remark 3.2.2 Unfortunately, QR with column pivoting is not entirely reliable as a
method for detecting near rank deficiency. For example:

Tn(c) = diag(1, s, · · · , sn−1)


1 −c −c · · · −c

1 −c · · · −c
. . .

...
0 1

 c2 + s2 = 1, c, s > 0.

If n = 100, c = 0.2, then σn=0.3679e−8. But this matrix is unaltered by Algorithm 3.2.4.
However,the “degree of unreliability” is somewhat like that for Gaussian elimination with
partial pivoting, a method that works very well in practice.
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3.2.2 Rank Deficiency II : The Singular Value Decomposition

Algorithm 3.2.6 (Householder Bidiagonalization) Given A ∈ Rm×n (m ≥ n). The
following algorithm overwrite A with UT

BAVB = B, where B is upper bidiagonal and UB

and VB are orthogonal.
Let UT

B = Im, VB = In.
For k = 1, · · · , n,

Determine a Householder matrix Ũk of order n− k + 1 such that

ŨT
k


akk
...
...
amk

 =


∗
0
...
0

 ,

A := diag(Ik−1, Ũ
T
k )A, U

T
B := diag(Ik−1, Ũ

T
k )U

T
B .

If k ≤ 2, then determine a Householder matrix Ṽk of order n− k + 1 such that

[ak,k+1, · · · , akn]Ṽk = (∗, 0, · · · , 0),

A := Adiag(Ik, Ṽk), VB := VBdiag(Ik, Ṽk).

This algorithm requires 2mn2 − 2/3n3 flops.

Algorithm 3.2.7 (R-Bidiagonalization) when m≫ n we can use the following faster
method of bidiagonalization.

(1) Compute an orthogonal Q1 ∈ Rm×m such that QT
1A =

[
R1

0

]
, where R1 ∈ Rn×n is

upper triangular.

(2) Applying Algorithm 3.2.6 to R1, we get QT
2R1VB = B1, where Q2, VB ∈ Rn×n

orthogonal and B1 ∈ Rn×n upper bidiagonal.

(3) Define UB = Q1diag(Q2, Im−n). Then U
T
BAVB =

[
B1

0

]
≡ B bidiagonal.

This algorithm require mn2 + n3. It involves fewer compuations comparing with
Algorithm 7.6 (2mn2 − 2/3n3) whenever m ≥ 5/3n.

Once the bidiagonalization of A has been achieved,the next step in the Golub-Reinsch
SVD algorithm is to zero out the super diagonal elements in B. Unfortunately, we must
defer our discussion of this iteration until Chapter 5 since it requires an understanding of
the symmetric QR algorithm for eigenvalues. That is, it computes orthogonal matrices
UΣ and VΣ such that

UT
ΣBVΣ = Σ = diag(σ1, · · · , σn).

By defining U = UBUΣ and V = VBVΣ, we see that UTAV = Σ is the SVD of A.
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Algorithms Flop Counts
Algorithm 3.2.1 Normal equations mn2/2 + n3/6
Algorithm 3.2.2 Householder orthogonalization mn2 − n3/3

rank(A)=n Algorithm 3.2.3 Modified Gram-Schmidt mn2

Algorithm 3.1.3 Givens orthogonalization 2mn2 − 2/3n3

Algorithm 3.2.6 Householder Bidiagonalization 2mn2 − 2/3n3

Algorithm 3.2.7 R-Bidiagonalization mn2 + n3

LINPACK Golub-Reinsch SVD 2mn2 + 4n3

rank(A) < n Algorithm 3.2.5 QR-with column pivoting 2mnr −mr2 + 1/3r3

Alg. 3.2.7+SVD Chan SVD mn2 + 11/2n3

Table 3.1: Solving the LS problem (m ≥ n)

Remark 3.2.3 If the LINPACK SVD Algorithm is applied with eps=10−17 to

T100(0.2) = diag(1, s, · · · , sn−1)


1 −c −c · · · −c

1 −c · · · −c
. . .

...
0 1

 ,
then σ̂n = 0.367805646308792467× 10−8.

Remark 3.2.4 As we mentioned before, when solving the LS problem via the SVD, only
Σ and V have to be computed (see (3.2.6)). Table 3.1 compares the efficiency of this
approach with the other algorithms that we have presented.

3.2.3 The Sensitivity of the Least Squares Problem

Corollary 3.2.1 (of Theorem 1.2.3) Let U = [u1, · · · , um], V = [v1, · · · , vn] and

U∗AV = Σ = diag(σ1, · · · , σr, 0, · · · , 0). If k < r = rank(A) and Ak =
k∑

i=1

σiuiv
T
i ,

Then
min

rank(B)=k
∥A−B∥2 = ∥A− Ak∥2 = σk+1.

Proof: Since UTAkV = diag(σ1, · · · , σk, 0, · · · , 0), it follows rank(Ak) = k and that

∥A− Ak∥2 = ∥UT (A− Ak)V ∥2 = ∥diag(0, · · · , 0, σk+1, · · · , σr)∥2 = σk+1.

Suppose B ∈ Rm×n and rank(B) = k, i.e., there are orthogonal vectors x1, · · · , xn−k such
that N (B) = span{x1, · · · , xn−k}. This implies

span{x1, · · · , xn−k}
∩

span{v1, · · · , vk+1} ̸= {0}.
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Let z be a unit vector in the intersection set. Then Bz = 0 and Az =
k+1∑
i=1

σi(v
T
i z)ui.

Thus,

∥A−B∥22 ≥ ∥(A−B)z∥22 = ∥Az∥22 =
k+1∑
i=1

σ2
i (v

T
i z)

2 ≥ σ2
k+1.

3.2.4 Condition number of a Rectangular Matrix

Let A ∈ Rm×n, rank(A) = n, κ2(A) = σmax(A)/σmin(A).
(i) The method of normal equation:

min
x∈Rn

∥Ax− b∥2 ⇔ ATAx = AT b.

(a) C = ATA, d = AT b.

(b) Compute the Cholesky factorization C = GGT .

(c) Solve Gy = d and GT xLS = y . Then

∥x̃LS − xLS∥2
xLS

≈ epsκ2(A
TA) = epsκ2(A)

2.

∥x̃− x∥
∥x∥

≤ κ(A)

(
ε
∥F∥
∥A∥

+ ε
∥f∥
∥b∥

)
+ o(ε2),

where (A+ F )x̃ = b+ f and Ax = b.

(ii) LS solution via QR factorization

∥Ax− b∥22 = ∥QTAx−QT b∥22 = ∥R1x− c∥22 + ∥d∥22,

xLS = R−11 c, ρLS = ∥d∥2 .

Numerically, trouble can be expected wherever κ2(A) = κ2(R) ≈ 1/eps. But this is in
contrast to normal equation, Cholesky factorization becomes problematical once κ2(A)
is in the neighborhood of 1/

√
eps.

Remark 3.2.5

∥A∥2∥(ATA)−1AT∥2 = κ2(A),

∥A∥22∥(ATA)−1∥2 = κ2(A)
2.

Theorem 3.2.3 Let A ∈ Rm×n, (m ≥ n), b ̸= 0. Suppose that x, r, x̃, r̃ satisfy

∥Ax− b∥ = min!, r = b− Ax, ρLS = ∥r∥2 ,
∥(A+ δA)x̃− (b+ δb)∥2 = min!,

r̃ = (b+ δb)− (A+ δA)x̃.
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If

ε = max {∥δA∥2
∥A∥2

,
∥δb∥2
∥b∥2

} < σn(A)

σ1(A)

and
sin θ =

ρLS
∥b∥2

̸= 1,

then
∥x̃− x∥2
∥x∥2

≤ ε{2κ2(A)
cos θ

+ tan θκ2(A)
2}+O(ε2)

and
∥r̃ − r∥2
∥b∥2

≤ ε(1 + 2κ2(A))min(1,m− n) +O(ε2).

Proof: Let E = δA/ε and f = δb/ε. Since ∥δA∥2 < σn(A), by previous Corollary follows
that rank(A+ εE) = n for t ∈ [0, ε].
[t = ε ⇒ A + tE = A + δA. If rank(A + δA) = k < n, then ∥A − (A + δA)∥2 =
∥δA∥2 ≥ ∥A − Ak∥2 = σk+1 ≥ δn. Contradiction! So min

rank(B)=k
∥A − B∥2 = ∥A − Ak∥2

= ∥A−
k∑

i=1

σiuiv
T
i ∥2 = σk+1].

Hence we have,
(A+ tE)T (A+ tE)x(t) = (A+ tE)T (b+ tf). (3.2.13)

Since x(t) is continuously differentiable for all t ∈ [0, ε], x = x(0) and x̃ = λ(ε), it follows
that

x̃ = x+ εẋ(0) +O(ε2)

and
∥x̃− x∥
∥x∥

= ε
∥ẋ(0)∥2
∥x∥

+O(ε2).

Differentiating (3.2.13) and setting t = 0 then we have

ETAx+ ATEx+ ATAẋ(0) = ATf + ET b.

Thus,
ẋ(0) = (ATA)−1AT (f − Ex) + (ATA)−1ET r.

From ∥f∥2 ≤ ∥b∥2 and ∥E∥2 ≤ ∥A∥2 follows

∥x̃− x∥2
∥x∥2

≤ ε{∥A∥2∥(ATA)−1AT∥2(
∥b∥2

∥A∥2∥x∥2
+ 1)

+
ρLS

∥A∥2∥x∥2
∥A∥22∥(ATA)−1∥2}+O(ε2).

Since AT (AxLS − b) = 0, AxLS ⊥ AxLS − b and then

∥b− Ax∥22 + ∥Ax∥22 = ∥b∥22

and
∥A∥22∥x∥22 ≥ ∥b∥22 − ρ2LS.
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Thus,
∥x̃− x∥2
∥x∥2

≤ eps{κ2(A)(
1

cos θ
+ 1) + κ2(A)

2 sin θ

cos θ
}+O(ε2).

Furthermore, by sin θ
cos θ

= ρLS√
∥b∥22−ρ2LS

, we have

∥x̃− x∥2
∥x∥2

≈ eps(κ2(A) + κ2(A)
2ρLS). (θ : small )

Remark 3.2.6 Normal equation: eps κ2(A)
2.

QR-approach: eps(κ2(A) + ρLSκ2(A)
2).

(i) If ρLS is small and κ2(A) is large, then QR is better than the normal equation.

(ii) The normal equation approach involves about half of the arithmetic when m ≫ n
and does not requires as much storage.

(iii) The QR approach is applicable to a wider class of matrices because the Cholesky
to ATA break down “before” the back substitution process on QTA = R.

3.2.5 Iterative Improvement

[
Im A
AT 0

] [
r
x

]
=

[
b
0

]
, ∥b− Ax∥2 = min!

r + Ax = b, AT r = 0⇒ ATAx = AT b. Thus,[
f (k)

g(k)

]
=

[
b
0

]
−
[

I A
AT 0

] [
r(k)

x(k)

]
and

[
I A
AT 0

] [
p(k)

z(k)

]
=

[
f (k)

g(k)

]
.

This implies, [
r(k+1)

x(k+1)

]
=

[
r(k)

x(k)

]
+

[
p(k)

z(k)

]
If A = QR = Q

[
R1

0

]
, then

[
I A
AT 0

] [
p
z

]
=

[
f
g

]
implies that

 In 0 R1

0 Im−n 0
RT

1 0 0

 h
f2
z

 =

 f1
f2
g

 ,
where QTf =

[
f1
f2

]
QTp =

[
h
f2

]
. Thus, RT

1 h = g ⇒ h = R−T1 g. Then

z = R−11 (f1 − h), P = Q

[
h
f2

]
.
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Chapter 4

Iterative Methods for Solving Large
Linear Systems

4.1 General procedures for the construction of iter-

ative methods

Given a linear system of nonsingular A

Ax = b. (4.1.1)

Let

A =M −N (4.1.2)

with M nonsingular. Then (4.1.1) is equivalent to Mx = Nx + b; or letting T = M−1N
and f =M−1b we have

x = Tx+ f. (4.1.3)

Set

x(k+1) = Tx(k) + f, (4.1.4)

where x(0) is given. Then the solution x of (4.1.1) is determined by iteration.

Example 4.1.1 We consider the standard decomposition of A

A = D − L−R, (4.1.5)
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where A = [aij]
n
i,j=1,

D = diag(a11, a22, · · · , ann),

−L =


0 0
a2,1 0

a3,1 a3,2
. . .

...
...

. . . . . .

an,1 an,2 · · · an,n−1 0

 ,

−R =


0 a1,2 a1,3 · · · a1,n

0 a2,3 · · · a2,n
. . . . . . . . .

...
. . . . . . an−1,n

0
. . . 0

 .

For ai,i ̸= 0, i = 1, · · · , n, D is nonsingular. If we choose M = D and N = L + R in
(8.2), we then obtain the Total-step method (Jacobi method):

x(k+1) = D−1(L+R)x(k) +D−1b (4.1.6)

or in formula

x
(k+1)
j =

1

ajj
(−
∑
i̸=j

ajix
(k)
i + bj), j = 1, · · · , n, k = 0, 1, · · · . (4.1.7)

Example 4.1.2 If D − L is nonsingular in (4.1.5), then the choices of M = D − L and
N = R as in (4.1.2) are possible and yields the so-called Single-step method (Gauss-Seidel
method):

x(k+1) = (D − L)−1Rx(k) + (D − L)−1b (4.1.8)

or in formula

x
(k+1)
j =

1

ajj
(−
∑
i<j

ajix
(k+1)
i −

∑
i>j

ajix
(k)
i + bj), j = 1, · · · , n, k = 1, 2, · · · . (4.1.9)

- Total-Step method=TSM=Jacobi method.

- Single-Step method=SSM=Gauss-Seidel method.

We now consider (4.1.1)-(4.1.4) once again:

Theorem 4.1.1 Let 1 ̸∈ σ(T ) and x be the unique solution of (4.1.3). The sequence
x(k+1) = Tx(k) + f converges to x for arbitrary initial vector x(0) if and only if ρ(T ) < 1

Proof: We define the error
ε(k) = x(k) − x. (4.1.10)

Then
ε(k) = x(k) − x = Tx(k−1) + f − (Tx+ f) = Tε(k−1)
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or
ε(k) = T kε(0).

Theorem 1.2.4 shows that ε(k) → 0 if and only if ρ(T ) < 1.

We now consider the following point of views on the Examples 4.1.1 and 4.1.2:
(i) flops counts per iteration step.
(ii) Convergence speed.

Let ∥ ∥ be a vector norm, and ∥T∥ be the corresponding operator norm. Then

∥ε(m)∥
∥ε(0)∥

=
∥Tmε(0)∥
∥ε(0)∥

≤ ∥Tm∥. (4.1.11)

Here ∥Tm∥ 1
m is a measure for the average diminution of error ε(m) per iteration step. We

call

Rm(T ) = − ln(∥Tm∥
1
m ) = − 1

m
ln(∥Tm∥) (4.1.12)

the average of convergence rate for m iterations.
The larger is Rm(T ), so the better is convergence rate. Let σ = (∥ε(m)∥/∥ε(0)∥) 1

m .
From (4.1.11) and (4.1.12) we get

σ ≤ ∥Tm∥
1
m ≤ e−Rm(T ),

or

σ1/Rm(T ) ≤ 1

e
.

That is, after 1/Rm(T ) steps in average the error is reduced by a factor of 1/e. Since
Rm(T ) is not easy to determine, we now consider m→∞. Since

lim
m→∞

∥Tm∥
1
m = ρ(T ),

it follows
R∞(T ) = lim

m→∞
Rm(T ) = − ln ρ(T ). (4.1.13)

R∞ is called the asymptotic convergence rate. It holds always Rm(T ) ≤ R∞(T ).

Example 4.1.3 Consider the Dirichlet boundary-value problem (Model problem):

−∆u ≡ −uxx − uyy = f(x, y), 0 < x, y < 1, (4.1.14)

u(x, y) = 0 (x, y) ∈ ∂Ω,

for the unit square Ω := {x, y|0 < x, y < 1} ⊆ R2 with boundary ∂Ω.

To solve (4.1.14) by means of a difference methods, one replaces the differential oper-
ator by a difference operator. Let

Ωh := {(xi, yi)|i, j = 1, · · · , N + 1},
∂Ωh := {(xi, 0), (xi, 1), (0, yj), (1, yj)|i, j = 0, 1, · · · , N + 1},
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where xi = ih, yj = jh, i, j = 0, 1, · · · , N + 1, h := 1
N+1

, N ≥ 1, an integer.
The differential operator −uxx − uyy can be replaced for all (xi, yi) ∈ Ωh by the

difference operator:
4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
(4.1.15)

up to an error τi,j. Therefore for sufficiently small h one can thus expect that the solution
zi,j, for i, j = 1, · · · , N of the linear system

4zi,j − zi−1,j − zi+1,j − zi,j−1 − zi,j+1 = h2fi,j, i, j = 1, · · · , N, (4.1.16)

z0,j = zN+1,j = zi,0 = zi,N+1 = 0, i, j = 0, 1, · · · , N + 1,

obtained from (4.1.15) by omitting the error τi,j, agrees approximately with the ui,j. Let

z = [z1,1, z2,1, · · · , zN,1, z1,2, · · · , zN,2, · · · , z1,N , · · · , zN,N ]
T (4.1.17a)

and
b = h2[f1,1, · · · , fN,1, f1,2, · · · , fN,2, · · · , f1,N , · · · , fN,N ]

T . (4.1.17b)

Then (4.1.16) is equivalent to a linear system Az = b with the N2 ×N2 matrix.

A =



4 −1 −1
−1 . . . . . . . . .

. . . −1 . . .

−1 4 −1
−1 4 −1 . . .

. . . −1 . . . . . . . . .
. . . . . . −1 . . .

−1 −1 4
. . .

. . . . . . −1
. . . . . . . . .

. . . . . . . . .
. . . . . . −1
−1 4 −1

. . . −1 . . . . . .
. . . . . . −1
−1 −1 4



.

≡


A1,1 A1,2

A2,1 A2,2
. . .

. . . . . . AN−1,N
AN,N−1 AN,N

 . (4.1.18)

Let A = D−L−R. The matrix J = D−1(L+R) belongs to the Jacobi method (TSM).
The N2 eigenvalues and eigenvectors of J can be determined explicitly. We can verify at
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once, by substitution, that N2 vectors z(k,l), k, l = 1, · · · , N with components

z
(k,l)
i,j := sin

kπi

N + 1
sin

lπj

N + 1
, 1 ≤ i, j ≤ N,

satisfy
Jz(k,l) = λ(k,l)z(k,l) (4.1.19)

with

λ(k,l) :=
1

2
(cos

kπ

N + 1
+ cos

lπ

N + 1
), 1 ≤ k, l ≤ N.

J thus has eigenvalues λ(k,l), 1 ≤ k, l ≤ N . Then we have

ρ(J) = λ1,1 = cos
π

N + 1
= 1− π2h2

2
+O(h4) (4.1.20)

and

R∞(J) = − ln(1− π2h2

2
+O(h4)) =

π2h2

2
+O(h4). (4.1.21)

These show that

(i) TSM converges; Nevertheless,

(ii) Diminution of h will not only enlarge the flop counts per step, but also the conver-
gence speed will drastically make smaller.

sectionSome Remarks on nonnegative matrices

4.1.1 Some theorems and definitions

ρ(T ): A measure of quality for convergence.

Definition 4.1.1 A real m×n-matrix A = (aik) is called nonnegative (positive), denoted
by A ≥ 0 (A > 0), if aik ≥ 0 (> 0), i = 1, · · · ,m, k = 1, · · · , n.

Remark 4.1.1 Let Kn = {x|xi ≥ 0, i = 1, · · · , n} ⊆ Rn. It holds

A ∈ Rm×n, A ≥ 0⇔ AKn ⊂ Km.

Especially, for m = n, A ≥ 0⇔ AK ⊂ K,K = K is a cone.

Let Ñ = {1, 2, · · · , n}.

Definition 4.1.2 An m×n-matrix A is called reducible, if there is a subset I ⊂ Ñ , I ̸=
ϕ, I ̸= Ñ such that i ∈ I, j ̸∈ I ⇒ aij = 0. A is not reducible ⇔ A is irreducible.

Remark 4.1.2 G(A) is the directed graph associated with the matrix A. If A is an
n× n-matrix, then G(A) consists of n vertices P1, · · · , Pn and there is an (oriented) arc
Pi → Pj in G(A) precisely if aij ̸= 0.
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It is easily shown that A is irreducible if and only if the graph G(A) is connected in
the sense that for each pair of vertices (Pi, Pj) in G(A) there is an oriented path from Pi

to Pj. i.e., if i ̸= j, there is a sequence of indices i = i1, i2, · · · , is = j such that (ai1,i2
· · · ais−1,is) ̸= 0.

Lemma 4.1.1 If A ≥ 0 is an irreducible n× n matrix, then (I + A)n−1 > 0.

Proof: It is sufficient to prove for any x ≥ 0, (I+A)n−1x > 0. Let xk+1 = (I+A)xk be a
sequence of nonnegative vectors, for 0 ≤ k ≤ n− 2 with x0 = x. We now verify that xk+1

has fewer zero components than does xk for every 0 ≤ k ≤ n− 2. Since xk+1 = xk +Axk,
it is clear that xk+1 has no more zero components than xk.

If xk+1 and xk has exactly the same number of zero components, then for a suitable
permutation P we have

Pxk+1 =

[
α
0

]
, Pxk =

[
β
0

]
, α > 0, β > 0, α, β ∈ Rm, 1 ≤ m ≤ n.

Then [
α
0

]
=

[
β
0

]
+

[
A11 A12

A21 A22

] [
β
0

]
.

This implies A21β = 0. But A21 ≥ 0 and β > 0, it follows A21 = 0. It contradicts that
A is irreducible. Thus xk+1 has fewer components and xk has at most (n − k − 1) zero
component. Hence

xn−1 = (I + A)n−1x0

is a positive vector.
(See also Miroslav Fiedler: “Special Matrices and their applications in Numerical Math-
ematics ” for the following theorems.)

Lemma 4.1.2 If A, B are squared matrices and |A| ≤ B, then ρ(A) ≤ ρ(B). In partic-
ular, ρ(A) ≤ ρ(|A|).

Proof: Suppose |A| ≤ B, but ρ(A) > ρ(B). Let s satisfy ρ(A) > s > ρ(B), P = (1
s
)A

and Q = (1
s
)B. Then ρ(P ) = s−1ρ(A) > 1, ρ(Q) = s−1ρ(B) < 1. This means that

lim
k→∞

Qk = 0. But |P k| ≤ |P |k ≤ Qk this implies lim
k→0

P k = 0, i.e., ρ(P ) < 1. Contradiction!

Lemma 4.1.3 Let A ≥ 0, z ≥ 0. If ξ is a real number satisfies Az > ξz, then ρ(A) > ξ.

Proof: Assume ξ ≥ 0. Clearly, z ̸= 0. Since Az > ξz, there is an ε > 0 such that
Az ≥ (ξ + ε)z. It means that B = (ξ + ε)−1A satisfies Bz ≥ z. Thus,

Bkz ≥ Bk−1z ≥ · · · ≥ z, for k > 0 (integer).

Hence Bk does not converge to the null matrix. This implies, ρ(B) ≥ 1 and ρ(A) ≥
ξ + ε > ξ.

Theorem 4.1.4 (Perron-Frobenius Theorem) Let A ≥ 0 be irreducible. Then ρ(A)
is a simple positive eigenvalue of A and there is a positive eigenvector belonging to ρ(A).
No nonnegative eigenvector belongs to any other eigenvalue of A.
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Remark 4.1.3 ρ(A) is called a Perron root of A. The eigenvector corresponding to ρ(A)
is called a Perron vector.

Lemma 4.1.1 (Perron Lemma) If A > 0, then ρ(A) is a positive eigenvalue of A and
there is only one linearly independent eigenvector corresponding to the eigenvalue ρ(A).
Moreover, this eigenvector may be chosen to be positive.

Proof: The lemma holds for n = 1. Let n > 1 and A > 0. There exists an eigenvalue λ
of A such that ρ(A) = |λ|. Let

Au = λu, u ̸= 0. (4.1.1)

Since |αv + βw| ≤ α|v|+ β|w|, if v, w ∈ C, α, β ∈ R+, then

“=” holds ⇔ exits complex unit η such that ηv ≥ 0 and ηw ≥ 0.

Generalization: Since |
n∑

i=1

αivi| ≤
n∑

i=1

αi|vi|, for v1, . . ., vn ∈ C and α1, . . ., αn ∈ R+.

Then

“=” holds ⇔ ∃ complex unit η such that ηvi ≥ 0, i = 1, · · · , n.

Use this result to show u in (4.1.1) has the property that there is a complex unit η
such that

ηui ≥ 0, for i = 1, · · · , n. (4.1.2)

To prove this, assume (4.1.2) does not hold. Then we have

|λ||uk| = |
n∑

j=1

akjuj| <
n∑

j=1

akj|uj|

in k-th equation of (4.1.1). By the above statement, this is true for k = 1, · · · , n. Thus,

A|u| > |λ||u|.

From Lemma 4.1.3 follows that |λ| < ρ(A), which contradicts that |λ| = ρ(A).
Therefore, the inequality (4.1.2) implies v = ηu, v ̸= 0 nonnegative and from (4.1.1)

follows

Av = λv. (4.1.3)

If vk ̸= 0 and thus vk > 0, then the k-th equation in (4.1.3) gives λ > 0. Hence λ = ρ(A)
and using (4.1.3) again follows v > 0.

In particular, we have proved the implication: if λ is an eigenvalue such that |λ| = ρ(A)
and if u is an associated eigenvector then |u| > 0.

Suppose that there are two linearly independent eigenvectors v = (vi) and w = (wi),
belonging to λ. As v ̸= 0, there is an integer k such that vk ̸= 0. The vector z =
w − (wkv

−1
k )v is also an eigenvector of A belonging to λ. Since z ̸= 0, but zk = 0, this

contradicts the proved results in above which states that |z| > 0.

Corollary 4.1.1 Let A > 0. Then |λ| < ρ(A) for every eigenvalue λ ̸= ρ(A).
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Proof: |λ| ≤ ρ(A) for all eigenvalues λ of A. Suppose |λ| = ρ(A) and Ax = λx, x ̸= 0.
By Perron Lemma there is an w = e−iθx > 0 for some θ ∈ R such that Aw = λw. But
then λ = ρ(A). Contradictions!
Proof of Theorem 4.1.4: Since A ≥ 0 irreducible, (I+A)n−1 is positive by Lemma 4.1.1.
Also,

(I + AT )n−1 = ((I + A)n−1)T

is positive. By Perron Lemma there is an y > 0 such that

yT (I + A)n−1 = ρ((I + A)n−1)yT . (4.1.4)

Let λ be the eigenvalue of A satisfying |λ| = ρ(A) and Ax = λx, x ̸= 0. Further,

ρ2(A)|x| ≤ ρ(A)A|x| = Aρ(A)|x| ≤ A2|x|,

and in general
ρk(A)|x| ≤ Ak|x|, for k = 1, 2, · · · . (4.1.5)

Hence
(1 + ρ(A))n−1|x| ≤ (I + A)n−1|x|. (4.1.6)

Multiplying yT from left it implies

(1 + ρ(A))n−1(yT |x|) ≤ yT (I + A)n−1|x|.

From (4.1.4) follows that
R.H.S = ρ((I + A)n−1)yT |x|.

Since yT |x| > 0, it implies

(1 + ρ(A))n−1 ≤ ρ((I + A)n−1). (4.1.7)

The eigenvalues of (I +A)n−1 are of the form (1 + α)n−1, where α is an eigenvalue of
A. Hence there is an eigenvalue µ of A such that

|(1 + µ)n−1| = ρ((I + A)n−1). (4.1.8)

On the other hand, we have |µ| ≤ ρ(A). Substituting into (4.1.7), we get

(1 + ρ(A))n−1 ≤ |(1 + µ)n−1|

and further
1 + ρ(A) ≤ |1 + µ| ≤ 1 + |µ| ≤ 1 + ρ(A).

Since the left-hand and right-hand sides coincide, we have equality everywhere. Thus
µ ≥ 0 and hence µ = ρ(A).

Equality is valid in all the inequalities that we have added, i.e., in (4.1.5). For k = 1,
it follows

A|x| = ρ(A)|x| or A|x| = µ|x|.

In view of (4.1.6) and (4.1.8) follows

(I + A)n−1|x| = |1 + µ|n−1|x| = ρ((I + A)n−1)|x|.
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Using Perron’s Lemma, we get |x| > 0.
From this we know that there is only one linearly independent eigenvector belonging

to eigenvalue µ by the same argument as that used in the last paragraph of the proof
of Perron’s Lemma. Moreover, ρ(A) > 0 as A is distinct from the null matrix (n > 1)!.
Consequently, we want to claim: ρ(A) is a simple eigenvalue of A if and only if

(i) there is a unique linearly independent eigenvector of A to λ, say u and also only one
linearly independent eigenvector of AT belonging to λ, say v.

(ii) vTu ̸= 0.

Indeed, only one linearly independent eigenvector of A, say u, belongs to ρ(A). More-
over u > 0. Similarly, AT ≥ 0 irreducible. The respective eigenvector v of AT (to ρ(A))
can be chosen positive as well v > 0. Therefore vTu > 0 and by Schur Lemma follows
that ρ(A) is simple.

Finally, we show that no nonnegative eigenvector belongs to any other eigenvalue.
Suppose Az = ξz, z ≥ 0 and ξ ̸= ρ(A). We have shown that AT has a positive eigenvec-
tor, say w > 0. Then,

ATw = ρ(A)w.

But,
wTAz = wT ξz = ξ(wT z),

i.e.,
wTAz = ρ(A)(wT z),

which is a contradiction in view of ρ(A)− ξ ̸= 0 and wT z > 0.

Theorem 4.1.5 Let A ≥ 0, x > 0. Define the quotients:

qi(x) ≡
(Ax)i
xi

=
1

xi

n∑
k=1

aikxk, for i = 1, · · · , n. (4.1.9)

Then
min
1≤i≤n

qi(x) ≤ ρ(A) ≤ max
1≤i≤n

qi(x). (4.1.10)

If A is irreducible, then it holds additionally, either

q1 = q2 = · · · qn (then x = µz, qi = ρ(A)) (4.1.11)

or
min
1≤i≤n

qi(x) < ρ(A) < max
1≤i≤n

qi(x). (4.1.12)

Proof: We first assume that A is irreducible. Then AT is irreducible. From Theorem
4.1.4 there exists y > 0 such that ATy = ρ(AT )y = ρy. Since Ax = Qx with Q =
diag(q1, · · · , qn), it follows

n∑
i=1

qiyixi = yTQx = yTAx = ρyTx = ρ
n∑

i=1

yixi
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or
n∑

i=1

(qi − ρ)yixi = 0.

Now there is either qi − ρ = 0, for all i = 1, · · · , n, that is (4.1.11) holds or there is a
qi ̸= ρ. Since yixi > 0, so (4.1.12) holds. (4.1.10) follows from the consideration of the
limiting case.

Theorem 4.1.6 The statements in Theorem 4.1.5 can be formulated as: Let A ≥ 0, x >
0. (4.1.10) corresponds: 

Ax ≤ µx ⇒ ρ ≤ µ,

Ax ≥ νx ⇒ ν ≤ ρ.
(4.1.13)

Let A ≥ 0, irreducible, x > 0. (4.1.12) corresponds :{
Ax ≤ µx, Ax ̸= µx ⇒ ρ < µ,
Ax ≥ νx, Ax ̸= νx ⇒ ν < ρ.

(4.1.14)

Theorem 4.1.7 (Perron and Frobenius 1907-1912, see Varga pp.30) Let A ≥ 0 irre-
ducible. Then

(i) ρ = ρ(A) is a simple eigenvalue;

(ii) There is a positive eigenvector z associated to ρ, i.e., Az = ρz, z > 0;

(iii) If Ax = λx, x ≥ 0, then λ = ρ, x = αz, α > 0. i.e, if x is any nonnegative
eigenvector of A, then x is a multiplicity of z;

(iv) A ≤ B,A ̸= B =⇒ ρ(A) < ρ(B).

Note that (i), (ii) and (iii) follows by Theorem 4.1.4 immediately. The proof of (iv)
follows from Lemma 4.1.12 in Appendix.

Theorem 4.1.8 (See Varga pp.46) If A ≥ 0, then

(i) ρ = ρ(A) is an eigenvalue.

(ii) There is a z ≥ 0, z ̸= 0 with Az = ρz.

(iii) A ≤ B =⇒ ρ(A) ≤ ρ(B).

Note that If A ≥ 0 reducible, then A is a limit point of irreducible nonnegative matrices.
Hence some parts of Theorem 4.1.7 are preserved.
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Appendix

Let A = [aij] ≥ 0 be irreducible and x ≥ 0 be any vector. Let

rx ≡ min
xi>0


n∑

j=1

aijxj

xi

 ≥ 0.

Then,

rx = sup{ρ ≥ 0 | Ax ≥ ρx}. (4.1.15)

Consider

r = sup
x>0,x ̸=0

{rx}. (4.1.16)

Since rx and rαx have the same value for all α > 0, we only consider ∥x∥ = 1 and x ≥ 0.
Let P = {x | x ≥ 0, ∥x∥ = 1} and Q = {y | (I + A)n−1x, x ∈ P}. From Lemma 4.1.1
follows Q consists only of positive vector. Multiplying Ax ≥ rxx by (I + A)n−1, we get
Ay ≥ rxy (by (9.15)). Thus ry ≥ rx.

The quantity r of (4.1.16) can be defined equivalently as

r = sup
y∈Q
{ry}. (4.1.17)

Note that ry: Q → R taking its maximum. As P is compact, so is Q, and as ry is a
continuous function on Q, there exists a positive z for which

Az ≥ rz (4.1.18)

and no vector w ≥ 0 exists for which Aw > rw.
All non-negative nonzero z satifying (4.1.18) is called an extremal vector of the matrix

A.

Lemma 4.1.9 Let A ≥ 0 be irreducible. The quantity r of (4.1.16) is positive. Moreover,
each extremal vector z is a positive eigenvector of A with corresponding eigenvalue r. i.e.,
Az = rz, z > 0.

Proof: If ξ is positive and ξi = 1, then since A is irreducible, no row of A can vanish.
Thus no component of Aξ can vanish. Thus rξ > 0. Proving that r > 0. Let z be an
extremal vector which

Az − rz = η, η ≥ 0.

If η ̸= 0, then some component of η is positive. Multiplying both sides by (I +A)n−1 we
get

Aw − rw > 0, w = (I + A)n−1z > 0.

Therefore, rw > r which contradicts (4.1.17). Thus Az = rz. Since w > 0 and w =
(1 + r)n−1z, it follows z > 0.
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Lemma 4.1.10 Let A = [aij] ≥ 0 be irreducible and B = [bij] be a complex matrix with
|B| ≤ A. If β is any eigenvalue of B, then

|β| ≤ r, (4.1.19)

where r is the positive constant of (4.1.16). Moreover, equality in (4.1.19) holds, i.e.,
β = reiφ, if and only if, |B| = A, and B has the form

B = eiφDAD−1, (4.1.20)

where D is diagonal whose diagonal entries have modulus unity.

Proof: If By = βy, y ̸= 0, then βyi =
n∑

j=1

bijyi, 1 ≤ i ≤ n. Thus,

|β||y| ≤ |B||y| ≤ A|y|.

This implies, |β| ≤ r|y| ≤ r. Hence, (4.1.19) is proved.
If |β| = r, then |y| is an extremal vector of A. From Lemma 4.1.9 follows that |y| is

a positive eigenvector of A corresponding to the eigenvalue r. Thus,

r|y| = |B||y| = A|y|. (4.1.21)

Since |y| > 0, from (4.1.21) and |B| ≤ A follows

|B| = A. (4.1.22)

For vector y, (|y| > 0), we set

D = diag

{
y

|y1|
, · · · , yn

|yn|

}
.

Then
y = D|y| (4.1.23)

Setting β = reiφ, then By = βy can be written as

C|y| = r|y| (4.1.24)

where
C = e−iφD−1BD. (4.1.25)

From (4.1.21) and (4.1.24) follows that

C|y| = |B||y| = A|y|. (4.1.26)

From the definition of C in (4.1.25) follows that |C| = |B|. Combining with (4.1.22) we
have

|C| = |B| = A (4.1.27)

Thus, from (4.1.26) we conclude that C|y| = |C||y|, and as |y| > 0, follows C = |C|, and
thus C = A from (4.1.27). Combing this result with (4.1.25) gives

B = eiφDAD−1.

Conversely, it is obvious that B has the form in (4.1.20), then |B| = A. So, B has an
eigenvalue β with |β| = r.

Setting B = A in Lemma 4.1.10, we have
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Corollary 4.1.11 If A ≥ 0 is irreducible, then the positive eigenvalue r of Lemma 4.1.9
equals the spectral radius ρ(A) of A.

Lemma 4.1.12 If A ≥ 0 is irreducible and B is any principal squared submatrix of A,
then ρ(B) < ρ(A).

Proof: There is a permutation P such that

C =

[
A11 0
0 0

]
and PAP T =

[
A11 A12

A21 A22

]
.

Clearly, 0 ≤ C ≤ PAP T and ρ(C) = ρ(B) = ρ(A11). But as C = |C| ̸= PAP T follows
that ρ(B) < ρ(A).

4.1.2 The theorems of Stein-Rosenberg

Remark 4.1.4 Let D be nonsingular in the standard decomposition (4.1.5)

A = D − L−R.

Consider Ã = D−1A = D̃ − L̃ − R̃, where D̃ = I, L̃ = D−1L and R̃ = D−1R. Then we
have

D−1(L+R) = D−1L+D−1R = D̃−1(L̃+ R̃)

and
(D − L)−1R = (I −D−1L)−1D−1R = (D̃ − L̃)−1R̃.

When we investigate TSM and SSM, we can without loss of generality suppose that
D = I. Therefore in the following paragraph we assume that

A = I − L−R. (4.1.28)

The iteration matrices of TSM and SSM become

J = L+R, (4.1.29)

H = (I − L)−1R, (4.1.30)

respectively. If L ≥ 0 and R ≥ 0, then J and H = (I − L)−1R = (I + L+ · · ·+ Ln−1)R
are nonnegative. Here, we have Ln = 0.

Theorem 4.1.13 Let A = I − L − R, L ≥ 0, R ≥ 0, n ≥ 2. Then precisely one of the
following relationships holds:

(i) 0 = ρ(H) = ρ(J),

(ii) 0 < ρ(H) < ρ(J) < 1,

(iii) ρ(H) = ρ(J) = 1,

(iv) ρ(H) > ρ(J) > 1.
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Proof: We will only give the proof of the case when A is irreducible. Hence the case
(i) does not occur. If A is reducible, then we can transform the reducible matrices into
irreducible matrices by using the normalform method. The method is very skillful and
behind our discussion, so we assume that A is irreducible.
(a) claim: ρ(H) > 0.

Let z > 0 be given. Then b = (I − L)−1Rz ≥ 0. Certainly Rz ̸= 0, thus b =
Rz + LRz + · · · + Ln−1Rz ̸= 0. Hence I = {i | bi = 0} ̸= {1, 2, · · · , n} = Ñ . Because
Rz = b− Lb, for i ∈ I we have

0 = bi =
∑
k>i

rikzk +
∑
k<i

likbk

and {
rik = 0, i ∈ I, k > i, k ̸∈ I,
lik = 0, i ∈ I, k < i, k ̸∈ I,

and aik = 0 for all i ∈ I, k ̸∈ I. Since A is irreducible, it follows that I = ∅. For b > 0

and from Theorem 4.1.5 follows that 0 < min
1≤i≤n

{
bi
zi

}
≤ ρ(H).

(b) Let x ≥ 0 be the eigenvector of H corresponding to ρH = ρ(H) (by Theorem 4.1.8).
Let ρJ = ρ(J). Since (I − L)−1Rx = ρHx, thus

1

ρH
Rx = x− Lx or x = (L+

1

ρH
R)x.

Since A is irreducible, we can conclude that L + 1
ρH
R is also irreducible. According to

Theorem 4.1.7 (iii) we have

1 = ρ(L+
1

ρH
R) (4.1.31)

and x > 0. Now we define the real value function

ϕ(t) = ρ(L+
1

t
R), t > 0. (4.1.32)

From Theorem 4.1.7 (iv) we can conclude that ϕ(t) is strictly (monotonic) decreasing in
t. On the other hand, tϕ(t) = ρ(tL+R), t > 0 is strictly (monotone) increasing in t.

(case 1) ρH < 1: Since ρJ = ϕ(1), it implies that

ρJ = ϕ(1) = ρ(L+R) > ρ(ρHL+R) = ρHρ(L+
1

ρHR
) = ρH . (by (4.1.31))

(case2) ρH = 1: ρ(L+R) = ρJ = 1.

(case 3) ρH > 1: ρJ = ϕ(1) > ϕ(ρH) = 1 and

ρJ = ϕ(1) = ρ(L+R) < ρ(ρHL+R) = ρHρ(L+
1

ρH
R) = ρH .

Theorem 4.1.14 If the off-diagonal elements in A (A = I−L−R) are nonpositive, then
SSM is convergent if and only if TSM is convergent. Furthermore, SSM is asymptotically
faster.

Proof: The result follows immediately from theorem 4.1.13 and (4.1.13).
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4.1.3 Sufficient conditions for convergence of TSM and SSM

Definition 4.1.3 A real matrix B is called an M-matrix if bij ≤ 0, i ̸= j and B−1 exists
with B−1 ≥ 0.

In the following theorems we give some important equivalent conditions of the M−
matrix.

Theorem 4.1.15 Let B be a real matrix with bij ≤ 0 for i ̸= j. Then the following
statements are equivalent.

(i) B is an M−matrix.

(ii) There exists a vector v > 0 so that Bv > 0.

(iii) B has a decomposition B = sI − C with C ≥ 0 and ρ(C) < s.

(iv) For each decomposition B = D−C with D = diag (di) and C ≥ 0, it holds: di > 0,
i = 1, 2, · · · , n, and ρ(D−1C) < 1.

(v) There is a decomposition B = D − C, with D = diag(di) and C ≥ 0 it holds:
di > 0, i = 1, 2, · · · , n and ρ(D−1C) < 1.
Further, if B is irreducible, then (6) is equivalent to (1)-(5).

(vi) There exists a vector v > 0 so that Bv ≥ 0, ̸= 0.

Proof:

(i) ⇒ (ii) : Let e = (1, · · · , 1)T . Since B−1 ≥ 0 is nonsingular it follows v = B−1e > 0
and Bv = B(B−1e) = e > 0.

(ii) ⇒ (iii) : Let s > max(bii). It follows B = sI − C with C ≥ 0. There exists a
v > 0 with Bv = sv − Cv (via (ii)), also sv > Cv. From the statement (4.1.13) in
Theorem 4.1.6 follows ρ(C) < s.

(iii) ⇒ (i) : B = sI − C = s(I − 1
s
C). For ρ(1

s
C) < 1 and from Theorem 1.2.6 follows

that there exists a series expansion (I − 1
s
C)−1 =

∞∑
ν=0

(1
s
C)k. Since the terms in sum

are nonnegative, we get B−1 = 1
s
(I − 1

s
C)−1 ≥ 0.

(ii) ⇒ (iv) : From Bv = Dv − Cv > 0 follows Dv > Cv ≥ 0 and di > 0, for i =
1, 2, · · · , n. Hence D−1 ≥ 0 and v > D−1Cv ≥ 0. From (4.1.13) follows that
ρ(D−1C) < 1.

(iv) ⇒ (v) : Trivial.

(v) ⇒ (i) : Since ρ(D−1C) < 1, it follows from Theorem 1.2.6 that (I − D−1C)−1

exists and equals to
∞∑
k=0

(D−1C)k. Since the terms in sum are nonnegative, we have

(I −D−1C)−1 is nonnegative and B−1 = (I −D−1C)−1D−1 ≥ 0.

(ii) ⇒ (vi) : Trivial.
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(vi) ⇒ (v) : Consider the decomposition B = D−C, with di = bii. Let {I = i | di ≤ 0}.
From divi−

∑
k ̸=i cikvk ≥ 0 follows cik = 0 for i ∈ I, and k ̸= i. Since Bv ≥ 0, ̸= 0⇒

I ̸= {1, · · · , n}. But B is irreducible ⇒ I = ∅ and di > 0. Hence for Dv >, ̸= Cv
also v >, ̸= D−1Cv and (4.1.14) show that ρ(D−1C) < 1.

Remark 4.1.5 Theorem 4.1.15 can also be described as follows: If aij ≤ 0, i ̸= j, then
TSM and SSM converge if and only if A is an M -matrix.

Proof: By (i) ⇔ (iv) and (i) ⇔ (v) of the previous theorem and Theorem 4.1.14.

Lemma 4.1.16 Let A be an arbitrary complex matrix and define |A| = [|aij|]. If |A| ≤ C,
then ρ(A) ≤ ρ(C). Especially ρ(A) ≤ ρ(|A|).

Proof: There is a x ̸= 0 with Ax = λx and |λ| = ρ(A). Hence

ρ(A)|xi| = |
n∑

k=1

aikxk| ≤
n∑

k=1

|aik||xk| ≤
n∑

k=1

cik|xk|.

Thus,

ρ(A)|x| ≤ C|x|.

If |x| > 0, then from (4.1.13) we have ρ(A) ≤ ρ(C). Otherwise, let I = {i | xi ̸= 0} and
CI be the matrix, which consists of the ith row and ith column of C with i ∈ I. Then
we have ρ(A)|xI | ≤ CI |xI |. Here |xI | consists of ith component of |x| with i ∈ I. Then
from |xI | > 0 and (4.1.13) follows ρ(A) ≤ ρ(CI). We now fill CI with zero up to an n×n
matrix C̃I . Then C̃I ≤ C. Thus, ρ(CI) = ρ(C̃I) ≤ ρ(C) (by Theorem 4.1.8(iii)).

Theorem 4.1.17 Let A be an arbitrary complex matrix. It satisfies
either (Strong Row Sum Criterion):∑

j ̸=i

|aij| < |aii|, i = 1, · · · , n. (4.1.33)

or (Weak Row Sum Criterion):∑
j ̸=i

|aij| ≤ |aii|, i = 1, · · · , n,

< |ai0i0 |, at least one i0, (4.1.34)

for A irreducible. Then TSM and SSM both are convergent.

Proof: Let A = D−L−R. From (4.1.33) and (4.1.34) D must be nonsingular and then
as in Remark 4.1.4 we can w.l.o.g. assume that D = I. Now let B = I − |L| − |R|. Then
(4.1.33) can be written as Be > 0. From Theorem 4.1.15(ii) and (i) follows that B is an
M -matrix.

(4.1.34) can be written as Be ≥ 0, Be ̸= 0. Since A is irreducible, also B, from
Theorem 4.1.15 (vi) and (i) follows that B is an M -matrix.
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Especially, from theorem 4.1.15(i), (iv) and Theorem 4.1.13 follows that

ρ(|L|+ |R|) < 1 and ρ((I − |L|)−1|R|) < 1.

Now Lemma 4.1.16 shows that

ρ(L+R) ≤ ρ(|L|+ |R|) < 1.

So TSM is convergent. Similarly,

ρ((I − L)−1R) = ρ(R + LR + · · ·+ Ln−1R)

≤ ρ(|R|+ |L||R|+ · · ·+ |L|n−1|R|)
= ρ((I − |L|)−1|R|) < 1.

So SSM is convergent.

4.2 Relaxation Methods (Successive Over-Relaxation

(SOR) Method )

Consider the standard decomposition (4.1.5)

A = D − L−R

for solving the linear system (4.1.1) Ax = b. The single-step method (SSM)

(D − L)xi+1 = Rx(i) + b

can be written in the form

x(i+1) = x(i) + {D−1Lx(i+1) +D−1Rx(i) +D−1b− x(i)} := x(i) + v(i). (4.2.1)

Consider a general form of (4.2.1)

x(i+1) = x(i) + ωv(i) (4.2.2)

with constant ω. Also (4.2.2) can be written as

Dx(i+1) = Dx(i) + ωLx(i+1) + ωRx(i) + ωb− ωDx(i).

Then
x(i+1) = (D − ωL)−1((1− ω)D + ωR)x(i) + ω(D − ωL)−1b. (4.2.3)

We now assume that D = I as above. Then (4.2.3) becomes

x(i+1) = (I − ωL)−1((1− ω)I + ωR)x(i) + ω(I − ωL)−1b (4.2.4)

with the iteration matrix

Lω := (I − ωL)−1((1− ω)I + ωR). (4.2.5)

These methods is called for
ω < 1 : under relaxation,
ω = 1 : single-step method,
ω > 1 : over relaxation. (In general: relaxation methods.)

We now try to choose an ω such that ρ(Lω) is possibly small. But this is only under
some special assumptions possible. we first list a few qualitative results about ρ(Lω).
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Theorem 4.2.1 Let A = D − L − L∗ be hermitian and positive definite. Then the
relaxation method is convergent for 0 < ω < 2.

Proof: We claim that each eigenvalue of Lω has absolute value smaller than 1 (i.e.,
ρ(Lω) < 1). Let λ ∈ σ(Lω). Then there is an x ̸= 0 with

λ(D − ωL)x = ((1− ω)D + ωL∗)x. (4.2.6)

It holds obviously

2λ(D − ωL) = λ((2− ω)D + ω(D − 2L))

= λ((2− ω)D + ωA+ ω(L∗ − L))

and

2[(1− ω)D + ωL∗] = (2− ω)D + ω(−D + 2L∗)

= (2− ω)D − ωA+ ω(L∗ − L).

Hence multiplying (4.2.6) by x∗ we get

λ((2− ω)x∗Dx+ ωx∗Ax+ ωx∗(L∗ − L)x)
= (2− ω)x∗Dx− ωx∗Ax+ ωx∗(L∗ − L)x

or by d = x∗Dx > 0, a := x∗Ax > 0 and x∗(L∗ − L)x := is, s ∈ R we get

λ((2− ω)d+ ωa+ iωs) = (2− ω)d− ωa+ iωs.

Dividing above equation by ω and setting µ = (2− ω)/ω, we get

λ{µd+ a+ is} = µd− a+ is.

For 0 < ω < 2 we have µ > 0 and µd+ is is in the right half plane. Therefore the distance
from a to µd+ is is smaller than that from −a. So we have |λ| = |µd+is−a

µd+is+a
| < 1.

Theorem 4.2.2 Let A be Hermitian and nonsingular with positive diagonal. If SSM
converges, then A is positive definite.

Proof: Let A = D − L− L∗. For any matrix C it holds:

A− (I − AC∗)A(I − CA) = A− A+ ACA+ AC∗A− AC∗ACA
= AC∗(C∗−1 + C−1 − A)CA.

For special case that C = (D − L)−1 we have

C∗−1 + C−1 − A = D − L∗ +D − L−D + L+ L∗ = D

and
I − CA = (D − L)−1(D − L− A) = (D − L)−1L∗ = H.

Hence we obtain

A−H∗AH = A(D − L)−∗D(D − L)−1A =: B
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Thus H∗AH = A − B. D is positive definite, obviously so is B (since (D − L)−1A is
nonsingular). Because ρ(H) < 1, for any ε0 ∈ Cn the sequence {εm}∞m=1 defined by
εm := Hmε0 converges to zero. Therefore the sequence {ε∗mAεm}∞m=1 also converges to
zero. Furthermore, we have

ε∗m+1Aεm+1 = ε∗mH
∗AHεm = ε∗mAεm − ε∗mBεm < ε∗mAεm, (4.2.7)

because B > 0 is positive definite. If A is not positive definite, then there is a ε0 ∈ Cn\{0}
with ε∗0Aε0 ≤ 0. This is a contradiction that {ε∗mAεm} → 0 and (4.2.7).

4.2.1 Determination of the Optimal Parameter ω for 2-consistly
Ordered Matrices

For an important class of matrices the more qualitative assertions of Theorems 4.2.1 and
4.2.2 can be considerably sharpened. This is the class of consistly ordered matrices. The
optimal parameter ωb with

ρ(Lωb
) = min

ω
ρ(Lω)

can be determined. We consider A = I − L−R.

Definition 4.2.1 A is called 2-consistly ordered, if the eigenvalues of αL + α−1R are
independent of α.

Example 4.2.1 A = −
[

0 R
L 0

]
+ I,

αL+ α−1R =

[
0 α−1R
αL 0

]
=

[
I 0
0 αI

] [
0 R
L 0

] [
I 0
0 α−1I

]
.

This shows that αL+α−1R is similar to L+R, so the eigenvalues are independent to α.
A is 2-consistently ordered.

Let A = I − L − R, J = L + R. Let s
(i)
1 , s

(i)
2 , . . . denote the lengths of all closed

oriented path (oriented cycles)

Pi → Pk1 → Pk2 → · · · → P
k
(i)
s

= Pi

in G(J) which leads from Pi to Pi. Denoting by li the greatest common divisor: li =

g.c.d.(s
(i)
1 , s

(i)
2 , · · · ).

Definition 4.2.2 The Graph G(J) is called 2-cyclic if l1 = l2 = · · · = ln = 2 and weakly
2-cyclic if all li are even.

Definition 4.2.3 The matrix A has property A if there exists a permutation P such that

PAP T =

[
D1 M1

M2 D2

]
with D1 and D2 diagonal.
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Theorem 4.2.3 For every n×n matrix A with property A and aii ̸= 0, i = 1, · · · , n, there
exists a permutation P such that Ā = D(I −L−R) of the permuted matrix Ā := PAP T

is 2-consistly ordered.

Proof: There is a permutation P such that

PAP T =

[
D1 M1

M2 D2

]
= D(I − L−R)

with

D =

[
D1 0
0 D2

]
, L = −

[
0 0

D−12 M2 0

]
and R = −

[
0 D−11 M1

0 0

]
.

For α ̸= 0, we have

J(α) = −
[

0 α−1D−11 M1

αD−12 M2 0

]
= −Sα

[
0 D−11 M1

D−12 M2 0

]
S−1α

= SαJ(1)S
−1
α ,

where Sα :=

[
I1 0
0 αI2

]
.

Theorem 4.2.4 An irreducible matrix A has property A if and only if G(J) is weakly
2-cyclic. (Without proof!)

Example 4.2.2 Block tridiagonal matrices

A =


D1 A12

A21 D2
. . .

. . . . . . AN−1,N
AN,N−1 DN

 .
If all Di are nonsingular, then

J(α) =


0 α−1D−11 A12 · · · 0

αD−12 A21 0
. . .

...
...

. . . . . . α−1D−1N−1AN−1,N
0 · · · αD−1N AN,N−1 0

 ,
which obeys the relation J(α) = SαJ(1)S

−1
α , with Sα = diag{I1, αI2, · · · , αN−1IN}. Thus

A is 2-consistly ordered.

The other description: G(L+R) is bipartite.

Example 4.2.3 A =


1 b1 0

c1
. . . . . .
. . . . . . bn−1

0 cn−1 1

 is 2-consistly ordered. The eigenvalues

are the roots of det(A − λI) = 0. The coefficients of above equation appear only those
products bici. For αL+ α−1R, we substitute bi and ci by

1
α
bi and αci, respectively, then

the products are still bici. Therefore eigenvalues are independent of α.
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Examples 4.2.1 and 4.2.2 are 2-cyclic.

Example 4.2.4

A =

 1 a b
0 1 0
c d 1

 , −αL− α−1R =

 0 α−1a α−1b
0 0 0
αc αd 0

 .
The coefficients of characteristic polynomial are independent to α, so A is 2-consistly
ordered. But G(L+R) is not bipartite, so not 2-cyclic.

If A is 2-consistly ordered, then L+R and−(L+R) (α = −1) has the same eigenvalues.
The nonzero eigenvalues of L+R appear in pairs. Hence

det(λI − L−R) = λm
r∏

i=1

(λ2 − µ2
i ), n = 2r +m (m = 0, possible). (4.2.8)

Theorem 4.2.5 Let A be 2-consistly ordered, aii = 1, ω ̸= 0. Then hold:

(i) If λ ̸= 0 is an eigenvalue of Lω and µ satisfies the equation

(λ+ ω − 1)2 = λµ2ω2, (4.2.9)

then µ is an eigenvalue of L+R (so is −µ).

(ii) If µ is an eigenvalue of L + R and λ satisfies the equation (4.2.9), then λ is an
eigenvalue of Lω.

Remark 4.2.1 If ω = 1, then λ = µ2, and ρ((I − L)−1R) = (ρ(L+R))2.

Proof: We first prove the identity

det(λI − sL− rR) = det(λI −
√
sr(L+R)). (4.2.10)

Since both sides are polynomials of the form λn + · · · and

sL+ rR =
√
sr(

√
s

r
L+

√
r

s
R) =

√
sr(αL+ α−1R),

if sr ̸= 0, then sL+ rR and
√
sr(L+ R) have the same eigenvalues. It is obviously also

for the case sr = 0. The both polynomials in (4.2.10) have the same roots, so they are
identical. For

det(I − ωL) det(λI − Lω) = det(λ(I − ωL)− (1− ω)I − ωR)
= det((λ+ ω − 1)I − ωλL− wR) = Φ(λ)

and det(I − ωL) ̸= 0, λ is an eigenvalue of Lω if and only if Φ(λ) = 0. From (4.2.10)
follows

Φ(λ) = det((λ+ ω − 1)I − ω
√
λ(L+R))
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and that is (from (4.2.8))

Φ(λ) = (λ+ ω − 1)m
r∏

i=1

((λ+ ω − 1)2 − ω2λµ2
i ), (4.2.11)

where µi is an eigenvalue of L + R. Therefore, if µ is an eigenvalue of (L + R) and λ
satisfies (4.2.9), so is Φ(λ) = 0, then λ is eigenvalue of Lω. This shows (b).

Now if λ ̸= 0 an eigenvalue of Lω, then one factor in (4.2.11) must be zero. Let µ
satisfy (4.2.9). Then

(i) µ ̸= 0: From (4.2.9) follows λ+ ω − 1 ̸= 0, so

(λ+ ω − 1)2 = λω2µ2
i , for one i (from (4.2.11)),

= λω2µ2, (from (4.2.9)).

This shows that µ = ±µi, so µ is an eigenvalue of L+R.

(ii) µ = 0: We have λ+ ω − 1 = 0 and

0 = Φ(λ) = det((λ+ ω − 1)I − ω
√
λ(L+R)) = det(−ω

√
λ(L+R)),

i.e., L+R is singular, so µ = 0 is eigenvalue of L+R.

Theorem 4.2.6 Let A = I − L − R be 2-consistly ordered. If L + R has only real
eigenvalues and satisfies ρ(L+R) < 1, then it holds

ρ(Lωb
) = ωb − 1 < ρ(Lω), for ω ̸= ωb, (4.2.12)

where

ωb =
2

1 +
√
1− ρ2(L+R)

(solve ωb in (4.2.9)).

1

1 2

( )Lωρ

ω*
bω

Figure 4.1: figure of ρ(Lωb
)

One has in general,

ρ(Lω) =

{
ω − 1, for ωb ≤ ω ≤ 2

1− ω + 1
2
ω2µ2 + ωµ

√
1− ω + 1

4
ω2µ2, for 0 < ω ≤ ωb

(4.2.13)
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Remark: We first prove the following Theorem proposed by Kahan: For arbitrary ma-
trices A it holds

ρ(Lω) ≥ |ω − 1|, for all ω. (4.2.14)

Proof: Since det(I − ωL) = 1 for all ω, the characteristic polynomial Φ(λ) of Lω is

Φ(λ) = det(λI − Lω) = det((I − ωL)(λI − Lω))

= det((λ+ ω − 1)I − ωλL− ωR).

For
n∏

i=1

λi(Lω) = Φ(0) = det((ω − 1)I − ωR) = (ω − 1)n, it follows immediately that

ρ(Lω) = max
i
|λi(Lω)| ≥ |ω − 1|.

Proof of Theorem 4.2.6: By assumption the eigenvalues µi of L+R are real and −ρ(L+
R) ≤ µi ≤ ρ(L + R) < 1. For a fixed ω ∈ (0, 2) (by (4.2.14) in the Remark it suffices

to consider the interval (0,2)) and for each µi there are two eigenvalues λ
(1)
i (ω, µi) and

λ
(2)
i (ω, µi) of Lω, which are obtained by solving the quadratic equation (4.2.9) in λ.

Geometrically, λ
(1)
i (ω) and λ

(2)
i (ω) are obtained as abscissae of the points of intersection

of the straight line gω(λ) =
λ+ω−1

ω
and the parabolami(λ) := ±

√
λµi (see Figure 4.2). The

line gω(λ) has the slope 1/ω and passes through the point (1,1). If gω(λ)∩mi(λ) = ϕ, then

λ
(1)
i (ω) and λ

(2)
i (ω) are conjugate complex with modulus |ω−1| (from (4.2.9)). Evidently

ρ(Lω) = max
i

(|λ(1)i (ω)|, |λ(2)i (ω)|) = max(|λ(1)(ω)|, |λ(2)(ω)|),

where λ(1)(ω), λ(2)(ω) being obtained by intersecting gω(λ) with m(λ) := ±
√
λµ, with

µ = ρ(L+R) = maxi |µi|. By solving (4.2.9) with µ = ρ(L+R) for λ, one verifies (4.2.13)
immediately, and thus also the remaining assertions of the theorem.

1

1

( )gω λ ( )
b

gω λ

( )m λ
( )im λ

λ(1)
iλ

(2)
iλ

�θ

Figure 4.2: Geometrical view of λ
(1)
i (ω) and λ

(2)
i (ω).
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4.2.2 Practical Determination of Relaxation Parameter ωb

For ω ∈ [1, ωb], from (4.2.13) in Theorem 4.2.6 we have

ρ(Lω) = [
ωµ

2
+

1

2

√
µ2ω2 − 4(ω − 1)]2 (4.2.15)

or

µ =
ρ(Lω) + ω − 1

ω
√
ρ(Lω)

. (4.2.16)

Here µ := ρ(L + R). If µ is simple, then ρ(Lω) is also a simple eigenvalue (See the
proof of Theorem 4.2.6). So one can determine an approximation for ρ(Lω) using power
method (see later for details!): Let {x(k)}∞k=1 be the sequence of iterates, which generated
by (4.2.6) with parameter ω. Let e(k) = x(k) − x be the error vector which satisfies the
relation e(k) = Lk

ωe
(0) (Here Ax = b). We define d(k) := x(k+1) − x(k), for k ∈ N. Then we

have

x(k+1) − x(k) = e(k+1) − e(k) = (Lω − I)e(k) = (Lω − I)Lk
ωe

(0)

= Lk
ω(Lω − I)e(0) = Lk

ωd
(0).

Hence d(k) = Lk
ωd

(0). For sufficiently large k ∈ N we compute

qk := max
1≤i≤n

|x(k+1)
i − x(k)i |
|x(k)i − x

(k−1)
i |

, (4.2.17)

which is a good approximation for ρ(Lω). We also determine the corresponding approx-
imation for µ by (4.2.16) and the corresponding optimal parameter ω̃ as (by Theorem
4.2.4):

ω̃ = 2/(1 + [1− (qk + ω − 1)2/(ω2qk)]
1/2). (4.2.18)

4.2.3 Break-off Criterion for SOR Method

From d(k) = (Lω − I)e(k) follows (for ρ(Lω) < 1) that e(k) = (Lω − I)−1d(k) and then

∥e(k)∥∞ ≤
1

1− ρ(Lω)
∥d(k)∥∞.

With an estimate q < 1 for ρ(Lω) one obtains the break-off criterion for a given ε ∈ R+

∥d(k)∥∞ ≤ (1− q)ε, (for absolute error),

∥d(k)∥∞/∥x(k+1)∥∞ ≤ (1− q)ε, (for relative error).

The estimate qk in (4.2.17) for the spectral radius ρ(Lω) of SOR method is theoretically
justified, if ω ≤ ωb. But during the computation we cannot guarantee that the new ω̃ also
satisfies ω̃ ≤ ωb. Then an oscillation of qk at ω̃ may occur, and 1− qk can be considerably
larger than 1 − ρ(Lω̃); the break-off criterion may be satisfied too early. It is better to
take q := max(qk, ω̃ − 1) instead of qk.
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Algorithm 4.2.1 (Successive Over-Relaxation Method) Let A ∈ Rn×n and b ∈
Rn. Let A = D − L − R with D nonsingular. Suppose that A is 2-consistly ordered, all
eigenvalues of J := D−1(L + R) are real and ρ(J) is a simple eigenvalue of J satisfying
ρ(J) < 1. [We apply a simple strategy to the following Algorithm, to perform a new
updating after p iterative steps (p ≈ 5).]

Step 1: Choose a bound for machine precision ε ∈ R+ and a positive integer p, and a
initial vector x(0) ∈ Rn. Let ω := 1, q := 1 and k := 0.

Step 2: (Iterative step):
Compute for i = 1, . . . , n,

x
(k+1)
i = (1− ω)x(k)i +

ω

aii

[
i−1∑
j=1

aijx
(k+1)
j +

n∑
j=i+1

aijx
(k)
j − bi

]
.

If k is not positive integral multiplicity of p, then go to Step 4.

Step 3: (Adaptation of the Estimate of the Optimal Parameter):
Compute

q := max
1≤i≤n

|x(k+1)
i − x(k)i |
|x(k)i − x

(k−1)
i |

.

If q > 1, then go to Step 5.
Let q := max(q, ω − 1) and ω := 2

1+

√
1− (q+ω−1)2

ω2q

.

Step 4: (Break-off criterion): If

max
1≤i≤n

∣∣∣x(k+1)
i − x(k)i

∣∣∣
max
1≤i≤n

∣∣∣x(k+1)
i

∣∣∣ ≤ ε(1− q),

then stop.

Step 5: Let k := k + 1 and go to step 2.

4.3 Application to Finite Difference Methods: Model

Problem (Example 4.1.3)

We consider the Dirichlet boundary-value problem (Model problem) as in Example
8.3. We shall solve a linear system Az = b of the N2 ×N2 matrix A as in (4.1.18).
To Jacobi method: The iterative matrix is

J = L+R =
1

4
(4I − A).

Graph G(J) (N = 3) is connected and weakly 2-cyclic. Thus, A is irreducible and has
property A. It is easily seen that A is 2-consistly ordered (Exercise!).
To Gauss-Seidel method: The iterative matrix is

H = (I − L)−1R.
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From the Remark of Theorem 4.2.5 and (4.1.20) follows that

ρ(H) = ρ(J)2 = cos2
π

N + 1
.

According to Theorem 4.2.6 the optimal relaxation parameter ωb and ρ(Lωb
) are given by

ωb =
2

1 +
√

1− cos2 π
N+1

=
2

1 + sin π
N+1

(3.1)

and

ρ(Lωb
) =

cos2 π
N+1

(1 + sin π
N+1

)2
. (3.2)

The number k = k(N) with ρ(J)k = ρ(Lωb
) indicates that the k steps of Jacobi method

produce the same reduction as one step of the optimal relaxation method. Clearly,

k = ln ρ(Lωb
)/ ln ρ(J). (3.3)

Now for small z one has ln(1 + z) = z − z2/2 +O(z3) and for large N we have

cos

(
π

N + 1

)
= 1− π2

2(N + 1)2
+O(

1

N4
).

Thus that

ln ρ(J) =
π2

2(N + 1)2
+O(

1

N4
).

Similarly,

ln ρ(Lωb
) = 2[ln ρ(J)− ln(1 + sin

π

N + 1
)]

= 2[− π2

2(N + 1)2
− π

N + 1
+

π2

2(N + 1)2
+O(

1

N3
)]

= − 2π

N + 1
+O(

1

N3
) (for large N).

and

k = k(N) ≈ 4(N + 1)

π
. (3.4)

The optimal relaxation method is more than N times as fast as the Jacobi method. The
quantities

RJ :=
− ln 10

ln ρ(J)
≈ 0.467(N + 1)2. (3.5)

RH :=
1

2
RJ ≈ 0.234(N + 1)2 (3.6)

RLωb
:= − ln 10

ln ρ(Lωb
)
≈ 0.367(N + 1) (3.7)

indicate the number of iterations required in the Jacobi, the Gauss-Seidel method, and
the optimal relaxation method, respectively, in order to reduce the error by a factor of
1/10.
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4.4 Block Iterative Methods

A natural block structure

A =

 A11 · · · A1N
...

. . .
...

AN1 · · · ANN

 ,
where Aii are square matrices. In addition, if all Aii are nonsingular, we introduce block
iterative methods relative to the given partition π of A, which is analogous to (4.1.5):

A = Dπ − Lπ −Rπ

with

Dπ :=


A11 0 0 0
0 A22 0 0

0 0
. . . 0

0 0 0 ANN

 , (4.1a)

Lπ := −


0 0 · · · 0

A21
. . .

...
...

. . . . . . 0
AN1 · · · AN,N−1 0

 ,

Rπ := −


0 A12 · · · A1N

0
. . . . . .

...
...

. . . AN−1,N
0 · · · 0 0

 . (4.1b)

One obtains the block Jacobi method (block total-step method) for the solution of Ax = b
by choosing in (4.1.4) analogously to (4.1.6) or (4.1.7), F := Dπ. One thus obtains

Dπx
(i+1) = b+ (Lπ +Rπ)x

(i) (4.2)

or
Ajjx

(i+1)
j = bj −

∑
k ̸=j

Ajkx
(i)
k , for j = 1, . . . , N, i = 0, 1, 2, · · · . (4.3)

We must solve system of linear equations of the form Ajjz = y, j = 1, · · · , N . By
the methods of Chapter 2, a triangular factorization (or a Cholesky factorization, etc.)
Ajj = LjRj we can reduce Ajjz = y to the two triangular systems

Lju = y and Rjz = u.

For the matrix A in Example 8.3 (model problem): Here Ajj are positive definite tridi-
agonal N ×N matrices.

Ajj =


4 −1 0 0

−1 . . . . . . 0

0
. . . . . . −1

0 0 −1 4

 , Lj =


× 0 · · · 0

× . . .
...

...
. . . . . . 0

0 · · · × ×

 .
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The rate of convergence of (4.3) is determined by ρ(Jπ) of the matrix

Jπ := Lπ +Rπ

with Lπ := D−1π Lπ and Rπ := D−1π Rπ.
One can analogously to (4.1.8) define a block Gauss-Seidel method (block single-step

method):
Hπ := (I − Lπ)

−1Rπ

or

Ajjx
(i+1)
j = bj −

∑
k<j

Ajkx
(i+1)
k −

∑
k>i

Ajkx
(i)
k , for j = 1, · · · , N, i = 0, 1, 2, · · · . (4.4)

As in Section 10, one can also introduce block relaxation methods through the choice

Lπ
ω = (I − ωLπ)

−1[(1− ω)I + ωRπ] (4.5)

and
x(i+1) = (I − ωLπ)

−1((1− ω)I + ωRπ)x
(i) + ω(I − ωLπ)

−1b. (4.6)

If one defines A as 2-consistly ordered whenever the eigenvalues of the matrices Jπ(α) =
αLπ + α−1Rπ are independent of α. Optimal relaxation factors are determined as in
Theorem 4.2.6 with the help of ρ(Jπ). For the model problem (Example 8.3), relative to
the partition given in (8.18), ρ(Jπ) can again be determined explicitly. One finds

ρ(Jπ) =
cos π

N+1

2− cos π
N+1

< ρ(J). (4.7)

For the corresponding optimal block relaxation method one has asymptotically for N →
∞,

ρ(Lπ
ωb
) ≈ ρ(Lwb

)k

with k =
√
2 (Exercise!). The number of iterations is reduced by a factor

√
2 compared

to the ordinary optimal relaxation method.

4.5 The ADI method of Peaceman and Rachford

4.5.1 ADI method (alternating-direction implicit iterative method)

Slightly generalizing the model problem (4.1.14), we consider the Poisson problem
−uxx − uyy + σu(x, y) = f(x, y), for (x, y) ∈ Ω,

u(x, y) = 0, for (x, y) ∈ ∂Ω,
(4.5.1)

where Ω = {(x, y) | 0 < x < 1, 0 < y < 1} ⊆ R2 with boundary ∂Ω. Here σ > 0 is a
constant and f : Ω ∪ ∂Ω→ R continous function. Using the same discretization and the
same notation as in Example 8.3, one obtains

4zij − zi−1,j − zi+1,j − zi,j−1 − zi,j+1 + σh2zij = h2fij, 1 ≤ i, j ≤ N (4.5.2)
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with z0j = zN+1,j = zi,0 = zi,N+1 = 0, 0 ≤ i, j ≤ N + 1 for the approximate values zij of
uij = u(xi, yj). To the decomposition

4zij − zi−1,j − zi+1,j − zi,j−1 − zi,j+1 + σh2zij

≡ (2zij − zi−1,j − zi+1,j) + (2zij − zi,j−1 − zi,j+1) +
(
σh2zij

)
, (4.5.3)

there corresponds a decomposition of the matrix A if the system Az = b, of the form
A = H + V + Σ (H: Horizontal, V : Vertical). Here H, V , Σ are defined by

wij = 2zij − zi−1,j − zi+1,j, if w = Hz, (4.5.4a)

wij = 2zij − zi,j−1 − zi,j+1, if w = V z, (4.5.4b)

wij = σh2zij, if w = Σz. (4.5.4c)

Σ is a diagonal matrix with nonnegative elements, H and V are both symmetric and
positive definite, where H = [·] and V = [·]. A = H + V + Σ is now transformed
equivalently into

(H +
1

2
Σ + rI)z = (rI − V − 1

2
Σ)z + b

and also

(V +
1

2
Σ + rI)z = (rI −H − 1

2
Σ)z + b.

Here r is an arbitrary real number. Let H1 := H + 1
2
Σ, V1 := V + 1

2
Σ, one obtains ADI

method:

(H1 + ri+1I)z
(i+1/2) = (ri+1I − V1)z(i) + b, (4.5.5)

(V1 + ri+1I)z
(i+1) = (ri+1I −H1)z

(i+1/2) + b. (4.5.6)

With suitable ordering of the variables zij, the matrices H1 + ri+1I and V1 + ri+1I are
positive definite tridiagonal matrices (assuming ri+1 ≥ 0), so that the systems (4.5.5) and
(4.5.6) can easily be solved for z(i+1/2) and z(i+1) via a Cholesky factorization. Eliminating
z(i+1/2) in (4.5.5) and (4.5.6) we get

z(i+1) = Tri+1
z(i) + gri+1

(b) (4.5.7)

with
Tr := (V1 + rI)−1(rI −H1)(H1 + rI)−1(rI − V1), (4.5.8)

gr(b) := (V1 + rI)−1[I + (rI −H1)(H1 + rI)−1]b. (4.5.9)

For the error fi := z(i)− z it follows from (4.5.7) and the relation z = Tri+1
z+ gri+1

(b) by
subtraction, that

fi+1 = Tri+1
fi, (4.5.10)

and therefore
fm = TrmTrm−1 · · ·Tr1f0. (4.5.11)

In view of (4.5.10) and (4.5.11), ri are to be determined so that the spectral radius
ρ(Trm , · · · , Tr1) becomes as small as possible.
For the case ri = r:
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Theorem 4.5.1 Under the assumption that H1 and V1 are positive definite, one has
ρ(Tr) < 1, for all r > 0.

Proof: V1 and H1 are positive definite. Therefore (V1+ rI)−1, and (H1+ rI)−1 exist, for
r > 0, and hence also Tr of (4.5.8). The matrix

T̃r := (V1 + rI)Tr(V1 + rI)−1

= [(rI −H1)(H1 + rI)−1][rI − V1)(V1 + rI)−1]

is similar to Tr. Hence ρ(Tr) = ρ(T̃r). The matrix H̃ := (rI − H1)(H1 + rI)−1 has
the eigenvalues (r − λj)/(r + λj), where λj = λj(H1) are the eigenvalues of H1. Since
r > 0, λj > 0 it follows that |(r− λj)/(r+ λj)| < 1 and thus ρ(H̃) < 1. Since H1 also H̃
are symmetric, we have

∥H̃∥2 = ρ(H̃) < 1.

In the same way one has

∥Ṽ ∥2 < 1.

Let Ṽ := (rI − V1)(V1 + rI)−1. Thus

ρ(T̃r) ≤ ∥T̃r∥2 ≤ ∥H̃∥2∥Ṽ ∥2 < 1.

The eigenvalues of Tr can be exhibited by

H1z
(k,l) = µkz

(k,l), (4.5.12a)

V1z
(k,l) = µlz

(k,l), (4.5.12b)

Trz
(k,l) = µ(k,l)z(k,l), (4.5.12c)

where z
(k,l)
ij := sin kπi

N+1
sin lπj

N+1
, 1 ≤ i, j ≤ N , with

µ(k,l) =
(r − µl)(r − µk)

(r + µl)(r + µk)
, µj := 4 sin2 jπ

2(N + 1)
, (4.5.13)

so that

ρ(Tr) = max
1≤j≤N

∣∣∣∣r − µj

r + µj

∣∣∣∣2 .
One finally finds a result (Exercise!):

min
r>0

ρ(Tr) = ρ(Lωb
) =

cos2
(

π
N+1

)
(1 + sin

(
π

N+1

)
)2
,

where ωb characterizes the best (ordinary) relaxation method. The best ADI method
assuming constant choice of parameters, has the same rate of convergence for the model
problem as the optimal ordinary relaxation method. Since the individual iteration step
in ADI method is a great deal more expensive than in the relaxation method, the ADI
method would appear to be inferior. This is certainly true if r = r1 = r2 = · · · is chosen.
For the case ri ̸= r:
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However, if one makes use of the option to choose a separate parameter ri in each
step, the picture changes in favor of the ADI method. Indeed

Tri · · ·Tr1z(k,l) = µ(k,l)
ri···r1z

(k,l),

where

µ(k,l)
ri···r1 =

i∏
j=1

(rj − µl)(rj − µk)

(rj + µl)(rj + µk)
.

Choosing rj := µj, for j = 1, · · · , N , we have µ
(k,l)
rN ,··· ,r1 = 0, for 1 ≤ k, l ≤ N , so that by

the linear independence of the z(k,l), TrN · · ·Tr1 = 0. With this special choice of the rj,
the ADI method for the model problem terminates after N steps with the exact solution.
This is a happy coincidence, which is due to the following essential assumptions:

(1) H1 and V1 have in common a set of eigenvectors which span the whole space.
(2) The eigenvalues of H1 and V1 are known.

Theorem 4.5.2 For Two Hermitian matrices H1 and V1 ∈ Cn×n, there exist n linearly
independent (orthogonal) vectors z1, · · · , zn, which are common eigenvectors of H1 and
V1,

H1zi = σizi, V1zi = τizi, for i = 1, · · · , n, (4.5.14)

if and only if H1 commutes with V1, i.e., H1V1 = V1H1.

Proof: “⇒”: From (4.5.14) it follows that

H1V1zi = σiτizi = V1H1zi, for i = 1, 2, · · · , n.

Since the zi form a basis in Cn, it follows at once that H1V1 = V1H1.
“⇐”: Let H1V1 = V1H1. Let λ1 < · · · < λr be the eigenvalues of V1 with the multiplicities
σ(λi), i = 1, · · · , r. According to Theorem 1.1.1 there exists a unitary matrix U with

ΛV := U∗V1U =

 λ1I1 0
. . .

0 λrIr

 .
From H1V1 = V1H1 it follows immediately that H̃1 = ΛV H̃1, with H̃1 := U∗H1U . We
partition H̃1 analogously to ΛV :

H̃1 =

 H11 · · · H1r
...

...
Hr1 · · · Hrr

 .
By multiplying out

H̃1ΛV = ΛV H̃1,

one obtains Hij = 0, for i ̸= j, since λi ̸= λj. The Hii are Hermitian of order σ(λi). There

exist unitary matrices Ūi such that Ū∗i HiiŪi = Λi (diagonal). For Ū =

 Ū1

. . .

Ūr

 ∈



92 Chapter 4. Iterative Methods for Solving Large Linear Systems

Cn×n, since Hij = 0, for i ̸= j, it follows the relations

(UŪ)∗H1(UŪ) = Ū∗H̃1Ū = ΛH =

 Λ1

. . .

Λr

 ,
i.e., H1(UŪ) = (UŪ)ΛH ,

and

(UŪ)∗V1(UŪ) = Ū∗ΛV Ū = ΛV

i.e., V1(UŪ) = (UŪ)ΛV ,

so that zi := (UŪ)ei can be taken as n common orthogonal eigenvectors of H1 and V1.
We now assume in the following discussion that H1 and V1 are two positive definite

commuting n× n matrices with (4.5.14) and that two numbers α, β are given such that
0 < α ≤ σi, τi ≤ β, for i = 1, · · · , n. Then

Trzi =
(r − σi)(r − τi)
(r + σi)(r + τi)

zi, for r > 0, i = 1, 2, · · · , n.

gives the problem:

ρ(Trm , · · · , Tr1) = max
1≤i≤n

m∏
j=1

∣∣∣∣(rj − σi)(rj − τi)(rj + σi)(rj + τi)

∣∣∣∣
≤ max

α≤x≤β

m∏
j=1

∣∣∣∣rj − xrj + x

∣∣∣∣2 . (4.5.15)

For a given m, it is natural to choose ri > 0, i = 1, · · · ,m, so that the function

φ(r1, · · · , rm) := max
α≤x≤β

m∏
j=1

∣∣∣∣rj − xrj + x

∣∣∣∣ , (4.5.16)

becomes as small as possible. For each m it can be shown that there are uniquely
determined number r̄i with α < r̄i < β, i = 1, · · · ,m, such that

dm(α, β) := φ(r̄1, . . . , r̄m) = min
ri>0, 1≤i≤m

φ(r1, . . . , rm). (4.5.17)

The optimal parameter r̄1, · · · , r̄m can even be given explicitly, for each m, in term
of elliptic functions [see Young (1971) pp.518-525]. In the special case m = 2k, the
relevant results will now be presented without proof [see Young (1971), Varga (1962)].

Let r
(m)
i , i = 1, 2 · · · ,m, denote the optimal ADI parameters for m = 2k. The r

(m)
i and

dm(α, β) can be computed recursively by means of Gauss’s arithmetic-geometric mean
algorithm. It can be shown that

d2n(α, β) = dn(
√
αβ,

α+ β

2
). (4.5.18)
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The optimal parameter of the minimax problem (4.5.17), r
(2n)
i and r

(n)
i , being related by

r
(n)
i =

r
(2n)
i + αβ/r

(2n)
i

2
, i = 1, 2, · · · , n. (4.5.19)

Define α0 := α, β0 := β. Then

αj+1 :=
√
αjβj, βj+1 :=

αj + βj
2

, j = 0, 1, · · · , k − 1. (4.5.20)

Thus

d2k(α0, β0) = d2k−1(α1, β1) = · · ·

= d1(αk, βk) =

√
βk −

√
αk√

βk +
√
αk

. (Exercise!) (4.5.21)

The solution of d1(αk, βk) can be found with r
(1)
1 =

√
αkβk. The optimal ADI parameter

r
(m)
i , i = 1, · · · ,m = 2k can be computed as follows:

(i) s
(0)
1 :=

√
αkβk.

(ii) For j = 0, 1, · · · , k − 1, determine s
(j+1)
i , i = 1, 2, · · · , 2j+1 as the 2j+1 solutions of

the 2j quadratic equations in x,

s
(j)
i =

1

2
(x+

αk−1−jβk−1−j
x

), i = 1, 2, · · · , 2j. (4.5.22)

(iii) Put r
(m)
i := s

(k)
i , i = 1, 2, . . . ,m = 2k.

The s
(j)
i , i = 1, 2, · · · , 2j are just the optimal ADI parameters for the interval [αk−j, βk−j].

Let us use these formulas to study the model problem (8.14)(8.16), with m = 2k fixed,
and the asymptotic behavior of d2k(α, β) as N → ∞. For α and β we take the best
possible bounds

α = 4 sin2 π

2(N + 1)
, β = 4 sin2 Nπ

2(N + 1)
= 4 cos2

π

2(N + 1)
. (4.5.23)

We then have

dm(α, β) ∼ 1− 4 m

√
π

4(N + 1)
(4.5.24)

as N →∞, m := 2k.
Proof of (4.5.24): By induction on k. Let ck :=

√
αk/βk. One obtains from ((4.5.20)

and (4.5.21) that

d2k(α, β) =
1− ck
1 + ck

(4.5.25)

and

c2k+1 =
2ck

1 + c2k
. (4.5.26)
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In order to prove (4.5.24), it suffices to show that

ck ∼ 2 2k

√
π

4(N + 1)
, N →∞. (4.5.27)

It follows then from (4.5.25) that for N → ∞, d2k(α, β) ∼ 1 − 2ck. But (4.5.27) is true
for k = 0, by using

c0 = tan
π

2(N + 1)
∼ π

2(N + 1)
.

Thus, if (4.5.27) is valid for some k ≥ 0, then it is also valid for k + 1, because from
(4.5.26) we have at once ck+1 ∼

√
2ck, as N →∞.

In practice, the parameter ri are often repeated cyclically, i.e., one chooses a fixed m
(m = 2k), then determines approximately the optimal ADI parameter r

(m)
i belonging to

this m, and finally takes for the ADI method the parameters

rjm+i := r
(m)
i for i = 1, 2, · · · ,m, j = 0, 1, · · · .

If m individual steps of the ADI method are considered a “big iteration step”, then the
quantity

− ln 10

ln ρ(Trm, . . . , Tr1)

indicates how many big iteration steps are required to reduce the error by a factor of
1/10, i.e.,

R
(m)
ADI = −m

ln 10

ln ρ(Trm , . . . , Tr1)

indicates how many ordinary ADI steps, on the average, are required for the same purpose.
In case of the model problem one obtains for the optimal choice of parameter andm = 2k,
by virtue of (4.5.15) and (4.5.24),

ρ(Trm , . . . , Tr1) ≤ dm(α, β)
2 ∼ 1− 8 m

√
π

4(N + 1)
, N →∞,

ln ρ(Trm , . . . , Tr1) ≤ −8 m

√
π

4(N + 1)
, N →∞,

so that

R
(m)
ADI ≤

m

8
ln(10)

m

√
4(N + 1)

π
, N →∞. (4.5.28)

Comparing to (3.5)-(3.7) shows that for m > 1 the ADI method converges considerably
faster than the optimal ordinary relaxation method. This convergence behavior estab-
lishes the practical significance of the ADI method.

4.5.2 The algorithm of Buneman for the solution of the dis-
cretized Poisson Equation

Consider the possion problem{
−uxx − uyy + σu = f(x, y), for (x, y) ∈ Ω,
u(x, y) = 0, for (x, y) ∈ ∂Ω, (4.5.29)
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where Ω ≡ {(x, y) | 0 < x < a, 0 < y < b} ⊆ R2, σ > 0 is a constant and f : Ω∪ ∂Ω→ R
is a continuous function.

Discretizing (4.5.29): for the approximate zij of u(xi, yj), xi = iδx, yj = jδy, δx ≡
a/(p+ 1), δy ≡ b/(q + 1). We obtain the equation:

−zi−1,j + 2zi,j − zi+1,j

δx2
+
−zi,j−1 + 2zi,j − zi,j+1

δy2
+ σzi,j = fij = f(xi, yj), (4.5.30)

for i = 1, 2, · · · , p, j = 1, 2, · · · , q. Together with the boundary values

z0,j ≡ zp+1,j ≡ 0, for j = 0, 1, . . . , q + 1,
zi,0 ≡ zi,q+1 ≡ 0, for i = 0, 1, . . . , p+ 1.

Let z = [zT1 , z
T
2 , · · · , zTq ]T , zj = [z1j, z2j, · · · , zpj]T . Then (4.5.30) can be written in the

forms
Mz = b (4.5.31)

with

M =


A I

I A
. . .

. . . . . . I
I A

 , b =


b1
b2
...
bq

 , (4.5.32)

where I = Ip, A is a p× p Hermitian tridiagonal matrix, and M consists of q block rows
and columns.

We describe here only Buneman algorithm (1969). For related method see also Hock-
ney (1969) and Swarztranber (1977). Now, (4.5.32) can be written as:

Az1 + z2 = b1,
zj−1 + Azj + zj+1 = bj, j = 2, 3, · · · , q − 1,
zq−1 + Azq = bq,

(4.5.33)

from the three consecutive equations

zj−2 +Azj−1 +zj = bj−1,
zj−1 +Azj +zj+1 = bj,

zj +Azj+1 +zj+2 = bj+1.

One can for all even j = 2, 4, . . . eliminate zj−1 and zj+1 by subtracting A times the
second equation from the sum of the others:

zj−2 + (2I − A2)zj + zj+2 = bj−1 − Abj + bj+1.

For q odd, we obtain the reduced system
2I − A2 I 0

I 2I − A2 . . .
. . . . . . I

0 I 2I − A2




z2
z4
...

zq−1

 =


b1 + b3 − Ab2
b3 + b5 − Ab4

...
bq−2 + bq − Abq−1

 . (4.5.34)
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A solution {z2, z4, ....., zq−1} of (4.5.34) is known, then {z1, z3, . . .} can be determined by
(from(4.5.33)): 

A 0
A

. . .

0 A



z1
z3
...
zq

 =


b1 − z2

b3 − z2 − z4
...

bq − zq−1

 . (4.5.35)

Thus, (4.5.34) has the same structure as (4.5.32):

M (1)z(1) = b(1)

with

M (1) =


A(1) I 0

I A(1) . . .
. . . . . . I

0 I A(1)

 , A(1) ≡ 2I − A2,

z(1) =


z
(1)
1

z
(1)
2
...

z
(1)
q1

 ≡


z2
z4
...

zq−1

 , b(1) =


b
(1)
1

b
(1)
2
...

b
(1)
q1

 ≡


b1 + b3 − Ab2
b3 + b5 − Ab4

...
bq−2 + bq − Abq−1

 ,

so that the reduction procedure just described can be applied to M (1) again. In general,
for q = q0 = 2k+1 − 1, we obtain a sequence of A(r) and b(r) according to:

Set A(0) = A, b(0) = bj, j = 1, 2, ...., q0, q
(0) = q = 2k+1 − 1.

For r = 0, 1, 2, . . . , k − 1 :

(1) A(r+1) ≡ 2I − (A(r))2,

(2) b
(r+1)
j ≡ b

(r)
2j−1 + b

(r)
2j+1 − A(r)b

(r)
2j , j = 1, 2, . . . , 2k−r − 1 (≡ qr+1).

(4.5.36)

For each stage r + 1, r = 0, 1, ..., k − 1, one has a linear system

M (r+1)z(r+1) = b(r+1)

or 
A(r+1) I 0

I A(r+1) . . .
. . . . . . I

0 I A(r+1)



z
(r+1)
1

z
(r+1)
2
...

z
(r+1)
qr+1

 =


b
(r+1)
1

b
(r+1)
2
...

b
(r+1)
qr+1

 .
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Its solution z(r+1) furnishes the subvectors with even indices of z(r) of the systemM (r)z(r) =
b(r) in stage r, 

z
(r)
2

z
(r)
4
...

z
(r)
qr−1

 ≡

z
(r+1)
1

z
(r+1)
2
...

z
(r+1)
qr+1

 ,
while the subvector with odd indices of z(r) can be obtained by solving

A(r)

A(r)

. . .

A(r)



z
(r)
1

z
(r)
3
...

z
(r)
qr

 =


b
(r)
1 − z

(r)
2

b
(r)
3 − z

(r)
2 − z

(r)
4

...

b
(r)
qr − z

(r)
qr−1

 .
From A(r), b(r) produced by (4.5.36), the solution z := z(0) of (4.5.32) is thus obtained by
the following procedure (13.37) (say!):

Algorithm 4.5.1 (0) Initialization: Determine z(k) = z
(k)
1 by solving A(k)z(k) = b(k) =

b
(k)
1 .

(1) For r = k − 1, k − 2, ...., 0,

(a) Put z
(r)
2j := z

(r+1)
j , j = 1, 2, . . . , qr+1 = 2k−r − 1,

(b) For j = 1, 3, 5, . . . , qr, compute z
(r)
j by solving

A(r)z
(r)
j = b

(r)
j − z

(r)
j−1 − z

(r)
j+1 (z

(r)
0 := z

(r)
qr+1 := 0).

(2) Put z := z(0).

Remark 4.5.1 (4.5.36) and Algorithm 4.5.1 are still unsatisfactory, as it has serious
numerical drawbacks. We have the following disadvantages:

(1) A(r+1) = 2I − (A(r))2 in (I) of (4.5.36) is very expensive, the tridiagonal matrix
A(0) = A as r increases, very quickly turns into a dense matrix. So that, the
computation of (A(r))2 and the solution of (1b) of Algorithm 4.5.1 become very
expensive.

(2) The magnitude of A(r) grows exponentially: For

A = A0 =


−4 1 0

1 −4 . . .
. . . . . . 1

0 1 −4

 , ∥ A0 ∥≥ 4, ∥ A(r) ∥≈∥ A(r−1) ∥2≥ 42
r

.

Both drawbacks can be avoided by a suitable reformulation of the algorithm. The explicit
computation of A(r) is avoided if one exploits the fact that A(r) can be represented as a
product of tridiagonal matrices.
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Theorem 4.5.3 One has for all r ≥ 0,

A(r) = −
2r∏
j=1

[−(A+ 2cosθ
(r)
j · I)],

where θ
(r)
j := (2j − 1)π/2r+1, for j = 1, 2, . . . , 2r.

Proof: By (1) of (4.5.36), one has A(0) = A, A(r+1) = 2I − (A(r))2, so that there exists a
polynomial Pr(t) of degree 2r such that

A(r) = Pr(A). (4.5.37)

Evidently, Pr satisfy

P0(t) = t,

Pr+1(t) = 2− (Pr(t))
2,

so that Pr has the form
Pr(t) = −(−t)2

r

+ · · · . (4.5.38)

By induction, using the substitution t = −2 cos θ, we get

Pr(−2 cos θ) = −2 cos(2rθ). (4.5.39)

The formula is trivial for r = 0. If it is valid for some r ≥ 0, then it is also valid for r+1,
since

Pr+1(−2 cos θ) = 2− (Pr(−2 cos θ))2

= 2− 4 cos2(2rθ)

= −2 cos(2 · 2rθ).

In view of (4.5.39), Pr(t) has the 2r distinct real zeros

tj = −2 cos(
2j − 1

2r+1
π), j = 1, 2, . . . , 2r,

and therefore by (4.5.38), the product representation

Pr(t) = −
2r∏
j=1

[−(t− tj)].

From this, by virtue of (4.5.37), the assertion of Theorem follows immediately.
In practice, to reduce the systems A(r)u = b in (1b) of Algorithm 4.5.1 with A(r),

recursively to the solution of 2r systems with tridiagonal matrices

A
(r)
j := −A− 2 cos θ

(r)
j · I, j = 1, 2, . . . , 2r,

as follows: 
A

(r)
1 u1 = b ⇒ u1

A
(r)
2 u2 = u1 ⇒ u2

...

A
(r)
2r u2r = u2r−1 ⇒ u2r ⇒ u := −u2r .

(4.5.40)
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Remark 4.5.2 (i) It is easily verified, the tridiagonal matrices A
(r)
j are positive definite.

One can use Cholesky decomposition for the systems.

(ii) The numerical instability which occurs in (4.5.36)(2) because of the exponential
growth of A(r) can be avoided.

Buneman (1969) suggested that by introducing in place of the b
(r)
j other vectors

p
(r)
j , q

(r)
j , j = 1, 2, ..., qr, which are related to b

(r)
j :

b
(r)
j = A(r)p

(r)
j + q

(r)
j , j = 1, 2, ..., qr, (4.5.41)

which can be computed as follows:

Set p
(0)
j := 0, q

(0)
j := bj = b

(0)
j , j = 1, 2, ..., qr.

For r = 0, 1, .., k − 1 :

for j = 1, 2, ..., qr+1 : Compute

(1) p
(r+1)
j := p

(r)
2j − (A(r))−1[p

(r)
2j−1 + p

(r)
2j+1 + q

(r)
2j ],

(2) q
(r+1)
j := q

(r)
2j−1 + q

(r)
2j+1 − 2p

(r+1)
j .

(4.5.42)

The computation of p
(r+1)
j in (4.5.42)(1) is as in (4.5.40). The solution u of A(r)u =

p
(r)
2j−1 + p

(r)
2j+1 − q

(r)
2j with the factorization of A(r) in Theorem 4.5.3 and then computing

p
(r+1)
j from u by means of

p
(r+1)
j := p

(r)
2j − u.

Let us prove by induction on r that p
(r)
j , q

(r)
j in (4.5.42) satisfy the relation (4.5.41). For

r = 0 (4.5.41) is trivial. Assume that (4.5.41) holds true for some r ≥ 0. Because of
(4.5.36)(2) and A(r+1) = 2I − (A(r))2, we then have

b
(r+1)
j = b

(r)
2j+1 + b

(r)
2j−1 − A(r)b

(r)
2j

= A(r)p
(r)
2j+1 + q

(r)
2j+1 + A(r)p

(r)
2j−1 + q

(r)
2j−1 − A(r)[A(r)p

(r)
2j + q

(r)
2j ]

= A(r)[p
(r)
2j+1 + p

(r)
2j−1 − q

(r)
2j ] + A(r+1)p

(r)
2j + q

(r)
2j−1 + q

(r)
2j+1 − 2p

(r)
2j

= A(r+1)p
(r)
2j + (A(r))−1{[2I − A(r+1)][p

(r)
2j+1 + p

(r)
2j−1 − q

(r)
2j ]}+ q

(r)
2j−1 + q

(r)
2j+1 − 2p

(r)
2j

= A(r+1){p(r)2j − (A(r))−1[p
(r)
2j+1 + p

(r)
2j−1 − q

(r)
2j ]}+ q

(r)
2j−1 + q

(r)
2j+1 − 2p

(r+1)
j

= A(r+1)p
(r+1)
j + q

(r+1)
j .

By (4.5.41) we can express b
(r)
j in Algorithm 4.5.1 in terms of p

(r)
j , q

(r)
j and obtain, for

example, from (1b) of Algorithm 4.5.1 for z
(r)
j the system

A(r)z
(r)
j = A(r)p

(r)
j + q

(r)
j − z

(r)
j−1 − z

(r)
j+1,
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which can be solved by determining u of

A(r)u = q
(r)
j − z

(r)
j−1 − z

(r)
j+1,

and put z
(r)
j := u+ p

(r)
j . Replacing the b

(r)
j in (4.5.36) and Algorithm 4.5.1 systematically

by p
(r)
j and q

(r)
j one obtains:

Algorithm 4.5.2 (Algorithm of Buneman) Consider the system (4.5.32), with q =
2k+1 − 1.
(0) Initialization: Put p

(0)
j := 0, q

(0)
j := bj, j = 1, 2, . . . , q0 := q.

(1) For r = 0, 1, . . . , k − 1,

For j = 1, 2, ..., qr+1 := 2k−r − 1 :

Compute u of A(r)u = p
(r)
2j−1 + p

(r)
2j+1 − q

(r)
2j by the factorization of

Theorem 4.5.3 and put p
(r+1)
j := p

(r)
2j − u, q

(r)
j := q

(r)
2j−1 + q

(r)
2j+1 −

2p
(r+1)
j .

(2) Determine u of the systems A(k)u = q
(k)
1 , and put z(k) := z

(k)
1 := p

(k)
1 + u.

(3) For r = k − 1, k − 2, ..., 0,

(a) Put z
(r)
2j := z

(r+1)
j for j = 1, 2, ..., qr+1.

(b) For j = 1, 3, 5, ..., qr determine the solution u of A(r)u = q
(r)
j − z

(r)
j−1− z

(r)
j+1

and put z
(r)
j := p

(r)
j + u.

(4) Put z := z(0).

Remark 4.5.3 This method is very efficient: For the model problem (4.1.14) (a = 1 =
b, p = q = N = 2k+1 − 1), with its N2 unknowns, on requires about 3kN2 ≈ 3N2 log2N
multiplications and about the same number of additions.

4.5.3 Comparison with Iterative Methods

Consider the special model problem{
−uxx − uyy = 2π2 sin πx sin πy, for (x, y) ∈ Ω,
u(x, y) = 0, for (x, y) ∈ ∂Ω, , (4.5.43)

where Ω = {(x, y)|0 < x, y < 1}, which has the exact solution u(x, y) = sin πx sin πy.
Using the discretization we have{

Az = b, A as in (4.1.18),
b = 2h2π2û

(4.5.44)

with û := [û11, û21, . . . , ûN1, . . . , û1N , . . . , ûNN ]
T and ûij := u(xi, yj) = sin iπh sin jπh,

h = 1/(N + 1).
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Method k N r(i) i
Jacobi 5 3.5× 10−3 60

10 1.2× 10−3 235
Gauss-Seidel 5 3.0× 10−3 33

10 1.1× 10−3 127
25 5.6× 10−3 600

Relaxation 5 1.6× 10−3 13
10 0.9× 10−3 28
25 0.6× 10−3 77
50 1.0× 10−2 180

ADI 2 5 0.7× 10−3 9
10 4.4× 10−3 12
25 2.0× 10−2 16

4 5 1.2× 10−3 9
10 0.8× 10−3 13
25 1.6× 10−5 14
50 3.6× 10−4 14

Table 4.1: Comparison results for Jacobi, Gauss-Seidel, SOR and ADI methods

Remark 4.5.4 The vector b in (4.5.44) is an eigenvector of J = (4I − A)/4, also an
eigenvector of A. We have Jb = µb with µ = cos πh. The exact solution of (4.5.44) can
be found

z :=
h2π2

2(1− cos πh)
û. (4.5.45)

As a measure for the error we took the residual, weighted by 1/h2:

r̂(r) :=
1

h2
∥ Az(i) − b ∥∞ .

We start with z(0) := 0 (r̂(0) = 2π2 ≈ 20). We show the table computed by Jacobi,
Gauss-Seidel, SOR and ADI methods respectively:

Since the Algorithm of Buneman in §13.2 is a noniterative method which yields the
exact solution of (4.5.44) in a finite number of steps at the expense of about 3N2 log2N
multiplications. From (4.5.45), by Taylor expansion in powers of h, we have

z − û =
(

π2h2

2(1−cosπh) − 1
)
û =

h2π2

12
û+O(h4),

so that the error ∥z − û∥∞, in as much as ∥û∥∞ ≤ 1, satisfies ∥z − û∥∞ ≤ h2π2

12
+ O(h4).

In order to compute z with an error of the order h2, the needed number of iterations and
operations for the Jacobi, Gauss-Seidel and SOR methods are shown in Table 4.2.
For a given N , R

(m)
ADI is minimized for m ≈ ln[4(N+1)/π], in which case m

√
4(N + 1)/π ≈

e. The ADI method with optimal choice of m and optimal choice of parameter thus
requires

R
(m)
ADI log10(N + 1)2 ≈ 3.60(log10N)2
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Method No. of iterations No. of operations

Jacobi 0.467(N + 1)2 log10(N + 1)2 ≈ N2 log10N 5N4 log10N
Gauss-Seidel 0.234(N + 1)2 log10(N + 1)2 ≈ 0.5N2 log10N 2.5N4 log10N
Optimal SOR 0.36(N + 1) log10(N + 1)2 ≈ 0.72N log10N 3.6N3 log10N

Table 4.2: Number of iterations and operations for Jacobi, Gauss-Seidel and SOR meth-
ods

iterations to approximate the solution z of (4.5.44) with error h2. The ADI requires about
8N2 multiplications per iteration, so that the total number of operations is about

28.8N2(log10N)2.

The Buneman method, according to §13.2 requires only 3N2 log2N ≈ 10N2 log10N
multiplications for the computation of the exact solution of (4.5.44). This clearly shows
the superiority of Buneman method.

4.6 Derivation and Properties of the Conjugate Gra-

dient Method

Let A ∈ Rn×n be a symmetric positive definite (s.p.d.) matrix. Here n is very large and
A is sparse. Consider the linear system

Ax = b.

4.6.1 A Variational Problem, Steepest Descent Method (Gra-
dient Method).

Consider the functional F : Rn → R with

F (x) =
1

2
xTAx− bTx =

1

2

n∑
i,k=1

aikxixk −
n∑

i=1

bixi. (4.6.1)

Then it holds:

Theorem 4.6.1 For a vector x∗ the following statements are equivalent:

(i) F (x∗) < F (x), for all x ̸= x∗,
(ii) Ax∗ = b.

(4.6.2)

Proof: From assumption there exists z0 = A−1b and F (x) can be rewritten as

F (x) =
1

2
(x− z0)TA(x− z0)−

1

2
zT0 Az0. (4.6.3)

Since A is positive definite, F (x) has a minimum at x = z0 and only at x = z0, it follows
the assertion.

Therefore, the solution of the linear system Ax = b is equal to the solution of the
minimization problem

F (x) =
1

2
xTAx− bTx = min!. (4.6.4)
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Method of the steepest descent
Let xk be an approximate of the exact solution x∗ and pk be a search direction. We

want to find an αk+1 such that

F (xk + αk+1pk) < F (xk).

Set xk+1 := xk + αk+1pk. This leads to the following basic problem.
Basic Problem: Given x, p ̸= 0, find α0 such that

Φ(α0) = F (x+ α0p) = min!

Solution: Since

F (x+ αp) =
1

2
(x+ αp)TA(x+ αp)− bT (x+ αp)

=
1

2
α2pTAp+ α(pTAx− pT b) + F (x),

it follows that if we take

α0 =
(b− Ax)Tp
pTAp

=
rTp

pTAp
, (4.6.5)

where r = b − Ax = −gradF (x) = residual, then x + α0p is the minimal solution.
Moreover,

F (x+ α0p) = F (x)− 1

2

(rTp)2

pTAp
. (4.6.6)

Steepest Descent Method with Optimal Choice αk+1 (Determine αk via the
given data x0, p0, p1, · · · ): Let

xk+1 = xk +
rTk pk
pTkApk

pk, rk = b− Axk, (4.6.7)

F (xk+1) = F (xk)−
1

2

(rTk pk)
2

pTkApk
, k = 0, 1, 2, · · · . (4.6.8)

Then, it holds
rTk+1pk = 0. (4.6.9)

Since
d

dα
F (xk + αpk) = gradF (xk + αpk)

Tpk,

as in (4.6.5) αk+1 =
rTk pk
pTk Apk

, it follows that gradF (xk + αk+1pk)
Tpk = 0. Thus

(b− Axk+1)
Tpk = rTk+1pk = 0,

hence (4.6.9) holds.
Steepest Descent Method (Gradient Method)

Let Φ : Rn → R be a differential function on x. Then it holds

Φ(x+ εp)− Φ(x)

ε
= Φ

′
(x)Tp+O(ε).
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The right hand side takes minimum at p = − Φ
′
(x)

∥Φ′
(x)∥ (i.e., the largest descent) for all p

with ∥p∥ = 1 (neglect O(ε)). Hence, it suggests to choose

pk = −gradF (xk) = b− Axk. (4.6.10)

Gradient Method:

Given x0, for k = 1, 2, · · ·

rk−1 = b− Axk−1, if rk−1 = 0, then stop; else

αk =
rTk−1rk−1

rTk−1Ark−1
, xk = xk−1 + αkrk−1.

(4.6.11)

Cost in each step: compute Axk−1 (Ark−1 does not need to compute).
To prove the convergence of Gradient method, we need the Kontorowitsch inequality:

Let λ1 ≥ λ2 ≥ · · · ≥ λn > 0, αi ≥ 0,
n∑

i=1

αi = 1. Then it holds

n∑
i=1

αiλi

n∑
j=1

αjλ
−1
j ≤

(λ1 + λn)
2

4λ1λn
=

1

4
(

√
λ1
λn

+

√
λn
λ1

)2. (4.6.12)

Proof of (4.6.12): Consider the n points Pi = (λi, 1/λi). Let B be the region between

y = 1/x and the straight line through P1, Pn. The slope of the straight line
←→
P1Pn is

1/λn − 1/λ1
λn − λ1

= − 1

λnλ1
.

The point P =
n∑

i=1

αiPi lies in B. Maximize xy, for all (x, y) ∈ B. The point (ξ, η) which

lies on P1Pn is a maximum for ξη and has the coordinates:

ξ = αλn + (1− α)λ1, and η = α
1

λn
+ (1− α) 1

λ1
.

Since

0 =
d

dα
[(αλn + (1− α)λ1)(α

1

λn
+ (1− α) 1

λ1
)]

=
d

dα
[α2 + (1− α)2 + α(1− α)(λn

λ1
+
λ1
λn

)]

= 2α+ 2(α− 1) + (1− 2α)(
λn
λ1

+
λ1
λn

)

= (1− 2α)(
λn
λ1

+
λ1
λn
− 2),

it follows α = 1/2. Hence

ξη =
1

4
(λ1 + λn)(

1

λ1
+

1

λn
) =

1

4

(λ1 + λn)
2

λ1λn
.
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So (4.6.12) holds.
Another form: Let A be s.p.d. (symmetric positive definite) and λ1 ≥ λ2 ≥ · · · ≥ λn > 0
be the eigenvalues of A. Let x be a vector with ∥ x ∥22= xTx = 1, then it holds

xTAx · xTA−1x ≤ 1

4

(λ1 + λn)
2

λ1λn
=

1

4
(

√
λ1
λn

+

√
λn
λ1

)2. (4.6.13)

Proof of (4.6.13): Let U be an orthogonal matrix satisfying UAUT = Λ = diag(λ1, · · · , λn).
Then we have

xTAx = xTUTΛUx = yTΛy =
n∑

i=1

y2i λi (y := Ux).

Similarly,

xTA−1x = yTΛ−1y =
n∑

i=1

y2i
1

λi
.

From (4.6.12) follows (4.6.13).

Theorem 4.6.2 If xk, xk−1 are two approximations of the gradient method (4.6.11) for
solving Ax = b and λ1 ≥ λ2 ≥ · · · ≥ λn > 0 are the eigenvalues of A, then it holds:

F (xk) +
1

2
bTA−1b ≤ (

λ1 − λn
λ1 + λn

)2[F (xk−1) +
1

2
bTA−1b], (4.6.14a)

i.e.,

∥xk − x∗∥A ≤ (
λ1 − λn
λ1 + λn

)∥xk−1 − x∗∥A, (4.6.14b)

where ∥x∥A =
√
xTAx. Thus the gradient method is convergent.

Proof: By computation,

F (xk) +
1

2
bTA−1b =

1

2
(xk − x∗)TA(xk − x∗)

=
1

2
(xk−1 − x∗ + αkrk−1)

TA(xk−1 − x∗ + αkrk−1) ( since A(xk−1 − x∗) = −rk−1)

=
1

2
[(xk−1 − x∗)TA(xk−1 − x∗)− 2αkr

T
k−1rk−1 + α2

kr
T
k−1Ark−1]

=
1

2
[rTk−1A

−1rk−1 −
(rTk−1rk−1)

2

rTk−1Ark−1
]

=
1

2
rTk−1A

−1rk−1[1−
(rTk−1rk−1)

2

rTk−1Ark−1 · rTk−1A−1rk−1
]

≤ 1

2
rTk−1A

−1rk−1[1−
4λ1λn

(λ1 + λn)2
] ( from (4.6.13))

= [F (xk−1) +
1

2
bTA−1b](

λ1 − λn
λ1 + λn

)2.

If the condition number of A (= λ1/λn) is large, then
λ1−λn

λ1+λn
≈ 1. The gradient method

converges very slowly. Hence this method is not recommendable.
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4.6.2 Conjugate gradient method

It is favorable to choose that the search directions {pi} as mutually A-conjugate, where
A is symmetric positive definite.

Definition 4.6.1 Two vectors p and q are called A-conjugate (A-orthogonal), if pTAq =
0.

Remark 4.6.1 Let A be symmetric positive definite. Then there exists a unique s.p.d.
B such that B2 = A. Denote B = A1/2. Then pTAq = (A1/2p)T (A1/2q).

Lemma 4.6.3 Let p0, . . . , pr ̸= 0 be pairwisely A-conjugate. Then they are linearly in-
dependent.

Proof: From 0 =
r∑

j=0

cjpj follows that

pTkA(
r∑

j=0

cjpj) = 0 =
r∑

j=0

cjp
T
kApj = ckp

T
kApk,

so ck = 0, for k = 1, . . . , r.

Theorem 4.6.4 Let A be s.p.d. and p0, . . . , pn−1 be nonzero pairwisely A-conjugate vec-
tors. Then

A−1 =
n−1∑
j=0

pjp
T
j

pTj Apj
. (4.6.15)

Remark 4.6.2 A = I, U = (p0, . . . , pn−1), p
T
i pi = 1, pTi pj = 0, i ̸= j. UUT = I and

I = UUT . Then

I = (p0, . . . , pn−1)

 pT0
...

pTn−1

 = p0p
T
0 + · · ·+ pn−1p

T
n−1.

Proof of Theorem 4.6.4: Since p̃i =
A1/2pi√
pTi Api

are orthonormal, for i = 0, 1, . . . , n − 1,

we have

I = p̃0p̃0
T + . . .+ p̃n−1p̃

T
n−1

=
n−1∑
i=0

A1/2pip
T
i A

1/2

pTi Api
= A1/2

(
n−1∑
i=0

pip
T
i

pTi Api

)
A1/2.

Thus,

A−1/2IA−1/2 = A−1 =
n−1∑
i=0

pip
T
i

pTi Api
.
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Remark 4.6.3 Let Ax∗ = b and x0 be an arbitrary vector. Then from x∗−x0 = A−1(b−
Ax0) and (4.6.15) follows that

x∗ = x0 +
n−1∑
i=0

pTi (b− Ax0)
(pTi Api)

pi. (4.6.16)

Theorem 4.6.5 Let A be s.p.d. and p0, . . . , pn−1 ∈ Rn\{0} be pairwisely A-orthogonal.
Given x0 and let r0 = b− Ax0. For k = 0, . . . , n− 1, let

αk =
pTk rk
pTkApk

, (4.6.17)

xk+1 = xk + αkpk, (4.6.18)

rk+1 = rk − αkApk. (4.6.19)

Then the following statements hold:
(i) rk = b− Axk. (By induction).
(ii) xk+1 minimizes F (x) (see (4.6.1)) on x = xk + αpk, α ∈ R.
(iii) xn = A−1b = x∗.
(iv) xk minimizes F (x) on the affine subspace x0+Sk, where Sk = Span{p0, . . . , pk−1}.

Proof: (i): By Induction and using (4.6.18) (4.6.19).
(ii): From (4.6.5) and (i).
(iii): It is enough to show that xk (which defined in (4.6.18)) corresponds with the partial
sum in (4.6.16), i.e.,

xk = x0 +
k−1∑
i=0

pTi (b− Ax0)
pTi Api

pi.

Then it follows that xn = x∗ from (4.6.16). From (4.6.17) and (4.6.18) we have

xk = x0 +
k−1∑
i=0

αipi = x0 +
k−1∑
i=0

pTi (b− Axi)
pTi Api

pi.

To show that

pTi (b− Axi) = pTi (b− Ax0). (4.6.20)

From xk − x0 =
k−1∑
i=0

αipi we obtain

pTkAxk − pTkAx0 =
k−1∑
i=0

αip
T
kApi = 0.

So (4.6.20) holds.
(iv): From (4.6.19) and (4.6.17) follows that

pTk rk+1 = pTk rk − αkp
T
kApk = 0.
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From (4.6.18), (4.6.19) and by the fact that rk+s − rk+s+1 = αk+sApk+s and pk are
orthogonal (for s ≥ 1) follows that

pTk rk+1 = pTk rk+2 = . . . = pTk rn = 0.

Hence we have

pTi rk = 0, i = 0, . . . , k − 1, k = 1, 2, . . . , n. (i.e., i < k). (4.6.21)

We now consider F (x) on x0 + Sk:

F (x0 +
k−1∑
i=0

ξipi) = φ(ξ0, . . . , ξk−1).

F (x) is minimal on x0 + Sk if and only if all derivatives ∂φ
∂ξi

vanish at x. But

∂φ

∂ξs
= [gradF (x0 +

k−1∑
i=0

ξipi)]
Tps, s = 0, 1, . . . , k − 1. (4.6.22)

If x = xk, then gradF (x) = −rk. From (4.6.21) follows that

∂φ

∂ξs
(xk) = 0, for s = 0, 1, . . . , k − 1.

Another proof of (iv): For arbitrary d ∈ Rn it holds

F (x0 + d)− F (x0) =
1

2
(x0 + d)TA(x0 + d)− bT (x0 + d)− 1

2
xT0Ax0 + bTx0

=
1

2
dTAd− dT (b− Ax0).

So for d =
k−1∑
i=0

ξipi we have

F (x0 +
k−1∑
i=0

ξipi) = F (x0) +
1

2
(
k−1∑
i=0

ξipi)
TA(

k−1∑
j=0

ξjpj)−
k−1∑
i=0

ξip
T
i (b− Ax0)

= F (x0) +
1

2

k−1∑
i=0

[ξ2i p
T
i Api − 2pTi (b− Ax0)ξi] = min!. (4.6.23)

The equation (4.6.23) holds if and only if

ξ2i p
T
i Api − 2ξipi(b− Ax0) = min! i = 0, . . . , k − 1,

if and only if

ξi =
pTi (b− Ax0)

pTi Api
=

pTi ri
pTi Api

= αi

from (4.6.20) and (4.6.17). Thus xk = x0+
k−1∑
i=0

αipi minimizes F on x0+ span{p0, . . . , pk−1}.
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Remark 4.6.4 The following conditions are equivalent: (i) pTi Apj = 0, i ̸= j, A-
conjugate, (ii) pTi rk = 0, i < k, (iii) rTi rj, i ̸= j.

Proof of (iii):

pTi rk = 0 ⇔ (rTi + βi−1p
T
i−1)rk, i < k ⇔ rTi rk = 0, i < k ⇔ rTi rj = 0, i ̸= j.

Remark 4.6.5 It holds

< p0, p1, · · · , pk >=< r0, r1, · · · , rk >=< r0, Ar0, · · · , Akr0 >

Since p1 = r1 + β0p0 = r1 + β0r0, r1 = r0 − α0Ar0, by induction, we have

r2 = r1 − α0Ap1 = r1 − α0A(r1 + β0r0) = r0 − α0Ar0 − α0A(r0 − α0Ar0 + β0r0).

Algorithm 4.6.1 (Method of conjugate directions) Let A be s.p.d., b and x0 ∈ Rn.
Given p0, . . . , pn−1 ∈ Rn\{0} pairwisely A-orthogonal.

r0 = b− Ax0,
For k = 0, . . . , n− 1,

αk =
pkrk

pTk Apk
, xk+1 = xk + αkpk,

rk+1 = rk − αkApk = b− Axk+1,
end for

From Theorem 4.6.5 we get xn = A−1b.

4.6.3 Practical Implementation

In the k-th step a direction pk which is A-orthogonal to p0, . . . , pk−1 must be determined.
It allows for A-orthogonalization of rk against p0, . . . , pk−1 (see (4.6.21)). Let rk ̸= 0, F (x)
decreases strictly in the direction −rk. For ε > 0 small, we have F (xk − εrk) < F (xk). It
follows that F takes its minimum at a point (̸= xk) on x0+ span{p0, . . . , pk−1, rk}. So it
holds xk+1 ̸= xk, i.e., αk ̸= 0. This derives that Conjugate Gradient method.

Algorithm 4.6.2 (Conjugate Gradient method (CG-method), (Stiefel-Hestenes, 1952))
Let A be s.p.d., b ∈ Rn, choose x0 ∈ Rn, r0 = b− Ax0 = p0.
If r0 = 0, then N = 0 stop; otherwise for k = 0, 1, . . .

(a) αk =
pTk rk
pTkApk

,

(b) xk+1 = xk + αkpk,

(c) rk+1 = rk − αkApk = b− Axk+1, if rk+1 = 0, let N = k + 1, stop. (4.6.24)

(d) βk =
−rTk+1Apk

pTkApk
,

(e) pk+1 = rk+1 + βkpk.

Theorem 4.6.6 The CG-method holds
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(i) If k steps of CG-method are executable, i.e., ri ̸= 0, for i = 0, . . . , k, then pi ̸= 0,
i ≤ k and pTi Apj = 0 for i, j ≤ k, i ̸= j.

(ii) The CG-method breaks down after N steps for rN = 0 and N ≤ n.

(iii) xN = A−1b.

Proof: (i): By induction on k, it is trivial for k = 0. Suppose that (i) is true until k and
rk+1 ̸= 0. Then pk+1 is well-defined. we want to verify that (a) pk+1 ̸= 0, (b) pTk+1Apj = 0,
for j = 0, 1, . . . , k.
For (a): First, it holds rTk+1pk = rTk pk−αkp

T
kApk = 0 by (4.6.24)(c). Let pk+1 = 0. Then

from (4.6.24)(e) we have rk+1 = −βkpk ̸= 0. So, βk ̸= 0, hence 0 = rTk+1pk = −βkpTk pk ̸= 0.
This is a contradiction, so pk+1 ̸= 0.
For (b): From (4.6.24)(d) and (e), we have

pTk+1Apk = rTk+1Apk + βkp
T
kApk = 0.

Let j < k, from (4.6.24)(e) we have

pTk+1Apj = rTk+1Apj + βkp
T
kApj = rTk+1Apj. (4.6.25)

It is enough to show that

Apj ∈ span{p0, ...., pj+1}, j < k. (4.6.26)

Then from the relation pTi rj = 0, i < j ≤ k+1, which has been proved in (4.6.21), follows
(b).
Claim (4.6.26): For rj ̸= 0, it holds that αj ̸= 0. (4.6.24)(c) shows that

Apj =
1

αj

(rj − rj+1) ∈ span{r0, ...., rj+1}.

(4.6.24)(e) shows that span{r0, ...., rj+1} = span{p0, ...., pj+1} with r0 = p0, so is (4.6.26).
(ii): Since {pi}k+1

i=0 ̸= 0 and are mutually A-orthogonal, p0, ..., pk+1 are linearly indepen-
dent. Hence there exists a N ≤ n with rN = 0. This follows xN = A−1b.
Advantage:(1) Break-down in finite steps. (2) Less cost in each step: one matrix ×
vector.

4.6.4 Convergence of CG-method

Consider the following A-norm with A being s.p.d.

∥x∥A = (xTAx)1/2. (4.6.27)

Let x∗ = A−1b. Then from (4.6.3) we have

F (x)− F (x∗) = 1

2
(x− x∗)TA(x− x∗) = 1

2
∥x− x∗∥2A, (4.6.28)
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where xk is the k-th iterate of CG-method. From Theorem 4.6.5 xk minimizes the func-
tional F on x0+ span{p0, ...., pk−1}. Hence it holds

∥xk − x∗∥A ≤ ∥y − x∗∥A, y ∈ x0 + span{p0, .., pk−1}. (4.6.29)

From (4.6.24)(c)(e) it is easily seen that both pk and rk can be written as linear
combination of r0, Ar0, . . . , A

k−1r0. If y ∈ x0 + span{p0, . . . , pk−1}, then

y = x0 + c1r0 + c2Ar0 + .....+ ckA
k−1r0 = x0 + Pk−1(A)r0,

where Pk−1 is a polynomial of degree ≤ k − 1. But r0 = b− Ax0 = A(x∗ − x0), thus

y − x∗ = (x− x∗) + Pk−1(A)A(x
∗ − x0)

= [I − APk−1(A)] (x0 − x∗) = P̃k(A)(x0 − x∗), (4.6.30)

where degree P̃k ≤ k and
P̃k(0) = 1. (4.6.31)

Conversely, if P̃k is a polynomial of degree ≤ k and satisfies (4.6.31), then

x∗ + P̃k(A)(x0 − x∗) ∈ x0 + Sk.

Hence (4.6.29) means that if P̃k is a polynomial of degree ≤ k with P̃k(0) = 1, then

∥xk − x∗∥A ≤ ∥P̃k(A)(x0 − x∗)∥A. (4.6.32)

Lemma 4.6.7 Let A be s.p.d. It holds for every polynominal Qk of degree k that

max
x ̸=0

∥Qk(A)x∥A
∥x∥A

= ρ(Qk(A)) = max{|Qk(λ)| : λ eigenvalue of A}. (4.6.33)

Proof:

∥Qk(A)x∥2A
∥x∥2A

=
xTQk(A)AQk(A)x

xTAx

=
(A1/2x)TQk(A)Qk(A)(A

1/2x)

(A1/2x)(A1/2x)
(Let z := A1/2x)

=
zTQk(A)

2z

zT z
≤ ρ(Qk(A)

2) = ρ2(Qk(A)).

Equality holds for suitable x, hence the first equality is shown. The second equality holds
by the fact that Qk(λ) is an eigenvalue of Qk(A), where λ is an eigenvalue of A.

From (4.6.33) we have that

∥xk − x∗∥A ≤ ρ(P̃k(A))∥x0 − x∗∥A, (4.6.34)

where degree P̃k ≤ k and P̃k(0) = 1.
Replacement problem for (4.6.34): For 0 < a < b,

minmax{|Pk(λ)| : a ≤ λ ≤ b, for all polynomials of degree ≤ k with Pk(0) = 1}(4.6.35)
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(if a = 0, it is clearly minmax{| Pk(λ) |} = 1). We use Chebychev polynomials of the
first kind for the solution. They are defined by{

T0(t) = 1, T1(t) = t,
Tk+1(t) = 2tTk(t)− Tk−1(t).

(4.6.36)

it holds Tk(cosϕ) = cos(kϕ) by using cos((k + 1)ϕ) + cos((k − 1)ϕ) = 2 cosϕ cos kϕ.
Especially,

Tk(cos
jπ

k
) = cos(jπ) = (−1)j, for j = 0, . . . , k,

i.e. Tk takes maximal value “one” at k + 1 positions in [−1, 1] with alternating sign. In
addition (Exercise!), we have

Tk(t) =
1

2
[(t+

√
t2 − 1)k + (t−

√
t2 − 1)k]. (4.6.37)

Lemma 4.6.8 The solution of the problem (4.6.35) is given by

Qk(t) = Tk

(
2t− a− b
b− a

)/
Tk

(
a+ b

a− b

)
,

i.e., for all Pk of degree ≤ k with Pk(0) = 1 it holds

max
λ∈[a,b]

|Qk(λ)| ≤ max
λ∈[a,b]

|Pk(λ)|.

Proof: Qk(0) = 1. If t runs through the interval [a, b], then (2t − a − b)/(b − a) runs
through the interval [−1, 1]. Hence, in [a, b], Qk(t) has k + 1 extreme with alternating
sign and absolute value δ = |Tk(a+b

a−b)
−1|.

If there are a Pk with max {|Pk(λ)| : λ ∈ [a, b]} < δ, then Qk − Pk has the same sign
as Qk of the extremal values, so Qk −Pk changes sign at k+1 positions. Hence Qk −Pk

has k roots, in addition a root zero. This contradicts that degree(Qk − Pk) ≤ k.

Lemma 4.6.9 It holds

δ =

∣∣∣∣∣Tk
(
b+ a

a− b

)−1∣∣∣∣∣ = 1

Tk
(
b+a
b−a

) =
2ck

1 + c2k
≤ 2ck, (4.6.38)

where c =
√
κ−1√
κ+1

and κ = b/a.

Proof: For t = b+a
b−a = κ+1

κ−1 , we compute

t+
√
t2 − 1 =

√
κ+ 1√
κ− 1

= c−1

and

t−
√
t2 − 1 =

√
κ− 1√
κ+ 1

= c.

Hence from (4.6.37) follows

δ =
2

ck + c−k
=

2ck

1 + c2k
≤ 2ck.
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Theorem 4.6.10 CG-method satisfies the following error estimate

∥xk − x∗∥A ≤ 2ck∥x0 − x∗∥A, (4.6.39)

where c =
√
κ−1√
κ+1

, κ = λ1

λn
and λ1 ≥ · · · ≥ λn > 0 are the eigenvalues of A.

Proof: From (4.6.34) we have

∥xk − x∗∥A ≤ ρ (Pk(A)) ∥x0 − x∗∥A
≤ max {|Pk(λ)| : λ1 ≥ λ ≥ λn} ∥x0 − x∗∥A,

for all Pk of degree ≤ k with Pk(0) = 1. From Lemma 4.6.8 and Lemma 4.6.9 follows
that

∥xk − x∗∥A ≤ max {|Qk(λ)| : λ1 ≥ λ ≥ λn} ∥x0 − x∗∥A
≤ 2ck∥x0 − x∗∥A.

Remark 4.6.6 To compare with Gradient method (see (4.6.14b)): Let xGk be the kth
iterate of Gradient method. Then

∥xGk − x∗∥A ≤
∣∣∣∣λ1 − λnλ1 + λn

∣∣∣∣k ∥x0 − x∗∥A.
But

λ1 − λn
λ1 + λn

=
κ− 1

κ+ 1
>

√
κ− 1√
κ+ 1

= c,

because in general
√
κ ≪ κ. Therefore the CG-method is much better than Gradient

method.

4.7 CG-method as an iterative method, precondi-

tioning

Consider the linear system of a symmetric positive definite matrix A

Ax = b. (4.7.1)

Let C be a nonsingular symmetric matrix and consider a new linear system

Ãx̃ = b̃ (4.7.2)

with Ã = C−1AC−1 s.p.d., b̃ = C−1b and x̃ = Cx.
Applying CG-method to (4.7.2) it yields:
Choose x̃0, r̃0 = b̃− Ãx̃0 = p̃0.
If r̃0 = 0, stop, otherwise for k = 0, 1, 2, . . .,

(a) α̃k = p̃Tk r̃k/p̃
T
kC
−1AC−1p̃k,

(b) x̃k+1 = x̃k + α̃kp̃k,
(c) r̃k+1 = r̃k − α̃kC

−1AC−1p̃k,
if r̃k+1 = 0 stop; otherwise,

(d) β̃k = −r̃Tk+1C
−1AC−1p̃k/p̃kC

−1AC−1p̃k,

(e) p̃k+1 = r̃k+1 + β̃kp̃k.

(4.7.3)
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Simplification: Let

C−1p̃k = pk, xk = C−1x̃k, zk = C−1r̃k.

Then
rk = Cr̃k = C

(
b̃− Ãx̃k

)
= C

(
C−1b− C−1AC−1Cxk

)
= b− Axk.

Algorithm 4.7.1 (Preconditioned CG-method (PCG))
M = C2, choose x0 = C−1x̃0, r0 = b− Ax0, solve Mp0 = r0.
If r0 = 0 stop, otherwise for k = 0, 1, 2, ....,

(a) αk = pTk rk/p
T
kApk,

(b) xk+1 = xk + αkpk,
(c) rk+1 = rk − αkApk,

if rk+1 = 0, stop; otherwise Mzk+1 = rk+1,
(d) βk = −zTk+1Apk/p

T
kApk,

(e) pk+1 = zk+1 + βkpk.

(4.7.4)

Algorithm 4.7.1 is CG-method with preconditioner M . If M = I, then it is CG-
method.
Additional cost per step: solve one linear system Mz = r for z.
Advantage: cond(M−1/2AM−1/2)≪ cond(A).

4.7.1 A new point of view of PCG

From (4.6.21) and Theorem 4.6.6 follows that pi
T rk = 0 for i < k, i.e., (ri

T+βi−1pi−1
T )rk =

ri
T rk = 0, i < k and pi

TApj = 0, i ̸= j. That is, the CG method requires ri
T rj = 0, i ̸= j.

So, the PCG method satisfies pi
TC−1AC−1pj = 0⇔ r̃Tj r̃j = 0, i ̸= j and requires

zTi Mzj = rTi M
−1MM−1rj = ri

TM−1rj

=
(
ri

TC−1
) (
C−1rj

)
= r̃i

T r̃j = 0, i ̸= j.

Consider the iteration (in two parameters):

xk+1 = xk−1 + ωk+1 (αkzk + xk − xk−1) (4.7.5)

with αk and ωk+1 being two undetermined parameters. Let A = M − N . Then from
Mzk = rk ≡ b− Axk follows that

Mzk+1 = b− A (xk−1 + ωk+1 (αkzk + xk − xk−1))
= Mzk−1 − ωk+1 [αk(M −N)zk +M(zk−1 − zk)] (4.7.6)

For PCG method {αk, ωk+1} are computed so that

zp
TMzq = 0, p ̸= q, p, q = 0, 1, · · · , n− 1. (4.7.7)

SinceM > 0, there is some k ≤ n such that zk = 0. Thus, xk = x, the iteration converges
no more than n steps. We show that (4.7.7) holds by induction. Assume

zp
TMzq = 0, p ̸= q, p, q = 0, 1, · · · , k (4.7.8)
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holds until k. If we choose

αk = zk
TMzk

/
zk

T (M −N)zk,

then
zk

TMzk+1 = 0

and if we choose

ωk+1 =

(
1− αk

zTk−1Nzk

zTk−1Mzk−1

)−1
, (4.7.9)

then
zTk−1Mzk+1 = 0.

We want to simplify ωk+1. From (4.7.6) follows that

Mzk =Mzk−2 − ωk (αk−1(M −N)zk−1 +M(zk−2 − zk−1)) . (4.7.10)

Multiplying (4.7.10) by zk
T and from (4.7.8) we get

zk
TNzk−1 = zk

TMzk

/
ωkαk−1. (4.7.11)

Since zTk−1Nzk = zk
TZzk−1, from (4.7.11) the equation (4.7.9) becomes

ωk+1 =

(
1− αkzk

TMzk
αk−1zTk−1Mzk−1

1

ωk

)−1
. (4.7.12)

From (4.7.6) for j < k − 1 we have

zj
TMzk+1 = αkωk+1zj

TNzk. (4.7.13)

But (4.7.6) holds for j < k − 1,

Mzj+1 =Mzj−1 − ωj+1 (αj(M −N)zj +M(zj−1 − zj)) . (4.7.14)

Multiplying (4.7.14) by zk
T we get

zk
TNzj = 0.

Since N = NT , it follows that

zj
TMzk+1 = 0, for j < k − 1.

Thus, we proved that zp
TMzq = 0, p ̸= q, p, q = 0, 1, · · · , n− 1.

Consider (4.7.5) again

xk+1 = xk−1 + ωk+1(αkzk + xk − xk−1).

Since Mzk = rk = b− Axk, if we set ωk+1 = αk = 1, then

xk+1 =M−1(b− Axk) + xk ≡ xk + zk. (4.7.15)
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Here zk is referred to as a correction term. Write A =M −N . Then (4.7.15) becomes

Mxk+1 = b− Axk +Mxk

= Nxk + b. (4.7.16)

Recall the Iterative Improvement in Subsection 2.3.6:
Solve Ax = b,
rk = b− Axk,
Azk = rk, ↔ Mzk = rk.
xk+1 = xk + zk.

(i) Jacobi method (ωk+1 = αk = 1): A = D − (L+R),

xk+1 = xk +D−1(b− Axk).

(ii) Gauss-Seidel (ωk+1 = αk = 1): A = (D − L)−R,

xk+1 = xk + (D − L)−1(b− Axk).

i.e.,

x
(k+1)
j = bj −

j−1∑
p=1

ajpx
(k+1)
p −

n∑
p=j+1

ajpx
(k)
p + x

(k)
j − 1 · x(k)j

= x
(k)
j + bj − (aj1, . . . , aj,j−1, 1, aj,j+1, . . . , ajn)



x
(k+1)
1

...

x
(k+1)
j−1

x
(k)
j

...

x
(k)
n


, (D = I).

(iii) SOR-method (ωk+1 = 1, αk = ω): Solve ωAx = ωb. Write

ωA = (D − ωL)− ((1− ω)D + ωR) ≡M −N.

Then

xk+1 = (D − ωL)−1(ωR + (1− ω)D)xk + (D − ωL)−1ωb
= (D − ωL)−1((D − ωL)− ωA)xk + (D − ωL)−1ωb
= (I − (D − ωL)−1ωA)xk + (D − ωL)−1ωb
= xk + (D − ωL)−1ω(b− Axk)
= xk + ωM−1rk.
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i.e.,

x
(k+1)
j = ω

(
bj −

j−1∑
p=1

ajpx
(k+1)
p −

n∑
p=j+1

ajpx
(k)
p

)
+ (1− ω)x(k)j

= x
(k)
j + ωbj − ω (aj1, · · · , aj,j−1, 1, aj,j+1, · · · , ajn)



x
(k+1)
1

...

x
(k+1)
j−1

x
(k)
j

...

x
(k)
n


.

(iv) Chebychev Semi-iterative method (later!) (ωk+1 = ωk+1, αk = γ):

xk+1 = xk−1 + ωk+1 (γzk + xk − xk−1) .

We can think of the scalars ωk+1, αk in (4.7.5) as acceleration parameters that can
be chosen to speed the convergence of the iteration Mxk+1 = Nxk + b. Hence any
iterative method based on the splitting A = M − N can be accelerated by the
Conjugate Gradient Algorithm so long as M (the preconditioner) is symmetric and
positive definite.

Choices of M (Criterion):

(i) cond(M−1/2AM−1/2) is nearly by 1, i.e., M−1/2AM−1/2 ≈ I, A ≈M .

(ii) The linear system Mz = r must be easily solved. e.g. M = LLT (see Section 16.)

(iii) M is symmetric positive definite.

Explanation: Why we need to use preconditioning for solving the linear system Ax = b.
Fixed Point Principle:

x = b− Ax+ x

= (I − A)x+ b.

Thus x = Bx+ b with B ≡ I − A.
Fixed Point Iteration:

xi+1 = Bxi + b.

Let ei = xi − x. Then ei+1 = Bei = Bie0. Thus {ei} → 0 if and only if ρ(B) < 1. Hence
we want to find an M so that M−1A ≈ I with A =M −N . Consider

M−1Ax =M−1b,

then

xi+1 =
(
I −M−1A

)
xi +M−1b

=
(
I −M−1(M −N)

)
xi +M−1b, (4.7.17)

= M−1Nxi +M−1b.
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Here A = M − N is called a splitting iterative scheme and Mz = r should be easily
solvable. The iteration (4.7.17) is called a preconditioned fixed point iteration.
Jacobi: A = D − (L+R).
Gauss-Seidel: A = (D − L)−R.
SOR (Successive Over Relaxation): Ax = b, ωAx = ωb, (ω > 1),

ωA = ωD − ωL− ωR
= (D − ωL)− [(1− ω)D + ωR]

≡ M −N.

This implies,

xi+1 = (D − ωL)−1[(1− ω)D + ωR]xi + (D − ωL)−1ωb
= M−1Nxi +M−1ωb

(M−1N = I − (D − ωL)−1ωA).

SSOR (Symmetric Successive Over Relaxation): A is symmetric and A = D −
L− LT . Let {

Mω : = D − ωL,
Nω : = (1− ω)D + ωLT ,

and

{
MT

ω = D − ωLT ,
NT

ω = (1− ω)D + ωL.

Then from the iterations

Mωxi+1/2 = Nωxi + ωb,

MT
ω xi+1 = NT

ω xi+1/2 + ωb,

follows that

xi+1 =
(
M−T

ω NT
ωM

−1
ω Nω

)
xi + b̃

≡ Gxi + ω
(
M−T

ω NT
ωM

−1
ω +M−T

ω

)
b

≡ Gxi +M(ω)−1b.

But

((1− ω)D + ωL) (D − ωL)−1 + I

= (ωL−D − ωD + 2D)(D − ωL)−1 + I

= −I + (2− ω)D(D − ωL)−1 + I

= (2− ω)D(D − ωL)−1,

Thus
M(ω)−1 = ω

(
D − ωLT

)−1
(2− ω)D(D − ωL)−1,

then

M(ω) =
1

ω(2− ω)
(D − ωL)D−1

(
D − ωLT

)
(4.7.18)

≈ (D − L)D−1
(
D − LT

)
, (ω = 1).
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For a suitable ω the condition number ofM(ω)−1/2AM(ω)−1/2, i.e., cond(M(ω)−1/2AM(ω)−1/2),
can be considered smaller than cond(A). Axelsson(1976) showed (without proof): Let

µ = max
x ̸=0

xTDx

xTAx
(≤ cond(A))

and

δ = max
x ̸=0

xT (LD−1LT − 1
4
D)x

xTAx
≥ 1

4
.

Then

cond
(
M(ω)−1/2AM(ω)−1/2

)
≤

1 + (2−ω)2
4ω

+ ωδ

2ω
= κ(ω)

for ω∗ = 2

1+2
√

(2δ+1)/2µ
, κ(ω∗) is minimal and κ(ω∗) = 1/2 +

√
(1/2 + δ)µ. Especially

cond
(
M(ω∗)−1/2AM(ω∗)−1/2

)
≤ 1

2
+
√
(1/2 + δ)cond(A) ∼

√
cond(A).

Disadvantage : µ, δ in general are unknown.

SSOR + Conjugate Gradient method.
SSOR + Chebychev Semi-iterative Acceleration (later!)

4.8 Incomplete Cholesky Decomposition

Let A be sparse and symmetric positive definite. Consider the Cholesky decomposition
of A = LLT . L is a lower triangular matrix with lii > 0 (i = 1, ..., n). L can be heavily
occupied (fill-in). Consider the following decomposition

A = LLT −N, (4.8.1)

where L is a lower triangular matrix with prescribed reserved pattern E and N is “small”.

Reserved Pattern: E ⊂ {1, ..., n} × {1, ..., n} with
{

(i, i) ∈ E, i = 1, ..., n
(i, j) ∈ E ⇒ (j, i) ∈ E

For a given reserved pattern E we construct the matrices L and N as in (4.8.1) with

(i) A = LLT −N, (4.8.2a)

(ii) L : lower triangular with lii > 0 and lij ̸= 0 ⇒ (i, j) ∈ E, (4.8.2b)

(iii) N = (nij) , nij = 0, if (i, j) ∈ E (4.8.2c)

First step: Consider the Cholesky decomposition of A,

A =

(
a11 aT1
a1 A1

)
=

( √
a11 0

a1/
√
a11 I

)(
1 0
0 A1

)( √
a11 aT1 /

√
a11

0 I

)
,

where A1 = A1 − a1aT1 /a11. Then

A = L1

(
1 0
0 A1

)
LT
1 .
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For the Incomplete Cholesky decomposition the first step will be so modified. Define
b1 = (b21, ...., bn1)

T and c1 = (c21, ...., cn1)
T by

bj1 =

{
aj1, (j, 1) ∈ E,
0, otherwise,

cj1 = bj1 − aj1 =
{

0, (j, 1) ∈ E,
−aj1, otherwise.

(4.8.3)

Then

A =

(
a11 bT1
b1 A1

)
−
(

0 cT1
c1 0

)
= B̃0 − C1. (4.8.4)

Compute the Cholesky decomposition on B̃, we get

B̃0 =

( √
a11 0

b1/
√
a11 I

)(
I 0
0 B̄1

)( √
a11 bT1 /

√
a11

0 I

)
= L1B1L

T
1 (4.8.5)

and

B̄1 = A1 −
b1b1

T

a11
. (4.8.6)

Then

A = L1B1L1
T − C1. (4.8.7)

Consequently, compute the Cholesky decomposition on B1:

B1 = L2B2L
T
2 − C2

with

L2 =


1 0 · · · · · · 0
0 ∗ · · · · · · 0
... ∗ 1

...
...

...
. . .

...
0 ∗ · · · · · · 1

 and C2 =


0 · · · · · · 0

0 ∗ · · · ∗
... ∗ . . .

...
...

...
. . .

...
0 ∗ · · · · · · 0

 .

Thus,

A = L1L2B2L
T
2L

T
1 − L1C2L

T
1 − C1 (4.8.8)

and so on, hence

A = L1 · · ·LnIL
T
n · · ·LT

1 − Cn−1 − Cn−2 − · · · − C1 (4.8.9)

with

L = L1 · · ·Ln and N = C1 + C2 + · · ·+ Cn. (4.8.10)

Lemma 4.8.1 Let A be s.p.d. E be a reserved patten. Then there is at most a decompo-
sition A = LLT −N , which satisfies the conditions:

(4.8.2b) : L is lower triangular with lii > 0, lii ̸= 0 =⇒ (i, j) ∈ E.
(4.8.2c) : N = (nij), nij = 0, if (i, j) ∈ E.
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Proof: Let A = LLT − N = L̄L̄T − N̄ . Then a11 = l211 = l̄211 =⇒ l11 = ¯l11 (since l11 is
positive). Also, ak1 = lk1l11 − nk1 = l̄k1l11 − n̄k1, so we have

If (k, 1) ∈ E =⇒ nk1 = n̄k1 = 0 =⇒ lk1 = l̄k1 = ak1/l11, (4.8.11a)

If (k, 1) ̸∈ E =⇒ lk1 = l̄k1 = 0 =⇒ nk1 = n̄k1 = −ak1. (4.8.11b)

Suppose that lki = l̄ki, nki = n̄ki, for k = i, · · · , n, 1 ≤ i ≤ m− 1. Then from

amm = l2mm +
m−1∑
k=0

l2mk = l̄2mm +
m−1∑
k=1

l̄2mk

follows that lmm = l̄mm. Also from

arm = lrmlmm +
m−1∑
k=1

lrklmk − nrm = l̄rml̄mm +
m−1∑
k=0

l̄rk l̄mk − n̄rm

and (4.8.11) follows that nrm = n̄rm and lrm = l̄rm (r ≥ m).
The Incomplete Cholesky decomposition may not exist, if

sm := amm −
m−1∑
k=1

(lmk)
2 ≤ 0.

Example 4.8.1 Let

A =


1 −1 0 2
−1 2 −1 0
0 −1 2 −3
2 0 −3 10

 .

The Cholesky decomposition of A follows L =


1 0 0 0
−1 −1 0 0
0 −1 1 0
2 2 −1 1

. Consider the In-

complete Cholesky decomposition with patten

E = E(A) =


× × 0 ×
× × × 0
0 × × ×
× 0 × ×

 .
Above procedures (4.8.3)-(4.8.10) can be performed on A until the computation of l44 (see
proof of Lemma 4.8.1),

l244 = a44 − l241 − l242 − l243 = 10− 9− 4 = −3.

The Incomplete Cholesky decomposition does not exit for this pattern E. Now take

E =


× × 0 0
× × × 0
0 × × ×
0 0 × ×

 =⇒ L exists and L =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −3 1

 .
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Find the certain classes of matrices, which have no breakdown by Incomplete Cholesky
decomposition. The classes are

M-matrices, H-matrices.

Definition 4.8.1 A ∈ Rn×n is an M-matrix. If there is a decomposition A = σI−B with
B ≥ 0 (B ≥ 0⇔ bij ≥ 0 for i, j = 1, ..., n) and ρ(B) = max {|λ| : λ is an eigenvalue of B}
< σ. Equivalence: aij ≤ 0 for i ̸= j and A−1 ≥ 0.

Lemma 4.8.2 A is symmetric, aij ≤ 0, i ̸= j. Then the following statements are
equivalent

(i) A is an M-matrix.
(ii) A is s.p.d.

Proof: (i) ⇒ (ii): A = σI − B, ρ(B) < σ. The eigenvalues of A have the form σ − λ,
where λ is an eigenvalue of B and |λ| < σ. Since λ is real, so σ−λ > 0 for all eigenvalues
λ, it follows that A has only positive eigenvalues. Thus (ii) holds.
(ii)⇒ (i): For aij ≤ 0, (i ̸= j), there is a decomposition A = σI−B, B ≥ 0 (for example
σ = max(aii)). Claim ρ(B) < σ. By Perron-Frobenius Theorem 4.1.7, we have that ρ(B)
is an eigenvalue of B. Thus σ − ρ(B) is an eigenvalue of A, so σ − ρ(B) > 0. Then (i)
holds.

Theorem 4.8.3 Let A be a symmetric M-matrix. Then the Incomplete Cholesky method
described in (4.8.3)-(4.8.10) is executable and yields a decomposition A = LLT−N , which
satisfies (4.8.2).

Proof: It is sufficient to show that the matrix B1 constructed by (4.8.3)-(4.8.7) is a
symmetric M-matrix.
(i): We first claim: B̃0 is an M-matrix. A = B̃0−C1 ≤ B̃0, (since only negative elements
are neglected). There is a k > 0 such that A = kI − Â, B̃0 = kI − B̂0 with Â ≥ 0,
B̂0 ≥ 0, then B̂0 ≤ Â. By Perron-Frobenius Theorem 4.1.7 follows ρ(B̂0) ≤ ρ(Â) < k.
This implies that B̃0 is an M-matrix.

(ii): Thus B̃0 is positive definite, hence B1 = L−11 B̃0

(
L−11

)T
is also positive definite. B1

has nonpositive off-diagonal element, since B̄1 = Ā1− b1b1
T

a11
. Then B1 is an M-matrix (by

Lemma 4.8.2)

Definition 4.8.2 A ∈ Rn×n. Decomposition A = B − C is called regular, if B−1 ≥ 0,
C ≥ 0 (regular splitting).

Theorem 4.8.4 Let A−1 ≥ 0 and A = B − C is a regular decomposition. Then
ρ(B−1C) < 1. i.e., the iterative method Bxk+1 = Cxk + b for Ax = b is convergent
for all x0.

Proof: Since T = B−1C ≥ 0, B−1(B − C) = B−1A = I − T , it follows that

(I − T )A−1 = B−1.
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Then

0 ≤
k∑

i=0

T iB−1 =
k∑

i=0

T i(I − T )A−1 = (I − T k+1)A−1 ≤ A−1.

That is, the monotone sequence
∑k

i=0 T
iB−1 is uniformly bounded. Hence T kB−1 → 0

for k →∞, then T k → 0 and ρ(T ) < 1.

Theorem 4.8.5 If A−1 ≥ 0 and A = B1−C1 = B2−C2 are two regular decompositions
with 0 ≤ C1 ≤ C2, then it holds ρ(B1

−1C1) ≤ ρ(B2
−1C2).

Proof: Let A = B − C, A−1 ≥ 0. Then

ρ(B−1C) = ρ((A+ C)−1C) = ρ([A(I + A−1C)]
−1
C)

= ρ((I + A−1C)
−1
A−1C) =

ρ(A−1C)

1 + ρ(A−1C)
.

[λ→ λ

1 + λ
monotone for λ ≥ 0].

Because 0 ≤ C1 ≤ C2 it follows ρ(A−1C1) ≤ ρ(A−1C2). Then

ρ(B1
−1C1) =

ρ(A−1C1)

1 + ρ(A−1C1)
≤ ρ(A−1C2)

1 + ρ(A−1C2)
= ρ(B2

−1C2),

since λ→ λ
1+λ

is monotone for λ > 0.

Theorem 4.8.6 If A is a symmetric M-matrix, then the decomposition A = LLT − N
according to Theorem 4.8.3 is a regular decomposition.

Proof: Because each L−1j ≥ 0, it follows (LLT )−1 ≥ 0, (from (I − leT )−1 = (I + leT ),
l ≥ 0). N = C1 + C2 + · · ·+ Cn−1 and all Ci ≥ 0.

Definition 4.8.3 A ∈ Rn×n is called an H-matrix, if the matrix H = H(A) which is
defined by

hij =

{
aii, if i = j,
−|aij|, if i ̸= j,

is an M-matrix.

Theorem 4.8.7 (Manteuffel) For any symmetric H-matrix A and any symmetric re-
served pattern E there exists an uniquely determined Incomplete Cholesky decomposition
of A which satisfies (16.2). [Exercise !].

History:
(i) CG-method, Hestenes-Stiefel (1952).
(ii) CG-method as iterative method, Reid (1971).
(iii) CG-method with preconditioning, Concus-Golub-Oleary (1976).
(iv) Incomplete Cholesky decomposition, Meijerink-Van der Vorst (1977).
(v) Nonsymmetric matrix, H-matrix, Incomplete Cholesky decomposition, Manteufel
(1979).
Other preconditioning:
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(i) A blockform A = [Aij] with Aij blocks. Take M = diag[A11, ..., Akk].

(ii) Try Incomplete Cholesky decomposition: Breakdown can be avoided by two ways.
If zi = aii − Σi−1

k=1l
2
ik ≤ 0, breakdown, then either set lii = 1 and go on or set

lik = 0, (k = 1, .., i− 1) until zi > 0 (change reserved pattern E).

(iii) A is an arbitrary nonsingular matrix with all principle determinants ̸= 0. Then
A = LDR exists, where D is diagonal, L and RT are unit lower triangular. Consider
the following generalization of Incomplete Cholesky decomposition.

Theorem 4.8.8 (Generalization) Let A be an n×n matrix and E be an arbitrary reserved
pattern with (i, i) ∈ E, i = 1, 2, . . . , n. A decomposition of the form A = LDR−N which
satisfies:

(i) L is lower triangular, lii = 1, lij ̸= 0, then (i, j) ∈ E,
(ii) R is upper triangular, rii = 1, rij ̸= 0, then (i, j) ∈ E,
(iii) D is diagonal ̸= 0,
(iv) N = (nij), nij = 0 for (i, j) ∈ E.

is uniquely determined. (The decomposition almost exists for all matrices).

4.9 Chebychev Semi-Iteration Acceleration Method

Consider the linear system Ax = b. The splitting A =M −N leads to the form

x = Tx+ f, T =M−1N and f =M−1b. (4.9.1)

The basic iterative method of (4.9.1) is

xk+1 = Txk + f. (4.9.2)

How to modify the convergence rate?

Definition 4.9.1 The iterative method (4.9.2) is called symmetrizable, if there is a ma-
trix W with detW ̸= 0 and such that W (I − T )W−1 is symmetric positive definite.

Example 4.9.1 Let A and M be s.p.d., A =M −N and T =M−1N , then

I − T = I −M−1N =M−1(M −N) =M−1A.

Set W =M1/2. Thus,

W (I − T )W−1 =M1/2M−1AM−1/2 =M−1/2AM−1/2 s.p.d.

(i): M = diag(aii) Jacobi method.
(ii): M = 1

ω(2−ω)(D − ωL)D
−1(D − ωLT ) SSOR-method.

(iii): M = LLT Incomplete Cholesky decomposition.
(iv): M = I ⇒ xk+1 = (I − A)xk + b Richardson method.

Lemma 4.9.1 If (4.9.2) is symmetrizable, then the eigenvalues µi of T are real and
satisfy

µi < 1, for i = 1, 2, . . . , n. (4.9.3)
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Proof: Since W (I − T )W−1 is s.p.d., the eigenvalues 1−µi of I − T are large than zero.
Thus µi are real and (4.9.3) holds.

Definition 4.9.2 Let xk+1 = Txk + f be symmetrizable. The iterative method
u0 = x0,

uk+1 = α(Tuk + f) + (1− α)uk
= (αT + (1− α)I)uk + αf ≡ Tαuk + αf.

(4.9.4)

is called an Extrapolation method of (4.9.2).

Remark 4.9.1 Tα = αT + (1− α)I is a new iterative matrix (T1 = T ). Tα arises from
the decomposition A = 1

α
M − (N + ( 1

α
− 1)M).

Theorem 4.9.2 If (4.9.2) is symmetrizable and T has the eigenvalues satisfying µ1 ≤
µ2 ≤ · · · ≤ µn < 1, then it holds for α∗ = 2

2−µ1−µ2
> 0 that

1 > ρ(Tα∗) =
µn − µ1

2− µ1 − µn

= min
α
ρ(Tα). (4.9.5)

Proof: Eigenvalues of Tα are αµi + (1− α) = 1 + α(µi − 1). Consider the problem

min
α

max
i
|1 + α(ui − 1)| = min!

⇐⇒ |1 + α(µn − 1)| = |1 + α(µ1 − 1)|,
⇐⇒ 1 + α(µn − 1) = α(1− µn)− 1 (otherwise µ1 = µn).

This implies α = α∗ = 2
2−µ1−µn

, then 1 + α∗(µn − 1) = µn−µ1

2−µ1−µn
.

From (4.9.2) and (4.9.4) follows that

uk =
k∑

i=0

akixi, and
k∑

i=0

aki = 1

with suitable aki. Hence, we have the following idea:

Find a sequence {aki}, k = 1, 2, . . ., i = 0, 1, 2, . . . , k and
k∑

i=0

aki = 1 such that

uk =
k∑

i=0

akixi, u0 = x0 (4.9.6)

is a good approximation of x∗ (Ax∗ = b). Hereby the cost of computation of uk should
not be more expensive than xk.
Error: Let

ek = xk − x∗, ek = T ke0, e0 = x0 − x∗ = u0 − x∗ = d0. (4.9.7)

Hence,

dk = uk − x∗ =
k∑

i=0

aki(xi − x∗) (4.9.8)

=
k∑

i=0

akiT
ie0 = (

k∑
ki

akiT
i)e0

= Pk(T )e0 = Pk(T )d0,
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where

Pk(λ) =
k∑

i=0

akiλ
i (4.9.9)

is a polynomial in λ with Pk(1) = 1.
Problem: Find Pk such that ρ(Pk(T )) is possible small.

Remark 4.9.2 Let ∥x∥W = ∥Wx∥2. Then

∥T∥W = max
x ̸=0

∥Tx∥W
∥x∥W

= max
x ̸=0

∥WTW−1Wx∥2
∥Wx∥2

= ∥WTW−1∥2 = ρ(T ),

because WTW−1 is symmetric. We take ∥ · ∥W -norm on both sides of (4.9.8) and have

∥dk∥W ≤ ∥Pk(T )∥W∥d0∥W = ∥WPk(T )W
−1∥2∥d0∥2 (4.9.10)

= ∥Pk(WTW−1)∥2∥d0∥W = ρ(Pk(T ))∥d0∥W .

Replacement problem: Let 1 > µn ≥ · · · ≥ µ1 be the eigenvalues of T . Determine

min [{max |Pk(λ)| : µ1 ≤ λ ≤ µn} : deg(Pk) ≤ k, Pk(1) = 1] . (4.9.11)

Solution of (4.9.11): The replacement problem (4.6.35)

max{|Pk(λ)| : 0 < a ≤ λ ≤ b} = min!, Pk(0) = 1

has the solution

Qk(t) = Tk(
2t− b− a
b− a

)

/
Tk(

b+ a

a− b
).

Substituting t→ 1− λ, λ→ 1− t, (µ1, µn)→ (1− µn, 1− µ1), the problem (4.9.11) can
be transformed to the problem (4.6.35). Hence, the solution of (4.9.11) is given by

Qk(t) = Tk(
2t− µ1 − µn

µ1 − µn

)

/
Tk(

2− µ1 − µn

µ1 − µn

). (4.9.12)

Write Qk(t) :=
k∑

i=0

akit
i. Then we have

uk =
k∑

i=0

akixi,

which is called the optimal Chebychev semi-iterative method.
Effective Computation of uk: Using recursion of Tk as in (4.6.36), we get

T0(t) = 1, T1(t) = t, Tk+1(t) = 2tTk(t)− Tk−1(t).
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Transforming Tk(t) to the form of Qk(t) as in (4.9.12) we get

Q0(t) = 1, Q1(t) =
2t− µ1 − µn

2− µ1 − µn

= pt+ (1− p) (4.9.13a)

and
Qk+1(t) = [pt+ (1− p)]ck+1Qk(t) + (1− ck+1)Qk−1(t), (4.9.13b)

where

p =
2

2− µ1 − µn

, ck+1 =
2Tk(1/r)

rTk+1(1/r)
and r =

µ1 − µn

2− µ1 − µn

. (4.9.14)

Claim: (4.9.13b)

Qk+1(t) = Tk+1

(2t− µ1 − µn

µ1 − µn

)/
Tk+1

(1
r

)
=

1

Tk+1(1/r)

[
2
(2t− µ1 − µn

µ1 − µn

)
Tk

(2t− µ1 − µn

µ1 − µn

)
− Tk−1

(2t− µ1 − µn

µ1 − µn

)]
=

2Tk(1/r)

rTk+1(1/r)
r
(2t− µ1 − µn

µ1 − µn

)Tk(2t−µ1−µn

µ1−µn

)
Tk(1/r)

−
Tk−1

(
2−µ1−µn

µ1−µn

)
TK+1

(
2−µ1−µn

µ1−µn

) Tk−1(2−µ1−µn

µ1−µn

)
Tk−1(1/r)

= Ck+1[pt+ (1− p)]Qk(t)− [1− Ck+1]Qk−1(t),

since

r
(2t− µ1 − µn

µ1 − µn

)
=

2t− µ1 − µn
2− µ1 − µn

= pt+ (1− p)

and

1− Ck+1 = 1− 2Tk(1/r)

rTk+1(1/r)
=
rTk+1(1/r)− 2Tk(1/r)

rTk+1(1/r)

=
−rTk−1(1/r)
rTk+1(1/r)

=
−Tk−1(1/r)
Tk+1(1/r)

.

Recursion for uk:

dk+1 = Qk+1(T )d0 = (pT + (1− p)I)ck+1Qk(T )d0 + (1− ck+1)Qk−1(T )d0,

x∗ = (pT + (1− p)I)ck+1x
∗ + (1− ck+1)x

∗ + p(I − T )x∗ck+1.

Adding above two equations together we get

uk+1 = [pT + (1− p)I]ck+1uk + (1− ck+1)uk−1 + ck+1pf

= ck+1p {Tuk + f − uk}+ ck+1uk + (1− ck+1)uk−1.

Then we obtain the optimal Chebychev semi-iterative Algorithm.

Algorithm 4.9.1 (Optimal Chebychev semi-iterative Algorithm)

Let r = µ1−µn

2−µ1−µn
, p = 2

2−µ1−µn
, c1 = 2

u0 = x0,
u1 = p(Tu0 + f) + (1− p)u0
For k = 1, 2, · · · ,

uk+1 = ck+1 [p(Tuk + f) + (1− p)uk] + (1− ck+1)uk−1,
ck+1 = (1− r2/4 ck)−1.

(4.9.15)
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Remark 4.9.3 Here uk+1 can be rewritten as the three terms recursive formula with two
parameters as in (4.7.5):

uk+1 = ck+1 [p (Tuk + f) + (1− p)uk] + (1− ck+1)uk−1

= ck+1

[
pM−1 ((M − A)uk + b) + (1− p)uk

]
+ uk−1 − ck+1uk−1

= ck+1

[
uk + pM−1 (b− Auk)− uk−1

]
+ uk−1

= ck+1 [uk + pzk − uk−1] + uk−1,

where Mzk = b− Auk.

Recursion for ck: Since

c1 =
2t0

rT1(1/r)
=

2

r · 1
r

= 2,

thus

Tk+1

(
1

r

)
=

2

r
Tk

(
1

r

)
− Tk−1

(
1

r

)
(from (4.6.36)).

It follows
1

ck+1

=
rTk+1

(
1
r

)
2Tk

(
1
r

) = 1− r2

4

[
2Tk−1

(
1
r

)
rTk

(
1
r

) ] = 1− r2

4
ck.

Then we have

ck+1 =
1

(1− (r2/4) ck)
with r =

µ1 − µn

2− µ1 − µn

. (4.9.16)

Error estimate: It holds

∥uk − x∗∥W ≤
∣∣∣∣Tk (2− µ1 − µn

µ1 − µn

)∣∣∣∣−1 ∥u0 − x∗∥W . (4.9.17)

Proof: From (4.9.10) and (4.9.12) we have

∥dk∥W = ∥Qk(T )d0∥W ≤ ρ (Qk(T )) ∥d0∥W
≤ max {|Qk(λ)| : µ1 ≤ λ ≤ µn} ∥d0∥W

≤
∣∣∣∣Tk (2− µ1 − µn

µ1 − µn

)∣∣∣∣−1 ∥d0∥W .
We want to estimate the quantity qk := |Tk(1/r)|−1 (see also Lemma 4.6.9). From

(4.6.37) we have

Tk

(
1

r

)
=

1

2

[(
1 +
√
1− r2
r

)k

+

(
1−
√
1− r2
r

)k
]

=
1

2

[
(1 +

√
1− r2)k + (1−

√
1− r2)k

(r2)k/2

]
=

1

2

[
(1 +

√
1− r2)k + (1−

√
1− r2)k[

(1 +
√
1− r2)(1−

√
1− r2)

]k/2
]

=
1

2

(
ck/2 + c−k/2

)
≥ 1

2ck/2
,
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µn k q4 j j

′
q8 j j

′

0.8 5 0.0426 8 14 9.06(-4) 17–18 31
0.9 10 0.1449 9–10 18 1.06(-2) 22–23 43
0.95 20 0.3159 11–12 22 5.25(-2) 29–30 57
0.99 100 0.7464 14–15 29 3.86(-1) 47 95

Table 4.3: Convergence rate of qk where j :
(√

κ−1√
κ+1

)j
≈ q4, q8 and j

′
: µj

′

n ≈ q4, q8.

where c = 1−
√
1−r2

1+
√
1−r2 < 1. Thus qk ≤ 2ck/2. Rewrite the eigenvalues of I−T as λi = 1−µi,

λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Then

r =
µn − µ1

2− µ1 − µn

=
λ1 − λn
λ1 + λn

=
κ− 1

κ+ 1
, κ =

λ1
λn

Thus, from c = 1−
√
1−r2

1+
√
1−r2 =

(√
κ−1√
κ+1

)2
follows

qk ≤ 2

(√
κ− 1√
κ+ 1

)k

. (4.9.18)

That is, after k steps of the Chebychev semi-iterative method the residual ∥uk − x∗∥W is

reduced by a factor 2
(√

κ−1√
κ+1

)k
from the original residual ∥u0 − x∗∥W .

If µmin = µ1 = 0, then qk = Tk

(
2−µn

µn

)−1
. Table 4.3 shows the convergence rate of the

quantity qk.
All above statements are true, if we replace µn by µ

′
n (µ

′
n ≥ µn) and µ1 by µ

′
1 (µ

′
1 ≤ µ1),

because λ is still in [µ
′
1, µ

′
n] for all eigenvalue λ of T .

Example 4.9.2 Let 1 > ρ = ρ(T ). If we set µ
′
n = ρ, µ

′
1 = −ρ, then p and r defined in

(4.9.14) become p = 1 and r = ρ, respectively. Algorithm 4.9.1 can be simplified by

u0 = x0,

u1 = Tu0 + f, (4.9.19)

uk+1 = ck+1(Tuk + f) + (1− ck+1)uk−1,

ck+1 =
(
1−

(
ρ2/4

)
ck
)−1

with c1 = 2.

Also, Algorithm 4.9.1 can be written by the form of (4.9.19), by replacing T by
Tα∗ = Tp = (pT + (1− p)I) and it leads to

uk+1 = ck+1 (Tpuk + f) + (1− ck+1)uk−1. (4.9.20)

Here pµ1 + (1− p) = µ1−µn

2−µ1−µn
and pµn + (1− p) = µn−µ1

2−µ1−µn
are eigenvalues of Tp.

Remark 4.9.4 (i) In (4.9.15) it holds (r = ρ)

c2 > c3 > c4 > · · · , and lim
k→∞

ck =
2

1 +
√
1− r2

. (Exercise!)
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(ii) If T is symmetric, then by (4.9.12) we get

∥Qk(T )∥2 = max {|Qk(µi)| : µi is an eigenvalue of T}
≤ max {|Qk(λ)| : −ρ ≤ λ ≤ ρ}

=

∣∣∣∣Tk (1

ρ

) ∣∣∣∣−1 , (ρ = ρ(T )).

=
1

ck/2 + c−k/2
=

(ωb − 1)k/2

1 + (ωb − 1)k
, (4.9.21)

where c =
1−
√

1−ρ2

1+
√

1−ρ2
= ωb − 1 with ωb =

2

1+
√

1−ρ2
.

4.9.1 Connection with SOR Method

Recall

(i) The SOR method solves linear system Ax = b (standard decomposition A = I −
L−R):

x(i+1) = (I − ωL)−1((1− ω)I + ωR)x(i) + ω(I − ωL)−1b (4.9.22)

= Lωx
(i) + ω(I − ωL)−1b, 0 < ω < 2

(ii) A = I − L − R is called 2–consistly ordered, if the eigenvalues of αL + α−1R are
independent of α,

(iii) (Theorem) A = I − L − R and A is 2–consistly ordered. If A has real eigenvalues
and ρ(L+R) < 1, then it holds

ωb − 1 = ρ (Lωb
) < ρ(Lω), ω ̸= ωb, (4.9.23)

where ωb =
2

1+
√

1−ρ2(L+R)
.

Consider (4.9.1) again

x = Tx+ f, A =M −N, T =M−1N, f =M−1b.

Assume that
all eigenvalues of T are real and ρ(T ) < 1. (4.9.24)

Then the following linear system (of order 2n) is equivalent to (4.9.1).{
x = Ty + f,
y = Tx+ f.

(4.9.25)

That is, if x∗ solves (4.9.1), then

[
x∗

x∗

]
solves (4.9.25), reversely, if z∗ =

[
z1
∗

z2
∗

]
solves

(4.9.25), then z1
∗ = z2

∗ solves (4.9.1). Because z1
∗ − z2∗ = −T (z1∗ − z2∗) and −1 is not

an eigenvalue of T , so z1
∗ = z2

∗. Let

z =

[
x
y

]
, J =

[
0 T
T 0

]
, h =

[
f
f

]
.
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Then (4.9.25) can be written as

z = Jz + h (4.9.26)

and I − J is 2–consistly ordered. Applying SOR method to (4.9.26) we get

J = L+R :=

[
0 0
T 0

]
+

[
0 T
0 0

]
and

(I − ωL)zi+1 = ((1− ω)I + ωR)zi + ωh. (4.9.27)

Let zi =

[
xi
yi

]
. Then we have

[
I 0
−ωT I

] [
xi+1

yi+1

]
=

[
(1− ω)I ωT

0 (1− ω)I

] [
xi
yi

]
+

[
ωf
ωf

]
,

hence

xi+1 = (1− ω)xi + ωTyi + ωf = ω{Tyi + f − xi}+ xi, (4.9.28a)

yi+1 = ωTxi+1 + (1− ω)yi + ωf = ω{Txi+1 + f − yi}+ yi, (4.9.28b)

The optimal value ωb for (4.9.27) is given by

ωb =
1

1 +
√
1− ρ2(J)

.

Lemma 4.9.3 It holds σ(J) = σ(T )∪{−σ(T )}, where σ(T ) = spectrum of T . Especially
ρ(T ) = ρ(J).

Proof: Let λ ∈ σ(T ). There exists x ̸= 0 with Tx = λx. Then

J

[
x
x

]
= λ

[
x
x

]
and J

[
x
−x

]
= −λ

[
x
−x

]
.

Thus we have σ(J) ⊃ σ(T )∪{−σ(T )}. On the other hand, from J2 =

[
T 2 0
0 T 2

]
follows

that if λ is an eigenvalue of J , then λ2 = µ2 for one µ ∈ σ(T ), so λ = µ or −µ. Thus

σ(J) ⊂ σ(T ) ∪ {−σ(T )}.

We then have

ωb =
2

1 +
√
1− ρ2(T )

, ρ(Lωb) = ωb − 1 =
1−

√
1− ρ2(T )

1 +
√

1− ρ2(T )
. (4.9.29)
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4.9.2 Practical Performance

x0, y0, x1, y1, x2, y2, . . .
↑ ↑ ↑ ↑ ↑ ↑
ζ0, ζ1, ζ2, ζ3, ζ4, ζ5, . . .

ζ2i = xi, ζ2i+1 = yi, i = 0, 1, 2, . . .

Then (4.9.28) can be written as

ζi+1 = ωb{Tζi + f − ζi−1}+ ζi−1, i = 1, 2, · · · (4.9.30)

with ζ0 = x0 and ζ1 = y0 = Tx0 + f . Comparing (4.9.30) with (4.9.19) we get

ui+1 = ci+1{Tui + f − ui−1}+ ui−1, i = 1, 2, · · · . (4.9.31)

Since ci converges to ωb, the optimal Chebychev acceleration method is referred to as a
variant SOR method.

Error estimate of (4.9.30): Write (4.9.30) as

ζk+1 = ωb{Tζk + f − ζk−1}+ ζk−1,

ζ0 = x0,

ζ1 = Tζ0 + f.

Let
εk = ζk − x∗. (Ax∗ = b) (4.9.32)

Then we have

ε0 = ζ0 − x∗,
ε1 = Tε0,

εk+1 = ωbTεk + (1− ωb)εk−1.

Since x∗ = ωb{Tx∗ + f − x∗}+ x∗, it follow that

εk = rk(T )ε0, (4.9.33)

where rk(x) is a polynomial of degree ≤ k, and

r0 = 1,

r1(t) = t, (4.9.34)

rk+1(t) = ωbtrk(t) + (1− ωb)rk−1(t).

Either solve this difference equation or reduce to Chebychev polynomials of 2nd kind.

sk+1(t) = 2tsk(t)− sk−1(t),
s0(t) = 1,

s1(t) = 2t.
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In fact sk(cos θ) = sin((k + 1)θ)/ sin θ. One can estimate ∥rk(T )∥ (see Varga p.146) by:
Let T be Hermitian. Then

∥rk(T )∥ = max{|rk(µi)| : µi is an eigenvalue of T}
= max{|rk(µ)| : −ρ(T ) ≤ µ ≤ ρ(T )}

= (ωb − 1)k/2
{
1 + k

√
1− ρ2(T )

}
This implies

lim
k→∞
∥rk(T )∥1/k =

√
ωb − 1 .

From (4.9.21) follows that

lim
k→∞
∥Qk(T )∥1/k =

√
ωb − 1 .

4.10 GCG-type Methods for Nonsymmetric Linear

Systems

Recall: A is s.p.d. Consider the quadratic functional

F (x) =
1

2
xTAx− xT b (4.10.1)

Ax∗ = b⇐⇒ min
x∈Rn

F (x) = F (x∗)

Consider

φ(x) =
1

2
(b− Ax)TA−1(b− Ax) = F (x) +

1

2
bTA−1b, (4.10.2)

where 1
2
bTA−1b is a constant. Then

Ax∗ = b ⇐⇒ φ(x∗) = min
x∈Rn

φ(x) = [min
x∈Rn

F (x)] +
1

2
bTA−1b

CG-method:

Given x0, r0 = p0 = b− Ax0
for k = 0, 1, . . .

αk = rTk pk/p
T
kApk,

xk+1 = xk + αkpk,
rk+1 = rk − αkApk (≡ b− Axk+1)
pk+1 = rk+1 + βkpk
βk = −rTk+1Apk/p

T
kApk(= rTk+1rk+1/r

T
k rk)

end for

Numerator: rTk+1((rk − rk+1)/αk) = (−rTk+1rk+1)/αk

Denominator: pTkApk = (rTk + βk−1p
T
k−1)((rk − rk+1)/αk) = (rTk rk)/αk.

Remark 4.10.1 CG method does not need to compute any parameters. It only needs
matrix vector and inner product of vectors. Hence it can not destroy the sparse structure
of the matrix A.
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The vectors rk and pk generated by CG-method satisfy:

pTi rk = (pi, rk) = 0, i < k

rTi rj = (ri, rj) = 0, i ̸= j

pTi Apj = (pi, Apj) = 0, i ̸= j

xk+1 = x0 +
∑k

i=0 αipi minimizes F (x) over x = x0+ < p0, · · · , pk >.

4.10.1 GCG method(Generalized Conjugate Gradient)

GCG method is developed to minimize the residual of the linear equation under some
special functional. In conjugate gradient method we take

φ(x) =
1

2
(b− Ax)TA−1(b− Ax) = 1

2
rTA−1r =

1

2
∥r∥2A−1 ,

where ∥x∥A−1 =
√
xTA−1x.

Let A be a unsymmetric matrix. Consider the functional

f(x) =
1

2
(b− Ax)TP (b− Ax),

where P is s.p.d. Thus f(x) > 0, unless x∗ = A−1b ⇒ f(x∗) = 0, so x∗ minimizes the
functional f(x).

Different choices of P:

(i) P = A−1 (A is s.p.d.) ⇒ CG method (classical)

(ii) P = I ⇒ GCR method (Generalized Conjugate residual).

f(x) =
1

2
(b− Ax)T (b− Ax) = 1

2
∥r∥22

Here {ri} forms A-conjugate.

(iii) Consider M−1Ax = M−1b. Take P = MTM > 0 ⇒ GCGLS method (Generalized
Conjugate Gradient Least Square).

(iv) Similar to (iii), take P = (A + AT )/2 (note: P is not positive definite) and M =
(A+ AT )/2 we get GCG method (by Concus, Golub and Widlund). In general, P
is not necessary to be taken positive definite, but it must be symmetric (P T = P ).
Therefore, the minimality property does not hold.

Let

(x, y)o = xTPy =⇒ (x, y)o = (y, x)o.
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Algorithm 4.10.1 (GCG method)

Given x0, r0 = p0 = b− Ax0
for k = 0, 1, · · ·

αk = (rk, Apk)o/(Apk, Apk)o (4.10.3a)

xk+1 = xk + αkpk (4.10.3b)

rk+1 = rk − αkApk (≡ b− Axk+1) (4.10.3c)

β
(k)
i = −(Ark+1, Api)o/(Api, Api)o, i = 0, 1, · · · , k (4.10.3d)

pk+1 = rk+1 +
k∑

i=0

β
(k)
i pi (4.10.3e)

end for

In GCG method, the choice of {β(k)
i }ki=1 satisfy:

(rk+1, Api)o = 0, i ≤ k (4.10.4a)

(rk+1, Ari)o = 0, i ≤ k (4.10.4b)

(Api, Apj)o = 0, i ̸= j (4.10.4c)

Theorem 4.10.1 xk+1 = x0 +
∑k

i=0 αkpi minimizes f(x) = 1
2
(b − Ax)TP (b − Ax) over

x = x0+ < p0, · · · , pk >, where P is s.p.d.

(The proof is the same as that of classical CG method).
If P is indefinite, which is allowed in GCG method, then the minimality property

does not hold. xk+1 is the critical point of f(x) over x = x0+ < p0, · · · , pk >.
Question: Can the GCG method break down? i.e., Can αk in GCG method be zero?
Consider the numerator of αk:

(rk, Apk) = (rk, Ark)o [by (4.10.3e) and (4.10.4a) ]
= rTk PArk
= rTkA

TPrk [Take transpose]

= rTk
(PA+ATP )

2
rk.

(4.10.5)

From (4.10.5), if (PA+ATP ) is positive definite, then αk ̸= 0 unless rk = 0. Hence if the
matrix A satisfies (PA+ATP ) positive definite, then GCG method can not break down.

From GCG method, rk and pk can be rewritten by

rk = ψk(A)r0, (4.10.6a)

pk = φk(A)r0, (4.10.6b)

where ψk and φk are polynomials of degree ≤ k with ψk(0) = 1 [by (4.10.3c), (4.10.3e)].
From (4.10.6a), (4.10.6b) and (4.10.4b) follows that

(rk+1, A
i+1r0)o = 0, i = 0, 1, · · · , k. (4.10.7)

From (4.10.6a), (4.10.6b) and (4.10.3d), the numerator of β
(k)
i can be expressed by

(Ark+1, Api)o = rTk+1A
TPApi = rTk+1A

TPAφi(A)r0. (4.10.8)



136 Chapter 4. Iterative Methods for Solving Large Linear Systems

If ATP can be expressed by
ATP = Pθs(A), (4.10.9)

where θs is some polynomial of degree s. Then (4.10.8) can be written by

(Ark+1, Api)o = rTk+1A
TPAφi(A)r0

= rTk+1Pθs(A)Aφi(A)r0
= (rk+1, Aθs(A)φi(A)r0)o.

(4.10.10)

From (4.10.7) we know that if s + i ≤ k, then (4.10.10) is zero, i.e.,(Ark+1, Api)o = 0.

Hence β
(k)
i = 0, i = 0, 1, · · · , k − s. But only in the special case s will be small. For

instance,

(i) In classical CG method, A is s.p.d, P is taking by A−1. Then ATP = AA−1 = I =

A−1A = A−1θ1(A), where θ1(x) = x, s = 1. So, β
(k)
i = 0, for all i+ 1 ≤ k, it is only

β
(k)
k ̸= 0.

(ii) Concus, Golub and Widlund proposed GCG method, it solves M−1Ax =M−1b. (A:
unsymmetric), where M = (A+AT )/2 and P = (A+AT )/2 (P may be indefinite).

• Check condition (4.10.9):

(M−1A)TP = ATM−1M = AT =M(2I −M−1A) = P (2I −M−1A).

Then
θs(M

−1A) = 2I −M−1A,

where θ1(x) = 2− x, s = 1. Thus β
(k)
i = 0, i = 0, 1, · · · , k − 1. Therefore we only

use rk+1 and pk to construct pk+1.

• Check condition ATP + PA:

(M−1A)TM +MM−1A = AT + A indefinite

The method can possibly break down.

(iii) The other case s = 1 is BCG (BiCG) (See next paragraph).

Remark 4.10.2 Except the above three cases, the degree s is usually very large. That
is, we need to save all directions pi (i = 0, 1, · · · , k) in order to construct pk+1 satisfying
the conjugate orthogonalization condition (4.10.4c). In GCG method, each iteration step
needs to save 2k + 5 vectors (xk+1, rk+1, pk+1, {Api}ki=0, {pi}ki=0), k + 3 inner products
(Here k is the iteration number). Hence, if k is large, then the space of storage and the
computation cost can become very large and can not be acceptable. So, GCG method, in
general, has some practical difficulty. Such as GCR, GMRES (by SAAD) methods, they
preserve the optimality (p > 0), but it is too expensive (s is very large).

Modification:

(i) Restarted: If GCG method does not converge after m + 1 iterations, then we take
xk+1 as x0 and restart GCG method. There are at most 2m+ 5 saving vectors.

(ii) Truncated: The most expensive step of GCG method is to compute β
(k)
i , i =

0, 1, · · · , k so that pk+1 satisfies (4.10.4c). We now release the condition (4.10.4c)
to require that pk+1 and the nearest m direction {p|i}ki=k−m+1 satisfy the conjugate
orthogonalization condition.
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4.10.2 BCG method (A: unsymmetric)

BCG method is similar to the CG method, it does not need to save the search direction.
But the norm of the residual produced by BCG method does not preserve the minimal
property.

Solve Ax = b by considering ATy = c (phantom). Let

Ã =

(
A 0
0 AT

)
, x̃ =

(
x
y

)
, b̃ =

(
b
c

)
.

Consider
Ãx̃ = b̃.

Take P = Ã−TZ (P = P T ) with Z =

(
0 I
I 0

)
. This implies

ÃTZ = ZÃ and ÃTP = PÃ.

From (4.10.9) we know that s = 1 for Ãx̃ = b̃. Hence it only needs to save one
direction pk as in the classical CG method.

Algorithm 4.10.2 (Apply GCG method to Ãx̃ = b̃)

Given x0 =

(
x0
x̂0

)
, p̃0 = r̃0 = b̃− Ãx̃0 =

(
r0
r̂0

)
.

for k = 0, 1, . . .

αk = (r̃k, Ãp̃k)o/(Ãp̃k, Ãp̃k)o,

x̃k+1 = x̃k + αkp̃k,

r̃k+1 = r̃k − αkÃp̃k, p̃k+1 = r̃k+1 + βkp̃k

βk = −(Ãr̃k+1, Ãp̃k)o/(Ãp̃k, Ãp̃k)o.

end for

Algorithm 4.10.3 (Simplification (BCG method))

Given x0, p0 = r0 = b− Ax0
Choose r̂0, p̂0 = r̂0

for k = 0, 1, . . .

αk = (r̂k, rk)/(p̂k, Apk),

xk+1 = xk + αkpk,

rk+1 = rk − αkApk r̂k+1 = r̂k − αkA
T p̂k

βk = (r̂k+1, rk+1)/(r̂k, rk)

pk+1 = rk+1 + βkpk, p̂k+1 = r̂k+1 + βkp̂k.

end for

From above we have (Ãp̃k, Ãp̃k)o = (Apk, A
Tpk)

(
0 A−T

A−1 0

)(
Apk
AT p̂k

)
= 2(p̂k, Apk).
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BCG method satisfies the following relations:

rTk p̂i = r̂Tk pi = 0, i < k (4.10.11a)

pTkA
T p̂i = p̂TkApi = 0, i < k (4.10.11b)

rTk r̂i = r̂Tk ri = 0, i < k (4.10.11c)

Definition 4.10.1 (4.10.11c) and (4.10.11b) are called biorthogonality and biconjugacy
condition, respectively.

Property 4.10.1 (i) In BCG method, the residual of the linear equation does not satisfy
the minimal property, because P is taken by

P = Ã−TZ =

(
0 A−T

A−1 0

)
and P is symmetric, but not positive definite. The minimal value of the functional
f(x) may not exist.

(ii) BCG method can break down, because Z = (ÃTP + PÃ)/2 is not positive definite.
From above discussion, αk can be zero. But this case occurs very few.

GCG
GCR, GCR(k) BCG
Orthomin(k) CGS
Orthodir BiCGSTAB
Orthores QMR
GMRES(m) TFQMR
FOM
Axelsson LS

4.11 CGS (Conjugate Gradient Squared), A fast Lanczos-

type solver for nonsymmetric linear systems

4.11.1 The polynomial equivalent method of the CG method

Consider first A is s.p.d. Then the CG method

r0 = b− Ax0 = p0
for i = 0, 1, 2, · · ·
ai = (ri, pi)/(pi, Api) = (ri, ri)/(pi, Api)
xi+1 = xi + aipi
ri+1 = ri − aiApi
pi+1 = ri+1 + bipi
bi = −(ri+1, Api)/(pi, Api) = −(ri+1, ri+1)/(ri, ri)
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is equivalent to

r0 = b− Ax0, p−1 = 1, ρ−1 = −1
for n = 0, 1, 2, · · ·
ρn = rTn rn, βn = ρn/ρn−1
pn = rn + βnpn−1
σn = pTnApn, αn = ρn/σn
rn+1 = rn − αnApn
xn+1 = xn + αnpn (rn = b− Axn)

Remark 4.11.1 1. En = rTnA
−1rn = minx∈x0+Kn ∥b− Ax∥A−1

2. rTn rm = ρnδnm, pTnApm = σnδnm

From the structure of the new form of the CG method, we write

rn = φn(A)r0, pn = ψn(A)r0

where φn and ψn are polynomial of degree ≤ n. Define φ0(τ) ≡ 1 and φ−1(τ) ≡ 0. Then
we find

pn = φn(A)r0 + βnψn−1(A)r0 ≡ ψn(A)r0 (4.11.12a)

with
ψn(τ) ≡ φn(τ) + βnψn−1(τ), (4.11.12b)

and
rn+1 = φn(A)r0 − αnAψn(A)r0 ≡ φn+1(A)r0 (4.11.13a)

with
φn+1(τ) ≡ φn(τ)− αnτψn(τ). (4.11.13b)

The CG method can be re-iterpreted as an algorithm for generating a system of
(orthogonal) polynomials. Define the symmetric bilinear form (·, ·) by

(φ, ψ) = [φ(A)r0]
Tψ(A)r0.

We have (φ, φ) ≥ 0. Since A is symmetric, we can write

(φ, ψ) = rT0 φ(A)ψ(A)r0.

Furthermore, from the associate law of matrices

(φθ, ψ) = (φ, θψ)

for any polynomial φ, θ , ψ. Here (·, ·) is semidefinite, thus (φ, φ) = 0 may occur!
The polynomial equivalent method of the CG method :

φ0 ≡ 1, φ−1 ≡ 0, ρ−1 = 1
for n = 0, 1, 2, · · ·
ρn = (φn, φn), βn = ρn/ρn−1
ψn = φn + βnψn−1
σn = (ψn, θψn), αn = ρn/σn
φn+1 = φn − αnθψn.
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where θ(τ) = τ .
The minimization property reads

En = (φn, θ
−1φn) = min

φ∈PN

(φ, θ−1φ)

φ(0)2
.

We also have
(φi, φj) = 0, i ̸= j from (ri, rj) = 0, i ̸= j.

(ψi, θψj) = 0, i ̸= j from (pi, Apj) = 0, i ̸= j.

Theorem 4.11.1 Let [·, ·] be any symmetric bilinear form satisfying

[φχ, ψ] = [φ, χψ] ∀φ, ψ, χ ∈ PN

Let the sequence of φn and ψn be constructed according to PE algorithm, but using [·, ·]
instead (·, ·). Then as long as the algorithm does not break down by zero division, then
φn and ψn satisfy

[φn, φm] = ρnδnm, [ψn, θψm] = σnδnm

with θ(τ) ≡ τ .

Proof: By induction we prove the following statement:

[ψn−1, θψk] = σn−1δn−1,k, [φn, ψk] = 0 (4.11.14)

∀n ≥ 0, − 1 ≤ k ≤ n− 1 with σ−1 = 0. If n = 0, this is true since ψ−1(τ) ≡ 0. Suppose
(4.11.14) holds for n ≤ m and let k < m. Then by PE algorithm, it holds

[ψm, θψk] = [φm, θψk] + βm[φm−1, θψk]. (4.11.15)

Substitute θψk = (φk−φk+1)/αk in the first term. The second term is zero for k < m−1,
by hypothesis. Thus

[ψm, θψk] =
[φm, φk]− [φm, φm+1]

αk

+ βmσm−1δm−1,k, ∀k ≤ m− 1.

If k < m− 1, then [ψm, θψk] = 0. For k = m− 1 we have

[ψm, θψm−1] = −ρm/αm−1 + βmσm−1 = 0,

which proves first part of (4.11.14) for n = m+ 1.
Second Part: Write

[φm+1, ψk] = [φm, ψk]− αm[ψm, θψk], ∀k ≤ m.

If k ≤ m−1, then [φm+1, ψk] = 0 by hypothesis. Using the algorithm and choosing k = m
we get

[φm+1, ψm] = [φm, φm + βmψm−1]− αm[ψm, θψm] = ρm − αmσm = 0,

which proves the second part of (4.11.14).
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By Induction (4.11.14) is valid for all n. Finally, writing φk = ψk−βkψk−1, ∀k ≥ 0,
it implies

[φn, φk] = [φn, ψk]− βn[φn, ψk−1] = 0, ∀k < n.

Together with the first part of (4.11.14), we prove the theorem.

The theorem is valid as long as the algorithm does not break down. For this reason
we shall use orthogonal polynomial for φn and ψn, whether or not the bilinear forms
involved are inner products.

In the following, we want to generalize the CG Algorithm to the nonsymmetric case.
Consider

Ax = b, A : nonsymmetric.

Given x0, r0 = b− Ax0, let r̃0 be a suitably chosen vector. Define [·, ·] by

[φ, ψ] = r̃T0 φ(A)ψ(A)r0 = (φ(AT )r̃0)
Tψ(A)r0

and define p−1 = p̃−1 = 0. (If A symmetric : (φ, ψ) = rT0 φ(A)ψ(A)r0). Then we have

rn = φn(A)r0, r̃n = φn(A
T )r̃0,

pn = ψn(A)r0, p̃n = ψn(A
T )r̃0

with φn and ψn according to (4.11.12b) and (4.11.13b). Indeed, these vectors can be
produced by the Bi-Conjugate Gradient algorithm:

Algorithm 4.11.1 (Bi-Conjugate Gradient algorithm)

Given r0 = b− Ax0, p−1 = p̃−1 and r̃0 arbitrary
For n = 0, 1, · · ·
ρn = r̃Tn rn, βn = ρn/ρn−1
pn = rn + βnpn−1, p̃n = r̃n + βnp̃n−1
σn = p̃TnApn, αn = ρn/σn
rn+1 = rn − αnApn, r̃n+1 = r̃n − αnA

T p̃n
xn+1 = xn + αnpn.

Property 4.11.1 rn = b− Axn, rTk r̃j = 0, j ̸= k and pTkA
T p̃j = 0, j ̸= k.

Remark 4.11.2 The Bi-Conjugate Gradient method is equivalent to the Lanczos biorthog-
onalization method.

Km = span(Vm) = span(r0, Ar0, · · · , Am−1r0) = span(p0, p1, · · · , pm−1),
Lm = span(Wm) = span(r̃0, A

T r̃0, · · · , (AT )m−1r̃0) = span(p̃0, p̃1, · · · , p̃m−1).

Remark 4.11.3 In practice r̃0 is often chosen equal to r0. Then, if A is not too far from
being S.P.D., the bilinear expressions [·, ·] and [·, θ·] will be positive semi-definite, and the
algorithm will converge in the same way, and by the same argument as does the ordinary
CG algorithm in the SPD-case!
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4.11.2 Squaring the CG algorithm: CGS Algorithm

Assume that Bi-CG is converging well. Then rn → 0 as n→∞. Because rn = φn(A)r0,
φn(A) behaves like contracting operators.

• Expect: φn(A
T ) behaves like contracting operators (i.e., r̃n → 0). But ”quasi-residuals”

r̃n is not exploited, they need to be computed for the ρn and σn.

• Disadvantage: Work of Bi-CG is twice the work of CG and in general ATv is not easy
to compute. Especially if A is stored with a general data structure.

• Improvement: Using Polynomial equivalent algorithm to CG.

Since ρn = [φn, φn] and σn = [ψn, θψn], [·, ·] has the property [φχ, ψ] = [φ, χψ]. Let
φ0 = 1. Then

ρn = [φ0, φ
2
n], σn = [φ0, θψ

2
n].

{
φn+1 = φn − αnθψn,
ψn = φn + βnψn−1.

• Purpose: (i) Find an algorithm that generates the polynomials φ2
n and ψ2

n rather than
φn and ψn.
(ii) Compute the approximation solution xn with rn = φ2

n(A)r0 as residuals (try to
interpret). Because ρn = r̃T0 rn with rn = φ2

n(A)r0, r̃n and p̃n need not to be computed.

How to compute φ2
n and ψ2

n?

ψ2
n = [φn + βnψn−1]

2 = φ2
n + 2βnφnψn−1 + β2

nψ
2
n−1,

φ2
n+1 = [φn − αnθψn]

2 = φ2
n − 2αnθφnψn + α2

nθ
2ψ2

n.

Since

φnψn = φn[φn + βnψn−1] = φ2
n + βnφnψn−1,

we only need to compute φnψn−1, φ
2
n and ψ2

n. Now define for n ≥ 0 :

Φn = φ2
n, Θn = φnψn−1, Ψn−1 = ψ2

n−1.

Algorithm 4.11.2 (CGS)

Φ0 ≡ 1. Θ0 ≡ Ψ−1 ≡ 0, ρ−1 = 1.
for n = 0, 1, · · ·
ρn = [1,Φn], βn = ρn/ρn−1
Yn = Φn + βnΘn

Ψn = Yn + βn(Θn + βnΨn−1)
σn = [1, θΨn], αn = ρn/σn, Θ(τ) = τ,
Θn+1 = Yn − αnθΨn

Φn+1 = Φn − αnθ(Yn +Θn+1)
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Algorithm 4.11.3 (CGS Variant)

Define rn = Φn(A)r0, qn = Θn(A)r0, pn = Ψn(A)r0,
r0 = b− Ax0, q0 = p−1 = 0, ρ−1 = 1
for n = 0, 1, · · ·
ρn = r̃T0 rn, βn = ρn/ρn−1
un = rn + βnqn
pn = un + βn(qn + βnpn−1)
vn = Apn
σn = r̃T0 vn, αn = ρn/σn
qn+1 = un − αnvn
rn+1 = rn − αnA(un + qn+1)
xn+1 = xn + αn(un + qn+1).

Since r0 = b − Ax0, rn+1 − rn = A(xn − xn+1), we have that rn = b − Axn. So this
algorithm produces xn of which the residual satisfy

rn = φ2
n(A)r0.

Remark 4.11.4 Each step requires twice the amount of work necessary for symmetric
CG. However the contracting effect of φn(A) is used twice each step. The work is not
more than for Bi-CG and working with AT is avoided.

4.12 Bi-CGSTAB: A Fast and Smoothly Converging

Variant of Bi-CG for the Solution of Nonsym-

metric Linear Systems

Algorithm 4.12.1 (Bi-CG method)

Given x0, r0 = b− Ax0, (r̃0, r0) ̸= 0, ρ0 = 1, p̃0 = p0 = 0.
For i = 1, 2, 3, · · ·

ρi = (r̃i−1, ri−1)
βi = (ρi/ρi−1)
pi = ri−1 + βipi−1
p̃i = r̃i−1 + βip̃i−1
vi = Api
αi = ρi/(p̃i, vi)
xi = xi−1 + αipi
Stop here, if xi is accurate enough.
ri = ri−1 − αivi = ri−1 − αiApi
r̃i = r̃i−1 − αiA

T p̃i
end for

Property 4.12.1 (i) rj ⊥ r̃0, . . . , r̃j−1 and r̃j ⊥ r0, . . . , rj−1.

(ii) three-term recurrence relations between {rj} and {r̃j}.



144 Chapter 4. Iterative Methods for Solving Large Linear Systems

(iii) It terminates within n steps, but no minimal property.

Since rBi−CG
j = φj(A)r0 and r̃Bi−CG

j = φj(A
T )r̃0, it implies that

(rj, r̃i) =
(
φj(A)r0, φi(A

T )r̃0
)
= (φi(A)φj(A)r0, r̃0) = 0, i < j.

Algorithm 4.12.2 (CGS method)

Given x0, r0 = b− Ax0, (r0, r̃0) ̸= 0, r̃0 = r0, ρ0 = 1, p0 = q0 = 0.
For i = 1, 2, 3, · · ·

ρi = (r̃0, ri−1)
β = ρi/ρi−1
u = ri−1 + βqi−1
pi = u+ β(qi−1 + βpi−1)
v = Api
α = ρi/(r̃0, v)
qi = u− αv
w = u+ qi
xi = xi−1 + αw
Stop here, if xi is accurate enough.
ri = ri−1 − αAw

end for

We have rCGS
i = φi(A)

2r0.
From Bi-CG method we have rBi−CG

i = φi(A)r0 and pi+1 = ψi(A)r0. Thus we get

ψi(A)r0 = (φi(A) + βi+1ψi−1(A)) r0,

and
φi(A)r0 = (φi−1(A)− αiAψi−1(A)) r0,

where ψi = φi + βi+1ψi−1 and φi = φi−1 − αiθψi−1. Since(
φi(A)r0, φj(A

T )r̃0
)
= 0, j < i,

it holds that
φi(A)r0 ⊥ r̃0, A

T r̃0, . . . , (A
T )i−1r̃0

if and only if

(φ̃j(A)φi(A)r0, r̃0, ) = 0

for some polynomial φ̃j of degree j < i for j = 0, 1, · · · , i− 1. In Bi-CG method,
we take φ̃j = φj r̃j = φj(A

T )r̃0 and exploit it in CGS to get rCGS
j = φ2

j(A)r0. Now
ri = φ̃i(A)φi(A)r0. How to choose φ̃i polynomial of degree i so that ∥ri∥ satisfies the
minimum. Like polynomial, we can determine the optimal parameters of φ̃i so that ∥ri∥
satisfies the minimum. But the optimal parameters for the Chebychev polynomial are in
general not easily obtainable. Now we take

φ̃i ≡ ηi(x),

where
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ηi(x) = (1− ω1x)(1− ω2x) · · · (1− ωix).

Here ωj are suitable constants to be selected.
Define

rj = ηj(A)φj(A)r0.

Then

ri = ηi(A)φi(A)r0

= (1− ωiA)ηi−1(A) (φi−1(A)− αiAψi−1(A)) r0

= {(ηi−1(A)φi−1(A)− αiAηi−1(A)ψi−1(A))} r0
−ωiA {(ηi−1(A)φi−1(A)− αiAηi−1(A)ψi−1(A))} r0

= ri−1 − αiApi − ωiA(ri−1 − αiApi)

and

pi+1 = ηi(A)ψi(A)r0

= ηi(A) (φi(A) + βi+1ψi−1(A)) r0

= ηi(A)φi(A)r0 + βi+1(1− ωiA)ηi−1(A)ψi−1(A)r0

= ηi(A)φi(A)r0 + βi+1ηi−1(A)ψi−1(A)r0

−βi+1ωiAηi−1(A)ψi−1(A)r0

= ri + βi+1(pi − ωiApi).

Recover the constants ρi, βi, and αi in Bi-CG method. We now compute βi: Let

ρ̃i+1 = (r̃0, ηi(A)φi(A)r0) =
(
ηi(A

T )r̃0, φi(A)r0
)
.

From Bi-CG we have φi(A)r0 ⊥ all vectors µi−1(A
T )r̃0, where µi−1 is an arbitrary poly-

nomial of degree i− 1. Consider the highest order term of ηi(A
T ) (when computing ρ̃i+1)

is (−1)iω1ω2 · · ·ωi(A
T )i. From Bi-CG method, we also have

ρi+1 =
(
φi(A

T )r̃0, φi(A)r0
)
.

The highest order term of φi(A
T ) is (−1)iα1 · · ·αi(A

T )i. Thus

βi = (ρ̃i/ρ̃i−1) (αi−1/ωi−1) ,

because

βi =
ρi
ρi−1

=

(
α1 · · ·αi−1(A

T )i−1r̃0, φi−1(A)r0
)

(α1 · · ·αi−2(AT )i−2r̃0, φi−2(A)r0)

=

(
α1 · · ·αi−1
ω1 · · ·ωi−1

ω1 · · ·ωi−1(A
T )i−1r̃0, φi−1(A)r0

)
(
α1 · · ·αi−2
ω1 · · ·ωi−2

ω1 · · ·ωi−2(AT )i−2r̃0, φi−2(A)r0

)
= (ρ̃i/ρ̃i−1) (αi−1/ωi−1) .

Similarly, we can compute ρi and αi. Let

ri = ri−1 − γAy, xi = xi−1 + γy (side product).

Compute ωi so that ri = ηi(A)φ(A)r0 is minimized in 2-norm as a function of ωi.
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Algorithm 4.12.3 (Bi-CGSTAB method)

Given x0, r0 = b− Ax0, r̃0 arbitrary, such that (r̃0, r0) ̸= 0, e.g. r̃0 = r0,
ρ0 = α = ω0 = 1, v0 = p0 = 0

For i = 1, 2, 3, · · ·
ρi = (r̃0, ri−1)
β = (ρi/ρi−1)(α/ωi−1)
pi = ri−1 + β(pi−1 − ωi−1vi−1)
vi = Api
α = ρi/(r̃0, vi)
s = ri−1 − αvi
t = As
ωi = (t, s)/(t, t)
xi = xi−1 + αpi + ωis (= xi−1 + αpi + ωi(ri−1 − αApi))
Stop here, if xi is accurate enough.
ri = s− ωit [= ri−1 − αApi − ωiA(ri−1 − αApi) = ri−1 − A(αpi + ωi(ri−1 − αApi)]

end for

Preconditioned Bi-CGSTAB-P:

Rewrite Ax = b as

Ãx̃ = b̃ with Ã = K−11 AK−12 ,

where x = K−12 x̃ and b̃ = K−11 b. Then

p̃i ⇒ K−11 pi, ṽi ⇒ K−11 vi, r̃i ⇒ K−11 ri,

s̃⇒ K−11 si, t̃⇒ K−11 ti, x̃⇒ K2xi,

r̃0 ⇒ KT
1 r̂0.

4.13 A Transpose-Free Qusi-minimal Residual Algo-

rithm for Nonsymmetric Linear Systems

Given x0, r0 = b− Ax0 and r̃0 arbitrary such that r̃T0 r0 ̸= 0, e.g. r̃0 = r0. We know that

wT (b− AxBCG
n ) = 0, ∀ w ∈ Kn(r̃0, A

T ), xBCG
n ∈ x0 +Kn(r0, A).

The nth iterate, xBCG
n , generated by Bi-CG is defined by Petrov-Galerkin method.

rBCG
n = φn(A)r0, φn ∈ Pn, φn(0) = 1.

rCGS
n = (φn(A))

2r0, xn ∈ x0 +K2n(r0, A).

rBiCGSTAB
n = ηn(A)φn(A)r0, xn ∈ x0 +K2n(r0, A).
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Algorithm 4.13.1 (CGS Algorithm)

Choose x0 ∈ RN , set p0 = u0 = r0 = b− Ax0, v0 = Ap0,
Choose r̃0 such that ρ0 = r̃T r0 ̸= 0,
for n = 0, 1, 2, · · ·

σn−1 = r̃T0 vn−1, αn−1 = ρn−1/σn−1,
qn = un−1 − αn−1vn−1,
xn = xn−1 + αn−1(un−1 + qn),
rn = rn−1 − αn−1A(un−1 + qn),
If xn converges, stop;
ρn = r̃T0 rn, βn = ρn/ρn−1,
un = rn + βnqn,
pn = un + βn(qn + βnpn−1),
vn = Apn.

end for

Note that
αn−1 ̸= 0 for all n, (4.13.1)

and
un−1 = φn−1(A)ψn−1(A)r0, qn = φn(A)ψn−1(A)r0, (4.13.2)

where φn, ψn are generated by

ψn(τ) = φn(τ) + βnψn−1(τ), ψ0 ≡ 1 (4.13.3)

and
φn(τ) = φn−1(τ)− αn−1τψn−1(τ). (4.13.4)

4.13.1 Quasi-Minimal Residual Approach

Set

ym =

{
un−1, if m = 2n− 1, odd
qn, if m = 2n, even

(4.13.5)

and

wm =

{
φ2
n(A)r0, if m = 2n+ 1, odd

φn(A)φn−1(A)r0, if m = 2n, even
(4.13.6)

From rCGS
n = φ2

n(A)r0 follows that w2n+1 = rCGS
n . Using (4.13.2) and (4.13.4) we get

ψn−1(A) = A−1
1

αn−1
(φn−1(A)− φn(A)).

Multiply above equation by φn(A), then the vectors in (4.13.5) and (4.13.6) are related
by

Aym =
1

α⌊(m−1)/2⌋
(wm − wm+1). (4.13.7)
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By (4.13.1), α⌊(m−1)/2⌋ in (4.13.7) ̸= 0. Let

Ym = [y1, y2, · · · , ym], Wm+1 = [w1, · · · , wm, wm+1].

Then from (4.13.7) we get
AYm = Wm+1B

(e)
m , (4.13.8)

where

B(e)
m =


1 0
−1 1

. . . . . .

−1 1
0 −1

 diag(α0, α0, α1, α1, · · · , α⌊(m−1)/2⌋)−1 (4.13.9)

is an (m+ 1)×m lower bidiagonal matrix.
By (4.13.3), (4.13.4) and (4.13.1) we have that polynomials φn and ψn are of full

degree n. With (4.13.2) and (4.13.5) it implies

Km(r0, A) = span{y1, y2, · · · , ym} = {Ymz | z ∈ Rm}. (4.13.10)

But any possible iterate xm must lie in x0 +Km(r0, A). Thus

xm = x0 + Ymz for some z ∈ Rm. (4.13.11)

From (4.13.8) and w1 = r0 (see w2n+1 = rCGS
n ) follows that the residual satisfies

rm = r0 − AYmz =Wm+1(e
(m+1)
1 −B(e)

m z). (4.13.12)

Let
Ωm+1 = diag(w1, w2, · · · , wm+1), wk > 0, (4.13.13)

be any scaling matrix, rewrite (4.13.12) as

rm =Wm+1Ω
−1
m+1(fm+1 −H(e)

m z), (4.13.14)

where
fm+1 = ω1e

(m+1)
1 , H(e)

m = Ωm+1B
(e)
m . (4.13.15)

We now define the m-th iterate, xm, of the transpose-free quasi-minimal residual
method (TFQMR) by

xm = x0 + Ymzm, (4.13.16)

where zm is the solution of the least squares problem

τm := ∥fm+1 −H(e)
m zm∥2 = min

z∈Rm
∥fm+1 −H(e)

m z∥2 (4.13.17)

By (4.13.9), (4.13.13) and (4.13.15) it implies that H
(e)
m has full column rank m. Then

zm is uniquely defined by (4.13.17). In general, we set

wk = ∥wk∥2, k = 1, · · · ,m+ 1.

This implies that all columns of Wm+1Ω
−1
m+1 are unit vectors.
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Consider
x̃m = x0 + Ymz̃m, z̃m = H−1m fm, (4.13.18)

where

H(e)
m =

[
Hm

∗ · · · ∗

]
and fm+1 =

[
fm
∗

]
.

By (4.13.9), (4.13.13) and (4.13.15) follows Hm nonsingular, thus

z̃m = [α0, α0, α1, · · · , α⌊(m−1)/2⌋]T (4.13.19)

and
ωm+1 = ∥fm+1 −H(e)

m z̃m∥2. (4.13.20)

Comparing (4.13.18) and (4.13.19) with update formula for iterate xCGS
n in CGS Algo-

rithm we get
x̃2n = xCGS

n . (4.13.21)

Lemma 4.13.1 Let w1 > 0,m ≥ 1 and

H(e)
m =

(
Hm

hm+1,m eTm

)
=

(
H

(e)
m−1 ∗
0 hm+1,m

)
(4.13.22)

be an (m + 1) ×m upper Hessenberg matrix of full column rank m. For k = m − 1,m,
let zk ∈ Rk denote the solution of the least-square problem

τk := min
z∈Rk
∥fk+1 −H(e)

k z∥2, fk+1 = w1e
k+1
1 ∈ Rk+1. (4.13.23)

Moreover, assume that Hm in (4.13.22) is nonsingular. Set z̃m := H−1m fm. Then

zm = (1− c2m)
(
zm−1
0

)
+ c2mz̃

2
m, (4.13.24)

τm = τm−1θmcm, (4.13.25)

where

θm =
1

τm−1
∥fm+1 −H(e)

m z̃m∥2, cm =
1√

1 + θ2m
. (4.13.26)

4.13.3 TFQMR Algorithm

From (4.13.24), (4.13.11) and (4.13.18) are connected by

xm = (1− c2m)xm−1 + c2mx̃m. (4.13.27)

By (4.13.25), (4.13.26) and (4.13.20) follows that

θm =
wm+1

τm−1
, cm =

1√
1 + θ2m

and τm = τm−1θmcm. (4.13.28)
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Setting

dm =
1

α⌊(m−1)/2⌋
(x̃m − xm−1). (4.13.29)

Rewrite (4.13.27) and get

xm = xm−1 + ηmdm, (4.13.30)

where ηm = c2mα⌊(m−1)/2⌋. By (4.13.18) and (4.13.19) we get

x̃m = x0 + Ymz̃m, z̃m = [α0, α1, · · · , α⌊(m−1)/2⌋]T ,

and thus

x̃m = x̃m−1 + α⌊(m−1)/2⌋ym.

Together with (4.13.29) and (4.13.30) (m replaced by m− 1) we have

dm = ym +
θ2m−1ηm−1
α⌊(m−1)/2⌋

dm−1, (4.13.31)

where θ2m−1 :=
1−c2m
c2m−1

.

Remark 4.13.1

dm =
1

α
(x̃m−1 + αym − xm−1) = ym +

1

α
[x̃m−1 − xm−1]

= ym +
1

α
(x̃m−1 − xm−2 − ηm−1dm−1)

= ym +
1

α
(α̃dm−1 − ηm−1dm−1) = ym +

1

α
(α̃− ηm−1)dm−1

= ym +
1

α
(
ηm−1
c2m−1

− ηm−1)dm−1 = ym +
1

α
(ηm−1(

1− c2m−1
c2m−1

))dm−1.

From (4.13.5) and (4.13.6), qn and un in CGS Algorithm follows

y2n = y2n−1 − αn−1vn−1, y2n+1 = w2n+1 + βnv2n. (4.13.32)

Multiplying the update formula for pn in CGS Algorithm by A we get

vn = Ay2n+1 + βn(Ay2n + βnvn−1), for vn = Apn. (4.13.33)

By (4.13.7) wm’s can be generated by

wm+1 = wm − α⌊(m−1)/2⌋Aym. (4.13.34)

Combining (4.13.28), (4.13.30)-(4.13.34) we get the TFQMR Algorithm in standard
weighting strategy ωk = ∥wk∥2.
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Algorithm 4.13.2 (TFQMR Algorithm)

Choose x0 ∈ RN .
Set w1 = y1 = r0 = b− Ax0, v0 = Ay1, d0 = 0, τ0 = ∥r0∥2, θ0 = 0, η0 = 0;
Choose r̃0 such that ρ0 = r̃T r0 ̸= 0,
For n = 0, 1, 2, · · · do

set σn−1 = r̃0
Tvn−1, αn−1 = ρn−1/σn−1, y2n = y2n−1 − αn−1vn−1,

For m = 2n− 1, 2n do
set wm+1 = wm − αn−1Aym,

θm = ∥wm+1∥2/τm−1, cm = 1/
√
1 + θ2m,

τm = τm−1θmcm, ηm = c2mαn−1,
dm = ym + (θ2m−1ηm−1/αn−1)dm−1,
xm = xm−1 + ηmdm,
If xm converges, stop;

End for
set ρn = r̃T0 w2n+1, βn = ρn/ρn−1,
y2n+1 = w2n+1 + βnyc2n,
vn = Ay2n+1 + βn(Ay2n + βnvn−1).

End for

4.14 GMRES: Generalized Minimal Residual Algo-

rithm for solving Nonsymmetric Linear Systems

Algorithm 4.14.1 (GCR)

Input: Given x0, compute p0 = r0 = b− Ax0;
Output: solution of linear system Ax = b.

Iterate i = 0, 1, 2, · · · ,
compute αi = (ri, Api)/(Api, Api),
xi+1 = xi + αipi,
ri+1 = ri − αiApi ≡ b− Axi,

pi+1 = ri+1 +
i∑

j=0

β
(i)
j pj,

β
(i)
j are chosen so that (Api+1, Apj) = 0 , for 0 ≤ j ≤ i.

End;

It requires that 1
2
(AT + A) is symmetric positive definite.

Example 4.14.1 Let

A =

[
0 1
−1 0

]
and b =

[
1
1

]
.

Take x0 = 0. Then we obtain the following results:

• For i = 0 in Algorithm 4.14.1, we have that α0 = 0 which implies that x1 = x0 and
r1 = r0. Thus p1 = 0.

• For i = 1 in Algorithm 4.14.1, we see that a division by zero when computing α1

and break down.
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4.14.1 FOM algorithm: Full orthogonalization method

For GMRES method,

(a) CANNOT break down, unless it has already converged.

(b) 1/2 storage required than GCR,

(c) 1/3 fewer arithmetic operations than GCR

Main goal: Find orthogonal basis for Kk = {r0, Ar0, · · · , Ak−1r0}, i.e., span(Kk) =<
v1, · · · , vk >, where vi⊥vj for i ̸= j.

Theorem 4.14.1 (Implicit Q theorem) Let AQ1 = Q1H1 and AQ2 = Q2H2, where
H1, H2 are Hessenberg and Q1, Q2 are unitary with Q1e1 = Q2e1 = q1. Then Q1 = Q2

and H1 = H2.

Proof: Let

A[q1 q2 · · · qn] = [q1 q2 · · · qn]


h11 h12 · · · · · · h1n

h21 h22
. . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . hn−1,n
0 · · · 0 hn,n−1 hnn

 . (4.14.1)

Then we have

Aq1 = h11q1 + h21q2. (4.14.2)

Since q1⊥q2, it implies that

h11 = q∗1Aq1/q
∗
1q1.

From (4.14.2), we get that

q̃2 ≡ h21q2 = Aq1 − h11q1.

That is

q2 = q̃2/∥q̃2∥2 and h21 = ∥q̃2∥2.

Similarly, from (4.14.1),

Aq2 = h12q1 + h22q2 + h32q3,

where

h12 = q∗1Aq2 and h22 = q∗2Aq2.

Let

q̃3 = Aq2 − h12q1 + h22q2.



4.14 GMRES: Generalized Minimal Residual Algorithm for solving
Nonsymmetric Linear Systems 153
Then

q3 = q̃3/∥q̃3∥2 and h32 = ∥q̃3∥,

and so on. Therefore, [q1, · · · , qn] are uniquely determined by q1. Thus, uniqueness holds.
Let Kn = [v1, Av1, · · · , An−1v1] with ∥v1∥2 = 1 is nonsingular. Kn = UnRn and

Une1 = v1. Then

AKn = KnCn = [v1, Av1, · · · , An−1v1]


0 · · · · · · 0 ∗
1

. . .
... ∗

0
. . . . . .

...
...

...
. . . . . . 0

...
0 · · · 0 1 ∗

 . (4.14.3)

Since Kn is nonsingular, (4.14.3) implies that

A = KnCnK
−1
n = (UnRn)Cn(R

−1
n U−1n ).

That is

AUn = Un(RnCnR
−1
n ),

where (RnCnR
−1
n ) is Hessenberg and Une1 = v1. Because < Un >=< Kn >, find AVn =

VnHn by any method with Vne1 = v1, then it holds that Vn = Un, i.e., v
(i)
n = u

(i)
n for

i = 1, · · · , n.

Algorithm 4.14.2 (Arnoldi algorithm)

Input: Given v1 with ∥v1∥2 = 1;
Output: Arnoldi factorization: AVk = VkHk + hk+1,kvk+1e

T
k .

Iterate j = 1, 2, · · · ,
compute hij = (Avj, vi) for i = 1, 2, · · · , j,
ṽj+1 = Avj −

∑j
i=1 hijvi,

hj+1,j = ∥ṽj+1∥2,
vj+1 = ṽj+1/hj+1,j.

End;

Remark 4.14.1 (a) Let Vk = [v1, · · · , vk] ∈ Rn×k where vj, for j = 1, . . . , k, is gener-
ated by Arnoldi algorithm. Then Hk ≡ V T

k AVk is upper k × k Hessenberg.

(b) Arnoldi’s original method was a Galerkin method for approximate the eigenvalue of
A by Hk.

In order to solve Ax = b by the Galerkin method using < Kk >≡< Vk >, we seek
an approximate solution xk = x0 + zk with zk ∈ Kk =< r0, Ar0, · · · , Ak−1r0 > and
r0 = b− Ax0.

Definition 4.14.1 {xk} is said to be satisfied the Galerkin condition if rk ≡ b− Axk is
orthogonal to Kk for each k.
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The Galerkin method can be stated as that find

xk = x0 + zk with zk ∈ Vk (4.14.4)

such that

(b− Axk, v) = 0, ∀ v ∈ Vk,

which is equivalent to find

zk ≡ Vkyk ∈ Vk (4.14.5)

such that

(r0 − Azk, v) = 0, ∀ v ∈ Vk. (4.14.6)

Substituting (4.14.5) into (4.14.6), we get

V T
k (r0 − AVkyk) = 0,

which implies that

yk = (V T
k AVk)

−1∥r0∥e1. (4.14.7)

Since Vk is computed by the Arnoldi algorithm with v1 = r0/∥r0∥, yk in (4.14.7) can be
represented as

yk = H−1k ∥r0∥e1.

Substituting it into (4.14.5) and (4.14.4), we get

xk = x0 + VkH
−1
k ∥r0∥e1.

Using the result that AVk = VkHk + hk+1,kvk+1e
T
k , rk can be reformulated as

rk = b− Axk = r0 − AVkyk = r0 − (VkHk + hk+1,kvk+1e
T
k )yk

= r0 − Vk∥r0∥e1 − hk+1,ke
T
k ykvk+1 = −(hk+1,ke

T
k yk)vk+1.

Algorithm 4.14.3 (FOM algorithm: Full orthogonalization method)

Input: choose x0, compute r0 = b− Ax0 and v1 = r0/∥r0∥;
Output: solution of linear system Ax = b.

Iterate j = 1, 2, · · · , k,
compute hij = (Avj, vi) for i = 1, 2, · · · , j,
ṽj+1 = Avj −

∑j
i=1 hijvi,

hj+1,j = ∥ṽj+1∥2,
vj+1 = ṽj+1/hj+1,j.

End;
Form the solution:

xk = x0 + Vkyk, where yk = ∥r0∥H−1k e1.
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In practice, k is chosen such that the approximate solution xk will be sufficiently
accurate. Fortunately, it is simple to determine a posteriori when k is sufficiently large
without having to explicitly compute xk. Furthermore, we have

∥b− Axk∥ = hk+1,k|eTk yk|

Property 4.14.1 (FOM) (a) rk//vk+1 ⇒ ri ⊥ rj, i ̸= j

(b) FOM does NOT break down ⇐⇒ If the degree of the minimal polynomial of v1 is
at least k, and the matrix Hk is nonsingular.

(c) The process terminates at most N steps.

A difficulty with the full orthogonalization method is that it becomes increasingly
expensive when k increases. There are two distinct ways of avoiding this difficulty.

(i) restart the algorithm every m steps

(ii) vi+1 are only orthogonal to the previous ℓ vectors. Hk is then banded, then we have
incomplete FOM(ℓ).

A drawback of these truncation techniques is the lack of any theory concerning the
global convergence of these truncation technique. Such a theory is difficult because there
is NO optimality property similar to that of CG method. Therefore, we consider GMRES
which satisfies an optimality property.

4.14.2 The generalized minimal residual (GMRES) algorithm

The approximate solution of the form x0 + zk, which minimizes the residual norm over
zk ∈ Kk, can in principle be obtained by following algorithms:

• The ORTHODIR algorithm of Jea and Young;

• the generalized conjugate residual method (GCR);

• GMRES.

Let

Vk = [v1, · · · , vk] , H̃k =


h1,1 h1,2 · · · h1,k
h2,1 h2,2 · · · h2,k

0
. . . . . .

...
...

. . . hk,k−1 hk,k
0 · · · 0 hk+1,k

 ∈ R(k+1)×k.

By Arnoldi algorithm, we have

AVk = Vk+1H̃k. (4.14.8)
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To solve the least square problem:

min
z∈Kk

∥ro − Az∥2 = min
z∈Kk

∥b− A(xo + z)∥2, (4.14.9)

where Kk =< ro, Aro, · · · , Ak−1ro >=< v1, · · · , vk > with v1 = ro
∥ro∥2 . Set z = Vky, the

least square problem (4.14.9) is equivalent to

min
y∈Rk

J(y) = min
y∈Rk
∥βv1 − AVky∥2, β = ∥ro∥2. (4.14.10)

Using (4.14.8), we have

J(y) = ∥Vk+1[βe1 − H̃ky]∥2 = ∥βe1 − H̃ky∥2. (4.14.11)

Hence, the solution of the least square (4.14.9) is

xk = xo + Vkyk,

where yk minimize the function J(y) defined by (4.14.11) over y ∈ Rk.

Algorithm 4.14.4 (GMRES algorithm)

Input: choose x0, compute r0 = b− Ax0 and v1 = r0/∥r0∥;
Output: solution of linear system Ax = b.

Iterate j = 1, 2, · · · , k,
compute hij = (Avj, vi) for i = 1, 2, · · · , j,
ṽj+1 = Avj −

∑j
i=1 hijvi,

hj+1,j = ∥ṽj+1∥2,
vj+1 = ṽj+1/hj+1,j.

End;
Form the solution:

xk = x0 + Vkyk, where yk minimizes J(y) in (4.14.11).

Difficulties: when k is increasing, storage for vj, like k, the number of multiplications is
like 1

2
k2N .

Algorithm 4.14.5 (GMRES(m) algorithm)

Input: choose x0, compute r0 = b− Ax0 and v1 = r0/∥r0∥;
Output: solution of linear system Ax = b.

Iterate j = 1, 2, · · · ,m,
compute hij = (Avj, vi) for i = 1, 2, · · · , j,
ṽj+1 = Avj −

∑j
i=1 hijvi,

hj+1,j = ∥ṽj+1∥2,
vj+1 = ṽj+1/hj+1,j.

End;
Form the solution:

xm = x0 + Vmym, where ym minimizes ∥ βe1 − H̃my ∥ for y ∈ Rm.
Restart: Compute rm = b− Axm , if ∥rm∥ is small , then stop,

else , Compute x0 = xm and v1 = rm/ ∥ rm ∥, GoTo Iterate step.
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H̃k

Consider the matrix H̃k, and let us suppose that we want to solve the least squares
problem:

min
y∈Rk
∥ βe1 − H̃ky ∥2

Assume Givens rotations Fi , i = 1 . . . , j such that

Fj · · ·F1H̃j = Fj . . . F1


× × × ×
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 =


× × × ×
× × ×
× ×
×
0

 ≡ Rj ∈ R(j+1)×j.

In order to obtain Rj+1 we must start by premultiptying the new column by the previous
rotations.

H̃j+1 =


× × × × +
× × × × +
0 × × × +
0 0 × × +
0 0 0 × +
0 0 0 0 +

⇒ Fj . . . FiH̃j+1 =


× × × × +
× × × +
× × +
× +
0 r
0 h


The principal upper (j + 1) × j submatrix of the above matrix is nothing but Rj, and
h := hj+2,j+1 is not affected by the previous rotations. The next rotation Fj+1 defined by{

cj+1 ≡ r/(r2 + h2)1/2,
sj+1 = −h/(r2 + h2)1/2.

Thus, after k steps of the above process, we have achieved

QkH̃k = Rk

where Qk is a (k + 1)× (k + 1) unitary matrix and

J(y) =∥ βe1 − H̃ky ∥=∥ Qk[βe1 − H̃ky] ∥=∥ gk −Rky ∥, (4.14.12)

where gk ≡ Qkβe1. Since the last row of Rk is a zero row, the minimization of (4.14.12)

is achieved at yk = R̃−1k g̃k , where R̃k and g̃k are removed the last row of Rk and the last
component of gk, respectively.

Proposition 4.14.1 ∥ rk ∥=∥ b− Axk ∥=| The (k+1)-st component of gk |.

To avoid the extra computation needed to obtain xk explicitly we suggest an efficient
implementation of the last step of GMRES(m). To compute xm we need to compute H̃m
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and v1, . . . , vm. Since v1, · · · , vm are known, we need to compute hi,m, for i = 1, . . . ,m+1,
of the form 

h11 . . . h1m−1 h1m

h21
. . .

...
. . . . . .

...
0 hm,m−1 hmm

0 hm+1,m


with hi,m = (Avm, vi), for i ≤ m. Here hm+1,m satisfies

h2m+1,m =∥ Avm −
m∑
i=1

himvi ∥2=∥ Avm ∥2 −
m∑
i=1

h2i,m,

because

Avm −
m∑
i=1

himvi = hm+1,mvm+1, vm+1 ⊥ vi, for i = 1, . . . ,m.

Now we will show how to compute rm = b − Axm from vi’s i = 1, . . . ,m and Avm.
From (4.14.11) the residual vector can be expressed as

rm = Vm+1[βe1 − H̃mym].

Define t ≡ [t1, t2, . . . , tm+1]
T ≡ βe1 − H̃mym. Then

vm = (
m∑
i=1

tivi) + tm+1vm+1

= (
m∑
i=1

tivi) + tm+1
1

hm+1,m

[Avm −
m∑
i=1

hi,mvi]

=
tm+1

hm+1,m

Avm +
m∑
i=1

(ti − tm+1hi,m/hm+1,m)vi.

Assume the first m−1 Arnoldi steps have been performed that the first m−1 columns of
H̃m and the first m vectors vi, i = 1, . . . ,m are available. Since we will not normalize vi at
every step, we do not have explicitly vi but rather wi = µivi, µi are some known scaling
coefficient (e.g., µi = ∥vi∥). We have shown that rm is a linear combination of Avm and
vi’s, i = 1, . . . ,m. Hence after m steps we do not need vm+1. (Note that computing
ṽm+1 and its norm costs (2m + 1)n multiplications. So elimination of its computation
is a significant saving). So using v1, . . . , vm and Avm we can compute restarting vector
v1 := rm/ ∥ rm ∥ and don’t need to compute vm+1. Then

rm =
tm+1

hm+1,m

Avm +
m∑
i=1

(ti − tm+1hi,m/hm+1,m)vi.

By Proposition 4.14.1 it holds that ∥ rm ∥2=| the (k + 1)-st component of gk |. So v1 :=
rm/ ∥ rm ∥2.
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GMRES CANNOT break down! GCR can break down when A is not positive real, i.e.,
1
2
(A+AT ) is not symmetric positive definite. We assume that the first m Arnoldi vectors

can be constructed. That is, hj+1,j ̸= 0, for j = 1, 2, . . . ,m. In fact, if hj+2,j+1 ̸= 0, the
diagonal element rj+1,j+1 of Rj+1 satisfies

rj+1,j+1 = (cj+1r − sj+1hj+2,j+1) = (r2 + h2j+2,j+1)
1/2 > 0.

Hence, the diagonal elements of Rm do not vanish and the least squares problem J(y) =
min ∥gm −Rmy∥2 can be solved, establishing that the algorithm can not break down if
hj+1,j ̸= 0, for j = 1, . . . ,m.

Thus the only possible potential difficulty is that during the Arnoldi process we en-
counter hj+1,j = 0. From Arnoldi’s algorithm it is easily seen that

(i) AVj = VjHj which means that Kj spanned by Vj is invariant. Note that if A is
nonsingular then the eigenvalues of Hj are nonzero. J(y) in (4.14.10) at the jth
step becomes

J(y) = ∥βv1 − AVjy∥ = ∥βv1 − VjHjy∥ = ∥Vj[βe1 −Hjy]∥ = ∥βe1 −Hjy∥ .

Since Hj is nonsingular, the above function is minimum for y = H−1j βe1 and the
corresponding minimum norm is zero, i.e., the solution xj is exact.

Conversely, assume xj is the exact solution and xi, for i = 1, . . . , j − 1 are not, i.e.
rj = 0 but ri ̸= 0, for i = 0, 1, . . . , j − 1. From Proposition 4.14.1 we know that

∥rj∥ = sje
T
j−1gj−1 = sj∥rj−1∥ = 0.

Then sj = 0 (∥rj−1∥ ̸= 0) which implies that hj+1,j = 0, i.e., the algorithm breaks
down and ṽj+1 = 0 which proves the result.

(ii) ṽj+1 = 0 and ṽi ̸= 0, for i = 1, . . . , j ⇔ the degree of minimal polynomial of r0 = v1
is equal to j.

(⇐) Assume that there exists a polynomial pj of degree j such that pj(A)v1 = 0
and pj is the polynomial of the lowest degree for which this is true. Therefore,
Kj+1 =< v1, Av1, · · · , Ajv1 >= Kj so ṽj+1 ∈ Kj+1 = Kj and ṽj+1⊥Kj, then
ṽj+1 = 0. Moreover, if ṽi = 0 for some i ≤ j then there is a polynomial pi of degree
i such that pi(A)vi = 0. This contradicts the minimality of pj.

(⇒) There is a polynomial pj of degree j such that pj(A)v1 = 0 (by assumption
ṽj+1 = c, ṽi ̸= 0, i = 1, . . . , j). pj is the polynomial of the lowest degree for which
this is true. Otherwise, we have ṽi = 0, for some i < j + 1 by the first part of this
proof. This is contradiction.

Proposition 4.14.2 The solution xj produced by GMRES at step j is exact which is
equivalent to

(i) The algorithm breaks down at step j,

(ii) ṽj+1 = 0,
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(iii) hj+1,j = 0,

(iv) The degree of the minimal polynomial of r0 is j.

Corollary 4.14.1 For an n× n problem GMRES terminates at most n steps.

This uncommon type of breakdown is sometimes referred to as a “Lucky” breakdown
is the context of the Lanczos algorithm.

Proposition 4.14.3 Suppose that A is diagonalizable so that A = XDX−1 and let

ε(m) = min
p∈Pm,p(0)=1

max
λi∈σ(A)

|p(λi)| .

Then

∥rm+1∥ ≤ κ(X)ε(m) ∥r0∥ ,
where κ(X) = ∥X∥∥X−1∥.

When A is positive real with symmetric part M , it holds that

∥rm∥ ≤ [1− α/β]m/2 ∥r0∥ ,
where α = (λmin(M))2 and β = λmax(A

TA).
This proves the convergence of GMRES(m) for all m, when A is positive real.

Theorem 4.14.2 Assume λ1, . . . , λv of A with positive(negative) real parts and the other
eigenvalues enclosed in a circle centered at C with C > 0 and have radius R with C > R.
Then

ε(m) ≤
[
R

C

]m−ν
max

j=ν+1,··· ,N

ν∏
i=1

|λi − λj|
|λi|

≤
[
D

d

]2 [
R

C

]m−ν
where

D = max
i=1,··· ,ν

j=ν+1,··· ,N

|λi − λj| and d = min
i=1,··· ,ν

|λi| .

Proof: Consider p(z) = r(z)q(z) where r(z) = (1−z/λ1) · · · (1−z/λν) and q(z) arbitrary
polynomial of deg ≤ m − ν such that q(0) = 1. Since p(0) = 1 and p(λi) = 0, for
i = 1, . . . , ν, we have

ε(m) ≤ max
j=ν+1,··· ,N

|p(λj)| ≤ max
j=ν+1,··· ,N

|r(λj)| max
j=ν+1,··· ,N

|q(λj)| .

It is easily seen that

max
j=ν+1,··· ,N

|r(λj)| = max
j=ν+1,··· ,N

ν∏
i=1

|λi − λj|
|λi|

≤
[
D

d

]ν
.

By maximin principle, the maximin of |q(z)| for z ∈ {λj}Nj=ν+1 is no larger than its
maximin over the circle that encloses that set. Taking σ(z) = [(C − z)/C]m−ν whose
maximin modulus on the circle is (R/C)m−ν yields the desired result.

Corollary 4.14.2 Under the assumptions of Proposition 4.14.3 and Theorem 4.14.2,
GMRES(m) converges for any initial x0 if

m > νLog

[
DC

dR
κ(X)1/ν

]/
Log

[
C

R

∣∣∣∣ .
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Chapter 5

The Unsymmetric Eigenvalue
Problem

Generalized eigenvalue problem (GEVP):
Given A,B ∈ Cn×n. Determine λ ∈ C and 0 ̸= x ∈ Cn with Ax = λBx. λ is
called an eigenvalue of the pencil A − λB (or pair(A,B)) and x is called an eigen-
vector corresponding to λ. λ is an eigenvalue of A − λB ⇐⇒ det(A − λB) = 0.
(σ(A,B) ≡ {λ ∈ C | det(A− λB) = 0}.)

Definition 5.0.2 A pencil A − λB (A,B ∈ Rm×n) or a pair(A,B) is called regular if
that

(i) A and B are square matrices of order n, and

(ii) det(A− λB) ̸≡ 0.

In all other case (m ̸= n or m = n but det(A− λB) ≡ 0), the pencil is called singular.

Detailed algebraic structure of a pencil A− λB see Matrix theory II, chapter XII (Gant-
macher 1959).

Eigenvalue Problem (EVP):
Special case in GEVP when B = I, we have λ ∈ C and 0 ̸= x ∈ Cn with Ax = λx. λ is
an eigenvalue of A and x is an eigenvector corresponding to λ.

Definition 5.0.3 (a) σ(A) = {λ ∈ C | det(A− λI) = 0} is called the spectrum of A.

(b) ρ(A) = max{| λ |: λ ∈ σ(A)} is called the radius of σ(A).

(c) P (λ) = det(λI − A) is called the characteristic polynomial of A.

Let P (λ) =
s∏

i=1

(λ− λi)m(λi), λi ̸= λj(i ̸= j) and
s∑

i=1

m(λi) = n.

Example 5.0.2 A =

[
2 2
0 3

]
, B =

[
1 0
0 0

]
=⇒ det(A− λB) = 2− λ and σ(A,B) =

{2}.
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Example 5.0.3 A =

[
1 2
0 3

]
, B =

[
0 1
0 0

]
=⇒ det(A− λB) = 3 and σ(A,B) = ∅.

Example 5.0.4 A =

[
1 2
0 0

]
, B =

[
1 0
0 0

]
=⇒ det(A− λB) = 0 and σ(A,B) = C.

Example 5.0.5 det(µA− λB) = (2µ− λ)µ
µ = 1 : Ax = λBx =⇒ λ = 2.
λ = 1 : Bx = µAx =⇒ µ = 0, µ = 1

2
=⇒ λ =∞, λ = 2.

σ(A,B) = {2,∞}.

Example 5.0.6 det(µA− λB) = µ · 3µ
µ = 1 : no solution for λ.
λ = 1 : Bx = µAx =⇒ µ = 0, 0.(multiple)
σ(A,B) = {∞,∞}.

Let
m(λi) := algebraic multiplicity of λi.
n(λi) := n− rank(A− λiI) = geometric multiplicity.
1 ≤ n(λi) ≤ m(λi).

If for some i, n(λi) < m(λi), then A is degenerated (defective). The following statements
are equivalent:

(a) A is diagonalizable: There exists a nonsingular matrix T such that T−1AT =
diag(λ1, · · · , λn).

(b) There are n linearly independent eigenvectors.

(c) A is nondefective, i.e. ∀ λ ∈ σ(A) =⇒ m(λ) = n(λ).

If A is defective then eigenvector + principle vector =⇒ Jordan form.

Theorem 5.0.3 (Jordan decomposition) If A ∈ Cn×n, then there exists a nonsingu-
lar X ∈ Cn×n, such that X−1AX = diag(J1, · · · , Jt),where

Ji =


λi 1 0

. . . . . .
. . . 1

0 λi


is mi ×mi and m1 + · · ·+mt = n.

Theorem 5.0.4 (Schur decomposition) If A ∈ Cn×n then there exists a unitary ma-
trix U ∈ Cn×n such that U∗AU(= U−1AU) a upper triangular.

- A normal(i.e. AA∗ = A∗A) ⇐⇒ ∃ unitary U such that U∗AU = diag(λ1, · · · , λn), i.e.
Aui = λiui, u∗iuj = δij.

- A hermitian(i.e. A∗ = A) ⇐⇒ A is normal and σ(A) ⊆ R.

- A symmetric(i.e. AT = A,A ∈ Rn×n) ⇐⇒ ∃ orthogonal U such that UTAU =
diag(λ1, · · · , λn) and σ(A) ⊆ R.
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5.1 Orthogonal Projections and C-S Decomposition

Definition 5.1.1 Let S ⊆ Rn be a subspace, P ∈ Rn×n is the orthogonal projection onto
S if 

Range(P ) = S,
P 2 = P,
P T = P,

(5.1.1)

where Range(P ) = R(P ) = {y ∈ Rn | y = Px, for some x ∈ Rn}.

Remark 5.1.1 If x ∈ Rn, then Px ∈ S and (I − P )x ∈ S⊥.

Example 5.1.1 P = vvT/vTv is the orthogonal projection onto S = span{v}, v ∈ Rn.

x

Px

S=span{v}

Figure 5.1: Orthogonal projection

Remark 5.1.2 (i) If P1 and P2 are orthogonal projections, then for any z ∈ Rn we have

∥ (P1 − P2)z ∥22= (P1z)
T (I − P2)z + (P2z)

T (I − P1)z. (5.1.2)

If R(P1) = R(P2) = S then the right-hand side of (5.1.2) is zero. Thus the orthog-
onal projection for a subspace is unique.

(ii) If V = [v1, · · · ,vk] is an orthogonal basis for S, then P = V V T is unique orthogonal
projection onto S.

Definition 5.1.2 Suppose S1 and S2 are subspaces of Rn and dim(S1) = dim(S2). We
define the distance between S1 and S2 by

dist(S1, S2) =∥ P1 − P2 ∥2, (5.1.3)

where Pi is the orthogonal projection onto Si, i = 1, 2.

Remark 5.1.3 By considering the case of one-dimensional subspaces in R2, we obtain
a geometrical interpretation of dist(·, ·). Suppose S1 = span{x} and S2 = span{y} and
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S

S

=span{y}

=span{x}

2

θ

1

∥ x ∥2=∥ y ∥2= 1. Assume that xTy = cos θ, θ ∈ [0, π
2
]. It follows that the difference

between the projections onto these spaces satisfies

P1 − P2 = xxT − yyT = x[x− (yTx)y]T − [y − (xTy)x]yT .

If θ = 0(⇒ x = y), then dist(S1, S2) =∥ P1 − P2 ∥2= sin θ = 0.
If θ ̸= 0, then

Ux = [u1, u2] = [x,−[y − (yTx)x]/ sin θ]

and

Vx = [v1, v2] = [[x− (xTy)y]/ sin θ, y]

are defined and orthogonal. It follows that

P1 − P2 = Ux diag[sin θ, sin θ] V T
x

is the SVD of P1 − P2. Consequently, dist(S1, S2) = sin θ, the sine of the angle between
the two subspaces.

Theorem 5.1.1 (C-S Decomposition, Davis / Kahan(1970) or Stewart(1977))

If Q =

[
Q11 Q12

Q21 Q22

]
is orthogonal with Q11 ∈ Rk×k and Q22 ∈ Rj×j(k ≥ j), then there

exists orthogonal matrices U1, V1 ∈ Rk×k and orthogonal matrices U2, V2 ∈ Rj×j such that[
U1 0
0 U2

]T [
Q11 Q12

Q21 Q22

] [
V1 0
0 V2

]
=

 I 0 0
0 C S
0 −S C

 , (5.1.4)

where

C = diag(c1, · · · , cj), ci = cos θi,
S = diag(s1, · · · , sj), si = sin θi
and 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θj ≤ π

2
.

Lemma 5.1.1 Let Q =

[
Q1

Q2

]
be orthogonal with Q1 ∈ Rn×n. Then there are unitary

matrices U1, U2 and W such that[
UT
1 0
0 UT

2

] [
Q1

Q2

]
W =

[
C
S

]
where C = diag(c1, · · · , cj) ≥ 0, and S = diag(s1, · · · , sn) ≥ 0 with c2i + s2i = 1, i =
1, · · · , n.
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Proof: Let UT
1 Q1W = C be the SVD of Q1. Consider[

UT
1 0
0 I

] [
Q1

Q2

]
W =

[
C

Q2W

]
has orthogonal columns. Define Q̃2 ≡ Q2W . Then C2 + Q̃T

2 Q̃2 = I or Q̃T
2 Q̃2 = I − C2

diagonal, thus Q̃T
2 Q̃2 is diagonal. Which means that the nonzero column of Q̃2 are

orthogonal to one another.If all the columns of Q̃2 are nonzero, set S2 = Q̃T
2 Q̃2 and

U2 = Q̃2S
−1, then we have UT

2 U2 = I and UT
2 Q̃2 = S. It follows the decomposition.

If Q̃2 has zero columns, normalize the nonzero columns and replace the zero columns
with an orthogonal basis for the orthogonal complement of the column space of Q̃2. It is
easily verified that U2 so defined is orthogonal and S ≡ UT

2 Q̃2 is diagonal. It also follows
that decomposition.

Theorem 5.1.2 (C-S Decomposition) Let the unitary matrix W ∈ Cn×n be parti-

tioned in the form W =

[
W11 W12

W21 W22

]
, where W11 ∈ Cr×r with r ≤ n

2
. Then there exist

unitary matrices U = diag(

r︷︸︸︷
U1 ,

n−r︷︸︸︷
U2 ) and V = diag(

r︷︸︸︷
V1 ,

n−r︷︸︸︷
V2 ) such that

U∗WV =

 Γ −Σ 0
Σ Γ 0
0 0 I

 }r}r
}n− 2r

, (5.1.5)

where Γ = diag(γ1, · · · , γr) ≥ 0 and Σ = diag(σ1, · · · , σr) ≥ 0 with γ2i + σ2
i = 1, i =

1, · · · , r.

Proof: Let Γ = U∗1W11V1 be the SVD of W11 with the diagonal elements of Γ : γ1 ≤
γ2 ≤ · · · ≤ γk < 1 = γk+1 = · · · = γr, i.e.

Γ = diag(Γ′, Ir−k).

The matrix

[
W11

W21

]
V1 has orthogonal columns. Hence

I =

[(
W11

W21

)
V1

]∗ [(
W11

W21

)
V1

]
= Γ2 + (W21V1)

∗(W21V1).

Since I and Γ2 are diagonal, (W21V1)
∗(W21V1) is diagonal. So the columns of W21V1 are

orthogonal. Since the ith diagonal of I−Γ2 is the norm of the ith column of W21V1, only
the first k(k ≤ r ≤ n − r) columns of W21V1 are nonzero. Let Û2 be unitary whose first
k columns are the normalized columns of W21V1. Then

Û∗2W21V1 =

[
Σ
0

]
,

where Σ = diag(σ1, · · · , σk, 0, · · · , 0) ≡ diag(Σ′, 0), Û2 ∈ C(n−r)×(n−r). Since

diag(U1, Û2)
∗
(
W11

W21

)
V1 =

 Γ
Σ
0


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has orthogonal (orthonormal) columns, we have γ2i + σ2
i = 1, i = 1, · · · , r. (Σ′ is nonsin-

gular).
By the same argument as above : there is a unitary V2 ∈ C(n−r)×(n−r) such that

U∗1W12V2 = (T, 0),

where T = diag(τ1, · · · , τr) and τi ≤ 0. Since γ2i + τ 2i = 1, it follows from γ2i + σ2
i = 1

that T = −Σ. Set Û = diag(U1, Û2) and V = diag(V1, V2). Then X = Û∗WV can be
partitioned in the form

X =


Γ′ 0 −Σ′ 0 0
0 I 0 0 0
Σ′ 0 X33 X34 X35

0 0 X43 X44 X45

0 0 X53 X54 X55


}k
}r − k
}k
}r − k
}n− 2r

.

Since columns 1 and 4 are orthogonal, it follows Σ′X34 = 0. Thus X34 = 0 (since Σ′

nonsigular). Likewise X35, X43, X53 = 0. From the orthogonality of columns 1 and 3, it

follows that −Γ′Σ′ + Σ′X33 = 0, so X33 = Γ′. The matrix Û3 =

[
X44 X45

X54 X55

]
is unitary.

Set U2 = diag(Ik, Û3)Û2 and U = diag(U1, U2). Then U
HWV = diag(Ir+k, Û3)X with

X =


Γ′ 0 −Σ′ 0 0
0 I 0 0 0
Σ′ 0 Γ′ 0 0
0 0 0 I 0
0 0 0 0 I


.

The theorem is proved.

Theorem 5.1.3 LetW = [W1,W2] and Z = [Z1, Z2] be orthogonal, whereW1, Z1 ∈ Rn×k

and W2, Z2 ∈ Rn×(n−k). If S1 = R(W1) and S2 = R(Z1) then

dist(S1, S2) =
√
1− σ2

min(W
T
1 Z1) (5.1.6)

Proof: Let Q = W TZ and assume that k ≥ j = n− k. Let the C-S decomposition of Q
be given by (5.1.2), (Qij =W T

i Zj, i, j = 1, 2). It follows that

∥ W T
1 Z2 ∥2=∥ W T

2 Z1 ∥2= sj =
√
1− c2j =

√
1− σ2

min(W
T
1 Z1).

Since W1W
T
1 and Z1Z

T
1 are the orthogonal projections onto S1 and S2, respectively. We

have

dist(S1, S2) = ∥ W1W
T
1 − Z1Z

T
1 ∥2

= ∥ W T (W1W
T
1 − Z1Z

T
1 )Z ∥2

= ∥
[

0 W T
1 Z2

W T
2 Z1 0

]
∥2

= sj.

If k < j, the above argument by setting Q = [W2,W1]
T [Z2, Z1] and noting that

σmin(W
T
2 Z1) = σmin(W

T
1 Z2) = sj.
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5.2 Perturbation Theory

Theorem 5.2.1 (Gerschgorin Circle Theorem) If X−1AX = D+F , D ≡ diag(d1, · · · , dn)
and F has zero diagonal entries, then σ(A) ⊂

∪n
i=1Di, where

Di = {z ∈ C | |z − di| ≤
n∑

j=1,j ̸=i

|fij|}.

Proof: Suppose λ ∈ σ(A) and assume without loss of generality that λ ̸= di for i =
1, · · · , n. Since (D − λI) + F is singular, it follows that

1 ≤∥ (D − λI)−1F ∥∞=
n∑

j=1

|fkj| / |dk − λ|

for some k(1 ≤ k ≤ n). But this implies that λ ∈ Dk.

Corollary 5.2.1 If the union M1 =
∪k

j=1Dij of k discs Dij , j = 1, · · · , k, and the union
M2 of the remaining discs are disjoint, then M1 contains exactly k eigenvalues of A and
M2 exactly n− k eigenvalues.

Proof: Let B = X−1AX = D + F , for t ∈ [0, 1]. Let Bt := D + tF , then B0 =
D,B1 = B. The eigenvalues of Bt are continuous functions of t. Applying Theorem 5.2.1
of Gerschgorin to Bt, one finds that for t = 0, there are exactly k eigenvalues of B0 in M1

and n−k inM2. (Counting multiple eigenvalues) Since for 0 ≤ t ≤ 1 all eigenvalues of Bt

likewise must lie in these discs, it follows for reasons of continuity that also k eigenvalues
of A lie in M1 and the remaining n− k in M2.

Remark 5.2.1 Take X = I, A = diag(A) + offdiag(A). Consider the transformation
A −→ △−1A△ with △ = diag(δ1, · · · , δn). The Gerschgorin discs:

Di = {z ∈ C | |z − aii| ≤
n∑

k=1
k ̸=i

∣∣∣∣aikδkδi

∣∣∣∣ =: ρi}.

Example 5.2.1 Let A =

 1 ϵ ϵ
ϵ 2 ϵ
ϵ ϵ 2

, D1 = {z | |z − 1| ≤ 2ϵ}, D2 = D3 = {z |

|z − 2| ≤ 2ϵ}, 0 < ϵ≪ 1. Transformation with △ = diag(1, kϵ, kϵ), k > 0 yields

Ã = △−1A△ =

 1 kϵ2 kϵ2
1
k

2 ϵ
1
k

ϵ 2

.
For Ã we have ρ1 = 2kϵ2, ρ2 = ρ3 =

1
k
+ ϵ. The discs D1 and D2 = D3 for Ã are disjoint if

ρ1 + ρ2 = 2kϵ2 + 1
k
+ ϵ < 1.

For this to be true we must clearly have k > 1. The optimal value k̃, for which D1 and
D2(for Ã) touch one another, is obtained from ρ1 + ρ2 = 1. One finds
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k̃ =
2

1− ϵ+
√
(1− ϵ)2 − 8ϵ2

= 1 + ϵ+O(ϵ2)

and thus ρ1 = 2k̃ϵ2 = 2ϵ2 +O(ϵ3). Through the transformation A −→ Ã the radius ρ1 of
D1 can thus be reduced from the initial 2ϵ to about 2ϵ2.

Theorem 5.2.2 (Bauer-Fike) If µ is an eigenvalue of A + E ∈ Cn×n and X−1AX =
D = diag(λ1, · · · , λn), then

min
λ∈σ(A)

|λ− µ| ≤ κp(X) ∥ E ∥p,

where ∥ · ∥p is p-norm and κp(X) =∥ X ∥p∥ X−1 ∥p .

Proof: We need only consider the case µ ̸∈ σ(A). If X−1(A+E−µI)X is singular, then
so is I + (D − µI)−1(X−1EX). Thus,

1 ≤∥ (D − µI)−1(X−1EX) ∥p≤
1

min
λ∈σ(A)

|λ− µ|
∥ X ∥p∥ E ∥p∥ X−1 ∥p .

Theorem 5.2.3 Let Q∗AQ = D+N be a Schur decomposition of A with D = diag(λ1, · · · , λn)
and N strictly upper triangular, Nn = 0. If µ ∈ σ(A+ E), then

min
λ∈σ(A)

|λ− µ| ≤ max{θ, θ 1
n},

where θ =∥ E ∥2
∑n−1

k=0 ∥ N ∥k2.

Proof: Define δ = minλ∈σ(A) |λ− µ|. The theorem is true if δ = 0. If δ > 0, then
I − (µI − A)−1E is singular and we have

1 ≤ ∥ (µI − A)−1E ∥2
≤ ∥ (µI − A)−1 ∥2∥ E ∥2
= ∥ [(µI −D)−N ]−1 ∥2∥ E ∥2 .

Since (µI −D) is diagonal it follows that [(µI −D)−1N ]n = 0 and therefore

[(µI −D)−N ]−1 =
n−1∑
k=0

[(µI −D)−1N ]k(µI −D)−1.

Hence we have

1 ≤ ∥ E ∥2
δ

max{1, 1

δn−1
}
n−1∑
k=0

∥ N ∥k2,

from which the theorem readily follows.
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Example 5.2.2 If A =

 1 2 3
0 4 5
0 0 4.001

 and E =

 0 0 0
0 0 0

0.001 0 0

. Then σ(A + E) ∼=

{1.0001, 4.0582, 3.9427} and A’s matrix of eigenvectors satisfies κ2(X) ∼= 107. The Bauer-
Fike bound in Theorem 5.2.2 has order 104, but the Schur bound in Theorem 5.2.3 has
order 100.

Theorems 5.2.2 and 5.2.3 each indicate potential eigenvalue sensitively if A is non-
normal. Specifically, if κ2(X) and ∥ N ∥n−12 is large, then small changes in A can induce
large change in the eigenvalues.

Example 5.2.3 If A =

[
0 I9
0 0

]
and E =

[
0 0

10−10 0

]
, then for all λ ∈ σ(A) and

µ ∈ σ(A + E), |λ− µ| = 10
−10
10 . So a change of order 10−10 in A results in a change of

order 10−1 in its eigenvalues.

Let λ be a simple eigenvalue of A ∈ Cn×n and x and y satisfy Ax = λx and y∗A = λy∗

with ∥ x ∥2=∥ y ∥2= 1. Using classical results from Function Theory, it can be shown
that there exists differentiable x(ε) and λ(ε) such that

(A+ εF )x(ε) = λ(ε)x(ε)

with ∥ x(ε) ∥2= 1 and ∥ F ∥2≤ 1, and such that λ(0) = λ and x(0) = x. By differentiating
and set ε = 0:

Aẋ(0) + Fx = λ̇(0)x+ λẋ(0).

Applying y∗ to both sides and dividing by y∗x =⇒

f(x, y) = yn + pn−1(x)y
n−1 + pn−2(x)y

n−2 + · · ·+ p1(x)y + p0(x).

Fix x, then f(x, y) = 0 has n roots y1(x), · · · , yn(x). f(0, y) = 0 has n roots y1(0), · · · , yn(0).

Theorem 5.2.4 Suppose yi(0) is a simple root of f(0, y) = 0, then there is δi > 0 such
that there is a simple root yi(x) of f(x, y) = 0 defined by

yi(x) = yi(0) + pi1x+ pi2x
2 + · · · , (may terminate!)

where the series is convergent for |x| < δi. (yi(x) −→ yi(0) as x −→ 0).

Theorem 5.2.5 If y1(0) = · · · = ym(0) is a root of multiplicity m of f(0, y) = 0, then
there exists δ > 0 such that there are exactly m zeros of f(x, y) = 0 when |x| < δ having
the following properties:

(a)
∑r

i=1mi = m, mi ≥ 0. The m roots fall into r groups.

(b) Those roots in the group of mi are mi values of a series

y1(0) + pi1z + pi2z
2 + · · ·

corresponding to the mi different values of z defined by z = x
1

mi .
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Let λ1 be a simple root of A and x1 be the corresponding eigenvector. Since λ1 is
simple, (A− λ1I) has at least one nonzero minor of order n− 1. Suppose this lies in the
first (n− 1) rows of (A− λ1I). Take x1 = (An1, An2, · · · , Ann). Then

(A− λ1I)


An1

An2
...

Ann

 =


0
0
...
0

 ,

since
∑n

j=1 anjAnj = det(A − λ1I) = 0. Here Ani is the cofactor of ani, hence it is a
polynomial in λ1 of degree not greater than (n− 1).

Let λ1(ε) be the simple eigenvalue of A + εF and x1(ε) be the corresponding eigen-
vector. Then the elements of x1(ε) are the polynomial in λ1(ε) and ε. Since the power
series for λ1(ε) is convergent for small ε, so x1(ε) = x1 + εz1 + ε2z2 + · · · is a convergent

power series
∣∣∣λ̇(0)∣∣∣ = |y∗Fx||y∗x|

≤ 1

|y∗x|
. The upper bound is attained if F = yx∗. We refer

to the reciprocal of s(λ) ≡ |y∗x| as the condition number of the eigenvalue λ.

λ(ε) = λ(0) + λ̇(0)ε + O(ε2), an eigenvalue λ may be perturbed by an amount
ε

s(λ)
,

if s(λ) is small then λ is appropriately regarded as ill-conditioned. Note that s(λ) is
the cosine of the angle between the left and right eigenvectors associated with λ and is
unique only if λ is simple. A small s(λ) implies that A is near a matrix having a multiple
eigenvalue. In particular, if λ is distinct and s(λ) < 1, then there exists an E such that
λ is a repeated eigenvalue of A+ E and

∥ E ∥2≤
s(λ)√

1− s2(λ)
,

this is proved in Wilkinson(1972).

Example 5.2.4 If A =

 1 2 3
0 4 5
0 0 4.001

 and E =

 0 0 0
0 0 0

0.001 0 0

. Then σ(A + E) ∼=

{1.0001, 4.0582, 3.9427} and s(1) ∼= 0.79×100, s(4) = 0.16×10−3, s(4.001) ∼= 0.16×10−3.
Observe that ∥ E ∥2 /s(λ) is a good estimate of the perturbation that each eigenvalue
undergoes.

If λ is a repeated eigenvalue, then the eigenvalue sensitivity question is more compli-

cated. For example A =

[
1 a
0 1

]
and F =

[
0 0
1 0

]
then σ(A+ εF ) = {1±

√
εa}. Note

that if a ̸= 0 then the eigenvalues of A + εF are not differentiable at zero, their rate of
change at the origin is infinite. In general, if λ is a detective eigenvalue of A, then O(ε)

perturbations in A result in O(ε
1
p ) perturbations in λ where p ≥ 2 (see Wilkinson AEP

pp.77 for a more detailed discussion).
We now consider the perturbations of invariant subspaces. Assume A ∈ Cn×n has

distinct eigenvalues λ1, · · · , λn and ∥ F ∥2= 1. We have

(A+ εF )xk(ε) = λk(ε)xk(ε), ∥ xk(ε) ∥2= 1,
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and
y∗k(ε)(A+ εF ) = λk(ε)y

∗
k(ε), ∥ yk(ε) ∥2= 1,

for k = 1, · · · , n, where each λk(ε),xk(ε) and yk(ε) are differentiable. Set ε = 0 :

Aẋk(0) + Fxk = λ̇k(0)xk + λkẋk(0),

where λk = λk(0) and xk = xk(0). Since {xi}ni=1 linearly independent, write ẋk(0) =∑n
i=1 aixi, so we have

n∑
i=1
i ̸=k

ai(λi − λk)xi + Fxk = λ̇k(0)xk.

But y∗i (0)xk = y∗i xk = 0, for i ̸= k and thus

ai = y∗i Fxk/[(λk − λi)y∗i xi], i ̸= k.

Hence the Taylor expansion for xk(ε) is

xk(ε) = xk + ε

n∑
i=1
i̸=k

{
y∗i Fxk

(λk − λi)y∗i xi

}
xi +O(ε2).

Thus the sensitivity of xk depends upon eigenvalue sensitivity and the separation of λk
from the other eigenvalues.

Example 5.2.5 If A =

[
1.01 0.01
0.00 0.99

]
, then λ = 0.99 has Condition

1

s(0.99)
∼= 1.118

and associated eigenvector x = (0.4472,−8.944)T . On the other hand, λ̃ = 1.00 of the

”nearby” matrix A+ E =

[
1.01 0.01
0.00 1.00

]
has an eigenvector x̃ = (0.7071,−0.7071)T .

Suppose

Q∗AQ =

[
T11 T12
0 T22

]
}p
}q = n− p (5.2.1)

is a Schur decomposition of A with

Q = [ Q1︸︷︷︸
p

, Q2︸︷︷︸
n−p

]. (5.2.2)

Definition 5.2.1 We define the separation between T11 and T22 by

sepF (T11, T22) = min
Z ̸=0

∥ T11Z − ZT22 ∥F
∥ Z ∥F

.

Definition 5.2.2 Let X be a subspace of Cn, X is called an invariant subspace of A ∈
Cn×n, if AX ⊂ X (i.e. x ∈ X =⇒ Ax ∈ X).

Theorem 5.2.6 A ∈ Cn×n, V ∈ Cn×r and rank(V ) = r, then there are equivalent:
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(a) there exists S ∈ Cr×r such that AV = V S.

(b) R(V ) is an invariant subspace of A.

Proof: Trivial!

Remark 5.2.2 (a) If Sz = µz, z ̸= 0 then µ is eigenvalue of A with eigenvector V z.

(b) If V is a basis of X, then Ṽ = V (V ∗V )−
1
2 is an orthogonal basis of X.

Theorem 5.2.7 A ∈ Cn×n, Q = (Q1, Q2) orthogonal, then there are equivalent:

(a) If Q∗AQ = B =

[
B11 B12

B21 B22

]
, then B21 = 0.

(b) R(Q1) is an invariant subspace of A.

Proof: Q∗AQ = B ⇐⇒ AQ = QB = (Q1, Q2)

[
B11 B12

B21 B22

]
. Thus AQ1 = Q1B11 +

Q2B21.

(a) B21 = 0, then AQ1 = Q1B11, so R(Q1) is an invariant subspace of A (from Theorem
5.2.6).

(b) R(Q1) is invariant subspace. There exists S such that AQ1 = Q1S = Q1B11+Q2B21.
Multiply with Q∗1, then

S = Q∗1Q1S = Q∗1Q1B11 +Q∗1Q2B21.

So S = B11 =⇒ Q2B21 = 0 =⇒ Q∗2Q2B21 = 0 =⇒ B21 = 0.

Theorem 5.2.8 Suppose (5.2.1) and (5.2.2) hold and for E ∈ Cn×n we partition Q∗EQ
as follows:

Q∗EQ =

[
E11 E12

E21 E22

]
with E11 ∈ Rp×p and E22 ∈ R(n−p)×(n−p). If

δ = sep2(T11, T22)− ∥ E11 ∥2 − ∥ E22 ∥2> 0

and

∥ E21 ∥2 (∥ T12 ∥2 + ∥ E12 ∥2) ≤ δ2/4.

Then there exists P ∈ C(n−k)×k such that

∥ P ∥2≤ 2 ∥ E21 ∥2 /δ

and such that the column of Q̃1 = (Q1 + Q2P )(I + P ∗P )−
1
2 form an orthonormal basis

for a invariant subspace of A+ E.(See Stewart 1973).
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Lemma 5.2.1 Let {sm} and {pm} be two sequence defined by

sm+1 = sm/(1− 2ηpmsm), pm+1 = ηp2msm+1, m = 0, 1, 2, · · · (5.2.3)

and
s0 = σ, p0 = σγ (5.2.4)

satisfying
4ησ2γ < 1. (Here σ, η, γ > 0) (5.2.5)

Then {sm} is monotonic increasing and bounded above; {pm} is monotonic decreasing,
converges quadratically to zero.

Proof: Let
xm = smpm, m = 0, 1, 2, · · · . (5.2.6)

From (5.2.3) we have

xm+1 = sm+1pm+1 = ηp2ms
2
m/(1− 2ηpmsm)

2 = ηx2m/(1− 2ηxm)
2, (5.2.7)

(5.2.5) can be written as

0 < x0 <
1

4η
. (since x0 = s0p0 = σ2γ <

1

4η
) (5.2.8)

Consider
x = f(x), f(x) = ηx2/(1− 2ηx)2, x ≥ 0. (5.2.9)

By

df(x)

dx
=

2ηx

(1− 2ηx)3
,

we know that f(x) is differentiable and monotonic increasing in [0, 1/2η), and
df(x)

dx
|x=0= 0

: The equation (5.2.9) has zeros 0 and 1/4η in [0, 1/2η). Under Condition (5.2.8) the
iteration xm as in (5.2.7) must be monotone decreasing converges quadratically to zero.
(Issacson &Keller ”Analysis of Num. Method 1996, Chapter 3 §1.) Thus

sm+1

sm
=

1

1− 2ηxm
= 1 +

2ηxm
1− 2ηxm

= 1 + tm,

where tm is monotone decreasing, converges quadratically to zero, hence

sm+1 = s0

m∏
j=0

sj+1

sj
= s0

m∏
j=0

(1 + tj)

monotone increasing, and converges to s0

∞∏
j=0

(1 + tj) < ∞, so pm =
xm
sm

monotone de-

creasing, and quadratically convergent to zero.
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Theorem 5.2.9 Let

PA12P + PA11 − A22P − A21 = 0 (5.2.10)

be the quadratic matrix equation in P ∈ C(n−l)×l (1 ≤ l ≤ n), where[
A11 A12

A21 A22

]
= A, σ(A11)

∩
σ(A22) = ∅.

Define operator T by:

TQ ≡ QA11 − A22Q, Q ∈ C(n−l)×l. (5.2.11)

Let

η =∥ A12 ∥, γ =∥ A21 ∥ (5.2.12)

and

σ =∥ T−1 ∥= sup
∥P∥=1

∥ T−1P ∥ . (5.2.13)

If

4ησ2γ < 1, (5.2.14)

then according to the following iteration, we can get a solution P of (5.2.10) satisfying

∥ P ∥≤ 2σγ, (5.2.15)

and this iteration is quadratic convergence.

Iteration: Let Am =

[
A

(m)
11 A

(m)
12

A
(m)
21 A

(m)
22

]
, A0 = A.

(i) Solve

TmPm ≡ PmA
(m)
11 − A

(m)
22 Pm = A

(m)
21 (5.2.16)

and get Pm ∈ C(n−l)×l;

(ii) Compute

A
(m+1)
11 = A

(m)
11 + A12Pm,

A
(m+1)
22 = A

(m)
22 − PmA12,

A
(m+1)
21 = −PmA12Pm.

Goto (i), solve Pm+1.

Then

P = lim
m→∞

m∑
i=0

Pi (5.2.17)

is a solution of (5.2.10) and satisfies (5.2.15).
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Proof: (a) Prove that for m = 0, 1, 2, · · · , T−1m exist: denote

∥ T−1m ∥= σm, (T = T0, σ = σ0), (5.2.18)

then
4 ∥ A12 ∥∥ Pm ∥ σm < 1. (5.2.19)

By induction, m = 0, from σ(A11)
∩
σ(A22) = ∅ we have T0 = T is nonsingular. From

(5.2.12)-(5.2.14) it holds

4 ∥ A12 ∥∥ P0 ∥ σ0 = 4η ∥ T−1A21 ∥ σ ≤ 4ησ2γ < 1.

Suppose T−1m exists, and (5.2.19) holds, prove that T−1m+1 exists and

4 ∥ A12 ∥∥ Pm+1 ∥ σm+1 < 1.

From the definition
sep(A11, A22) = inf

∥Q∥=1
∥ QA11 − A22Q ∥

and the existence of T−1 follows sep(A11, A22) =∥ T−1 ∥−1= σ−1, and by the perturbation
property of ”sep” follows

sep(A
(m+1)
11 , A

(m+1)
22 ) = sep(A

(m)
11 + A12Pm, A

(m)
22 − PmA12)

≥ sep(A
(m)
11 , A

(m)
22 )− ∥ A12Pm ∥ − ∥ PmA12 ∥

≥ 1− 2 ∥ A12 ∥∥ Pm ∥ σm
σm

> 0. (5.2.20)

From

sep(A11, A22) ≤ min{|λ1 − λ2| : λ1 ∈ σ(A11), λ2 ∈ σ(A22)}.

We have σ(A
(m+1)
11 )

∩
σ(A

(m+1)
22 ) = ∅, hence T−1m+1 exists and

sep(A
(m+1)
11 , A

(m+1)
22 ) =∥ T−1m+1 ∥−1= σ−1m+1.

From (5.2.20) it follows

σm+1 ≤
σm

1− 2 ∥ A12 ∥∥ Pm ∥ σm
. (5.2.21)

Substitute (5.2.19) into (5.2.21), we get σm+1 ≤ 2σm, and

∥ Pm+1 ∥≤∥ T−1m+1 ∥∥ Am+1
21 ∥≤ σm+1 ∥ Pm ∥2∥ A12 ∥<

1

2
∥ Pm ∥ .

Hence

2 ∥ A12 ∥∥ Pm+1 ∥ σm+1 ≤ 2 ∥ A12 ∥∥ Pm ∥ σm < 1/2.

This proved that T−1m exists for all m = 0, 1, 2, · · · and (5.2.19) holds.
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(b) Prove ∥ Pm ∥ is quadratic convergence to zero. Construct sequences {qm}, {sm}, {pm}
satisfying

∥ A(m)
21 ∥≤ qm, σm ≤ sm, ∥ Pm ∥≤ pm. (5.2.22)

From
A

(m+1)
21 = −PmA12Pm (5.2.23)

follows
∥ A(m+1)

21 ∥≤∥ A12 ∥∥ Pm ∥2≤ ηp2m. (5.2.24)

Define {qm} by
qm+1 = ηp2m, q0 = γ; (5.2.25)

From (5.2.21) we have

σm+1 ≤
sm

1− 2ηpmsm
. (5.2.26)

Define {sm} by
sm+1 =

sm
1− 2ηpmsm

, s0 = σ; (5.2.27)

From (5.2.16) we have

∥ Pm ∥≤∥ T−1m ∥∥ A(m)
21 ∥= σm ∥ A(m)

21 ∥≤ smqm.

Define {pm} by
pm+1 = sm+1qm+1 = ηp2msm+1, p0 = σγ. (5.2.28)

By Lemma 5.2.1 follows that {pm} ↘ 0 monotone and form (5.2.22) follows that ∥
Pm ∥−→ 0 quadratically.

(c) Prove P (m) −→ P and (5.2.15) holds. According to the method as in Lemma
5.2.1. Construct {xm} (see (5.2.6),(5.2.7) ), that is

xm+1 =
ηx2m

(1− 2ηxm)2
, sm+1 =

sm
1− 2ηxm

(5.2.29)

and then
pm+1 =

xm+1

sm+1

=
ηxm

1− 2ηxm
pm. (5.2.30)

By induction! For all m = 1, 2, · · · we have

pm <
1

2
pm−1, xm <

1

4η
. (5.2.31)

In fact, substitute
ηx0

1− 2ηx0
=

ησ2γ

1− 2ησ2γ
<

1

2
(5.2.32)

into (5.2.30) and get p1 <
1

2
p0; From (5.2.29) and (5.2.32) it follows that

x1 =
1

η

(
ηx0

1− 2ηx0

)2

<
1

4η
.
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For m = 1, (5.2.31) holds. Suppose for m (5.2.31) holds, form (5.2.30), we have

pm+1 <
1

2
pm;

by (5.2.29) it holds xm+1 =
1

η

(
ηxm

1− 2ηxm

)2

<
1

4η
, that is (5.2.31) holds for m+1. Hence

(5.2.31) holds for all nature number m. Therefore pm < p0/2
m, m = 1, 2, · · · , hence

p(m) converges, where

p(m) =
m∑
i=0

pi <

(
m∑
i=0

1

2i

)
p0 = 2

(
1− 1

2m+1

)
p0. (5.2.33)

Let

P (m) =
m∑
i=0

Pi.

From (5.2.22),(5.2.28) and (5.2.33) follows that

∥ P (m) ∥≤
m∑
i=0

∥ Pi ∥≤
m∑
i=0

pi < 2

(
1− 1

2m+1

)
p0 = 2

(
1− 1

2m+1

)
σγ.

Let m −→ ∞, then (5.2.15) holds. By (b) the limit matrix P as in (5.2.17) is quadratic
convergence.

Theorem 5.2.10 Let A,E ∈ Cn×n, Z1 ∈ Cn×l be the eigenmatrix of A corresponding
to A11 ∈ Cl×l (i.e. AZ1 = Z1A11) and ZH

1 Z1 = I, 1 ≤ l ≤ n. Let Z = (Z1, Z2) be
unitary. Denote

Z∗AZ =

(
A11 A12

0 A22

)
, Z∗EZ =

(
E11 E12

E21 E22

)
.

Define T as in (5.2.11). Suppose σ(A11)
∩
σ(A22) = ∅ and ∥ T−1 ∥ (∥ E11 ∥ + ∥ E22 ∥

) < 1. Let

σ̃ =
∥ T−1 ∥

1− ∥ T−1 ∥ (∥ E11 ∥ + ∥ E22 ∥)
, η̃ =∥ A12 ∥ + ∥ E12 ∥, γ̃ =∥ E21 ∥ . (5.2.34)

If

4η̃σ̃2γ̃ < 1, (5.2.35)

then there exists P ∈ C(n−l)×l with ∥ P ∥≤ 2σ̃γ̃ such that

Z̃1 = Z1 + Z2P ∈ Cn×l (5.2.36)

is the eigenmatrix of Ã = A+ E corresponding to Ã′ = A11 + E11 + (A12 + E12)P .
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Proof: Prove that there exists L =

[
Il 0
P In−l

]
with ∥ P ∥≤ 2σ̃γ̃ such that

L−1
[
A11 + E11 A12 + E12

E21 A22 + E22

]
L =

[
Ã′11 ∗
0 ∗

]
. (5.2.37)

This is resulted from solving the following equation

P (A12 + E12)P + P (A11 + E11)− (A22 + E22)P − E21 = 0. (5.2.38)

Let

T̃P ≡ P (A11 + E11)− (A22 + E22)P.

By (5.2.34),(5.2.35) and

∥ T̃−1 ∥= { inf
∥P∥=1

∥ P (A11 + E11)− (A22 + E22)P ∥}−1

≤ { inf
∥P∥=1

∥ PA11 − A22P ∥ − sup
∥P∥=1

∥ PE11 − E22P ∥}−1

≤ ∥ T−1 ∥
1− ∥ T−1 ∥ (∥ E11 ∥ + ∥ E22 ∥)

= σ̃,

we have

4 ∥ (A12 + E12) ∥∥ T̃−1 ∥2∥ E21 ∥≤ 4η̃σ̃2γ̃ < 1.

Because the condition (5.2.14) in Theorem 5.2.9 is satisfied, by Theorem 5.2.9, the equa-
tion (5.2.38) has a solution P satisfying ∥ P ∥≤ 2σ̃γ̃. Then it follows the result from
(5.2.37).

Remark 5.2.3 Normalized Z1 + Z2P −→ (Z1 + Z2P )(I + PHP )
−1
2 . Consider

dist(Z1, (Z1 + Z2P )(I + PHP )
−1
2 )

=

√
1− σ2

min[Z
H
1 (Z1 + Z2P )(I + PHP )

−1
2 ]

=

√
1− σ2

min[(I + PHP )
−1
2 ]

=
√

1− [σmax(I + PHP )]−1

≤

√
1− 1

1+ ∥ P ∥22

=
∥ P ∥2√
1+ ∥ P ∥22

.

Example 5.2.6 Let n = 3, l = 2, k = 1,

A =

 6 −1 1
1 4 0
0 0 1

 =

[
A11 A12

A21 A22

]
, E =

 0.5 −0.1 0.3
−0.4 0.3 −0.2
0.3 −0.2 0.3

 =

[
E11 E12

E21 E22

]
,
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Ã = A+ E =

 6.5 −1.1 1.3
0.6 4.3 −0.2
0.3 −0.2 1.3

 =

[
Ã11 Ã12

Ã21 Ã22

]
.

The Jordan form of A is

 5 1 0
0 5 0
0 0 1

, σ(A11) = {5, 5}, σ(A22) = {1}.

The eigenmatrix of A is Z1 =

 1 0
0 1
0 0

, which satisfies AZ1 = Z1A11 .

Question 1: Compute ∥ T−1 ∥=∥
[

5 1
−1 3

]−1
∥∞=

3

8
, and ∥A12∥∞ = 1, ∥E12∥∞ = 0.3,

∥ E21 ∥∞= 0.5, ∥ E11 ∥∞= 0.7, ∥ E22 ∥∞= 0.3, to make sure the conditions in Theorem

5.2.10, which are σ̃ = 0.6, η̃ = 1.3, γ̃ = 0.5. Then check 4η̃σ̃2γ̃ =
117

125
< 1, i.e.,

(5.2.35) is satisfied.
Question 2: From theorem 5.2.9, take A0 = Ã. For all m = 0, 1, 2, · · · , we solve

PmA
(m)
11 − A

(m)
22 Pm = A

(m)
21 ,

and get

Pm = A
(m)
21 Sm, where Sm =

(
A

(m)
11 −

[
A

(m)
22 0

0 A
(m)
22

])−T
.

Compute A
(m+1)
11 = A

(m)
11 + A12Pm, A

(m+1)
22 = A

(m)
22 − PmA12 and A

(m+1)
21 = −PmA12Pm.

And then go back to solve Pm+1. Then

P (m) =
m∑
i=0

Pi.

Compute ∥ A(m)
21 ∥∞=? when m = 0, 1, 2, 3. and ∥ Pm ∥∞=? when m = 0, 1, 2, 3.

Compute A4 =

[
I 0
−P (3) I

]
Ã

[
I 0
P (3) I

]
≈?.

Compute Z̃1 ≈ Z̃
(3)
1 =

[
I
P (3)

]
=?.

Compute Ã′ = A
(4)
11 =?.

5.3 Power Iterations

Given A ∈ Cn×n and a unitary U0 ∈ Cn×n. Consider the following iteration:

T0 = U∗0AU0, for k=1,2,3, · · · (5.3.1)

where Tk−1 = UkRk is the QR factorization of Tk−1 and set Tk = RkUk. Since

Tk = (U0U1 · · ·Uk)
∗A(U0U1 · · ·Uk), (5.3.2)

it is obvious that each Tk is unitary similar to A.
Is (5.3.2) always ”converges” to a Schur decomposition of A ?
Iteration (5.3.1) is called the QR iterations. (See Section 5.4)
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5.3.1 Power Method

Let A be a diagonalizable matrix,

Axi = λixi, i = 1, · · · , n (5.3.3)

with
|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| (5.3.4)

and let u0 ̸= 0 be a given vector. From the expansion

u0 =
n∑

i=1

αixi (5.3.5)

follows that

Asu0 =
n∑

i=1

αiλ
s
ixi = λs1{α1x1 +

n∑
i=2

αi(
λi
λ1

)sxi}. (5.3.6)

Thus the sequence of λ−s1 Asu0 converges to a multiplicity of x1. We consider two possi-
bilities of normalization :
(A) ∥ ∥ - a given vector norm:

For i = 0, 1, 2, . . . ,
vi+1 = Aui
ki+1 = ∥vi+1∥
ui+1 = vi+1/ki+1 with initial u0

End

(5.3.7)

Theorem 5.3.1 Under the assumption (5.3.4) and α1 ̸= 0 in (5.3.5) holds for the se-
quence defined by (5.3.7)

lim
i→∞

ki = |λ1|

lim
i→∞

εiui =
x1
∥x1∥

α1

|α1|
, where ε =

|λ1|
λ1

Proof: It is obvious that

us = Asu0/∥Asu0∥ , ks = ∥Asu0∥/∥As−1u0∥. (5.3.8)

This follows from λ1
−sAsu0 → α1x1 that

|λ1|−s∥Asu0∥ → |α1|∥x1∥,
|λ1|−s+1∥As−1u0∥ → |α1|∥x1∥,

and then
|λ1|−1∥Asu0∥/∥As−1u0∥ = |λ1|−1ks −→ 1.

From (5.3.6) follows now for s→∞

εsus = εs
Asu0
∥Asu0∥

=
α1x1 +

∑
· · ·

∥α1x1 +
∑
· · · ∥

→ α1x1
∥α1x1∥

=
x1
∥x1∥

α1

|α1|
. (5.3.9)
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(B) Let l be a linear functional:
Consider

For i = 0, 1, 2, . . . ,

vi+1 = Aui,

ki+1 = l(vi+1) e.g. en(vi+1), e1(vi+1), (5.3.10)

ui+1 = vi+1/ki+1 with initial u0.

End

Then it holds

Theorem 5.3.2 Under the assumption of theorem 5.3.1, consider the method defined by
(5.3.10) and suppose that l(vi) ̸= 0, for i = 1, 2, · · · , and l(x1) ̸= 0. Then holds

lim
i→∞

ki = λ1 and lim
i→∞

ui =
x1
l(x1)

.

Proof: As above we show that

ui = Aiu0/l(A
iu0) , ki = l(Aiu0)/l(A

i−1u0).

From (5.3.6) we get for s→∞

λ1
−sl(Asu0)→ α1l(x1),

λ1
−s+1l(As−1u0)→ α1l(x1),

thus
λ1
−1ks → 1.

Similarly for i→∞,

ui =
Aiu0
l(Aiu0)

=
α1x1 +

∑n
j=2 αj(

λj

λ1
)ixj

l(α1x1 +
∑
· · · )

→ α1x1
α1l(x1)

(5.3.11)

Remark 5.3.1 (a) As linear functional l, a fix component k will always be chosen l(x) =
xk, k fix.

(b) The above argument also holds, if λ is a multiple eigenvalue.

(c) The iteration (5.3.10) follows

ks =
l(Asu0)

l(As−1u0)
= λ1

α1l(x1) +
∑n

j=2 αj(
λj

λ1
)sl(xj)

α1l(x1) +
∑n

j=2 αj(
λj

λ1
)s−1l(xj)

= λ1 +O(| λ2
λ1
|s−1). (5.3.12)

That is the convergence depends on | λ2

λ1
|. In the case |λ2

λ1
| = 1 the iteration does

not converge. Sometimes one can make the number |λ2

λ1
| small if we replace A with

A+αI, then the eigenvalue λi of A are transformed into λi+α and the convergence
will be described by (maxi=1| λi+α

λ1+α
|)s. But this correction is not remarkable. The

more useful method is use the inverse iteration . (See later !)
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Now consider the case : A real and

λ1 = λ̄2, |λ1| > |λ3| ≥ · · · ≥ |λn|. (5.3.13)

We can choose x2 = x̄1 such that

Ax1 = λ1x1, Ax̄1 = λ̄1x̄1 = λ2x̄1.

Let u0 be real and let

u0 = α1x1 + ᾱ1x̄1 +
n∑

i≥3

αixi, λ1 = γeiβ, α1 = ρeiα.

Then from (5.3.6) and (5.3.10) we have

Asu0 = α1λ
s
1x1 + ᾱ1λ̄1

s
x̄1 +

n∑
i≥3

αiλ
s
ixi

= γs{ρei(α+sβ)x1 + ρe−i(α+sβ)x̄1 +
n∑

i≥3

αi(
λi
γ
)sxi}.

It happens oscillation without convergence!
Let

h(λ) = (λ− λ1)(λ− λ̄1) = λ2 − pλ− q, p = λ1 + λ̄1 q = −λ1λ̄1.
Then

(As+2 − pAs+1 − qAs)u0 = α1λ1
s h(λ1)︸ ︷︷ ︸

=0

x1 + ᾱ1λ̄
s
1 h(λ̄1)︸ ︷︷ ︸

=0

x̄1 +
n∑

i=3

αih(λi)λi
sxi.

Together with

l(Asu0) = rs{ρei(α+sβ)l(x1) + ρe−i(α+sβ)l(x̄1) +
n∑

i=3

αi(
λi
γ
)sl(xi)}

follows

ks+2ks+1us+2 − pks+1us+1 − qus =
(As+2 − pAs+1 − qAs)u0

l(Asu0)
→ 0.

In this limit case us+2, us+1 and us are linearly dependent. For fix s we determine ps and
qs such that

∥ks+2ks+1us+2 − psks+1us+1 − qsus∥2 = min!

We have to project the lot of ks+2ks+1us+2 on the plane determined by ks+1us+1 and
us, this leads

ks+2ks+1us+2 − pks+1us+1 − qus ⊥ us+i, i = 0, 1

or (
uTs+1us+1 uTs+1us
uTs us+1 uTs us

)(
psks+1

qs

)
= ks+1ks+2

(
uTs+1us+2

uTs us+2

)
. (5.3.14)

We can show that ps → p, qs → q.
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5.3.2 Inverse Power Iteration

Let α be an approximate eigenvalue of λ1, i.e., α ≈ λ1, then (αI − A)−1 has eigenvalues
1

α−λ1
, 1
α−λ2

, · · · , 1
α−λn

. Substitute A by (αI − A)−1, then the convergence is determined

by maxi ̸=1 |α−λ1

α−λi
|.

Consider
For i = 0, 1, 2, . . . ,

vi+1 = (αI − A)−1ui,
ki+1 = l(vi+1),
ui+1 = vi+1/ki+1 with initial vector u0,

End

(5.3.15)

Let A and u0 be given and satisfy (5.3.3) and (5.3.5) respectively. Then we have the
following theorem.

Theorem 5.3.3 If | α − λ1 |< |α − λi|, for i ̸= 1 and suppose that α1 ̸= 0, l(x1) ̸= 0,
and l(vi) ̸= 0 for all i in (5.3.15) then holds

lim
i→∞

ki =
1

α− λ1
, (λ1 ≈ α− 1

ki
)

lim
i→∞

ui =
x1
l(x1)

. (5.3.16)

Variant I: (5.3.15) with constant α.
Variant II: Updating α.

Given α(0) = α and u0.
For i = 0, 1, 2, . . . ,

vi+1 = (α(i)I − A)−1ui,
ki+1 = l(vi+1),
ui+1 =

vi+1

ki+1
and α(i+1) = α(i) − 1

ki+1
.

End

(5.3.17)

Show that: The method (5.3.17) is quadratic convergence.
Let α(i) ≈ λ1, ui ≈ x1, and l(x1) = 1. The remaining components of x1 are smaller than
1 (Here l(z) = z1). Let

um = (1 + ε
(m)
1 )x1 +

n∑
j=2

ε
(m)
j xj, ε̃(m) = |α(m) − λ1| (5.3.18)

and
δm = max(|ε(m)

1 |, · · · , |ε(m)
n |, ε̃(m)). (5.3.19)

Claim: There exist a constant M independent on m with

δm+1 ≤Mδ2m. (5.3.20)

Let ε
(m)
i ≈ εi. Then we have

vm+1 = km+1um+1 =
1 + ε1

α(m) − λ1
x1 +

n∑
j=2

εj
α(m) − λj

xj (5.3.21)
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and

α(m+1) = α(m) −
1

km+1

= α(m) − (αm − λ1)[(1 + ε1) +
n∑

j=2

εj(α(m) − λ1)
α(m) − λj

xj,1]
−1.

= α(m) − (α(m) − λ1)(1 +O(δm)) = λ1 + δmO(δm). (5.3.22)

From (5.3.21),

um+1 =
km+1um+1

km+1

= [(1 + ε1)x1 +
∑
j≥2

εj(α(m) − λ1)
α(m) − λj

xj][1 + ε1 +
∑
j≥2

εj(α(m) − λ1)
α(m) − λj

xj,1]
−1

= [x1 +
∑
j≥2

εj(α(m) − λ1)
(1 + ε1)(α(m) − λj)

xj] [1 +
∑
j≥2

εj(α(m) − λ1)
(1 + ε1)(α(m) − λj)

xj,1︸ ︷︷ ︸
1+O(δ2m)

]−1.

= (1 + ε
(m+1)
1 )x1 +

∑
j≥2

ε
(m+1)
1 xj

with ε
(m+1)
i = O(δ2m). This implies δm+1 ≤Mδ2m.

5.3.3 Connection with Newton-method

Consider the nonlinear equations

Au− λu = 0,
lTu = 1,

for n+ 1 unknowns u and λ. Let

F

(
u
λ

)
:=

(
Au− λu
lTu− 1

)
= 0. (5.3.23)

Newton method for (5.3.23):(
ui+1

λi+1

)
≡
(
u
λ

)
(i+1)

=

(
u
λ

)
(i)

− F ′
(
u
λ

)−1
(i)

(
F

(
u
λ

)
(i)

)
,

where

F ′
(
u
λ

)
=

(
A− λI −u
lT 0

)
.

Multiplying with F ′
(
u
λ

)
(i)

and write the first n equations and the last equation separately

and simplify

(A− λiI)ui+1 = (λi+1 − λi)ui, lTui+1 = 1. (5.3.24)

We see that (5.3.24) identifies with (5.3.17) and is also quadratic convergence.
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Variant III: A is real symmetric and αm+1 = Rayleigh Quotient

Give u0 with ∥u0∥2 = 1 and α0 = uT0Au0,
For m = 0, 1, 2, . . . ,

vm+1 = (αmI − A)−1um,
um+1 =

vm+1

∥vm+1∥2 ,

αm+1 = uTm+1Aum+1.
End

(5.3.25)

Claim: The iteration (5.3.25) is cubic convergence.
The eigenvectors xi of A form an orthonormal system

xTi xj = δij. (5.3.26)

As above, let ε
(m)
i and δm be defined in (5.3.18) and (5.3.19). From (5.3.26) follows

(εi = ε
(m)
i ) :

∥um∥22 = 1 = (1 + ε1)
2 +

∑
j≥2

ε2j = 1 + 2ε1 +
n∑

j=1

ε2j .

So ε1 ≤ n
2
δ2m = O(δ2m). That is

α(m) = uTmAum = λ1(1 + ε1)
2 +

∑
j≥2

λjε
2
j (5.3.27)

= λ1 + 2ε1λ1 +
n∑

j=1

λjε
2
j = λ1 +O(δ2m).

Thus ε̃(m) = O(δ2m). On the other hand,

vTm+1vm+1 =
(1 + ε1)

2

(α(m) − λ1)2
+
∑
j≥2

ε2j
(α(m) − λj)2

= | 1 + ε1
α(m) − λ1

|2{1 +
∑
j≥2

ε2j ε̃
(m)2

(1 + ε1)2(α(m) − λj)2︸ ︷︷ ︸
1+O(δ6m)

}.

Therefore

um+1 = (
1 + ε1

α(m) − λ1
x1 +

∑
j≥2

εj
α(m) − λj

xj)(1 +O(δ6m))(
α(m) − λ1
1 + ε1

)

= [x1 +
∑
j≥2

εj ε̃
(m)

(1 + ε1)(α(m) − λj)
xj](1 +O(δ6m))

= (1 + ε
(m+1)
1 )x1 +

∑
j≥2

ε
(m+1)
j xj

with | ε(m+1)
j |≤Mδ3m (j = 1, · · · , n). As in (5.3.27) we have

|α(m+1) − λ1| = O(δ2m+1) = O(δ6m).
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5.3.4 Orthogonal Iteration

Given Q0 ∈ Cn×p with orthogonal columns and 1 ≤ p < n.

For k = 1, 2, · · ·
Zk = AQk−1,
QkRk = Zk, (QR decomposition)

End

(5.3.28)

Note that if p = 1 this is just the power method. Suppose that

Q∗AQ = T = diag(λi) +N, |λ1| ≥ · · · ≥ |λn| (5.3.29)

is a Schur decomposition of A and partition Q, T and N as follows

Q = [

p︷︸︸︷
Qα ,

n−p︷︸︸︷
Qβ ], T =

(
T11 T12
0 T22

)
, N =

(
N11 N12

0 N22

)
(5.3.30)

If |λp| > |λp+1| we define Dp(A) = R(Qα) ≡ Range(Qβ) is a dominant invariant
subspace . It is the unique subspace associated with associated with λ1, · · · , λp. The
following theorem (without proof see Golub/Vanloan p.215) shows that the subspace

R(Qk) generated by (5.3.28) converges to Dp(A) at a rate proportional to |λp+1

λp
|k under

reasonable assumptions.

Theorem 5.3.4 Let the Schur form of A be given by (5.3.29) and (5.3.30). Assume that
|λp| > |λp+1| and that θ ≥ 0 satisfies

(1 + θ)|λp| > ∥N∥F .

If Q0 ∈ Cn×p with Q∗0Q0 = Ip and d = dist[Dp(A
∗),R(Q0)] < 1, then Qk generated by

(5.3.28) satisfy

dist[Dp(A),R(Qk)] ≤
(1 + θ)n−2√

1− d2
[1 +

∥T12∥F
sep(T11, T12)

][
|λp+1|+ ∥N∥F/(1 + θ)

|λp| − ∥N∥F/(1 + θ)
]k.

When θ is chosen large enough then the theorem essentially shows that

dist[Dp(A), R(Qk)] ≤ c|λp+1/λp|k,

where c depends on sep(T11, T12) and ∥N∥F . Needless to say, the convergence can be very
slow if the gap between |λp| and |λp+1| is not sufficiently wide. To prove this theorem we
need to prove the following two lemmas 5.3.1 and 5.3.3.

Lemma 5.3.1 Let T =

[
T11 T12
0 T22

]
and define the linear operator φ : Cp×q → Cp×q by

φ(X) = T11X −XT22.

Then φ is nonsingular ⇐⇒ σ(T11) ∩ σ(T22) = ϕ. if φ is nonsingular and φ(Z) = −T12,

then Y −1TY = diag(T11, T22), where Y =

[
Ip Z
0 Iq

]
.
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Proof: “⇐=”: Suppose φ(X) = 0 for X ̸= 0 and

U∗XV =

[
Σr 0
0 0

]
, Σr = diag(σi), r = rank(X).

Substituting into T11X = XT22 gives[
A11 A12

A21 A22

] [
Σr 0
0 0

]
=

[
Σr 0
0 0

] [
B11 B12

B21 B22

]
,

where

U∗T11U = (Aij) and V
∗T22V = (Bij).

By comparing blocks, we see that A21 = B12 = 0 and σ(A11) = σ(B11). Conversely,
ϕ ̸= σ(A11) = σ(B11) ⊂ σ(T11) ∩ σ(T22).

“=⇒”: If λ ∈ σ(T11) ∩ σ(T22), then there are x ̸= 0, y ̸= 0 satisfy T11x = λx and
y∗T22 = λy∗. This implies φ(xy∗) = 0.

Finally, if φ nonsingular, then Z exists and

Y −1TY =

[
T11 T11Z − ZT22 + T12
0 T22

]
=

[
T11 0
0 T22

]
.

{ Another proof }
For A ∈ Cm×m and B ∈ Cm×m define the Kronecker product of A and B by

A⊗B =

 a11B · · · a1mB
...

...
am1B · · · ammB

 = [aijB]mi,j=1 ∈ Cmn×mn.

Let C = [c1, · · · , cn] ∈ Cm×m. Define

vec(C) =

 c1
...
cn

 ∈ Cmn×1.

Consider the linear matrix equation

AX −XB = C. (5.3.31)

Lemma 5.3.2 vec(AX −XB) = (I ⊗ A−BT ⊗ I)vec(X).

Proof:

(AX)j = AXj → vec(AX) = (I ⊗ A)vec(X),

(XB)j =
n∑

k=1

bkjXk = [b1jI, · · · , bnjI]vec(X).
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By linearity of vec we have

vec(AX −XB) = vec(AX)− vec(XB) = [(I ⊗ A)− (BT ⊗ I)]vec(X).

Let G = [(I ⊗ A− BT ⊗ I)], X = vec(X), r = vec(C). Then the equation (5.3.31) is
equivalent to Gx = r and the equation (5.3.31) has a unique solution⇐⇒ σ(A)∩σ(B) =
ϕ. There are unitary Q1, Z1 such that

Q∗1AQ1 = A1 =

 r1 ∗ ∗
0

. . . ∗
0 0 rm

 , Z∗1BZ1 = B1 =

 s1 0 0

∗ . . . 0
∗ ∗ sm

 .
(5.3.31) becomes

Q∗1AQ1Q
∗
1XZ1 −Q∗1XZ1Z

∗
1BZ1 = Q∗1CZ1 ≡ C1

⇐⇒ A1X1 −X1B1 = C1, where X1 = Q∗1XZ1

⇐⇒ G1x1 = r1,

where G1 = [I ⊗ A1 −B1 ⊗ I] and x1 = vec(X1), r1 = vec(C1). Also

det(G1) =
∏

1 ≤ i ≤ m
1 ≤ j ≤ n

(ri − rj).

Hence we have σ(A) ∩ σ(B) = ϕ ⇐⇒ (rj − sj) ̸= 0 (i = 1, · · ·m, j = 1, · · ·n) ⇐⇒
det(G1) ̸= 0 ⇐⇒ G1x1 = r1, has a unique solution. ⇐⇒ the equation (5.3.31) has a
unique solution X.
Exercise:

(a) Consider the linear matrix equation AXB − CXD = R where A,C ∈ Cm×m,
B,D ∈ Cn×n and X,R ∈ Cm×n. The equation has a unique solution⇐⇒ σ(A,C)∩
σ(B,D) = ϕ.

(b) Consider

{
AX − Y B = R,
CX − Y D = S,

where A,B,C,D,X, Y,R, S ∈ Cm×n. The equation

has a unique solution (X,Y )⇐⇒ σ(A,C) ∩ σ(B,D) = ϕ.

Lemma 5.3.3 Let Q∗AQ = T = D + N (Schur decomposition). D is diagonal and N
is strictly upper triangular. Let λ = max{|η| : det(A − ηI) = 0} and µ = min{|η| :
det(A− ηI)} = 0. If θ ≥ 0, then

∥Ak∥2 ≤ (1 + θ)n−1[|λ|+ ∥N∥F
1 + θ

]k, k ≥ 0. (5.3.32)

If A is nonsingular and θ ≥ 0 satisfies (1 + θ)|µ| > ∥N∥F , then

∥A−k∥2 ≤ (1 + θ)n−1[
1

|µ| − ∥N∥F/(1 + θ)
]k, k ≥ 0. (5.3.33)
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Proof: For θ ≥ 0, define△ = diag(1, 1+θ, (1+θ)2, · · · , (1+θ)n−1) and κ2(△) = (1+θ)n−1.
But ∥△N△−1F ∥ ≤ ∥N∥F/(1 + θ), thus

∥Ak∥2 = ∥T k∥2 = ∥△−1(D +△N△−1)k△∥2
≤ κ2(△)[∥D∥2 + ∥△N△−1∥2]k

≤ (1 + θ)n−1[|λ|+ ∥N∥F/(1 + θ)]k.

On the other hand, if A is nonsingular and (1 + θ)|µ| > ∥N∥F , then

∥△D−1N△−1∥2 < 1

and thus,

∥A−k∥2 = ∥T−k∥2 = ∥△−1(I +△D−1N△−1)−1D−1]k△∥2
≤ κ2(△)[∥D−1∥2/[1− ∥△D−1N△−1∥2]k

≤ (1 + θ)n−1[
1

|µ| − ∥N∥F/(1 + θ)
]k

{ proof of Theorem 5.3.4: } By induction AkQ0 = Qk(Rk · · ·R1). By substituting (5.3.29),
(5.3.30) into this equality we get[

V0
W0

]
=

[
Vk
Wk

]
(Rk, · · · , R1),

where Vk = Q∗αQk and Wk = Q∗βQk. Using Lemma 5.3.1 there is an X ∈ Cp×(n−p) such
that [

I X
0 I

]−1 [
T11 T12
0 T22

] [
I X
0 I

]
=

[
T11 0
0 T22

]
.

Moreover since sep(T11, T22) = the smallest singular value of ϕ(X) = T11X−XT22. From
ϕ(X) = −T12 follows

∥X∥F ≤ ∥T12∥F/sep(T11, T22).

Thus [
T k
11 0
0 T k

22

] [
V0 −XW0

W0

]
=

[
Vk −XWk

Wk

]
(Rk, · · · , R1).

Assume V0 −XW0 is nonsingular. Then

Wk = T k
22W0(V0 −XW0)

−1T−k11 (Vk −XWk).

From Theorem 5.1.3 follows that

dist[Dp(A),R(Qk)] = ∥Q∗βQk∥2 = ∥Wk∥2.

Then

dist[Dp(A),R(Qk)] ≤ ∥T k
22∥2∥(V0 −XW0)

−1∥2∥T−k11 ∥2[1 + ∥X∥F ]. (5.3.34)
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We prove V0 −XW0 is nonsingular. From A∗Q = QT ∗ follows that

A∗(Qα −QβX
∗) = (Qα −QβX

∗)T ∗11,

which implies orthogonal column of Z = (Qα−QβX
∗)(I+XX∗)−

1
2 are a basis of Dp(A

∗).
Also

(V0 −XW0) = (I +XX∗)
1
2Z∗Q0.

This implies

σp(V0 −XW0) ≥ σp(Z
∗Q0) = σp(V0 −XW0) ≥ σp(Z

∗Q0) =
√
1− d2 > 0.

Hence V0 −XW0 is invertible and ∥(V0 −XW0)
−1∥2 ≤ 1√

1−d2 . By Lemma 5.3.1 we get

∥T k
22∥2 ≤ (1 + θ)n−p−1[|λp+1|+ ∥N∥F/(1 + θ)]k.

and
∥T−k11 ∥2 ≤ (1 + θ)p−1/[|λp| − ∥N∥F/(1 + θ)]k.

Substituting into (5.3.34) the theorem is proved.

5.4 QR-algorithm (QR-method, QR-iteration)

Theorem 5.4.1 (Schur Theorem) There exists a unitary matrix U such that

AU = UR,

where R is upper triangular.

Iteration method (from Vojerodin):

Set U0 = I,
For i = 0, 1, 2, · · ·

AUi = Ui+1Ri+1, (an QR factorization of AUi.)
End

(5.4.1)

If Ui converges to U , then for i→∞

Ri+1 = U∗i+1AUi → U∗AU.

We now define
Qi = U∗i−1Ui, Ai+1 = U∗i AUi. (5.4.2)

Then from (5.4.1) we have

Ai = U∗i−1AUi−1 = U∗i−1UiRi = QiRi.

On the other hand from (5.4.1) substituting i by i− 1 we get

RiU
∗
i−1 = U∗i A
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and thus

RiQi = RiU
∗
i−1Ui = U∗i AUi = Ai+1.

So (5.4.1) for U0 = I and A1 = A is equivalent to:

For i = 1, 2, 3, · · ·
Ai = QiRi (QR factorization of Ai), (5.4.3)

Ai+1 = RiQi. (5.4.4)

End

Equations (5.4.3)-(5.4.4) describe the basic form of QR algorithm. We prove two impor-
tant results. Let

Pi = Q1Q2 · · ·Qi, Si = RiRi−1 · · ·R1. (5.4.5)

Then hold

Ai+1 = P ∗i APi = SiAS
−1
i , i = 1, 2, · · · (5.4.6)

Ai = PiSi i = 1, 2, · · · . (5.4.7)

(5.4.6) is evident. (5.4.7) can be proved by induction. For i = 1, A1 = Q1R1, Suppose
(5.4.7) holds for i. Then

Ai+1 = APiSi = PiAi+1Si (from (5.4.6) )

= PiQi+1Ri+1Si = Pi+1Si+1.

Theorem 5.4.2 Let A ∈ Cn×n with eigenvalues λi under the following assumptions:

(a)

|λ1| > |λ2| > · · · |λn| > 0; (5.4.8)

(b) The factorization

A = XΛX−1 (5.4.9)

with X−1 = Y and Λ = diag(λ1, · · · , λn) holds. Here Y has an LR factorization.

Then QR algorithm converges. Furthermore

(a) limi→∞ a
(i)
jk = 0, for j > k, where Ai = (a

(i)
jk );

(b) limi→∞ a
(i)
kk = λk, for k = 1, · · · , n.

Remark 5.4.1 Assumption (5.4.9) is not essential for convergence of the QR algorithm.
If the assumption is not satisfied, the QR algorithm still converges, only the eigenvalues
on the diagonal no longer necessary appear ordered in absolute values, i.e. (b) is replaced

by (b’) limi→∞ a
(i)
kk = λπ(k), k = 1, 2 · · · , n, where π is a permutation of {1, 2, · · · , n}. (

See Wilkinson pp.519 )
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Proof: { of Theorem 5.4.2 } Let X = QR be the QR factorization of X with rii > 0 and
Y = LU be the LR factorization of Y with ℓii = 1. Since A = XΛX−1 = QRΛR−1Q∗,
we have

Q∗AQ = RΛR−1 (5.4.10)

is an upper-triangular matrix with diagonal elements λi ordered in absolute value as in
(5.4.8). Now

As = XΛsX−1 = QRΛsLU = QRΛsLΛ−sΛsU

and since

(ΛsLΛ−s)ik = ℓik(
λi
λk

)s =


0, i < k,
1, i = k,
→ 0, i > k as s→∞,

where ΛsLΛ−s = I + Es, with lims→∞Es = 0. Therefore

As = QR(I + Es)Λ
sU = Q(I +REsR

−1)RΛsU = Q(I + Fs)RΛ
sU

with lims→∞ Fs = 0. From the conclusion of QR factorization the matrices Q and R
(rii > 0) depend continuously on A (A = QR). But I = I · I is the QR factorization of
I, therefore it holds for the QR factorization:

I + Fs = Q̃sR̃s.

Thus for Fs → 0, we have lims→∞ Q̃s = I and lims→∞ R̃s = I. From (5.4.7) we have

As = (QQ̃s)(R̃sRΛ
sU) = PsRs.

So from the ”uniqueness” of QR factorization there exists a unitary diagonal matrix Ds

with
PsDs = QQ̃s → Q.

Thus from (5.4.6) we have

D∗iAi+1Di = D∗iP
∗
i APiDi → Q∗AQ = RΛR−1. (5.4.11)

The assertions (a) and (b) are proved.

Remark 5.4.2 One can show that lims→∞Qs = diag( λi

|λi|). That is in general Qs does
not converge to I and then Ps does not converge. Therefore Ds does not converge to I
and (5.4.11) shows that the elements of As over the diagonal elements oscillate and only
converge in absolute values.

Let A be diagonalizable and the eigenvalues such that

|λ1| = · · · = |λν1 | > |λν1+1| = · · · = |λν2 | > · · · = |λνs| (5.4.12)

with νs = n. We define a block partition of n × n matrix B in s2 blocks Bkℓ for k, ℓ =
1, 2, · · · , s

B = [Bkℓ]
s
k,ℓ=1.
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Theorem 5.4.3 (Wilkinson) Let A be diagonalizable and satisfy (5.4.12) and (5.4.9).

Then it holds for the blocks A
(i)
jk of Ai that

(a) limi→∞A
(i)
jk = 0, j > k;

(b) The eigenvalues of A
(i)
kk converges to the eigenvalues λνk−1+1, · · · , λνk .

Special case: If A is real and all the eigenvalues have different absolute value except
conjugate eigenvalues. Then

Ai →



× × + + + + +
× × + + + + +

× × + + +
× × + + +

× + +
× ×

0 × ×


.

Theorem 5.4.4 Let A be an upper Hessenberg matrix. Then the matrices Qi and Ai in
(5.4.3) and (5.4.4) are also upper Hessenberg matrices.

Proof: It is obvious from Ai+1 = RiAiR
−1
i and Qi = AiR

−1
i .

5.4.1 The Practical QR Algorithm

In the following paragraph we will develop an useful QR algorithm for real matrix A. We
will concentrate on developing the iteration

Compute orthogonal Q0 such that H0 = QT
0AQ0 is upper Hessenberg.

For k = 1, 2, 3, · · ·
Compute QR factorization Hk = QkRk;

Set Hk+1 = RkQk; (5.4.13)

End

Here A ∈ Rn×n, Qi ∈ Rn×n is orthogonal and Ri ∈ Rn×n is upper triangular.

Theorem 5.4.5 (Real Schur Decomposition) If A ∈ Rn×n, then there exists an or-
thogonal Q ∈ Rn×n such that

QTAQ =


R11 R12 · · · R1m

0 R21 · · · R2m
...

...
. . .

...
0 0 · · · Rmm

 (5.4.14)

where each Rii is either 1× 1 or 2× 2 matrix having complex conjugate eigenvalues.
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Proof: Let k be the number of complex conjugate pair in σ(A). We prove the theorem by
induction on k. The theorem holds if k = 0. Now suppose that k ≥ 1. If λ = γ+iµ ∈ σ(A)
and µ ̸= 0, then there exists vectors y and z ∈ Rn(z ̸= 0) such that

A(y + iz) = (γ + iµ)(y + iz),

i.e.,

A[y, z] = [y, z]

[
γ µ
−µ γ

]
.

The assumption that µ ̸= 0 implies that y and z span a two dimensional, real invariant
subspace for A. It then follows that

UTAU =

[
T11 T12
0 T22

]
with σ(T11) = {λ, λ̄}.

By induction, there exists an orthogonal Ũ so that ŨTT22Ũ has the require structure.
The theorem follows by setting Q = Udiag(I2, Ũ).

Algorithm 5.4.1 (Hessenberg QR step)

Input: Given the upper Hessenberg matrix H ∈ Rn×n;
Compute QR factorization of H: H = QR and overwrite H with H̄ = RQ;
For k = 1, · · · , n− 1,
Determine ck and sk with c2k + s2k = 1 such that[

ck sk
−sk ck

] [
hkk
hk+1,k

]
=

[
∗
0

]
,

For j = k, · · · , n,[
hkj
hk+1,j

]
=

[
ck sk
−sk ck

] [
hkj
hk+1,j

]
.

End;
End;
For k = 1, · · · , n− 1,
For i = 1, · · · , k + 1,

[hik, hi,k+1] ≡ [hik, hi,k+1]

[
ck sk
−sk ck

]
.

End;
End;

This algorithm requires 4n2 flops. Moreover, since QT = J(n − 1, n, θn−1) · · · J(1, 2,
θ1) is lower Hessenberg H̄ = QR is upper Hessenberg. Thus the QR iteration preserves
Hessenberg structure.

We now describe how the Hessenberg decomposition QT
0AQ0 = H =upper Hessenberg

to be computed.

Algorithm 5.4.2 (Householder Reduction to Hessenberg Form) Given A ∈ Rn×n.
The following algorithm overwrites A with H = QT

0AQ0, where H is upper Hessenberg
and Q0 = P1 · · ·Pn−2 is a product of Householder matrices.
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For k = 1, · · · , n− 2,

Determine a Householder matrix P̄k of order n− k such that

P̄k


ak+1,k

...

...
an,k

 =


∗
0
...
0

 .
Compute A ≡ P T

k APk where Pk = diag(Ik, P̄k).
End;

This algorithm requires 5
3
n3 flops. Q0 can be stored in factored form below the

subdiagonal A. If Q0 is explicitly formed, an additional 2
3
n3 flops are required.

Theorem 5.4.6 (Implicit Q Theorem) Suppose Q = [q1, · · · , qn] and V = [v1, · · · , vn]
are orthogonal matrices with QTAQ = H and V TAV = G are upper Hessenberg. Let k
denote the smallest positive integer for which hk+1,k = 0 with the convention that k = n,
if H is unreduced. If v1 = q1, then vi = ±qi and |hi,i−1| = |gi,i−1|, for i = 2, · · · , k.
Moreover if k < n then gk+1,k = 0.

Proof: Define W = V TQ = [w1, · · · , wn] orthogonal, and observe GW = WH. For
i = 2, · · · k, we have

hi,i−1wi = Gwi−1 −
i−1∑
j=1

hj,i−1wj

Since w1 = e1, it follows that [w1, · · · , wk] is upper triangular and thus wi = ±ei
for i = 2, · · · , k. Since wi = V T qi and hi,i−1 = wT

i Gwi−1, it follows that vi = ±qi and
|hi,i−1| = |gi,i−1| for i = 2, · · · , k. If hk+1,k = 0, then ignoring signs we have

gk+1,k = eTk+1Gek = eTk+1GWek = (eTk+1W )(Hek)

= eTk+1

k∑
i=1

hikWei =
k∑

i=1

hike
T
k+1ei = 0.

Remark 5.4.3 The gist of the implicit Q theorem is that if QTAQ = H and ZTAZ = G
are each unreduced upper Hessenberg matrices and Q and Z have the same first col-
umn, then G and H are “essentially equal” in the sense that G = D−1HD, where
D = diag(±1, · · · ,±1).

We now return to Hessenberg QR iteration in (5.4.13):

Give orthogonal Q0 such that H = QT
0AQ0 is upper Hessenberg.

For k = 1, 2, 3, · · ·
H = QR, (QR factorization)
H := RQ, (upper Hessenberg)

End



198 Chapter 5. The Unsymmetric Eigenvalue Problem

Without loss of generality we may assume that each Hessenberg matrix produced by
(5.4.13) is unreduced. If not, then at some stage we have

H =

[
H11 H12

0 H22

]
with H11 ∈ Rp×p (1 ≤ p < n).

The problem “decouples” into two small problems involving H11 and H22. The term
“deflation” is also used in this context, usually when p = n − 1 or n − 2. In practice,
decoupling occurs whenever a subdiagonal entry in H is suitably small. For example in
EISPACK if

|hp+1,p| ≤ eps(|hp,p|+ |hp+1,p+1|), (5.4.15)

then hp+1,p is “declared” to be zero.
Now we will investigate how the convergence (5.4.13) can be accelerated by incorpo-

rating “shifts”. Let µ ∈ R and consider the iteration

Give orthogonal Q0 such that H = QT
0AQ0 is upper Hessenberg.

For k = 1, 2, · · ·
H − µI = QR, (QR factorization)
H = RQ+ µI,

End

(5.4.16)

The scale µ is refereed to a shift. Each matrix H in (5.4.16) is similar to A, since
RQ+ µI = QT (QR + µI)Q = QTHQ.

If we order the eigenvalues λi of A so that |λ1 − µ| ≥ · · · ≥ |λn − µ|, then Theorem

5.4.5 says that the p-th subdiagonal entry in H converges to zero with rate |λp+1−µ
λp−µ |

k. Of

course if λp = λp+1 then there is no convergence at all. But if µ is much closer to λn than
to the other eigenvalues, the convergence is required.

Theorem 5.4.7 Let µ be an eigenvalues of an n × n unreduced Hessenberg matrix H.
If H̄ = RQ + µI, where (H − µI) = QR is the QR decomposition of H − µI, then
h̄n,n−1 = 0 and h̄nn = µ.

Proof: If H is unreduced, then so is the upper Hessenberg matrix H − µI. Since
QT (H − µI) = R is singular and since it can be shown that

|rii| ≥ |hi+1,i|, i = 1, 2, · · · , n− 1, (5.4.17)

it follows that rm = 0. Consequently, the bottom row of H̄ is equal to (0, · · · , 0, µ).

5.4.2 Single-shift QR-iteration

Give orthogonal Q0 such that H = QT
0AQ0 is upper Hessenberg.

For k = 1, 2, · · · ,
Hi − hnnI = QiRi, (QR factorization)
Hi+1 := RiQi + hnnI,

End

(5.4.18)
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Quadratic convergence
If the (n, n− 1) entry converges to zero and let

H =


× × × × ×
× × × ×
× × × ×
× × ×

ε hnn

 ,
then one step of the single shift QR algorithm leads:

QR = H − hnnI, H̄ = RQ+ hnnI.

After n− 2 steps in the reduction of H − hnnI to upper triangular we have
× × × × ×
× × × ×
× × ×

a b
ε 0

 .
And we have (n, n− 1) entry in H̄ is given by

h̄n,n−1 =
ε2b

ε2 + a2
.

If ε≪ a, then it is clear that (n, n− 1) entry has order ε2.

5.4.3 Double Shift QR iteration

If at some stage the eigenvalues a1 and a2 of

[
hmm hmn

hnm hnn

]
(m = n− 1) are complex, for

then hnn would tend to be a poor approximate eigenvalue. A way around this difficulty
is to perform two single shift QR steps in succession, using a1 and a2 as shifts:

H − a1I = Q1R1,

H1 = R1Q1 + a1I,

H1 − a2I = Q2R2, (5.4.19)

H2 = R2Q2 + a2I.

We then have

(Q1Q2)(R2R1) = Q1(H1 − a2I)R1 = Q1(R1Q1 + a1I − a2I)R1

= (Q1R1)(Q1R1) + a1(Q1R1)− a2(Q1R1)

= (H − a1I)(H − a1I) + a1(H − a1I)− a2(H − a1I)
= (H − a1I)(H − a2I) =M, (5.4.20)

where
M = (H − a1I)(H − a2I). (5.4.21)
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Note that M is a real matrix, since

M = H2 − sH + tI,

where s = a1 + a2 = hmm + hnn ∈ R and t = a1a2 = hmmhnn − hmnhnm ∈ R. Thus,
(5.4.20) is the QR factorization of a real matrix, and we may choose Q1 and Q2 so that
Z = Q1Q2 is real orthogonal. It follows that

H2 = Q∗2H1Q2 = Q∗2(Q
∗
1HQ1)Q2 = (Q1Q2)

∗H(Q1Q2) = ZTHZ

is real. A real H2 could be guaranteed if we

(a) explicitly form the real matrix M = H2 − sH + tI;

(b) compute the real QR decomposition M = ZR and

(c) set H2 = ZTHZ.

But since (a) requires O(n3) flops, this is not a practical course. In light of the Implicit
Q theorem, however, it is possible to effect the transition from H to H2 in O(n2) flops if
we

(a
′
) compute Me1, the first column of M ;

(b
′
) determine Householder Matrix P0 such that

P0(Me1) = αe1, (α ̸= 0);

(c
′
) compute Householder matrices P1, · · · , Pn−2 such that if Z1 = P0P1 · · ·Pn−2 the
ZT

1 HZ1 is upper Hessenberg and the first column of Z and Z1 are the same. If
ZTHZ and ZT

1 HZ1 are both unreduced upper Hessenberg, then they are essentially
equal.

Since Me1 = (x, y, z, 0, · · · , 0)T , where x = h211 + h12h21 − sh11 + t, y = h21(h11+
h22 − s), z = h21h32. So, a similarity transformation with P0 only changes rows and
columns 1, 2 and 3. Since P T

0 HP0 has the form
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
0 0 0 × × ×
0 0 0 0 × ×

 ,

it follows that
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
0 0 0 × × ×
0 0 0 0 × ×


P1→


× × × × × ×
× × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 0 0 0 × ×


P2→


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×


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P3→


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × × ×


P4→


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

 .
Pk = diag(Ik, P̄k, In−k−3), P̄k is 3× 3-Householder matrix. The applicability of Theorem
5.4.6 (Implicit Q-theorem) follows from that Pke1 = e1, for k = 1, · · · , n− 2, and that P0

and Z have the same first column. Hence Z1e1 = Ze1.

Algorithm 5.4.3 (Francis QR step) Given H ∈ Rn×n unreduced whose trailing 2× 2
principal submatrix has eigenvalues a1 and a2, the following algorithm overwrites H with
ZTHZ, where Z = P1 · · ·Pn−2 is a product of Householder matrices and ZT (H−a1I)(H−
a2I) is upper triangular.

Set
m := n− 1;
s := hmm + hnn;
t := hmmhnn − hmnhnm;
x := h2n + h12h21 − sh11 + t;
y := h21(h11 + h22 − s);
z := h21h32;

For k = 0, · · · , n− 2,
If k < n− 2, then
Determine a Householder matrix P̄k ∈ R3×3 such that

P̄k

 x
y
z

 =

 ∗0
0

;
Set

H := PkHP
T
k , Pk = diag

(
Ik, P̄k, In−k−3

)
;

else determine a Householder matrix P̄n−2 ∈ R2×2 such that

P̄n−2

[
x
y

]
=

[
∗
0

]
;

Set
H := Pn−2HP

T
n−2, Pn−2 = diag

(
In−2, P̄n−2

)
;

End if
x := hk+2,k+1;
y := hk+3,k+1;
If k < n− 3, then z := hk+4,k+1;

End for;

This algorithm requires 6n2 flops. If Z is accumulated into a given orthogonal matrix,
an additional 6n2 flops are necessary.

Algorithm 5.4.4 (QR Algorithm) Given A ∈ Rn×n and a tolerance ε, this algorithm
computes the real schur decomposition QTAQ = T . A is overwritten with the Hessenberg
decomposition.
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Using Algorithm 5.4.2 to compute the Hessenberg decomposition

QTAQ = H,
where Q = P1 · · ·Pn−2 and H is Hessenberg;

Repeat: Set to zero all subdiagonal elements that satisfy
|hi,i−1| ≤ ε (|hii|+ |hi−1,i−1|);

Find the largest non-negative q and the smallest non-negative p such that

H =

 H11 H12 H13

0 H22 H23

0 0 H33

 p
n− p− q
q

p n− p− q q

,

where H33 is upper quasi-triangular and H22 is unreduced (Note: either
p or q may be zero).

If q = n, then upper triangularize all 2× 2 diagonal blocks in H that have
real eigenvalues, accumulate the orthogonal transformations if necessary,
and quit.

Apply a Francis QR-step to H22:
H22 := ZTH22Z;

If Q and T are desired, then Q := Q diag(Ip, Z, Iq);
Set H12 := H12Z and H23 := ZTH23;
Go To Repeat.

This algorithm requires 15n3 flops, if Q and T are computed. If only the eigenvalues
are desired, then 8n3 flops are necessary.

5.4.4 Ordering Eigenvalues in the Real Schur From

If QTAQ =

[
T11 T12
0 T22

]
with T11 ∈ Rp×p and σ(T11) ∪ σ(T22) = ϕ, then the first p

columns of Q span the unique invariant subspace associated with σ(T11). Unfortunately,
the Francis iteration leads QT

RAQF = TF in which the eigenvalues appear somewhat
randomly along the diagonal of TF . We need a method for computing an orthogonal
matrix QD such that QT

DTFQD is upper quasitriangular with appropriate eigenvalues
ordering.

Let A ∈ R2×2, suppose

QT
FAQF = TF =

[
λ1 t12
0 λ2

]
, λ1 ̸= λ2.

Note that TFx = λ2x, where x =

[
t12

λ2 − λ1

]
. Let QD be a given rotation such that

QT
Dx =

[
α
0

]
. If Q = QFQD, then(

QTAQ
)
e1 = QT

DTF (QDe1) = λ2Q
T
D (QDe1) = λ2e1

and so

QTAQ =

[
λ2 ±t12
0 λ1

]
.
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Using this technique, we can move any subset of σ(A) to the top of T
′
s diagonal. See

Algorithm 7, 6–1 pp.241 (Golub & Van Loan: Matrix Computations). The swapping gets
a little more complicated when T has 2× 2 blocks. See Ruhe (1970) and Stewart (1976).

Block Diagonalization
Let

T =


T11 T12 · · · T1q
0 T22 · · · T2q
...

. . .
...

0 · · · 0 Tqq


}n1

}n2

}nq

(5.4.22)

be a partitioning of some real Schur form QTAQ = T ∈ Rn×n such that σ(T11), · · · , σ(Tqq)
are disjoint. There exists a matrix Y such that Y −1TY = diag(T11, · · · , Tqq). A practical
procedure for determining Y is now given together with an analysis of Y ’s sensitivity as
a function of the above partitioning.

Partition In = [E1, · · · , Eq] conformally with T and define Yij ∈ Rn×n as follows:

Yij = In + EiZijE
T
j , i < j, Zij ∈ Rni×nj .

It follows that if Y −1ij TYij = T̄ =
(
T̄ij
)
then T and T̄ are identical except that

T̄ij = TiiZij − ZijTjj + Tij,

T̄ik = Tik − ZijTjk (k = j + 1, · · · , q),
T̄kj = TkiZij + Tkj (k = 1, · · · , i− 1).

This T̄ij can be zeroed provided we have an algorithm for solving the Sylvester equation

FZ − ZG = C, (5.4.23)

where F ∈ Rp×p, G ∈ Rr×r are given upper quasi-triangular and C ∈ Rp×r.

Bartels and Stevart (1972): Let C = [c1, · · · , cr] and Z = [z1, · · · , zr] be column
partitionings. If gk+1,k = 0, then by comparing columns in (5.4.23) we find

Fzk −
k∑

i=1

gikzi = ck.

Thus, once we know z1, · · · , zk−1 then we can solve the quasi-triangular system

(F − gkk)zk = ck +
k−1∑
i=1

gikzi for zk.

If gk+1,k ̸= 0, then zk and zk+1 can be simultaneously found by solving the 2p×2p system[
F − gkkI −gmkI
−gkmI F − gmmI

] [
zk
zm

]
=

[
ck
cm

]
+

k−1∑
i=1

[
gikzi
gimzi

]
(m = k + 1). (5.4.24)
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By reordering the equations according to permutation (1, p+1, p+2, · · · , p, 2p), a banded
system is obtained that can be solved in O(p2) flops. The detail may be found in Bartel
and Stewart (1972) and see algorithm 7.6–2, 6–3 pp.243 (Golub & Van Loan Matrix
Computation).
Connection with variant inverse iteration

Now let A ∈ Cn×n. The QR algorithm with respect to the sequence {ki}∞i=1 of shift:

A1 = A,

(Ai − kiI) = QiRi,

Ai+1 = RiQi + kiI, Pi = Q1Q2 · · ·Qi.

Theorem 5.4.8 Let ps denote the last column of Ps. The sequence {ps}∞s=1 is then created
by the variant inverse iteration:

p0 = en, k1 = pTpAp0,

for s = 0, 1, 2, · · ·
p̃s+1 = (A∗ − ks+1I)

−1 ps, rs+1 =
(
p̃∗s+1p̃s+1

)−1/2
,

ps+1 = rs+1p̃s+1, ks+2 = p∗s+1Aps+1.

Proof: APs = PsAs+1 implies

Ps+1 = PsQs+1Rs+1R
−1
s+1 = Ps(As+1 − ks+1I)R

−1
s+1

= (A−Ks+1I)PsR
−1
s+1

and therefore
Ps+1 = (A∗ − k̄s+1I)

−1PsR
∗
s+1 (since P−∗s = Ps).

If we denote by r the last diagonal element of Rs+1, then ps+1 = (A∗− k̄s+1I)
−1psr. From

(As+1 − ks+1I)
−∗R∗s+1 = Qs+1 follows that

Rs+1P
∗
s (A− ks+1I)

−1(A∗ − k̄s+1I)
−1PsR

∗
s+1 = I

and then r = rs+1.
Deflation “Remove” a computed eigenvalue and eigenvector from a matrix.

(a) Deflation from Hotelling: A is symmetric and real. Let λ1 and x1 be the computed
eigenvalue and eigenvector respectively, and xT1 x1 = 1. Then

B = A− λ1x1x∗1

has the following relation

Bxj = Axj − λ1x1xT1 xj =
{
λjxj, j ̸= 1,
0 · xj, j = 1,

where Axj = λjxj j = 1, · · · , n. B has the eigenvalues {0, λ2, · · · , λn}.
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(b) Deflation fromWielandt: Let A be arbitrary. We know the fact, that a left eigenvector
y to µ and a right eigenvector x to λ for λ ̸= µ are orthogonal:

0 = (yTA)x− yT (Ax) = µyTx− λyTx = (µ− λ)yTx.

Let λ1 and x1 be the given eigenvalue and the eigenvector respectively. Let u ̸= 0 be a
vector with uTx1 ̸= 0. Then

B = A− x1uT .
From

Bx1 = λ1x1 − (uTx1)x1 = (λ1 − uTx1)x1
follows that the eigenvalue λ1 is transformed to λ1 − uTx1. If λ ̸= λ1 an eigenvalue, then
follows from yTA = λyT (y ̸= 0) and yTB = yTA − (yTx1)u

T = λyT that λ is also an
eigenvalue of B. But the right eigenvectors are changed.

(c) Deflation with similarity transformation
A is arbitrary. Let x1, λ1 be given with Ax1 = λ1x1. Find a matrix H such that

Hx1 = ke1(k ̸= 0). Then holds

HAH−1Hx1 = λ1Hx1 and HAH−1e1 = λ1e1.

That is HAH−1 has the form

HAH−1 =

(
λ1 bT

0 B

)
.

B has the eigenvalues σ(A) \ {λ1}.

5.5 LR, LRC and QR algorithms for positive definite

matrices

(a). LR-algorithm: Given matrix A. Consider

A1 := A,
for i = 1, 2, 3, · · ·
Ai = LiRi, (LRfactorization of Ai)
Ai+1 := RiLi.

(5.5.1)

From (5.4.5)–(5.4.7) we have

Pi := L1 · · ·Li, Si := Ri · · ·R1,

Ai+1 := P−1i APi = SiAS
−1
i , (5.5.2)

Ai = PiSi. (5.5.3)

There exists the convergence theorem as Theorem 5.4.2.
Advantage: less cost of computation at each step.
Disadvantage: LR factorization does not always exist.
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(b). LRC-algorithm:
Let A be symmetric positive definite. Then the LR factorization exists. So we have

the following iterative algorithm

A1 := A,
for i = 1, 2, 3, · · ·
Ai = LiL

T
i , (Cholesky factorization of Ai )

Ai+1 := LT
i Li.

(5.5.4)

Similar to (5.4.5)–(5.4.7) we also have

Pi := L1L2 · · ·Li,

Ak+1 = P−1k APk = P T
k AP

−T
k , (5.5.5)

Ak = PkP
T
k . (5.5.6)

Because all Pi are positive definite, the LRC algorithm is always performable.

Theorem 5.5.1 Let A be symmetric positive definite with eigenvalues λ1, · · · , λn. Then
the LRC algorithm converges: The sequence Ak converges to a diagonal matrix Λ with
the eigenvalues of A on the diagonal. If Λ = diag(λi), where λ1 > λ2 > · · ·λn > 0,
A = UΛUT and UT has a LR factorization, then Ak converges to Λ.

Proof: Let Lk =
(
ℓkij
)
and skm =

∑m
i=1 a

k
ii, 1 ≤ m ≤ n. Since all Ak are positive definite

and akii > 0, we have

0 ≤ skm ≤
n∑

i=1

akii = trace of Ak = trace of A.

Thus skm are bounded. From Ak = LkL
T
k follows akii =

∑i
p=1 |ℓkip|2. From Ak+1 = LT

kLk

follows ak+1
ii =

∑i
p=i |ℓkpi|2. Hence skm =

∑m
i=1

∑i
p=1 |ℓkip|2 and sk+1

m =
∑m

i=1

∑n
p=i |ℓkpi|2.

The skizze shows clearly that sk+1
m ≥ skm. So skm converges, and then akii = ski − ski−1

and sk+1
m − skm =

∑m
p=1

∑n
j=m+1

(
ℓkjp
)2 → 0. This shows that ℓkpj → 0, p ̸= j and since

akii =
(
ℓkii
)2

+
∑i−1

p=1

(
ℓkip
)2

and akii > 0, so ℓkii converges. So Li converges to a diagonal

matrix. Here Ai = LiL
T
i .

Second part: From A = UΛUT , UT = LR follows

As = UΛsUT = RTLTΛsLR (s = 2t)

= RTΛt
(
Λ−tLTΛt

) (
ΛtLΛ−t

)
ΛtR.

Since ΛtLΛ−t = I + Et with Et → 0 and by continuity of LLT -factorization we have(
Λ−tLTΛt

) (
ΛtLTΛ−t

)
= (I + Et)

T (I + Et) = L̃sL̃
T
s , L̃s → I

and
As = RTΛtL̃s · L̃sΛ

tR = PsP
T
s .

We now have two different LLT -decomposition of As. There is a unitary diagonal matrix
Ds with

PsDs = RTΛT L̃s
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and hence

D−1s As+1Ds = D−1s P−1s APsDs

= L̃−1s Λ−t
(
R−TART

)
ΛtL̃s

= L̃−1s Λ−t
(
LTΛL−T

)
ΛtL̃s.

Since A = UΛU−1 = RTLTΛL−TR−T and LTΛL−T is a upper triangular with diagonal
Λ, it holds Λ−tLTΛL−TΛt → Λ and because of L̃s → I, it holds D−1s As+1Ds → Λ, also
As+1 → Λ.

Remark 5.5.1 (i) One can also develop shift-strategy and deflation technique for LR
and LRC algorithm as in QR algorithm.

(ii) If A is a (k, k)-band matrix, then L1 is a (k, 0)-band matrix and therefore A2 = LT
1L1

is also a (k, k)-band matrix. The band structure is preserved.

(c). QR-algorithm for positive definite matrices
We apply QR-algorithm (5.4.3)–(5.4.4) to symmetric matrices. From

Ai+1 = Q∗iAiQi

follows that Ai are symmetric.

Theorem 5.5.2 The QR algorithm converges for positive definite matrices.

The proof follows immediately from the following Theorem 5.5.3.
We consider now the iteration of QR algorithm

Ai+1 = Q∗iAiQi

and the iterations of LRC algorithm

Ãi := LiL
T
i , Ãi+1 = LT

i Li.

Theorem 5.5.3 The (i + 1)-th iteration Ai+1 of QR algorithm for positive definite A
corresponds to the (2i+ 1)-th iteration Ã2i+1 of LRC algorithm for i = 0, 1, 2, · · · .

Proof: From (5.4.5)–(5.4.7) we have

Pi := Qi · · ·Qi, Si := Ri · · ·R1 (5.5.7)

and
Ai = PiSi, Ai+1 = SiAS

−1
i . (5.5.8)

Similarly, from (5.5.2) and (5.5.3) with P̃i = L1 · · ·Li, we have

Ai = P̃iP̃
T
i , Ãi+1 = P̃ T

i AP̃
−T
i . (5.5.9)

From(5.5.8) follows
A2i = (Ai)∗Ai = S∗i P

∗
i PiSi = S∗i Si.
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On the other hand from (5.5.9) with i← 2i follows

A2i = P̃2iP̃
T
2i .

From the uniqueness of LRC factorization of positive diagonal follows Si = P̃ T
2i and hence

according to (5.5.8) (5.5.9) it holds

Ai+1 = SiAS
−1
i = P̃ T

2iAP̃
−T
2i = Ã2i+1.

The proof of Theorem 5.5.2 is now from Theorem 5.5.1 and Theorem 5.5.3 evident.

Remark 5.5.2 For positive definite matrices two steps of LLT algorithm are as many
as one step of QR algorithm. This shows that QR algorithm is much more favorable.

5.6 qd-algorithm (Quotient Difference)

We indicated in Remark 5.5.1(ii), the band structure is preserved by LR algorithm. Let
A = A1 be a (k,m)-band matrix. Then all Li, (k, 0)−, all Ri, (0,m)− and all Ai, (k,m)-
band matrices, respectively. Especially tridiagonal form is preserved. A transformation
of LR-algorithm for tridiagonal matrices derives to qd-algorithm. A tridiagonal matrix

Ã =


α̃1 β̃2 0

γ̃2 α̃2 β̃3
. . . . . . . . .

. . . . . . β̃n
0 γ̃n α̃n

 (5.6.1)

for β̃i ̸= 0 (i = 2, · · · , n) can be transformed with D = diag(1, β̃2, β̃2β̃3, · · · , β̃2 · · · β̃n) to
the form DÃD−1 = A, where

A =


α1 1 0
γ1 α2 1

. . . . . . . . .
. . . . . . 1

0 γn αn

 (5.6.2)

with γi = β̃iγ̃i and αi = α̃i. Hence without loss of generality we can study the form
(5.6.2) for tridiagonal matrices. We now apply LR-algorithm to (5.6.2):

As =


αs
1 1 0

γs2 αs
2

. . .
. . . . . . 1

0 γsn αs
n

 , Ls =


1 0

es2
. . .
. . . . . .

0 esn 1

 ,

Rs =


qs1 1 0

. . . . . .
. . . 1

0 qsn

 . (5.6.3)
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The LR factorization As = LsRs can be obtained by element comparison:

(1, 1) : αs
1 = qs1,

(i, i− 1) : γsi = esiq
s
i−1, i = 2, · · · , n,

(i, i) : αs
i = esi + qsi , i = 2, · · · , n,

(i, i+ 1) : 1 = 1 · 1, i = 1, · · · , n− 1.

(5.6.4)

We can determine esi , q
s
i from above equations for a givenAs in the sequence qs1, e

s
2, q

s
2, e

s
3, q

s
3,

. . . , qsn and compute As+1 = RsLs by
αs+1
i = qsi + esi+1, i = 1, · · · , n− 1
αs+1
n = qsn,
γs+1
i = qsi e

s
i , i = 2, · · · , n.

(5.6.5)

We write s+ 1 instead of s in (5.6.4), then we can eliminate As+1 and obtain{
(αs+1

i =)es+1
i + qs+1

i = qsi + esi+1, i = 1, · · · , n
(γs+1

i =)es+1
i qs+1

i−1 = qsi e
s
i , i = 2, · · · , n . (5.6.6)

For the convenience of notation we suppose

es1 = 0, esn+1 = 0, s = 1, 2, · · · . (5.6.7)

The equations (5.6.6) can be represented by the qd-scheme and the Rhomben rules:

qd-Scheme

(es1 =) 0 qs1 es2(
es+1
1 =

)
0 qs+1

1 es+1
2 qs2

qs+1
2

. . . qsn−1 esn

. . . qs+1
n−1 es+1

n qsn 0
(
= esn+1

)
qs+1
n 0

(
= es+1

n+1

)
The first equations in (5.6.6) can be formulated as sum rule:

qsi
. . .

es+1
i esi+1

. . .

qs+1
i

The sum of elements of upper rows is equal to the sum of elements of lower rows. Thus,

qs+1
i = qsi + esi+1 − es+1

i . (5.6.8)

The second equations in (5.6.6) can be formulated as product rule:

esi
. . .

qs+1
i−1 qsi

. . .

es+1
i
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The product of elements of upper rows is equal to the product of elements of lower rows.
Thus,

es+1
i =

esiq
s
i

qs+1
i−1

. (5.6.9)

With these rules a new qd-rows can be determined by sum and product rules from left
to right. Start according to (5.6.4) with s = 1. The formulas (5.6.8)(5.6.9) interpret the
name quotient-difference algorithm.

5.6.1 The qd-algorithm for positive definite matrix

If Ã in (5.6.1) is positive definite, then det Ã > 0, and it also holds for A because
detA = detD det Ã detD−1 = det Ã > 0. This also holds for principal determinants
h1, · · · , hn of Ã. They are positive and equal to principal determinants of A, respectively.
In general we have

Lemma 5.6.1 If a matrix B is diagonal similar to a positive definite matrix C, then all
principal determinants of B are positive.

Lemma 5.6.2 A matrix in the form (5.6.2) is diagonal similar to a symmetric tridiag-
onal matrix, if and only if, γi > 0, for i = 2, · · · , n. Especially this matrix is irreducible.

Proof: If γi > 0, then D−1AD is symmetric, where

D = diag(1, t2, t2t3, · · · , t2 · · · tn), ti :=
√
γi .

Reversely, if D is a diagonal matrix, D = diag(di) and Ã = D−1AD symmetric, then
ãi,i+1 = di+1

/
di = ãi+1,i = γi(di/di+1) and di+1

/
di ̸= 0. So γi = (ãi,i+1)

2 > 0.

Theorem 5.6.1 The qd-algorithm converges for irreducible, symmetric positive definite
tridiagonal matrices. i.e. If Ã is irreducible and positive definite, then it holds the quan-
tities computed from (5.6.2) (5.6.4) (5.6.8)(5.6.9):

esi > 0, lim
s→∞

esi = 0, i = 2, · · · , n, (5.6.10)

qsi > 0, lim
s→∞

qsi = 0, i = 1, · · · , n. (5.6.11)

Hereby λi, i = 1, · · · , n are the eigenvalues of Ã and satisfy

λ1 > λ2 > · · · > λn > 0. (5.6.12)

Proof: Let hki be the i-th principal determinant of Ak. We first show that by induction
on k:

eki > 0, i = 2, · · · , n, qki > 0, hki > 0, i = 1, · · · , n.

For A = A1, Lemma 5.6.1 shows that: h1i > 0, i = 1, · · · , n. In addition we have from
As = LsRs that

hsi = qsi · · · qsi , i = 1, · · · , n. (5.6.13)
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Hence for s = 1 : q1i > 0, i = 1, · · · , n. From Lemma 5.6.2 follows γi = γ1i > 0, i =
2, · · · , n, so from (5.6.4) we get

e1i = γ1i

/
q1i−1 > 0.

We suppose the above assertion is true until k − 1, then from (5.6.5) follows

γki = qk−1i ek−1i > 0,

so from Lemma 5.6.2 and Lemma 5.6.1 we have that Ak is diagonal similar to a symmetric
matrix, which must be positive definite, because Ak is similar to Ã. Hence all hki > 0.
Therefore from (5.6.13) qki and from (5.6.4) eki are also positive.

We now show that
lim
k→∞

eki = 0, lim
k→∞

qki = qi > 0.

From (5.6.6) for i = n, qs+1
n + es+1

n = qsn follows that qsn is monotone decreasing, so qsn
converges and es+1

n = qsn − qs+1
n approaches to zero. Adding the following equations

together

qk+1
n = qkn − ek+1

n ,

qk+2
n−1 = qk+1

n−1 + ek+1
n − ek+2

n−1,
...

qk+ν+1
n−ν = qk+ν

n−ν + ek+ν
n+1−ν − ek+ν+1

n−ν ,

we get that

qk+1
n + qk+2

n−1 + · · ·+ qk+ν+1
n−ν = qkn + qk+1

n−1 + · · ·+ qk+ν
n−ν − ek+ν+1

n−ν ,

i.e.,
ρk+1
ν = ρkν − ek+ν+1

n−ν .

The sequence ρkν is positive, monotone decreasing, so it converges, for ν = 1, · · · , n − 1.
Hence qkν converges to a number qν ≥ 0, thus limk→∞ e

k
ν = 0. So lims→∞ Ls = I and

hence

lim
s→∞

As = lim
s→∞

LsRs = lim
s→∞

Rs =


q1 1 0

. . . . . . 1
. . .

0 qn

 .
This shows that qi are the eigenvalues of A and Ã. It is necessary to show that qi are in
decreasing order. Suppose qi/qi−1 > 1 for one i, then also holds for all s, qsi

/
qsi−1 > 1.

This contradicts that
es+1
i = esiq

s
i

/
qsi−1 and esi → 0.

On the other hand, qi = qi−1 is not possible, since a tridiagonal matrix with nonzero
subdiagonal only possesses simple eigenvalues.

Remark 5.6.1 It is remarkable that the qd-algorithm has the advanced applications in
the numerical mathematics for the computation of roots of polynomials.
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Chapter 6

The Symmetric Eigenvalue problem

6.1 Properties, Decomposition, Perturbation Theory

A Hermitian⇐⇒ A = A∗ ⇐⇒ A = (aik), aik = āki, i, k = 1, · · · , n.
A symmetric⇐⇒ A = Ā, A = AT ⇐⇒ aik = aki, aik = āik, i, k = 1, · · · , n.

Theorem 6.1.1 (Schur Decomposition for Hermitian matrices) If A ∈ Cn×n is
Hermitian (real symmetric), then there exists a unitary (orthogonal) Q such that

Q∗AQ = ∧ ≡ diag(λ1, · · · , λn),
Aqi = λiqi, i = 1, · · · , n, Q = [q1, · · · , qn].

(1.1)

Proof: Let Q∗AQ = T be the Schur Decomposition of A. It follows that T must be a
direct sum of 1 × 1 and 2 × 2 matrices, since T is Hermitian. But a 2 × 2 Hermitian
matrix can not have complex eigenvalues. Consequently, T has no 2 × 2 block along its
diagonal.

Classical techniques:
There are extremely effetive techniques based on the minimax principle, for investi-

gating the eigenvalues of the sum of two symmetric matrices.
Let X be a symmetric matrix defined by

X =

[
α aT

a diag(αi)

]
(i = 1, · · · , n).

We wish to relate the eigenvalues of X with the αi.
Suppose that only s of the components of a are non-zero. If aj is zero, then αj is an

eigenvalue of X. There exists a permutation P such that

Y = P TXP =

 α bT 0
b diag(βi) 0
0 0 diag(γi)

 ,

where no component of b is zero, diag(βi) is of order s, and diag(γi) is of order n− 1− s.
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The eigenvalues of X are therefore γi together with those of the matrix Z defined by

Z =

(
α bT

b diag(βi)

)
.

If s = 0, Z is the single element α and hence the eigenvalues of X are diag(αi) and α.
Otherwise examine the characteristic polynominal of Z:

(α− λ)
s∏

i=1

(βi − λ)−
s∑

j=1

b2j
∏
i̸=j

(βi − λ) = 0. (1.1.1)

Suppose that there are only t distinct values among the βi. W.l.o.g. we may take them to
be β1, · · · , βt with multiplicities r1, r2, · · · , rt respectively, so that r1 + r2 + · · · + rt = s.
Clearly the left-hand side of (1.1.1) has the factor

t∏
i=1

(βi − λ)ri−1 ,

so that βi is an eigenvalue of Z of multiplicity (ri − 1).
Dividing (1.1.1) by Πt

i=1(βi − λ)ri we see that the remaining eigenvalues of Z are the
roots of

0 = (α− λ)−
t∑

i=1

c2i (βi − λ)−1 ≡ α− f(λ), (1.1.2)

where c2i is the sum of the ri values b
2
j associated with βi and is therefore strictly positive.

A graph of f(λ) against λ is given as follows, where it is assumed that distinct βi are in
decreasing order.
It is immediately evident that the t+1 roots of α = f(λ) which we denote by δ1, δ2, · · · , δt+1

satisfy

∞ > δ1 > β1; βi−1 > δi > βi (i = 2, 3, · · · , t); βt > δt+1 > −∞ (1.1.3)

The n eigenvalues of X therefore fall into three sets:

(1) The eigenvalues γ1, · · · , γn−1−s corresponding to the zero ai. These are equal to
n− 1− s of the αi.

(2) s − t eigenvalues consisting of ri − 1 values equal to βi (i = 1, 2, · · · , t). These are
equal to a further s− t of the αi.

(3) t+ 1 eigenvalues equal to δi satisfying (1.1.3). If t = 0 then δ1 = α.

Let the eigenvalues of X be denoted by λ1 ≥ λ2 ≥ · · · ≥ λn. Then it is an immedi-
ate consequence of our enumeration of the λi above that if the αi are also arranged in
nonincreasing order then

λ1 ≥ α1 ≥ λ2 ≥ α2 ≥ · · · ≥ αn−1 ≥ λn. (1.1.4)

In other words the αi separate the λi at least in the weak sense.
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Consider now the eigenvalues of X ′ derived from X by replacing α and α′. The
eigenvalues of X ′ will equal to those of X as far as sets (1) and (2) are concerned.

Let us denote those in (3) by δ′1, δ
′
2, · · · , δ′t+1. Now for λ > 0, we have

df

dλ
= 1 +

t∑
i=1

c2i
(βi − λ)2

> 1, (1.1.5)

and hence δi
′ − δi lies between 0 and α′ − α. We may write

δi
′ − δi = mi(α

′ − α), (1.1.6)

where 0 ≤ mi ≤ 1 and
∑t+1

i=1mi = 1. If t = 0 then δ1
′ = α′ and δ1 = α and δ1

′−δ1 = α′−α.
Hence we may write in all cases

δi
′ − δi = mi(α

′ − α),

where 0 ≤ mi ≤ 1 and
∑t+1

i=1mi = 1. Since the other eigenvalues of X and X ′ are equal,
we have established a correspondence between n eigenvalues λ1, · · · , λn and λ1

′, · · · , λn′
of X and X ′ respectively.

λi
′ − λi = mi(α

′ − α), (1.1.7)

0 ≤ mi ≤ 1,
n∑

i=1

mi = 1,

where mi = 0 for the eigenvalues from sets (1) and (2).

Now let C = A+ B, where A and B are symmetric and B is of rank 1. There exists

an orthogonal matrix R such that RTBR =

[
ρ 0
0 ⃝

]
, ρ ̸= 0. Let

RTAR =

[
α aT

a An−1

]
.

Then there is an orthogonal matrix S of order n-1 such that

STAn−1S = diag(αi),

and if we define Q by

Q = R

[
1 0
0 S

]
,

then Q is orthogonal and

QT (A+B)Q =

[
α bT

b diag(αi)

]
+

[
ρ 0
0 ⃝

]
,

where b = STa, the eigenvalues of A and of (A+B) are therefore those of[
α bT

b diag(αi)

]
and

[
α+ ρ bT

b diag(αi)

]
,
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and if we denote these eigenvalues by λi and λi
′ in decreasing order, then they satisfy

λ
′

i − λi = miρ, (1.1.8)

0 ≤ mi ≤ 1
n∑

i=1

mi = 1.

Hence when B is added to A, all eigenvalues of the latter are shifted by an amount which
lies between zero and the eigenvalue ρ of B. We summary the above discussion as the
following theorem.

Theorem 6.1.2 Supose B = A+ τ c cT , where A ∈ Rn×n is symmetric, c ∈ Rn has unit
2-norm and τ ∈ R. If τ ≥ 0 then

λi(B) ∈ [λi(A), λi−1(A)], i = 2, 3, . . . , n,

while if τ ≤ 0 then

λi(B) ∈ [λi+1(A), λi(A)], i = 1, 2, . . . , n− 1.

In either case
λi(B) = λi(A) +miτ,

where m1 +m2 + · · ·+mn = 1 and mi ≥ 0.

Let λi(A) denote the ith largest eigenvalue of A. Then

λn(A) ≤ λn−1(A) ≤ · · · ≤ λ1(A). (1.2)

Definition 6.1.1 If A = A∗,x ̸= 0, then

R[x] =
xTAx

xTx

is called the Rayleigh-Quotient of x, sometimes denoted by R[x,A].

Theorem 6.1.3 If A = A∗, then it holds

λn(A) ≤ R[x] ≤ λ1(A). (1.3)

Proof: From (1.1) we have

R[x] =
x∗Ax

x∗x
=
x∗UAU∗x

x∗UU∗x
=
y∗Λy

y∗y
=

∑n
i=1 λi|yi|2∑n
i=1 |yi|2

, (y = U∗x). (1.4)

Thus R[x] is a convex combination of λi, it follows (1.3).

Corollary 6.1.4

λ1(A) = max
x ̸=0

R[x] and λn(A) = min
x̸=0

R[x].
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Theorem 6.1.5 (Weyl) If A is Hermitian with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and
eigenvectors u1, · · · , un, then it holds

λi = max{R[x] : x ̸= 0, x ⊥ uk, k = 1, · · · , i− 1}, (1.5)

for i = 1, · · · , n.

Proof: It is clear for i = 1. Let i > 1. If x ⊥ u1, · · · , ui−1 then u∗kx = 0, for k =
1, · · · , i − 1. So y = U∗x satisfies yk = 0, k = 1, · · · , i − 1 (Here U = [u1, · · · , un]). It
follows from (1.4) that

R[x] =

∑n
j=i λj∥yj∥2∑n
j=i ∥yj∥2

≤ λi.

For x = ui, we have R[x] = λi, so (1.5) holds.

Theorem 6.1.6 (Courant-Fischer) Under above assumptions we have

λi = min
{p1,··· ,pn}l.i.

{max{R[x] : x ̸= 0, x ⊥ pk, k = 1, · · · , i− 1}} (1.6)

λi = min
dimS=n+1−i

{max{R[x] : x ∈ S \ {0}}}. (1.7)

λi = max
dimS=i

{min{R[x] : x ∈ S \ {0}}}. (1.8)

Proof:
(1.6)⇐⇒ (1.7) trivial.
(1.7) ⇒ (1.8): Applying (1.7) to −A, we then have

λi(−A) = min
dimS=n+1−i

{max{−R[x] : x ∈ S \ {0}}}.

That is
−λn+1−i(A) = − max

dimS=n+1−i
{min{−R[x] : x ∈ S \ {0}}}.

(Use max(−ai) = −min(ai), min(−ai) = −max(ai)). By substituting i → n + 1 − i
follows (1.8).

Claim (1.6): Since λ1 = maxx ̸=0(R[x]), for i = 1 it is true.

Consider i > 1 : Let p1, · · · , pi−1 ̸= 0 be given. The linear system{
pk
∗x = 0, k = 1, · · · , i− 1,

uk
∗x = 0, k = i+ 1, · · · , n

has a solution x ̸= 0, because of n − 1 homogenous equations with n variables. Let
U = [u1, · · · , un]. Then

R[x] =
x∗UΛU∗x

x∗UU∗x
=

∑i
j=1 λj|U∗x|2j∑i
j=1 |U∗x|2j

≥ λi.

But p∗kx = 0, k = 1, · · · , i− 1 so

max{R[x] : x ⊥ pk, k = 1, · · · , i− 1} ≥ λi.
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This implies
λi ≤ min

{pk}i−1
k=1

{max{R[x] : x ⊥ pk, k = 1, · · · , i− 1}}.

Now set pk = uk, k = 1, · · · , i− 1. By (1.5) we have the equality (1.6).

Theorem 6.1.7 (Separation theorem) A is Hermitian with eigenvalues λn ≤ λn−1 ≤
· · · ≤ λ1. Let

An−1 =

 a11 · · · a1,n−1
...

...
an−1,1 · · · an−1,n−1


be the n − 1 principal submatrix of A with eigenvalues λ

′
n−1 ≤ · · · ≤ λ1

′. Then it holds
λs+1 ≤ λ

′
s ≤ λs, for s = 1, · · · , n− 1.

Proof: Let z =

[
x
0

]
∈ Cn, where x ∈ Cn−1. Then

x∗An−1x

x∗x
=
z∗Az

z∗z
.

Applying (1.5) to An−1 we have

λ
′

s = max{x
∗An−1x

x∗x
: 0 ̸= x ∈ Cn−1, x ⊥ u

′

i, i = 1, · · · , s− 1}

= max{z
∗Az

z∗z
: 0 ̸= z ∈ Cn, z ⊥

[
u

′
i

0

]
, eTnz = 0, i = 1, · · · , s− 1}

≥ min
{pi}si=1 l.i.

max{R[z] : z ⊥ pi, i = 1, · · · , s} = λs+1 (By(1.6)).

therefore λs+1 ≤ λ
′
s. Here u

′
i is the eigenvector of An−1. Now set A→ −A then

λs+1(−A) ≤ λ
′

s(−An−1).

Thus
−λn−s(A) ≤ −λ

′

n−s(An−1).

It follows
λn−s(A) ≥ λ

′

n−s(An−1).

Hence we have λn−s ≥ λ
′
n−s. By setting s→ n− s, we have λs ≥ λ

′
s.

Theorem 6.1.8 (Separation theorem) Let λ1 ≥ · · · ≥ λn be the eigenvalues of A and
λ1
′ ≥ · · · ≥ λ′n−1 be the eigenvalues of B′, where B′ is obtained by scratching a row and

the same column of A, then λs+1 ≤ λs
′ ≤ λs. Further consequence are: If B consists of

by scratching two rows and the coresponding columns of B′, i.e., A → B′ → B, then we
have

λi+2 ≤ λ
′

i+1 ≤ λ
′′

i ≤ λ
′

i ≤ λi and λi+2 ≤ λ
′′

i ≤ λi.

In general: Let B be the principal submatrix of A of order n− r, then

λi+r(A) ≤ λi(B) ≤ λi(A), i = 1, · · · , n− r.
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Theorem 6.1.9 (Perturbation theorem) Let A, E be Hermitian. Then it holds

λi(A) + λn(E) ≤ λi(A+ E) ≤ λi(A) + λ1(E), i = 1, · · · , n. (1.9)

Proof: For x ̸= 0, R[x,A+ E] = R[x,A] +R[x,E]. Thus

R[x,A] + λn(E) ≤ R[x,A+ E] ≤ R[x,A] + λ1(E).

Applying (1.6) we get

λi(A) + λn(E) ≤ λi(A+ E) ≤ λi(A) + λ1(E).

Corollary 6.1.10 (Monotonic theorem) If E is positive semidefinite, then it holds

λi(A+ E) ≥ λi(A).

Corollary 6.1.11 (Weyl’s theorem) It holds

|λi(A+ E)− λi(A)| ≤ max{λ1(E),−λn(E)}
= max{|λi(E)|, i = 1, · · · , n} = ρ(E) = ∥E∥2
= spectral radius of E.

Theorem 6.1.12 (Hoffmann-Wielandt) If A,E are Hermitian matrices, then

n∑
i=1

(λi(A+ E)− λi(A))2 ≤ ∥E∥2F = (
n∑

i=1

λi(E)
2)

1
2 .

Proof: Later!

Definition 6.1.2 A matrix B = (bij) is called double stochastic(d.s.), if (1) bij ≥ 0. (2)∑n
j=1 bij =

∑n
j=1 bji = 1, for i, j = 1, · · · , n.

Remark: The d.s. matrices form a convex set D.

Example: LetW be orthogonal andW = (wik). Then (|wik|2) = W̃ is double stochastic.

Example: Let P be a permutation matrix. Then P is double stochastic (Extreme point
of D).

Theorem 6.1.13 (Birkhoff) D is the convex closure of the permutation matrices, that
is, for B ∈ D, there exists α1, · · · , αr and P1, · · · , Pr permutations such that

B =
r∑

i=1

αipi, αi ≥ 0,
r∑

i=1

αi = 1.
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(Without Proof!)

Remark: Let l be a linear functional from D into R. Then it holds

min
P∈Perm.

l(P ) ≤ l(B) = l(
r∑

i=1

αipi) ≤ max
P∈Perm.

l(P ).

Proof of Hoffmann-Wielandt theorem 6.1.12: Let

A = UΛU∗, Λ = diag(λ1(A), · · · , λn(A)),

A+ E = V Λ̃V ∗, Λ̃ = diag(λ1(A+ E), · · · , λn(A+ E)) ≡ diag(λ̃i).

Then

−E = A− (A+ E) = UΛU∗ − V Λ̃V ∗

= V (V ∗UΛ− Λ̃V ∗U)U∗

= V (WΛ− Λ̃W )U∗

and since W = V ∗U is unitary, we have

∥E∥2F = ∥WΛ− Λ̃W∥2F =
n∑

i,k=1

|wik(λk − λ̃i)|2

=
n∑

i,k=1

|wik|2|λi − λ̃k|2 = l(W̃ ) ≥ l(P ) (for some P )

(Hereby W̃ = (|wik|) is in D).

=
n∑

k=1

|λk − λ̃π(k)|2 (for some permutation π)

= min
π

n∑
k=1

|λk − λ̃π(k)|2

=
n∑

k=1

(λk(A)− λk(A+ E))2. (Exercise!)

Perturbation theorem of invariant subspaces ( eigenvectors )

Theorem 6.1.14 A ∈ Rn×n symmetric, S ∈ Rm×m symmetric and

AQ1 −Q1S = E1 with Q1 ∈ Rn×m, QT
1Q1 = Im. (1.10)

Then there exist eigenvalues λ
′
1, · · · , λ

′
m of A such that

|λ′

i − λi(S)| ≤ ∥E1∥2. (1.11)
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Proof: Extend Q1 to an orthogonal matrix Q = (Q1, Q2), then

QTAQ =

(
QT

1AQ1 QT
1AQ2

QT
2AQ1 QT

2AQ2

)
=

(
S +QT

1E1 ET
1 Q2

QT
2E1 QT

2AQ2

)
(by (1.10))

=

(
S 0
0 QT

2AQ2 −X

)
+

(
QT

1E1 ET
1 Q2

QT
2E1 X

)
≡ B + E.

Here QT
1E1 = QT

1AQ1 − S is symmetric. Corollary 6.1.10 results

|λ′

i − λi(S)| ≤ ∥E∥2.

Show that: ∥E∥2 = ∥E1∥2 for suitable X.
It holds ∥E1∥2 ≤ ∥E∥2. The equality holds immediately from the Extension Theorem

of Kahan(1967):

Extension Lemma: Let R =

[
H
B

]
, H = H∗. There exists a W such that the ”extend”

matrix A =

[
H B∗

B W

]
satisfies ∥A∥2 = ∥R∥2.

Proof of Extension Lemma: Let ρ = ∥R∥2. For any choice of W we have ρ2 ≤ ∥A2∥2
(by separation theorem). The theorem requires that for some W the matrix ρ2 − A2 is
positive semidefinite.

Take any σ > ρ, show that σ2−A2 > 0 for some W depending on σ. Then a limiting
argument show that, as σ → ρ+, limW (σ) exists.

For any W : Define R̃ =

[
B∗

W

]
. Write A = (R, R̃). Then

σ2 − A2 =

[
I 0
L I

] [
σ2 −R∗R 0

0 U(σ)

] [
I L∗

0 I

]
and

σ2 −RR∗ =
[
I 0
K I

] [
σ2 −H2 0

0 V (σ)

] [
I K∗

0 I

]
.

where

U(σ) = σ2 − R̃∗[I +R(σ2 −R∗R)−1R∗]R̃,
V (σ) = σ2[I −B(σ2 −H2)−1B∗].

Since σ2 > ρ2 = ∥R∥22 = ∥R∗R∥2 = ∥RR∗∥2, σ2 − R∗R, σ2 − RR∗ and σ2 − H2 are all
positive definite. By Sylvester’s Inertia theorem we have V (σ) positive definite. U(σ)
depends on W .

The trick of the proof: To find a W such that U(σ) = V (σ), and then from Sylvester’s
follows σ2 − A2 > 0.

First we prove that

W (σ) = −BH(σ2 −H2)−1B∗ = −B(σ2 −H2)−1HB∗.
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From above

U(σ) = σ2 −BB∗ −W 2 − (BH +WB)(σ2 −H2 −B∗B)−1(HB∗ +B∗W ).

Consider

(σ2 −H2 −B∗B)−1

= (σ2 −H2)−1 + (σ2 −H2)−1B∗[I −B(σ2 −H2)−1B∗]−1B(σ2 −H2)−1

(Scherrman-Morrison formula)

≡ S + SB∗XBS,

where

S = (σ2 −H2)−1

and

X = (I −B(σ2 −H2)−1B∗)−1 = (I −BSB∗)−1.

Set Y = BSHB∗. Then by SH = HS we get

U(σ) = σ2 −BB∗ −W 2 − (BH +HB)(S + SB∗XBS)(HB∗ +B∗W )

= σ2 −BB∗ −W 2 −BSH2B∗ +WY + Y XY +WBSB∗XY + YW

+ WBSB∗W + Y XBSB∗W +WBSB∗W +WBSB∗XBSB∗W

= V (σ) + Ω (remainder term).

Then

Ω = W 2 +WY + Y XY +W (I −X−1)XY + YW +W (I −X−1)W
+Y X(I −X−1)W +W (I −X−1)X(I −X−1)W

= Y XY +WXY + Y XW +WXW

= (Y +W )X(Y +W ) = 0.

Thus

W (σ) = −Y = −BSHB∗ = −B(σ2 −H2)−1HB∗.

The matrixW (σ) is a rational, and therefore meromorphic function of complex variable σ.
Its only singularities are poles in any neighborhood of which ∥W∥2 must be unbounded.
However ∥W∥2 ≤ ∥A∥2 < σ for all σ > ρ and thus W (σ) must be regular at σ = ρ and
so W (ρ) = limσ→ρ+ W (σ). By continuity of norm we have

∥A(ρ)∥2 = lim
σ→ρ+

∥A(σ)∥2 = ρ.

Generalized Extension Theorem (C. Davis-Kahan-Weinberger)
Given H,B,E arbitary, then there exists W with∥∥∥∥[ H E

B W

]∥∥∥∥
2

= max{
∥∥∥∥[ HB

]∥∥∥∥
2

, ∥(H,E)∥2}.
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So for suitable X we have

∥E∥2 = ∥
[
QT

1E1

QT
2E1

]
∥2 = ∥QTE1∥2 = ∥E1∥2.

Theorem 6.1.15 A ∈ Rn×n and S ∈ Rm×m are symmetric and AX1−X1S = E1, where
X1 ∈ Rn×m satisfies σm(X1) > 0, then there exists eigenvalues λ

′
1, · · · , λ

′
m of A such that

|λ′
i − λi(S)| ≤ ∥E1∥2/σm(X1).

Proof: Let X1 = Q1R1 be the QR-decomposition of X1. By substituting into AX1 −
X1S = E1 we get

AQ1 −Q1S = F1,

where S1 = R1SR1
−1 and F1 = E1R1

−1. The theorem follows by applying theorem 6.1.14
and noting that λ(S) = λ(S1) and ∥F1∥2 ≤ ∥E1∥2/σm(X1).

The eigenvalue bounds in theorem 6.1.14 depend on the size of the residual of the
approximate invariant subspace, i.e., upon the size of ∥AQ1−Q1S∥. The following theorem
tells how to choose S so that this quantity is minimized when ∥ · ∥ = ∥ · ∥F .

Theorem 6.1.16 If A ∈ Rn×n is symmetric and Q1 ∈ Rn×m satisfies QT
1Q1 = Im, then

min
S∈Rm×m

∥AQ1 −Q1S∥F = ∥AQ1 −Q1(Q
T
1AQ1)∥F = ∥(I −Q1Q

T
1 )AQ1∥F .

Proof: Let Q2 ∈ Rn×(n−m) be such that Q = [Q1, Q2] is orthogonal. For any S ∈ Rm×m

we have

∥AQ1 −Q1S∥2F = ∥QTAQ1 −QTQ1S∥2F = ∥QT
1AQ1 − S∥2F + ∥QT

2AQ1∥2F .

Clearly, the minimizing S is given by S = Q1
TAQ1.

Theorem 6.1.17 Suppose A ∈ Rn×n is symmetric and Q1 ∈ Rn×k satisfies QT
1Q1 = Ik.

If
ZT (QT

1AQ1)Z = diag (θ1, · · · θk) = D

is the Schur decomposition of QT
1AQ1 and Q1Z = [y1, · · · , yk], then

∥Ayi − θiyi∥2 = |(I −Q1Q
T
1 )AQ1Zei∥2 ≤ ∥(I −Q1Q

T
1 )AQ1∥2

for i = 1, · · · , k. The θi are called Ritz values, the yi are called Ritz vectors, and the
(θi, yi) are called Ritz pairs.

Proof: Ayi − θiyi=AQ1Zei − Q1ZDei=(AQ1 − Q1(Q
T
1AQ1))Zei. The theorem follows

by taking norms.

Definition 6.1.3 The inertia of a symmetric matrix A is a triplet of integers (m, z, p),
where m, z and p are the number of negative, zero and positive elements of σ(A).
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Theorem 6.1.18 (Sylvester Law of Interia) If A ∈ Rn×n is symmetric and X ∈ Rn×n

in nonsingular, then A and XTAX have the same inertia.

Proof: Suppose λr(A) > 0 and define the subspace S0 ⊂ Rn by

S0 = Span{X−1q1, · · · , X−1qr}, qi ̸= 0,

where Aqi = λi(A)qi and i = 1, · · · , r. From the Minimax characterization of λr(X
TAX)

we have

λr(X
TAX) = max

dim(S)=r
min
y∈S

yT (XTAX)y

yTy
≥ min

y∈S0

yT (XTAX)y

yTy
.

Now for any y ∈ Rn we have

yT (XTX)y

yTy
≥ σn(X)2, while for y ∈ S0.

It is clear that
yT (XTAX)y

yT (XTX)y
≥ λr(A).

Thus,

λr(X
TAX) ≥ min

y∈S0

{y
T (XTAX)y

yT (XTX)y

yT (XTX)y

yTy
} ≥ λr(A)σn(X)2.

An analogous argument with the roles of A and XTAX reversed shows that

λr(A) ≥ λr(X
TAX)σn(X

−1)2 = λr(X
TAX)/σ1(X)2.

It follows that A and XTAX have the same number of positive eigenvalues. If we apply
this result to −A, we conclude that A and XTAX have the same number of negative
eigenvalues. Obviously, the number of zero eigenvalues possessed by each matrix is also
the same.
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6.2 Tridiagonalization and the Symmetric QR-algorithm

We now investigate how the practical QR algorithm develop in Chapter 1 can be special-
ized when A ∈ Rn×n is symmetric. There are three obvious observations:

(a) If Q0
TAQ0 = H is upper Hessenberg, then H = HT must be tridiagonal.

(b) Symmetry and tridiagonal band structure are preserved when a single shift QR step
is performed.

(c) There is no need to consider complex shift, since σ(A) ⊂ R.

Algorithm 2.1 (Householder Tridiagonalization) Given symmetric A ∈ Rn×n, the fol-
lowing algorithm overwrites A with Q0

TAQ0 = T , where T is tridiagonal and Q0 =
P1 · · ·Pn−2 is the product of Householder transformations.

For k = 1, 2, · · · , n− 2,

determine a Householder Pk ∈ Rn−k such that

P̄k

 ak+1,k
...
ank

 =


∗
0
...
0

 .
A := PkAP

T
k , Pk = diag(Ik, P̄k).

This algorithm requires 2
3
n3 flops. If Q0 is required, it can be formed with an additional

(2/3)n3 flops.
We now consider the single shift QR iteration for symmetric matrices.

T = QT
0AQ0, (tridiagonal)

For k = 0, 1, · · ·
T − µI = QR, (QR decomposition)
T := RQ+ µI.

(6.2.1)

Single Shift: Denote T by

T =


a1 b2

b2 a2
. . .

. . . . . . bn
bn an

 .
We can set (a) µ = an or (b) a more effective choice to shift by the eigenvalues of[
an−1 bn
bn an

]
that is closer to an. This is known as the Wilkinson shift and is given by

µ = an + d− sign(d)
√
d2 + b2n, where

d = (an−1 − an)/2.
(6.2.2)

Wilkinson (1968) has shown that (6.2.2) is cubically convergent with either shift strategy,
but gives heuristic reasons why (6.2.2) is prefered.
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Implicit Shift:

As in the unsymmetric QR iteration, it is possible to shift implicitly in (6.2.1). Let
c = cos(θ) and s = sin(θ) by computed such that[

c s
−s c

]T [
a1 − µ
b2

]
=

[
∗
0

]
,

then J1e1 = Qe1, where Q
TTQ = RQ+ µI = T̄ (as in (6.2.1)) and J1 = J(1, 2, θ).

J1
TTJ1 =


× × + 0 0
× × × 0 0
+ × × × 0
0 0 × × ×
0 0 0 × ×

 .

We are thus in a position to apply implicit Q theorem provided we can compute rotations
J2, · · · , Jn−1 with the property that if Z = J1 · · · Jn−1 then Ze1 = J1e1 = Qe1 and Z

TTZ
is tridiagonal.

T := JT
2 TJ2 =


× × 0 0 0
× × × + 0
0 × × × 0
0 + × × ×
0 0 0 × ×

 , T := JT
3 TJ3 =


× × 0 0 0
× × × 0 0
0 × × × +
0 0 × × ×
0 0 + × ×



T := JT
4 TJ4 =


× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×


Algorithm 2.2 (Implicit Symmetric QR step with Wilkinson Shift) Given an unre-
duced symmetric tridiagonal matrix T ∈ Rn×n, the following algorithm overwrites T
with Z̄TTZ̄, where Z̄ = J1 · · · Jn−1 is the product of Givens rotation with Z̄T (T − µI) is
upper triangular and µ is Wilkinson shift.

d := (tn−1,n−1 − tnn)/2,
µ = tnn − t2n,n−1/[d+ sign(d)

√
d2 + t2n,n−1],

x := t11 − µ,
z := t21,
For k = 1, · · · , n− 1,
determine c = cos(θ), s = sin(θ)

such that

[
c −s
s c

] [
x
z

]
=

[
∗
0

]
,

T := JT
k TJk, Jk = J(k, k + 1, θ).

If k < n− 1, then x := tk+1,k, z = tk+2,k.
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Algorithm 2.3 (Symmetric QR algorithm) Given symmetric matrix A ∈ Rn×n and a
tolerance ϵ, the following algorithm overwrites A with QTAQ = D + E, where Q is
orthogonal, D is diagonal and E satifies ∥E∥2 ≃ eps∥A∥2.

Using Algorithm 2.1 compute
A := (P1 · · ·Pn−1)

TA(P1 · · ·Pn−2) = T.
Repeat set ai+1,i and ai,i+1 to zero if

|ai+1,i| = |ai,i+1| ≤ ϵ(|aii|+ |ai+1,i+1|)
for any i = 1, · · · , n− 1.
Find the largest q and the smallest p such that if

A =

 A11 0 0
0 A22 0
0 0 A33

 }p}n− p− q
}q

then A33 is diagonal and A22 has no zero subdiagonal elements.
If q = n then stop.
Apply algorithm 2.2 to A22, A = diag(Ip, Z̄, Iq)

T A diag(Ip, Z̄, Iq) ,
Go to Repeat.

This algorithm requires about (2/3)n3 flops and about 5n3 flops if Q is accumulated.
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6.3 Once Again:The Singular Value Decomposition

Let A ∈ Rm×n. If UTAV = diag(σ1, · · · , σn) is the SV D of A (m ≥ n) then

V T (ATA)V = diag(σ2
1, · · · , σ2

n) ∈ Rn×n and (3.1)

UT (AAT )U = diag(σ2
1, · · · , σ2

n, 0, · · · , 0) ∈ Rn×n. (3.2)

Moreover if U =
[
U1, U2

]
and we define the orthogonal Q by

Q =
1√
2

[
V V 0

U1 −U1

√
2 U2

]
,

then

QT

[
0 AT

A 0

]
Q = diag(σ1, · · · , σn,−σ1, · · · ,−σn, 0, · · · , 0). (3.3)

These connections to the symmetric eigenvalue problem allow us to develop an algorithm
for SV D as previous section.

Theorem 6.3.1 If A ∈ Rm×n, then for k = 1, · · · ,min{m,n},

σk(A) = max
dimS=k,dimT=k

{ min
x∈S,y∈T

yTAx

∥x∥2∥y∥2
} = max

dimS=k
{min
x∈S

∥Ax∥2
∥x∥2

}.

Proof: Exercise! Prove theorem 6.1.5 (Weyl) and theorem 6.1.6 (Courant-Fisher)!

By applying theorem 6.1.9 to

[
0 AT

A 0

]
and

[
0 (A+ E)T

(A+ E) 0

]
and theorem6.1.8

to ATA we obtain

Corollary 6.3.2 If A and A+ E are in Rm×n(m ≥ n), then for k = 1, 2, · · · , n

|σk(A+ E)− σk(A)| ≤ σ1(E) = ∥E∥2.

Corollary 6.3.3 Let A = [a1, · · · , an] be a column partitioning of A ∈ Rm×n(m ≥ n). If
Ar = [a1, · · · , ar], then for r = 1, · · · , n− 1,

σ1(Ar+1) ≥ σ1(Ar) ≥ σ2(Ar+1) ≥ · · · ≥ σr(Ar+1) ≥ σr(Ar) ≥ σr+1(Ar+1).

Theorem 6.3.4 If A and A+ E are in Rm×n(m ≥ n), then

n∑
k=1

[σk(A+ E)− σk(A)]2 ≤ ∥E∥2F .

Proof: Apply Theorem 6.1.12 to

[
0 AT

A 0

]
and

[
0 (A+ E)T

(A+ E) 0

]
.

We now show a variant of the QR algorithm can be used to comput SV D of a matrix.
Equation (3.1) suggests:
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(a) Form C = ATA;

(b) Use the symmetric QR algorithm to compute V T
1 CV1 = diag(σ2);

(c) Use QR with column pivoting to upper triangularize B = AV1:

UT (AV1)Π = R.

Since R has orthogonal columns, it follows that UTA(V1Π) is diagonal.

A preferable method for computing the SV D is described in Golub and Kahan(1965).
The first step is to reduce A to upper bidiagonal form using algorithm 7.5 or 7.6 in part
I:

UT
BAVB =

 B
· · ·
0

 =



d1 f2 ⃝
d2

. . .

. . . fn
⃝ dn
· · · · · · · · · · · ·

⃝


.

The remaining problem is thus to compute the SV D of B. Consider applying an implicit
QR step (algorithm 8.2) to the tridiagonal matrix T = BTB:

(a) Compute the eigenvalue λ of

[
d2m + f2

m dmfn
dmfn d2n + f 2

n

]
(m = n − 1) that is closer to

d2n + f 2
n.

(b) Compute c1 = cos θ1 and s1 = sin θ1 such that[
c1 −s1
s1 c1

] [
d21 − λ
d1f2

]
=

[
∗
0

]
,

and set J1 = J(1, 2, θ1).

(c) Compute Givens rotations J2, · · · , Jn−1 such that if Q = J1 · · · Jn−1 then QTTQ is
tridiagonal and Qe1 = J1e1.

Note that these calculations require the explicit formation of BTB, which is unwise
in the numerical standpoint. Suppose instead that we apply Givens rotation J1 above to
B directly. This gives

B := BJ1 =


× ×
+ × ×

× ×
× ×
×

 , n = 5.
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Determine Givens rotations U1, V2, U2, · · · , Vn−1 and Un−1 to chase the nonzero ele-
ment down the diagonal:

B := UT
1 B =


× × +
× ×
× ×
× ×
×

 , B := BV2 =


× ×
× ×
+ × ×

× ×
×

 ,

B := UT
2 B =


× ×
× × +
× ×
× ×
×

 , B := BV3 =


× ×
× ×
× ×
+ × ×

×



The process terminates with a new bidiagonal B̄ as follows

B̄ = (UT
n−1 · · ·UT

1 )B(J1V2 · · ·Vn−1) = ŪTBV̄ .

Since each Vi has the form Vi = J(i, i+1, θi), i = 2, · · · , n−1, it follows that V̄ e1 = Qe1.
By implicit Q theorem we can assert that V̄ and Q are essentially the same. Thus we can
implicitly effect the transition from T to T̄ = B̄B̄T by working directly on the bidiagonal
matrix.

It is necessary for these claims to hold that the underlying tridiagonal matrices be
unreduced. This is the condition for the performance of implicit QR method.

Let B =


d1 f2 ⃝

d2
. . .
. . . fn

⃝ dn

 . If (BTB)i,i+1 = fi+1di = 0, then:

Either fi+1 = 0: B is reduced to B =

(
B1 ⃝
⃝ B2

)
two small problems.

Or di=0: What happens?
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For Example

B =


× × 0 0 0
0 0 × 0 0
0 0 × × 0
0 0 0 × ×
0 0 0 0 ×

 , (d2 = 0, n = 5)

−→
Rotation
in (2, 3)

B := J1(2, 3, θ)B =


× × 0 0 0
0 0 0 × 0
0 0 × × 0
0 0 0 × ×
0 0 0 0 ×



−→
Rotation
in (2, 4)

B := J2(2, 4, θ)B =


× × 0 0 0
0 0 0 0 ×
0 0 × × 0
0 0 0 × ×
0 0 0 0 ×



−→
Rotation
in(2, 5)

B := J3(2, 5, θ)B =


× × 0 0 0
0 0 0 0 0
0 0 × × 0
0 0 0 × ×
0 0 0 0 ×


Criteria: For smallness within B′s band are usually of the the form

|fi| ≤ ϵ(|di−1|+ |di|) and |di| ≤ ϵ∥B∥,
where ϵ is a small multiple of the unit roundoff.

Algorithm 3.1 (Golub-Kahan SV D Step) B ∈ Rn×n is bidiagonal having nonzero sub-
diagonal and diagonal, the following algorithm overwrites B with the bidiagonal matrix
B̄ = ŪTBV̄ , where Ū and V̄ are orthogonal and V̄ is essentially the orthogonal matrix
that would be obtained by applying algorithm 8.2 to T = BTB. Let µ be the eigenvalue
of the trailing 2× 2 sumatrix of T = BTB that is closer to tnn.

y = t11 − µ
z = t12
For k = 1, · · · , n− 1,

Determine c = cos θ and s = sin θ such that

[y , z]

[
c s
−s c

]
= [∗ , 0]

B = BJ(k, k + 1, θ)
y = bkk
z = bk+1,k

Determine c = cos θ and s = sin θ such that[
c −s
s c

] [
y
z

]
=

[
∗
0

]
B := J(k, k + 1)TB
If k < n− 1, then y := bk,k+1, z := bk,k+2.
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This algorithm requires 20n flops and 2n square roots. Accumulating Ū requires 4mn
flops and V̄ requires 4n2 flops.

Algorithm 3.2 (The SV D Algorithm) Given A ∈ Rm×n (m ≥ n) and ϵ a tolerance,
the following algorithm overwrites A with UTAV = D + E, where U ∈ Rm×n is or-
thogonal, V ∈ Rn×n is orthogonal, D ∈ Rm×n is diagonal, and E satisfies ∥E∥2 ≃
eps∥A∥2. Using algorithm 7.5 or 7.6 in Part I to compute the bidiagonalization A :=
(U1 · · ·Un)

TA(V1 · · ·Vn−2).

Repeat
Set ai,i+1 to zero if |ai,i+1| ≤ ϵ(|aii|+ |ai+1,i+1|) for any i = 1, · · · , n− 1.
Find the largest q and the smallest p such that

A =


A11 0 0
0 A22 0
0 0 A33

0 0 0


p
n− p− q
q
m− n

Then A33 is diagonal and A22 has a nonzero subdiagonal.
If q = n then stop.
If any diagonal entry in A22 is zero then zero the subdiagonal entry in the
same row and go to Repeat.
Apply algorithm 3.1 to A22,
A := diag(Ip, Ū , Iq+m−n)

TAdiag(Ip, V̄ , Iq).
Go to Repeat
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6.4 Jacobi Methods

Jacobi(1846) proposed a method for reducing a Hermitian matrix A = A∗ ∈ Cn×n to
diagonal form using Givens rotations. Let A ∈ Cn×n be a Hermitian matrix, there exists
a unitary U such that

U∗AU = diag(λ1, · · · , λn). (4.1)

The Jacobi method constructs U as the product of infinite many two dimensional Givens
rotations. Fix indices i, k, i ̸= k, Given a Givens Rotation

Uik =



1 0
...

...
. . .

... ⃝
... ⃝

0 1
...

...
· · · · · · · · · eiαcosφ · · · · · · · · · sinφ · · · · · · · · ·

... 1 0
...

⃝
...

. . .
... ⃝

... 0 1
...

· · · · · · · · · −sinφ · · · · · · · · · eiαcosφ · · · · · · · · ·
...

... 1 0

⃝
... ⃝

...
. . .

...
... 0 1



i

k

i k

. (4.2)

Hereby α, φ are free parameters, if A is real symmetric then α = 0. Set V = Uik,
B = V ∗AV . Then

bsj =


asj, s ̸= i, k
eiαcosφaij − sinφakj, s = i
sinφaij + eiαcosφakj, s = k

 j ̸= i, k (4.3)

{
bsi = eiαcosφasi − sinφask, s ̸= i, k
bsk = sinφasi + eiαcosφask, s ̸= i, k

(4.4)


bik = sinφcosφeiα(aii − akk) + e2iα(cos2φ− sin2φ)aki
bki = b̄ik
bii = cos2φaii + sin2φakk − sinφcosφ[e−iαaki + eiαaik]
bkk = sin2φaii + cos2φakk − sinφcosφ[e−iαaki + eiαaik]

(4.5)

We denote here the Frobenius norm (Hilbert-Schmidt norm) by ϵ(A) =
√∑

i,k |aik|2 and
define the ”outer norm” by

g(A) =

√∑
i̸=k

|aik|2,

which is only a seminorm (that is g(A) = 0 ⇒ A = 0 does not hold). We also have
ϵ(UA) = ϵ(A) = ϵ(AV ) for unitary U, V . Therefore

ϵ(A) = ϵ(V ∗AV ) = ϵ(B),
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that is ∑
j,s

|ajs|2 =
∑
j,s

|bjs|2. (4.6)

On the other hand one computes

|aii|2 + |akk|2 + 2|aik|2 = |bii|2 + |bkk|2 + 2|bik|2. (4.7)

Together with bjj = ajj j ̸= i, k follows from (4.6) and (4.7)∑
j ̸=s

|ajs|2 =
∑
j ̸=s

|bjs|2 + 2|aik|2 − 2|bik|2

or

g2(A)− 2|aik|2 + 2|bik|2 = g2(B). (4.8)

To make g(B) as small as possible we choose the free parameters α, φ such that bik = 0.
Multiplying the first equation in (4.5) by 2e−iα and set bik to zero:

sin2φ(akk − aii) = 2eiαcos2φaik − 2e−iαsin2φāik. (4.9)

We exclude the trivial case aik = 0 (then set V = I). Suppose that aik ̸= 0. Compare
the imaginary part in (4.9) which results 0 = Im(aike

iα). This equation holds for α =
−argaik. From aike

iα = |aik|. (4.9) leads to

2|aik|(cos2ϕ− sin2ϕ) = sin2ϕ(akk − aii),

where

cot2ϕ =
akk − aii
2|aik|

. (4.10)

(4.10) has exactly one solution in (−π
4
, π
4
]. The choice α = −argaik + π leads to the

same matrix B. For symmetric A, we choose α = 0, then ϕ is obtained by

cot2ϕ =
akk − aii
2aik

.

So the Jacobi method proceeds: A0 := A, an iteration sequence A0, A1, · · · is con-
structed by Am+1 := V ∗mAmVm, Am = (amik). Hereby Vm has the form of (4.2). The
underlying pivot pairs i, k of Vm is formed according to a rule of choice so that the un-
derlying α, ϕ are chosen satisfying am+1

ik = 0.

Choice rules:
(1) choose (i, k) such that

|amik| = max
j ̸=s
|amjs|.

This is the classical Jacobi method.
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Theorem 6.4.1 Let A be Hermitian. V = Uik is as in (4.2) where (i, k) are chosen so
that |aik| is maximal with α, ϕ according to (4.10). Let B = V ∗AV . Then it holds

g2(B) ≤ p2g2(A) with p =

√
n2 − n− 2

n2 − n
< 1. (4.11)

Proof: There are n2 − n off-diagonal elements, so g2(A) ≤ (n2 − n)|aik|2. Thus |aik|2 ≥
1

n2−ng
2(A), hence

g2(B) = g2(A)− 2|aik|2 ≤
n2 − n− 2

n2 − n
g2(A).

Theorem 6.4.2 The classcial Jacobi method converges, that is, there exists a diagonal
matrix Λ so that limm→∞Am = Λ.

Proof: From (4.11) follows g(Am) → 0, so a
(m)
rs → 0 for all r ̸= s. It remains to show

the convergence of diagonal elements. From (4.5) and (4.10) follows that

|bii − aii| = | sin2 ϕ(akk − aii)− |aik|2 sinϕ cosϕ|
= |aik| |2 sin2 ϕ cot 2ϕ− 2 sinϕ cosϕ|

= |aik| |
sinϕ

cosϕ
| ≤ |aik|.

Analogously, |bkk − akk| ≤ |aik|. If now i, k are the pivot indices of Am, then from above
we have

|amjj − am+1
jj | ≤ |amik| ≤ g(Am) ≤ pmg(A).

Thus

|am+q
jj − amjj| ≤ |pm + pm+1 + · · ·+ pm+q−1|g(A) ≤ pm

1− p
g(A).

This shows that the convergence of diagonal.

Schonage (1964) and Van Kempen (1966) show that for k large enough there is a

constant c such that g(Ak+N) ≤ cg(Ak)
2, N = n(n−1)

2
, i.e., quadratic convergence. An

earlier result established by Henrici (1958) when A has distinct eigenvalue.

(2) choose (i, k) cyclically, e.g., (i, k) = (1, 2), (1, 3), . . . , (1, n); (2, 3), . . . , (2, n); . . . ; (n−
1, n); (1, 2), (1, 3), . . .. This is the cyclic Jacobi method.

Algorithm 4.1 (Serial Jacobi cyclic Jacobi) Given a symmetric A ∈ Rn×n and δ ≥ eps,
the following algorithm overwrites A with UTAU = D + E, where U is orthogonal, D is
diagonal, and E has a zero diagonal and satisfies ∥ E ∥F≤ δ∥ A ∥F :

δ := δ ∥ A ∥F
Do until g(A) ≤ δ2

For p = 1, 2, . . . , n− 1,

For q = p+ 1, · · · , n,
Find J = J(p, q, θ) such that the (p, q) entry of JTAJ is zero,

A := JTAJ.
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This algorithm requires 2n3 flop per sweep. An additional 2n3 flop are required if U is
accumulated. (Hereby it is customary to refer to each set of n(n−1)

2
rotations as a sweep).

A proof of quadratic convergence see Wilkinson (1962) and Van kempen (1966).

Remark 4.1 In classical Jacobi method for each update O(n2) comparsions are required
in order to locate the largest off-diagonal element. Thus much more time is spent by
searching than updating. So the cyclic Jacobi method is considerably faster than classical
Jacobi method.

(3) When implementing serical Jacobi method, it is sensible to skip the annihilation of
aik if its modulus is less than some small (sweep-dependent) parameter, because the net
reduction of g(A) is not worth to cost. This leads to what is called threshold Jacobi
method.

Given a threshold value δ, choose the indices pair (i, k) as in (2). But perform the
rotation only for |amik| > δ. If all |amik| ≤ δ, then we substitute δ by δ/2 and so on. Details
concering this variant of Jacobi’s algorithm may be found in Wilkinson (AEP p.277ff).

Remark 4.2 (1) Although the serial Jacobi method (2) and (3) converge quadratically,
it is not competitive with symmetric QR algorithm. One sweep of Jacobi requires as
many flops as a complete computation of symmetric QR algorithm. However, the Jacobi
iteration is attractive, for example, the matrix A might be close to a diagonal form. In
this situation, the QR algorithm loses its advantage.
(2) The Jacobi iteration is adapted to parallel computation. A given computational task,
such as a sweep, can be shared among the various CPUs thereby reducing the overall
computation time.
(3) In practice we usually apply the choice (2) or (3).
(4) It is not necessary to determine ϕ explicitly in (4.10), since only c = cosϕ and s = sinϕ

are needed. From (4.10) follows 1−4s2+4s4

s2(1−s2) = (akk−aii)2

4|aik|2
, a quadratic equation in s2. The

sign is determined by (4.10).
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6.5 Some Special Methods

6.5.1 Bisection method for tridiagonal symmetric matrices

Let A be tridiagonal, real and symmetric. Write

A =



a1 b1 0 . . . 0

b1 a2 b2
...

0 b2 a3
... 0

. . . . . . . . . 0
. . . bn−1

0 . . . 0 bn−1 an


. (5.1)

Let Ak be the kth principal submatrix

Ak =



a1 b1 0 . . . 0

b1 a2 b2
...

0 b2 a3
... 0

. . . . . . . . . 0
. . . bk−1

0 . . . 0 bk−1 ak


and

fk(λ) = det(λIk − Ak), for k = 1, · · · , n. (5.2)

(fn(λ) = Characteristic polynomial of A.)

Write f0(λ) = 1 and f1(λ) = λ− a1 we have the recursive formula:

fk(λ) = (λ− ak)fk−1(λ)− b2k−1fk−2(λ), k = 2, . . . , n. (5.3)

It holds:

Theorem 6.5.1 If bi ̸= 0 in (5.1) for i = 1, . . . , n, then fk(λ) has k real simple roots,
k = 0, . . . , n. For 1 ≤ k ≤ n− 1 the roots of fk(λ) separate the roots of fk+1(λ).

Proof: Since Ak is real symmetric, it follows form (5.2) that the roots of fk(λ) are real.
The rank of λIk −Ak is at least k − 1 (scratsch the first row and k-th column, and then
consider bi ̸= 0), therefore the dimension of the zero spaces of λIk−Ak is not bigger than
one, so we have simple roots.

n = 2 : f1 has the root a1 and f2(a1) = −b21 < 0 (from (5.3), k = 2 and λ = a1), both
roots of f2 must lie on the right and left sides of a1, respectively.

Suppose the assertion is true for k = 2, . . . , n − 1, we shall prove that it is also true
for k = n. It only needs to show that the roots of fn−1 separate the roots of fn.

Let µ1 > µ2 > · · · > µn−1 be the roots of fn−1. From (5.3) we have

fn(µi) = −b2n−1fn−2(µi),

fn(µi+1) = −b2n−1fn−2(µi+1). (5.4)
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The roots of fn−2 separate the roots of fn−1, there exists exactly one root of fn−2 between
µi and µi+1, that is, sgnfn−2(µi) = −sgnfn−2(µi+1). Therefore it holds also for fn (because
of (5.4)), so there is at least one root of fn in (µi+1, µi) from Roll’e theorem, for i =
1, . . . , n− 2. It is fn(µ1) = −b2n−1fn−2(µ1) < 0, since fn−2(λ) = λn−2 + · · · and all roots
of fn−2 are on the left side of µ1.

On the other hand fn →∞ for λ→∞, so there exists an other root of fn in (µ1, ∞).
Similarly, we can show that there is a root of fn in (−∞, µn−1). This shows that fn has
n distinct, simple roots, which are separated by the roots of fn−1.

The sequence of functions f0, f1, · · · , fn satisfies in each bounded interval [a, b] the
following conditions:

(S1) fi(x) is continuous, i = 0, . . . , n.

(S2) f0(x) has constant sign in [a, b].

(S3) fi(x̄) = 0⇒ fi−1(x̄)fi+1(x̄) < 0, i = 1, . . . , n− 1,

fn(x̄) = 0⇒ fn−1(x̄) ̸= 0.

(S4) if x̄ is a root of fn and h > 0 small, then

sgn
fn(x̄− h)
fn−1(x̄− h)

= −1 and sgn
fn(x̄+ h)

fn−1(x̄+ h)
= +1.

(S1) and (S2) are trivial, (S3) can be proved by (5.3) and f0 = 1 : fi+1(x̄) = −b2i fi−1(x̄),
so fi−1(x̄)fi+1(x̄) ≤ 0. If fi−1(x̄) = 0, then from (5.3) fi−2(x̄) = 0 ⇒ · · · ⇒ f0(x̄) = 0.
Contradiction! So fi−1(x̄)fi+1(x̄) < 0. For (S4): It is clear for largest root x̄, the others
follow from induction.

Definition 6.5.1 A sequence of functions with (S1)-(S4) is called a Sturm chain on
[a, b].

If x ∈ [a, b], then f0(x), f1(x), · · · , fn(x) are well-defined. Let

V (x) =
1

2

n−1∑
i=0

|sgnfi(x)− sgnfi+1(x)|. (5.5)

For fi(x) ̸= 0, i = 0, . . . , n.V (x) is the number of the sign change of the sequence
f0(x), . . . , fn(x). If fk(x) = 0, 1 ≤ k ≤ n− 1, then V (x) is no differnce, whether sgn 0 is
defined by 0, 1 or −1. Only sgnfn(x) must be defined for fn(x) = 0, we set

fn(x) = 0 ⇒ sgnfn(x) := sgnfn−1(x). (5.6)

Theorem 6.5.2 Let f0, . . . , fn be a Sturm chain on [a, b] and fn(a)fn(b) ̸= 0. Then
fn(x) has m = V (a)− V (b) roots in [a, b].
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Proof: x runs from a to b, what happens with V (x)? V (x) is constant in an interval, if
all fk(x) ̸= 0, k = 0, . . . , n, x ∈[a, b].
(a) x runs through a root x̄ of fk(x), 1 ≤ k ≤ n − 1. If follows from (S3) that V (x)
remains constant.
(b) x runs through a root x̄ of fn(x). Then from (S4) a sign changes is lost. So
V (a)− V (b) = the number of roots of fk(x) in (a, b).

For special case as in (5.2), fk(λ) is the characteristic polynomial of Ak. Since fk(λ)→
∞ for λ→∞, so V (b) = 0 for large enough b.

Theorem 6.5.3 If fi(x) are defined as in (5.2) and V (x) as in (5.5), then holds

V (a) = the number of eigenvalues of A which are larger than a.

Proof: (1) fn(a) ̸= 0. Apply theorem 6.5.2 for large b.
(2) fn(a) = 0, for ϵ > 0 small sgnfi(a+ ϵ) = sgnfi(a), i = 0, · · · , n−1 and sgnfn(a+ ϵ) =
sgnfn−1(a+ ϵ) from (S4). Thus V (a) = V (a+ ϵ) for ϵ > 0. So by theorem 6.5.3 V (a) =
the number of eigenvalues of A, which are large than a+ ϵ for arbitrary small ϵ > 0.

Calculation of the eigenvalues
Theorem 6.5.3 will be used as the basic tool of the bisection method in locating and

separating the roots of fn(λ). Let λ1 > λ2 > . . . > λn be the eigenvalues of A as in
(5.1) and A is irreducible (i.e., bi ̸= 0). Using the Gerschgorin circle theorem 5.2.1 all
eigenvalues lie in [a, b], with

a = min
1≤i≤n

{ai − |bi| − |bi−1|}

b = max
1≤i≤n

{ai + |bi|+ |bi−1|},

where b0 = bn = 0.
We use the bisection method on [a, b] to divide it into smaller subintervals. Theorem

6.5.3 is used to determine how many roots are contained in a subinterval, and we seek
to obtain subintervals that will contain the desired root. If some eigenvalues are nearly
equal, then we continue subdividing until the root is found with sufficient accuracy.

Let a(0), b(0) be found with V (a(0)) ≥ k, V (b(0)) < k. Then by theorem 6.5.3 we have
λk ∈ (a(0), b(0)].

Determine

V (
a(0) + b(0)

2
) = v.

v ≥ k ⇒ a(1) :=
a(0) + b(0)

2
, b(1) := b(0)

v < k ⇒ a(1) := a(0), b(1) :=
a(0) + b(0)

2
,

we have λk ∈ (a(1), b(1)]. So λk is always contained in a smaller interval. The evaluation

of V (a
(i)+b(i)

2
) is simply computed by (5.3).



240 Chapter 6. The Symmetric Eigenvalue problem

Example 11.1 Consider

T =


2 1 0 . . . 0

1 2
. . .

...

0
. . . . . . . . .

...
. . . . . . . . . 1

0 . . . 0 1 2

 .

By Gershgorin theorem all eigenvalues lie in [0, 4]. 0 and 4 are not the eigenvalues of T
(Check!). The roots of T are labeled as

0 < λ6 ≤ λ5 ≤ . . . ≤ λ1 < 4.

The roots can be found by continuing the bisection method.

λ f6(λ) V (λ) Comment
0.0 7.0 6 λ6 > 0
4.0 7.0 0 λ1 < 4
2.0 -1.0 3 λ4 < 2 < λ3
1.0 1.0 4 λ5 < 1 < λ4 < 2
0.5 -1.421875 5 0 < λ6 < 0.5 < λ5 < 1
3.0 1.0 2 2 < λ3 < 3 < λ2
3.5 -1.421875 1 3 < λ2 < 3.5 < λ1 < 4

Remark 5.1 Although all roots of a tridiagonal matrix may be found by this technique,
it is generally faster in that case to use the QR algorithm. With large matrices, we usually
do not want all roots, so the method of this section are preferable. If we only want some
certain specific roots, for example, the five largest or all roots in a given interval, it is
easy to locate them by using theorem 6.5.3.

6.5.2 Rayleigh Quotient Iteration

Suppose A ∈ Rn×n is symmetric and x ̸= 0 is a given vector. A simple differentiation
reveals that

λ = R[x] ≡ xTAx

xTx
(5.7)

minimizes ∥(A − λI)x∥2. The scalar r(x) is called the Rayleigh quotient of x. If x
is an approximate eigenvector, then r(x) is a reasonable choice for the corresponding
eigenvalue. On the other hand, if λ is an approximate eigenvalue, then inverse iteration
tells us that the solution to (A − λI)x = b will almost always be a good approximate
eigenvector.

Combining these two ideas lead to the Rayleigh-quotient iteration:

Given x0 with ∥x0∥2 = 1.
For k = 0, 1, . . .
µk = R[xk]
Solve (A− µkI)zk+1 = xk for zk+1

xk+1 = zk+1/∥zk+1∥2.

(5.8)
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Parlett (1974) has shown that (5.8) converges globally and the loccally cubically. (See
also Chapter I).

6.5.3 Orthogonal Iteration with Ritz Acceleration

Given Q0 ∈ Rn×p with QT
0Q0 = Ip.

For k = 0, 1, . . .
Zk = AQk−1,
QkRk = Zk (QR-decomposition).

(5.9)

Let QTAQ = diag(λi) be the Schur decomposition of A and Q = [q1, . . . , qn], and |λ1| >
|λ2| > . . . |λn|. If follows from theorem 5.3.4 that if

d = dist[Dρ(A), R(Q0)] < 1,

then

dist[Dρ(A), R(Qk)] ≤
1√

1− d2
|λp+1

λp
|k.

We know that (Stewart 1976) if Rk = [r
(k)
ij ] then

|r(k)ii − λi| = O(|λi+1

λi
|k), i = 1, . . . , p.

This can be an unacceptably slow rate of convergence if λi and λi+1 are of nearly equal
modulus. This difficulty can be surmounted by replacing Qk with its Ritz Vectors at each
step:

Given Q0 ∈ Rn×p with QT
0Q0 = Ip.

For k = 0, 1, . . .
Zk = AQk−1,

Q̃kRk = Zk (QR decomposition),

Sk = Q̃k
T
AQ̃k,

UT
k SkUk = Dk (Schur decomposition),

Qk = Q̃kUk.

(5.10)

It can be shown that if

Dk = diag(θ(k), . . . , θ(k)p ) and |θ(k)1 | ≥ · · · ≥ |θ(k)p |,

then

|θ(k)i − λi(A)| = |
λp+1

λi
|k, i = 1, . . . , p.

Thus the Ritz values θ
(k)
i converge in a more favorable rate than the r

(k)
ii in (5.9). For

details, see Stewart (1969) and Parlett’s book chapters 11 and 14.
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6.6 Generalized Definite Eigenvalue Problem Ax =

λBx

6.6.1 Generalized definite eigenvalue problem

Ax = λBx, (6.1)

where A,B ∈ Rn×n are symmetric and B is positive definite. (In practice A,B are very
large and sparse).

Theorem 6.6.1 The eigenvalue problem (6.1) has n real eigenvalues λi associated with
egienvectors xi satisfying

Axi = λiBxi, i = 1, . . . , n. (6.2)

Here {xi}ni=1 can be chosen such that xTi Bxj = δij (B-orthogonal), i, j = 1, . . . , n.

Proof: Let B = LLT be the Cholesky decomposition of B. Then Axi = λiBxi ⇐⇒
Axi = λiLL

Txi ⇐⇒ L−1AL−T (LTxi) = λi(L
Txi) ⇐⇒ Czi = λizi, where C ≡ L−1AL−1

symmetric and zi ≡ LTxi. Since λi are the eigenvalues of the symmetric matrix C, they
are real. The vectors zi can be chosen pairwisely orthogonal, i.e., zTi zi = δij = xTi LL

Txj =
xTi Bxj.

Let X = [x1, · · · , xn]. Then from above we have XTBX = I and (XTAX)ij =
xTi Axj = λjx

T
i Bxj = λjδij which implies XTAX = Λ = diag(λ1, · · · , λn). That is, A,B

are simultaneously diagonalizable by a congruence transformations.

Numerical methods for (6.1):
(a) Bisection method,
(b) Coordinate relaxation,
(c) Method of steepest descent.

(a) Bisection methods:

Basic tool: Sylvester law of inertia

Definition 6.6.1 Two real, symmetric matrices A,B are called congruent, if there exists
a nonsingular C such that

A = CTBC. (6.3)

We denote it by A
c∼ B.

Defintion 6.6.2 The inertia of a symmetric matrix A is a triplet of integers

in(A) = (π(A), ν(A), δ(A)) (6.4)

π(A) = the number of positive eigenvalues of A (geometry multiplicity),
ν(A) = the number of negative eigenvalues of A (geometry multiplicity),
δ(A) = n− rank(A) = the number of zero eigenvalues of A.



6.6 Generalized Definite Eigenvalue Problem Ax = λBx 243

Theorem 6.6.2 (Sylvester law of inertia) Two real, symmetric matrices are congru-
ent if and only if they have the same inertia.

Proof: (1) A,B real and symmetric. Suppose in(A) = in(B), there exist orthogonal U
and V such that UAUT = Λ1 = diag(λ1(A), · · · , λn(A)) with λ1(A) ≥ · · · ≥ λn(A) and
V BV T = Λ2 = diag(λ1(B), · · · , λn(B)) with λ1(B) ≥ · · · ≥ λn(B).

Claim: Λ1 is congruent to Λ2. Since in(A) = in(B), it holds either λi(A)λi(B) > 0 or
λi(A) = λi(B) = 0. Set D = diag(di), where

di =

{ √
λi(A)
λi(B)

, if λi(A)λi(B) > 0

1, if λi(A)λi(B) = 0
.

Then DTΛ2D = Λ1, so A
c∼ B.

(2) Suppose A
c∼ B. Claim: in(A) = in(B). Let A = CTBC, UAUT = Λ1 and

V BV T = Λ2 as above. These imply Λ1 = P TΛ2P , where P = V TCUT . Assume that
in(A) ̸= in(B). Clearly δ(A) = δ(B)⇒ π(A) ̸= π(B). Without loss of generality we can
suppose π(A) < π(B). The homogenous linear system{

xi = 0, i = 1, · · · , π(A),
(Px)i = 0, i = π(B) + 1, · · · , n, (6.5)

has a nonzero solution x ̸= 0, since it has fewer than n equations. With this x we have

0 ≥
n∑

i=1

λi(A)x
2
i = xTΛ1x = xTP TΛ2Px

=
n∑

i=1

λi(B)(Px)2i > 0

=

π(B)∑
i=1

λi(B)(Px)2i .

That is, there is an i (1 ≤ i ≤ π(B)) with (Px)i ̸= 0, contradiction!

Second Part of Proof:
Show that B and CTBC have the same inertia. Because they have the same rank, it

is sufficient to show that: π(B) = π(CTBC).
If λr(B) > 0, let Bqi = λi(B)qi and S0 = span{C−1qq, · · · , C−1qr}. Then

λr(C
TBC) = max

dim S=r
min

x∈S, x ̸=0

xTCTCx

xTx
≥ min

x∈S0, x ̸=0

xTCTBCx

xTx

= min
x∈S, x ̸=0

xTCTBCx

xTCTCx

xTCTCx

xTx

≥ min
x∈S0, x ̸=0

xTCTBCx

xTCTCx
min

x∈Rn×n, x ̸=0

xTCTCx

xTx

= λr(B)σn(C)
2 > 0, (Since x ∈ S0 ⇒ Cx ∈ Span(q1, · · · , qr))
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where σ1(C) ≥ · · · ≥ σn(C) > 0 are the singular values of C. So we have λr(C
TBC) > 0

and π(CTBC) ≥ π(B). Exchange the role of B and CTBC we obtain π(CTBC) = π(B).

Important inequality:
From above we have λr(C

TBC) ≥ λr(B)σ2
n(C). Change B and CTBC we then obtain

λr(B) ≥ λr(C
TBC)σ2

n(C
−1) = λr(C

TBC)
1

σ2
1(C)

.

This imply

σ2
1(C) ≥

λr(C
TBC)

λr(B)
≥ σ2

n(C). (6.6)

It holds also for the negative eigenvalues of B and CTBC.

Corollary 6.6.3 If A = CTBC, C nonsingular (A
c∼ B), then it holds for nonzero

eigenvalues

σ2
1(C) ≥

λr(A)

λr(B)
≥ σ2

n(C).

Lemma 6.6.4 A nonsigular, real and symmetric and has a LR-decomposition

A = LR, (6.7)

where L is lower triangular with lii = 1 and R is upper triangular with rii ̸= 0, i =
1, · · · , n. Then holds

π(A) = #{i : rii > 0} and ν(A) = #{i : rii < 0}.

Proof: Let D = diag(rii). Then R̃ = D−1R has ”one” on the diagonal. This implies

A = LR = LDR̃ = AT = R̃TDLT .

The decomposition A = L̃D̃R̃, where L̃, R̃ has ”one” on the diagonal is unique, therefore
L = R̃T . So

A = LDLT =⇒ A
c∼ D =⇒ in(A) = in(D).

But π(D) = #{i : rii > 0}, the assertion is proved.

Theorem 6.6.5 Let A,B be real, symmetric and B positive definite, α be a given real
number. Then holds

π(A− αB) = #{eigenvalues of (6.1) larger than α}
ν(A− αB) = #{eigenvalues of (6.1) smaller than α}
δ(A− αB) = #{multiplicity of α as an eigenvalues of (6.1)}
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Proof: Ax = λBx ⇐⇒ Cy = λy, where C = L−1AL−1, B = LLT and LTx = y. By
theorem 6.6.2 (Sylvester law of inertia) we have

in{(A− αB)} = in{L−1(A− αB)L−1} = in{(C − αI)}.

Since C − αI has the eigenvalues λi − α > 0, we have

π(A− αB) = #{i : λi − α > 0} = #{i : λi > α}.

Similarly, we also have the assertions for ν(A− αB) and δ(A− αB).

Remark 6.1 Theorem 6.6.5 leads to a bisection method for (6.1). If [a, b] is an interval,
which contains the desired eigenvalues, then by calculation of in(A − a+b

2
B) we know

that the desired eigenvalues lie in [a, a+b
2
] or [a+b

2
, b]. It requires the LU decomposition of

A− αB, which in general is indefinite.

(b) Methods of Coordinate relaxatoin:
This method requires only the calculation of Ax and Bx. Consider the generalized

Rayleigh quotient

R[x] =
xTAx

xTBx
. (6.8)

Let z = LTx, C = L−1AL−T and B = LLT (Ax = λBx). C is symmetric, let Cui =
λiui and λ1 ≥ λ2 ≥ · · · ≥ λn. By theorem 6.1.6 we have

λi = max{R[z, C] = zTCz

zT z
: z ⊥ ui, j < i, z ̸= 0}.

From (6.8) follows that

R[x] =
xTAx

xTBx
=
zTL−1AL−T z

zT z
=
zTCz

zT z
.

Therefore we have the following new version of connection between the eigenvalues and
Rayleigh quotient of generalized definite eigenvalues problem (6.1).

Theorem 6.6.6 Let λ1 ≥ · · · ≥ λn be the eigenvalues of Ax = λBx satisfying Axi =
λiBxi, i = 1, · · · , n. It holds

λi = max{R[x] = xTAx

xTBx
: xTBxj = 0, j < i, x ̸= 0}. (6.9)

Proof: Axi = λiBxi ⇐⇒ Cui = λiui, ui = LTxi. Let z = LTx, then z ⊥ uj ⇐⇒ zTuj =
0⇐⇒ xTLLTxj = 0⇐⇒ xTBxj = 0. These imply that

{z
TCz

zT z
: z ⊥ uj, j < i, z ̸= 0}

= {x
TAx

xTBx
: xTBxj = 0, j < i, x ̸= 0}.

Take maximum and from (1.5) follows (6.9).

Similarly, theorem 6.1.6 (Courant-Fischer) can be transfered to:
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Theorem 6.6.7 For the eigenvalues λ1 ≥ λ2 · · · ≥ λn of Ax = λBx it holds

λi = min
{p1, · · · , pi−1},
1 ≤ j < i, pj ̸= 0

max
pTj x = 0,

1 ≤ j < i, x ̸= 0

xTAx

xTBx
, (6.10)

λi = min
dimS=n+1−i

max
x∈S,x ̸=0

xTAx

xTBx
, (6.11)

λi = max
dimS=i

min
x∈S,x̸=0

xTAx

xTBx
. (6.12)

Theorem 6.1.7 (Separation theorem) can be transfered to:

Theorem 6.6.8 A,B are real, symmetric and B is positive definite. An−1 and Bn−1
are obtained by scratching the last row and column of A and B respectively. For the
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0 of Ax = λBx and µ1 ≥ µ2 ≥ · · · ≥ µn−1 of
An−1x = λ̃Bn−1x it holds

λs+1 ≤ µs ≤ λs, s = 1, · · · , n− 1 (6.13)

and
λ1 = max

x̸=0
R[x], λn = min

x ̸=0
R[x]. (6.14)

Problem: How to compute the smallest eigenvalue λn and its associated eigenvector?
Ideal: Minimize Rayleigh quotient R[x] on a two dimension subspace.
Basic Problem: Given two linearly independent vectors x, y. Minimize R[x] on the
from x and y generated subspace generated by x and y.

Let x′ = ϕx+ γy, then

R[x′] =
(ϕx+ γy)TA(ϕx+ γy)

(ϕx+ γy)TB(ϕx+ γy)
=
ϕ2α+ 2ϕγf + γ2p

ϕ2β + 2ϕγg + γ2q
, (6.15)

where α = xTAx, β = xTBx, f = xTAy, g = xTBy, p = yTAy and q = yTBy. Let

Ã =

[
α f
f p

]
, B̃ =

[
β g
g q

]
, x̃ =

[
ϕ
γ

]
. (6.16)

Then

R[x′] =
x̃T Ãx̃

x̃T B̃x̃
,

where Ã, B̃ are symmetric and B is positive definite. Applying (6.14) to Ã and B̃ we
get that R[x′] has the minimum R′, where R′ is the smallest eigenvalue of the problem
Ãx̃ = λ̃B̃x̃. That is,

det(Ã−R′B̃) = 0, quadratic equation in R′. (6.17)
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Compute the associated eigenvector (to R′) x̃ = (ϕ, γ)T from one of the following
equations:

(α−R′β)ϕ+ (f −R′g)γ = 0 (6.18)

(f −R′g)ϕ+ (p−R′q)γ = 0 (6.19)

⇐⇒ (Ã−R′B̃)

[
ϕ
γ

]
= 0.

Case 1: p−R′q ̸= 0 (p/q = yTAy/yTBy = R[y] > R′):
From (6.19) implies ϕ ̸= 0. Set ϕ = 1. From (6.19) follows

γ = −f −R
′g

p−R′q
(6.20)

and that
x′ = x+ γy (6.21)

is the solution of the basic problem. Case 1 is called normal case.

Case 2: p−R′q = 0: This implies f −R′g = 0, because

0 = det(Ã−R′B̃) = (α−R′β)(p−R′q)− (f −R′g)2.

(a) If α−R′β ̸= 0, then ϕ = 0 and γ is arbitray. Set x′ = y.
(b) If α−R′β = 0, then Ã = R′B̃ =⇒ R[x̃] = R′ for all x̃ ∈ Span(x, y). Set x′ = x.

The method of coordinate relaxation

Given a starting vecor y1 ̸= 0.
yi+1 is determined by yi as follows:
Set x = yi, y = ek, k = i mod n and
Solve the basic problem with respect to x and y.
Let x′ be the solution. Set yi+1 = x′/|x′|.

We obtain the sequence of vectors y1, y2, y3, · · · such that

R[y1] ≥ R[y2] ≥ R[y3] ≥ · · · ≥ λn.

Remark to the computational cost

(1) Compute Ã, B̃: compute

p = yTAy = eTkAek = akk, q = eTkBek = bkk,

u = Ax and v = Bx, and then

f = yTAx = eTk u = uk, g = yTBx = eTk v = vk,

α = xTAx = xTu and β = xTv.

Construct Ã and B̃.

(2) Solve the quadratic equation det(Ã−R′B̃) = 0 in R′.
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(3) Solve x′ = x+ γek.

(4) Ax′ and Bx′ (for the next step) can be computed implicitly. We use the following
updating:

Ax′ = Ax+ γAek, (Ax′)j = uj + γajk,

Bx′ = Bx+ γBek, (Bx′)j = vj + γbjk.

Remark 6.2 If R[y1] < mini(aii/bii) = miniR[ei], then it happens only normal case:

R′q − p = R′bkk − akk ≤ R[y1]bkk − akk < 0.

Since R[y1] < akk/bkk, so R
′q − p ̸= 0, a normal case!

Theorem 6.6.9 Let

R[y1] < min
i

aii
bii
, (6.22)

Then it holds

lim
i→∞

R[yi] = λ. (6.23)

Here λ is an eigenvalue of (6.1) Ax = λBx, and each accumulation point of {yi} is the
associated eigenvector to λ.

Corollary 6.6.10 If (6.22) holds and

R[y1] < λn−1, (6.24)

Then limi→∞R[yi] = λn. If λn is simple, then holds:

lim
i→∞

yi = y exists and y is the eigenvector to λn.

Proof of theorem 6.6.9 Only normal case!
yi+1 is a function of ek(k = i mod n) and yi. Let yi+1 = Tk(yi). The function Tk is

continuous in yi, since for fix y the solution x′ of basic problem depends continously on
the given x. (normal case!)

For R[y1] ≥ R[y2] ≥ · · · ≥ λn there exists the limit point λ. Show that:

λ = lim
i→∞

R[yi] is an eigenvalue.

In addition we show that an accumulation point y of the sequence {yi} satisfies Ay = λBy.
Let yr(i) be the convergence subsequence of {yi}, i.e., limi→∞ yr(i) = y. Without loss

of generality there are infinite r(i) satisfying 1 = r(i) mod n. So

y = lim
i→∞

ynk(i)+1 and R[y] = λ.

Since T1 is continuous, where

T1y = lim
i→∞

T1ynk(i)+1 = lim
i→∞

ynk(i)+2
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which implies R[T1y] = λ. Thus, R[T1y] = R[y] = λ =⇒ γ = 0 =⇒ y = T1y and
f − λg = 0. So f = (Ay)1 and g = (By)1 =⇒ (Ay)1 = λ(By)1. Also T2 is continuous, we
have

T2T1y = T2y = lim
i→∞

T2ynk(i)+2 = lim
i→∞

ynk(i)+3,

then λ = R[y] = R[T2y]. As above we also have γ = 0 and then y = T2y. So f = λg, thus
(Ay)2 = λ(By)2, and so on. It follows Ay = λBy.

Proof of Corollaray 6.6.10
The first part is trivial, since λn is the unique eigenvalue smaller than λn−1. The normal-
ized eigenvectors to λn are ±x/|x|, where Ax = λnx. Two possible accumulation points
are separate. Let yi ≈ x/|x|, then Ayi ≈ λnByi. This follows f ≈ λng, so γ ≈ 0, thus
yi+1 ≈ yi. A second accumulation point can not appear.

As relaxation method by solving linear system, we introduce an ”overcorrect” x′ =
x + ωγy (1 < ω < 2) for the csae 1 instead of x′ = x + γy. We describe the above
discussion as the following algorithm:

Algorithm 6.1 (Coordinate over relaxation method to determine the smallest eigenvalue
of symmetric generalized definite problem Ax = λBx)

Let A,B ∈ Rn×n be symmetric and B positive definite.
Step 1: Choose a relaxation factor ω ∈ (1, 2), tolerance δ, ϵ ∈ R+ and a starting vector
x ∈ Rn\{0}. Compute a := xTAx, b := xTBx and r := a/b.

Step 2: Set Rmax := Rmin := r.

For j = 1, 2, · · · , n
Compute f :

∑n
k=1 ajkxk, g :=

∑n
k=1 bjkxk, p := ajj, q := bjj

Determine the smallest eigenvalue r1 of([
a f
f p

]
− λ

[
b g
g q

])[
α
β

]
= 0.

(2.1) If |p− r1q| > ϵ, then set

β := −ω f−r1g
g−r1q , xj := xj + β, a := a+ 2βf + β2p,

b := b+ 2βg + β2g, r := a
b
;

(2.2) If |p− r1q| ≤ ϵ, and |a− r1b| > ϵ then set

x := ej, a := p, b := q, r :=
a

b

(2.3) If |p− r1q| ≤ ϵ, and |a− r1b| ≤ ϵ then stop. Set

Rmax := max(r, Rmax) and Rmin := min(r, Rmin).
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Step 3: If Rmin

Rmax
≤ 1− δ, then go to step 2, otherwise stop.

A detail discussions for determining optimal ω can be found in:
H.R.Schwarz: Numer. Math. 23, 135-151 (1974).
H.R.Schwarz: Finite Elemente, Teubner Verlag.

(c) Methods of steepest descent
Recall that at a point xk the function ϕ : Rn −→ R decreases most rapidly in the

direction of the negative gradient −▽ϕ(xk). The method is called the gradient or steepest
descent method. Here we have

ϕ(x) = R[x] =
xTAx

xTBx
.

It holds

Gradϕ(x) =
2[(xTBx)Ax− (xTAx)Bx]

(xTBx)2
=

2

xTBx
(Ax−R[x]Bx). (6.25)

Thus, Grad R[x] (=Grad ϕ(x)) = 0 ⇐⇒ R[x] is the eigenvalue and x is the associated

eigenvector
def⇐⇒ x is stationary point of R[x].

Methods of steepest descent:
Given y1 ̸= 0. yi+1 is determined by yi.
(1) Search direction

pi = (A−R[yi]B)yi. (6.26)

If pi = 0 stop, otherwise
(2) Solve the basic problem with x = yi and y = pi.

If x′ is the solution, then set

yi+1 =
x′

∥x′∥
, (6.27)

Go to (1).

Lemma 6.6.11 Let B = I. Then holds

pTi (A−R′B)yi = pTi pi, R
′ = R[yi+1], (6.28)

pTi (A−R′B)pi > 0, if pi ̸= 0. (6.29)

Especially, it happens only normal case, thus the function T (yi) = yi+1 = T (yi) is con-
tinuous.

Proof: Since pTi yi = 0 (by computation!), we have

pTi (A−R′B)yi = pTi (A−R[yi]B)yi + (R[yi]−R′)pTi Byi
= pTi pi.

If pi ̸= 0, then f − R′g = pTi Ayi − R′pTi Byi = pTi pi > 0 (by (6.28)). From (6.18) and
f −R′g ̸= 0⇒ ϕ ̸= 0. Hence the minimum is not at y = pi , so R[pi] > R′. Thus

pTi (A−R′B)yi = pTi (A−R[pi]B)pi + (R[pi]−R′)pTi Bpi > 0.
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So (6.29) holds. i.e. p−R′q ̸= 0⇒ normal case! ⇒ T is continuous.

Theorem 6.6.12 Let B = I, and the sequence of vectors {yi} is obtained by the method
of steepest descent (6.26),(6.27). Then it holds with ri = R[yi] that

(1) limi→∞ ri = λ is an eigenvalue of A .

(2) Each accumulation point of {yi} is the eigenvector of A corresponding to λ.

(3) If y1 =
∑n

k=1 αkxk is the expansion of the starting vector by normalized eigenvectors
{xk}nk=1 of A, (Axi = λixi with λn ≤ λn−1 ≤ · · · ≤ λ1) and αn ̸= 0, then it holds

lim
i→∞

ri = λn.

Proof: Since r1 ≥ r2 ≥ · · · ≥ λn, there exists the limit point λ with limi→∞ri = λ. Let
z be an accumulation point of {yi}i∈N , i.e.,

z = lim
i→∞

yn(i), R[z] = lim
i→∞

R[yn(i)] = λ.

Since T (T : yi → yi+1) is continuous, so

lim
i→∞

Tyn(i) = lim
i→∞

yn(i)+1 = T lim
i→∞

yn(i) = Tz.

This implies
R[Tz] = lim

i→∞
R[yn(i)+1] = λ.

From R[Tz] = R[z] and γ = 0 we have Tz = z. (Since Grad R[z] = 0, z is the eigenvector
to R[z] = λ). Thus (1),(2) are established.

Claim (3): Let yi =
∑n

k=1 α
i
kxk. Prove that αi+1

k is determined by αi
k. Since

pi = (A− riI)yi =
n∑

k=1

(λk − ri)αi
kxk,

from (6.28)(6.29) follows

−γi =
f − ri+1g

p− ri+1q
=
pTi (A− ri+1B)yi
pTi (A− ri+1B)pi

> 0.

Since

yi + γipi =
n∑

k=1

αi
k[1 + γi(λk − ri)]Bxk,

we get

yi+1 =
yi + γipi
∥yi + γipi∥

=
n∑

k=1

αk
i (1 + γi(λk − ri))

(
∑n

s=1(α
i
s)

2(1 + γi(λk − ri))2)1/2
Bxk.
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This implies

αi+1
r =

αi
r(1 + γi(λr − ri))√∑n

s=1(α
i
s)

2(1 + γi(λs − ri))2
. (6.30)

We then have
αi+1
n

αi+1
r

=
αi
n

αi
r

(
1 + γi(λn − ri)
1 + γi(λr − ri)

)
. (6.31)

Assume that {ri} does not converge to λn, but to λr > λn. Then

yn(i) → ±xr =⇒ αn(i)
r → ±1 and αn(i)

n → 0.

On the other hand, since

λr − ri < 0, λn − ri < 0, γi < 0 and λn − ri < λr − ri,

we have
1 + γi(λn − ri)
1 + γi(λr − ri)

> 1.

From (6.31) follows that ∣∣∣∣αi+1
n

αi+1
r

∣∣∣∣ > ∣∣∣∣αi
n

αi
r

∣∣∣∣ .
This contradicts that α

n(i)
n → 0.
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Further methods for the symmetric eigenvalue problemAx = λBx

A,B ∈ Rn×n are symmetric and B is positive definite. Reduction to the ordinary
eigenvalue problem:

(1) B−1Ax = λx, the symmetry is lost.
(2) B = LLT , L−1AL−T z = λz with LTx = z, Cholesky method.

Remark: For a given vector z we can compute L−1AL−T z as follow: Comupte z1 from
LT z1 = z by backward substitution. Then z2 = Az1. Compute z3 from Lz3 = z2 by
forward substitution. We can use the sparsity of B (also L) and A.

Caution: L−1AL−T is in general dense.
(3) Theoretically, B has (unique) positive definite square root B1/2, i.e., B1/2B1/2

= B, B−1/2AB−1/2z = λz. Computation of B1/2 is expensive. Let B = UDUT , where U
is orthogonal and D is diagonal with D > 0. Then

B = (UD1/2UT )(UD1/2UT )⇒ B1/2 = UD1/2UT ,

where D = diag(di) and D
1/2 = diag(

√
di).

Consider
Ax = λBx,A,B symmetric and B positive definite.

Let λ1 ≥ λ2 ≥ · · · ≥ λn > 0 be the eigenvalues of (6.1). Recall that the power method
and the inverse iteration for B = I:
Power method:

Given x0 ̸= 0,
for i = 0, 1, 2, · · · ,
yi+1 = Axi , ki+1 = ∥yi+1∥,
xi+1 = yi+1/ki+1.

(6.32)

xi converges to the eigenvector of the eigenvalue λ1 and ki → |λ1| as i→∞.

Inverse power method:

Given x0 ̸= 0,
for i = 0, 1, 2, · · · ,
σi = xTi Axi/x

T
i xi Rayleigh quotient

(A− σiI)xi+1 = ki+1xi,
kk+1 is chosen so that ∥xi+1∥ = 1.

(6.33)

Cubic convergence.

Transfer to the problem (6.1):
Power method (6.32) ⇔ A↔ B−1A:

Given x0 ̸= 0,
for i = 0, 1, 2, · · · ,
Byi+1 = Axi, ki+1 = ∥yi+1∥
xi+1 = yi+1/ki+1.

(6.34)
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We must solve one linear system in each step. In general, Cholesky decomposition of B
is necessary.

Inverse power method for Ax = λBx:

Given x0 ̸= 0,
for i = 0, 1, 2, · · · ,
σi = xTi Axi/x

T
i Bxi

(A− σiB)xi+1 = ki+1Bxi,
ki+1 is chosen so that ∥xi+1∥B = 1.

(6.35)

Reduction: Let B = LLT . Substitute A by L−1AL−T in (6.33) then we have (here
xi ↔ zi):

σi =
zTi L

−1AL−T zi
zTi zi

=
xTi Axi
xTi Bxi

, where L−T zi = xi,

and
(L−1AL−T − σiI)zi+1 = ki+1zi ⇔ (A− σiB)xi+1 = ki+1Bxi.

Let λ1 > λ2 ≥ · · · ≥ λn be the eigenvalues of A − λB. Then the power iteration (6.34)
converges to λ1. Let {x̂i}ni=1 be the complete system of eigenvectors,i.e.,

x̂Ti Bx̂j = δij and x̂
T
i Ax̂j = λiδij for all i, j = 1, · · · , n.

Let y1 =
∑n

j=1 c
1
i x̂i, yk =

∑n
i=1 c

k
i x̂i. Then it holds

yk+1 =
n∑

i=1

ck+1
i x̂i = B−1A

n∑
i=1

cki x̂i =
n∑

i=1

cki λix̂i.

This implies that ck+1
i = λic

k
i , and thus cki = λki c

1
i . Therefore, we have

yk = λk1{c11x̂1 +
n∑

ν=2

(
λν
λ1

)kc1ν x̂ν}.

Normalizing yk we get that xk converges to x̂1.

Cost of computation:
Matrix × vector Axi,
Solve the linear system Byi+1 = Axi.

Determination of the eigenvalue: ki+1 → |λ1|.
Although we have ki+1 → |λ1|, the better approximation of λ1 is R[xi]. Let xi =

x̂1 + ϵd, where d ∈ span{x̂2, · · · x̂n} and ∥d∥ = 1. Then

R[xi] = R[x̂1 + ϵd] =
(x̂1 + ϵd)TA(x̂1 + ϵd)

(x̂1 + ϵd)TB(x̂1 + ϵd)

=
x̂T1Ax̂1 + ϵ2dTAd

x̂T1Bx̂1 + ϵ2dTBd
=
x̂T1Ax̂1
x̂T1Bx̂1

+O(ϵ2)

= λ1 +O(ϵ2).
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Error of eigenvalue ≈ (error of eigenvector)2.

Compute the other eigenvalues and eigenvectors:

Suppose λ1, x̂1 are computed. Power method does not converge to λ1, x̂1, if it satisfies

xTi Bx̂1 = 0, i = 0, 1, 2, · · · . (6.36)

If we start with x0 satisfying xT0Bx̂1 = 0, then all iterate xi satisfy (6.36) theoretically
(since c11 = 0). Because of roundoff error we shall perform the reorthogonalization:

Bỹi+1 = Axi,
yi+1 = ỹi+1 − (x̂Ti Bỹi+1)x̂1,
xi+1 = yi+1/∥yi+1∥B.

In general: Suppose λ1, · · ·λp, x̂1, · · · x̂p are computed, then we perofrm the following
reorthogonalization:

Bỹi+1 = Axi,
yi+1 = ỹi+1 −

∑p
j=1(x̂

T
j Bỹi+1)x̂j,

xi+1 = yi+1/∥yi+1∥B.

Here xTi Bx̂j = 0, for j = 1, · · · , p, and i = 0, 1, 2, · · · .

Simultaneous vector-iteration:
Determine the p (p > 1) largest eigenvalues and the associated eigenvectors of (6.1).

Compute simultaneuously the approximations x
(i)
1 , · · · , x

(i)
p . Let

X(i) = (x
(i)
1 , · · · , x(i)p ) ∈ Rn×p. (6.37)

We demand X(i) satisfies the following relation:

X(i)TBX(i) = Ip. (6.38)

Since x̂Ti Bxj = δij, the columns of X(i) are nearly B-orthogonal. From (6.34) we con-
struct X(i) by

BY (i) = AX(i−1) (6.39)

and then
X(i) = Y (i)Ci, (6.40)

where Ci ∈ Rp×p and is chosen such that (6.38) is satisfied. We have the following meth-
ods for determining Ci .

(a) Apply orthogonalization algorithm to the columns of Y (i), then Ci is an upper trian-
gular matrix.

Let Y (i) = (y
(i)
1 , · · · , y

(i)
p ) and X(i) = (x

(i)
1 , · · · , x

(i)
p ).

For k = 1, · · · , p,
hk = y

(i)
k −

∑k−1
ν=1(y

(i)T

k Bx
(i)
ν )x

(i)
ν ,

x
(i)
k = hk/(h

T
kBhk)

1/2.
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The first column x
(i)
1 is the same as that we apply power method to x

(0)
1 . Convergence

can be slow.

(b) Define Gi = Y (i)TBY (i), then Gi is positive definite. There exists an orthogonal
matrix Vi and Di = diag(dj) with d1 ≥ d2 ≥ · · · ≥ dp > 0 such that

Gi = ViDiV
T
i .

Let X(i) = Y (i)Ci where

Ci = ViD
−1/2
i and D

−1/2
i = diag(1/

√
d1, · · · , 1/

√
dp). (6.41)

Check

X(i)TBX(i) = CT
i Y

(i)TBY (i)Ci = (ViD
−1/2
i )TGi(ViD

−1/2
i )

= D
−1/2
i V T

i GiViD
−1/2
i = Ip.

So the columns of X(i) are B-orthogonal. Method (b) brings the approximations in the
correct order.

Example: Let X(1) = (x2, x3, x1), where x
T
i Bxj = δij and Axi = λiBxi, i, j = 1, 2, 3.

Method (a): X(i) = X(1), Y (2) = B−1AX(1) = (λ2x2, λ3x3, λ1x1). Then

X(2) = (x2, x3, x1) = X(1).

Method (b):

G2 =

 λ22 0 0
0 λ23 0
0 0 λ21

 , D2 =

 λ21 0 0
0 λ22 0
0 0 λ23

 ,
V2 =

 0 1 0
0 0 1
1 0 0

 , C2 = V2D
−1/2
2 =

 0 λ−12 0
0 0 λ−13

λ−11 0 0

 .
Then

X(2) = Y (2)C2 = (x1, x2, x3).

Method (b) forces the eigenvectors in the correct order.

(6.39) and (6.40) imply Treppen iteration (F.L. Bauer 1957) :

For B = I:
AX(i−1) = Y (i) = X(i)C−1i = X(i)Ri, (6.42)

where Ri is upper triangular.
p = n: See the connection with QR Algorithm.

Ai = X(i−1)TAX(i−1), Qi = X(i−1)TX(i),

Ai = QiRi, Ai+1 = RiQi.
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p < n: and B = LLT positive definite: Treppen iteration for L−1AL−T leads to Z(i) :

L−1AL−TZ(i−1) = Z(i)Ri , Z(i)TZ(i) = Ip. (6.43)

Let X(i) = L−TZ(i), rewrite (6.43) to X(i) :

AX(i−1) = BX(i)Ri (6.44)

and
X(i)TLTLX(i) = Ip = X(i)TBX(i).

Improvement: B = I. Recall

Theorem 6.6.13 A is real and symmetric, Q ∈ Rn×p orthogonal and S ∈ Rp×p sym-
metric, then for an eigenvalue λi(S) of S there exists an eigenvalue λki(A) of A such
that

|λi(S)− λki(A)| ≤ ∥AQ−QS∥2, i = 1, · · · , p.

Theorem 6.6.14 Let S0 = QTAQ, then

∥AQ−QS0∥2,F ≤ ∥AQ−QS∥2,F

for all symmetric matrix S ∈ Rp×p.

For given orthogonal matrix X(i), if we construct Si = X(i)TAX(i), then the eigenvalues of
Si are the optimal approximations to the eigenvalues of A (optimal error estimation).
Also good error estimation for eigenvectors. From Siz = µz follows that

AX(i)z − µX(i)z = (AX(i) −X(i)Si)z,

∥A(X(i)z)− µ(X(i)z)∥2 ≤ ∥AX(i) −X(i)Si∥2∥z∥2.

So X(i)z is a good approximation to an eigenvector of A.

B =positive definite:
Given n × p matrix S with rank(S) = p. Let S = span(S). Find a new base of S,

which presents a good approximation to eigenvectors of

Ax = λBx.

(6.1) is equivalent to :

Âx̂ = λx̂ with Â = B−1/2AB−1/2, x̂ = B1/2x. (6.45)

Orthonormalize B1/2S(S → B1/2S) and results

Ŝ = B1/2S(STBS)−1/2. (6.46)

(CheckŜT Ŝ = Ip). From above we know that the eigenvalue µi of Ĥ = ŜT ÂŜ are
a good approximation to an eigenvalue of (6.45), so of (6.1) and ĝi is the associated
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eigenvector, then Ŝĝi is a good approximation to an eigenvector of (6.45), so B−1/2Ŝĝi
an approximation to an eigenvector of (6.1). Rewrite A, B, S:

Ĥ = (STBS)−1/2STB1/2B−1/2AB−1/2B1/2S(STBS)−1/2

= (STBS)−1/2(STAS)(STBS)−1/2

Then Ĥĝi corresponds to

(STAS − µiS
TBS) (STBS)−1/2ĝi︸ ︷︷ ︸

gi

= 0,

i.e.

(As − µiBs)gi = 0 with

{
As = STAS,
Bs = STBS.

(6.47)

If S is given, construct As, Bs. The eigenvalues of Asz = µBsz are good approximations
to eigenvalues of (6.1). Compute the eigenvectors gi of (6.47), then Sgi are approxima-
tions to the eigenvectors of (6.1).

Some variant simultaneuous vector iterations (B = I):

(a)

(1) Y (ν) = AX(ν−1),
(2) Orthonormalize Y (ν) = QνRν (QR decomposition),
(3) Compute Hν = QT

νAQν ,
(4) Solve the complete eigenvalue system for Hν ,

Hν = GνΘνG
T
ν , Gν : orthogonal and Θν : diagonal,

(5) X(ν) = QνGν (The element of Θν are in decreasing order).

(6.48)

The computation of (1) and (3) are expansive, it can be avoided by the following way.
Since the invariant subspaces and eigenvectors of A and A−2 are equal, so we can consider
the matrix A−2 instead of A. The eigenvectors of QT

νA
−2Qν are the good approximations

for the eigenvectors of A.
Compute

QT
νA
−2Qν = (R−1ν )T

Ip︷ ︸︸ ︷
X(ν−1)TAA−2AX(ν−1)R−1ν .

(Here Qν = AX(ν−1)R−1ν from (1) (2) above)

= R−Tν R−1ν = (RνR
T
ν )
−1.

So we have the following new method:
(b)

(1) Y (ν) = AX(ν−1),
(2) Orthonormalize Y (ν) = QνRν ,

(3) Compute H̃ν = RνR
T
ν ,

(4) Solve H̃ν = Pν∆
2
νP

T
ν , Pν : orthogonal, ∆ν : diagonal,

(5) X(ν) = QνPν .

(6.49)
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(c) Third variant compution of Qν :
Find Fν such that Y (ν)Fν is orthogonal. So

F T
ν Y

(ν)TY (ν)Fν = I (6.50)

and
Y (ν)TY (ν) = F−Tν F−1ν = (FνF

T
ν )
−1.

On the other hand Y (ν)Fν diagonalize A−2, i.e.,

F T
ν Y

(ν)A−2Y (ν)TFν = ∆−2ν diagonal. (6.51)

From (6.51) and because of Y (ν) = AX(ν−1) follows

∆−2ν = F T
ν X

(ν−1)TAA−2AX(ν−1)︸ ︷︷ ︸
Ip

Fν = F T
ν Fν .

Thus I = ∆νF
T
ν Fν∆ν and then Fν∆ν is orthogonal. Using (6.50), we have

Hν = Y (ν)TY (ν) = (F−Tν ∆−1ν )∆2
ν(∆

−1
ν F−1ν )

= (Fν∆ν︸ ︷︷ ︸
ortho.

)−T ∆2
ν︸︷︷︸

diag.

(Fν∆ν︸ ︷︷ ︸
ortho.

)−1.

The diagonal elements of ∆2
ν are the eigenvalues of Hν and the column of Fν∆ν are the

eigenvectors of Hν , therefore we can compute Fν as follows:

(1)Y (ν) = AX(ν−1),

(2)Compute Ĥν = Y (ν)TY (ν),

(3)Compute Ĥν = Bν∆
2
νB

T
ν complete eigensystem of Ĥν ,

(4)X(ν) = Y (ν)Bν∆
−1
ν (= Y (ν)Fν).

(6.52)

The cost of computation of (6.52) is more favorable than of (6.49).
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Chapter 7

Lanczos Methods

In this chapter we develop the Lanczos method, a technique that is applicable to large
sparse, symmetric eigenproblems. The method involves tridiagonalizing the given matrix
A. However, unlike the Householder approach, no intermediate (an full) submatrices
are generated. Equally important, information about A′s extremal eigenvalues tends to
emerge long before the tridiagonalization is complete. This makes the Lanczos algorithm
particularly useful in situations where a few of A′s largest or smallest eigenvalues are
desired.

7.1 The Lanczos Algorithm

Suppose A ∈ Rn×n is large, sparse and symmetric. There exists an orthogonal matrix Q,
which transforms A to a tridiagonal matrix T .

QTAQ = T ≡ tridiagonal. (7.1.1)

Remark 7.1.1 (a) Such Q can be generated by Householder transformations or Givens
rotations.

(b) Almost for all A (i.e. all eigenvalues are distinct) and almost for any q1 ∈ Rn

with ∥q1∥2 = 1, there exists an orthogonal matrix Q with first column q1 satisfying
(7.1.1). q1 determines T uniquely up to the sign of the columns (that is, we can
multiply each column with -1).

Let (x ∈ Rn)
K[x,A,m] = [x,Ax,A2x, · · · , Am−1x] ∈ Rn×m. (7.1.2)

K[x,A,m] is called a Krylov-matrix. Let

K(x,A,m) = Range(K[x,A,m]) = Span(x,Ax, · · · , Am−1x). (7.1.3)

K(x,A,m) is called the Krylov-subspace generated by K[x,A,m].

Remark 7.1.2 For each H ∈ Cn×m or Rn×m (m ≤ n) with rank(H) = m, there exists
an Q ∈ Cn×m or Rn×m and an upper triangular R ∈ Cm×m or Rm×m with Q∗Q = Im
such that

H = QR. (7.1.4)
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Q is uniquely determined, if we require all rii > 0.

Theorem 7.1.1 Let A be symmetric (Hermitian), 1 ≤ m ≤ n be given and dimK(x,A,m) =
m then

(a) If

K[x,A,m] = QmRm (7.1.5)

is an QR factorization, then Q∗mAQm = Tm is an m × m tridiagonal matrix and
satisfies

AQm = QmTm + rme
T
m, Q∗mrm = 0. (7.1.6)

(b) Let ∥x∥2 = 1. If Qm ∈ Cn×m with the first column x and Q∗mQm = Im and satisfies

AQm = QmTm + rme
T
m,

where Tm is tridiagonal, then

K[x,A,m] = [x,Ax, · · · , Am−1x] = Qm[e1, Tme1, · · · , Tm−1
m e1] (7.1.7)

is an QR factorization of K[x,A,m].

Proof: (a) Since

AK(x,A, j) ⊂ K(x,A, j + 1), j < m. (7.1.8)

From (7.1.5), we have

Span(q1, · · · , qi) = K(x,A, i), i ≤ m. (7.1.9)

So we have

qi+1 ⊥ K(x,A, i)
(7.1.8)
⊃ AK(x,A, i− 1) = A(span(q1, · · · , qi−1)).

This implies

q∗i+1Aqj = 0, j = 1, · · · , i− 1, i+ 1 ≤ m.

That is

(Q∗mAQm)ij = (Tm)ij = q∗iAqj = 0 for i > j + 1.

So Tm is upper Hessenberg and then tridiagonal (since Tm is Hermitian).
It remains to show (7.1.6). Since

[x,Ax, · · · , Am−1x] = QmRm

and

AK[x,A,m] = K[x,A,m]


0 0

1
. . .
. . . . . .

0 1 0

+ AmxeTm,
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we have

AQmRm = QmRm


0 0

1
. . .
. . . . . .

0 1 0

+QmQ
∗
mA

mxeTm + (I −QmQ
∗
m)A

mxeTm.

Then

AQm = Qm[Rm


0 0

1
. . .
. . . . . .

0 1 0

+Q∗mA
mxeTm]R

−1
m + (I −QmQ

∗
m)A

mxeTmR
−1
m

= Qm[Rm


0 0

1
. . .
. . . . . .

0 1 0

R−1m + γQ∗mA
mxeTm] + γ(I −QmQ

∗
m)A

mx︸ ︷︷ ︸
rm

eTm

= QmHm + rme
T
m with Q∗mrm = 0,

where Hm is an upper Hessenberg matrix. But Q∗mAQm = Hm is Hermitian, so Hm = Tm
is tridiagonal.
(b) We check (7.1.7):

x = Qme1 coincides the first column. Suppose that i-th columns are equal, i.e.

Ai−1x = QmT
i−1
m e1

Aix = AQmT
i−1
m e1

= (QmTm + rme
T
m)T

i−1
m e1

= QmT
i
me1 + rme

T
mT

i−1
m e1.

But eTmT
i−1
m e1 = 0 for i < m. Therefore, Aix = QmT

ie1 the (i+ 1)-th columns are equal.
It is clearly that (e1, Tme1, · · · , Tm−1

m e1) is an upper triangular matrix.

Theorem 7.1.1 If x = q1 with ∥q1∥2 = 1 satisfies

rank(K[x,A, n]) = n

(that is {x,Ax, · · · , An−1x} are linearly independent), then there exists an unitary matrix
Q with first column q1 such that Q∗AQ = T is tridiagonal.

Proof: From Theorem 7.1.1(a) m = n, we have Qm = Q unitary and AQ = QT .
Uniqueness: Let Q∗AQ = T , Q̃∗AQ̃ = T̃ and Q1e1 = Q̃e1

⇒ K[q1, A, n] = QR = Q̃R̃

⇒ Q = Q̃D, R = DR̃.

Substitute Q by QD, where D = diag(ϵ1, · · · , ϵn) with |ϵi| = 1. Then

(QD)∗A(QD) = D∗Q∗AQD = D∗TD = tridiagonal.
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So Q is unique up to multiplying the columns of Q by a factor ϵ with |ϵ| = 1.
In the following paragraph we will investigate the Lanczos algorithm for the real case,

i.e., A ∈ Rn×n.
How to find an orthogonal matrix Q = (q1, · · · , qn) with QTQ = In such that QTAQ =

T = tridiagonal and Q is almost uniquely determined. Let

AQ = QT, (7.1.10)

where

Q = [q1, · · · , qn] and T =


α1 β1 0

β1
. . . . . .
. . . . . . βn−1

0 βn−1 αn

 .
It implies that the j-th column of (7.1.10) forms:

Aqj = βj−1qj−1 + αjqj + βjqj+1, (7.1.11)

for j = 1, · · · , n with β0 = βn = 0. By multiplying (7.1.11) by qTj we obtain

qTj Aqj = αj. (7.1.12)

Define rj = (A− αjI)qj − βj−1qj−1. Then

rj = βjqj+1

with

βj = ±∥rj∥2 (7.1.13)

and if βj ̸= 0 then

qj+1 = rj/βj. (7.1.14)

So we can determine the unknown αj, βj, qj in the following order:

Given q1, α1, r1, β1, q2, α2, r2β2, q3, · · · .

The above formula define the Lanczos iterations:

j = 0, r0 = q1 , β0 = 1 , q0 = 0
Do while (βj ̸= 0)

qj+1 = rj/βj , j := j + 1
αj = qTj Aqj ,
rj = (A− αjI)qj − βj−1qj−1,
βj = ∥rj∥2.

(7.1.15)

There is no loss of generality in choosing the βj to be positive. The qj are called Lanczos
vectors. With careful overwriting and use of the formula αj = qTj (Aqj − βj−1qj−1), the
whole process can be implemented with only a pair of n-vectors.
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Algorithm 7.1.1 (Lanczos Algorithm) Given a symmetric A ∈ Rn×n and w ∈ Rn

having unit 2-norm. The following algorithm computes a j × j symmetric tridiagonal
matrix Tj with the property that σ(Tj) ⊂ σ(A). The diagonal and subdiagonal elements
of Tj are stored in α1, · · · , αj and β1, · · · , βj−1 respectively.

vi := 0 (i = 1, · · · , n)
β0 := 1
j := 0
Do while (βj ̸= 0)

if (j ̸= 0), then
for i = 1, · · · , n,
t := wi, wi := vi/βj, vi := −βjt.

end for
end if
v := Aw + v,
j := j + 1,
αj := wTv,
v := v − αjw,
βj := ∥v∥2.

Remark 7.1.3 (a) If the sparity is exploited and only kn flops are involved in each call
(Aw) (k ≪ n), then each Lanczos step requires about (4+k)n flops to execute.

(b) The iteration stops before complete tridiagonalizaton if q1 is contained in a proper
invariant subspace. From the iteration (7.1.15) we have

A(q1, · · · , qm) = (q1, · · · , qm)


α1 β1

β1
. . . . . . βm−1
. . . . . .

βm−1 αm

+ (0, · · · , 0,
rm︷ ︸︸ ︷

βmqm+1)︸ ︷︷ ︸
rmeTm

βm = 0 if and only if rm = 0.

This implies
A(q1, · · · , qm) = (q1, · · · , qm)Tm.

That is
Range(q1, · · · , qm) = Range(K[q1, A,m])

is the invariant subspace of A and the eigenvalues of Tm are the eigenvalues of A.

Theorem 7.1.2 Let A be symmetric and q1 be a given vector with ∥q1∥2 = 1. The Lanc-
zos iterations (7.1.15) runs until j = m where m = rank[q1, Aq1, · · · , An−1q1]. Moreover,
for j = 1, · · · ,m we have

AQj = QjTj + rje
T
j (7.1.16)

with

Tj =


α1 β1

β1
. . . . . .
. . . . . . βj−1

βj−1 αj

 and Qj = [q1, · · · , qj]
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has orthonormal columns satisfying Range(Qj) = K(q1, A, j).

Proof: By induction on j. Suppose the iteration has produced Qj = [q1, · · · , qj] such
that Range(Qj) = K(q1, A, j) and QT

j Qj = Ij. It is easy to see from (7.1.15) that (7.1.16)
holds. Thus

QT
j AQj = Tj +QT

j rje
T
j .

Since αi = qTi Aqi for i = 1, · · · , j and

qTi+1Aqi = qTi+1(βiqi+1 + αiqi + βi−1qi−1) = qTi+1(βiqi+1) = βi

for i = 1, · · · , j − 1 we have QT
j AQj = Tj. Consequently Q

T
j rj = 0.

If rj ̸= 0 then qj+1 = rj/∥rj∥2 is orthogonal to q1, · · · , qj and

qj+1 ∈ Span{Aqj, qj, qj−1} ⊂ K(q1, A, j + 1).

Thus QT
j+1Qj+1 = Ij+1 and Range(Qj+1) = K(q1, A, j + 1).

On the other hand, if rj = 0, then AQj = QjTj. This says that Range(Qj) =
K(q1, A, j) is invariant. From this we conclude that j = m = dim[K(q1, A, n)].

Encountering a zero βj in the Lanczos iteration is a welcome event in that it signals
the computation of an exact invariant subspace. However an exactly zero or even small
βj is rarely in practice. Consequently, other explanations for the convergence of T ′js
eigenvalues must be sought.

Theorem 7.1.3 Suppose that j steps of the Lanczos algorithm have been performed and
that

ST
j TjSj = diag(θ1, · · · , θj)

is the Schur decomposition of the tridiagonal matrix Tj, if Yj ∈ Rn×j is defined by

Yj = [y1, · · · , yj] = QjSj

then for i = 1, · · · , j we have

∥Ayi − θiyi∥2 = |βj||sji|

where Sj = (spq).

Proof: Post-multiplying (7.1.16) by Sj gives

AYj = Yjdiag(θ1, · · · , θj) + rje
T
j Sj,

i.e.,
Ayi = θiyi + rj(e

T
j Sjei) , i = 1, · · · , j.

The proof is complete by taking norms and recalling ∥rj∥2 = |βj|.

Remark 7.1.4 The theorem provides error bounds for T ′js eigenvalues:

min
µ∈σ(A)

|θi − µ| ≤ |βj||sji| i = 1, · · · , j.
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Note that in section 10 the (θi, yi) are Ritz pairs for the subspace R(Qj).
If we use the Lanczos method to compute AQj = QjTj + rje

T
j and set E = τwwT

where τ = ±1 and w = aqj + brj, then it can be shown that

(A+ E)Qj = Qj(Tj + τa2eje
T
j ) + (1 + τab)rje

T
j .

If 0 = 1 + τab, then the eigenvalues of the tridiagonal matrix

T̃j = Tj + τa2eje
T
j

are also eigenvalues of A+E. We may then conclude from theorem 6.1.2 that the interval
[λi(Tj), λi−1(Tj)] where i = 2, · · · , j, each contains an eigenvalue of A+ E.

Suppose we have an approximate eigenvalue λ̃ of A. One possibility is to choose τa2

so that
det(T̃j − λ̃Ij) = (αj + τa2 − λ̃)pj−1(λ̃)− β2

j−1pj−2(λ̃) = 0,

where the polynomial pi(x) = det(Ti − xIi) can be evaluated at λ̃ using (5.3).
The following theorems are known as the Kaniel-Paige theory for the estimation of

eigenvalues which obtained via the Lanczos algorithm.

Theorem 7.1.4 Let A be n × n symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn and
corresponding orthonormal eigenvectors z1, · · · , zn. If θ1 ≥ · · · ≥ θj are the eigenvalues
of Tj obtained after j steps of the Lanczos iteration, then

λ1 ≥ θ1 ≥ λ1 −
(λ1 − λn) tan (ϕ1)

2

[cj−1(1 + 2ρ1)]2
,

where cosϕ1 = |qT1 z1|, ρ1 = (λ1 − λ2)/(λ2 − λn) and cj−1 is the Chebychev polynomial of
degree j − 1.

Proof: From Courant-Fischer theorem we have

θ1 = max
y ̸=0

yTTjy

yTy
= max

y ̸=0

(Qjy)
TA(Qjy)

(Qjy)T (Qjy)
= max

0̸=w∈K(q1,A,j)

wTAw

wTw
.

Since λ1 is the maximum of wTAw/wTw over all nonzero w, it follows that λ1 ≥ θ1. To
obtain the lower bound for θ1, note that

θ1 = max
p∈Pj−1

qT1 p(A)Ap(A)q1
qT1 p(A)

2q1
,

where Pj−1 is the set of all j − 1 degree polynomials. If

q1 =
n∑

i=1

dizi

then
qT1 p(A)Ap(A)q1
qT1 p(A)

2q1
=

∑n
i=1 d

2
i p(λi)

2λi∑n
i=1 d

2
i p(λi)

2
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≥ λ1 − (λ1 − λn)
∑n

i=2 d
2
i p(λi)

2

d21p(λ1)
2 +

∑n
i=2 d

2
i p(λi)

2
.

We can make the lower bound tight by selecting a polynomial p(x) that is large at x = λ1
in comparison to its value at the remaining eigenvalues. Set

p(x) = cj−1[−1 + 2
x− λn
λ2 − λn

],

where cj−1(z) is the (j − 1)-th Chebychev polynomial generated by

cj(z) = 2zcj−1(z)− cj−2(z), c0 = 1, c1 = z.

These polynomials are bounded by unity on [-1,1]. It follows that |p(λi)| is bounded by
unity for i = 2, · · · , n while p(λ1) = cj−1(1 + 2ρ1). Thus,

θ1 ≥ λ1 − (λ1 − λn)
(1− d21)
d21

1

c2j−1(1 + 2ρ1)
.

The desired lower bound is obtained by noting that tan (ϕ1)
2 = (1− d21)/d21.

Corollary 7.1.5 Using the same notation as Theorem 7.1.4

λn ≤ θj ≤ λn +
(λ1 − λn) tan2(ϕn)

c2j−1(1 + 2ρn)
,

where ρn = (λn−1 − λn)/(λ1 − λn−1) and cos (ϕn) = |qT1 zn|.

Proof: Apply Theorem 7.1.4 with A replaced by −A.

Example 7.1.1

Lj−1 ≡
1

[Cj−1(2
λ1

λ2
− 1)]2

≥ 1

[Cj−1(1 + 2ρ1)]2

Rj−1 = (
λ2
λ1

)2(j−1) power method

λ1/λ2 j=5 j=25
1.5 1.1× 10−4/3.9× 10−2 1.4× 10−27/3.5× 10−9 Lj−1/Rj−1
1.01 5.6× 10−1/9.2× 10−1 2.8× 10−4/6.2× 10−1 Lj−1/Rj−1

Rounding errors greatly affect the behavior of algorithm 7.1.1, the Lanczos iteration.
The basic difficulty is caused by loss of orthogonality among the Lanczos vectors. To
avoid these difficulties we can reorthogonalize the Lanczos vectors.
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7.1.1 Reorthogonalization

Since

AQj = QjTj + rje
T
j ,

let

AQj −QjTj = rje
T
j + Fj (7.1.17)

I −QT
j Qj = CT

j +∆j + Cj, (7.1.18)

where Cj is strictly upper triangular and ∆j is diagonal. (For simplicity, suppose (Cj)i,i+1 =
0 and ∆i = 0.)

Definition 7.1.1 θi and yi ≡ Qjsi are called Ritz value and Ritz vector, respectively, if
Tjsi = θisi.

Let Θj ≡ diag(θ1, · · · , θj) = ST
j TjSj, where Sj =

[
s1 · · · sj

]
.

Theorem 7.1.6 (Paige Theorem) Assume that (a) Sj and Θj are exact ! (Since j ≪
n). (b) local orthogonality is maintained. ( i.e. qTi+1qi = 0, i = 1, . . . , j− 1, rTj qj = 0, and
(Cj)i,i+1 = 0 ). Let

F T
j Qj −QT

j Fj = Kj −KT
j ,

∆jTj − Tj∆j ≡ Nj −NT
j ,

Gj = ST
j (Kj +Nj)Sj ≡ (rik).

Then

(a) yTi qj+1 = rii/βji, where yi = Qjsi, βji = βjsji.

(b) For i ̸= k,

(θi − θk)yTi yk = rii(
sjk
sji

)− rkk(
sji
sjk

)− (rik − rki). (7.1.19)

Proof: Multiplied (7.1.17) from left by QT
j , we get

QT
j AQj −QT

j QjTj = QT
j rje

T
j +QT

j Fj, (7.1.20)

which implies that

QT
j A

TQj − TjQT
j Qj = ejr

T
j Qj + F T

j Qj. (7.1.21)

Subtracted (7.1.20) from (7.1.21), we have

(QT
j γj)e

T
j − ej(QT

j γj)
T

= (CT
j Tj − TjCT

j ) + (CjTj − TjCj) + (∆jTj − Tj∆j) + F T
j Qj −QjF

T
j

= (CT
j Tj − TjCT

j ) + (CjTj − TjCj) + (Nj −NT
j ) + (Kj −KT

j ).
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This implies that

(QT
j rj)e

T
j = CjTj − TjCj +Nj +Kj.

Thus,

yTi qj+1βji = sTi (Q
T
j rj)e

T
j si = sTi (CjTj − TjCj)si + sTi (Nj +Kj)si

= (sTi Cjsi)θi − θi(sTi Cjsi) + rii,

which implies that

yTi qj+1 =
rii
βji
.

Similarly, (7.1.19) can be obtained by multiplying (7.1.20) from left and right by sTi and
si, respectively.

Remark 7.1.5 Since

yTi qj+1 =
rii
βji

=

{
O(esp), if |βji| = O(1), (not converge!)
O(1), if |βji| = O(esp), (converge for (θj, yj))

we have that qTj+1yi = O(1) when the algorithm converges, i.e., qj+1 is not orthogonal to
< Qj > where Qjsi = yi.

(i) Full Reorthogonalization by MGS:

Orthogonalize qj+1 to all q1, · · · , qj by

qj+1 := qj+1 −
j∑

i=1

(qTj+1qi)qi.

If we incorporate the Householder computations into the Lanczos process, we can
produce Lanczos vectors that are orthogonal to working accuracy:

r0 := q1 (given unit vector)

Determine P0 = I − 2v0v
T
0 /v

T
0 v0 so that P0r0 = e1;

α1 := qT1 Aq1;

Do j = 1, · · · , n− 1,

rj := (A− αj)qj − βj−1qj−1 (β0q0 ≡ 0),

w := (Pj−1 · · ·P0)rj,

Determine Pj = I − 2vjv
T
j /v

T
j vj such that Pjw = (w1, · · · , wj, βj, 0, · · · , 0)T ,

qj+1 := (P0 · · ·Pj)ej+1,

αj+1 := qTj+1Aqj+1.

This is the complete reorthogonalization Lanczos scheme.
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(ii) Selective Reorthogonalization by MGS
If |βji| = O(

√
eps), (θj, yj) “good” Ritz pair

Do qj+1⊥q1, . . . , qj
Else not to do Reorthogonalization

(iii) Restart after m-steps
(Do full Reorthogonalization)

(iv) Partial Reorthogonalization
Do reorthogonalization with previous (e.g. k = 5) Lanczos vectors {q1, . . . , qk}

For details see the books:
Parlett: “Symmetric Eigenvalue problem” (1980) pp.257–
Golub & Van Loan: “Matrix computation” (1981) pp.332–

To (7.1.19): The duplicate pairs can occur!
i ̸= k, (θi − θk) yTi yk︸︷︷︸ = O(esp)

O(1), if yi = yk ⇒ Qi ≈ Qk

How to avoid the duplicate pairs ? The answer is using the implicit Restart
Lanczos algorithm:

Let

AQj = QjTj + rje
T
j

be a Lanczos decomposition.

• In principle, we can keep expanding the Lanczos decomposition until the Ritz pairs
have converged.

• Unfortunately, it is limited by the amount of memory to storage of Qj.

• Restarted the Lanczos process once j becomes so large that we cannot store Qj.

– Implicitly restarting method

• Choose a new starting vector for the underlying Krylov sequence

• A natural choice would be a linear combination of Ritz vectors that we are interested
in.

7.1.2 Filter polynomials

Assume A has a complete system of eigenpairs (λi, xi) and we are interested in the first
k of these eigenpairs. Expand u1 in the form

u1 =
k∑

i=1

γixi +
n∑

i=k+1

γixi.

If p is any polynomial, we have

p(A)u1 =
k∑

i=1

γip(λi)xi +
n∑

i=k+1

γip(λi)xi.
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• Choose p so that the values p(λi) (i = k+1, . . . , n) are small compared to the values
p(λi) (i = 1, . . . , k).

• Then p(A)u1 is rich in the components of the xi that we want and deficient in the
ones that we do not want.

• p is called a filter polynomial.

• Suppose we have Ritz values µ1, . . . , µm and µk+1, . . . , µm are not interesting. Then
take

p(t) = (t− µk+1) · · · (t− µm).

7.1.3 Implicitly restarted algorithm

Let

AQm = QmTm + βmqm+1e
T
m (7.1.22)

be a Lanczos decomposition with order m. Choose a filter polynomial p of degree m− k
and use the implicit restarting process to reduce the decomposition to a decomposition

AQ̃k = Q̃kT̃k + β̃kq̃k+1e
T
k

of order k with starting vector p(A)u1.
Let ν1, . . . , νm be eigenvalues of Tm and suppose that ν1, . . . , νm−k correspond to the

part of the spectrum we are not interested in. Then take

p(t) = (t− ν1)(t− ν2) · · · (t− νm−k).

The starting vector p(A)u1 is equal to

p(A)u1 = (A− νm−kI) · · · (A− ν2I)(A− ν1I)u1
= (A− νm−kI) [· · · [(A− ν2I) [(A− ν1I)u1]]] .

In the first, we construct a Lanczos decomposition with starting vector (A−ν1I)u1. From
(7.1.22), we have

(A− ν1I)Qm = Qm(Tm − ν1I) + βmqm+1e
T
m (7.1.23)

= QmU1R1 + βmqm+1e
T
m,

where

Tm − ν1I = U1R1

is the QR factorization of Tm − κ1I. Postmultiplying by U1, we get

(A− ν1I)(QmU1) = (QmU1)(R1U1) + βmqm+1(e
T
mU1).

It implies that

AQ(1)
m = Q(1)

m T (1)
m + βmqm+1b

(1)T
m+1,

where

Q(1)
m = QmU1, T (1)

m = R1U1 + ν1I, b
(1)T
m+1 = eTmU1.

(Q
(1)
m : one step of single shifted QR algorithm)
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Remark 7.1.6

• Q(1)
m is orthonormal.

• By the definition of T
(1)
m , we get

U1T
(1)
m UT

1 = U1(R1U1 + ν1I)U
T
1 = U1R1 + ν1I = Tm. (7.1.24)

Therefore, ν1, ν2, . . . , νm are also eigenvalues of T
(1)
m .

• Since Tm is tridiagonal and U1 is the Q-factor of the QR factorization of Tm− ν1I,
it implies that U1 and T

(1)
m are upper Hessenberg. From (7.1.24), T

(1)
m is symmetric.

Therefore, T
(1)
m is also tridiagonal.

• The vector b
(1)T
m+1 = eTmU1 has the form

b
(1)T
m+1 =

[
0 · · · 0 U

(1)
m−1,m U

(1)
m,m

]
;

i.e., only the last two components of b
(1)
m+1 are nonzero.

• For on postmultiplying (7.1.23) by e1, we get

(A− ν1I)q1 = (A− ν1I)(Qme1) = Q(1)
m R1e1 = r

(1)
11 q

(1)
1 .

Since Tm is unreduced, r
(1)
11 is nonzero. Therefore, the first column of Q

(1)
m is a

multiple of (A− κ1I)q1.

Repeating this process with ν2, . . . , νm−k, the result will be a Krylov decomposition

AQ(m−k)
m = Q(m−k)

m T (m−k)
m + βmqm+1b

(m−k)T
m+1

with the following properties

i. Q
(m−k)
m is orthonormal.

ii. T
(m−k)
m is tridiagonal.

iii. The first k − 1 components of b
(m−k)T
m+1 are zero.

iv. The first column of Q
(m−k)
m is a multiple of (A− ν1I) · · · (A− νm−kI)q1.

Corollary 7.1.1 Let ν1, . . . , νm be eigenvalues of Tm. If the implicitly restarted QR step
is performed with shifts ν1, . . . , νm−k, then the matrix T

(m−k)
m has the form

T (m−k)
m =

[
T

(m−k)
kk T

(m−k)
k,m−k

0 T
(m−k)
k+1,k+1

]
,

where T
(m−k)
k+1,k+1 is an upper triangular matrix with Ritz value ν1, . . . , νm−k on its diagonal.
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Therefore, the first k columns of the decomposition can be written in the form

AQ
(m−k)
k = Q

(m−k)
k T

(m−k)
kk + tk+1,kq

(m−k)
k+1 eTk + βkumkqm+1e

T
k ,

where Q
(m−k)
k consists of the first k columns of Q

(m−k)
m , T

(m−k)
kk is the leading principal

submatrix of order k of T
(m−k)
m , and ukm is from the matrix U = U1 · · ·Um−k. Hence if

we set

Q̃k = Q
(m−k)
k ,

T̃k = T
(m−k)
kk ,

β̃k = ∥tk+1,kq
(m−k)
k+1 + βkumkqm+1∥2,

q̃k+1 = β̃−1k (tk+1,kq
(m−k)
k+1 + βkumkqm+1),

then

AQ̃k = Q̃kT̃k + β̃kq̃k+1e
T
k

is a Lanczos decomposition whose starting vector is proportional to (A − ν1I) · · · (A −
νm−kI)q1.

• Avoid any matrix-vector multiplications in forming the new starting vector.

• Get its Lanczos decomposition of order k for free.

• For large n the major cost will be in computing QU .

7.2 Approximation from a subspace

Assume that A is symmetric and {(αi, zi)}ni=1 be eigenpairs of A with α1 ≤ α2 ≤ · · · ≤ αn.
Define

ρ(x) = ρ(x,A) =
xTAx

xTx
.

Algorithm 7.2.1 (Rayleigh-Ritz-Quotient procedure)

Give a subspace S(m) = span{Q} with QTQ = Im;
Set H := ρ(Q) = QTAQ;
Compute the p (≤ m) eigenpairs of H, which are of interest,

say Hgi = θigi for i = 1, . . . , p;
Compute Ritz vectors yi = Qgi, for i = 1, . . . , p;
Check ∥Ayi − θiyi∥2 ≤ Tol, for i = 1, . . . , p.

By the minimax characterization of eigenvalues, we have

αj = λj(A) = min
F j⊆Rn

max
f∈F j

ρ(f, A).
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Define

βj = min
Gj⊆Sm

max
g∈Gj

ρ(g, A), for j ≤ m.

Since Gj ⊆ Sm and S(m) = span{Q}, it implies that Gj = QG̃j for some G̃j ⊆ Rm.
Therefore,

βj = min
G̃j⊆Rm

max
s∈G̃j

ρ(s,H) = λj(H) ≡ θj,

for j = 1, . . . ,m.
For any m by m matrix B, there is associated a residual matrix R(B) ≡ AQ−QB.

Theorem 7.2.1 For given orthonormal n by m matrix Q,

∥R(H)∥ ≤ ∥R(B)∥

for all m by m matrix B.

Proof: Since

R(B)∗R(B) = Q∗A2Q−B∗(Q∗AQ)− (Q∗AQ)B +B∗B

= Q∗A2Q−H2 + (H −B)∗(H −B)

= R(H)∗R(H) + (H −B)∗(H −B)

and (H −B)∗(H −B) is positive semidefinite, it implies that ∥R(B)∥2 ≥ ∥R(H)∥2.
Since

Hgi = θigi, for i = 1, . . . ,m,

we have that

QTAQgi = θigi,

which implies that

QQTA(Qgi) = θi(Qgi).

Let yi = Qgi. Then QQ
Tyi = Q(QTQ)gi = yi. Take PQ = QQT which is a projection on

span{Q}. Then

(QQT )Ayi = θi(QQ
T )yi,

which implies that

PQ(Ayi − θiyi) = 0,

i.e., ri = Ayi − θiyi ⊥ Sm = span{Q}.
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Theorem 7.2.1 Let θj for j = 1, . . . ,m be eigenvalues of H = QTAQ. Then there is
αj′ ∈ σ(A) such that

|θj − αj′| ≤ ∥R∥2 = ∥AQ−QH∥2, for j = 1, . . . ,m.

Furthermore,

m∑
j=1

(θj − αj′)
2 ≤ 2∥R∥2F .

Proof: See the detail in Chapter 11 of “The symmetric eigenvalue problem , Par-
lett(1981)”.

Theorem 7.2.2 Let y be a unit vector θ = ρ(y), α be an eigenvalue of A closest to θ
and z be its normalized eigenvector. Let r = minλi ̸=α |λi(A)− θ| and ψ = ∠(y, z). Then

|θ − α| ≤ ∥r(y)∥2/r, | sinψ| ≤ ∥r(y)∥/r,

where r(y) = Ay − θy.

Proof: Decompose y = z cosψ + w sinψ with zTw = 0 and ∥w∥2 = 1. Hence

r(y) = z(α− θ) cosψ + (A− θ)w sinψ.

Since Az = αz and zTw = 0, we have zT (A− θ)w = 0 and so

∥r(y)∥22 = (α− θ)2 cos2 ψ + ∥(A− θ)w∥22 sin2 ψ ≥ ∥(A− θ)w∥22 sin2 ψ. (7.2.25)

Let w =
∑

αi ̸=α ξizi. Then

∥(A− θ)w∥22 = |wT (A− θ)(A− θ)w| =
∑
αi ̸=α

(αi − θ)2ξ2i ≥ r2(
∑
αi ̸=α

ξ2i ) = r2.

Therefore,

| sinψ| ≤ ∥r(y)∥2
r

.

Since r(y)⊥y, we have

0 = yT r(y) = (α− θ) cos2 ψ + wT (A− θ)w sin2 ψ,

which implies that

k ≡ cos2 ψ

sin2 ψ
=
wT (A− θ)w

θ − α
.

From above equation, we get

sin2ψ =
1

k + 1
=

α− θ
wT (A− α)w

, cos2 ψ =
k

k + 1
=
wT (A− θ)w
wT (A− α)w

. (7.2.26)
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Substituting (7.2.26) into (7.2.25), ∥r(y)∥22 can be rewritten as

∥r(y)∥22 = (θ − α)wT (A− α)(A− θ)w/wT (A− α)w. (7.2.27)

By assumption there are no eigenvalues of A separating α and θ. Thus (A−αI)(A− θI)
is positive definite and so

wT (A− α)(A− θ)w =
∑
αi ̸=α

|αi − α||αi − θ|ξ2i

≥ r
∑
αi ̸=α

|αi − α|ξ2i

≥ r|
∑
αi ̸=α

(αi − α)ξ2i | = r|wT (A− α)w|. (7.2.28)

Substituting (7.2.28) into (7.2.27), the theorem’s first inequality appears.
100 years old and still alive : Eigenvalue problems
Hank / G. Gloub / Van der Vorst / 2000

7.2.1 A priori bounds for interior Ritz approximations

Given subspace Sm = span{Q}, let {(θi, yi)}mi=1 be Ritz pairs of H = QTAQ and Azi =
αizi, i = 1, . . . , n.

Lemma 7.2.3 For each j ≤ m for any unit s ∈ Sm satisfying sT zi = 0, i = 1, . . . , j− 1.
Then

αj ≤ θj ≤ ρ(s) +

j−1∑
i=1

(α−1 − θi) sin2 ψi (7.2.29)

≤ ρ(s) +

j−1∑
i=1

(α−1 − αi) sin
2 ψi,

where ψi = ∠(yi, zi).

Proof: Take

s = t+

j−1∑
i=1

riyi,

where t⊥yi for i = 1, . . . , j − 1 and ∥s∥2 = 1. Assumption sT zi = 0 for i = 1, . . . , j − 1
and

∥yi − zi cosψi∥22 = (yi − zi cosψi)
T (yi − zi cosψi)

= 1− cos2 ψi − cos2 ψi + cos2 ψi

= 1− cos2 ψi = sin2 ψi

lead to

|ri| = |sTyi| = |sT (yi − zi cosψ)| ≤ ∥s∥2| sinψ|.
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Let (θi, gi) for i = 1, . . . ,m be eigenpairs of symmetric H with gTi gk = 0 for i ̸= k and
yi = Qgi. Then

0 = gTi (Q
TAQ)gk = yTi Ayk for i ̸= k. (7.2.30)

Combining (7.2.30) with tTAyi = 0, we get

ρ(s) = tTAt+

j−1∑
i=1

(yTi Ayi)r
2
i .

Thus

ρ(s)− α−1 = tT (A− α−1)t+
j−1∑
i=1

(θi − α−1)r2i

≥ tT (A− α−1)t
tT t

+

j−1∑
i=1

(θi − α−1)r2i

≥ ρ(t)− α−1 +
j−1∑
i=1

(θi − α−1) sin2 φi.

Note that ρ(t) ≥ θj = min{ρ(u);u ∈ S(m), u⊥yi, i < j}. Therefore, the second inequality
in (7.2.29) appears.

Let φij = ∠(zi, yj) for i = 1, . . . , n and j = 1, . . . ,m. Then φii = φi and

yj =
n∑

i=1

zi cosφij (7.2.31)

| cosφij| ≤ | sinφi| (7.2.32)
n∑

i=j+1

cos2 φij = sin2 φj −
j−1∑
i=1

cos2 φij (7.2.33)

Proof: Since yTj yi = 0 for i ̸= j and

|(yi cosφi − zi)T (yi cosφi − zi)| = sin2 φi,

we have

| cosφij| = |yTj zi| = |yTj (yi cosφi − zi)|
≤ ∥yj∥2∥yi cosφi − zi∥2 ≤ | sinφi|.

From (7.2.31),

1 = (yj, yj) =
n∑

i=1

cos2 φij

which implies that

sin2 φj = 1− cos2 φjj =

j−1∑
i=1

cos2 φij +
n∑

i=j+1

cos2 φij. (7.2.34)
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Lemma 7.2.4 For each j = 1, . . . ,m,

sinφj ≤ [(θj − αj)+

j−1∑
i=1

(αj+1 − αi) sin
2 φi]/(αj+1 − αj) (7.2.35)

Proof: By (7.2.31),

ρ(yj, A− αjI) = θj − αj =
n∑

i=1

(αi − αj) cos
2 φij.

It implies that

θj − αj +

j−1∑
i=1

(αj − αi) cos
2 φij

=
n∑

i=j+1

(αi − αj) cos
2 φij

≥ (αj+1 − αj)
n∑

i=j+1

cos2 φij

= (αj+1 − αj)(sin
2 φj −

j−1∑
i=1

cos2 φij). (from (7.2.35))

Solve sin2 φj and use (9.3.10) to obtain inequality (7.2.35)
Explanation: By Lemmas 7.2.3 and 7.2.4, we have

j = 1 : θ1 ≤ ρ(s), sT z1 = 0. (Lemma 7.2.3)

j = 1 : sin2 φ1 ≤
θ1 − α1

α2 − α1

≤ ρ(s)− α1

α2 − α1

, sT z1 = 0. (Lemma 7.2.4)

j = 2 : θ2 ≤ ρ(s) + (α−1 − α1) sin
2 φ1 ≤ ρ(s) + (α−1 − α1)

ρ(ξ)− α1

α2 − α1

,

sT z1 = sT z2 = 0, ξT z1 = 0. (Lemma 7.2.3)

j = 2 : sin2 φ2

(Lemma7.2.4)

≤ (θ2 − α2) +
(α3 − α1) sin

2 φ1

α3 − α2

j=1,j=2

≤ [ρ(s) + (α−1 − α1)(
ρ(t)− α1

α2 − α1

)− α2] +
α3 − α1

α3 − α2

(
ρ(t)− α1

α2 − α1

)

...

7.3 Krylov subspace

Definition 7.3.1 Given a nonzero vector f , Km(f) = [f,Af, . . . , Am−1f ] is called Krylov
matrix and Sm = Km(f) = ⟨f,Af, . . . , Am−1f⟩ is called Krylov subspace which are created
by Lanczos if A is symmetric or Arnoldi if A is unsymmetric.
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Lemma 7.3.1 Let {(θi, yi)}mi=1 be Ritz pairs of Km(f). If ω is a polynomial with degree
m− 1 (i.e., ω ∈ Pm−1), then ω(A)f⊥yk if and only if ω(θk) = 0, k = 1, . . . ,m.

Proof: ”⇐ ” Let

ω(ξ) = (ξ − θk)π(ξ),

where π(ξ) ∈ Pm−2. Thus

π(A)f ∈ Km(f)

and

yTk ω(A)f = yTk (A− θk)π(A)f
= rTk π(A)f

= 0. (∵ rk⊥⟨Q⟩ = Km(f))

”⇒ ” exercise!
Define

µ(ξ) ≡
m∏
i=1

(ξ − θi) and πk(ξ) ≡
µ(ξ)

(ξ − θk)
.

Corollary 7.3.2

yk =
πk(A)f

∥πk(A)f∥
.

Proof: Since πk(θi) = 0 for θi ̸= θk, from Lemma 7.3.1,

πk(A)f⊥yi, ∀ i ̸= k.

Thus, πk(A)f // yk and then yk =
πk(A)f
∥πk(A)f∥ .

Lemma 7.3.3 Let h be the normalized projection of f orthogonal to Zj, Zj ≡ span(z1, . . . , zj).
For each π ∈ Pm−1 and each j ≤ m,

ρ(π(A)f, A− αjI) ≤ (αn − αj)

[
sin∠(f, Zj)

cos∠(f, Zj)

∥π(A)h∥
|π(αj|)

]2
. (7.3.36)

Proof: Let ψ = ∠(f, Zj) = cos−1 ∥f∗Zj∥ and let g be the normalized projection of f
onto Zj so that

f = g cosψ + h sinψ.

Since Zjis invariant under A,

s ≡ π(A)f = π(A)g cosψ + π(A)h sinψ,

where π(A)g ∈ Zj and π(A)h ∈ (Zj)
⊥
. A little calculation yields

ρ(s, A− αjI) =
g∗(A− αjI)π

2(A)g cos2 ψ + h∗(A− αjI)π
2(A)h sin2 ψ

∥π(A)f∥2
. (7.3.37)

The eigenvalues of A are labeled so that α1 ≤ α2 ≤ · · · ≤ αn and
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(a) v∗(A− αjI)v ≤ 0 for all v ∈ Zj, in particular, v = π(A)g;

(b) w∗(A− αjI)w ≤ (αn − αj)∥w∥2 for all w ∈ (Zj)⊥, in particular, w = π(A)h.

Used (a) and (b) to simplify (7.3.37), it becomes

ρ(s, A− αjI) ≤ (αn − αj)

[
∥π(A)h∥ sinψ
∥π(A)f∥

]2
.

The proof is completed by using

∥s∥2 = ∥π(A)f∥2 =
n∑

i=1

π2(αi) cos
2 ∠(f, zi) ≥ π2(αj) cos

2∠(f, zj).

7.3.1 The Error Bound of Kaniel and Saad

The error bounds come from choosing π ∈ Pm−1 in Lemma 7.3.3 such that

(i) |π(αj)| is large, while ∥π(A)h∥ is small as possible, and

(ii) ρ(s, A− αjI) ≥ 0 where s = π(A)f .

To (i): Note that

∥π(A)h∥2 =
∑n

i=j+1 π
2(αi) cos

2 ∠(f, zj)∑n
i=j+1 cos

2 ∠(f, zj)
≤ max

i>j
π2(αi) ≤ max

τ∈[αj+1,αn]
π2(τ).

Chebychev polynomial solves minπ∈Pn−j maxτ∈[αj+1,αn] π
2(τ).

To (ii): The following facts are known:

(a) 0 ≤ θj − αj, (Cauchy interlace Theorem)

(b) θj − αj ≤ ρ(s, A− αjI), if s⊥yi, for all i < j, (By minimax Theorem)

(c) θj−αj ≤ ρ(s, A−αjI)+
∑j−1

i=1 (αn−αi) sin
2∠(yi, zi), if s⊥zi, for all i < j. (Lemma

7.2.3)

Theorem 7.3.4 (Saad) Let θ1 ≤ · · · ≤ θm be the Ritz values from Km(f) (by Lanczos
or Arnoldi) and let (αi, zi) be the eigenpairs of A. For j = 1, . . . ,m,

0 ≤ θj − αj ≤ (αn − αj)

[
sin∠(f, Zj)

∏j−1
k=1(

θk−αn

θk−αj
)

cos∠(f, Zj)Tm−j(1 + 2r)

]2
and

tan∠(zj,Km) ≤
sin∠(f, Zj)

∏j−1
k=1(

αk−αn

αk−αj
)

cos∠(f, Zj)Tm−j(1 + 2r)
,

where r = (αj − αj+1)/(αj+1 − αn).
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Proof: Apply Lemmas 7.3.3 and 7.3.1. To ensure (b), it requires s⊥yi for i = 1, . . . , j−1.
By Lemma 7.3.1, we construct

π(ξ) = (ξ − θ1) · · · (ξ − θj−1)π̃(ξ), π̃ ∈ Pm−j.

By Lemma 7.3.3 for this π(ξ) :

∥π(A)h∥
|π(αj)|

≤ ∥(A− θ1) · · · (A− θj−1)∥∥π̃(A)h∥
|(αj − θ1) · · · (αj − θj−1)||π̃(αj)|

≤
j−1∏
k=1

∣∣∣∣αn − αk

αn − θk

∣∣∣∣ max
τ∈[αj+1,αj ]

|π̃(τ)|
|π̃(αj)|

≤
j−1∏
k=1

∣∣∣∣αn − αk

αj − αk

∣∣∣∣ min
π̃∈Pm−j

max
j

|π̃(τ)|
|π̃(αj)|

=

j−1∏
k=1

∣∣∣∣αn − αk

αj − αk

∣∣∣∣ 1

Tm−j(1 + 2r)
. (7.3.38)

since h ⊥ Zj. On combining (b), Lemma 7.3.3 and (7.3.38), the first of the results is
obtained.

To prove the second inequality:
π is chosen to satisfy π(αi) = 0 for i = 1, . . . , j − 1 so that

s = π(A)f = zjπ(αj) cos∠(f, zj) + π(A)h sinψ.

Therefore,

tan∠(s, zj) =
sin∠(f, Zj)∥π(A)h∥
cos∠(f, zj)|π(αj)|

,

where π(ξ) = (ξ − α1) · · · (ξ − αj−1)π̃(ξ) with π̃(ξ) ∈ Pm−j. The proof is completed by
choosing π̃ by Chebychev polynomial as above.

Theorem 7.3.5 Let θ−m ≤ . . . ≤ θ−1 be Royleigh-Ritz values of Km(f) and Az−j =
α−jz−j for j = n, . . . , 1 with α−n ≤ · · · ≤ α−1, then

0 ≤ α−j − θ−j ≤ (α−j − α−1)

[
sin∠(f, Z−j)

∏−1
k=−j+1(

α−n−θ−k

α−k−θ−j
)

cos∠(f, z−j)Tm−j(1 + 2r)

]2
,

and

tan(z−j,Km) ≤ sin∠(f, Z−j)
cos∠(f, z−j)

[∏−1
k=−j+1(

α−k−α−n

α−k−α−j
)

Tm−j(1 + 2r)

]2
,

where r = (α−j−1 − α−j)/(α−n − α−j−1).
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Theorem 7.3.6 (Kaniel) The Rayleigh-Ritz (θj, yj) from Km(f) to (αj, zj) satisfy

0 ≤ θj − αj ≤ (αn − αj)

[
sin∠(f, Zj)

∏j−1
k=1(

αk−αn

αk−αj
)

cos∠(f, zj)Tm−j(1 + 2r)

]2

+

j−1∑
k=1

(αn − αk) sin
2 ∠(yk, zk)

and

sin2∠(yj, zj) ≤
(θj − αj) +

∑j−1
k=1(αj+1 − αk) sin

2∠(yk, zk)
αj+1 − αj

,

where r = (αj − αj+1)/(αj+1 − αn).

7.4 Applications to linear Systems and Least Squares

7.4.1 Symmetric Positive Definite System

Recall: Let A be symmetric positive definite and Ax∗ = b. Then x∗ minimizes the
functional

ϕ(x) =
1

2
xTAx− bTx. (7.4.1)

An approximate minimizer of ϕ can be regarded as an approximate solution to Ax = b.
One way to produce a sequence {xj} that converges to x∗ is to generate a sequence

of orthonormal vectors {qj} and to let xj minimize ϕ over span{q1, · · · , qj}, where j =
1, · · · , n. Let Qj = [q1, · · · , qj]. Since

x ∈ span{q1, · · · , qj} ⇒ ϕ(x) =
1

2
yT (QT

j AQj)y − yT (QT
j b)

for some y ∈ Rj, it follows that
xj = Qjyj, (7.4.2)

where
(QT

j AQj)yj = QT
j b. (7.4.3)

Note that Axn = b.
We now consider how this approach to solving Ax = b can be made effective when A

is large and sparse. There are two hurdles to overcome:

(i) the linear system (7.4.3) must be easily solved;

(ii) we must be able to compute xj without having to refer to q1, · · · , qj explicitly as
(7.4.2) suggests.

To (i): we use Lanczos algorithm algorithm 7.1.1 to generate the qi. After j steps we
obtain

AQj = QjTj + rje
T
j , (7.4.4)
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where

Tj = QT
j AQj =


α1 β1 0

β1 α2
. . .

. . . . . . βj−1
0 βj−1 αj

 and Tjyj = QT
j b. (7.4.5)

With this approach, (7.4.3) becomes a symmetric positive definite tridiagonal system
which may be solved by LDLT Cholesky decomposition, i.e.,

Tj = LjDjL
T
j , (7.4.6)

where

Lj =


1 0

µ2
. . .

...
. . . . . . 0

0 µj 1

 and Dj =

 d1 0
. . . 0

0 dj

 .
Compared the entries of (7.4.6), we get

d1 = α1,
for i = 2, · · · , j,
µi = βi−1/di−1,
di = αi − βi−1µi.

(7.4.7)

Note that we need only calculate

µj = βj−1/dj−1
dj = αj − βj−1µj

(7.4.8)

in order to obtain Lj and Dj from Lj−1 and Dj−1.
To (ii): Trick: we define Cj = [c1, · · · , cj] ∈ Rn×j and pj ∈ Rj by the equations

CjL
T
j = Qj,

LjDjpj = QT
j b

(7.4.9)

and observe that

xj = QjT
−1
j QT

j b = Qj(LjDjL
T
j )
−1QT

j b = Cjpj.

It follows from (7.4.9) that

[c1, µ2c1 + c2, · · · , µjcj−1 + cj] = [q1, · · · , qj],

and therefore
Cj = [Cj−1, cj], cj = qj − µjcj−1.

If we set pj = [ρ1, · · · , ρj]T in LjDjpj = QT
j b, then that equation becomes

[
Lj−1Dj−1 0

0 · · · 0µjdj−1 dj

]


ρ1
ρ2
...

ρj−1
ρj

 =


qT1 b
qT2 b
...

qTj−1b
qTj b

 .
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Since Lj−1Dj−1pj−1 = QT
j−1b, it follows that

pj =

[
pj−1
ρj

]
, ρj = (qTj b− µjdj−1ρj−1)/dj

and thus

xj = Cjpj = Cj−1pj−1 + ρjcj = xj−1 + ρjcj.

This is precisely the kind of recursive formula for xj that we need. Together with (7.4.8)
and (7.4.9) it enables us to make the transition from (qj−1, cj−1, xj−1) to (qj, cj, xj) with
a minimal amount of work and storage.

A further simplification results if we set q1 = b/β0 where β0 = ∥b∥2. For this choice
of a Lanczos starting vector we see that qTi b = 0 for i = 2, 3, · · · . It follows from (7.4.4)
that

Axj = AQjyj = QjTjyj + rje
T
j yj = QjQ

T
j b+ rje

T
j yj = b+ rje

T
j yj.

Thus, if βj = ∥rj∥2 = 0 in the Lanczos iteration, then Axj = b. Moreover, since ∥Axj −
b∥2 = βj|eTj yj|, the iteration provides estimates of the current residual.

Algorithm 7.4.1 Given b ∈ Rn and a symmetric positive definite A ∈ Rn×n. The
following algorithm computes x ∈ Rn such that Ax = b.

β0 = ∥b∥2, q1 = b/β0, α1 = qT1 Aq1, d1 = α1, c1 = q1, x1 = b/α1.

For j = 1, · · · , n− 1,

rj = (A− αj)qj − βj−1qj−1 (β0q0 ≡ 0),

βj = ∥rj∥2,
If βj = 0 then

Set x∗ = xj and stop;

else

qj+1 = rj/βj,

αj+1 = qTj+1Aqj+1,

µj+1 = βj/dj,

dj+1 = αj+1 − µj+1βj,

ρj+1 = −µj+1djρj/dj+1,

cj+1 = qj+1 − µj+1cj,

xj+1 = xj + ρj+1cj+1,

end if

end for

x∗ = xn.

This algorithm requires one matrix-vector multiplication and 5n flops per iteration.
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7.4.2 Symmetric Indefinite Systems

A key feature in the above development is the idea of computing LDLT Cholesky de-
composition of tridiagonal Tj. Unfortunately, this is potentially unstable if A, and con-
sequently Tj, is not positive definite. Paige and Saunders (1975) had developed the
recursion for xj by an LQ decomposition of Tj. At the j-th step of the iteration we will
Given rotations J1, · · · , Jj−1 such that

TjJ1 · · · Jj−1 = Lj =


d1 0
e2 d2
f3 e3 d3

. . . . . . . . .

0 fj ej dj

 .
Note that with this factorization, xj is given by

xj = Qjyj = QjT
−1
j QT

j b =Wjsj,

where Wj ∈ Rn×j and sj ∈ Rj are defined by

Wj = QjJ1 · · · Jj−1 and Ljsj = QT
j b.

Scrutiny of these equations enables one to develop a formula for computing xj from
xj−1 and an easily computed multiple of wj, the last column of Wj.

7.4.3 Connection of Algorithm 7.4.1 and CG method

Let

xLj : Iterative vector generated by Algorithm 7.4.1

xCG
i : Iterative vector generated by CG method with , xCG

0 = 0.

Since rCG
0 = b− Ax0 = b = pCG

0 , then

xCG
1 = αCG

0 p0 =
bT b

bTAb
b = xL1 .

Claim: xCG
i = xLi for i = 1, 2, · · · ,

(a) CG method (A variant version):

x0 = 0, r0 = b,
For k = 1, · · · , n,

if rk−1 = 0 then set x = xk−1 and quit.
else βk = rTk−1rk−1/r

T
k−2rk−2 (β1 ≡ 0),

pk = rk−1 + βkpk−1 (p1 ≡ r0),
αk = rTk−1rk−1/p

T
kApk,

xk = xk−1 + αkpk,
rk = rk−1 − αkApk,

end if
end for
x = xn.

(7.4.10)
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Define Rk = [r0, · · · , rk−1] ∈ Rn×k and

Bk =


1 −β2 0

1
. . .
. . . −βk

0 1

 .

From pj = rj−1 + βjpj−1 (j = 2, · · · , k) and p1 = r0, it follows Rk = PkBk. Since the
columns of Pk = [p1, · · · , pk] are A-conjugate, we see that

RT
kARk = BT

k diag(p
T
1Ap1, · · · , pTkApk)Bk

is tridiagonal. Since span{p1, · · · , pk}=span{r0, · · · , rk−1}=span{b, Ab, · · · , Ak−1b} and
r0, · · · , rk−1 are mutually orthogonal, it follows that if

△k = diag(β0, · · · , βk−1), βi = ∥ri∥2,

then the columns of Rk△−1k form an orthonormal basis for span{b, Ab, · · · , Ak−1b}. Con-
sequently the columns of this matrix are essentially the Lanczos vectors of algorithm
7.4.1, i.e., qLi = ±rCG

i−1/βi−1 (i = 1, · · · , k). Moreover,

Tk = △−1k BT
k diag(p

T
i Api)Bk △−1k .

The diagonal and subdiagonal of this matrix involve quantities that are readily avail-
able during the conjugate gradient iteration. Thus, we can obtain good estimate of A′s
extremal eigenvalues (and condition number) as we generate the xk in (7.4.11).

pCG
i = cLi · constant.

Show that cLi are A-orthogonal. Since

CjL
T
j = Qj ⇒ Cj = QjL

−T
j ,

it implies that

CT
j ACj = L−1j QT

j AQjL
−T
j = L−1j TjL

−T
j

= L−1j LjDjL
T
j L
−T
j = Dj.

So {ci}ji=1 are A-orthogonal.

(b) It is well known that xCG
j minimizes the functional ϕ(x) = 1

2
xTAx − bTx in the

subspace span{r0, Ar0, · · · , Aj−1r0} and xLj minimize ϕ(x) = 1
2
xTAx−bTx in the subspace

span{q1, · · · , qj}. We also know that K[q1, A, j] = QjRj which implies K(q1, A, j) =span
{q1, · · · , qj}. But q1 = b/∥b∥2, r0 = b, so span {r0, Ar0, · · · , Aj−1r0} = K(q1, A, j) =span
{q1, · · · , qj} therefore we have xCG

j = xLj .
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7.4.4 Bidiagonalization and the SVD

Suppose UTAV = B the bidiagonalization of A ∈ Rm×n and that

U = [u1, · · · , um], UTU = Im,
V = [v1, · · · , vn], V TV = In,

(7.4.11)

and

B =


α1 β1 0

. . . . . .
. . . βn−1

0 αn

0 · · · · · · 0

 . (7.4.12)

Recall that this decomposition serves as a front end for the SV D algorithm. Unfortu-
nately, if A is large and sparse, then we can expect large, dense submatrices to arise
during the Householder transformation for the bidiagonalization. It would be nice to
develop a method for computing B directly without any orthogonal update of the matrix
A.

We compare columns in the equations AV = UB and ATU = V BT :

Avj = αjuj + βj−1uj−1, β0u0 ≡ 0, ATuj = αjvj + βjvj+1, βnvn+1 ≡ 0,

for j = 1, · · · , n. Define

rj = Avj − βj−1uj−1 and pj = ATuj − αjvj.

We may conclude that

αj = ±∥rj∥2, uj = rj/αj,

vj+1 = pj/βj, βj = ±∥pj∥2.

These equations define the Lanczos method for bidiagonaling a rectangular matrix (by
Paige (1974)):

Given v1 ∈ Rn with unit 2-norm.
r1 = Av1, α1 = ∥r1∥2.
For j = 1, · · · , n,

If αj = 0 then stop;
else

uj = rj/αj, pj = ATuj − αjvj, βj = ∥pj∥2,
If βj = 0 then stop;
else

vj+1 = pj/βj, rj+1 = Avj+1 − βjuj, αj+1 = ∥rj+1∥2.
end if

end if
end for

(7.4.13)
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It is essentially equivalent to applying the Lanczos tridiagonalization scheme to the sym-

metric matrix C =

[
0 A
AT 0

]
. We know that

λi(C) = σi(A) = −λn+m−i+1(C)

for i = 1, · · · , n. Because of this, the large singular values of the bidiagonal matrix

Bj =


α1 β1 0

. . . . . .
. . . βj−1

0 αj

 tend to be very good approximations to the large singular

values of A.

7.4.5 Least square problems

As detailed in chapter III the full-rank LS problem min∥Ax − b∥2 can be solved by the
bidiagonalization (7.4.11)-(7.4.12). In particular,

x
LS

= V y
LS

=
n∑

i=1

aivi,

where y = (a1, · · · , an)T solves the bidiagonal system By = (uT1 b, · · · , uTnb)T .

Disadvantage: Note that because B is upper bidiagonal, we cannot solve for y until the
bidiagonalization is complete. We are required to save the vectors v1, · · · , vn an unhappy
circumstance if n is very large.

Modification: It can be accomplished more favorably if A is reduced to lower bidiagonal
form:

UTAV = B =



α1 0
β1 α2

. . . . . .
. . . αn

0 βn
0 · · · · · · 0


, m ≥ n+ 1,

where V = [v1, · · · , vn] and U = [u1, · · · , um]. It is straightforward to develop a Lanczos
procedure which is very similar to (7.4.13). Let Vj = [v1, · · · , vj], Uj = [u1, · · · , uj] and

Bj =


α1 0
β1 α2

. . . . . .
. . . αj

0 βj

 ∈ R(j+1)×j

and consider minimizing ∥Ax− b∥2 over all vectors of the form x = Vjy, y ∈ Rj. Since

∥AVjy − b∥2 = ∥UTAVjy − UT b∥2 = ∥Bjy − UT
j+1b∥2 +

m∑
i=j+2

(uTi b)
2,
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it follows that xj = Vjyj is the minimizer of the LS problem over span{Vj} , where yj
minimizes the (j + 1)× j LS problem min∥Bjy − UT

j+1b∥2. Since Bj is lower bidiagonal,
it is easy to compute Jacobi rotations J1, · · · , Jj such that

Jj · · · J1Bj =

[
Rj

0

]

is upper bidiagonal. Let Jj · · · J1UT
j+1b =

[
dj
u

]
, then

∥Bjy − UT
j+1b∥2 = ∥Jj · · · J1y − Jj · · · J1UT

j+1b∥2 = ∥
[
Rj

0

]
y −

[
dj
u

]
∥2.

So yj = R−1j dj, xj = Vjyj = VjR
−1
j dj = Wjdj. Let

Wj = (Wj−1, wj), wj = (vj − wj−1rj−1,j)/rjj

where rj−1,j and rjj are elements of Rj. Rj can be computed from Rj−1. Similarly,

dj =

[
dj−1
δj

]
, xj can be obtained from xj−1:

xj =Wjdj = (Wj−1, wj)

[
dj−1
δj

]
= Wj−1dj−1 + wjδj.

Thus

xj = xj−1 + wjδj.

For details see Paige-Saunders (1978).

7.4.6 Error Estimation of least square problems

Continuity of A+ of the function: Rm×n → Rm×n defined by A 7−→ A+.

Lemma 7.4.2 If {Ai} converges to A and rank(Ai) = rank(A) = n, then {A+
i } also

converges to A+.

Proof: Since lim
i→∞

AT
i Ai = ATA nonsingular, so

A+
i = (AT

i Ai)
−1AT

i
i→∞−→ (ATA)−1AT = A+.

Example 7.4.1 Let Aε =

 1 0
0 ε
0 0

 with ε > 0 and A0 =

 1 0
0 0
0 0

, then Aε → A0 as

ε→ 0, rank(A0) < 2. But A+
ε =

[
1 0 0
0 1/ε 0

]
̸−→ A+

0 =

[
1 0 0
0 0 0

]
as ε→ 0.
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Theorem 7.4.3 Let A,B ∈ Rm×n, then holds

∥A+ −B+∥F ≤
√
2∥A−B∥F max{∥A+∥22, ∥B+∥22}.

Without proof.

Remark 7.4.1 It does not follow that A → B implies A+ → B+. Because A+ can
diverges to ∞, see example.

Theorem 7.4.4 If rank(A) = rank(B) then

∥A+ −B+∥F ≤ µ∥A+∥2∥B+∥2∥A−B∥F ,

where

µ =

{ √
2, if rank(A) < min(m,n)
1, if rank(A) = min(m,n).

Pseudo-Inverse of A: A+ is the unique solution of equations

A+AA+ = A+, (AA+)∗ = AA+,

AA+A = A, (A+A)∗ = A+A.

PA = AA+ is Hermitian. PA is idempotent, and R(PA) = R(A). PA is the orthogonal
projection ontoR(A). Similarly, R(A) = A+A is the projection ontoR(A∗). Furthermore,

ρ2LS = ∥b− AA+b∥22 = ∥(I − AA+)b∥22.

Lemma 7.4.1 (Banach Lemma) ∥B−1 − A−1∥ ≤ ∥A−B∥∥A−1∥∥B−1∥.

Proof: From ((A+ δA)−1−A−1)(A+ δA) = I− I−A−1δA, follows lemma immediately.

Theorem 7.4.5 (i) The product PBP
⊥
A can be written in the form

PBP
⊥
A = (B+)∗RBE

∗P⊥A ,

where P⊥A = I − PA, B = A+ E. Thus ∥PBP
⊥
A ∥ ≤ ∥B+∥2∥E∥.

(ii) If rank(A) = rank(B), then ∥PBP
⊥
A ∥ ≤ min{∥B+∥2, ∥A+∥2}∥E∥.

Proof:

PBP
⊥
A = P ∗BP

⊥
A = (B+)∗B∗P⊥A = (B+)∗(A+ E)∗P⊥A = (B+)∗E∗P⊥A

= (B+)∗B∗(B+)∗E∗P⊥A = (B+)∗RBE
∗P⊥A (∥RB∥ ≤ 1, ∥P⊥A ∥ ≤ 1).

Part (ii) follows from the fact that rank(A) ≤ rank(B)⇒ ∥PBP
⊥
A ∥ ≤ ∥P⊥B PA∥. Exercise!

(Using C-S decomposition).
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Theorem 7.4.6 It holds

B+ − A+ = −
F1︷ ︸︸ ︷

B+PBERAA
++

F2︷ ︸︸ ︷
B+PBP

⊥
A −

F3︷ ︸︸ ︷
R⊥BRAA

+ .

B+ − A+ = −B+PBERAA
+ + (B∗B)+RBE

∗P⊥A −R⊥BE∗PA(AA
∗)+.

Proof:

−B+BB+(B − A)A+AA+ +B+BB+(I − AA+)− (I −B+B)(A+A)A+

= −B+(B − A)A+ +B+(I − AA+)− (I −B+B)A+

= B+ − A+ (Substitute PB = BB+, E = B − A, RA = AA+, · · · .).

Theorem 7.4.7 If B = A+ E, then

∥B+ − A+∥F ≤
√
2∥E∥F max{∥A+∥22, ∥B+∥22}.

Proof: Suppose rank(B) ≤ rank(A). Then the column spaces of F1 and F2 are orthog-
onal to the column space of F3. Hence

∥B+ − A+∥2F = ∥F1 + F2∥2F + ∥F3∥2F ((I −B+B)B+ = 0).

Since F1 + F2 = B+(PBEA
+PA + PBP

⊥
A ), we have

∥F1 + F2∥2F ≤ ∥B+∥22(∥PBEA
+PA∥2F + ∥PBP

⊥
A ∥2F ).

By Theorems 7.4.5 and 7.4.6 follows that

∥PBEA
+PA∥2F + ∥PBP

⊥
A ∥2F ≤ ∥PBEA

+∥2F + ∥P⊥B PA∥2F
= ∥PBEA

+∥2F + ∥P⊥BEA+∥2F
= ∥EA+∥2F ≤ ∥E∥2F∥A+∥22.

Thus

∥F1 + F2∥F ≤ ∥A+∥2∥B+∥2∥E∥F (P⊥B PA = P⊥BERAA
+ = P⊥BEA

+).

By Theorem 7.4.6 we have

∥F3∥F ≤ ∥A+∥2∥R⊥BRA∥F = ∥A+∥2∥RAR
⊥
B∥F = ∥A+∥2∥A+ER⊥B∥

≤ ∥A+∥22∥E∥F .

The final bound is symmetric in A and B, it also holds when rank(B) ≥ rank(A).

Theorem 7.4.8 If rank(A) = rank(B), then

∥B+ − A+∥F ≤
√
2∥A+∥2∥B+∥2∥E∥F . (see Wedin (1973))

From above we have

∥B+ − A+∥F
∥B+∥2

≤
√
2k2(A)

∥E∥F
∥A∥2

.

This bound implies that as E approaches zero, the relative error in B+ approaches zero,
which further implies that B+ approach A+.

Corollary 7.4.9 limB→AB
+ = A+ ⇐⇒ rank(A) = rank(B) as B approaches A.

(See Stewart 1977)
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7.4.7 Perturbation of solutions of the least square problems

We first state two corollaries of Theorem (SVD).

Theorem 7.4.10 (SVD) If A ∈ Rm×n then there exists orthogonal matrices U = [u1, · · · , um] ∈
Rm×m and V = [v1, · · · , vn] ∈ Rn×n such that UTAV = diag(σ1, · · · , σp) where p =
min(m,n) and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Corollary 7.4.11 If the SVD is given by Theorem 7.4.10 and σ1 ≥ · · · ≥ σr > σr+1

= · · · = σp = 0, then

(a) rank(A) = r.

(b) N (A) =span{vr+1, · · · , vn}.

(c) Range(A) =span{u1, · · · , ur}.

(d) A = Σr
i=1σiuiv

T
i = UrΣrV

T
r , where Ur = [u1, · · · , ur], Vr = [v1, · · · , vr] and Σr =

diag(σ1, · · · , σr).

(e) ∥A∥2F = σ2
1 + · · ·+ σ2

r .

(f) ∥A∥2 = σ1.

Proof: exercise !

Corollary 7.4.12 Let SVD of A ∈ Rm×n is given by Theorem 7.4.10. If k < r =
rank(A) and Ak = Σk

i=1σiuiv
T
i , then

min
rank(X)=k,X∈Rm×n

∥A−X∥2 = ∥A− Ak∥2 = σk+1. (7.4.14)

Proof: Let X ∈ Rm×n with rank(X) = k. Let τ1, · · · , τn with τ1 ≥ · · · ≥ τn ≥ 0 be the
singular values of X. Since A = X + (A−X) and τk+1 = 0, then σk+1 = |τk+1 − σk+1| ≤
∥A−X∥2. For the matrix Ak = UΣ̃V T (Σ̃ = diag(σ1, · · · , σk, 0, · · · , 0)) we have

∥A− Ak∥2 = ∥U(Σ− Σ̃)V T∥2 = ∥Σ− Σ̃∥2 = σk+1.

LS-problem: ∥Ax− b∥2=min! ⇒ xLS = A+b.

Perturbated LS-problem: ∥(A+ E)y − (b+ f)∥2 = min! ⇒ y = (A+ E)+(b+ f).

Lemma 7.4.13 Let A,E ∈ Rm×n and rank(A) = r.

(a) If rank(A+ E) > r then holds ∥(A+ E)+∥2 ≥ 1
∥E∥2 .

(b) If rank(A+ E) ≤ r and ∥A+∥2∥E∥2 < 1 then rank(A+ E) = r and

∥(A+ E)+∥2 ≤
∥A+∥2

1− ∥A+∥2∥E∥2
.



294 Chapter 7. Lanczos Methods

Proof: Let τ1 ≥ · · · ≥ τn be the singular values of A+ E.

To (a): If τk is the smallest nonzero singular value, then k ≥ r + 1 because of rank(A+
E) > r. By Corollary 7.4.6, we have ∥E∥2 = ∥(A + E)− A∥2 ≥ τr+1 ≥ τk and therefore
∥(A+ E)+∥2 = 1/τk ≥ 1/∥E∥2.

To (b): Let σ1 ≥ · · · ≥ σn be the singular values of A, then σr ̸= 0 because of rank(A) = r
and ∥A+∥2 = 1/σr. Since ∥A+∥2∥E∥2 < 1 so ∥E∥2 < σr, and then by Corollary 7.4.6 it
must be rank(A + E) ≥ r, so we have rank(A + E) = r. By Weyl’s theorem (Theorem
6.1.5) we have τr ≥ σr − ∥E∥2 and furthermore here σr − ∥E∥2 > 0, so one obtains

∥(A+ E)+∥2 = 1/τr ≤ 1/(σr − ∥E∥2) = ∥A+∥2/(1− ∥A+∥2∥E∥2).

Lemma 7.4.14 Let A,E ∈ Rm×n, b, f ∈ Rm and x = A+b, y = (A + E)+(b + f) and
r = b− Ax, then holds

y − x = [−(A+ E)+EA+ + (A+ E)+(I − AA+)

+(I − (A+ E)+(A+ E)A+]b+ (A+ E)+f

= −(A+ E)+Ex+ (A+ E)+(A+ E)+TET r

+(I − (A+ E)+(A+ E))ETA+Tx+ (A+ E)+f.

Proof: y − x = [(A + E)+ − A+]b + (A + E)+f and for (A + E)+ − A+ one has the
decomposition

(A+ E)+ − A+ = −(A+ E)+EA+ + (A+ E)+ − A+

+(A+ E)+(A+ E − A)A+

= −(A+ E)+EA+ + (A+ E)+(I − AA+)

−(I − (A+ E)+(A+ E))A+.

Let C := A + E and apply the generalized inverse to C we obtain C+ = C+CC+ =
C+C+T

C+ and

AT (I − AA+) = AT − ATAA+ = AT − ATA+T

AT = AT − ATAT+

AT = 0,

also A+ = ATA+T
A+ and (I − C+C)CT = 0. Hence it holds

C+(I − AA+) = C+C+T

ET (I − AA+)

and
(I − C+C)A+ = (I − C+C)ETA+T

A+.

If we substitute this into the second and third terms in the decomposition of (A+E)+−A+

then we have the result (r = (I − AA+)b, x = A+b):

y − x = [−(A+ E)+EA+ + (A+ E)+(A+ E)+
T

ET (I − AAT )

+(I − (A+ E)+(A+ E))ETA+T

A+]b+ (A+ E)+f

= −(A+ E)+Ex+ (A+ E)+(A+ E)+
T

ET r

+(I − (A+ E)+(A+ E))ETA+T

x+ (A+ E)+f.
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Theorem 7.4.15 Let A,E ∈ Rm×n, b, f ∈ Rm, and x = A+b ̸= 0, y = (A+ E)+(b+ f)
and r = b− Ax. If rank(A) = r, rank(A+ E) ≤ r and ∥A+∥2∥E∥2 < 1, then holds

∥y − x∥2
∥x∥2

≤ ∥A∥2∥A+∥2
1− ∥A+∥2∥E∥2

[
2
∥E∥2
∥A∥2

+
∥A+∥2

1− ∥A+∥2∥E∥2
∥E∥2
∥A∥2

∥r∥2
∥x∥2

+
∥f∥2

∥A∥2∥x∥2

]
.

Proof: From Lemma 7.4.14 follows

∥y − x∥2 ≤ ∥(A+ E)+∥2[∥E∥2∥x∥2 + ∥(A+ E)+∥2∥E∥2∥r∥2 + ∥f∥2]
+∥I − (A+ E)+(A+ E)∥2∥E∥2∥A+∥2∥x∥2.

Since I − (A+ E)+(A+ E) is symmetric and it holds

(I − (A+ E)+(A+ E))2 = I − (A+ E)+(A+ E).

From this follows ∥I − (A+ E)+(A+ E)∥2 = 1, if (A+ E)+(A+ E) ̸= I. Together with
the estimation of Lemma 7.4.13(b), we obtain

∥y − x∥2 ≤
∥A+∥2

1− ∥A+∥2∥E∥2

[
2∥E∥2∥x∥2 + ∥f∥2 +

∥A+∥2
1− ∥A+∥2∥E∥2

∥E∥2∥r∥2
]

and

∥y − x∥2
∥x∥2

≤ ∥A∥2∥A+∥2
1− ∥A+∥2∥E∥2

[
2
∥E∥2
∥A∥2

+
∥f∥2

∥A∥2∥x∥2
+

∥A+∥2
1− ∥A+∥2∥E∥2

∥E∥2
∥A∥2

∥r∥2
∥x∥2

]
.

7.5 Unsymmetric Lanczos Method

Suppose A ∈ Rn×n and that a nonsingular matrix X exists such that

X−1AX = T =


α1 γ1 0

β1 α2
. . .

. . . . . . γn−1
0 βn−1 αn

 .
Let

X = [x1, · · · , xn] and X−T = Y = [y1, · · · , yn].
Compared columns in AX = XT and ATY = Y T T , we find that

Axj = γj−1xj−1 + αjxj + βjxj+1, γ0x0 ≡ 0

and
ATyj = βj−1yj−1 + αjyj + γjyj+1, β0y0 ≡ 0

for j = 1, · · · , n− 1. These equations together with Y TX = In imply αj = yTj Axj and

βjxj+1 = γj ≡ (A− αj)xj − γj−1xj−1,
γjyj+1 = pj ≡ (A− αj)

Tyj − βj−1yj−1.
(7.5.1)

These is some flexibility in choosing the scale factors βj and γj. A “canonical” choice is
to set βj = ∥γj∥2 and γj = xTj+1pj giving:
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Algorithm 7.5.1 (Biorthogonalization method of Lanczos)

Given x1, y1 ∈ Rn with xT1 x1 = yT1 y1 = 1.
For j = 1, · · · , n− 1,

αj = yTj Axj,
rj = (A− αj)xj − γj−1xj−1 (γ0x0 ≡ 0),
βj = ∥rj∥2.
If βj > 0 then

xj+1 = rj/βj,
pj = (A− αj)

Tyj − βj−1yj−1 (β0y0 ≡ 0),
γj = xTj+1pj,

else stop;
If γj ̸= 0 then yj+1 = pj/γj else stop;

end for
αn = xTnAyn.

(7.5.2)

Define Xj = [x1, · · · , xj], Yj = [y1, · · · , yj] and Tj to be the leading j × j principal
submatrix of T , it is easy to verify that

AXj = XjTj + γje
T
j ,

ATYj = YjT
T
j + pje

T
j .

(7.5.3)

Remark 7.5.1 (i) pTj γj = βjγjx
T
j+1yj+1 = βjγj from (7.5.1).

(ii) Break of the algorithm (7.5.2) occurs if pTj γj = 0:

(a) γj = 0⇒ βj = 0. Then Xj is an invariant subspace of A (by (7.5.3)).

(b) pj = 0⇒ γj = 0. Then Yj is an invariant subspace of AT (by (7.5.3)).

(c) pTj γj = 0 but ∥pj∥∥γj∥ ̸= 0, then (7.5.2) breaks down. We begin the algorithm
(7.5.2) with a new starting vector.

(iii) If pTj γj is very small, then γj or βj small. Hence yj+1 or xj+1 are large, so the
algorithm (7.5.2) is unstable.

Definition 7.5.1 An upper Hessenberg matrix H = (hij) is called unreducible, if hi+1,i ̸=
0, for i = 1, · · · , n−1 (that is subdiagonal entries are nonzero). A tridiagonal matrix T =
(tij) is called unreducible, if ti,i−1 ̸= 0 for i = 2, · · · , n and ti,i+1 ̸= 0 for i = 1, · · · , n− 1.

Theorem 7.5.2 Let A ∈ Rn×n. Then

(i) If x ̸= 0 so that K[x1, A, n] = [x1, Ax1, · · · , An−1x1] nonsingular and if X is a non-
singular matrix such that K[x1, A, n] = XR, where R is an upper triangular matrix,
then H = X−1AX is an upper unreducible Hessenberg matrix.

(ii) Let X be a nonsingular matrix with first column x1 and if H = X−1AX is an upper
Hessenberg matrix, then holds

K[x1, A, n] = XK[e1, H, n] ≡ XR,

where R is an upper triangular matrix. Furthermore, if H is unreducible, then R
is nonsingular.
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(iii) If H = X−1AX and H̃ = Y −1AY where H and H̃ are both upper Hessenberg
matrices, H is unreducible and the first columns x1 and y1 of X and Y , respectively,
are linearly dependent, then J = X−1Y is an upper triangular matrix and H̃ =
J−1HJ .

Proof: ad(i): Since x1, Ax1, · · · , An−1x1 are linearly independent, so Anx1 is the linear
combination of {x1, Ax1, · · · , An−1x1}, i.e., there exists c0, · · · , cn−1 such that

Anx1 =
n−1∑
i=0

ciA
ix1.

Let

C =


0 · · · 0 c0

1
. . . c1
. . . 0

...
0 1 cn−1

 .
Then we have K[x1, A, n]C = [Ax1, A

2x1, · · · , An−1x1, A
nx1] = AK[x1, A, n]. Thus

XRC = AXR. We then have

X−1AX = RCR−1 = H

is an unreducible Hessenberg matrix.
ad(ii): From A = XHX−1 follows that Aix1 = XH iX−1x1 = XH ie1. Then

K[x1, A, n] = [x1, Ax1, · · · , An−1x1] = [Xe1, XHe1, · · · , XHn−1e1]

= X[e1, He1, · · · , Hn−1e1].

If H is upper Hessenberg, then R = [e1, He1, · · · , Hn−1e1] is upper triangular. If
H is unreducible upper Hessenberg, then R is nonsingular, since r11 = 1, r22 = h21,
r33 = h21h32, · · · , and so on.

ad(iii): Let y1 = λx1. We apply (ii) to the matrix H. It follows K[x1, A, n] = XR1.
Applying (ii) to H̃, we also haveK[y1, A, n] = Y R2. Here R1 and R2 are upper triangular.
Since y1 = λx1, so

λK[x1, A, n] = λXR1 = Y R2.

Since R1 is nonsingular, by (ii) we have R2 is nonsingular and X−1Y = λR1R
−1
2 = J

is upper triangular. So

H̃ = Y −1AY = (Y −1X)X−1AX(X−1Y ) = J−1HJ.

Theorem 7.5.3 Let A ∈ Rn×n, x, y ∈ Rn with K[x,A, n] and K[y, AT , n] nonsingular.
Then

(i) If B = K[y, AT , n]TK[x,A, n] = (yTAi+j−2x)i,j=1,··· ,n has a decomposition B =
LDLT , where L is a lower triangular with lii = 1 and D is diagonal (that is all prin-
cipal determinants of B are nonzero) and if X = K[x,A, n]L−1, then T = X−1AX
is an unreducible tridiagonal matrix.
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(ii) Let X,Y be nonsingular with

(a) T = X−1AX, T̃ = Y −1AY unreducible tridiagonal,

(b) the first column of X and Y are linearly dependent,

(c) the first row of X and Y are linearly dependent.

Then X−1Y = D diagonal and T̃ = D−1TD.

(iii) If T = X−1AX is unreducible tridiagonal, x is the first column of X and Y is the
first row of X−1, then

B = K[y, AT , n]TK[x,A, n]

has a LDLT decomposition.

Proof: ad(i):
X = K[x,A, n]L−T ⇒ XLT = K[x,A, n]. (7.5.4)

So the first column of X is x. From B = LDLT follows

K[y,AT , n]T = LDLTK[x,A, n]−1

and then
K[y,AT , n] = K[x,A, n]−TLDLT = X−TDLT . (7.5.5)

Applying Theorem 7.5.2(i) to (7.5.4), we get that X−1AX is unreducible upper Hessen-
berg. Applying Theorem 7.5.2(i) to (7.5.5), we get that

XTATX−T = (X−1AX)T

is unreducible upper Hessenberg. So X−1AX is an unreducible tridiagonal matrix.

ad(ii): T and T̃ are unreducible upper Hessenberg, by Theorem 7.5.2(3) we have X−1Y
upper triangular on the other hand. Since T T = XTATX−T and T̃ T = Y TATY −T

are unreducible upper Hessenberg, then by Theorem 7.5.2(iii) we also have Y TX−T =
(X−1Y )T is upper triangular. Thus X−1Y is upper triangular, also lower triangular so
the matrix X−1Y is diagonal.
ad(iii): exercise!



Chapter 8

Arnoldi Method

8.1 Arnoldi decompositions

Suppose that the columns of Kk+1 are linearly independent and let

Kk+1 = Uk+1Rk+1

be the QR factorization of Kk+1.

Theorem 8.1.1 Let ∥u1∥2 = 1 and the columns of Kk+1(A, u1) be linearly independent.
Let Uk+1 = [ u1 · · · uk+1 ] be the Q-factor of Kk+1. Then there is a (k + 1) × k
unreduced upper Hessenberg matrix

Ĥk ≡


ĥ11 · · · · · · ĥ1k
ĥ21 ĥ22 · · · ĥ2k

. . . . . .
...

ĥk,k−1 ĥkk
ĥk+1,k

 with ĥi+1,i ̸= 0

such that

AUk = Uk+1Ĥk. (8.1.1)

Conversely, if Uk+1 is orthonormal and satisfies (8.1.1), where Ĥk is a (k+1)×k unreduced
upper Hessenberg matrix, then Uk+1 is the Q-factor of Kk+1(A, u1).

Proof: (“⇒”) Let Kk = UkRk be the QR factorization and Sk = R−1k . Then

AUk = AKkSk = Kk+1

[
0
Sk

]
= Uk+1Rk+1

[
0
Sk

]
= Uk+1Ĥk,

where

Ĥk = Rk+1

[
0
Sk

]
.
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It implies that Ĥk is a (k + 1)× k Hessenberg matrix and

ĥi+1,i = ri+1,i+1sii =
ri+1,i+1

rii
.

Thus by the nonsingularity of Rk, Ĥk is unreduced.
(“⇐”) If k = 1, then

Au1 = ĥ11u1 + ĥ21u2.

It follows that

K2(A, u1) = [u1 Au1] = [u1 u2]

[
1 ĥ11
0 ĥ21

]
.

Since [u1 u2] is orthonormal, [u1 u2] is the Q-factor of K2.
Assume Uk is the Q-factor of Kk(A, u1), i.e.

Kk(A, u1) = UkRk,

where Rk is upper triangular. If we partition

Ĥk =

[
Ĥk−1 ĥk
0 ĥk+1,k

]
,

then from (8.1.1)

Kk+1(A, u1) =
[
Kk(A, u1) Auk

]
=

[
UkRk Ukĥk + ĥk+1,kuk+1

]
=

[
Uk uk+1

] [ Rk ĥk
0 ĥk+1,k

]
.

Hence Uk+1 is the Q-factor of Kk+1.

Definition 8.1.1 Let Uk+1 ∈ Cn×(k+1) be orthonormal. If there is a (k+1)×k unreduced
upper Hessenberg matrix Ĥk such that

AUk = Uk+1Ĥk, (8.1.2)

then (8.1.2) is called an Arnoldi decomposition of order k. If Ĥk is reduced, we say the
Arnoldi decomposition is reduced.

Partition

Ĥk =

[
Hk

ĥk+1,ke
T
k

]
,

and set

βk = ĥk+1,k.

Then (8.1.2) is equivalent to

AUk = UkHk + βkuk+1e
T
k .
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Theorem 8.1.2 Suppose the Krylov sequence Kk+1(A, u1) does not terminate at k + 1.
Then up to scaling of the columns of Uk+1, the Arnoldi decomposition of Kk+1 is unique.

Proof: Since the Krylov sequence Kk+1(A, u1) does not terminate at k+ 1, the columns
of Kk+1(A, u1) are linearly independent. By Theorem 8.1.1, there is an unreduced matrix
Hk and βk ̸= 0 such that

AUk = UkHk + βkuk+1e
T
k , (8.1.3)

where Uk+1 = [Uk uk+1] is an orthonormal basis for Kk+1(A, u1). Suppose there is another
orthonormal basis Ũk+1 = [Ũk ũk+1] for Kk+1(A, u1), unreduced matrix H̃k and β̃k ̸= 0
such that

AŨk = ŨkH̃k + β̃kũk+1e
T
k .

Then we claim that

ŨH
k uk+1 = 0.

For otherwise there is a column ũj of Ũk such that

ũj = αuk+1 + Uka, α ̸= 0.

Hence

Aũj = αAuk+1 + AUka

which implies that Aũj contains a component along Ak+1u1. Since the Krylov sequence
Kk+1(A, u1) does not terminate at k + 1, we have

Kk+2(A, u1) ̸= Kk+1(A, u1).

Therefore, Aũj lies in Kk+2(A, u1) but not in Kk+1(A, u1) which is a contradiction.
Since Uk+1 and Ũk+1 are orthonormal bases for Kk+1(A, u1) and Ũ

H
k uk+1 = 0, it follows

that

R(Uk) = R(Ũk) and UH
k ũk+1 = 0,

that is

Uk = ŨkQ

for some unitary matrix Q. Hence

A(ŨkQ) = (ŨkQ)(Q
HH̃kQ) + β̃kũk+1(e

T
kQ),

or

AUk = Uk(Q
HH̃kQ) + β̃kũk+1e

T
kQ. (8.1.4)
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On premultiplying (8.1.3) and (8.1.4) by UH
k , we obtain

Hk = UH
k AUk = QHH̃kQ.

Similarly, premultiplying by uHk+1, we obtain

βke
T
k = uHk+1AUk = β̃k(u

H
k+1ũk+1)e

T
kQ.

It follows that the last row of Q is ωke
T
k , where |ωk| = 1. Since the norm of the last

column of Q is one, the last column of Q is ωkek. Since Hk is unreduced, it follows from
the implicit Q theorem that

Q = diag(ω1, · · · , ωk), |ωj| = 1, j = 1, . . . , k.

Thus up to column scaling Uk = ŨkQ is the same as Ũk. Subtracting (8.1.4) from (8.1.3),
we find that

βkuk+1 = ωkβ̃kũk+1

so that up to scaling uk+1 and ũk+1 are the same.

Theorem 8.1.3 Let the orthonormal matrix Uk+1 satisfy

AUk = Uk+1Ĥk,

where Ĥk is Hessenberg. Then Ĥk is reduced if and only if R(Uk) contains an eigenspace
of A.

Proof: (“⇒”) Suppose that Ĥk is reduced, say that hj+1,j = 0. Partition

Ĥk =

[
H11 H12

0 H22

]
and Uk = [ U11 U12 ],

where H11 is an j × j matrix and U11 is consisted the first j columns of Uk+1. Then

A[ U11 U12 ] = [ U11 U12 uk+1 ]

[
H11 H12

0 H22

]
.

It implies that

AU11 = U11H11

so that U11 is an eigenbasis of A.
(“⇐”) Suppose that A has an eigenspace that is a subset of R(Uk) and Ĥk is unre-

duced. Let (λ, Ukw) for some w be an eigenpair of A. Then

0 = (A− λI)Ukw = (Uk+1Ĥk − λUk)w

=

(
Uk+1Ĥk − λUk+1

[
I
0

])
w = Uk+1Ĥλw,
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where

Ĥλ =

[
Hk − λI
hk+1,ke

T
k

]
.

Since Ĥλ is unreduced, the matrix Uk+1Ĥλ is of full column rank. It follows that w = 0
which is a contradiction.

Write the k-th column of the Arnoldi decomposition

AUk = UkHk + βkuk+1e
T
k ,

in the form

Auk = Ukhk + βkuk+1.

Then from the orthonormality of Uk+1, we have

hk = UH
k Auk.

Since

βkuk+1 = Auk − Ukhk

and ∥uk+1∥2 = 1, we must have

βk = ∥Auk − Ukhk∥2
and

uk+1 = β−1k (Auk − Ukhk).

Algorithm 8.1.1 (Arnoldi process)
1. For k = 1, 2, . . .
2. hk = UH

k Auk.
3. v = Auk − Ukhk
4. βk = hk+1,k = ∥v∥2
5. uk+1 = v/βk

6. Ĥk =

[
Ĥk−1 hk
0 hk+1,k

]
7. end for k

The computation of uk+1 is actually a form of the well-known Gram-Schmidt algo-
rithm. In the presence of inexact arithmetic cancelation in statement 3 can cause it to
fail to produce orthogonal vectors. The cure is process called reorthogonalization.

Algorithm 8.1.2 (Reorthogonalized Arnoldi process)
For k = 1, 2, . . .
hk = UH

k Auk.
v = Auk − Ukhk.
w = UH

k v.
hk = hk + w.
v = v − Ukw.
βk = hk+1,k = ∥v∥2
uk+1 = v/βk

Ĥk =

[
Ĥk−1 hk
0 hk+1,k

]
end for k
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Let y
(k)
i be an eigenvector of Hk associated with the eigenvalue λ

(k)
i and x

(k)
i = Uky

(k)
i

the Ritz approximate eigenvector.

Theorem 8.1.4

(A− λ(k)i I)x
(k)
i = hk+1,ke

T
k y

(k)
i uk+1.

and therefore,

∥(A− λ(k)i I)x
(k)
i ∥2 = |hk+1,k|| eTk y

(k)
i |.

8.2 Krylov decompositions

Definition 8.2.1 Let u1, u2, . . . , uk+1 be linearly independent and let Uk = [u1 · · · uk].

AUk = UkBk + uk+1b
H
k+1

is called a Krylov decomposition of order k. R(Uk+1) is called the space spanned by
the decomposition. Two Krylov decompositions spanning the same spaces are said to be
equivalent.

Let [V v]H be any left inverse for Uk+1. Then it follows that

Bk = V HAUk and bHk+1 = vHAUk.

In particular, Bk is a Rayleigh quotient of A.
Let

AUk = UkBk + uk+1b
H
k+1

be a Krylov decomposition and Q be nonsingular. That is

AUk = Uk+1B̂k with B̂k =

[
Bk

bHk+1

]
. (8.2.5)

Then we get an equivalent Krylov decomposition of (8.2.5) in the form

A(UkQ) =

(
Uk+1

[
Q 0
0 1

])([
Q 0
0 1

]−1
B̂kQ

)

=
[
UkQ uk+1

] [ Q−1BkQ
bHk+1Q

]
= (UkQ)(Q

−1BQ) + uk+1(b
H
k+1Q). (8.2.6)

The two Krylov decompositions (8.2.5) and (8.2.6) are said to be similar.
Let

γũk+1 = uk+1 − Uka.

Since u1, . . . , uk, uk+1 are linearly independent, we have γ ̸= 0. Then it follows that

AUk = Uk(Bk + abHk+1) + ũk+1(γb
H
k+1).

Since R([Uk uk+1]) = R([Uk ũk+1]), this Krylov decomposition is equivalent to (8.2.5).
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Theorem 8.2.1 Every Krylov decomposition is equivalent to a (possibly reduced) Arnoldi
decomposition.

Proof: Let

AU = UB + ubH

be a Krylov decomposition and let

U = ŨR

be the QR factorization of U . Then

AŨ = A(UR−1) = (UR−1)(RBR−1) + u(bHR−1) ≡ ŨB̃ + ub̃H

is an equivalent decomposition. Let

ũ = γ−1(u− Ua)

be a vector with ∥ũ∥2 = 1 such that UH ũ = 0. Then

AŨ = Ũ(B̃ + ab̃H) + ũ(γb̃H) ≡ ŨB̂ + ũb̂H

is an equivalent orthonormal Krylov decomposition. Let Q be a unitary matrix such that

b̂HQ = ∥b̂∥2eTk

and QHB̂Q is upper Hessenberg. Then the equivalent decomposition

AÛ ≡ A(ŨQ) = (ŨQ)(QHB̂Q) + ũ(b̂HQ) ≡ ÛB̄ + ∥b̂∥2ûeTk

is a possibly reduced Arnoldi decomposition where

ÛH û = QHŨH ũ = QHR−HUH ũ = 0.

8.2.1 Reduction to Arnoldi form

Let

AU = UB + ubH

be the Krylov decomposition with B ∈ Ck×k. Let H1 be a Householder transformation
such that

bHH1 = βek.
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Reduce HH
1 BH1 to Hessenberg form as the following illustration:

B :=


× × × ×
× × × ×
× × × ×
× × × ×

⇒B := BH2 =


⊗ ⊗ ⊗ ×
⊗ ⊗ ⊗ ×
⊗ ⊗ ⊗ ×
0 0 ⊗ ×



⇒ B := HH
2 B =


+ + + +
+ + + +
+ + + +
0 0 ⊗ ×

⇒B := BH3 =


⊕ ⊕ + +
⊕ ⊕ + +
0 ⊕ + +
0 0 ⊗ ×



⇒ B := HH
3 B =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ⊕ + +
0 0 ⊗ ×


Let

Q = H1H2 · · ·Hk−1.

Then QHBQ is upper Hessenberg and

bHQ = (bHH1)(H2 · · ·Hk−1) = βeTk (H2 · · ·Hk−1) = βeTk .

Therefore, the Krylov decomposition

A(UQ) = (UQ)(QHBQ) + βueTk (8.2.7)

is an Arnoldi decomposition.

8.3 The implicitly restarted Arnoldi method

Let

AUk = UkHk + βkuk+1e
T
k

be an Arnoldi decomposition.

• In principle, we can keep expanding the Arnoldi decomposition until the Ritz pairs
have converged.

• Unfortunately, it is limited by the amount of memory to storage of Uk.

• Restarted the Arnoldi process once k becomes so large that we cannot store Uk.

– Implicitly restarting method

– Krylov-Schur decomposition

• Choose a new starting vector for the underlying Krylov sequence

• A natural choice would be a linear combination of Ritz vectors that we are interested
in.
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8.3.1 Filter polynomials

Assume A has a complete system of eigenpairs (λi, xi) and we are interested in the first
k of these eigenpairs. Expand u1 in the form

u1 =
k∑

i=1

γixi +
n∑

i=k+1

γixi.

If p is any polynomial, we have

p(A)u1 =
k∑

i=1

γip(λi)xi +
n∑

i=k+1

γip(λi)xi.

• Choose p so that the values p(λi) (i = k+1, . . . , n) are small compared to the values
p(λi) (i = 1, . . . , k).

• Then p(A)u1 is rich in the components of the xi that we want and deficient in the
ones that we do not want.

• p is called a filter polynomial.

• Suppose we have Ritz values µ1, . . . , µm and µk+1, . . . , µm are not interesting. Then
take

p(t) = (t− µk+1) · · · (t− µm).

8.3.2 Implicitly restarted Arnoldi

Let

AUm = UmHm + βmum+1e
T
m (8.3.8)

be an Arnoldi decomposition with order m. Choose a filter polynomial p of degree m− k
and use the implicit restarting process to reduce the decomposition to a decomposition

AŨk = ŨkH̃k + β̃kũk+1e
T
k

of order k with starting vector p(A)u1.
Let κ1, . . . , κm be eigenvalues of Hm and suppose that κ1, . . . , κm−k correspond to the

part of the spectrum we are not interested in. Then take

p(t) = (t− κ1)(t− κ2) · · · (t− κm−k).

The starting vector p(A)u1 is equal to

p(A)u1 = (A− κm−kI) · · · (A− κ2I)(A− κ1I)u1
= (A− κm−kI) [· · · [(A− κ2I) [(A− κ1I)u1]]] .
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In the first, we construct an Arnoldi decomposition with starting vector (A − κ1I)u1.
From (8.3.8), we have

(A− κ1I)Um = Um(Hm − κ1I) + βmum+1e
T
m (8.3.9)

= UmQ1R1 + βmum+1e
T
m,

where

Hm − κ1I = Q1R1

is the QR factorization of Hm − κ1I. Postmultiplying by Q1, we get

(A− κ1I)(UmQ1) = (UmQ1)(R1Q1) + βmum+1(e
T
mQ1).

It implies that

AU (1)
m = U (1)

m H(1)
m + βmum+1b

(1)H
m+1,

where

U (1)
m = UmQ1, H(1)

m = R1Q1 + κ1I, b
(1)H
m+1 = eTmQ1.

(H
(1)
m : one step of single shifted QR algorithm)

Theorem 8.3.1 Let Hm be an unreduced Hessenberg matrix. Then H
(1)
m has the form

H(1)
m =

[
Ĥ

(1)
m ĥ12
0 κ1

]
,

where Ĥ
(1)
m is unreduced.

Proof: Let

Hm − κ1I = Q1R1

be the QR factorization of Hm − κ1I with

Q1 = G(1, 2, θ1) · · ·G(m− 1,m, θm−1)

where G(i, i + 1, θi) for i = 1, . . . ,m − 1 are Given rotations. Since Hm is unreduced
upper Hessenberg, i.e., the subdiagonal elements of Hm are nonzero, we get

θi ̸= 0 for i = 1, . . . ,m− 1 (8.3.10)

and

(R1)ii ̸= 0 for i = 1, . . . ,m− 1. (8.3.11)

Since κ1 is an eigenvalue of Hm, we have that Hm − κ1I is singular and then

(R1)mm = 0. (8.3.12)

Using the results of (8.3.10), (8.3.11) and (8.3.12), we get

H(1)
m = R1Q1 + κ1I = R1G(1, 2, θ1) · · ·G(m− 1,m, θm−1) + κ1I

=

[
Ĥ

(1)
m ĥ12
0 κ1

]
,

where Ĥ
(1)
m is unreduced.
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Remark 8.3.1

• U (1)
m is orthonormal.

• Since Hm is upper Hessenberg and Q1 is the Q-factor of the QR factorization of
Hm − κ1I, it implies that Q1 and H

(1)
m are also upper Hessenberg.

• The vector b
(1)H
m+1 = eTmQ1 has the form

b
(1)H
m+1 =

[
0 · · · 0 q

(1)
m−1,m q

(1)
m,m

]
;

i.e., only the last two components of b
(1)
m+1 are nonzero.

• For on postmultiplying (8.3.9) by e1, we get

(A− κ1I)u1 = (A− κ1I)(Ume1) = U (1)
m R1e1 = r

(1)
11 u

(1)
1 .

Since Hm is unreduced, r
(1)
11 is nonzero. Therefore, the first column of U

(1)
m is a

multiple of (A− κ1I)u1.

• By the definition of H
(1)
m , we get

Q1H
(1)
m QH

1 = Q1(R1Q1 + κ1I)Q
H
1 = Q1R1 + κ1I = Hm.

Therefore, κ1, κ2, . . . , κm are also eigenvalues of H
(1)
m .

Similarly,

(A− κ2I)U (1)
m = U (1)

m (H(1)
m − κ2I) + βmum+1b

(1)H
m+1 (8.3.13)

= U (1)
m Q2R2 + βmum+1b

(1)H
m+1,

where

H(1)
m − κ2I = Q2R2

is the QR factorization of H
(1)
m −κ2I with upper Hessenberg matrix Q2. Postmultiplying

by Q2, we get

(A− κ2I)(U (1)
m Q2) = (U (1)

m Q2)(R2Q2) + βmum+1(b
(1)H
m+1Q2).

It implies that

AU (2)
m = U (2)

m H(2)
m + βmum+1b

(2)H
m+1,

where

U (2)
m ≡ U (1)

m Q2

is orthonormal,

H(2)
m ≡ R2Q2 + κ2I =

 H
(2)
m−2 ∗ ∗

κ2 ∗
κ1


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is upper Hessenberg with unreduced matrix H
(2)
m−2 and

b
(2)H
m+1 ≡ b

(1)H
m+1Q2 = q

(1)
m−1,me

H
m−1Q2 + q(1)m,me

T
mQ2

=
[
0 · · · 0 × × ×

]
.

For on postmultiplying (8.3.13) by e1, we get

(A− κ2I)u(1)1 = (A− κ2I)(U (1)
m e1) = U (2)

m R2e1 = r
(2)
11 u

(2)
1 .

Since H
(1)
m is unreduced, r

(2)
11 is nonzero. Therefore, the first column of U

(2)
m is a multiple

of (A− κ2I)u(1)1 = 1/r
(1)
11 (A− κ2I)(A− κ1I)u1.

Repeating this process with κ3, . . . , κm−k, the result will be a Krylov decomposition

AU (m−k)
m = U (m−k)

m H(m−k)
m + βmum+1b

(m−k)H
m+1

with the following properties

i. U
(m−k)
m is orthonormal.

ii. H
(m−k)
m is upper Hessenberg.

iii. The first k − 1 components of b
(m−k)H
m+1 are zero.

iv. The first column of U
(m−k)
m is a multiple of (A− κ1I) · · · (A− κm−kI)u1.

Corollary 8.3.1 Let κ1, . . . , κm be eigenvalues of Hm. If the implicitly restarted QR step
is performed with shifts κ1, . . . , κm−k, then the matrix H

(m−k)
m has the form

H(m−k)
m =

[
H

(m−k)
kk H

(m−k)
k,m−k

0 T (m−k)

]
,

where T (m−k) is an upper triangular matrix with Ritz value κ1, . . . , κm−k on its diagonal.

For k = 3 and m = 6,

A
[
u u u u u u

]

=
[
u u u u u u

]

× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×


+u
[
0 0 q q q q

]
.

Therefore, the first k columns of the decomposition can be written in the form

AU
(m−k)
k = U

(m−k)
k H

(m−k)
kk + hk+1,ku

(m−k)
k+1 eTk + βkqmkum+1e

T
k ,
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where U
(m−k)
k consists of the first k columns of U

(m−k)
m , H

(m−k)
kk is the leading principal

submatrix of order k of H
(m−k)
m , and qkm is from the matrix Q = Q1 · · ·Qm−k. Hence if

we set

Ũk = U
(m−k)
k ,

H̃k = H
(m−k)
kk ,

β̃k = ∥hk+1,ku
(m−k)
k+1 + βkqmkum+1∥2,

ũk+1 = β̃−1k (hk+1,ku
(m−k)
k+1 + βkqmkum+1),

then

AŨk = ŨkH̃k + β̃kũk+1e
T
k

is an Arnoldi decomposition whose starting vector is proportional to (A − κ1I) · · · (A −
κm−kI)u1.

• Avoid any matrix-vector multiplications in forming the new starting vector.

• Get its Arnoldi decomposition of order k for free.

• For large n the major cost will be in computing UQ.
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Chapter 9

Jacobi-Davidson method
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(iv) Lehoucg and Meerbergen, Using generalized Cauchy Transformation within an in-
exact rational Krylov subspace method, 2001

9.1 JOCC(Jacobi Orthogonal Component Correction)

Consider

Ax = λx,

where A is a nonsymmetric diagonal dominant matrix (i.e., |aii| >
∑

j ̸=i |aij|). Let

A =

[
α CT

b F

]
,

with α being the largest diagonal element. Then

A

[
1
z

]
=

[
α CT

b F

] [
1
z

]
= λ

[
1
z

]
. (9.1.1)

That is {
λ = α+ CT z,
(F − λI)z = −b. (9.1.2)

Jacobi proposed to solve (9.1.2) by the following Jacobi iteration with z1 = 0

for k = 1, 2, . . .
θk = α+ CT zk
(D − θkI)zk+1 = (D − F )zk − b

end

(9.1.3)

where D = diag(F ).
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Remark 9.1.1 θk is not a Ritz value.

9.2 Davidson method

(Davidson′s method as an accelerated JOCC method)

Assume uk =

[
1
zk

]
is an approximated eigenvector and θk is the associated approx-

imated eigenvalue. The residual is given by

rk = (A− θkI)uk =
[
α− θk + cT zk
(F − θkI)zk + b

]
. (9.2.4)

Davidson(1975) proposed computing tk from

(DA − θkI)tk = −rk, (9.2.5)

where DA = diag(A). It implies that( [
α 0
0 D

]
− θkI

)[
∗
yk

]
=

[
∗

−(F − θkI)zk − b

]
.

For the component ŷk =
[
0 yTk

]T
of tk orthogonal to u1 =

[
1 0

]T
, it follows that

(D − θkI)yk = −(F − θkI)zk − b = (D − F )zk − (D − θkI)zk − b, (9.2.6)

where D is the diagonal of F , or equivalently,

(D − θkI)(zk + yk) = (D − F )zk − b. (9.2.7)

Comparing (9.2.7) with (9.1.3), we see that zk+yk is the zk+1 that we would have obtained
with one step JOCC starting with zk.

Instead of taking ûk+1 := [1, (zk + yk)
T ]T = uk + ŷk as the next approximating eigen-

vector, Davidson suggested computing Ritz vector of A with respect to

Sk+1 = < u1, · · · , uk, ûk+1 >=< u1, · · · , uk, tk >
= < v1, . . . , vk+1 >, (orthogonal basis)

where u1 = e1,

ûk+1 = uk + ŷk = uk +

[
0
yk

]
, tk =

[
∗
yk

]
=

[
∗
0

]
+

[
0
yk

]
,

i.e., compute a Ritz pair (θk+1, uk+1) which is “nearest” the target value. Then compute
rk+1 = (A− θk+1I)uk+1 and GOTO (9.2.4).
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9.3 Jacobi Davidson method

In fact, we want to find the orthogonal complement for the current approximation uk
with respect to the desired eigenvector u of A. We are interested in seeing explicitly what
happens in the subspace uk

⊥. Let

B = (I − ukukT )A(I − ukukT ), ukTuk = 1

It follows that

⇒ A = B + Aukuk
T + ukuk

TA− θkukukT . (9.3.8)

where (θk, uk) is a given Ritz pair θk =
uk

TAuk
ukTuk

.

When we are in search of eigenvalue λ of A choose to θk, then we want to have the
correction v ⊥ uk such that

A(uk + v) = λ(uk + v). (9.3.9)

By (9.3.8) and Buk = 0, we have

(B − λI)v = −r + (λ− θk − ukTAv)uk. (9.3.10)

Since

(B − λI)v ∈< uk
⊥ > and r = Auk − θkuk ⊥ uk,

it follows that

(B − λI)v = −r. (9.3.11)

Replacing λ in (9.3.11) by θk, it holds that

(B − θkI)v = −r, (9.3.12)

that is

(I − ukukT )(A− θkI)t = −r, t ⊥ uk. (9.3.13)

Remark 9.3.1 (a) If we take v = −r, then we obtain the same results as with the
Arnoldi or Lanzcos method.

(b) If we take v = −(DA − θkI)−1rk, then we obtain the original Davidson method.

(c) Select suitable approximations t̃ ⊥ uk for the solution of (B − θkI)t = −rk with
t ⊥ uk.



316 Chapter 9. Jacobi-Davidson method

Algorithm 9.3.1 (Jacobi-Davidson Algorithm)

Given a vector v1 with ∥v1∥2 = 1; set V1 = [v1].
Compute W1 = AV1 and M1 = V ∗1 W1.
Do k = 1, 2, 3, . . .
(i) Compute all the eigenpairs of the small size problem

(Mk − θIk)s = 0.
(ii) Select the desired (target) eigenvalue θk and

let sk be the associated normalized eigenvector.
(iii) Compute uk = Vksk and rk = (A− θkI)uk.
(iv) If (||rk||2 < ε), Set λ = θk, x = uk, Stop.
(v) Solve (approximately) a t ⊥ uk from

(I − uku∗k)(A− θkI)(I − uku∗k)t = −rk.
(vi) Orthogonalize t against Vk; Set vk+1 = t/ ∥ t ∥2 .

(vii) Compute wk+1 = Avk+1, Mk+1 =

[
Mk V ∗k wk+1

v∗k+1Wk v∗k+1wk+1

]
,

(viii) Expand Wk+1 = [Wk, wk+1] and Vk+1 = [Vk, vk+1]

In the Jacobi-Davidson method, we must solve correction vector t with t ⊥ uk from
the correction equation (

I − ukuTk
)
A(θk)(I − ukuTk )t = −rk, (9.3.14)

where A(θk) = A − θkI. In the following, we discuss how to construct approximate
solution t in (9.3.14) with three different methods.
(a) Method I: Use preconditioning iterative approximations, e.g., GMRES, to solve
(9.3.14). The method uses a preconditioner

Mp ≡
(
I − ukuTk

)
M
(
I − ukuTk

)
≈
(
I − ukuTk

)
A(θk)

(
I − ukuTk

)
,

whereM is an approximation of A(θk) and an iterative method to solve Eq. (9.3.14). In
each of the iterative steps, it needs to solve the linear system

Mpt = y, t ⊥ uk (9.3.15)

for a given y. Since t ⊥ uk, Eq. (9.3.15) can be rewritten as(
I − ukuTk

)
Mt = y ⇒ Mt =

(
uTkMt

)
uk + y ≡ ηkuk + y.

Hence

t =M−1y + ηkM−1uk,

where

ηk = −
uTkM−1y

uTkM−1uk
.
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Note that if we set A(θk) = L+D + U , then

M = (D + ωL)D−1(D + ωU)

is a SSOR preconditioner of A(θk).
(b) Method II: Since t ⊥ uk, Eq. (9.3.14) can be rewritten as

A(θk)t =
(
uTkA(θk)t

)
uk − rk ≡ εuk − rk. (9.3.16)

Let t1 and t2 be approximated solutions of the following linear systems:

A(θk)t = −rk and A(θk)t = uk,

respectively. Then the approximated solution t̃ for (9.3.16) is

t̃ = t1 + εt2 for ε = −u
T
k t1
uTk t2

.

For the special case, the approximated solution t̃ for (9.3.16) can be

t̃ = −M−1rk + εM−1uk for ε =
uTkM−1rk
uTkM−1uk

, (9.3.17)

whereM is an approximation of A(θk).
(c) Method III: Eq. (9.3.16) implies that

t = εA(θk)
−1uk −A(θk)

−1rk = εA(θk)
−1uk − uk. (9.3.18)

Let t1 be approximated solution of the following linear system:

A(θk)t = uk.

Then the approximated solution t̃ for (9.3.16) is

t̃ = εt1 − uk for ε =
(
uTk t1

)−1
.

Remark 9.3.2 (i) If we choose ε = 0 in (9.3.17) and M = DA − θkI, then we obtain
Davidson method. In this case, t̃ = −M−1rk will not be orthogonal to uk.

(ii) Since t is make orthogonal to uk, the choice in (9.3.18) is equivalent with t =
ε (A− θkI)−1 uk. In this case, the method is just mathematically equivalent to
shift-invert iteration which converges locally quadratically. In finite arithmetics,
the vector (A− θkI)−1 uk may make a “very small” angle with uk, so that it will be
impossible to compute a significant orthogonal search direction.

Assume that A is strongly diagonally dominant. We write

A = DA + E,

where DA denotes the diagonal of A and assume that ∥E∥ ≪ ∥DA∥ and a11 is the largest
diagonal element in absolute value.
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With Davidson’s method, from

r = Auk − θkuk = (DA + E)uk − θkuk,

we obtain

t̃ = (DA − θkI)−1 r = uk + (DA − θkI)−1Euk
and (DA − θkI)−1Euk is not small compared with uk. This means that t̃ is expected to
recover some part of significant digits and this makes Davidson’s method work well for
diagonally dominant problems.

In Jacobi-Davidson method, we compute

t̃ = ε (DA − θkI)−1 uk − (DA − θkI)−1 r, t̃ ⊥ uk.

The factor ε is well-determined by

ε =
uTkM−1r

uTkM−1uk
with M = (DA − θkI) .

Since A is strongly diagonally dominant,

∥ε (DA − θkI)−1 uk∥ =

∥∥∥∥ uTkM−1r

uTkM
−1uk

(DA − θkI)−1 uk
∥∥∥∥

. ∥uk∥∥ (DA − θkI)−1 r∥
∥uk∥∥ (DA − θkI)−1 uk∥

∥ (DA − θkI)−1 uk∥

= ∥ (DA − θkI)−1 r∥.

Furthermore, since uk ⊥ r, we have that {ε (DA − θkI)−1 uk, (DA − θkI)−1 r} is linearly
independent, and therefore there will be hardly any cancelation in the computation of t̃.

Remark 9.3.3 t̃ is the combination of Shift-Invert and Davidson’s methods, where Shift-
Invert method is the part ε (DA − θkI)−1 uk and Davidson’s method is (DA − θk)−1 r.

Consider Ax = λx and assume that λ is simple.

Lemma 9.3.1 Consider w with wTx ̸= 0. Then the map

Fp ≡
(
I − xwT

wTx

)
(A− λI)

(
I − xwT

wTx

)
is a bijection from w⊥ to w⊥.(
Extension : Fp =

(
I − uuT

uTu

)
(A− θI)

(
I − uuT

uTu

)
t = −r. t ⊥ u, r ⊥ u, t ∈ u⊥ →

Fp

r ∈ u⊥.
)

Proof: Suppose y⊥w and Fpy = 0. That is(
I − xwT

wTx

)
(A− λI)

(
I − xwT

wTx

)
y = 0.

Then it holds that

(A− λI)y = εx.

Therefore, both y and x belong to the kernel of (A − λI)2. The simplicity of λ implies
that y is a scale multiple of x. The fact that y⊥w and xTw ̸= 0 implies y = 0, which
proves the injectivity of Fp. An obvious dimension argument implies bijectivity.
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Theorem 9.3.2 Assume that the correction equation(
I − uuT

)
(A− θI)

(
I − uuT

)
t = −r, t ⊥ u (9.3.19)

is solved exactly in each step of Algorithm 9.3.2. Assume uk = u→ x and uTk x has non-
trivial limit. Then if uk is sufficiently chosen to x, then uk → x with locally quadratical
convergence and

θk = uTkAuk → λ.

Proof: Suppose Ax = λx with x such that x = u+ z for z ⊥ u. Then

(A− θI) z = − (A− θI)u+ (λ− θ) x = −r + (λ− θ)x. (9.3.20)

Consider the exact solution z1 ⊥ u of (9.3.19):

(I − P ) (A− θI) z1 = − (I − P ) r, (9.3.21)

where P = uuT . Note that (I − P ) r = r since u⊥r. Since x − (u+ z1) = z − z1 and
z = x− u, for quadratic convergence, it suffices to show that

∥x− (u+ z1) ∥ = ∥z − z1∥ = O
(
∥z∥2

)
. (9.3.22)

Multiplying (9.3.20) by (I − P ) and subtracting the result from (9.3.21) yields

(I − P ) (A− θI) (z − z1) = (λ− θ) (I − P ) z + (λ− θ) (I − P )u. (9.3.23)

Multiplying (9.3.20) by uT and using r ⊥ u leads to

λ− θ = uT (A− θI) z
uTx

. (9.3.24)

Since uTk x has non-trivial limit, we obtain

∥ (λ− θ) (I − P ) z∥ =
∥∥∥∥uT (A− θI) z

uTx
(I − P ) z

∥∥∥∥ . (9.3.25)

From (9.3.23), Lemma 9.3.1 and (I − P )u = 0, we have

∥z − z1∥ =

∥∥∥∥[(I − P ) (A− θkI) |u⊥
k

]−1
(λ− θ) (I − P ) z

∥∥∥∥
=

∥∥∥∥[(I − P ) (A− θkI) |u⊥
k

]−1 uTk (A− θkI) z
uTk x

(I − P ) z
∥∥∥∥

= O
(
∥z∥2

)
.
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9.3.1 Jacobi Davidson method as on accelerated Newton Scheme

Consider Ax = λx and assume that λ is simple. Choose wTx = 1. Consider nonlinear
equation

F (u) = Au− θ(u)u = 0 with θ (u) =
wTAu

wTu
,

where ∥u∥ = 1 or wTu = 1. Then F : {u|wTu = 1} → w⊥. In particular, r ≡ F (u) =
Au− θ (u)u ⊥ w.

Suppose uk ≈ x and the next Newton approximation uk+1:

uk+1 = uk −

(
∂F

∂u

∣∣∣∣
u=uk

)−1
F (uk)

is given by uk+1 = uk + t, i.e., t satisfies that(
∂F

∂u

∣∣∣∣
u=uk

)
t = F (uk) = −r.

Since 1 = uTk+1w = (uk + t)T w = 1 + tTw, it implies that wT t = 0. By the definition of
F , we have

∂F

∂u
= A− θ (u) I −

−
(
wTAu

)
uwT +

(
wTu

)
uwTA

(wTu)2

= A− θI + wTAu

(wTu)2
uwT − uwTA

wTu
=

(
I − ukw

T

wTuk

)
(A− θkI) .

consequently, the Jacobian of F acts on w⊥ and is given by(
∂F

∂u

∣∣∣∣
u=uk

)
t =

(
I − ukw

T

wTuk

)
(A− θkI) t, t ⊥ w.

Hence the correction equation of Newton method read as

t ⊥ w,

(
I − ukw

T

wTuk

)
(A− θkI) t = −r,

which is the correction equation of Jacobi-Davidson method in (9.3.19) with w = u.

9.3.2 Jacobi-Davidson with harmonic Ritz values

Definition 9.3.1 (Ritz value) If Vk ⊆ Cn, then (θk, uk) is a Ritz pair if

uk ∈ Vk, uk ̸= 0, Auk − θkuk ⊥ Vk. (9.3.26)

Definition 9.3.2 (Harmonic Ritz value) (Inverse of A implicitly) θk ∈ C is a har-
monic Ritz value of A with respect to Wk, if θ

−1
k is a Ritz value of A−1 with respect to

Wk.
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Remark 9.3.4 A is a normal matrix. A−1 is normal.

How to avoid computing A−1 or solving linear system involving A?

Theorem 9.3.3 Let Vk =< v1, v2, . . . , vk >. θk ∈ C is a harmonic Ritz value of A with
respect to Wk = AVk if and only if

Auk − θkuk ⊥ AVk for some nonzero uk ∈ Vk. (9.3.27)

If AVk =Wk =< w1, . . . , wk > with Vk = [v1, · · · , vk], Wk = [w1, · · · , wk] and

Hk =
(
W T

k V
T
k

)−1 (
W T

k AVk
)

(9.3.28)

then (9.3.27) is equivalent to

Hks = θks, uk = Vks for some s ∈ Ck.

The eigenvalues of Hk are the harmonic Ritz values of A.

Proof: By (9.3.26),
(
θ−1k , Auk

)
is a Ritz pair of A−1 with respect to Wk = AVk if and

only if

(A−1 − θ−1k I)(Auk) = −θ−1k (Auk − θkuk)⊥AVk

for some uk ∈ Vk. Note that (9.3.27) is equivalent to

AVks− θkVks⊥Wk for some s ̸= 0,

which is equivalent to

W T
k (AVkS − θkVkS) = 0 ⇔

(
W T

k AVk
)
S = θk

(
W T

k Vk
)
S

or Hks− θks = 0.

Remark 9.3.5 (a) The vector uk in (9.3.27) is called the harmonic Ritz vector associ-
ated with the harmonic Ritz value θk.

(b) If Vk ∈ Rn×n (in general, Vk ∈ Rn×k), then

Hk :=
(
W T

k Vk
)−1 (

W T
k AVk

)
= V −1k W−T

k W T
k AVk.

It implies that H−1k ≈ A−1.

Bi-orthogonalization basis construction:
Suppose that Vk =< v1, · · · , vk > and AVk = Wk =< w1, · · · , wk > with Vk =

[v1, · · · , vk] and Wk = [w1, · · · , wk] in such way that

AVk =Wk

and

Lk = W T
k Vk
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is lower triangular. We say Vk and Wk are bi-orthogonal.
Let

Hk = L−1k

(
W T

k Wk

)
.

Hence, if (θk, s) is an eigenpair of Hk, then (θk, Vks) is a harmonic Ritz pair.
We bi-orthogonalize t with respect to Vk and Wk:

t̃ := t− VkL−1k W T
k t and vk+1 =

t̃

∥t̃∥2
.

Then Vk+1 = [Vk, vk+1] and Wk+1 = [Wk, Avk+1].
Correction equation:{ (

I − ukw
T
k

wT
k uk

)
(A− θkI)

(
I − ukw

T
k

wT
k uk

)
t = −r,

t ⊥ wk = Auk, where Hks = θks, uk = Vks.

Using the assumption t ⊥ wk, the correction equation can be rewritten as

(A− θkI) t = εuk − r,

which is equivalent to

t = ε (A− θkI)−1 uk − (A− θkI)−1 r.

Let M ≈ A − θkI be a preconditioner of A − θkI. Then the approximated solution t̃ of
correction equation can be computed by

t̃ = εM−1uk −M−1r with ε =
wT

kM
−1r

wT
kM

−1uk
.

Algorithm 9.3.2 (JD with harmonic Ritz value and bi-orthogonal)

Start: choose v1 with ∥v1∥2 = 1, compute w1 = Av1, l11 = wT
1 v1, h11 = wT

1 w1,
set l = 1, V1 = [v1], W1 = [w1], L1 = [l11], H1 = [h11],
u = v1, w = w1, θ =

h11

l11
, compute r = w − θu.

Iterate: Until convergence do:
Inner loop: For k = l, . . . ,m− 1,
(i) Solve approximation t ⊥ w,(

I − uwT

wTu

)
(A− θI)

(
I − uwT

wTu

)
t = −r.

(ii) Bi-orthogonalize t against Vk and Wk

t̃ = t− VkL−1k W T
k t, vk+1 = t̃/∥t̃∥2.

(iii) Compute wk+1 = Avk+1, set Wk+1 = [Wk, wk+1] and Vk+1 = [Vk, vk+1].
(iv) Compute Lk+1(k + 1, :) = wT

k+1Vk+1, Hk+1(k + 1, :) = wT
k+1Wk+1.

(v) Compute the smallest eigenpair (θk, s) of Hk+1.
(vi) Compute the harmonic Ritz vector u = Vk+1s/∥Vk+1s∥, w = Au,

and r := Au− θu (= w − θu).
(vii) Test for convergence. Stop if satisfied.
Restart
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9.4 Jacobi-Davidson Type method for Generalized

Eigenproblems

Consider the generalized eigenvalue problem

µAx = λBx (|µ|2 + |λ|2 = 1).

9.4.1 The updating process for approximate eigenvector

Let (θ, u) be a Ritz pair of (A,B). Then

r ≡ Au− θBu ⊥ u.

The goal is to find an update z for u such that

z ⊥ u and A(u+ z) = λB(u+ z). (9.4.29)

By projecting the equation in (9.4.29) onto the space orthogonal to u with the projector
I − uu∗

u∗u
, we obtain

λ =
u∗A(u+ z)

u∗B(u+ z)
, (9.4.30a)

z ⊥ u and (I − uu∗

u∗u
)(A− λB)(I − uu∗

u∗u
)z = −r ≡ −(Au− λBu).(9.4.30b)

In practice, θ = u∗Au
u∗Bu

, z ⊥ u and

(I − uu∗

u∗u
)(A− θB) |u⊥ z = −r ≡ −(Au− θBu).

9.4.2 Other projections for the eigenvector approximations

Assume

r ≡ Au− θBu ⊥ w for some w.

We look for an update z of u which is orthogonal to ũ (ũ ⊥ u), i.e.,

z ⊥ ũ and A(u+ z) = λB(u+ z).

For convenience, ũ = Bu. Similarly, select w̃ ⊥ w and consider

P =
w̃w∗

w∗w̃
and Q =

uũ∗

ũ∗u
.

The projections can be used to decompose the eigenproblem:

(A− λB)x = 0⇐⇒
{
P (A− λB)(Qx+ (I −Q)x) = 0,
(I − P )(A− λB)(Qx+ (I −Q)x) = 0.
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With

α ≡ w∗Au

w∗u
, β =

w∗Bu

w∗u
, a = Au− αu, b = Bu− βu,

and

u′ ≡
(
I − w̃w∗

w∗w̃

)
u.

(9.4.30) is equivalent to

λ =
w∗A(u+ z)

w∗B(u+ z)
,

z ⊥ ũ and (I − w̃w∗

w∗w̃
)(A− λB)ũ⊥z = −(a− λb)− (α− λβ)u′.

In practice, let

θ =
α

β
and r = a− θb = Au− θBu.

Lemma 9.4.1 Let (A − λB)x = 0. Consider w and ũ with ũ∗x ̸= 0 and (Bx)∗w ̸= 0.
Then the map

Fp ≡
(
I − Bxw∗

w∗Bx

)
(A− λB)

(
I − xũ∗

ũ∗x

)
is a bijection from ũ⊥ onto w⊥.

Proof: Suppose y ⊥ ũ and Fpy = 0 =⇒ y = 0.

Theorem 9.4.1 Choose w̃ = Bu. Assume ũ and w converge and ũ∗x and w∗Bx 9
0. Then, if the initial u ≈ x, the sequence of u converges to x quadratically and θ =
w∗Au/w∗Bu −→ λ.

Proof: Suppose (A− λB)x = 0, with x = u+ z for z ⊥ ũ. Then

(A− θB)z = −(A− θB)u+ (λ− θ)Bx = −r + (λ− θ)Bx. (9.4.31)

Consider the exact solution z1⊥ũ of the correction equation:

(I − P )(A− θB) |ũ⊥ z1 = −(I − P )r. (9.4.32)

Since x− (u+ z1) = z − z1 and z = x− u, for quadratic convergence, it suffices to show

∥x− (u+ z1)∥ = ∥z − z1∥ = O(∥z∥2).

Multiplying (9.4.31) by (I − P ) and subtracting the result from (9.4.32) yields

(I − P )(A− θB)(z − z1) = (λ− θ)(I − P )Bz + (λ− θ)(I − P )Bu.
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Multiplying (9.4.31) by w and using r ⊥ w leads to

λ− θ = w∗(A− θB)z

w∗Bx
. (9.4.33)

By assumption and (9.4.33), we obtain

∥(λ− θ)(I − P )Bz∥ =
∥∥∥∥w∗(A− θB)z

w∗Bx
(I − P )Bz

∥∥∥∥ = O(∥z∥2),

provided (I − P )(A − θB)|ũ⊥ to be nonsingular (by Lemma 9.4.1) and (I − P )Bu = 0
(since w̃ = Bu).

In practice, w = w̃ = Bu, ũ = B∗w.

9.4.3 Equivalent formulations for the correction equation

The correction equation

(I − w̃w∗

w∗w̃
)(A− θB)|ũ⊥z1 = −r, z1 ⊥ ũ (9.4.34)

is equivalent to [
A− θB w̃
ũ∗ 0

] [
z
ε

]
=

[
−r
0

]
,

where ε = −w∗(A− θB)z/w∗w̃.

Theorem 9.4.2 The solution (9.4.34) is given by

z = (A− θB)−1(−r + εw̃) = −u+ ε(A− θB)−1w̃ (9.4.35)

with ε = ũ∗u
ũ∗(A− θB)−1w̃

.

Proof: With z in (9.4.35), it holds that ũ ⊥ z, and (A−θB)z = −r+εw̃. Since r ⊥ w ⇒
(9.4.34) holds.
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