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Chapter 1

Introduction

1.1 Mathematical auxiliary, definitions and relations

1.1.1 Vectors and matrices

aip - A1n
AeKan’ where K = R or C = A:[aij]: ) CLijGK,

m1 = Qmnp

e Product of matrices (K™*" x K" — K™*?): C' = AB, where ¢;; = Y ,_; airbi;,
Z:]-a 7m7j: 17 , P-

e Transpose (R™*" — R™™): C' = AT, where ¢;; = a;; € R.
e Conjugate transpose (C™" — C™™): C' = A* or C = A# where ¢;; = a;; € C.
e Differentiation (R™™ — R™"): Let C(t) = (c;;(t)). Then C(t) = [¢;(t)].

o If A,B € K™ satisfy AB = I, then B is the inverse of A and is denoted by
A7t If A1 exists, then A is said to be nonsingular; otherwise, A is singular. A is
nonsingular if and only if det(A) # 0.

o f Ac K™ 2 € K" and y = Aw, then y; = >0 | ajjzj, i =1,--- ,m.
e Outer product of x € K™ and y € K™:

11 0 Tiln
Yy = : : e Kmx",

e Inner product of z and y € K™
(z,y) =aTy =) zy =y zeR
i=1

(z,y) == l’*yzzfiyz’ =yreC

i=1
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e Sherman-Morrison Formula:
Let A € R™™ be nonsingular, u, v € R". If vT A~y # —1, then

(A+u™) ™t =A"1 - A (1 + 0T A ) T AT (1.1.1)

e Sherman-Morrison-Woodbury Formula:
Let A € R™™, be nonsingular U, V € R™*_If (I + VT A~'U) is invertible, then

(A+UvhHt=at - AU+ viatu)ytvia

Proof of (1.1.1):

(A+uD) A — A (1 + o A )T AT
1

— I AT (A ) — AT - A A
v u
1
= 1t [0 AT e AT AT AT =

|
Note that these formulae also hold for the complex case with T" = transpose or conjugate
transpose.

Example 1.1.1

3 -1 111 0
0 1 22 2 0

A=|0 -1 41 1|=B+|-1|[01000].
00 030 0
00 00 3 0

1.1.2 Rank and orthogonality

Let A € R™*™. Then
o R(A) ={y € R™ | y = Ax for some z € R" } C R™ is the range space of A.

o N(A)={z € R" | Az =0 } C R" is the null space of A.

e rank(A) = dim [R(A)] = The number of maximal linearly independent columns of

A.
e rank(A) = rank(AT).
o dim(N(A)) + rank(A) = n.
e If m = n, then A is nonsingular < N (A4) = {0} < rank(A) = n.

e Let {z1,- - ,x,} CR" Then {z1,---,x,} is said to be orthogonal if 7 x; = 0, for
i # j and orthonormal if ! z; = §;;, where §;; = 0if i # j and §;; = 1 if i = j.

o St={yeR™|yTz =0, for x € S} = orthogonal complement of S.
e R" =R(AT) ® N(A), R™ = R(A) ® N(AT).
o R(AT) L N(A), R(A)*+ = N(AT).
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A e R™" AeCmn
Symmetric: AT = A Hermitian: A* = A(A” = A)
skew-symmetric: AT = —A skew-Hermitian: A* = —A

positive definite: 27 Az > 0,2 # 0
non-negative definite: 7 Az > 0

indefinite: (z7 Az)(y? Ay) < 0 for some x,y
orthogonal: ATA =1,

normal: ATA = AAT

positive: a;; >0

non-negative: a;; > 0.

positive definite: z*Ax > 0,2 # 0
non-negative definite: z*Ax > 0
indefinite: (z*Az)(y*Ay) < 0 for some z,y
unitary: A*A =1,

normal: A*A = AA*

Table 1.1: Some definitions for matrices.

1.1.3 Special matrices

Let A € K®*®. Then the matrix A is

e diagonalif a;; =0, for i # j. Denote D = diag(dy,--- ,d,) € D, the set of diagonal

matrices;

o tridiagonal if a;; = 0, )i — j| > 1;

o upper bi-diagonal if a;; = 0,7 > j or j > ¢+ 1;

o (strictly) upper triangular if a;; = 0,9 > j (1 > j);

o upper Hessenberg if a;; = 0,7 > j + 1.

(Note: the lower case is the same as above.)

Sparse matrix: n'*" where r < 1 (usually between 0.2 ~ 0.5). If n = 1000, r = 0.9, then

n'*t" = 501187.

Example 1.1.2 If S is skew-symmetric, then I — S is nonsingular and (I —S)™(I +S)

is orthogonal (Cayley transformation of S).

1.1.4 Eigenvalues and Eigenvectors

Definition 1.1.1 Let A € C**",

Then A € C is called an eigenvalue of A, if there exists

x#0, x € C" with Ax = Az and x is called an eigenvector of A corresponding to .

Notations:

0(A) := Spectrum of A = The set of eigenvalues of A.

p(A) := Radius of A = max{|\|: A € d(A)}.

e \co(A)

& det(A—\I)=0.

e p(A\) = det(A] — A) = The characteristic polynomial of A.
o p(\) =[T_,(A = X\)™*) where \; # A; (for i # j) and >_;_ m()\;) = n.
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e m(\;) = The algebraic multiplicity of \;.

e n()\;) =n —rank(A — \;/) = The geometric multiplicity of A;.

Definition 1.1.2 [f there is some i such that n(\;) < m(\;), then A is called degenerated.

The following statements are equivalent:
(1) There are n linearly independent eigenvectors;
(2) A is diagonalizable, i.e., there is a nonsingular matrix 7" such that T-'AT € D,;
(3) For each A € o(A), it holds that m(\) = n(\).

If A is degenerated, then eigenvectors and principal vectors derive the Jordan form of A.
(See Gantmacher: Matrix Theory I, II)

Theorem 1.1.1 (Schur) (1) Let A € C"". There is a unitary matriz U such that
U*AU(= UYAU) is upper triangular.

(2) Let A € R™™. There is an orthogonal matriz Q such that QTAQ(= Q 1AQ)
1S quasi-upper triangular, i.e., an upper triangular matriz possibly with nonzero
subdiagonal elements in non-consecutive positions.

(3) A is normal if and only if there is a unitary U such that U*AU = D diagonal.
(4) A is Hermitian if and only if A is normal and o(A) C R.

(5) A is symmetric if and only if there is an orthogonal U such that UT AU = D diagonal
and o(A) C R.
1.2 Norms and eigenvalues

Let X be a vector space over K =R or C.

Definition 1.2.1 (Vector norms) Let N be a real-valued function defined on X (N :
X = Ry). Then N is a (vector) norm, if

N1: N(az) =|a|N(x), a €K, forz € X;
N2: N(z+y) < N(x)+ N(y), forz, y € X;
N3: N(x)=0if and only if z = 0.

The usual notation is ||z|| = N(x).
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Example 1.2.1 Let X = C", p > 1. Then ||z|l, = O, |7:|P)Y? is a p-norm. Espe-
crally,

n
lzlh =) sl ( 1-norm),
i=1

]2 = (Z |l2;|*)'?  (2-norm = Euclidean-norm),
=1

|2]| o = max |z;] (co-norm = maximum norm).
1<i<n

Lemma 1.2.1 N(z) is a continuous function in the components xy,--- ,x, of x.

Proof:

IN(z) = N(y)| < N(z-y)< ZI%’ =4I N(e))

< o=yl Y Ney),
j=1
in which e; is the jth column of the identity matrix I,,. [ |

Theorem 1.2.1 (Equivalence of norms) Let N and M be any two norms on C".
Then there are constants cq,co > 0 such that

ciM(x) < N(z) < eoM(x), for all x € C".

Proof: 'Without loss of generality (W.L.O.G.) we can assume that M (z) = ||zl and N
is arbitrary. We claim that

c1l|z]loe < N(x) < ]| 2|00,

equivalently,
1 <N(z)<ep,VzeS={zeC"|z]e =1}

From Lemma 1.2.1, N is continuous on S (closed and bounded). By maximum and
minimum principle, there are ¢q,co > 0 and 21, 29 € S such that

c1 = N(z1) < N(z) < N(z3) = co.
If ¢; =0, then N(z;) =0, and thus, z; = 0. This contradicts that z; € S. [ |
Remark 1.2.1 Theorem 1.2.1 does not hold in infinite dimensional space.

Definition 1.2.2 (Matrix-norms) Let A € C™*". A real-valued function ||| : C™*" —
R, satisfying

Ni: el = |all|All;
Nz A+ Bl <Al +[IB] ;
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N3: ||A|l =0 if and only if A=0;

Ng: || ABI < [|A[l[B] 5
N5: || Az|l, < [JA|lllx]l (matriz and vector norms are compatible for some | - ||,)

is called a matriz norm. If || - || satisfies N1 to N4, then it is called a multiplicative or
algebra norm.

Example 1.2.2 (Frobenius norm) Let || Allp = [3°7,_; |ai;[*]">.

|4Bllr = <Z|Zaz-kbkj|2>%
< Z{Zmzu }{Z be; 1?17 (Cauchy-Schwartz Ineq.)
= ZZM %ZZW :
= “AHF”BHF' (1.2.1)

This implies that N4 holds. Furthermore, by Cauchy-Schwartz inequality we have

lAsls = 21D gl
< (Z(ZW@F)(ZWHZ))

i J J

= [Allrlzlla (1.2.2)

This implies that N5 holds. Also, N1, N2 and N3 hold obviously. (Here, ||I||r = v/n). ®

Example 1.2.3 (Operator norm) Given a vector norm || - ||. An associated (induced)
matrix norm is defined by

A A
|A] = ” ci—— (1.2.3)
o fzll w0 ]
Then N5 holds immediately. On the other hand,
[(AB)z|| = [|A(Bx)[| < [|A]l|| Bz|
< [ AlIBI=] (1.2.4)
for all x # 0. This implies that
IABI| < [[A[[llB]]- (1.2.5)

It holds N4. (Here ||I|| =1). u
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In the following, we represent and verify three useful matrix norms:

| Az]ls -
All; = su = max Qi 1.2.6
1Al P 1§j§n;1| il (1.2.6)
Az ]| -
4 =0 T = 2 2 el (1:2.7)
z#0 o9 ]
[ Azl ,
1Al =S p(A*A) (1.2.8)

Proof of (1.2.6):
Azl = DI agal <0 aslle|
i i
= >zl D il
j i
Let Cy := ), |ax| = max; ), |a;;|. Then ||Az|;y < Cillz|1, thus [|All; < Ci. On the

other hand, ||eg|l; = 1 and ||Aeg|li = > iy |ai] = Ci. u
Proof of (1.2.7):

[Az]leo = mgﬂzazjxﬂ
j
max Y _ |a;zj]
T
m?XZ|aij|||l‘||oo
i
> lag |2l

J
= COxol|®||oo-

IN

IN

This implies that ||Al|s < Co. If A = 0, there is nothing to prove. Assume that A # 0
and the k-th row of A is nonzero. Define z = [z;] € C" by

akj . )
zj = { |ak;] if - ax; #0,

Then ||z||co = 1 and ajz; = |ay;|, for j =1,...,n. It follows that
[Alloo > [[Az]leo = mgxlzaz‘jzﬂ > > agzl = Jag| = Cue.
j j j=1
Thus, HAHOO Z Hl&Xlgign Z?:l |CLZ']" = Coo |
Proof of (1.2.8): Let \y > Ay > -+ > X, > 0 be the eigenvalues of A*A. There
are mutually orthonormal vectors v;, j = 1,...,n such that (A*A)v; = A\ju;. Let o =

>, ajv;. Since ||Az|j3 = (Az, Az) = (v, A*Ax),

|Az||2 = (Zajvj,zajAjvj) = " Njlag* < Ml I3
J J J
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Therefore, || Al|3 < A\;. Equality follows by choosing z = v; and ||Avy]|3 = (vi, A1) = A
So, we have || Al = y/p(A*A). u

Example 1.2.4 (Dual norm) Let 1l> —i—% = 1. Then || - ||; =1 -|lg (p = 00,q =1).
(It concludes from the application of the Holder inequality that |y*z| < ||z||,|lyll4- See
Appendiz later!)

Theorem 1.2.2 Let A € C™™. Then for any operator norm || - ||, it holds
p(A) < [IA]l.
Moreover, for any € > 0, there exists an operator norm || - || such that
I lle < p(A) +e.

Proof: Let |A\| = p(A) = p and z be the associated eigenvector with ||z|| = 1. Then,
p(A) = Al = [[Az]| = [[Az| < [|A][[lz]| = [lA]l

On the other hand, there is a unitary matrix U such that A = U*RU, where R is
upper triangular. Let D; = diag(t,??,...,t"). Compute

[ )\1 t_lT12 t_27”13 cee t_n+17“1n T
)\2 til’l"gg o tin+27“2n
D.RD; " = s
tilrn—l,n
i An

For t > 0 sufficiently large, the sum of all absolute values of the off-diagonal elements of
D;RD; ! is less than . So, it holds || D;RD; |y < p(A) + ¢ for sufficiently large ¢(¢) > 0.
Define || - || for any B by

|B|l. = |D:UBU*D |
= |(UD )" B(UD )|

This implies that
IAll: = ID:RD; || < p(A) +e.

[ |

Remark 1.2.2
|UAV[Fr = |lAllr (by IIUAIIFZ\/IIUa1II%+---+||UanII§), (1.2.9)
[UAV s = [|All2 (by p(A*A) = p(AA")), (1.2.10)

where U and V' are unitary.
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Theorem 1.2.3 (Singular Value Decomposition (SVD)) Let A € C™*™. Then there
exist unitary matrices U = [uy, -+ ,Up) € C™™ and V = [v1, - -+ ,v,] € C"" such that

U*AV = diag(oy,--- ,0,) =2,

where p = min{m,n} and oy > 09 > --- > 0, > 0. (Here, o; denotes the i-th largest
singular value of A).

Proof: There are z € C", y € C™ with ||z||2 = ||yl = 1 such that Az = oy, where
o = [[All2 (|All2 = supjz,—1 [|Az[]2). Let V = [z,V1] € C™", and U = [y, U] € C™*™
be unitary. Then

A

U*AV:{U v }

0 B
. (2)

Since

2
> (0 + whw)?,

2
w

|AL |2 > o +w'w  from ——222 > 5% 4 wrw.

I(2)

But 02 = ||A]|2 = ||A1]|2, it implies w = 0. Hence, the theorem holds by induction.  H
2 2 Y

it follows that

2

2
2

Remark 1.2.3 ||A|2 = /p(A*A) = 01 = The mazimal singular value of A.

Let A = UXV*. Then we have

|ABC||r = [[USV*BC|r = [EV"BC||r
< o BC|[r = [[All2|| BC| -
This implies
IABC||r < [|All2|| Bl|#[|C]2- (1.2.11)

In addition, by (1.2.2) and (1.2.11), we get
IAll2 < 1 Alle < Vnl|All2. (1.2.12)

Theorem 1.2.4 Let A € C"*". The following statements are equivalent:
(1) lim A™=0;
m—0o0

(2) lim A"z =0 for all x;
(3) p(A) < 1.
Proof: (1) = (2): Trivial. (2) = (3): Let A € 0(A), i.e., Ax = Az, x # 0. This implies

Amx = N"x — 0, as A™ — 0. Thus |A| < 1, ie., p(4A) < 1. (3) = (1): There is a norm
| - || with ||A]| < 1 (by Theorem 1.2.2). Therefore, ||A™] < [|A||™" — 0, i.e., A" — 0. WA
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Theorem 1.2.5 [t holds that

p(A) = lim [|A*|[/F
k—o0
where || || is an operator norm.
Proof: Since
p(A)* = p(A%) < A" = p(A) < A,

for k = 1,2,.... If £ > 0, then A = [p(A) + £]7'A has spectral radius < 1 and by
Theorem 1.2.4 we have ||A*|| — 0 as k — oo. There is an N = N(e, A) such that
|A*|| <1 for all k> N. Thus, ||A*|| < [p(A) + €]*, for all k > N or ||A*||'/* < p(A) + ¢
for all k > N. Since p(A) < ||A*||*/*, and k, e are arbitrary, limy_,. ||A*||"/* exists and
equals p(A). u

Theorem 1.2.6 Let A € C™", and p(A) < 1. Then (I — A)~! exists and
I-—A)'=T+A+A ...

Proof: Since p(A) < 1, the eigenvalues of (I — A) are nonzero. Therefore, by Theorem
2.5, (I — A)~! exists and

(T AT +A+ A+ + A" =T — A" 0.

|
Corollary 1.2.1 If ||A|| < 1, then (I — A)™! exists and
(= A4y < =
1—[]A]
Proof: Since p(A) < ||A]| < 1 (by Theorem 1.2.2),
I =) =D A<D IAIF = — AN
=0 i=0
|

Theorem 1.2.7 (Without proof) For A € K"*" the following statements are equivalent:
(1) There is a multiplicative norm p with p(A*) < 1,k =1,2,....

(2) For each multiplicative norm p the power p(A*) are uniformly bounded, i.e., there
exists a M(p) < oo such that p(A¥) < M(p), k=0,1,2,....

(3) p(A) <1 and all eigenvalue X with |\| = 1 are not degenerated. (i.e., m(\) =n(X).)

(See Householder’s book: The theory of matriz, pp.45-47.)
In the following we prove some important inequalities of vector norms and matrix
norms. We let 1/p+1/q = 1.
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(a) It holds that

< Hp < n@ PP (< g). (1.2.13)
Lllq

Proof: Claim ||z||, < ||z|l,, (p < ¢): It holds

a

Izllg = |||zl = lzllp |7 || < Codllll
T, T e, = e
where
Cpq = max |lelly, e=(e1," - 7en)T-
llell,=1

We now show that C,, < 1. From p < ¢, we have

lelg = lel* <D lelP =1 (by [e] < 1).
i=1 i=1

Hence, C,, < 1, thus ||z], < ||zl,-

To prove the second inequality: Let o = ¢/p > 1. Then the Jensen inequality holds
for the convex function ¢(x):

@(/ngdu) S/Q(sDOf)du, n(Q) = 1.

If we take ¢(x) = x%, then we have

[isieae= [ ([ |f|pdx)q/p

with [Q] = 1. Consider the discrete measure Y ; £ =1 and f(i) = |z;]. It follows

that )
St (Snr)
il — 2 il — .
i=1 n i=1 n
Hence, we have
_1 _1
noallzlly = ezl

Thus,
n PP > ||

(b) It holds that

£
EE

D=

1< ne. (1.2.14)

Proof: Let ¢ — oo and lim ||z||, = [|2||o:
q—o0

1
1 - b
2]l = lzi| = (lzx|?) e < <lei\q> = ||z,

i=1
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On the other hand, we have

1
n q
1 1
lzllq = (Z mP) < (nllz]&)s < noflefo
i=1

which implies that lim, . ||z, = ||2]|co-

(c) It holds that

s ol < 141l < 0@~/ o, (12.15)
where A = [ay,- -+, a,] € R™™,

Proof. The first inequality holds obviously. To show the second inequality, for
llyll, = 1 we have

1Ayl < D lyilllaglly < Y lyslmaxagll,
j=1 j=1 !
= [yl max o, < n= 0/ max [lagll, (by (1.2.13)).
(d) Tt holds that
e ag | < [|Ally < 0D ma . (1.2.16)
Z7J Z?]

where A € R™*".
Proof: By (1.2.14) and (1.2.15) immediately.

(e) It holds that
mPPI A < (Al < 27V AL (1.2.17)

Proof: By (1.2.15) and (1.2.13) immediately.
(f) By Hélder inequality, we have (see Appendix later!)
ly ] < [lllpllyllg.
Where%+$:10r
{2yl : lylly = 1} = lelly (1.2.15)

Then it holds that
IAll, = 1A ]l,- (1.2.19)

Proof: By (1.2.18) we have

max [|Az|, = max max |(Az)"y|
[lz]lp=1 zllp=1llyll4=1
— max max [¢7(ATy)| = max ATyl = A7,

lyllg=1[lz[l,=1 lylla=1
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(g) It holds that

nor ([ Allee < fAllp < mr [ Alloo. (1.2.20)
Proof: By (1.2.17) and (1.2.19), we get

1 1 _1
mel|Alle = mr[|AT[L = m' e[| AT ],

m @ VAT, > [|AT]|, = | Al,.

1 1
[All2 < /Al Allg, (5 +o= 1). (1.2.21)

Proof: By (1.2.19) we have

(h) Tt holds that

1A 1Al = 1A 41 Ally = [|IATAll, > [|AT Al

The last inequality holds by the following statement: Let S be a symmetric matrix.
Then ||S||2 < ||S||, for any matrix operator norm || ||. Since |A| < [|S]],

I1S|l2 = \/p(S*S) = \/p(SQ) = /\max Al = [Amax]|-
€o(S)

This implies, ||S]l2 < ||S]|-
(i) For A € R™"™ and ¢ > p > 1, it holds that

n@= P Allg < [|All, < m@PP A, (1.2.22)

Proof: By (1.2.13), we get

1All, = max [[Az], < max m@P/ Az,
Ilp=1 Il <1

— m(q_p)/quAHq.

Appendix: To show Hoélder inequality and (1.2.18)

Taking ¢(x) = €” in Jensen’s inequality we have

exp{/ﬂfdp} < /Qefd,u.

Let Q = finite set = {p1,...,pn}, u({p:}) = 2, f(p;) = x;. Then

1 1
exp{ﬁ(x1+---+$n)} S (et e™).

Taking y; = e, we have

1
(g2 ym)/" < E(yl"f'"'"’_yn)-
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Taking p({p;}) = ¢ >0, >, ¢ = 1 we have

yit eyl < quyn -+ Gutn. (1.2.23)

T

Let oy = z;/||z|lp, Bi = vi/llyllg, where z = [z, , 2], vy = [y, 0", @ =

[ar, -+ ,on]T and B = [B1,- -, Ba]T. By (1.2.23) we have
1 1
a;f < —af + =],
p q

Since |||, =1, ||8]|; = 1, it holds

B 11
Zazﬂiﬁ -+-=1L
i=1 P4
Thus,

|2yl < N,y

To show max{|z”y|; [|z||l, = 1} = |ly|l,. Taking z; = I~ /||y||¥” we have

P |y;| = 1P

= 1.
lyll

]I} =

Note (¢ — 1)p = ¢. Then

n

i=1

N (7 A (1]
Lo = — L — |y,

ylle” )

The following two properties are useful in the following sections.

(i) There exists 2 with ||2]|, = 1 such that ||y||, = 27y. Let z = 2/||y|l,- Then we have
2Ty =1and |z, = m

(ii) From the duality, we have |ly|| = (||y|+)s = maxyy, =1 [y u| = y*2 and ||Z]. = 1.
Let z = 2/||y||. Then we have 2Ty =1 and ||z|, = =

llyll”

1.3 The Sensitivity of Linear System Ax =10

1.3.1 Backward error and Forward error

Let # = F(a). We define backward and forward errors in Figure 1.1. In Figure 1.1,
T+ Az = F(a + Aa) is called a mixed forward-backward error, where |Az| < elz|,
|Aal < nlal.

Definition 1.3.1 (i) An algorithm is backward stable, if for all a, it produces a computed
T with a small backward error, i.e., & = F(a + Aa) with Aa small.

(ii) An algorithm is numerical stable, if it is stable in the mized forward-backward error
sense, i.e., T + Azx = F(a + Aa) with both Aa and Ax small.
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Input Output
a x=F(a)
® >
backward error forward error
a+ra @ > @ i=F(a+Aa)

—_

Figure 1.1: Relationship between backward and forward errors.

(iii) If a method which produces answers with forward errors of similar magnitude to
those produced by a backward stable method, is called a forward stable.

Remark 1.3.1 (i) Backward stable = forward stable, not vice versa!

(ii) Forward error < condition number X backward error

Consider

F"(a + 0Aa)

t—x=F(a+ Aa)— F(a) = F'(a)Aa + 5

(Aa)?, 0 € (0,1).

Then we have

A

() ot

The quantity C'(a) = azljéc(;)l)

then the condition number is defined in a similar way using norms and it measures the
maximum relative change, which is attained for some, but not all Aa.

is called the condition number of F. If x or F' is a vector,

Apriori error estimate !
Pposteriori error estimate !

1.3.2 An SVD Analysis
Let A=Y"" ouv;" = UXVT be a singular value decomposition (SVD) of A. Then

r=A"b=USV") =)

1=1

'LLZ'Tb

V;.
o)

If cos(0) =| u,Tb| /|| b |2 and

(A = cupv, D)y = b+ e(up b)un, o0, >e>0.
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Then we have

£
Iy = [l2= (=) [| 2 |2 cos(6).

Let E = diag{0,---,0,e}. Then it holds
(= EWTy =U"b+e(u,"b)e,.
Therefore,
y—x = V(S —E)'UTb+e(u,"b) (0, — &) v, = VETUTD
= V((E-E)' =2 YU + e(up,"b) (0, — ) oy,
= V(ST'E(E - EY YU b+ e(u,"b) (0, — &) oy,

= Vdiag (0, -, 0, ;) UTh + e(un"b) (0, — ) oy,
on(on —€)
= ;vn(unTb) + z—:(unTb)(an - 5)_1vn
on(on —€)
= by, (—— SUNPSES|
Uy b (Un(Un—€)+€(U e)7)
— —6(1 +0n) L bu,,.
on(0y —€)

From the inequality ||z||2 < ||b||2]|A7"||2 we have

ly—olls | |22 uTb) e
[zl — 1012 o]l on

Theorem 1.3.1 A is nonsingular and || A7'E ||=r < 1. Then A + E is nonsingular
and || (A+ E)~' = ATV E| [ AT PP /(L =7).

Proof:: Since A is nonsingular, A+F = A(I—F), where F = —A7'E. Since || F' ||=7r < 1,
it follows that I — F is nonsingular (by Corollary 1.2.1) and || (I — F)™' ||< t&=. Then

A*l
A+ B = (- P A =) (4t B < ]
and
(A+E)' — A = —A'B(A+ E).
It follows that
AP E
A+ B -t <At ) s m) < ALEL

Lemma 1.3.1 Let

Ax =b,

(A+ AA)y = b+ Ab,
where || AA ||< 0 || Al and || Ab ||< 0||b]|. If dk(A) =r < 1, then A4+AA is nonsingular
and {4 < P where k(A) = [[A[[[|A7Y].

1
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Proof: Since || A7PAA ||< §|A7Y|||All = r < 1, it follows that A + AA is nonsingular.
From the equality (I + A7*AA)y = + A~ Ab follows that

Iyl < [H(T+ AT AA) T (=]l + ol A7 [1o]])
1
< — S| ATH|Ib
< (el + A7 Bl
1 16l
= Nl + 7 J=r)-
1—r 1Al
From |[|b]| =|| Az ||< ||Al|||z]| follows the lemma. n

1.3.3 Normwise Forward Error Bound

Theorem 1.3.2 If the assumption of Lemma 1.5.1 holds, then ll:ﬁ;ﬁ’” < %H(A).
Proof:: Since y — x = A7'Ab — A71A Ay, we have
Iy —a (< oAb + ol AT ANyl

So by Lemma 1.3.1 it holds

[y —= | 161l [yl
—— < k(A + 0r(A)T—
] ( )||A||||5E|| ( )||l’||
IL+r 20
< = .
< or(A)(1+ 1—7’) 1_T/@(A)

1.3.4 Componentwise Forward Error Bound

Theorem 1.3.3 Let Ax = b and (A + AA)y = b+ Ab, where | AA |< 6| A | and
| A |< 0| b]|. If dkoo(A) = r < 1, then (A+ AA) is nonsingular and ngﬂm <2
A7V | Alleo- Here ||| A7V || A ||loo 28 called a Skeel condition number.

Proof:: Since || AA ||oo< 0]|Alloo and || Ab ||oo< 0||b]|oo, the assumptions of Lemma 1.3.1
are satisfied in oco-norm. So, A + AA is nonsingular and % < %7’:
Since y —x = A7TAb — A7*A Ay, we have

[ATH[Ab |+ [ AT [ AA ]y |
OlAT b+ [AT Ay |
SLATH ALz +]y]).

ly — |

IA A CIA

By taking co-norm, we have

_ 147
ly=ole < 611A™ Al (oo +

26 _
= AT Al
.

o)
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1.3.5 Derivation of Condition Number of Ax =b

Let

(A+eF)x(e) =b+ef with z(0) ==.
Then we have #(0) = A™'(f — Fz) and z(¢) = z + £2(0) + o(e?). Therefore,

B2l L Ly p iy + o),

] ]

Define condition number x(A) := ||Al|||A7Y||. Then we have
< K(A)(pa + py) + o(€?),
where p, = ¢|[F||/||All and p, = el f]|/]|0]].

1.3.6 Normwise Backward Error

Theorem 1.3.4 Lety be the computed solution of Ax =b. Then the normwise backward
error bound

n(y) == min {e[(A+ AA)y = b+ Ab, [[AA| <elA]l, [|Ab] < e]bll}

s given by
7]

nNY) = 1
W) = AT 10T

where r = b — Ay is the residual.

(1.3.24)

Proof: The right hand side of (1.3.24) is a upper bound of 7(y). This upper bound is
attained for the perturbation (by construction!)

1A yllrz"
ATy [+ 1ol

Il

AA’4min = T AN
[AI Nyl =+ 1]8]

Abmin = -

where z is the dual vector of y, i.e. 27y =1 and |[z. = 1.
Check:

LAl =T ( I )
Afélmin = = All.
1A Awanll = 1o+ 100 = \ Ao 71 14

or

That is, to prove

o7 = 121

=

Since

1
72" = max || (rz")ul| = [[7]] max [2Tu| = [[7]l]|2]l. = |||l
jull =1 lul=1 [yl

we have done. Similarly, |[Abyi|| = n(y)||0]|- [ |
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1.3.7 Componentwise Backward Error

Theorem 1.3.5 The componentwise backward error bound
w(y) :=min {e[(A+ AA)y =b+ Ab, |AA| <elA|, |Ab <elb]}

s given by

w(y) = max Il

i (Aly[+0)’
where r = b — Ay. (note: £/0=04if£=0;£/0 =00 if £ #£0.)

(1.3.25)

Proof: The right hand side of (1.3.25) is a upper bound for w(y). This bound is at-
tained for the perturbations AA = Dy AD, and Ab = —D1b, where Dy = diag(r;/(Aly| +
b);) and Dy = diag(sign(y;)). u

Remark 1.3.2 Theorems 1.3.4 and 1.3.5 are posterior error estimation approach.

1.3.8 Determinants and Nearness to Singularity

1 -1 —1 11 2n—?
Bn — 1 ’ Bgl _
1 -1 1
0 1 0 1

Then det(B,) = 1, koo(By,) = n2", 030(Bsg) ~ 1075.

107! 0
D, = .
0 1071

Then det(D,) = 107", k,(D,) = 1 and 0,(D,) = 107*.
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Chapter 2

Numerical methods for solving
linear systems

Let A € C™™ be a nonsingular matrix. We want to solve the linear system Ax = b by
(a) Direct methods (finite steps); Iterative methods (convergence). (See Chapter 4)

2.1 Elementary matrices

TiYyr o TiYn
Let X =K" and z,y € X. Then y*xr € K, zy* = : : . The eigenvalues

of zy* are {0,---,0,y*z}, since rank(zy*) = 1 by (zy*)z = (y*2)x and (zy*)z = (y*z)x.

Definition 2.1.1 A matriz of the form
I —oazy” (eeK,z,y e K") (2.1.1)
18 called an elementary matriz.

The eigenvalues of (I — azy*) are {1,1,---,1,1 — ay*x}. Compute

(I —axy*)(I — Pxy") =1 — (a+  — afy z)zy". (2.1.2)
If ay*x — 1 # 0 and letg = ﬁ, then o + 6 — afy*xr = 0. We have
*\ —1 * 1 1 *
(I —axy”)" = (I — Bzy ),E—I—E:yx. (2.1.3)

Example 2.1.1 Let x € K", and z*z = 1. Let H ={z: z*z =0} and
Q=1-2r2" (Q=0Q",Q'=Q).

Then @Q reflects each vector with respect to the hyperplane H. Let y = ax +w, w € H.
Then, we have

Qu=aQr + Quw = —azr +w — 2(z"w)xr = —ax + w.
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Example 2.1.2 Lety = e; = thei-th column of unit matriz andx =1, = [0, -+ ,0,lit14,- -
loi]T. Then,

-1 -
I+ lie] = lij” (2.1.4)
L ln,i 1 J
Since el'l; = 0, we have
(I 4 Liel )™ = (I —lLiel). (2.1.5)

From the equality
([ -+ llef)(f + 1265) =1 + 116? + l2€g + ll(eflg)eg =1 + 116{ + lgeg
follows that

(I+hLel)--(T+Lel) (I +1l,1el ) = T+hel +lel +- 41, e,

1
— 0 . (2.1.6)
lnl ln,n—l 1

Theorem 2.1.1 A lower triangular with “1” on the diagonal can be written as the prod-
uct of n — 1 elementary matrices of the form (2.1.4).

Remark 2.1.1 (I+hLel +...+1, el )7tV =(U—1,1el ) ...(I —lel) which can not
be simplified as in (2.1.6).

2.2 LR-factorization

Definition 2.2.1 Given A € C"*", a lower triangular matrix L and an upper triangu-
lar matriz R. If A = LR, then the product LR is called a LR-factorization (or LR-
decomposition) of A.

Basic problem:
Given b # 0, b € K. Find a vector I; = [0, 31, .- .,l,1]7 and ¢ € K such that

(I —l1el)b = cey.
Solution:
b1 = C,
bi—lilblzo, 122,,71

by =0, it has no solution (since b # 0),
b17é0, thenc:bl, lﬂ:bi/bl,i:l...,n.
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Construction of LR factorization
Let A=A =[a{ | .. | a”]. Apply basu: problem to a\”: If a!9 £ 0, then there
exists Ly = I — lel such that (I — lel)a; © — au e1. Thus

0) (0) (0)

afll a%]?) DEEIEY a%],’:.b)
0 a a
A(l) = LlA(O) = [Llago) ‘ c. ‘ Llaglo)] = . 2,2 2” : (221)
0 aSQ) ol

The i-th step:

A(’) — LlA(Zil) = LiLifl - LlA(O)

0 0
a§1) (1) aé{;
Qg9 Aop
0 :
= e (2.2.2)
. 0 az('fgl,z#l T az('le,n
0o 0 - aff’)iﬂ cee W) |

If ag_l) #£0,fori=1,...,n — 1, then the method is executable and we have that
A Y = L, AQD =R (2.2.3)
is an upper triangular matrix. Thus, A = LR. Explicit representation of L:

Li = I—lel, Ly'=TI+1lel
L = L' LY =T+ lel). .. (T +1,_1e )
= I+hel+...+ 1,1l | (by (2.1.6)).

Theorem 2.2.1 Let A be nonsingular. Then A has an LR-factorization (A=LR) if and
only if k; :== det(A;) # 0, where A; is the leading principal matriz of A, i.e.,

fori=1,....n—1.
Proof:  (Necessity “=" ): Since A = LR, we have

aix ... Qi 11 11 1

;1 ... Qg lil l“ T
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From det(A) # 0 follows that det(L) # 0 and det(R) # 0. Thus, I;; # 0 and r;; # 0, for
j: 1,...,7’L. Hence k’z :lll---lz’irll---rii 7é0

(Sufficiency “«<"): From (2.2.2) we have

A — (L7t LTHAD,

2

Consider the (i + 1)-th leading principle determinant. From (2.2.3) we have

aip ..o Q4441
| @i+l oo Gitlitl
i 17 4,0 0 T
1 0 al? dy %
i (1)
I21 : Qg
(i-1) (i-1)
Ay C(%‘),z‘ﬂ
2
L liviy o e i T]LO @it1i41

Thus, k; = 1- ag?a%) . .agﬁl’iﬂ # 0 which implies aﬁ&LHl # 0. Therefore, the LR-
factorization of A exists. [ |

Theorem 2.2.2 If a nonsingular matrix A has an LR-factorization with A = LR and
ly1 =+ =l,, = 1, then the factorization is unique.

Proof: Let A= LiRy = LyRy. Then Ly,'L; = RyRy' = 1. m

Corollary 2.2.1 If a nonsingular matrix A has an LR-factorization with A = LDR,
where D is diagonal, L and RT are unit lower triangular (with one on the diagonal) if
and only if k; # 0.

Theorem 2.2.3 Let A be a nonsingular matriz. Then there exists a permutation P, such
that PA has an LR-factorization.

(Proof): By construction! Consider (2.2.2): There is a permutation P;, which inter-
changes the i-th row with a row of index large than 4, such that 0 # ag_l)(e PAGDY,
This procedure is executable, for e = 1,...,n — 1. So we have

Ly 1Py y...LiP...[,PLA® =R, (2.2.4)
Let P be a permutation which affects only elements ¢ 4+ 1,--- ;n. It holds
P(I—Le Pt =1—(Pl)el =1 —1lel =L;, (Pt =el)
where L; is lower triangular. Hence we have
PL; = L;P. (2.2.5)
Now write all P; in (2.2.4) to the right as
LyiLno...I4P,y...PLAY = R.
Then we have PA = LR with L' = L, L, »---Ly and P =P, ;--- P\. |
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2.3 Gaussian elimination

2.3.1 Practical implementation

Given a linear system
Ax =1 (2.3.1)

with A nonsingular. We first assume that A has an LR-factorization. i.e., A = LR. Thus
LRz = 0.

We then (i) solve Ly = b; (ii) solve Rz = y. These imply that LRz = Ly = b. From
(2.2.4), we have
Ly 1...LoLi(A|b) = (R| L.

Algorithm 2.3.1 (without permutation)
Fork=1,...,n—1,
if age = 0 then stop (*);
elsewj=ap (j=k+1,...,n);
forio=k+1,... n,
N = i/ gk, Qi =1,
forj=k+1,...,n,
Q5 = Q5 — NWj, bj = bj - nbk
For x: (back substitution!)

xn:bn/ann;
fori=n—-1,n-2...,1,

zi = (bi — D0y @iiTs)/ i
Cost of computation (one multiplication + one addition = one flop):
(i) LR-factorization: n?®/3 —n/3 flops;
(ii) Computation of y: n(n —1)/2 flops;
(iii) Computation of z: n(n + 1)/2 flops.

For A7': 4/3n3 ~ n3/3 + kn? (k = n linear systems).

Pivoting: (a) Partial pivoting; (b) Complete pivoting.
From (2.2.2), we have

- (0) 0) 7

all PR .. “ e ) aln
0 :
k—2 k—2
Ak=1) _ : al(c—l,l)c—l S agﬂ—l,T)L
0 ag o g
. 0 ... 0 agz_l) e ali Y
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For (a):

Find a p € {k,...,n} such that
lapk| = maxg<i<y |aix] (1 = p) (2.3.2)
swap ayj, by and a,;, b, respectively, (j =1,...,n).

Replacing (%) in Algorithm 2.3.1 by (2.3.2), we have a new factorization of A with
partial pivoting, i.e., PA = LR (by Theorem 2.2.1) and |l;;| <1 for 4,5 =1,...,n. For
solving linear system Az = b, we use

PAz = Pb= L(Rz) = P'b=b.
It needs extra n(n — 1)/2 comparisons.
For (b):
Find p,q € {k,...,n} such that
|apg| < (x| |ai;l, (ri:==p,cx:=q)
swap agj, by and a,;, b, respectively, (j =k, ..., n),
swap a; and a;,(i =1,...,n).

(2.3.3)

Replacing () in Algorithm 2.3.1 by (2.3.3), we also have a new factorization of A with
complete pivoting, i.e., PAIl = LR (by Theorem 2.2.1) and |l;;| <1, for 4,5 =1,...,n.
For solving linear system Ax = b, we use
PAI(II"z) = Pb= LR = b= x = I1%.

It needs n®/3 comparisons.
1074 1

1 1
Then £(A) = ||Allso|| A7 ||oo & 4. A is well-conditioned.
e Without pivoting:

Example 2.3.1 Let A = be in three decimal-digit floating point arithmetic.

L = _ fl(1/1104) (1] ] . fl(1/107%) = 10%,
R = 100_4 A _1104 ) } . flI(1—10%-1) = —10%
L = :12)4 (1]] {100_4 —io‘*] B {101_4 H 7 {101_4 ” =4
Here asy entirely “lost” from computation. It is numerically unstable. Let Az = [ ; }

1 ; solves y; = 1 and yp = fI(2—10*-1) = —10*, Ri =y
solves Ty = fI((—=10)/(—=10%)) =1, #; = fI((1 — 1)/10~*) = 0. We have an erroneous
solution with cond(L), cond(R) ~ 10%.

e Partial pivoting:

Thenx%[l}ButLy:

L= [fz(101—4/1) (1]}:{101—4 (1)}
w- (b3 1]

L and R are both well-conditioned.
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2.3.2 LDR- and LL'-factorizations
Let A= LDR as in Corollary 2.2.1.

Algorithm 2.3.2 (Crout’s factorization or compact method)
Fork=1,...,n,
forp=1,2,... . k—1,
Tp = dplpr,
Wp = Qppdyp,
di == Qe — Y n_) Ayl
if di, = 0, then stop; else
fori=k+1,...n,
i = (A — Yoy Qiptp) /i,

Qi = (aki - Z];;i wpapi)/dk‘

Cost: n?/3 flops.

e With partial pivoting: see Wilkinson EVP pp.225-.

e Advantage: One can use double precision for inner product.

Theorem 2.3.1 If A is nonsingular, real and symmetric, then A has a unique LDLT-
factorization, where D is diagonal and L is a unit lower triangular matriz (with one on
the diagonal).

Proof: A= LDR= AT = RTDL”. 1t implies L = R”. [ |

Theorem 2.3.2 If A is symmetric and positive definite, then there exists a lower trian-
gular G € R™" with positive diagonal elements such that A = GGT.

Proof: A is symmetric positive definite < 27 Az > 0, for all nonzero vector x € R™*"
& k; >0, fori=1,--- ,n, < all eigenvalues of A are positive.

From Corollary 2.2.1 and Theorem 2.3.1 we have A = LDL”. From L~*AL™" = D
follows that dy = (e/L"Y)A(L Te) > 0. Thus, G = Ldiag{d\*,--- ,d\/*} is real, and
then A = GGT. [ |

Algorithm 2.3.3 (Cholesky factorization) Let A be symmetric positive definite. To
find a lower triangular matriz G such that A = GGT.
Fork=1,2,... n,
ark = (aw, — Yooy af,)V?;
fori=k+1,... n,
ik = (i — Yont Qipliny)/ Q.

Cost: n3/6 flops.

Remark 2.3.1 For solving symmetric, indefinite systems: See Golub/ Van Loan Matrix
Computation pp. 159-168. PAPT = LDLT, D is 1 x 1 or 2 x 2 block-diagonal matriz,
P is a permutation and L is lower triangular with one on the diagonal.
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2.3.3 Error estimation for linear systems

Consider the linear system

Az = b, (2.3.4)

and the perturbed linear system
(A4 §A)(x + dx) = b+ ob, (2.3.5)
where A and b are errors of measure or round-off in factorization.

Definition 2.3.1 Let| || be an operator norm and A be nonsingular. Then k = k(A) =
IAIINIA™Y| s a condition number of A corresponding to || ||.

Theorem 2.3.3 (Forward error bound) Letx be the solution of the (2.3.4) and x+dx
be the solution of the perturbed linear system (2.3.5). If ||0A||||A7Y| < 1, then

o] K <||5A|| ||5b||)
< + . (2.3.6)
el = 1= ol \ Al el
Proof:  From (2.3.5) we have
(A+0A)dx + Ax + 6Ax = b+ db.
Thus,
bx = —(A+6A)[(0A)x — &b). (2.3.7)
Here, Corollary 2.7 implies that (A + §A)~! exists. Now,
1
I(A+0A) 7 = [[(1 + A7 A) AT < A7 :
1 —[[A=H[[|oAl
On the other hand, b = Az implies [|b]| < ||A]l||z]]. So,
L _ 4]
< 120 (2.3.8)
[l = [l

From (2.3.7) follows that ||6z| < %UMAHWH + ||6b])). By using (2.3.8), the

inequality (2.3.6) is proved. u

Remark 2.3.2 If x(A) is large, then A (for the linear system Ax = b) is called ill-
conditioned, else well-conditioned.

2.3.4 Error analysis for Gaussian algorithm

A computer in characterized by four integers: (a) the machine base ; (b) the precision
t; (c) the underflow limit L; (d) the overflow limit U. Define the set of floating point
numbers.

F={f=20didy-dyx|0<d; < B,di #0,L < e < U}U{0}. (2.3.9)
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Let G ={z € R |m < |z] < M} U{0}, where m = 57! and M = gY(1 — 37%) are the
minimal and maximal numbers of F'\ {0} in absolute value, respectively. We define an
operator fl: G — F by

fl(x) = the nearest ¢ € F to z by rounding arithmetic.
One can show that fl satisfies
fl(z)=x(1+¢), || <eps, (2.3.10)
where eps = $8'7". (If 8 = 2, then eps = 27"). It follows that
fllaob) = (aob)(1+¢)

or

fllaob) = (aob)/(1+¢),

where |e| < eps and o =+, —, X, /.

Algorithm 2.3.4 Given z,y € R™. The following algorithm computes x7y and stores
the result in s.
s=0,
fork=1,...,n,
S =S+ TrYk.

Theorem 2.3.4 Ifn2~t < 0.01, then
FIO i) =Y wpye[L + 1.0L(n + 2 — k)6,27"], |64 < 1
k=1 k=1

Proof: Let s, = fl(3_1_, Txyx) be the partial sum in Algorithm 2.3.4. Then
s1=x1y1(1 4 67)
with ;| < eps and for p =2,...,n,
sp = fllsp—1 + flzpyp)] = [sp-1 + 2pyp(1 +6,)](1 + &)
with |0,], |€,| < eps. Therefore

FaTy) =50 =) a1+ %),

k=1

where (1 + ;) = (14 0) [[}_,(1 +¢;), and &; = 0. Thus,

O wye) =Y wyil[l+ 1.01(n + 2 — k)6,277). (2.3.11)
k=1

k=1

The result follows immediately from the following useful Lemma. [ |
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Lemma 2.3.5 If (1 +«a) =[[,_,(1 + ax), where |agx| < 27" and n27" < 0.01, then

[+ ) =1+ 1.010627" with 6] < 1.
k=1

Proof: From assumption it is easily seen that
Q=2 <J[A+an) <(@+27" (2.3.12)
k=1

Expanding the Taylor expression of (1 —z)" as —1 <z < 1, we get

n(n —1)

(1—2)"=1—nx+ 5

(1—0z)" %2> > 1 —na.
Hence

(1—27H">1-n2™". (2.3.13)
Now, we estimate the upper bound of (1 + 27%)™:

2 .773 2

T R § R
6 = Xz ol 3‘ = x 2.17 3 A1 .
If 0 <z <0.01, then
1
l+z<e"<1l4+z+ 0.01x§e” <1+1.01z (2.3.14)

(Here, we use the fact e®%' < 2 to the last inequality.) Let z = 2. Then the left
inequality of (2.3.14) implies
(1+27)<e? ™ (2.3.15)

Let x = 27'n. Then the second inequality of (2.3.14) implies
"< 14+1.01n27" (2.3.16)
From (2.3.15) and (2.3.16) we have
(1+279)" <14 101027

u

Let the exact LR-factorization of A be L and R (A = LR) and let L, R be the

L R-factorization of A by using Gaussian Algorithm (without pivoting). There are two
possibilities:

(i) Forward error analysis: Estimate |L — L| and |R — R)|.

(ii) Backward error analysis: Let LR be the exact LR-factorization of a perturbed
matrix A = A+ F. Then F will be estimated, i.e., |F| <7.
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2.3.5 Apriori error estimate for backward error bound of LR-
factorization

From (2.2.2) we have
ABFD — L A®)

for k = 1,2,...,n — 1 (AY = A). Denote the entries of A% by ag-c) and let [ =
fl(agllj)/a,(i)), i > k+ 1. From (2.2.2) we know that

0; fori>k+1,7=F%
a¥ ) = fi(aly — fillwa)); fori>k+1, j>k+1 (2.3.17)
a;:’; otherwise.

ij
From (2.3.10) we have [, = (agz)/agz))(l + 0ix) with |d;x] < 27%. Then
ayy) — lgayy) +alsy, =0, fori>k+1. (2.3.18)
Let ag,{:)éik = ag,’z). From (2.3.10) we also have
ay ™ = [l - flaa) (2:3.19)
= (0 = (il (1+67)))/ (1 + )
with |05, |5;j| < 27t Then

aii ™ = al — ) — lal) 5y + ali Ve, ford,j >k + 1. (2.3.20)

Let eg-f) = —llkak )5w + a(k+1 5’-]- which is the computational error of aﬁ?) in A®tD From
(2.3.17), (2.3.18) and (2. 3 20) we obtain
(k . .
i) (2 — Lk akk)—f—s(;C fori>k+1,7=%
ag ™ = ) lgal) 1 els fori>k4+1,j>k+1 (2.3.21)
(k) + Z(f), otherwise,
where
a?s,;; fori>k-+1,j=Fk,
ey = lzka,i’;)éij —al™Ves fori> k41,5 > k+1 (2.3.22)
0; otherwise.

Let E®) be the error matrix with entries 5%-”. Then (2.3.21) can be written as

ARHD) — g0 _ pp AR 4 k) (2.3.23)
where
p— 0 |
0
M, — (2.3.24)
Lotk
| ln,k 0 .
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For k=1,2...,n — 1, we add the n — 1 equations in (2.3.23) together and get

M A 4+ Mo A® o M, APTD A
AV L pO 4 g1

From (2.3.17) we know that the k-th row of A% is equal to the k-th row of A*+D ... A
respectively and from (2.3.24) we also have

M, A® = M, A™ = M, R.

Thus, 3
(My+My+ -+ M, +1)R=AY + EW ... 4 gD,
Then
LR=A+E, (2.3.25)
where
1
- [ 1 O
L=1" _ and E = EO ... 4 g1, (2.3.26)
b oo lyper 1

Now we assume that the partial pivotings in Gaussian Elimination are already ar-
ranged such that pivot element agz) has the maximal absolute value. So, we have |l;;| < 1.
Let

k
p = max|a,|/[| Al (2.3.27)
Then
k
] < pll Al (2.3.28)

From (2.3.22) and (2.3.28) follows that

27t fori>k+1,5=k,
e < pllAflwe § 204 fori>k+1, 5> k+1, (2.3.29)
0;  otherwise.

Therefore,
0/0 0 --- 0
® LolofT 22
[EW < pllAllc27"- | L. - (2.3.30)
0[1 2 -+ 2
From (2.3.26) we get
(000 - 0 0 ]
122 2 2
134 - 4 4
Bl <pllAllec-27"| . .. . . (2.3.31)
1 3 5 2n—4 2n—4
_1 3 5 2n — 3 2n—2_

Hence we have the following theorem.
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Theorem 2.3.6 The LR-factorization L and R of A using Gaussian Elimination with
partial pivoting satisfies

LR=A+E,

where

1Bl < npl|Afloc27 (2.3.32)

Proof:

1Elloo < pll A2 (D (25 — 1) = 1) < n’p|| Allc27".
j=1
. ~ |
Now we shall solve the linear system Ax = b by using the factorization L and R, i.e.,
Ly =0band Rxr =y.
e For Ly = b: From Algorithm 2.3.1 we have

yi = fl(bi/ln),

v = I (—luyl — ligya — l —lii1Yio1 + b,-) | (2.3.33)
fori=2,3,...,n. From (2.3.10) we have
(y1 = b/l (1 + 611), with |6y <277
= JUH R e e (2.3.34)
| it i 5, |5 <2
Applying Theorem 2.3.4 we get
JU=liayr — lisya — - — Liic1yic1) = =l (L + 0i)yn — -+ — Liima (L4 6iim1) Y,
where
6] < (i—1)1.01-27% fori=2,3,--- ,n,
65 < (i+1—7)L01-27% for { 22 ?:’,) o (2.3.35)

So, (2.3.34) can be written as

L (14 011)y1 = b,
Ln(T4+0a)yr + -+ L (L6 1) v + Li(1+ 6) (14 05)ys = by, (2.3.36)
fori=2,3,---,n

or

(L+6L)y =b. (2.3.37)
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From (2.3.35) (2.3.36) and (2.3.37) follow that

[ |l
|1 2|l2 |
6L < 1.01-27 2l 2l 2l
- 3‘[41’ 3“42‘ 2”43‘
L (n= Dl (n=Dllua| (n=2)[ls| -+ 2[ln-a] 2[lnnl |
This implies,
1 1
6L < fﬁ@ét—l.:L01-2-¢rnax\hﬂ < fiﬁét—l-:L01-2—#
[2¥)

(2.3.38)

(2.3.39)

Theorem 2.3.7 For lower triangular linear system Ly = b, if y is the exact solution of

(L+0L)y =b, then L satisfies (2.3.38) and (2.3.39).

Applying Theorem 2.3.7 to the linear system Ly = b and Rz = y, respectively, the

solution z satisfies ~ L .
(L4+ L) (R+0R)x =0

or

(LR + (3L)R+ L(6R) + (OL)(R))z = b.
Since LR = A + E, substituting this equation into (2.3.40) we get
[A+ E+ (6L)R + L(OR) + (6L)(6R)]z = b.
The entries of L and R satisfy
1] < 1, and [73;] < pl|Al|oo-

Therefore, we get
[L]leo <,

1Rlloe < npl|Alloc

I6L ] < 101 - 27,

| I0R]o < M2H1.01p27.

In practical implementation we usually have n?2~t << 1. So it holds
I6L{loo |0 Rlloe < npl|All 27"

Let

6A=E+ (SL)R+ L(OR) + (6L)(0R).
Then, (2.3.32) and (2.3.42) we get

[10.A|oo 1Elloc + 0L ool Blloo + I Lllso 0 Rllc + 1L oo |6 Rlloc

<
< 1.01(n* 4 3n?)p||A]| 27"

(2.3.40)

(2.3.41)

(2.3.42)

(2.3.43)

(2.3.44)
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Theorem 2.3.8 For a linear system Ax = b the solution x computed by Gaussian Elim-
ination with partial pivoting is the exact solution of the equation (A + 0A)x =b and 0A
satisfies (2.3.43) and (2.5.44).

Remark 2.3.3 The quantity p defined by (2.3.27) is called a growth factor. The growth
factor measures how large the numbers become during the process of elimination. In
practice, p is usually of order 10 for partial pivot selection. But it can be as large as
p=2""1 when

1 o --- 0 1

-1 1 0 0 1

A — —1 1
: : . 0 1

-1 -1 -+ -1 1 1

-1 -1 -+ o =1 1]

Better estimates hold for special types of matrices. For example in the case of upper
Hessenberg matrices, that is, matrices of the form

X X
A= |~
0 X X

the bound p < (n—1) can be shown. (Hessenberg matrices arise in eigenvalus problems.)
For tridiagonal matrices

(651 52 0
Yoo
A =
| 0 Yo Q|

it can even be shown that p < 2 holds for partial pivot selection. Hence, Gaussian
elimination is quite numerically stable in this case.
For complete pivot selection, Wilkinson (1965) has shown that

| < (k) ma o
with the function ) L L
f(k) == k2(2'3245 ... k=12,
This function grows relatively slowly with k:

k |10 20 50 100
f(k) |19 67 530 3300
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Even this estimate is too pessimistic in practice. Up until now, no matrix has been found
which fails to satisfy

|az('?)| < (k+1)max|a;| k=1,2,...,n—1,
7,7

when complete pivot selection is used. This indicates that Gaussian elimination with
complete pivot selection is usually a stable process. Despite this, partial pivot selection
is preferred in practice, for the most part, because:

i) Complete pivot selection is more costly than partial pivot selection. (To compute
y
AW the maximum from among (n — i + 1) elements must be determined instead
of n —i+ 1 elements as in partial pivot selection.)

(ii) Special structures in a matrix, i.e. the band structure of a tridiagonal matrix, are
destroyed in complete pivot selection.

2.3.6 Improving and Estimating Accuracy

e Iterarive Improvement:

Suppose that the linear system Ax = b has been solved via the LR-factorization
PA = LR. Now we want to improve the accuracy of the computed solution x. We
compute

r = b— Az,
Ly = Pr, Rz=y, (2.3.45)
Tpnew = X+ 2.

Then in exact arithmatic we have
AZpew = Az +2)=(b—r)+ Az =b.

Unfortunately, » = fI(b — Ax) renders an x,,, that is no more accurate than z. It is
necessary to compute the residual b — Az with extended precision floating arithmetic.

Algorithm 2.3.5
Compute PA = LR  (t-digit)
Repeat: v :=b— Az (2t-digit)
Solve Ly = Pr fory  (t-digit)
Solve Rz =y for z  (t-digit)
Update x =z + =z (t-digit)

This is referred to as an iterative improvement. From (2.3.45) we have
r, = bz — Q1T — AL — =+ — AinTy. (2346)

Now, r; can be roughly estimated by 27" max; |a;;| |z;|. That is

Il ~ 27 | Allf|]I (2.3.47)
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Let e =2 — A71'b = A7Y(Az — b) = —A~'r. Then we have

lell < 1A7H[Ir- (2.3.48)
From (2.3.47) follows that
lell = |A7H] - 27| A []]| = 2~ *cond(A)]|z]|.

Let
cond(A) =27, 0 < p <t, (pis integer). (2.3.49)

Then we have
lell/||z]| = 2~ 4P, (2.3.50)

From (2.3.50) we know that x has ¢ = t — p correct significant digits. Since r is computed
by double precision, so we can assume that it has at least ¢ correct significant digits.
Therefore for solving Az = r according to (2.3.50) the solution z (comparing with —e =
A~r) has ¢-digits accuracy so that z,., = * + z has usually 2¢-digits accuracy. From
above discussion, the accuracy of x,., is improved about ¢-digits after one iteration.
Hence we stop the iteration, when the number of the iterates k (say!) satifies kg > t.
From above we have

Izl1/z]l = llell /=] ~ 27 = 27"2". (2.3.51)

From (2.3.49) and (2.3.51) we have
cond(A) = 2" (|lz[l/[lz)-

By (2.3.51) we get
]l t
q= logQ(M) and k = —
Ing(HTH)
In the following we shall give a further discussion of convergence of the iterative improve-
ment. From Theorem 2.3.8 we know that z in Algorithm 5.5 is computed by (A+0A)z = r.
That is

Al+ F)z=r, (2.3.52)
where F = A71§A.

Theorem 2.3.9 Let the sequence of vectors {x,} be the sequence of improved solutions
in Algorithm 5.5 for solving Ax = b and x* = A™'b be the exact solution. Assume that
Fy in (2.3.52) satisfies ||Fy|| < o < 1/2 for all k. Then {zy} converges to z*, i.e.,
lim, o0 ||z — 2*|| = 0.

Proof: From (2.3.52) and r = b — Az, we have
Since A is nonsingular, multiplying both sides of (2.3.53) by A~! we get
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From xy1 = % + 2 we have (I + Fy)(zpy1 — xp) = 2 — 2y, le.,
(I + Fy)xppq = Froy + 2.
Subtracting both sides of (2.3.54) from (I + F})z* we get
(I + Fy)(xps1 — x%) = Fi(z), — x7).
Applying Corollary 1.2.1 we have
Tpy1 — 2° = ([ + F) ' Fp(ay — 2%).
Hence,

|z — "]
L—[|F] “1-0

|
[ [ — 2.

Let 7 =0/(1 — o). Then
lo — 27| < 77 [l — 27l

But 0 < 1/2 follows 7 < 1. This implies convergence of Algorithm 2.3.5.

Corollary 2.3.1 If
1.01(n* + 3n?)p2 || Al |A7Y < 1/2,

then Algorithm 2.3.5 converges.

Proof:  From (2.3.52) and (2.3.44) follows that

| Fy]l < 1.01(n® + 3n*)p2 ‘cond(A) < 1/2.

2.4 Special Linear Systems

2.4.1 Toeplitz Systems

Definition 2.4.1 (i) T € R"*" is called a Toeplitz matriz if there exists r_p 1, - - -

such that a;; = r;j_; for alli, j. e.g.,

To 1 e T3
r-1 To o T
T= , (n=4).

r—o T_1 To T
r3 r—2 T-1 To

(2.3.54)
|
|

» 0, y 'n—1

(ii) B € R™" is called a Persymmetric matriz if it is symmetric about northest-southwest

diagonal, i.e., bjj = by_ji1n—iy1 for all i, j. That is,

B = EBTE, where E = [e,, - -e1].
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Given scalars r1,--- ,7,_1 such that the matrices
1 T T Tk—1
T, — r1 1
Phq e e 1
are all positive definite, for £k = 1,...,n. Three algorithms will be described:

(a) Durbin’s Algorithm for the Yule-Walker problem

Ty =—(r,....,m)".

(b) Levinson’s Algorithm for the general right hand side T,,x = b.
(c) Trench’s Algorithm for computing B = T, 1.

e To (a): Let Ej, = [e,(f), . ,egk)]. Suppose the k-th order Yule-Walker system

Ty = —(ri,...,r) 0 = —rT

has been solved. Consider the (k + 1)-st order system

o =[]

can be solved in O(k) flops. Observe that
z=T,; Y (~r — aByr) =y — T, 'Eyr (2.4.55)

and
a=—rpi — 1L Epz. (2.4.56)
Since T}, ' is persymmetric, T), ' Ey = E, T}, ' and z = y+aEyy. Substituting into (2.4.56)
we get
o= —rpp — 1L By + aBry) = —(ri + 7 Eyy) /(1 4+ 17y).

Here (1 + r7y) is positive, because T}, is positive definite and

I Ey'"[ To Ew][I Ew] [T, 0
0 1 rTE, 1 0 1 | | 0 1427y |-
Algorithm 2.4.1 (Durbin Algorithm, 1960) Let Tiy™ = —r®) = —(ry, ... )7,
Fork=1,....n
y(l) = T,
forkzl,...,n—l,
ar, = —(Trp +T( TEky N/ Br,

y(k+1) _ zk)
Q. ’
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This algorithm requires %nQ flops to generate y = y™.
Further reduction:

k—1 k—1
= 14 [pEDT 0] y* Y + ap By

Q1
14 T(k—l)Ty(k—l) 4 ak_1<r(k—1)TEk_ly(k—l) )
= Bp-1+ 1 (—Bro10p-1) = (1 — 041%—1)@%4-

e To (b):
Thr =b= (b, -+ ,bp)", for 1 <k <nm. (2.4.57)

[Tngk bt ] {H { b,il ] , (2.4.58)

where 7 = (11, , )T, Since v = T, ' (b — pEyr) = x + pEyy, it follows that

Want to solve

o= by —r By =bp — 1 Eyr — 'y
= (bpy1 — rTEkm)/(l + rTy).

We can effect the transition form (2.4.57) to (2.4.58) in O(k) flops. We can solve the
system T,z = b by solving

Trpx® = b®) = (b, ... )T

and
Toy® = —r®) = —(ry,...,m)".

It needs 2n? flops. See Algorithm Levinson (1947) in Matrix Computations, pp.128-129

for details.
71— A Er]! _| B v
n T’TE 1 I/T v 9

e To (c):
where A=T, |,E=F, yand r = (ry,...,r,_1)". From the equation
A Er| |v] |0
TE1 | |y | |1

Av = —yEr = —yE(r,...,rp_1)  and y =1 —r"Ev.

follows that

If y is the solution of (n — 1)-st Yule-Walker system Ay = —r, then
y=1/(14+7r"y) and v = vEy.

Thus the last row and column of T, are readily obtained. Since AB + ErvT = 1,,_, we

have

VVT

B=A"—(A"'Erpt =A"1 ¢ o
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Since A = T,,_; is nonsingular and Toeplitz, its inverse is persymmetric. Thus

ViVv; Vil

by = (A ™D+ = (A i +

Un—iVn—j ViV
+

g v

= bnfj,nfi -

= bn—j,n—i - ;(Viyj - Vn—iVn—j)-

It needs ;an flops. See Algorithm Trench (1964) in Matrix Computations, pp.132 for
details.

2.4.2 Banded Systems

Definition 2.4.2 Let A be a n X n matriz. A is called a (p,q)-banded matriz, if a;; =0
whenever i — j >p or j —1 > q. A has the form

[ < ... X O
A= X X T,
e X x| -
»

where p and q are the lower and upper band widthes, respectively.

Example 2.4.1 (1,1): tridiagonal matriz; (1,n—1): upper Hessenberg matriz; (n—1,1):
lower Hessenberg matriz.

Theorem 2.4.1 Let A be a (p,q)-banded matriz. Suppose A has a LR-factorization
(A= LR). Then L = (p,0) and R = (0, q)-banded matriz, respectively. u

Algorithm 2.4.2 See Algorithm 4.3.1 in Matriz Computations, pp.150.

Theorem 2.4.2 Let A be a (p, q)-banded nonsingular matriz. If Gaussian Elimination
with partial pivoting is used to compute Gaussian transformations L; = I — lje?, for
7=1,...,n—1, and permutations Py, ..., P,_1 such that

Ln—lpn—l e LlplA - R
is upper triangular, then R is a (0,p + q)-banded matriz and l;; = 0 whenever i < j or

i > j+p. (Since the j-th column of L is a permutation of the Gaussian vector l;, it
follows that L has at most p + 1 nonzero elements per column.)
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2.4.3 Symmetric Indefinite Systems

Consider the linear system Ax = b, where A € R"*" is symmetric but indefinite. There
are a method using n3/6 flops due to Aasen (1971) that computes the factorization
PAPT = LTL", where L = [l;;] is unit lower triangular, P is a permutation chosen such
that | [;; |[< 1, and T is tridiagonal.

Rather than the above factorization PAPT = LTLT we have the calculation of

PAPT = LDILT,

where D is block diagonal with 1 by 1 and 2 by 2 blocks on diagonal, L = [/;;] is unit
lower triangular, and P is a permutation chosen such that | {;; |[< 1.

Bunch and Parlett (1971) has proposed a pivot strategy to do this, n?/6 flops are
required. Unfortunately the overall process requires n®/12 ~ n3/6 comparisons. A bet-
ter method described by Bunch and Kaufmann (1977) requires n®/6 flops and O(n?)
comparisons.

A detailed discussion of this subsection see p.159-168 in Matrix Computations.



Chapter 3

Orthogonalization and least squares
methods

3.1 QR-factorization (QR-decomposition)

3.1.1 Householder transformation

Definition 3.1.1 A complex m x n-matriz R = [r;;] is called an upper (lower) triangular
matriz, if ri; =0 fori>j (i <j).

Example 3.1.1

rll . e Tln Tll .. .« .. .. ’r‘ln
(1)m=n : R= .t l, (2)m<n : R=
0 T'nn 0 T'mm T'mn
11 Tin
(8)m>n : R= :
0 Tnn
0

Definition 3.1.2 Given A € C™*", () € C™™ wunitary and R € C™*" upper triangular
as in Fxamples such that A = QR. Then the product is called a QQR-factorization of A.

Basic problem:
Given b #£ 0,b € C". Find a vector w € C" with w*w = 1 and ¢ € C such that

(I —2ww*)b = ce;. (3.1.1)
Solution (Householder transformation):

(1) b= 0: w arbitrary (in general w = 0) and ¢ = 0.

(2) b#0:
— Dbl i by #£ 0
=4 " Tgli?hz ’ 3.1.2
{ 1bll2, if by =0, 12
1 T 1
w =gz (b1 —¢,by, ..., b)" = 5ru 3.1.3
{ with 2k = /2[|b[l2([[b]]2 + [b1]) 313
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Theorem 3.1.1 Any complex m X n matriz A can be factorized by the product A = QR,
where Q) 1s m X m-unitary. R is m X n upper triangular.

Proof: Let A® = A = [a§0)|aéo)| e |a7(10)]. Find Q1 = (I —2wyw}) such that Q1a§°) = ce;.
Then

o | x| | ®
0
A(l) — QIA(O) — [Qlagﬁ)’ Qlag))’ . 7Q1a£10)] — : a(l) a(l) . (314)
I S P
0
1|0
Find @y = such that (I — 2wyw})al” = cze;. Then
01— wow;
e .
0 Co
A® = QAW =10 0
Do aéz) o d?

We continue this process. Then after I = min(m,n) steps A is an upper triangular
matrix satisfying

AYD — p— Qi_1--- Q1 A.
Then A = QR, where Q = Q7 --- Q] ;. [ |

Remark 3.1.1 We usually call the method in Theorem 3.1.1 as Householder method.

Theorem 3.1.2 Let A be a nonsingular n x n matriz. Then the QR- factorization is
essentially unique. That is, if A = Q1 Ry = Q2 Ry, then there is a unitary diagonal matrix
D = diag(d;) with |d;| =1 such that Q1 = Q2D and DRy = Rs.

Proof: Let A = Q. R, = Q3R,. Then Q3Q, = RyR;* = D must be a diagonal unitary

matrix. [ ]

Remark 3.1.2 The QR-factorization is unique, if it is required that the diagonal ele-
ments of R are positive.

Corollary 3.1.1 A is an arbitrary m x n-matriz. The following factorizations exist:
(i) A= LQ, where Q is n X n unitary and L is m x n lower triangular.
(1i)) A= QL, where QQ is m x m unitary and L is m X n lower triangular.

(111)) A = RQ, where Q is n X n unitary and R is m x n upper triangular.
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Proof: (i) A* has a QR-factorization. Then

A*=QR= A= R'Q" = (i).

O 1
(ii) Let P, = . Then by Theorem 3.1.1 we have P,, AP, = QR. This implies
1 O

A= (P,QP,)(Pn,RP,) = QL = (ii).
(iii) A* has a @ L-factorization (from (ii)), i.e., A* = QL. This implies
A= L'Q" = (iii).

Cost of Householder method
Consider that the multiplications in (3.1.4) can be computed in the form

Uy
up)A = (I —ouj)A
6113 + [ou[][o]]2 '

= A—vujA:=A—vw"

(I —2ww)A = (I -

So the first step for a m x n-matrix A requires;
c1: m multiplications, 1 root;
4k?: 1 multiplication;
v: m divisions (= multiplications);
w: mn multiplications;
AWM = A — vw*: m(n — 1) multiplications.

Similarly, for the j-th step m and n are replaced by m—j+1 and n—j+1, respectively.
Let | = min(m, n). Then the number of multiplications is

1—

—_

2m—j7+1)(n—75+1)+(m—j+2)] (3.1.5)

J
20 —1
=1(l — 1)[T —(m+n)—=5/2]+ (I —1)(2mn + 3m + 2n + 4)
(= mn® —1/3n% if m > n).
Especially, for m = n, it needs

n—1
> 2(n—j+1)*+m—j+2 =2/3n+3/2n" + 11/6n — 4 (3.1.6)

j=1
flops and (I +n — 2) roots. To compute @ = Q7 --- Q;_,, it requires
2(m®n — mn® 4+ n®/3) multiplications (m > n). (3.1.7)
Remark 3.1.3 Let A = QR be a QR-factorization A. Then we have
A*"A=R'Q"QR = R"R.

If A has full column rank and we require that the diagonal elements of R are positive,
then we obtain the Cholesky factorization of A*A.
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3.1.2 Gram-Schmidt method

Remark 3.1.4 Theorem 3.1.1 (or Algorithm ??) can be used to solved orthonormal basis
(OB) problem.

(OB) : Given linearly independent vectors ay,--- ,a, € R™. Find an orthonormal
basis for span{ay,--- ,a,}.
If A=Jay, - ,a,] = QR with Q = [¢1,- - , ¢, and R = [r;;], then
k

ap = anqi- (3.1.8)

i=1
By assumption rank(A) = n and (3.1.8) it implies ry # 0. So, we have

k—1

Gk = L(ak — Zrik%)- (3.1.9)

r
kk =1

The vector ¢, can be thought as a unit vector in the direction of 2z, = ay — Ef:_ll SikGi-
To ensure that 2, L qi,--- ,qx_1 we choose sy, = ¢l ay, for i =1, ---, k — 1. This leads
to the Classical Gram-Schmidt (CGS) Algorithm for solving (OB) problem.

Algorithm 3.1.1 (Classical Gram-Schmidt (CGS) Algorithm) Given A € R™*"
with rank(A) = n. We compute A = QR, where Q) € R™*™ has orthonormal columns and
R € R™",
Fori=1,--- n,
q; = Qj;
Forj=1,---,1—1
Tji = C]]-Tai,
4 = i — Tjiqj,
end for
rii = |||z,
G = qi/Tii,
end for

Disadvantage : The CGS method has very poor numerical properties, if some columns
of A are nearly linearly independent.

Advantage : The method requires mn? multiplications (m > n).
Remark 3.1.5 Modified Gram-Schmidt (MGS):
Write A =37 gir!. Define A® by

k—1 n
0, AP} = A= gl => qr] (3.1.10)
=1 i=k

It follows that if A% = [z, B], 2 € R™, B € R™ %) then 1y, = |22 and qx = z/7 by
(3.1.9). Compute
[Phgtts o Thn] = CJ;QFB-

Next step: A*+t) = B — QelThje+1," " > Thn)-
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Algorithm 3.1.2 (MGS) Given A € R™™ with rank(A) = n. We compute A = QR,
where Q) € R™*™ has orthonormal columns and R € R™™ is upper triangular.
Fori=1,---.n,
qi = Q45
Forj=1,--- 1—1
Tji = q;‘r%;
4i = 4i — Tji4;,
end for
i = ||gill2,
G = Gi/Tii;
end for
The MGS requires mn? multiplications.

Remark 3.1.6 MGS computes the QR factorization at the kth step, the kth column of
@ and the kth row of R are computed. CGS at the kth step, the kth column of QQ and the
kth column of R are computed.

Advantage for OB problem (m > n): (i) Householder method requires mn? — n3/3 flops
to get factorization. A = QR and mn?* —n3/3 flops to get the first n columns of Q). But
MGS requires only mn? flops. Thus for the problem of finding an orthonormal basis of
range(A), MGS is about twice as efficient as Householder orthogonalization. (ii) MGS is
numerically stable.

3.1.3 Givens method
Basic problem: Given (a,b)T € R? find ¢, s € R with ¢® + s> = 1 such that

it

where ¢ = cosa and s = sina.

Solution:
{c:l,s:O,k:a;ifb:(], (3111)
C = \/a2a+b27 s = \/a2b+b27 k:\/m, lfb#o .
Let ] -
1
cosa -+ sina
G(iaj7a):
—sina -+ cosq

1

Then G(i,j,a) is called a Givens rotation in the (i, j)-coordinate plane. In the matrix
A= G(i,j,a)A, the rows with index # i, j are the same as in A and

ag, = cos(a)ay +sin(a)ay, for k=1,...,n,

ajr = —sin(a)ay + cos(a)ajg, for k=1,...,n.
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Algorithm 3.1.3 (Givens orthogonalization) Given A € R™ ™. The folllowing Al-
gorithm overwrites A with QT A = R, where Q is orthonormal and R is upper triangular.
Forq=2,--- . m,

forp=1,2,--- min{qg—1,n},

Find ¢ = cosa and s =sina as in (3.1.11) such that
c s app | | ¥
—s ¢ agy | | 0|

This algorithm requires 2n%(m — n/3) flops.
Fast Givens method (See Matrix Computations, pp.205-209):

A modification of Givens method bases on the fast Givens rotations and requires
about n?(m — n/3) flops.

A= G(p,g,a)A.

3.2 Overdetermined linear Systems - Least Squares
Methods

Given A € R™™ b € R™ and m > n. Consider the least squares(LS) problem:

min | Az — bl|o. (3.2.1)

Let X be the set of minimizers defined by X = {z € R" | | Az — b||s = min!}. It is easy
to see the following properties:

e 76X < AT(b— Ax) =0. (3.2.2)
e X is convex. (3.2.3)
e X has a unique element x;¢ having minimal 2-norm. (3.2.4)
o X ={z.5} <= rank(A) =n. (3.2.5)

For x € R", we refer to r = b — Ax as its residual. AT(b — Az) = 0 is refered to as
the normal equation. The minimum sum is defined by p?¢ = ||Azrs — bl]3. If we let
o(z) = 1| Az — |3, then V(z) = AT (Az —b).

2

Theorem 3.2.1 Let A = > oyuv], with r =rank(A), U = [u1,...,uy) and V =
i=1
[v1, -+ ,v,) be the SVD of A € R™*™ (m >n). If b € R™, then
zs = > (ul'b/o;)v; (3.2.6)

=1

and

pis = > (ul'D)? (3.2.7)
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Proof: For any z € R™ we have

Az = bll3 = [[UTAV(VT2) = UTD|5 = ) _(0i0i — ufb)* + ) (ufb)%,
=1 i=r+1
where o = VTz. Clearly, if z solves the LS-problem, then a; = (ulb/0;), fori =1,...,r
If we set a,y1 =+ =, =0, then z = xgs. [ |

Remark 3.2.1 If we define AT by AT = VX+U”, where ¥+ = diag(o; ', ..,0.1,0,..,0)

€ R™™ then and prs = [[(I—AAT)b||s. AT isrefered to as the pseudo-inverse
of A. AT is defined to be the unique matrix X € R™ ™ that satisfies Moore-Penrose
conditions :

(I)AXA=A, (i) (AX)T = AX, (3.2.8)
(i) XAX = X, (iv) (XA)T = XA. -
Existence of X is easy to check by taking X = A". Now, we show the uniqueness of X.
Suppose X and Y satisfying the conditions (i)—(iv). Then

X = XAX = X(AYA)X = X(AYA)Y (AY A) X
= (XA)(YAY(AY)(AX) = (XA)" (Y A)TY (AY)"(AX)"
= (AXATYTYyyT(AXA)T = ATYTyyT AT
Y(AYA)Y =YAY =Y.

If rank(A) = n (m > n), then AT = (ATA)"LAT. If rank(A) = m (m < n), then
At = AT(AAT)=L If m = n = rank(A), then AT = A~L,

e For the case rank(A)=n:

Algorithm 3.2.1 (Normal equations) Given A € R™ "™ (m > n) with rank(A) =n
and b € R™. This Algorithm computes the solution to the LS-problem: min{||Ax —
bHQ, WS Rn}

Compute d := ATb, and form C := AT A by computing the Cholesky factorization C =
RTR (see Remark 6.1). Solve RTy = d and Rxrs = y.

Algorithm 3.2.2 (Householder and Givens orthogonalizations) Given A € R™*"
(m > n) with rank(A) = n and b € R™. This Algorithm computes the solutins to the
LS-problem: min{||Az — bl|s; x € R"}.
Compute QR-factorization QT A = [ };1

respectively. (Here Ry is upper triangular). Then

} by using Householder and Givens methods

| Az = bJ2 = Q7 Az — QTbIZ = | Rae — cl}3 + Il

where QTb = [ ccl 1 . Thus, 715 = Ry "¢, (since rank(A) =rank(R,) = n) and p3g = ||d||3.
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Algorithm 3.2.3 (Modified Gram-Schmidt) Given A € R™*" (m > n) with rank(A) =
n and b € R™. The solution of min || Ax — bl|, is given by:

Compute A = Q1 Ry, where Q; € R™" with QTQ, = I, and Ry € R™™ upper tri-
angular. Then the normal equation (AT A)x = ATb is transformed to the linear system
Rz =QTb = z15=R;"Q['b.

e For the case rank(A) < n:
Problem:

(i) How to find a solution to the LS-problem?
(ii) How to find the unique solution having minimal 2-norm?

(iii) How to compute x g reliably with infinite conditioned A ?

Definition 3.2.1 Let A be a m X n matriz with rank(A) = r (r < m,n). The factoriza-
tion A = BC with B € R™*" and C € R™" is called a full rank factorization, provided
that B has full column rank and C has full row rank.

Theorem 3.2.2 If A= BC is a full rank factorization, then
AT =cCtBt =0t (cot)y " H(BTB)'B”. (3.2.9)
Proof:  From assumption follows that

BB = (B'"B)"'B'B =1,
cct = cct(ocmy !t =1,.

We calculate (3.2.8) with

A(C*B")A= BCC*B"BC = BC = A,
(C*BHA(CTBY)=C*B"BCC*B" =C*B™,
A(C*B") = BCC*B" = BBT symmetric,
(C*BT)A=C"B*BC =C*C symmetric.

These imply that X = C*B™ satisfies (3.2.8). It follows AT = C*B™. u

Unfortunately, if rank(A) < n, then the QR-factorization does not necessarily produce
a full rank factorization of A. For example

A= [@176127613] = [C]hCIQaQ:ﬂ

o O =
oD =
—_

Fortunately,we have the following two methods to produce a full rank factorization of A.
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3.2.1 Rank Deficiency I : QR with column pivoting

Householder method can be modified in a simple way so as to produce a full rank factor-
ization of A.

Al = QR, R = { ROH RO” ] i , (3.2.10)

where r = rank(A) < n (m > n), Q is orthogonal, Ry; is nonsingular upper triangular
and IT is a permuatation. Once (3.2.10) is computed, then the LS-problem can be readily
solved by

lAz = 0] = [(QTAI(IT" &) — Q"blf; = | Ruy — (c — Ruz2) |3 + lld]l3,

where 117z = [ Z } ? and QTb = { 2 } ir . Thus if [|[Az — b||» = min!, then we

must have

r—TI { Ry (c — Ri2z) ] .

z

If z is set to be zero, then we obtain the basic solution

-1
IB =11 { }{E'C }.

The basic solution is not the solution with minimal 2-norm, unless the submatrix Ris is

zero. Since )
Ry Rip } »

— 1,
n—r 2
We now solve the LS-problem (3.2.11) by using Algorithms 3.2.1 to 3.2.3.

(3.2.11)

IB — 17 [

llzLs||2 = min
zERP—T

Algorithm 3.2.4 Given A € R™ ", with rank(A) = r < n. The following algorithm
computes the factorization AIl = QR defined by (3.2.10). The element a;; is overwritten
by ri; (i < 7). The permutation 11 = [e.,, ..., e.,] is determined according to choosing the
mazimum of column norm in the current step.

cii=j(=12,...,n),

r; ::;afj (j=1,...,n),
Fork=1,...)n,

Detemine p with (k < p <n) so that r, = Juax 7.
<j<n

If r, = 0 then stop; else
Interchange ¢, and c,, ri and rp, and a;, and a;py, fori=1,...,m.
Determine a Householder @)y such that

At *
. : 0
Qv | | =1 .
Amk 0

A = diag(Ix_1, Qk)A; rji=1; — azj(j =k+1,...,n).
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This algorithm requires 2mnr — r?(m + n) + 2r3/3 flops.
Algorithm 3.2.4 produces the full rank factorization (3.2.10) of A. We have the fol-
lowing important relations:

{ rul 2 freof 2o 2 e, 7 =0, j=r+1,....m, (3.2.12)

Tl > rigl, i=1,...,r, k=i+1,...,n.

Here, r = rank(A) < n, and R = (r;). In the following we show another application of
the full rank factorization for solving the LS-problem.

Algorithm 3.2.5 (Compute 25 = A™b directly)

: R }r
. — = (oW (2) 1 =00
(i) Compute (3.2.10): All = QR = (Q" | Q') ( 0 ) S = All = QY R;.

(ii) (A" = RfQW" = RTQUW".
(iii) Compute R :

Either: Rf = RT(RyRT)™! (since Ry has full row rank)
= (AI)* = RT(R,RT)~1QW" .
Or: Find Q using Householder transformation (Algorithm ??) such that QRT =
{ g ] , where T' € R™" is upper triangular.
Let Q7 == (QW,Q®) = RT = QWT + Q@0 = QWT.
Ri=TTQW" = Rf = (QUI)*(I7)* = QU(I"),
= (AL = QU(IT) 1"

(i) Since min |Az — b||s = min ||AII(IT"2) — blly = (I 7z), o= (AI)"D
= | TLs = H(AH)+b .

Remark 3.2.2 Unfortunately, QR with column pivoting is not entirely reliable as a
method for detecting near rank deficiency. For example:

1 —¢ —c --- —c

Y n—1 1 —c - —c 2 2
T.(c) = diag(1,s,--- ,s"") ) . c“+s°=1,¢,5>0.

If n =100, ¢ = 0.2, then 0,=0.3679e —8. But this matrix is unaltered by Algorithm 3.2.4.
However,the “degree of unreliability” is somewhat like that for Gaussian elimination with
partial pivoting, a method that works very well in practice.



3.2 Overdetermined linear Systems - Least Squares Methods 55
3.2.2 Rank Deficiency II : The Singular Value Decomposition

Algorithm 3.2.6 (Householder Bidiagonalization) Given A € R™*" (m > n). The
following algorithm overwrite A with UL AV = B, where B is upper bidiagonal and Ug
and Vg are orthogonal.

Let UL = I, Vg = I,.

Fork=1,--- n,

Determine a Householder matriz Uy, of order n — k + 1 such that

0757 *
~ : 0
T : _
7 N I B
Amk 0

A = diag(ly_1, UD)A, UL := diag(I,_,, UD)UE.
If kK <2, then determine a Householder matriz ‘N/k of order n — k + 1 such that

[ak,k—‘rl)' o 7akn]‘7k = (*7()’ e 70)7

A = Adiag(Iy,V3,), Vi = Vgdiag(L, Vi).
This algorithm requires 2mn? — 2/3n? flops.

Algorithm 3.2.7 (R-Bidiagonalization) when m > n we can use the following faster
method of bidiagonalization.

(1) Compute an orthogonal Q1 € R™ ™ such that QT A = [ 1 ]; where Ry € R™" s

0

upper triangular.

(2) Applying Algorithm 3.2.6 to Ry, we get QY R\Vy = By, where Q,, Vg € R™"
orthogonal and By € R™"™ upper bidiagonal.

By

(3) Define Up = Q1diag(Qa, I,n_p). Then ULAVp = l 0

} = B bidiagonal.

This algorithm require mn? + n3. It involves fewer compuations comparing with
Algorithm 7.6 (2mn? — 2/3n?) whenever m > 5/3n.

Once the bidiagonalization of A has been achieved,the next step in the Golub-Reinsch
SVD algorithm is to zero out the super diagonal elements in B. Unfortunately, we must
defer our discussion of this iteration until Chapter 5 since it requires an understanding of
the symmetric QR algorithm for eigenvalues. That is, it computes orthogonal matrices
Us. and Vs such that

UL BVy = X = diag(oy, -+ ,00).

By defining U = UgUs, and V = V3Vs, we see that UT AV = ¥ is the SVD of A.
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Algorithms Flop Counts
Algorithm 3.2.1 Normal equations mn?/2 +n?/6
Algorithm 3.2.2  Householder orthogonalization mn? —n3/3
rank(A)=n  Algorithm 3.2.3 Modified Gram-Schmidt mn?
Algorithm 3.1.3  Givens orthogonalization 2mn? — 2/3n?
Algorithm 3.2.6  Householder Bidiagonalization 2mn? — 2/3n?
Algorithm 3.2.7 R-Bidiagonalization mn? +n3
LINPACK Golub-Reinsch SVD 2mn?* + 4n?
rank(A) <n  Algorithm 3.2.5 QR-with column pivoting 2mnr —mr? +1/3r3
Alg. 3.2.7+SVD Chan SVD mn? + 11/2n?

Table 3.1: Solving the LS problem (m > n)

Remark 3.2.3 If the LINPACK SVD Algorithm is applied with eps=10"17 to

1 —¢ —c -+ —c

) 1 —c -+ —c
T100(0.2) = diag(1,s, -+ ,s") ) ] ,

then 6,, = 0.367805646308792467 x 1075.

Remark 3.2.4 As we mentioned before, when solving the LS problem via the SVD, only
Y and V have to be computed (see (3.2.6)). Table 3.1 compares the efficiency of this
approach with the other algorithms that we have presented.

3.2.3 The Sensitivity of the Least Squares Problem

Corollary 3.2.1 (of Theorem 1.2.3) Let U = [uy, -+ ,up|, V = [v, - ,v,] and
U*AV = X = diag(oy,- -+ ,0,,0,---,0). If k < r = rank(A) and A = ijaiuiv;[,
Then -

in [|A—Blls=|A— Aglls = opp1.
min A= Bla = |4~ Adlls = ov

Proof: Since UT A,V = diag(oy,- -+ ,0%,0,---,0), it follows rank(A4;) = k and that
[A = Apll2 = IUT(A = AV |2 = [[diag(0, -+, 0, 0441, -, 00|l = Ops1.

Suppose B € R™*" and rank(B) = k, i.e., there are orthogonal vectors z1, - -+ , x,_j such
that N(B) = span{x1, - ,x,_x}. This implies

span{xy, -+, Tp_ g} ﬂ span{vy,- -+, vps1} # {0}



3.2 Overdetermined linear Systems - Least Squares Methods 57
Rl
Let 2 be a unit vector in the intersection set. Then Bz = 0 and Az = Y oy(v] 2)u;.

i=1
Thus,

k+1
1A= BIl3 > [I(A = B)2ll; = |42l = ) oF(v]2)* 2 oy

i=1

3.2.4 Condition number of a Rectangular Matrix

Let A € R™™, rank(A) =n, k2(A) = 0max(A4)/0min(4).
(i) The method of normal equation:

min ||Az — b||, & AT Az = ATb.

rERM
(a) C=ATA, d= ATb.
(b) Compute the Cholesky factorization C' = GGT.

(c) Solve Gy = d and GTa 5 = y. Then

Wons = Bislle o epgrey (47 4) = epsia(a)2
LS

|7 — || 120 A 5
——— < k(A) (&“m +€W) + o(g%),

where (A+ F)z = b+ f and Az = b.
(ii) LS solution via QR factorization
[Az —bll; = Q" Az — Q bl = || Ruz — cll3 + [ld]I3,

as = R'e, prs = ||d||2.

Numerically, trouble can be expected wherever ky(A) = ko(R) =~ 1/eps. But this is in
contrast to normal equation, Cholesky factorization becomes problematical once ko(A)
is in the neighborhood of 1/,/eps.

Remark 3.2.5

1A [I(ATA) ATy = ka(A),
IAIRI(ATA) T 2 = ra(A)%

Theorem 3.2.3 Let A € R™" (m >mn), b # 0. Suppose that x, r, &, T satisfy

||Az — b|| = min!, r = b — Az, prs = |72,
|(A+0A)z — (b+ 6b)||2 = min!,
7= (b+0b) — (A+dA)x.



58 Chapter 3. Orthogonalization and least squares methods
If

[0A[l2 [|0b]l2y _ ou(A)
e = max { : } <
[All2 7~ [[oll2 ©  o1(A)
and P
sinf) = —— # 1,
161]2
e =l _ _ 2n4)
T — T2 K2 2 2
tan Okq (A
el = st + tanfra(A)°} + O(e%)
and R
17— 7l

o S St 2e(A) minLm —n) + O().

Proof: Let E = 30A/e and f = db/e. Since ||dA|]2 < 0,(A), by previous Corollary follows
that rank(A + eE) = n for t € [0, £].

t == A+tE = A+ 0A. If rank(A 4+ 0A) = k < n, then ||A — (A + §A)|2 =
10A]ls > [|]A — Agll2 = ok41 > 6,. Contradiction! So mnr&i%ikHA — Bll2 = ||A — Akll2

k
=14 =Y oiuiv] || = oki1]-
i=1
Hence we have,

(A+tE) (A4 tE)x(t) = (A+tE) (b +tf). (3.2.13)

Since x(t) is continuously differentiable for all ¢t € [0, ], x = x(0) and = A(¢), it follows
that

and

1 —fl _ _[2(0)]]2

Izl il

Differentiating (3.2.13) and setting ¢ = 0 then we have

+ O(&?).

ETAx + ATEx + AT Ai(0) = AT f + E™b.

Thus,
#(0) = (ATA)TAT(f — Ex) + (ATA)'ETr

From || f|ls < [|b]|2 and ||E]]2 < ||A||2 follows

|2 — |2 T A\—1 AT B[]
— < £{||A A A)TA — +1
+ LAY (AT A) o} + O(E).
[ All2]| |2

Since AT(AZL’LS - b) = 0, A.TLS L AJJLS — b and then
Ib = Axl3 + | Azl = [1bll3

and
1A =153 = [1b]13 — prs.
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Thus, .
||x”;||z||2 < €pS{/€2(A)<? +1)+ KQ(A)QSLI;Z} + O(?).
Furthermore, by :g;z — \/ﬁ’ we have
% ~ eps(ka(A) + ko(A)prs). (0 : small)
|

Remark 3.2.6 Normal equation: eps rq(A)?.

QR-approach: eps(ka(A) + prska(A)?).
(i) If prs is small and ko(A) is large, then QR is better than the normal equation.

(ii) The normal equation approach involves about half of the arithmetic when m > n
and does not requires as much storage.

(iii) The QR approach is applicable to a wider class of matrices because the Cholesky
to AT A break down “before” the back substitution process on QTA = R.

3.2.5 Iterative Improvement

I, A r b .
AT 0 } .| = [0}, |b — Az||y = min!
r+Ax =0, ATr=0= ATAzx = ATb. Thus,
f) b I A1l r® q A pk) )
oo | =Lo] =L 0] [ ] o [ S]] - [50]
This implies, i
A IR B
2D | T | 2 (k)
IfA:QR:Q{%l],then{iT ‘3“5 :[f}impliesthat
In O R1 h fl
0 [m—n 0 f2 = f2 y
RY 0 ‘ 0 |z g
where QT f = { 2 } Qfp = [ JZ ] Thus, RTh = g = h = R;Tg. Then

2= Ry h), PZQH;].
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Chapter 4

Iterative Methods for Solving Large

Linear Systems

4.1 General procedures for the construction of iter-

ative methods

Given a linear system of nonsingular A

Az =b.

Let

A=M-—-N

(4.1.1)

(4.1.2)

with M nonsingular. Then (4.1.1) is equivalent to Mx = Nx + b; or letting T = M~'N

and f = M~'b we have

x=Tx+ f.
Set
g* ) = p®) oy f
where (¥ is given. Then the solution x of (4.1.1) is determined by iteration.

Example 4.1.1 We consider the standard decomposition of A

A=D—-L—-R,

(4.1.3)

(4.1.4)

(4.1.5)
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where A = [a;]};_;,

D = diag(a/lla agg, -+ 7ann)7

-0 07
Q21 0
L = | a1 azz - ,
| Qp,1 Qp2 *°° Qpp—1 0 h
[0 a1 a1 -+ a1, |
0 Q23 - a2 n
R =
alnfl,n
| 0 0 i

For a;; # 0,9 =1,--- ,n, D is nonsingular. If we choose M = D and N =L + R in
(8.2), we then obtain the Total-step method (Jacobi method):

2D = DL + R)2® + D1 (4.1.6)
or in formula
1
= (=S a4 h) =1, k=01, (4.1.7)
ajj .
7]

Example 4.1.2 If D — L is nonsingular in (4.1.5), then the choices of M = D — L and
N = R asin (4.1.2) are possible and yields the so-called Single-step method (Gauss-Seidel
method):

2 = (D — L)' Ra®™ + (D — L) (4.1.8)
or in formula
1
A = LS D S ) =t k12 (419
i 555 i>j

- Total-Step method=TSM=Jacobi method.
- Single-Step method=SSM=Gauss-Seidel method.

We now consider (4.1.1)-(4.1.4) once again:

Theorem 4.1.1 Let 1 ¢ o(T) and x be the unique solution of (4.1.3). The sequence
2D = T®)  f converges to = for arbitrary initial vector (0 if and only if p(T) < 1

Proof: We define the error
e®) = 2™ _ g (4.1.10)

Then
e® =W — 3 =Ta® D 4 f — (Tx + f) = Telb™V
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or
e®) = Tk O,

Theorem 1.2.4 shows that ¢®) — 0 if and only if p(T) < 1. u

We now consider the following point of views on the Examples 4.1.1 and 4.1.2:
(i) flops counts per iteration step.
(ii) Convergence speed.

Let || || be a vector norm, and ||T’|| be the corresponding operator norm. Then

[ e
= < |IT™|. 4.1.11
oy = qeoy < 7 (4.1.1)

Here ||7™||% is a measure for the average diminution of error e(™ per iteration step. We
call

R(T) = ~(|[T™%) =~ In(|T"]) (11.12)

the average of convergence rate for m iterations.
1
The larger is R,,(T), so the better is convergence rate. Let o = (|[e™)]|/[|e@]])m.
From (4.1.11) and (4.1.12) we get

o < [T < e,

or
O_I/Rm(T) <

1
e

That is, after 1/R,,(T") steps in average the error is reduced by a factor of 1/e. Since
R,,(T) is not easy to determine, we now consider m — co. Since

tim [T [ = p(T),
it follows

Reo(T) = lim Ry(T) = —1In p(T). (4.1.13)

m—r0o0

R+ is called the asymptotic convergence rate. It holds always R,,,(T) < R (T).
Example 4.1.3 Consider the Dirichlet boundary-value problem (Model problem):
—Au = —uyy —uy, = f(z,y), 0<z,y<l, (4.1.14)

u(z,y) =0 (z,y) € 90,
for the unit square Q := {z,y|0 < z,y < 1} C R? with boundary 99Q.

To solve (4.1.14) by means of a difference methods, one replaces the differential oper-
ator by a difference operator. Let

Qh = {(:cl,yl)]z,] = 1, ,N+1},
th = {(x270>7($271)7(07y])7(17y])|27] - Oa]-7"' 7N+ ]-}7
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where z; = ih, y; = jh, 1,7 =0,1,--- N +1, h:= =, N > 1, an integer.

The differential operator —u,, — wu,, can be replaced for all (z;,v;) € €, by the
difference operator:

b — Zh2j e b (4.1.15)
up to an error 7; ;. Therefore for sufficiently small & one can thus expect that the solution
2, for i,7 =1,--- | N of the linear system

2 . .
42’1‘,]' — Zifl,j — Zi+1,j — Zi,jfl — Zi,jJrl = h fiyj,Z,j = 1, e ,N, (4116)

205 = 2N+1,5 = 2i0 = Zint1 = 0,4, =0,1,--- N+ 1,
obtained from (4.1.15) by omitting the error 7; ;, agrees approximately with the wu; ;. Let
_ T
z = [21,17 2215 3 RN, 1, R1,2, """ 3 RN,2y """ s RNy " ,ZN,N] (4.1.17a)

and
b=h"[fia- fxas fra o fvas s fuws o fvn]T (4.1.17b)
Then (4.1.16) is equivalent to a linear system Az = b with the N? x N? matrix.

[ 4 1 -1 ]
—1
—1
1 4 ~1
—1 4 -1
—1
—1
—1 —1 4
A =
—1
—1
1 4 —1
—1
S
—1 1 4
[ A1 Ao
= | A A2 (4.1.18)
- ' An_inN
| AN N1 AN,N

Let A= D — L — R. The matrix J = D™!(L + R) belongs to the Jacobi method (TSM).
The N? eigenvalues and eigenvectors of J can be determined explicitly. We can verify at



4.1 General procedures for the construction of iterative methods 65
once, by substitution, that N? vectors 2 k 1 =1,--. N with components
ki Iy
ZZ-(S’Z) = sin N7—Ti—ll sin N7217 1<4,7 <N,
satisfy
JZ®D = Ak (kD (4.1.19)
with ) " l
AkD = = T Ty 1<kI<N.
Z(COSN+1 +COSN+1), <kl <
J thus has eigenvalues )\(k’l), 1 <k,l < N. Then we have
(J) =\ Tl O(h) (4.1.20)
P 1,1 N1 5
and 272 272
h h
Ro(J) = —In(1 — 2 £ O(h)) = ”2 +O(hY). (4.1.21)

These show that

(i) TSM converges; Nevertheless,

(ii) Diminution of A will not only enlarge the flop counts per step, but also the conver-

gence speed will drastically make smaller.

sectionSome Remarks on nonnegative matrices

4.1.1 Some theorems and definitions

p(T): A measure of quality for convergence.

Definition 4.1.1 A real m x n-matriz A = (a;.) is called nonnegative (positive), denoted

byA>0(A>0), ifag >0(>0),i=1,--- m k=1 n.

Remark 4.1.1 Let K,, = {z|z; > 0,i=1,--- ,n} CR™. [t holds
AeR™" A>0« AK, C K,,.

Especially, form=n, A>0s AK C K, K = K is a cone.

Let N ={1,2,--- ,n}.

Definition 4.1.2 An m x n-matriz A is called reducible, if there is a subset I C N, I+
¢, I # N such thatie€ I, j &1 = a;; =0. A is not reducible & A is irreducible.

Remark 4.1.2 G(A) is the directed graph associated with the matriz A. If A is an
n X n-matriz, then G(A) consists of n vertices Py,--- , P, and there is an (oriented) arc

P, — P; in G(A) precisely if a;; # 0.
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It is easily shown that A is irreducible if and only if the graph G(A) is connected in
the sense that for each pair of vertices (P;, P;) in G(A) there is an oriented path from P,
to P;. ie., if i # j, there is a sequence of indices i = iy, 49, - - -, 45 = j such that (a;, 4,

: ais—lyis) # O
Lemma 4.1.1 If A > 0 is an irreducible n x n matriz, then (I + A)"~1 > 0.

Proof: Tt is sufficient to prove for any x > 0, (I+A)" 'z > 0. Let z441 = (I +A)zy be a
sequence of nonnegative vectors, for 0 < k < n —2 with zy = x. We now verify that xy,,
has fewer zero components than does xy, for every 0 < k < n — 2. Since xy1 = xp + Axy,
it is clear that z;,; has no more zero components than x.

If x,41 and x; has exactly the same number of zero components, then for a suitable
permutation P we have

Pmkﬂzlg], ka:[g], a>0, >0, a,eR™ 1<m<n.

HEHEEHIE

This implies A>3 = 0. But Ay; > 0 and 8 > 0, it follows Ay = 0. It contradicts that
A is irreducible. Thus z;,; has fewer components and zj;, has at most (n — k — 1) zero
component. Hence

Then

Tp—1 — (I + A)n_ll‘o

is a positive vector. [ ]
(See also Miroslav Fiedler: “Special Matrices and their applications in Numerical Math-
ematics ” for the following theorems.)

Lemma 4.1.2 If A, B are squared matrices and |A| < B, then p(A) < p(B). In partic-
ular, p(A) < p(|A]).

Proof:  Suppose |A| < B, but p(A) > p(B). Let s satisfy p(A) > s > p(B), P = ()A
and @ = (1)B. Then p(P) = s 'p(A) > 1, p(Q) = s 'p(B) < 1. This means that
klim QF = 0. But |P*| < |P|* < Q" this implies ]lcin(l) Pk =0,1ie., p(P) < 1. Contradiction!
—00 —

|
Lemma 4.1.3 Let A >0, z > 0. If £ is a real number satisfies Az > £z, then p(A) > €.

Proof:  Assume £ > 0. Clearly, z # 0. Since Az > &z, there is an € > 0 such that
Az > (£ +¢)z. Tt means that B = (€ + &) ' A satisfies Bz > 2. Thus,

Bfz>BFly>...>2 fork>0 (integer).

Hence B* does not converge to the null matrix. This implies, p(B) > 1 and p(A) >
E+e>E. [ |
Theorem 4.1.4 (Perron-Frobenius Theorem) Let A > 0 be irreducible. Then p(A)
is a simple positive eigenvalue of A and there is a positive eigenvector belonging to p(A).
No nonnegative eigenvector belongs to any other eigenvalue of A.
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Remark 4.1.3 p(A) is called a Perron root of A. The eigenvector corresponding to p(A)
15 called a Perron vector.

Lemma 4.1.1 (Perron Lemma) If A > 0, then p(A) is a positive eigenvalue of A and
there is only one linearly independent eigenvector corresponding to the eigenvalue p(A).
Moreover, this eigenvector may be chosen to be positive.

Proof: The lemma holds for n = 1. Let n > 1 and A > 0. There exists an eigenvalue A
of A such that p(A) = |A|. Let
Au = du, u #0. (4.1.1)

Since |av + fw| < alv| + Blw|, if v,w € C, o, § € Ry, then

“=" holds < exits complex unit n such that nv > 0 and nw > 0.

n n
Generalization: Since | > ouv;| < > ||, for vy, ..., v, € C and aq, ..., a, € R,.
i=1 i=1
Then
“=" holds < 4 complex unit n such that nv; >0, ¢ =1,--- n.

Use this result to show u in (4.1.1) has the property that there is a complex unit n
such that
nu; >0, fori=1,--- n. (4.1.2)

To prove this, assume (4.1.2) does not hold. Then we have

n

n
Mlul = 1 anjus| < anglu,|
j=1

j=1
in k-th equation of (4.1.1). By the above statement, this is true for k = 1,--- ,n. Thus,
Alul > [Al[ul.

From Lemma 4.1.3 follows that |A\| < p(A), which contradicts that |A| = p(A).
Therefore, the inequality (4.1.2) implies v = nu, v # 0 nonnegative and from (4.1.1)
follows
Av = do. (4.1.3)

If vy, # 0 and thus vy > 0, then the k-th equation in (4.1.3) gives A > 0. Hence A = p(A)
and using (4.1.3) again follows v > 0.

In particular, we have proved the implication: if A is an eigenvalue such that |A| = p(A)
and if u is an associated eigenvector then |u| > 0.

Suppose that there are two linearly independent eigenvectors v = (v;) and w = (w;),
belonging to A\. As v # 0, there is an integer k£ such that vy # 0. The vector z =
w — (wkvk_l)v is also an eigenvector of A belonging to A. Since z # 0, but 2, = 0, this
contradicts the proved results in above which states that |z| > 0. [ |

Corollary 4.1.1 Let A > 0. Then |A\| < p(A) for every eigenvalue A # p(A).
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Proof: |\ < p(A) for all eigenvalues A\ of A. Suppose |A\| = p(A4) and Az = Az, z # 0.
By Perron Lemma there is an w = e~z > 0 for some § € R such that Aw = \w. But
then A = p(A). Contradictions! u
Proof of Theorem 4.1.4: Since A > 0 irreducible, (I + A)"~! is positive by Lemma 4.1.1.
Also,

(4 ATy = (1 Ay
is positive. By Perron Lemma there is an y > 0 such that
yT (I + A" = p((I+ A"yt (4.1.4)
Let A be the eigenvalue of A satisfying |A\| = p(A) and Az = Az, x # 0. Further,
PH(A)|z] < p(A)Alz| = Ap(A)|a] < A%|a],

and in general
pF(A)|z| < AF|z|, for k=1,2,---. (4.1.5)

Hence
(1+ p(A))fa] < (I + A)"[a]. (4.1.6)

Multiplying y* from left it implies
(L+p(A)" (" |=]) < y" (1 + A)"a.

From (4.1.4) follows that
R.H.S = p((I+A)" " )y" |zl

Since y*'|x| > 0, it implies
(14 p(A)" < p((I + A, (4.1.7)

The eigenvalues of (I + A)"~! are of the form (1 + a)"!, where « is an eigenvalue of
A. Hence there is an eigenvalue p of A such that

(L4 )" = p((+ A7), (4.1.8)
On the other hand, we have |u| < p(A). Substituting into (4.1.7), we get
(L4 p(A)" ™ < (14 p)"

and further
14+ p(A) <14 p] <1+ |u| <1+ p(A).

Since the left-hand and right-hand sides coincide, we have equality everywhere. Thus
i > 0 and hence p = p(A).
Equality is valid in all the inequalities that we have added, i.e., in (4.1.5). For k =1,

it follows
Alz| = p(A)|z| or Alz|= plz|.

In view of (4.1.6) and (4.1.8) follows

(I + A" Ha| = 1+ u" | = p((T + A)"7H)al.
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Using Perron’s Lemma, we get |z| > 0.

From this we know that there is only one linearly independent eigenvector belonging
to eigenvalue p by the same argument as that used in the last paragraph of the proof
of Perron’s Lemma. Moreover, p(A) > 0 as A is distinct from the null matrix (n > 1)!.
Consequently, we want to claim: p(A) is a simple eigenvalue of A if and only if

(i) there is a unique linearly independent eigenvector of A to A, say u and also only one
linearly independent eigenvector of A7 belonging to ), say v.

(ii) vTu # 0.

Indeed, only one linearly independent eigenvector of A, say u, belongs to p(A). More-
over u > 0. Similarly, AT > 0 irreducible. The respective eigenvector v of AT (to p(A))
can be chosen positive as well v > 0. Therefore v7u > 0 and by Schur Lemma follows
that p(A) is simple.

Finally, we show that no nonnegative eigenvector belongs to any other eigenvalue.
Suppose Az = £z, 2 > 0 and & # p(A). We have shown that AT has a positive eigenvec-
tor, say w > 0. Then,

ATw = p(A)w.
But,
wl Az = wléz = €(w'2),
ie.,
w' Az = p(A)(w"2),
which is a contradiction in view of p(A) — & # 0 and w’z > 0. [ |

Theorem 4.1.5 Let A > 0,z > 0. Define the quotients:

_ (Ax), 1 o
g(x) = i Zalkxk, fori=1,---,n. (4.1.9)
k=1
Then
Juin g;(z) < p(A) < max ¢i(z). (4.1.10)

If A is irreducible, then it holds additionally, either

G =q¢ =" q (thenx = pz, ¢ =p(A)) (4.1.11)
or
i g(z) < p(A) < max qi(z). (4.1.12)

Proof: We first assume that A is irreducible. Then AT is irreducible. From Theorem
4.1.4 there exists y > 0 such that ATy = p(AT)y = py. Since Az = Qz with Q =
diag(qu, -+ ,qn), it follows

Z qyiv =y Qu =y" Az = py'x = PZ Yil;

i=1 i=1
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or
n

Z(Qi — p)yix; = 0.

i=1

Now there is either ¢; — p = 0, for all ¢ = 1,--- ,n, that is (4.1.11) holds or there is a
¢; # p. Since y;x; > 0, so (4.1.12) holds. (4.1.10) follows from the consideration of the
limiting case. [ ]

Theorem 4.1.6 The statements in Theorem 4.1.5 can be formulated as: Let A > 0,z >
0. (4.1.10) corresponds:

Az <px = p<y,

(4.1.13)
Az >ve = v <p.
Let A >0, irreducible, v > 0. (4.1.12) corresponds :
Av < px, Av#px = p<p
{ Ar >vz, Az #ve = v <p. (4.1.14)

Theorem 4.1.7 (Perron and Frobenius 1907-1912, see Varga pp.30) Let A > 0 irre-
ducible. Then

(1) p=p(A) is a simple eigenvalue;
(ii) There is a positive eigenvector z associated to p, i.e., Az = pz,z > 0;

(iii) If Ax = \x, © > 0, then A = p, v = az, a > 0. i.e, if T is any nonnegative
eigenvector of A, then x is a multiplicity of z;

(iv) A<B,A# B=>p(A) < p(B).

Note that (i), (ii) and (i1i) follows by Theorem 4.1.4 immediately. The proof of (iv)
follows from Lemma 4.1.12 in Appendiz. [ |

Theorem 4.1.8 (See Varga pp.46) If A >0, then
(1) p=p(A) is an eigenvalue.

(ii) There is a z> 0, z # 0 with Az = pz.

(iii) A < B = p(4) < p(B).

Note that If A > 0 reducible, then A is a limit point of irreducible nonnegative matrices.
Hence some parts of Theorem 4.1.7 are preserved.
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Appendix

Let A = [a;;] > 0 be irreducible and z > 0 be any vector. Let

2, @ij;
r,=min{ —— % > 0.
x;>0 Z;
Then,
ry =sup{p > 0| Az > px}. (4.1.15)
Consider
r= sup {ry}. (4.1.16)
x>0,2#£0
Since 7, and 7,, have the same value for all & > 0, we only consider ||z|| = 1 and = > 0.

Let P={z|2z>0, ||| =1} and Q = {y | ({ + A)"'a, € P}. From Lemma 4.1.1
follows @ consists only of positive vector. Multiplying Az > 7,z by (I + A)""!, we get
Ay > ryy (by (9.15)). Thus r, > r,.

The quantity r of (4.1.16) can be defined equivalently as

r = sup{ry,}. (4.1.17)
yeQ

Note that r,; @ — R taking its maximum. As P is compact, so is ), and as 7, is a
continuous function on (), there exists a positive z for which

Az > rz (4.1.18)

and no vector w > 0 exists for which Aw > rw.
All non-negative nonzero z satifying (4.1.18) is called an extremal vector of the matrix

A.

Lemma 4.1.9 Let A > 0 be irreducible. The quantity r of (4.1.16) is positive. Moreover,
each extremal vector z is a positive eigenvector of A with corresponding eigenvalue r. i.e.,
Az=rz, 2>0.

Proof: 1f £ is positive and & = 1, then since A is irreducible, no row of A can vanish.
Thus no component of A¢ can vanish. Thus re > 0. Proving that » > 0. Let z be an
extremal vector which

Az—rz=mn, n>0.

If n # 0, then some component of 7 is positive. Multiplying both sides by (I + A)"! we
get
Aw—rw >0, w=(I+A)""2>0.

Therefore, r,, > r which contradicts (4.1.17). Thus Az = rz. Since w > 0 and w =
(1+7)""1z, it follows z > 0. ]
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Lemma 4.1.10 Let A = [a;;] > 0 be irreducible and B = [b;;] be a complex matriz with
|B| < A. If 8 is any eigenvalue of B, then

8] <, (4.1.19)

where T is the positive constant of (4.1.16). Moreover, equality in (4.1.19) holds, i.e.,
B =re", if and only if, |B| = A, and B has the form

B=eYDAD ™, (4.1.20)

where D is diagonal whose diagonal entries have modulus unity.

J

Proof: If By = By, y # 0, then By, = > bjjy;, 1 <i <mn. Thus,
=1

1Bllyl < |Bllyl < Alyl.

This implies, |3] < rj, < 7. Hence, (4.1.19) is proved.
If || = r, then |y| is an extremal vector of A. From Lemma 4.1.9 follows that |y| is
a positive eigenvector of A corresponding to the eigenvalue r. Thus,

rlyl = |Bllyl = Alyl. (4.1.21)
Since |y| > 0, from (4.1.21) and |B| < A follows
IB| = A. (4.1.22)
For vector y, (Jy| > 0), we set
D:diag{i,... y_}
|1 |l
Then
y = Dly| (4.1.23)
Setting 3 = re’?, then By = By can be written as
Cly| = |yl (4.1.24)
where ‘
C=e"“D'BD. (4.1.25)
From (4.1.21) and (4.1.24) follows that
Clyl = |Bllyl = Alyl. (4.1.26)

From the definition of C' in (4.1.25) follows that |C| = |B|. Combining with (4.1.22) we
have
ICl=|B]=A (4.1.27)

Thus, from (4.1.26) we conclude that C|y| = |C||y|, and as |y| > 0, follows C' = |C/|, and
thus C' = A from (4.1.27). Combing this result with (4.1.25) gives

B=¢e¥DAD™'.

Conversely, it is obvious that B has the form in (4.1.20), then |B| = A. So, B has an
eigenvalue § with || = r. n
Setting B = A in Lemma 4.1.10, we have
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Corollary 4.1.11 If A > 0 is irreducible, then the positive eigenvalue r of Lemma 4.1.9
equals the spectral radius p(A) of A.

Lemma 4.1.12 If A > 0 is irreducible and B is any principal squared submatriz of A,
then p(B) < p(A).

Proof: There is a permutation P such that

. All 0 T All A12
C—[ 0 0] and PAP _{Am Aﬂ}.

Clearly, 0 < C < PAPT and p(C) = p(B) = p(Ay1). But as C = |C| # PAPT follows
that p(B) < p(A). [

4.1.2 The theorems of Stein-Rosenberg
Remark 4.1.4 Let D be nonsingular in the standard decomposition (4.1.5)

A=D—-L—-R.
Consider A= D 'A=D—L—R,where D=1, L =D 'L and R = D 'R. Then we

have

DY L+R)=D'L+D'R=DYL+R)

and . . 3
(D — L)*lR =(I - D*IL)*lDflR = (D — L)*lR.

When we investigate TSM and SSM, we can without loss of generality suppose that
D = I. Therefore in the following paragraph we assume that

A=I-L-R. (4.1.28)
The iteration matrices of TSM and SSM become
J=L+R, (4.1.29)

H=(-L)'R, (4.1.30)

respectively. If L >0and R >0, then Jand H= (I - L) 'R=([I+L+---+L" YR
are nonnegative. Here, we have L™ = (.

Theorem 4.1.13 Let A=1—L—R, L>0, R>0,n>2. Then precisely one of the
following relationships holds:

(i) 0=p(H) = p(J),

(i) 0 <p(H) <p(J) <1,
(iii) p(H) = p(J) =1,
(iv) p(H) > p(J) > 1.
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Proof: ~We will only give the proof of the case when A is irreducible. Hence the case
(i) does not occur. If A is reducible, then we can transform the reducible matrices into
irreducible matrices by using the normalform method. The method is very skillful and
behind our discussion, so we assume that A is irreducible.
(a) claim: p(H) > 0.

Let z > 0 be given. Then b = (I — L)™*Rz > 0. Certainly Rz # 0, thus b =
Rz+ LRz+---+L" 'Rz #0. Hence I = {i | b; = 0} # {1,2,--- ,n} = N. Because
Rz =b— Lb, for i € I we have

0=0b;= Zrikzk-i‘zlikbk

k>i k<i

and
Tik:O,iEI,k>’i,k¢I,
lw=0,1€l, k<i, k&1,

and a;, = 0 for alli € I, k & I. Since A is irreducible, it follows that I = (). For b > 0
and from Theorem 4.1.5 follows that 0 < 1r£11<n {%} < p(H).

(b) Let z > 0 be the eigenvector of H corresponding to py = p(H) (by Theorem 4.1.8).
Let py = p(J). Since (I — L)™' Rz = pyx, thus

1 1
—Rrx=x—Lx or x = (L+ —R)z.
PH pPH

Since A is irreducible, we can conclude that L + piHR is also irreducible. According to
Theorem 4.1.7 (iii) we have

1
1=p(L+—R) (4.1.31)
PH
and z > 0. Now we define the real value function
1
o(t) = p(L + ;R), t> 0. (4.1.32)

From Theorem 4.1.7 (iv) we can conclude that ¢(t) is strictly (monotonic) decreasing in
t. On the other hand, t¢(t) = p(tL + R), t > 0 is strictly (monotone) increasing in t.

(case 1) py < 1: Since p; = ¢(1), it implies that

ps=¢(1) = p(L+ R) > p(puL + R) = pup(L + pHLR) = pu.  (by (4.1.31))

(case2) py=1: p(L+ R)=p;=1.
(case 3) pg > 1: p;j=¢(1) > ¢(py) =1 and
pr=o(1) = p(L+ R) < plpuL + R) = pup(L + piHR) = pH-

Theorem 4.1.14 If the off-diagonal elements in A (A = I — L— R) are nonpositive, then
SSM is convergent if and only if TSM is convergent. Furthermore, SSM is asymptotically
faster.

Proof:  The result follows immediately from theorem 4.1.13 and (4.1.13). n



4.1 General procedures for the construction of iterative methods 75

4.1.3 Sufficient conditions for convergence of TSM and SSM

Definition 4.1.3 A real matriz B is called an M-matriz if b;; < 0,4 # j and B~ exists
with B~ > 0.

In the following theorems we give some important equivalent conditions of the M —
matrix.

Theorem 4.1.15 Let B be a real matriz with b;; < 0 for i # j. Then the following
statements are equivalent.

(i) B is an M —matriz.
(ii) There exists a vector v > 0 so that Bv > 0.
(iii) B has a decomposition B = sI — C with C > 0 and p(C) < s.

(iv) For each decomposition B = D — C with D = diag (d;) and C > 0, it holds: d; > 0,
i=1,2,---,n, and p(D7'C) < 1.

(v) There is a decomposition B = D — C, with D = diag(d;) and C > 0 it holds:
di>0,i=1,2,---,n and p(D7'C) < 1.
Further, if B is irreducible, then (6) is equivalent to (1)-(5).

(vi) There exists a vector v > 0 so that Bv > 0, # 0.
Proof:

(i) = (ii) : Let e = (1,---,1)". Since B~! > 0 is nonsingular it follows v = B~'e > 0
and Bv = B(B 'e) =¢e > 0.

(ii) = (iii) : Let s > max(b;). It follows B = sI — C with C' > 0. There exists a
v > 0 with Bv = sv — Cv (via (ii)), also sv > Cv. From the statement (4.1.13) in
Theorem 4.1.6 follows p(C') < s.

(iii) = (i) : B=sI —C =s(I —1C). For p(:C) < 1 and from Theorem 1.2.6 follows

o0
that there exists a series expansion (I —+C)™' = 3~ (1C)*. Since the terms in sum
v=0

are nonnegative, we get B~ = 1(I — 1C)~! > 0.

(ii) = (iv) : From Bv = Dv — Cv > 0 follows Dv > Cv > 0 and d; > 0, for i =
1,2,---,n. Hence D' > 0 and v > D 'Cv > 0. From (4.1.13) follows that
p(D7IC) < 1.

(iv) = (v) : Trivial.

(v) = (i) : Since p(D7'C) < 1, it follows from Theorem 1.2.6 that (I — D~'C)~*

exists and equals to > (D~!C)*. Since the terms in sum are nonnegative, we have
k=0
(I — D7*C) ! is nonnegative and B~! = (I — D~'C)~'D~1 > 0.

(ii) = (vi) : Trivial
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(vi) = (v) : Consider the decomposition B = D—C, with d; = b;;. Let {I =i | d; < 0}.
From divi—zk# cikvr > 0 follows ¢;, = 0 fori € I, and k # i. Since Bv > 0,# 0 =
I #{1,--- ,n}. But B is irreducible = I = () and d; > 0. Hence for Dv >,# Cv
also v >,# D™'Cv and (4.1.14) show that p(D'C) < 1. ]

Remark 4.1.5 Theorem 4.1.15 can also be described as follows: If a;; <0, i # j, then
TSM and SSM converge if and only if A is an M-matriz.

Proof: By (i) < (iv) and (i) < (v) of the previous theorem and Theorem 4.1.14. u

Lemma 4.1.16 Let A be an arbitrary complex matriz and define |A| = [|a;;|]. If|A] < C,
then p(A) < p(C). Especially p(A) < p(|Al).

Proof: There is a x # 0 with Az = Az and |\| = p(A). Hence

n n n
p(A)lai] = 1D anar] <Y lawlls] < calanl.
k=1 k=1 k=1

Thus,
p(A)lz| < Clz].

If |z| > 0, then from (4.1.13) we have p(A) < p(C). Otherwise, let I = {i | x; # 0} and
C be the matrix, which consists of the ith row and ¢th column of C' with i € I. Then
we have p(A)|x;| < Crl|zy|. Here |z;| consists of ith component of |z| with i € I. Then
from |z7| > 0 and (4.1.13) follows p(A) < p(Cr). We now fill C; with zero up to an n x n
matrix C;. Then C; < C. Thus, p(C;) = p(C;) < p(C) (by Theorem 4.1.8(iii)). [

Theorem 4.1.17 Let A be an arbitrary complex matriz. It satisfies
either (Strong Row Sum Criterion):

Z |laij| < lag|, i=1,---n. (4.1.33)
J#i

or (Weak Row Sum Criterion):

E |azj| S |aii|7 Zzla y 1,
J#i
< Naigiy|, at least one 1o, (4.1.34)

for A irreducible. Then TSM and SSM both are convergent.

Proof: Let A= D —L—R. From (4.1.33) and (4.1.34) D must be nonsingular and then
as in Remark 4.1.4 we can w.l.o.g. assume that D = I. Now let B = I — |L| — |R|. Then
(4.1.33) can be written as Be > 0. From Theorem 4.1.15(ii) and (i) follows that B is an
M-matrix.

(4.1.34) can be written as Be > 0, Be # 0. Since A is irreducible, also B, from
Theorem 4.1.15 (vi) and (i) follows that B is an M-matrix.
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Especially, from theorem 4.1.15(i), (iv) and Theorem 4.1.13 follows that

p(IL| + [R]) < 1 and p((I — |L])"|R]) < 1.
Now Lemma 4.1.16 shows that
p(L+R) <p(Ll+|R]) <1.

So TSM is convergent. Similarly,

p(I—=L)'R) = p(R+LR+---+L"'R)
< p(IRI+|L|IR+ -+ |L|"7"R])
= p((I = |L)7YR]) < 1.
So SSM is convergent. [ |

4.2 Relaxation Methods (Successive Over-Relaxation
(SOR) Method )

Consider the standard decomposition (4.1.5)
A=D—-L—-R
for solving the linear system (4.1.1) Az = b. The single-step method (SSM)
(D — L)z"*' = Rz™ 4+

can be written in the form

g0 = 2O L (D LY 4 DR 4 D7y — 20} = 2O 4 @), (4.2.1)
Consider a general form of (4.2.1)

) = 20 4 @ (4.2.2)

with constant w. Also (4.2.2) can be written as

Dz = Dz + wLxY + wR2® 4 wb — wD2®.

Then
2 = (D —wL) (1 — w)D + wR)z"Y + w(D — wL)™'b. (4.2.3)
We now assume that D = [ as above. Then (4.2.3) becomes
2 = (I —wL) (1 — W) +wR)z + w(I —wL)™'b (4.2.4)
with the iteration matrix
L, = (I —wL)™((1 —w)I +wR). (4.2.5)
These methods is called for
w < 1: under relaxation,
w=1: single-step method,
w>1: over relaxation. (In general: relaxation methods.)

We now try to choose an w such that p(L,,) is possibly small. But this is only under
some special assumptions possible. we first list a few qualitative results about p(L,,).
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Theorem 4.2.1 Let A = D — L — L* be hermitian and positive definite. Then the
relaxation method is convergent for 0 < w < 2.

Proof: ~ We claim that each eigenvalue of L, has absolute value smaller than 1 (i.e.,
p(Ly) <1). Let A € 0(L,). Then there is an = # 0 with

AMD —wL)x = ((1 —w)D + wL")x. (4.2.6)
It holds obviously

2A(D —wl) = MN(2—-w)D+w(D —2L))
= M2-w)D+wA+w(L*—L))

and

2[(1 —w)D+wl'] = (2—w)D+w(—D +2L")
= 2-w)D—-wA+w(L*—L).

Hence multiplying (4.2.6) by z* we get

AM(2 —w)z*Dx + wz* Az + wx™(L* — L)x)
=(2—-w)r"Dr —wr*Ax + wx*(L* — L)z

orbyd=2x*Dx >0, a:=x*Azr > 0 and 2*(L* — L)z :=is, s € R we get
AM(2 —w)d 4+ wa + iws) = (2 —w)d — wa + iws.
Dividing above equation by w and setting p = (2 — w)/w, we get
Mpd+a+is} = pud — a+is.

For 0 < w < 2 we have > 0 and pud—+is is in the right half plane. Therefore the distance

from a to pud + is is smaller than that from —a. So we have |A| = |%| < 1. u

Theorem 4.2.2 Let A be Hermitian and nonsingular with positive diagonal. If SSM
converges, then A is positive definite.

Proof: Let A= D — L — L*. For any matrix C' it holds:

A—(I—ACHA(I—CA) = A— A+ ACA+ AC*A— AC*ACA
= ACH(C* '+ C = A)CA.

For special case that C'= (D — L)~ we have
C*'+C'-A=D-L"+D—-L—-D+L+L"'=D

and

I-CA=D~-Ly Y D-L—-A)=(D-L)'L*=H.

Hence we obtain

A—H*AH =AD—-L)*D(D—-L)'A=:B
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Thus H*AH = A — B. D is positive definite, obviously so is B (since (D — L)™'A is
nonsingular). Because p(H) < 1, for any gy € C™ the sequence {e,,}5o_, defined by
em = H™eo converges to zero. Therefore the sequence {e’ Ae,,}>°_, also converges to
zero. Furthermore, we have

Emir1Aemir = e, H*AHey, = €;, Aeyy, — €5, Beyy, < €, Aepy, (4.2.7)

because B > 0 is positive definite. If A is not positive definite, then thereis acg € C*\{0}
with e5Aeg < 0. This is a contradiction that {e¥ Ae,,} — 0 and (4.2.7). u

4.2.1 Determination of the Optimal Parameter w for 2-consistly
Ordered Matrices

For an important class of matrices the more qualitative assertions of Theorems 4.2.1 and
4.2.2 can be considerably sharpened. This is the class of consistly ordered matrices. The
optimal parameter w, with

p(L) = min p(L,)
can be determined. We consider A =1 — L — R.

Definition 4.2.1 A is called 2-consistly ordered, if the eigenvalues of oL + o 'R are
independent of a.

0 R
L 0

S [0 oR] [T 07[0 R][I 0
ol o R_[aL 0o |“|oar]|L o]0 o]

This shows that oL +a 'R is similar to L+ R, so the eigenvalues are independent to c.
A is 2-consistently ordered. [ |

Example 4.2.1 A= — [ } + 1,

Let A=1—-L—-—R,J=L+R. Let sgi), sg), ... denote the lengths of all closed
oriented path (oriented cycles)

B_)Pk1_>Pk2_>"'_)Pk(i):Pi

in G(J) which leads from P; to P;. Denoting by [; the greatest common divisor: [; =

g.c.d.(sgi), sg), ce ).

Definition 4.2.2 The Graph G(J) is called 2-cyclic if Iy =1y = --- =1, = 2 and weakly
2-cyclic if all l; are even.

Definition 4.2.3 The matriz A has property A if there exists a permutation P such that

PAPT = { ]\13[1 ]\51 } with Dy and Dy diagonal.
2 Dy
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Theorem 4.2.3 For every nxn matriz A with property A and a;; # 0,1 =1,--- ,n, there
exists a permutation P such that A = D(I — L — R) of the permuted matriz A :== PAPT
15 2-consistly ordered.

Proof: There is a permutation P such that

Dy My ] =D(I - L—R)

PAPT =
{ My Dy

with

[D 0 [ 0 o [0 Di'm,
D_[O DQ],L_ {D21M2O}andR— [0 ; }

For a # 0, we have

B 0 o 'Dy'M, | 0 DMy
Je) = - { aDy " M, 0 =% poiym, o |
= S(X‘](]')S(;17
L o
where S, := [ 0 al ] [ |

Theorem 4.2.4 An irreducible matriz A has property A if and only if G(J) is weakly
2-cyclic. (Without proof!)

Example 4.2.2 Block tridiagonal matrices

Dy Ap
A= Ay Dy
' . An_in
AN N-1 Dy
If all D; are nonsingular, then
0 O[ilDl_lAlg s 0
-1 .
J(a) _ O(Dz' A21 0 ’
: : a "Dyt An i
0 ce O[DjiflAN,N—l 0

which obeys the relation J(a) = S, J(1)S, !, with S, = diag{l;,aly, -+ ,a¥ " Iy}. Thus
A is 2-consistly ordered. [ |

The other description: G(L + R) is bipartite.

1 b 0
Example 4.2.3 A = @ is 2-consistly ordered. The eigenvalues
. i bn—l
0 Cn—1 1

are the roots of det(A — A\I) = 0. The coefficients of above equation appear only those
products b;c;. For aL + a 'R, we substitute b; and ¢; by ébz- and ac;, respectively, then
the products are still b;c;. Therefore eigenvalues are independent of «. [ |
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Examples 4.2.1 and 4.2.2 are 2-cyclic.

Example 4.2.4

1 a b 0 a'ta a b
A=|101 0|, —aL—a'R=|0 0 0
c d 1 ac  ad 0

The coefficients of characteristic polynomial are independent to «, so A is 2-consistly
ordered. But G(L + R) is not bipartite, so not 2-cyclic. u

If A is 2-consistly ordered, then L+ R and —(L+R) (o = —1) has the same eigenvalues.
The nonzero eigenvalues of L + R appear in pairs. Hence

det(A\] — L — R) = \" H()\2 —p3), n=2r+m (m =0, possible). (4.2.8)
i=1
Theorem 4.2.5 Let A be 2-consistly ordered, a;; =1, w # 0. Then hold:
(1) If A # 0 is an eigenvalue of L, and p satisfies the equation
A+ w—1)% = \Pw?, (4.2.9)
then p is an eigenvalue of L+ R (so is —p).

(ii) If p is an eigenvalue of L + R and X\ satisfies the equation (4.2.9), then X is an
eigenvalue of L.

Remark 4.2.1 Ifw =1, then A = u?, and p((I — L)"'R) = (p(L + R))?.

Proof: 'We first prove the identity

det(M — sL — rR) = det(\ — /sr(L + R)). (4.2.10)
Since both sides are polynomials of the form A" + --- and

sL+71R= \/E(\/EL + \/gR) = sr(aL +a 'R),

if sr # 0, then sL + rR and /sr(L + R) have the same eigenvalues. It is obviously also
for the case sr = 0. The both polynomials in (4.2.10) have the same roots, so they are
identical. For

det(I — wL)det(\[ — L) = det(A(I — wL) — (1 —w)I — wR)
det(AN+w — 1) —wAL —wR) = ®(N)

and det(I —wL) # 0, X is an eigenvalue of L, if and only if ®(\) = 0. From (4.2.10)
follows
®(\) = det((A+w — DI —wVA(L + R))
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and that is (from (4.2.8))

T

O\ =M +w—D)" (A +w—1)* =), (4.2.11)

=1

where p; is an eigenvalue of L + R. Therefore, if u is an eigenvalue of (L + R) and A
satisfies (4.2.9), so is ®(\) = 0, then A is eigenvalue of L. This shows (b).

Now if A # 0 an eigenvalue of L, then one factor in (4.2.11) must be zero. Let p
satisfy (4.2.9). Then

(1) u #0: From (4.2.9) follows A +w — 1 # 0, so

A+w—1)* = X?u, foronei (from (4.2.11)),
= \o?p?, (from (4.2.9)).

This shows that p = +u;, so p is an eigenvalue of L + R.
(ii) = 0: We have A +w —1 =0 and
0=®(\) = det((A+w —1)] —wVA(L+ R)) = det(—wVA(L + R)),
i.e., L + R is singular, so u = 0 is eigenvalue of L + R. [ ]

Theorem 4.2.6 Let A = I — L — R be 2-consistly ordered. If L + R has only real
eigenvalues and satisfies p(L + R) < 1, then it holds

p(Ly,) =wpy —1 < p(Ly,), forw # wy, (4.2.12)

where
2

:1+\/1—p2(L+R)

Wp (solve wy in (4.2.9)).

P(L,)

1

>

Figure 4.1: figure of p(L,,)

One has in general,

w—1, forw, <w <2

L,)= 4.2.1
p(Lw) {1—w+%w2p2+wu\/l—w+iw2u2, for 0 < w < wy ( 3)
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Remark: We first prove the following Theorem proposed by Kahan: For arbitrary ma-
trices A it holds

p(Ly) > |w— 1], for all w. (4.2.14)

Proof:  Since det(I —wL) =1 for all w, the characteristic polynomial ®(\) of L, is

O(N) = det(A — L) =det(({ —wL)(A — L))
det((A+w —1)] —wAL —wR).

For [T Mi(Ly,) = ®(0) = det((w — 1) —wR) = (w — 1), it follows immediately that

1=1

p(Ly) = max |Ai(Ly)| 2 |w — 1].

Proof of Theorem 4.2.6: By assumption the eigenvalues y; of L+ R are real and —p(L+
R) < u; < p(L+ R) < 1. For a fixed w € (0,2) (by (4.2.14) in the Remark it suffices

to consider the interval (0,2)) and for each p; there are two eigenvalues )\El)(w, ;) and
)\2(2) (w, ;) of L,, which are obtained by solving the quadratic equation (4.2.9) in A.
Geometrically, /\El)(w) and )\2(2) (w) are obtained as abscissae of the points of intersection
of the straight line g,,(A) = 2*=1 and the parabola m;(\) := 4/ A; (see Figure 4.2). The
line g, (A) has the slope 1/w and passes through the point (1,1). If g, (A)Nm;(A\) = ¢, then
Agl)(w) and A§2) (w) are conjugate complex with modulus |w— 1| (from (4.2.9)). Evidently

p(L) = max(|A{” (@), AP (@)]) = max(IAD ()], AP (w)]),

where A(V(w), A®(w) being obtained by intersecting g, (\) with m()\) := £y, with
= p(L+R) = max; |y;|. By solving (4.2.9) with p = p(L+ R) for A, one verifies (4.2.13)
immediately, and thus also the remaining assertions of the theorem. [ ]

8N g, M)

Figure 4.2: Geometrical view of )\El)(w) and )\Z@) (w).
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4.2.2 Practical Determination of Relaxation Parameter w;

For w € [1,wy], from (4.2.13) in Theorem 4.2.6 we have

p(L.) = [“2“ 4= W 2 — 4w 1)) (4.2.15)
" _ L) tw 1 (4.2.16)
wy/p(Lw)

Here p = p(L + R). If p is simple, then p(L,) is also a simple eigenvalue (See the
proof of Theorem 4.2.6). So one can determine an approximation for p(L,,) using power
method (see later for details!): Let {z(*)}3°, be the sequence of iterates, which generated
by (4.2.6) with parameter w. Let e®) = z(®) — 2 be the error vector which satisfies the
relation e®) = Lke(® (Here Az = b). We define d%) := z+1) — 2 for k € N. Then we
have

g gk — ) _ o) — (1 — 1e® = (L, — I)Lﬁe(o)
= LML, —De® = LEq©.

Hence d®) = LEd(©®). For sufficiently large & € N we compute

2 — @}
R MR

(4.2.17)

which is a good approximation for p(L,). We also determine the corresponding approx-
imation for p by (4.2.16) and the corresponding optimal parameter @ as (by Theorem
4.2.4):

5=2/(1+[1 - (g +w— 1)/ (wq)]"2). (4.2.18)

4.2.3 Break-off Criterion for SOR Method
From d%) = (L, — I)e® follows (for p(L,) < 1) that e*) = (L, — I)~*d®) and then

1
le®lo0 < 5 14 -

- P(Lw)

With an estimate ¢ < 1 for p(L,) one obtains the break-off criterion for a given ¢ € R

1d®]| < (1—q)e, (for absolute error),
() oo/ lla™Vlse - <

The estimate g in (4.2.17) for the spectral radius p(L,) of SOR method is theoretically
justified, if w < wy,. But during the computation we cannot guarantee that the new @ also
satisfies w < wy. Then an oscillation of g at @ may occur, and 1 — ¢ can be considerably
larger than 1 — p(Lg); the break-off criterion may be satisfied too early. It is better to
take ¢ := max(qy, @ — 1) instead of gj.

(1 —q)e, (for relative error).
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- NMethod 2 A RNXNT  am L

R". Let A= D — L — R with D nonsingular. Suppose that A is 2-consistly ordered, all
eigenvalues of J := D™ (L + R) are real and p(J) is a simple eigenvalue of J satisfying
p(J) < 1. [We apply a simple strategy to the following Algorithm, to perform a new
updating after p iterative steps (p = 5).]

Step 1: Choose a bound for machine precision ¢ € R, and a positive integer p, and a
initial vector (¥ € R™. Let w:=1, ¢ := 1 and k := 0.

Step 2: (Iterative step):
Compute for i =1,...,n,

i—1 n
(k+1) (k) w (k+1) (k)
zp = (l-wr + . z;%% + Z;l a5 — bi
Jj= J=i

If k is not positive integral multiplicity of p, then go to Step 4.

Step 3: (Adaptation of the Estimate of the Optimal Parameter):

Compute
‘xEkJrl) B xgk)‘
= max ———————.
1<i<n |=’Ez(k) _ xgk_1)|

If ¢ > 1, then go to Step 5.

Let ¢ := max(q,w — 1) and w := 2

_(g+w-12
1y /1 Lot

Step 4: (Break-off criterion): If

max x§k+1) xEk))

= S 6(1 - Q)u
max Z‘(k—H)
1<i<n | *

then stop.
Step 5: Let k:= k + 1 and go to step 2.

4.3 Application to Finite Difference Methods: Model
Problem (Example 4.1.3)

We consider the Dirichlet boundary-value problem (Model problem) as in Example

8.3. We shall solve a linear system Az = b of the N? x N? matrix A as in (4.1.18).
To Jacobi method: The iterative matrix is

1
J=L+R=7(4-A).

Graph G(J) (N = 3) is connected and weakly 2-cyclic. Thus, A is irreducible and has
property A. It is easily seen that A is 2-consistly ordered (Exercise!).
To Gauss-Seidel method: The iterative matrix is

H=(-L"R
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From the Remark of Theorem 4.2.5 and (4.1.20) follows that

p(H) = p(J)* = cos®

According to Theorem 4.2.6 the optimal relaxation parameter w, and p(L,,) are given by

2 2
Wp = = " p (31)
1+ /1—COS2NL+1 1+SlIlN—+1
and )
COS” 2~
p(Lu,) = e AL (3:2)
b (14 sin N_+1>2

The number k = k(N) with p(J)¥ = p(L,,) indicates that the k steps of Jacobi method
produce the same reduction as one step of the optimal relaxation method. Clearly,

k=1np(Ly,)/Inp(J). (3.3)

Now for small z one has In(1 + z) = 2 — 2%/2 + O(z%) and for large N we have

T 2 1
o8 (N + 1) =l o TOG)

Thus that
0 0() = g + O3
BTN TN
Similarly,
.
Inp(L,,) = 2[lnp(J)—In(1l+sin N 1)]
72 T w2 1
= 2 —_ — —_—
v w1 Tav e O
2m 1
= N1 + O(m) (for large N).
and AN 41
b= k() ~ 2N D (3.4)
T

The optimal relaxation method is more than N times as fast as the Jacobi method. The
quantities

—In10
R, = ~ 0.467(N + 1)% 3.5
1
Ry = #ﬁzQ%MN+U2 (3.6)
In 10
R = ————  ~0.367(N+1 3.7
Ly, hlp(wa) ( + ) ( )

indicate the number of iterations required in the Jacobi, the Gauss-Seidel method, and
the optimal relaxation method, respectively, in order to reduce the error by a factor of

1/10.
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4.4 Block Iterative Methods

A natural block structure
Ay o A
An1 -+ Ann

where A;; are square matrices. In addition, if all A;; are nonsingular, we introduce block
iterative methods relative to the given partition 7 of A, which is analogous to (4.1.5):

A=D,—-L,—R;

with
A 0 0 0
0 Ay 0 0
D, = : (4.1a)
0 0 .0
0 0 0 Annx
[ 0 0 0
L7r = - A21 ;
: 0
ANt Ann-1 0
[0 A AN
R, = — 0 R : . (4.1D)
: ' ANfl,N
0 -~ 0 0

One obtains the block Jacobi method (block total-step method) for the solution of Az = b
by choosing in (4.1.4) analogously to (4.1.6) or (4.1.7), F' := D,. One thus obtains

D™ = b+ (L, + Ry)z® (4.2)
or ‘ A
Ajjxg'H_D :bJ_ZAJk:L‘](;)ﬂ fOI‘jzl,...,N, i:071a27"' : (43)
k#j
We must solve system of linear equations of the form Aj;z =y, j = 1,--- ,N. By

the methods of Chapter 2, a triangular factorization (or a Cholesky factorization, etc.)
A,; = L;R; we can reduce A;;z = y to the two triangular systems

Liu =y and Rjz = u.

For the matrix A in Example 8.3 (model problem): Here A;; are positive definite tridi-
agonal N x N matrices.

4 -1 0 0 x 0 -0
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The rate of convergence of (4.3) is determined by p(J;) of the matrix
Jr=L,+ R,

with L, := D_'L, and R, := D_'R,.
One can analogously to (4.1.8) define a block Gauss-Seidel method (block single-step
method):
H,=(I-L,) 'R,

or

Apal™ =b; =3 " Apat = Apal) forj =1, N, i=0,1,2,-+ . (4.4)

k<j k>i

As in Section 10, one can also introduce block relaxation methods through the choice
LT = (I —wL,) (1 —w)I 4+ wR,] (4.5)

and
24D = (I — L) ™ (1 — )T + wRe)z® + w(l — wLy) ™. (4.6)

If one defines A as 2-consistly ordered whenever the eigenvalues of the matrices J,(«) =
aL, + a 'R, are independent of o. Optimal relaxation factors are determined as in
Theorem 4.2.6 with the help of p(.J;). For the model problem (Example 8.3), relative to
the partition given in (8.18), p(J;) can again be determined explicitly. One finds

s
COS N+l

plr) = o= < p(J). (4.7)

us
2—(:osNJrl

For the corresponding optimal block relaxation method one has asymptotically for N —
OO?

p(LE,) = p(Lu,)"

with k = V2 (Exercise!). The number of iterations is reduced by a factor V2 compared
to the ordinary optimal relaxation method.

4.5 The ADI method of Peaceman and Rachford

4.5.1 ADI method (alternating-direction implicit iterative method)
Slightly generalizing the model problem (4.1.14), we consider the Poisson problem
“Ugy — Uyy + Ju(x,y) = f(x,y), for ('r?y) € Qv

(4.5.1)
u(z,y) =0, for (z,y) € 99,

where Q = {(z,y) |0 <z <1, 0 <y < 1} C R? with boundary 9f2. Here ¢ > 0 is a
constant and f : QU 02 — R continous function. Using the same discretization and the
same notation as in Example 8.3, one obtains

A2ij — zi1j — Zig1j — Zijo1 — Zij1 + oR*z; = KA fi;, 1<i, j< N (4.5.2)
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with 20, = 2n4+1 = 2io = zing1 = 0, 0 < 7,5 < N + 1 for the approximate values z;; of
w;j = u(x;,y;). To the decomposition

4zij — Zi—1j — Zitlj — Zig-1 — Zij+1 + 0h22ij
= (221] — Ri—1,j — Zi+1,j) -+ (221] — Zij-1— zi,j—i—l) + (O'h22ij) N (453)

there corresponds a decomposition of the matrix A if the system Az = b, of the form
A= H+V + 3% (H: Horizontal, V: Vertical). Here H, V, ¥ are defined by

Wi = 2% — Zi—1j — i+l itw=Hz, (4.5.4&)
Wij = 2% — Zij-1 — Zij41, i w=Vz, (4.5.4b)
Wi; = ahgzij, if w=2%z. (454(3)

Y is a diagonal matrix with nonnegative elements, H and V are both symmetric and
positive definite, where H = [Jand V = []. A = H +V + ¥ is now transformed
equivalently into

1 1
(H+§2+7‘])Z:<T1—V—§Z)Z+b

and also . )
(V+§Z+7"])z: (rl — H — §E)z+b.

Here r is an arbitrary real number. Let H; := H + %E, Vi=V+ %E, one obtains ADI
method:

(Hy 4 ripy D22 = (i T — V1) 29 b, (4.5.5)
(Vi + Ti+1])2(i+1) = (ripqd — Hl)z(i+1/2) + b. (4.5.6)

With suitable ordering of the variables z;;, the matrices H; + r;41/ and Vi + 7,411 are
positive definite tridiagonal matrices (assuming ;41 > 0), so that the systems (4.5.5) and

(4.5.6) can easily be solved for z(+/2) and 2+ via a Cholesky factorization. Eliminating
20+1/2) in (4.5.5) and (4.5.6) we get

20+ — Tri+1z(i) + Gryy, (D) (4.5.7)

with
T, :=(Vi+rD)(rl — H)(H, + 1) (rI — V), (4.5.8)
gr(b) := (Vi +rI) I+ (rl — Hy)(Hy +rI)~']b. (4.5.9)

For the error f; := 2 — 2 it follows from (4.5.7) and the relation z = T},,, 2 + g, (b) by
subtraction, that

firn =Ty 1is (4.5.10)
and therefore
Fo=To T --To fo. (4.5.11)
In view of (4.5.10) and (4.5.11), r; are to be determined so that the spectral radius
po(T,, .-+, T, ) becomes as small as possible.

For the case r; = r:
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Theorem 4.5.1 Under the assumption that Hy and Vi are positive definite, one has
p(T,.) <1, for all r > 0.

Proof: Vi and H; are positive definite. Therefore (Vi +rI)~! and (H; +rI)~! exist, for
r > 0, and hence also 7} of (4.5.8). The matrix

T. = Vi+rDT,(Vi+r)™t
= [(rI — H)(Hy +rD) Y[rl = V) (Vi +rD)7}

is similar to T,. Hence p(T,) = p(T,). The matrix H := (rI — Hy)(H, + rI)~" has
the eigenvalues (r — A\;)/(r + A;), where \; = \;(H,) are the eigenvalues of H,. Since

r >0, A\; > 0 it follows that |(r — X;)/(r + A;)| < 1 and thus p(H) < 1. Since H; also H
are symmetric, we have
[Hl[2 = p(H) < 1.

In the same way one has
V=2 < 1.

Let V := (rI — Vi)(Vi 4 rI)~'. Thus
p(T) < | Tollo < [1H[IV ]2 < 1.

The eigenvalues of 7). can be exhibited by

Hy 200 = 26D (4.5.12a)
‘/iz(kvl) — Mlz(krl), (4512b)
T, 20 — (kD) kD), (4.5.12¢)
(kvl) — a1 T o) Iy ) 1
where z;;" := sin JSHSln ~virr 1 <4, < N, with
o _ o) =) e T 4.5.13
: (r+ ) (r + ) 2(N +1)° ( )
so that )
_ Tl
p(Ty) = o |

One finally finds a result (Exercise!):

cos? (NLH)
(1+ sin (357))"

minp<Tr) = P(wa) =

r>0

where w, characterizes the best (ordinary) relaxation method. The best ADI method
assuming constant choice of parameters, has the same rate of convergence for the model
problem as the optimal ordinary relaxation method. Since the individual iteration step
in ADI method is a great deal more expensive than in the relaxation method, the ADI
method would appear to be inferior. This is certainly true if »r = ry = ry = - - - is chosen.
For the case r; # r:
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However, if one makes use of the option to choose a separate parameter r; in each
step, the picture changes in favor of the ADI method. Indeed

T, - Ty, 20 = b0 ),
where
e — )
o ey 7"; +Ml T'J +Mk)
Choosing r; := p;, for 5 =1,--- | N, we have ,uSN). =0, for 1 <k, [ < N, so that by

the linear independence of the z(k l), T,y Ty, = 0. With this special choice of the r;,
the ADI method for the model problem terminates after IV steps with the exact solution.
This is a happy coincidence, which is due to the following essential assumptions:
(1) H; and V; have in common a set of eigenvectors which span the whole space.
(2) The eigenvalues of H; and V; are known.

Theorem 4.5.2 For Two Hermitian matrices Hy and V; € C"*", there exist n linearly
independent (orthogonal) vectors zi,- -+ , z,, which are common eigenvectors of Hy and

Vi,
lei = 0;%;, ‘/121' = T;%i, fOT' 1= 1, e, N, (4514)

if and only if Hy commutes with Vi, i.e., HiV, = Vi H;.
Proof: “=7": From (4.5.14) it follows that
HlVlzi = 0;Ti%; — ‘/1H12i, fOI‘ 7 = 1, 2, R

Since the z; form a basis in C”, it follows at once that H,V; = V1 H;.
“<". Let H{Vy, = V1 H;. Let \{ < --- < A, be the eigenvalues of V; with the multiplicities

o(N;), i=1,---,r. According to Theorem 1.1.1 there exists a unitary matrix U with
Al 0
Ay =U"WV U = ..
0 A1,

From H1V1~ = V1 H, it follows immediately that ﬁl = Avlzll, with ﬁl = U*"H,U. We
partition H; analogously to Ay:

Hy --- Hy,
Hy = : :
Hrl e Hrr
By multiplying out B B
HiAy = AvHy,
one obtains H;; = 0, for i # j, since \; # A;. The H;; are Hermitian of order o();). There
U,
exist unitary matrices U; such that U} H;;U; = A; (diagonal). For U = . €

Ur
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Cr*n, since H;; = 0, for ¢ # 7, it follows the relations

Ay
(UU)*H(UU) = U*H,U = Ay =

ie., H(UU)= (UU)Ay,
and
(UU)*Vl(U[_]) =U*AyU = Ay
ie., Vi(UU)= (UU)Ay,
so that z; := (U U )e; can be taken as n common orthogonal eigenvectors of H; and V;. R
We now assume in the following discussion that H; and V; are two positive definite

commuting n X n matrices with (4.5.14) and that two numbers «, § are given such that
O<a<o,n<p,fori=1,--- ,n. Then

o (r=o)(r—m)
ba = o )

z;, forr>0,i=1,2,--- ,n.

gives the problem:

m

p<T7“m7"'7TT1> = Pgl%}; - (

(rj —0i)(rj = 7)
r;i+ o) (r; + 1)

2
ri—x
< max ! (4.5.15)
agz<p -} r; +x
7j=1
For a given m, it is natural to choose r; > 0,7 =1,--- ,m, so that the function
ri —
. = 4.5.16
O(re, - 5 Tm) Cgl?%(ﬂ 8 Y P ; ( )
]:

becomes as small as possible. For each m it can be shown that there are uniquely

determined number 7; with o < 7; < 8,4 =1,--- ,m, such that
(o, B) = @(T1, ..., Tm) = ri>[{rii§ni§mgp(rl’ ey Tm)- (4.5.17)
The optimal parameter 7,--- 7, can even be given explicitly, for each m, in term

of elliptic functions [see Young (1971) pp.518-525]. In the special case m = 2F, the
relevant results will now be presented without proof [see Young (1971), Varga (1962)].
Let rfm),z' =1,2---,m, denote the optimal ADI parameters for m = 2¥. The rgm) and
dm(cr, B) can be computed recursively by means of Gauss’s arithmetic-geometric mean
algorithm. It can be shown that

atp
2

don(ev, B) = dn(\/ 0B, ). (4.5.18)
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(2n)

The optimal parameter of the minimax problem (4.5.17), ;" and r§”) , being related by

o _ 1+ gy

.= 5 ,1=1,2,-+- ,n. (4.5.19)
Define o := a, By := . Then
Qo + )
Qi1 =\ ;B Bip1 = — b ,J=0,1,--- k—1. (4.5.20)

Thus

ko(Oéoaﬁo) = d2k*1(a17ﬁ1>_
= di(ag, Br) = \/\/%_T_\/\/:

The solution of d;(ay, k) can be found with rl = VaiPr. The optimal ADI parameter

(Exercise!) (4.5.21)

rgm), i=1,---,m = 2% can be computed as follows:
(1) 350) = VS
(ii) For j = 0,1,--- ,k — 1, determine sgjﬂ),z’ =1,2,---,27 as the 27*! solutions of

the 2/ quadratic equations in x,

. 1 D1 :
s :i(ﬁakla—ﬁkla), P=1.2.. ) (4.5.22)
T

(iii) Put 7™ =¥ i=1,2,... m=2k
The sz(»j),i =1,2,---,27 are just the optimal ADI parameters for the interval [aj_;, Bi—;].
Let us use these formulas to study the model problem (8.14)(8.16), with m = 2% fixed,

and the asymptotic behavior of dox (v, f) as N — oo. For a and 8 we take the best
possible bounds

Nm s
= 4si 4 ——— =4cos’ ——. 4.5.23
o = 4sin® 2(]\/ ST D) B = 4sin’ XNTT) cos XNTT) ( )

/ ™
as N — oo, m := 2.

Proof of (4.5.24): By induction on k. Let ¢, := \/ag/Bk. One obtains from ((4.5.20)
and (4.5.21) that

We then have

1—Ck
1—|—Ck

dor(a, B) = (4.5.25)

and
QCk

- 4.5.26
1+¢c ( )

2 _
Cry1 =
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In order to prove (4.5.24), it suffices to show that

m
~ 2 QfI— N . 4.5.27

It follows then from (4.5.25) that for N — oo, dor(a, f) ~ 1 — 2¢;. But (4.5.27) is true
for £ = 0, by using

7 T
=N T T AN 1)

Thus, if (4.5.27) is valid for some k& > 0, then it is also valid for k + 1, because from

(4.5.26) we have at once ¢y ~ /2, as N — co. |

In practice, the parameter r; are often repeated cyclically, i.e., one chooses a fixed m

(m = 2%), then determines approximately the optimal ADI parameter Tgm) belonging to

this m, and finally takes for the ADI method the parameters

T jm+i 3:7“§m) fori=1,2,---,m, j=0,1,---.

If m individual steps of the ADI method are considered a “big iteration step”, then the

quantity
—In10

Inp(Try,,...,T,)

indicates how many big iteration steps are required to reduce the error by a factor of
1/10, i.e.,

In 10
—-m
np(T,, ,....,7T:)
indicates how many ordinary ADI steps, on the average, are required for the same purpose.

In case of the model problem one obtains for the optimal choice of parameter and m = 2%,
by virtue of (4.5.15) and (4.5.24),

T. ... T.)<d, 201 -8p/— " N
p( m 7 ) 1)— (a7/8) 4(N+1)7 %m7

RXTBI =

m
np(Ty,, ... Tp) < —8 75— N — o0,
so that
. AN + 1
R < %m(m) ANVHD N (4.5.28)

Comparing to (3.5)-(3.7) shows that for m > 1 the ADI method converges considerably
faster than the optimal ordinary relaxation method. This convergence behavior estab-
lishes the practical significance of the ADI method.

4.5.2 The algorithm of Buneman for the solution of the dis-
cretized Poisson Equation

Consider the possion problem

—Ugy — uyy +ou= f(x7y>’ fOI‘ (l’,y) € Qa
{ u(z,y) =0, for (z,y) € 09, (45.29)
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where Q = {(z,9) |0 <2z <a,0<y<b} CR? o> 0isa constant and f: QUIN — R
is a continuous function.

Discretizing (4.5.29): for the approximate z;; of u(z;,y;), ; = idz, y; = jdy, dx =
a/(p+1), 0y =b/(q+1). We obtain the equation:

—Zi—1,; + 2% — Ziy1j | —Zij-1 2% — Zijn
e s = fy = (e, (45.30)
fore=1,2,---,p, 5 =1,2,--- ,q. Together with the boundary values

20 = 2p+1,; =0, for 7 =0,1,...,¢+ 1,
Zi,ozzi7q+150, fOI‘iZO,l,...,})—Fl.

Let z = [2{,2], - ,2]]", 2; = [21j, 225, -+ , 2;]". Then (4.5.30) can be written in the
forms
Mz=b (4.5.31)
with
A T by
m=| 1A b= 2. (4.5.32)
T :
I A by

where I = I,,, A is a p x p Hermitian tridiagonal matrix, and M consists of ¢ block rows
and columns.

We describe here only Buneman algorithm (1969). For related method see also Hock-
ney (1969) and Swarztranber (1977). Now, (4.5.32) can be written as:

AZl + 20 = bl,
Zj—1 + AZj + Zi+1 = bj, j = 2, 3, e, q — 1, (4533)
Zg—1 + Azg = by,

from the three consecutive equations

Zj—o +Az_1 +zj = 0j-1,
Zj—1 —|—A2j —|—Zj+1 = bj,
Zj —|—A2j+1 —|—Zj+2 = 0j41.
One can for all even j = 2,4, ... eliminate z;_; and z;;; by subtracting A times the

second equation from the sum of the others:
Zj—2 -+ (2[ — AQ)ZJ' —+ Zj42 = b]’,1 — Abj -+ bj+1.
For ¢ odd, we obtain the reduced system

2l — A2 ] 0 2 by + by — Ab,
I 2]—142 24 bg+b5—Ab4

0 I 2 — A2 Zg-1 bg—2 + by — Aby—1

(4.5.34)
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A solution {zg, 24, ....., z4—1} of (4.5.34) is known, then {zi, z3, ...} can be determined by
(from(4.5.33)):

A 0 2 by — 2o
A z by — 29 — 2
| Sl= 7 T T (4.5.35)
0 A 2q by — 241

Thus, (4.5.34) has the same structure as (4.5.32):

MO0 — p0)

with
AL T 0
Mo | 1 AW . AW =925 — A%
I
0 I A®
Zil) 29 bgl) by + bs — Aby
(1) (1) _
) _ 25 _ 24 HU — by _ bs + 55' Aby |
sy Zg1 by bg—2 +bg — Abg

so that the reduction procedure just described can be applied to M® again. In general,
for ¢ = g = 2¥t' — 1, we obtain a sequence of A and ") according to:

Forr=0,1,2,...,k—1:

(4.5.36)
(1) AT+ = 21 — (AM)2)

r+1 r r r).(r . —r —
L @ =) el AR =12, 28— 1 (= g).
For each stage r+ 1, r =0,1, ...,k — 1, one has a linear system

M(T—I-I)Z(T-i-l) — b(r—i—l)

or
A(r+1) I 0 Z§T+1) bY—H)
I A(rJrl) L Zér—i—l) bg—l—l)
- - I : :
0 I A(r+1) Z(T+1) b(7"+1)
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Its solution (") furnishes the subvectors with even indices of 2(") of the system M 2(") =
b") in stage r,

Zér) ZY—H)
ZA([) B Z§r+1)
25, 24t

A P by — 2
A(r) Zér) _ bi())r) B Zér) . zir‘)
AD LD by — 20,

From A™, b(") produced by (4.5.36), the solution z := 2(©) of (4.5.32) is thus obtained by
the following procedure (13.37) (say!):

Algorithm 4.5.1 (0) Initialization: Determine z¥) = 2 by solving AW 20 = pk) —
b\,

(1) Forr=k—-1,k—2,..,0,

(a) Putz) =2 j=1,2.. g =257 1,

(b) Forj=1,3,5,...,q., compute ZJ(-T) by solving
A(T)z](-r) = bg-r) - zj(r,)l - z](?l (2 = Zé:)ﬂ :=0).
(2) Put z:= 20,
Remark 4.5.1 (4.5.36) and Algorithm 4.5.1 are still unsatisfactory, as it has serious

numerical drawbacks. We have the following disadvantages:

(1) ACHY =21 — (A2 4n (1) of (4.5.86) is very expensive, the tridiagonal matriz

A = A as r increases, very quickly turns into a dense matriz. So that, the
computation of (AT)2 and the solution of (1b) of Algorithm 4.5.1 become very
ETPENSIVE.

(2) The magnitude of A™) grows exponentially: For
-4 1 0

1A% 1> 4, A7) Il AT7D P> 47",

0 1 —4
Both drawbacks can be avoided by a suitable reformulation of the algorithm. The explicit

computation of A" is avoided if one exploits the fact that A"™) can be represented as a
product of tridiagonal matrices.
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Theorem 4.5.3 One has for all r > 0,
QT
AD = H[—(A + 20039](-T) 1],

J=1

where 0\ == (2j — 1) /2741, for j=1,2,...,2".

Proof: By (1) of (4.5.36), one has A® = A, AT+) = 2] — (A()2 50 that there exists a
polynomial P,(t) of degree 2" such that

A" = P.(A). (4.5.37)

Evidently, P, satisfy

so that P. has the form

P(t) = —(=t)* +---. (4.5.38)
By induction, using the substitution t = —2cos 6, we get
P,(—2cosf) = —2cos(2"0). (4.5.39)

The formula is trivial for » = 0. If it is valid for some r > 0, then it is also valid for r 41,
since
Prii(—2cosf) = 2— (P.(—2cosf))?
= 2 —4cos*(270)
= —2cos(2-2"0).
In view of (4.5.39), P.(t) has the 2" distinct real zeros

2j — 1

Wﬂ'), j:1,2,...,2r7

t; = —2cos(

and therefore by (4.5.38), the product representation

27‘
Po(t) =~ ][~ =)
j=1
From this, by virtue of (4.5.37), the assertion of Theorem follows immediately. [ |

In practice, to reduce the systems AMu = b in (1b) of Algorithm 4.5.1 with A",
recursively to the solution of 2" systems with tridiagonal matrices

() ._ (r) . r
A7 = —A—2cos0;" -1, j=12,...,2",
as follows:
Agr)ul =b = U1

AgT)UQ = Uy = Uy (4 5 40)

Ag;)UQT = Ugr_1 = Ugr = U = —Uyr.
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Remark 4.5.2 (i) [t is easily verified, the tridiagonal matrices Ay) are positive definite.
One can use Cholesky decomposition for the systems.

(ii) The numerical instability which occurs in (4.5.36)(2) because of the exponential
growth of A" can be avoided.

Buneman (1969) suggested that by introducing in place of the bgr) other vectors
py), q](.r),j =1,2,...,q,, which are related to bgr):

B = AP 4 g =12, g, (4.5.41)

which can be computed as follows:

(

Set p(o) =0, q(o) =b; = b 1,2,...,q,.

Forr=0,1,..,k—1:
for j=1,2,...,¢.41 : Compute (4.5.42)
(W) = pg? = (AO) L P+

r+1 r

(r+1)

The computation of pTH) (4.5.42)(1) is as in (4.5.40). The solution u of A"y =

pg;)_l + pé;-)ﬂ - qég) with the factorization of A in Theorem 4.5.3 and then computing

pg.rﬂ) from u by means of

7”+1
Let us prove by induction on r that p§r), qj(-T) in (4.5.42) satisfy the relation (4.5.41). For

r = 0 (4.5.41) is trivial. Assume that (4.5.41) holds true for some r > 0. Because of
(4.5.36)(2) and AT+ =27 — (A()?2 we then have

o = b o) — A

= A(T)p§§)+1 + QQJ+1 + A)p] Ps; ] 1t QQ] | — AD[AT Pg]) + qg,)]

= AV [pzﬁl + 08y — a5 1+ ATTORE) g | + ol — 2

= AP 4 (A {21 - A(r“npé?ﬁpé?l 0571} + a5+ agly — 205

r r r T r r4+1
= A( ) {pQJ - (A( )) [pgj)+1 +pg]) 1 Q2j ]} + q2] 1 + qg])Jrl 2p( )

- A(r+1)p§r+1) + q§r+1).

By (4.5.41) we can express b(r) in Algorithm 4.5.1 in terms of py), q](-r) and obtain, for
example, from (1b) of Algorithm 4.5.1 for z ) the system

A(T)ZJ(T) _ A(T)p§ r) + qj( ) (7") N Z]('Cr)l’
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which can be solved by determining u of

and put z](.r) =+ pg.r). Replacing the by) in (4.5.36) and Algorithm 4.5.1 systematically

by pg-r) and qj(-r) one obtains:

Algorithm 4.5.2 (Algorithm of Buneman) Consider the system (4.5.32), with q =
2k+1 _ 1.
(0) Initialization: Put pgp) =0, q]@ =0bj,j=12,...,q9 :=q.
(1) Forr=0,1,...,k—1,
Forj=1,2,.... quq:=2F"—1:
(r) (r)

Compute u of Ay = Paj_1 + Paji1 — qg;) by the factorization of

Theorem 4.5.3 and put pérﬂ) = pég) — U, q](r) = qé) ;)

2p§r+1) .

T
-1 T Qo541

(2) Determine u of the systems ARy = qik), and put %) = z%k) = pgk) +u.

3) Forr=k—1,k—2,...,0,

(a) Put zg) = z](-rﬂ) forj=1,2, ..., ¢ 1.
(b) For j =1,3,5,...,q, determine the solution u of Ay = qj(-r) L z](?l

7j—1
" . )

and put z; " :==p; " +u.

J

(4) Put z == 2.

Remark 4.5.3 This method is very efficient: For the model problem (4.1.14) (a =1 =
b,p=q=N =21 1), with its N? unknowns, on requires about 3kN? ~ 3N?log, N
multiplications and about the same number of additions.

4.5.3 Comparison with Iterative Methods

Consider the special model problem

{ — Uy — Uy, = 2w sinwzsinmy, for (z,y) € Q, (4.5.43)

u(z,y) =0, for (z,y) € 01, ’

where Q = {(z,y)|0 < x,y < 1}, which has the exact solution u(z,y) = sin 7wz siny.
Using the discretization we have

Az=0b, Aasin (4.1.18),
{ b= 2h27T2ﬁ ( ) (4.5.44)
with 4 = [ﬂll,ﬂgl,...,’lALNh...,?:I,lN,...,’lALNN]T and ’aij = U(Ii,yj) = SiHZ'ﬂ'hSiIljﬂ'h,

h=1/(N+1).
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Method k£ N r® i
Jacobi 5 3.5x107% 60

10 1.2x103 235

Gauss-Seidel 5 3.0x103 33

10 1.1x1073 127

25 5.6 x 1073 600
Relaxation 5 1.6x107% 13
10 0.9x 1073 28

25 0.6 x 1073 77

50 1.0 x 1072 180

ADI 2 5 0.7x 1073 9
10 4.4 x 1073 12

25 2.0x 1072 16

4 5 1.2x1073 9

10 0.8 x 1073 13

25 1.6 x10°° 14

50 3.6 x 107 14

Table 4.1: Comparison results for Jacobi, Gauss-Seidel, SOR and ADI methods

Remark 4.5.4 The vector b in (4.5.44) is an eigenvector of J = (41 — A)/4, also an
eigenvector of A. We have Jb = ub with pu = cosmwh. The exact solution of (4.5.44) can
be found

h2x?

= 1. 4.5.4
: 2(1—cos7rh)u (4:5.45)

As a measure for the error we took the residual, weighted by 1/h?:
~(r 1 7
T()::ﬁ | Az — b ||s .

We start with 2 := 0 (7 = 272 ~ 20). We show the table computed by Jacobi,
Gauss-Seidel, SOR and ADI methods respectively:

Since the Algorithm of Buneman in §13.2 is a noniterative method which yields the
exact solution of (4.5.44) in a finite number of steps at the expense of about 3N?log, N
multiplications. From (4.5.45), by Taylor expansion in powers of h, we have

2,2
z—1U= < %—1 >ﬂ: hl; ﬁ+0(h4),

so that the error ||z — @|oo, in as much as |4/ < 1, satisfies ||z — U|o < % + O(h?).
In order to compute z with an error of the order h?, the needed number of iterations and
operations for the Jacobi, Gauss-Seidel and SOR methods are shown in Table 4.2.
For a given IV, Rfame)I is minimized for m ~ In[4(N +1) /7], in which case {/4(N +1)/7 =~
e. The ADI method with optimal choice of m and optimal choice of parameter thus
requires

RE:BI log1o(N +1)* ~ 3.60(logyy N)°
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Method No. of iterations No. of operations

Jacobi 0.467(N + 1)%log,o(N + 1)* &~ N?log;, N 5N*log,, N
Optimal SOR  0.36(N + 1)log,o(N + 1)* = 0.72N log;y N 3.6N?log,, N

Table 4.2: Number of iterations and operations for Jacobi, Gauss-Seidel and SOR meth-
ods

iterations to approximate the solution z of (4.5.44) with error k2. The ADI requires about
8 N? multiplications per iteration, so that the total number of operations is about

28.8N?(log;o N)?.

The Buneman method, according to §13.2 requires only 3N?log, N ~ 10N%log,, N
multiplications for the computation of the exact solution of (4.5.44). This clearly shows
the superiority of Buneman method.

4.6 Derivation and Properties of the Conjugate Gra-
dient Method

Let A € R™™ be a symmetric positive definite (s.p.d.) matrix. Here n is very large and
A is sparse. Consider the linear system

Ax =b.

4.6.1 A Variational Problem, Steepest Descent Method (Gra-
dient Method).

Consider the functional F': R* — R with
1 1 n n
F(x)= 2T Az —bTax = = LT — T 4.6.1
(x) 2£E r—bx 5 i%:z QiLTiT) lZ:;bl:EZ (4.6.1)
Then it holds:

Theorem 4.6.1 For a vector x* the following statements are equivalent:
(1) F(2*) < F(x), for all x # z*,

(ii) Azt = b, (46.2)
Proof: From assumption there exists zg = A7'b and F(z) can be rewritten as
1 1
F(zx) = §(x — 20) Az — 29) — §onAzo. (4.6.3)
Since A is positive definite, F'(x) has a minimum at x = z, and only at = 2, it follows
the assertion. ]

Therefore, the solution of the linear system Az = b is equal to the solution of the
minimization problem

1
F(z) = §xTAx — bz = min!. (4.6.4)
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Method of the steepest descent
Let x; be an approximate of the exact solution z* and p, be a search direction. We
want to find an a1 such that

F(xp + apqipr) < F(xp).

Set xp41 := xp + agr1pr- This leads to the following basic problem.
Basic Problem: Given x, p # 0, find «aq such that

®(ag) = F(z + agp) = min!

Solution: Since

1

F(x +ap) = 5(:6 +ap)t A(z + ap) — b (z + ap)
1

= §0z2pTAp + a(pt Az — p™b) + F(x),

it follows that if we take
(b—Ax)Tp  rTp

— = 4.6.5
where r = b — Ax = —gradF(z) = residual, then = + agp is the minimal solution.
Moreover,

L(r'p)*
F(x + app) = F(x) — 3 Ay (4.6.6)

Steepest Descent Method with Optimal Choice oy, (Determine o via the
given data xg, pg, p1,---): Let

T
'y Pk
x = Tp+ ———Dp, Th =b— Axy, 4.6.7
k1 k T Aps ks Tk k ( )
1(rfpy)?
Frp) = Fog) — =~ k=0,1,2,--- . 4.6.8
(#rn) = Fla) = 5 R (165)
Then, it holds

FipaPr = 0. (4.6.9)

Since

d
%F(xk + apy) = gradF(z + ape)’ pr,

as in (4.6.5) a1 = p%gj;k, it follows that gradF'(zy + agr1pr) pr = 0. Thus

(b - Awkﬂ)Tpk = Tg—i—lpk =0,

hence (4.6.9) holds.
Steepest Descent Method (Gradient Method)
Let ® : R — R be a differential function on . Then it holds

<I>(a7+€];) — d(x) _ @I(x)Tp+O(5).
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o' (x)
_ . 1@ ()]
with ||p|| = 1 (neglect O(e)). Hence, it suggests to choose

The right hand side takes minimum at p = — (i.e., the largest descent) for all p

pr = —gradF(zg) = b — Axy. (4.6.10)

Gradient Method:

( Given z, for k=1,2,---
rk—1 = b — Axp_q, if rp_y =0, then stop; else (4.6.11)
— Th_1Tk—1 .
| YT T Ay TR T Tkl + QpTp_1.

Cost in each step: compute Azy_; (Arg_1 does not need to compute).
To prove the convergence of Gradient method, we need the Kontorowitsch inequality:

Let Ay > X >+ > X, >0, a; >0, > a; =1. Then it holds

=1

(A + )
Zaz)\ Z%A < oo ,/ ’/Al (4.6.12)

Proof of (4.6.12): Consider the n points P, = (\;, 1/)\;). Let B be the region between
—
y = 1/x and the straight line through P;, P,. The slope of the straight line P, P, is

A=1N 1

An — A1 A1

The point P = ) «;P; lies in B. Maximize zy, for all (z,y) € B. The point (£, n) which
i=1

lies on P, P, is a maximum for £n and has the coordinates:

1 1
E=al\,+(1—a)\, andn=a— + (1 —a)—

An A
Since
0 = di[(oz)\ +(1—a)\)(« )\1n+(1_04)/\i1)]
d A M
— da[a + (1 —a)? +a(1—04)()\1+)\—n)]
A M
= 2a+2a—-1)+ (1—204)()\1+/\_n)
= (1—2@)(?1—1—2—;—2)

it follows aw = 1/2. Hence

1 1
&n =7 A+ A)(-+ )=
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So (4.6.12) holds. u
Another form: Let A be s.p.d. (symmetric positive definite) and Ay > Ay > -+ >\, > 0
be the eigenvalues of A. Let = be a vector with || x ||3= 272 = 1, then it holds

vT A - oT A e < - (’\1 + M) , / + 4 / (4.6.13)
4 )\1

Proof of (4.6.13): Let U be an orthogonal matrix satisfying UAUT = A = diag(Ay, -+, ).
Then we have

2T Ax = 2TUT AUz = 4T Ay = ny)\l (y :=Ux).
i=1
Similarly,
1

TA —TA _
r=y Ay = ZylA

=1

From (4.6.12) follows (4.6.13). n

Theorem 4.6.2 [f zy, xx_1 are two approximations of the gradient method (4.6.11) for
solving Az =b and Ay > \o > --- > X\, > 0 are the eigenvalues of A, then it holds:

1T—1 >‘1_>‘n2 1T—1
" < - LU,
Fay) + 507 A7 < (A1+An) [F(5-1) + 50T ATH, (4.6.14a)
1.€.,
AL — Ay
[z — 2[4 < (/\1 A )1 — 274, (4.6.14b)

where ||x||a = VaT Ax. Thus the gradient method is convergent.

Proof: By computation,

F(xy) + bTA 'h = 2($k — )T A(xy, — 2¥)
1

= i(xk_l — " 4 ogrp_1) T A(p — 2F + ogrp_1)  ( since A(zp_y — xF) = —rp_y)
1
= 5[(:@_1 — o A(zp_y — 2%) — 2000101 + Qdr]  Ar_]
Lop o, (ri_yri-1)?
R T s LV
2 s Tt i Arg
Lro (7"1?5—17%—1)2
= i AT 1 -
27"]671 Tk 1[ TkalAT‘k_l . T%LlA_lrk—l
1L, AN A,
S érk_lA Tk_l[]_ — m] ( from (4613))
1 A — A
= [F(zg_1) + =b"A7'D )2,
[Flan) + 7 A7)
|
If the condition number of A (= A\;/\,) is large, then 2 " +i” ~ 1. The gradient method

converges very slowly. Hence this method is not recommendable.
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4.6.2 Conjugate gradient method

It is favorable to choose that the search directions {p;} as mutually A-conjugate, where
A is symmetric positive definite.

Definition 4.6.1 Two vectors p and q are called A-conjugate (A-orthogonal), if p* Aq =
0.

Remark 4.6.1 Let A be symmetric positive definite. Then there exists a unique s.p.d.
B such that B> = A. Denote B = AY?. Then p" Aq = (A/?p)T(AY2q).

Lemma 4.6.3 Let po,...,p, # 0 be pairwisely A-conjugate. Then they are linearly in-
dependent.

Proof: From 0 = )" ¢;p; follows that
=0

J]=

r

PEAQ eps) = 0= ¢;pi Ap; = cupj, Apy,
=0 =0

soc,=0,fork=1,...,7r. [ |

Theorem 4.6.4 Let A be s.p.d. and py, . ..,pn_1 be nonzero pairwisely A-conjugate vec-
tors. Then

n—1

JERR N

j=0p§r’4pj'

(4.6.15)

Remark 4.6.2 A=1,U = (po,...,pn_1), pipi =1, plp; = 0,1 # j. UUT =1 and
I =UUT. Then

T
Dy
I=(pos--sPa1) | | =popg + -+ PaDpy-
p£—1
. . /2, .
Proof of Theorem 4.6.4: Since p; = A are orthonormal, for i = 0,1,...,n— 1
\/Zm ) ) 9 Y )
we have
I = popo’ + .-+ Pu1Ph4
n—1 n—1
_ Z A1/2pip?141/2 — A2 piPiT AL/?
—~  plAp; — pi Ap;
Thus,
n—1 T
—1/27 A—1/2 -1 Dip;
ATYVRTATY? = A7 = T
i=0 T
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Remark 4.6.3 Let Az* = b and xq be an arbitrary vector. Then from x* —xg = A7 (b—
Axg) and (4.6.15) follows that

(b— A
o _x0+zp’ Ap:ro (4.6.16)

Theorem 4.6.5 Let A be s.p.d. and py,...,p,—1 € R"\{0} be pairwisely A-orthogonal.
Given x¢ and let ro = b — Axg. Fork=0,...,n—1, let

T

DPrTk
Rl (4.6.17)
LTe+1 — l’k—FOékpk? (4618)
Tk+1 — Tk—OékApk. (4619)

Then the following statements hold:
(i) 1, = b— Axy.  (By induction).
(i) x4 minimizes F(x) (see (4.6.1)) on x = x + apg, o € R.
(iii) 20 = A1b = .
(1v) xy, minimizes F(x) on the affine subspace xo+ Sy, where Sy, = Span{po, ..., pr_1}-

Proof: (i): By Induction and using (4.6.18) (4.6.19).

(ii): From (4.6.5) and (i).

(iii): It is enough to show that z;, (which defined in (4.6.18)) corresponds with the partial
sum in (4.6.16), i.e

(b — Axy)
wkzxo—i—zpz A 0 Di-

Then it follows that x,, = z* from (4.6.16). From (4.6.17) and (4.6.18) we have

l’k—l’o—FZC‘sz—l’o—Fsz b_AxZ Di-

To show that

pl(b— Ax;) = pl(b— Axy). (4.6.20)
k-1
From zy — xy = > a;p; we obtain
i=0
k—1
pi Az — pf Azg = aipf Ap; = 0.
i=0

So (4.6.20) holds.
(iv): From (4.6.19) and (4.6.17) follows that

PEThs = PErk — anph Apy, = 0.
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From (4.6.18), (4.6.19) and by the fact that rp s — rpysp1 = QrprsAprrs and pyg are
orthogonal (for s > 1) follows that

pgrkJrl = pf?“m =...= pf?"n =0.
Hence we have
plre=0i=0,....k—1, k=1,2,...,n. (ie., i < k). (4.6.21)

We now consider F'(z) on xg + S:

F(zo + Zapz = (8o, Erm1).

F(z) is minimal on zo + S}, if and only if all derivatives 22 vanish at z. But

agl
9 k-1
_ T _
5 = [grad F(zo + ;fipi)] ps, s=0,1,... k—1. (4.6.22)
If © = xy, then gradF(x) = —r,. From (4.6.21) follows that
0
aZ(:Uk) =0, fors=0,1,...,k—1.
Another proof of (iv): For arbitrary d € R™ it holds
1 1
F(l’o + d) — F(l’o) = 5(%0 + d)TA(ZL‘() + d) — bT(IQ + d) - —IO A(L’Q + b Zo
1
= 5dTAcz —d" (b — Axy).

k—1
So for d = > &;p; we have
i=0

k-1 k-1 k-1
F(zo+ ) &pi) = 1 Z &p)" A &) Z & (b — Axo)
=0 =0 j=0

k—
= ) + Z [2pT Ap; — 2pT (b — Azo)&i] = min!.  (4.6.23)
=0

N —

The equation (4.6.23) holds if and only if
&2p] Ap; — 26ips(b — Axzg) =min! i = 0,..., k — 1,

if and only if
pi(b—Axg)  plr

& = = =y
i Api i Ap;
k=1
from (4.6.20) and (4.6.17). Thus zy = zo+ Y a;p; minimizes F' on xy+ span{py, . . ., Pr—1}-
i=0
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Remark 4.6.4 The following conditions are equivalent: (i) pf Ap; = 0, i # j, A-
conjugate, (i) plrey =0, 1 < k, (iii) rlr;, i # j.

Proof of (iii):

pirk=0 & (] +Bipl ), i<k & rlr,=0 i<k & rlr,=0 i#j

i

Remark 4.6.5 [t holds
KPPl PR S>=< T, 1, T >=< 10, Arg, -, AFrg >
Since p1 =11 + Bopo = 11 + Poro, ™1 = o — apArg, by induction, we have
ro =11 — qpApr =11 — g A(r1 + Bore) = ro — agArg — agA(re — agAre + Boro)-

Algorithm 4.6.1 (Method of conjugate directions) Let A be s.p.d., b and xy € R™.
Given po, . ..,pn—1 € R"\{0} pairwisely A-orthogonal.

T’Ozb—Al’o,
Fork=0,...,n—1,

— _PkTk —

ap = Tpy1 = T +

k= DT apyr Thl k + QkDk,
i1 = T — QpApy = b — Ay,

end for

From Theorem 4.6.5 we get z,, = A~1b.

4.6.3 Practical Implementation

In the k-th step a direction py which is A-orthogonal to po, ..., pr_1 must be determined.
It allows for A-orthogonalization of 1 against po, ..., pr_1 (see (4.6.21)). Let ryp # 0, F(x)
decreases strictly in the direction —r. For ¢ > 0 small, we have F(xy —ery) < F(xy). It
follows that F' takes its minimum at a point (# xx) on xo+ span{po, ..., Pk_1, 7%} S0 it
holds xp 1 # wy, i.e., ay # 0. This derives that Conjugate Gradient method.

Algorithm 4.6.2 (Conjugate Gradient method (CG-method), (Stiefel-Hestenes, 1952))
Let A be s.p.d., b € R", choose xog € R", ro = b — Axy = pg.
If ro =0, then N = 0 stop; otherwise for k =0,1,...

T
PrTk

a) o = )

(@) p;;FApk

(b) Tt1 = Th + Py,

(c) The1 =Tk — o App = b — Axpyq, if 1y =0, let N =k + 1, stop. (4.6.24)
T A

(d) 51@ _ Tk-i—l Dk

prApy

(e) Prr1 = Thg1 + Bibr-

Theorem 4.6.6 The CG-method holds
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(1) If k steps of CG-method are executable, i.e., r; # 0, fori = 0,...,k, then p; # 0,
i <k and plAp; =0 fori, j <k, i+#j.

(ii) The CG-method breaks down after N steps for ry =0 and N < n.
(iii) zy = A~b.

Proof: (i): By induction on k, it is trivial for £ = 0. Suppose that (i) is true until k and
Tyt # 0. Then py, 1 is well-defined. we want to verify that (a) py1 # 0, (b) i Ap; =0,
for y=0,1,..., k.

For (a): First, it holds rfp, = r} pr, — cawpi Apr = 0 by (4.6.24)(c). Let py1 = 0. Then
from (4.6.24)(e) we have ry1 = =By, # 0. So, By # 0, hence 0 = 1, pr, = —Brpipi # 0.
This is a contradiction, so pgy1 # 0.

For (b): From (4.6.24)(d) and (e), we have
Prs1 A = 71 Apr + Biepi Ape = 0.
Let j < k, from (4.6.24)(e) we have
Pri1AD; = Ti1 A + Bipk Apj = 141 Ap;. (4.6.25)
It is enough to show that

Ap; € span{po, .....,pj11}, J < k. (4.6.26)

Then from the relation p! r; = 0, i < j < k+1, which has been proved in (4.6.21), follows

(b).
Claim (4.6.26): For r; # 0, it holds that o # 0. (4.6.24)(c) shows that

1

Ap; = E(Tj —7j+1) € span{ro, ..., "j41}-
J

(4.6.24)(e) shows that span{ro, ....,7j41} = span{po, ...., pj+1} with 7o = py, so is (4.6.26).
(ii): Since {pz}fiol # 0 and are mutually A-orthogonal, po, ..., prr1 are linearly indepen-
dent. Hence there exists a N < n with ry = 0. This follows x5 = A~'b. [ |
Advantage:(1) Break-down in finite steps. (2) Less cost in each step: one matrix X
vector.

4.6.4 Convergence of CG-method

Consider the following A-norm with A being s.p.d.
||| 4 = («T Az)'/2, (4.6.27)

Let z* = A~'b. Then from (4.6.3) we have

F(z)— F(z*) = %(m — o Az — 2*) = %Hx — %3, (4.6.28)
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where z;, is the k-th iterate of CG-method. From Theorem 4.6.5 x; minimizes the func-
tional F' on xo+ span{py, ...., px_1}. Hence it holds

|2k — 2 ||a < |ly — z*||a, y € zo + span{po, .., Dr—1}- (4.6.29)

From (4.6.24)(c)(e) it is easily seen that both py and 7, can be written as linear
combination of ry, Arg,..., A¥ try. If y € 2o + span{po, ..., pr_1}, then

Yy = xg+ C1rg + CArg + ... + e AP g = 29 + P (A)rg,
where Pj_; is a polynomial of degree < k — 1. But rg = b — Axy = A(z* — xg), thus

y—x" = (z—2")+Pr1(A)A(z" — x0~)

= [I — APi_1(A)] (xg — 2%) = Pr(A)(xo — z¥), (4.6.30)

where degree 75k < k and )
Pr(0) = 1. (4.6.31)

Conversely, if Py, is a polynomial of degree < k and satisfies (4.6.31), then
x* + 75k(A)(:1c0 — ") € 2o + Sk.
Hence (4.6.29) means that if Py is a polynomial of degree < k with P;(0) = 1, then
lzx —*[la < [ Pr(A) (20 — 27) a- (4.6.32)
Lemma 4.6.7 Let A be s.p.d. It holds for every polynominal Q) of degree k that

@A)l

= p(Qr(A)) = max{|Qr(N)| : X eigenvalue of A}. (4.6.33)
70 ||$||A
Proof:
@A)y _ 2" Qu(A)AQ(A)x

E el Az

(AY22)T Qu(A)Qr(A) (A x) ,
(AlI;Qx)(AIi/Qx) (Let 2 := AY?z)

21Qr(A)%2

TS < p(Qu(A)?) = pA(Qu(A)).

2Tz

Equality holds for suitable x, hence the first equality is shown. The second equality holds
by the fact that Qx(\) is an eigenvalue of Qx(A), where A is an eigenvalue of A. [
From (4.6.33) we have that

e — 2™ |a < p(Pe(A)) o — 27|, (4.6.34)

where degree Py, < k and P(0) = 1.
Replacement problem for (4.6.34): For 0 <a < b,

minmax{|Px(A)| : a < X < b, for all polynomials of degree < k with P,(0) = 1}(4.6.35)
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(if a = 0, it is clearly minmax{| Px(A) |} = 1). We use Chebychev polynomials of the
first kind for the solution. They are defined by

To(t :1,T1 t) =1,
{ Tk(+1>(t) = 2t7<’k)(t) — Th_1(t). (4.6.36)

it holds Ty(cos¢) = cos(k¢) by using cos((k + 1)¢) + cos((k — 1)¢) = 2cos ¢ cos k.
Especially, .
Ty (cos %) = cos(jm) = (—=1)’, for j =0,...,k,

i.e. T} takes maximal value “one” at k + 1 positions in [—1, 1] with alternating sign. In
addition (Exercise!), we have

T(t) = %[(t FVESD) 4 (= VEZ D, (4.6.37)

Lemma 4.6.8 The solution of the problem (4.6.35) is given by

o1 (15450 fn (120,

i.e., for all Py of degree < k with Py(0) = 1 it holds

Jmax |Qr(N)] < max Pre(A)]-
Proof:  Q(0) = 1. If ¢ runs through the interval [a,b], then (2t —a — b)/(b — a) runs
through the interval [—1,1]. Hence, in [a,b], Q(t) has k + 1 extreme with alternating
sign and absolute value 6 = |T;,(%£2)71.

If there are a Py with max {|Px(\)| : A € [a,b]} < d, then @ — Py has the same sign
as Qi of the extremal values, so QQx — Py changes sign at k£ + 1 positions. Hence Qy — Py
has k roots, in addition a root zero. This contradicts that degree(Qr — Px) < k. [ |

b+a\ "
T
()
V-1

where ¢ = 7= and k = b/a.

Lemma 4.6.9 It holds

5= < 2c, (4.6.38)

1
() T

Proof: For t = ;?_L—Z = £+l we compute

Kk—17
b VBT = VE+1 _

VE—1

and VR
k—1
t—Vt2—1= =c.

VE+1 ¢

Hence from (4.6.37) follows
k
) 2 _ % < 2ck.

:Ck+0_k 1+ c2k —
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Theorem 4.6.10 CG-method satisfies the following error estimate

|lxp — 2|4 < QCkHQZO — "] a, (4.6.39)

where ¢ = ﬁ:, K= /’\\—:L and \y > --- > X\, > 0 are the eigenvalues of A.

Proof: From (4.6.34) we have

lox =24 < p(Pr(A)) [lzo — 27| 4

<
< max {|Pr(A)| : A1 > A > A\ }H|mo — 27| 4,

for all Py, of degree < k with P,(0) = 1. From Lemma 4.6.8 and Lemma 4.6.9 follows
that

max {|Qx(N)] : At > A > A} [|lzo — 2%(|a

|z —2%[[a <
< 2¢|lzo — 27| a-

Remark 4.6.6 To compare with Gradient method (see (4.6.14b)): Let z be the kth
iterate of Gradient method. Then
k

A=\
—| o — 24

AL+ A,

06 — a4 < ]

But
A=Ay k=1 VE—1

= > =
M+AN k+1T e+
because in general \/k < k. Therefore the CG-method is much better than Gradient
method.

)

4.7 CG-method as an iterative method, precondi-
tioning
Consider the linear system of a symmetric positive definite matrix A
Az =b. (4.7.1)
Let C' be a nonsingular symmetric matrix and consider a new linear system
Az = (4.7.2)
with A = C*AC~! s.p.d., b= C"'band & = Cx.
Applying CG-method to (4.7.2) it yields:
ChOOSG ZINT(), 7:0 =b— AZZ‘() = ]50.
If 7 = 0, stop, otherwise for k =0, 1, 2, ...,
(((a) G =pi7n/PrC T AC Py,
() Trpr = Tp + wpr,
(¢) Tryr =Tk — &CTAC Py,
if 7,11 = 0 stop; otherwise,

(d) B =~ O ACT Py /O~ AC ™ oy,
L (€)  DPrr1 = The1 + Bipr-

(4.7.3)
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Simplification: Let

1~ 1~ 1
Cpr=pr, 2p=C""Tk, 2, =0C "7y

Then o
re=Ciy=C (b= AR) = C (€' = CTTACTCay) = b— Awy,

Algorithm 4.7.1 (Preconditioned CG-method (PCGQG))
M = C?, choose xg = C~ 'y, 1y = b — Axg, solve Mpy = 1.
If ro = 0 stop, otherwise for k=20, 1, 2,....,

( (a) o = png/Pprm
(b)  Tps1 = Tk + D,

) Tk = Tk — apApg, (4.7.4)
if rea1 = 0, stop; otherwise M zgy1 = 11, o
(d) Br= —ZkT+1APk/p£Apk>
L (e)  Prt1 = Zi1 + Bip

Algorithm 4.7.1 is CG-method with preconditioner M. If M = I, then it is CG-
method.
Additional cost per step: solve one linear system Mz = r for z.
Advantage: cond(M~Y2AM~'/?) < cond(A).

4.7.1 A new point of view of PCG

From (4.6.21) and Theorem 4.6.6 follows that p;Tr, = 0 fori < k, i.e., (r,"+B8i_1pi1l)ry =
ri’ry = 0,4 < k and p;" Ap; = 0, i # j. That is, the CG method requires r;’r; = 0, i # j.
So, the PCG method satisfies p;" C"'AC"'p; =0 & 7]7; =0, i # j and requires

ziTsz = riTM’lMM’lrj:nTM’lrj
= (e (CMry) = 7T =0, i#

Consider the iteration (in two parameters):
Tyl = Th—1 + Wi+1 (akzk +x — l‘k,1> (475)

with o and wgyq being two undetermined parameters. Let A = M — N. Then from
Mz, = r, = b— Ax;, follows that

Mzk+1 = b—A (1’]@,1 + WE+1 (akzk + T — .Z'kfl))
= Mzk_l — Wg+1 [Ozk(M - N)Zk + M(Zk_l - Zk)] (476)

For PCG method {ay, w1} are computed so that
ZPTMZQIO7 p#Q7 puq:()?la"';n_l- (477)

Since M > 0, there is some k < n such that z; = 0. Thus, x; = x, the iteration converges
no more than n steps. We show that (4.7.7) holds by induction. Assume

2 Mz =0, p#q, pg=01,---k (4.7.8)
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holds until k. If we choose
ap = ZkTMZk/ZkT<M — N)Zk,
then
2 Mz =0
and if we choose .
T _
21 Nz )
w =|l1l—ap———"—" 4.7.9
Pt ( kz,f_lek_l ( )
then
2t Mz = 0.
We want to simplify wg1. From (4.7.6) follows that
Mz, = Mz_9 — wy, (Oékfl(M — N)Zk,1 -+ M(Zk,g — Zk,1>> . (4710)
Multiplying (4.7.10) by 27 and from (4.7.8) we get
ZkTNZk,1 = ZkTMZk/kaékl. (4711)
Since 2} [Nz, = 2,7 Z2;,_1, from (4.7.11) the equation (4.7.9) becomes
T —1
A2 ]\/[zk 1
=(1- — . 4.7.12
Wt ( ap—12_ Mz_q wk) ( )
From (4.7.6) for j < k — 1 we have
ijMzkH = OékaJ'_leTNZk. (4.7.13)
But (4.7.6) holds for j < k — 1,
MZj+1 = MZj_l — Wj41 (Ozj(M — N)Z] + M(Zj—l - Z]» . (4714)
Multiplying (4.7.14) by z© we get
szsz =0.
Since N = N7, it follows that
2T Mz =0, for j<k—1.
Thus, we proved that z," Mz, =0,p#¢,p, q=0,1, -+, n—1. [ |
Consider (4.7.5) again
Th1 = Tp—1 + W1 (Qpzr + T — Tp1).
Since Mz =1, = b — Axy, if we set wpi1 = ap = 1, then
Tpy1 = M b — Axy) + 23 = T3 + 2. (4.7.15)
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Here zy, is referred to as a correction term. Write A = M — N. Then (4.7.15) becomes

Mxk-i—l = b— A.Cl?k + ka
= Nuj, +b. (4.7.16)

Recall the Iterative Improvement in Subsection 2.3.6:
Solve Ax = b,
T = b— A%’k,
Azk =Tk, < Mz, = ry.
Tk41 = Tk + 2.

(i) Jacobi method (wyy1 =y =1): A=D—(L+ R),

T+l = T + D_l(b — Axk)

(ii) Gauss-Seidel (wi11 = ap = 1): A= (D-L)—R,

Tkl = Ty + (D - L)il(b - A.Tk>

ie.,
Jj—1 n
(k+1) k+1 k (k) (k)
x; = bj—Zajpxl(,Jr)—Zajpxé)—i-Ij —1-z;
p=1 p=j+1
—_ x§k+1) -
(k+1)
k Z,;_
= x§)+bj—(aﬂ,...,aj’j_l,l,aj’jﬂ,...,ajn) x%k)l R (D:])
J
|2

(iii) SOR-method (wry1 = 1,0 =w):  Solve wAzx = wb. Write
wA=(D—-wl)—((1 —w)D+wR)=M — N.
Then

Tp1 = (D—wL) Y wR+ (1 —w)D)xy + (D —wL) 'wh
= (D—-wL)'((D—wL) —wA)x, + (D —wL) 'wb
= (I —(D—wL) 'wA)x, + (D —wL) 'wb
= a2+ (D —wL) 'wb — Axy)
= p+wM lrg.



4.7 CG-method as an iterative method, preconditioning 117

ie.,

Jj—1 n
xgkﬂ) = w (bj — ajpxz()kﬂ) — Z ajpx;k)) +(1- w)xg.k)

p=1 p=j+1
— k 1 -—
2
) (k+1)
- i1
= ;) +wbj—w(a, e L agien e am) |
L
k
[ o)

(iv) Chebychev Semi-iterative method (later!) (w11 = wpi1, 0 =7):
Thy1 = Tp—1 + Wit (Y2 + Tk — T—1) -

We can think of the scalars wy,1, g in (4.7.5) as acceleration parameters that can
be chosen to speed the convergence of the iteration Mxy,1 = Nz, + b. Hence any
iterative method based on the splitting A = M — N can be accelerated by the
Conjugate Gradient Algorithm so long as M (the preconditioner) is symmetric and
positive definite.

Choices of M (Criterion):
(i) cond(M~2AM~/?) is nearly by 1, i.e., M~YV2AM 2 =~ I, A~ M.

(ii) The linear system Mz = r must be easily solved. e.g. M = LLT (see Section 16.)

(iii) M is symmetric positive definite.
Explanation: Why we need to use preconditioning for solving the linear system Az = b.
Fixed Point Principle:

r = b—Ax+zx
= (I—Az+0b.

Thus x = Bx + b with B=1 — A.

Fixed Point Iteration:
Tit1 = Bl’l + b.

Let ¢; = x; — x. Then e;,; = Be; = B'ey. Thus {e;} — 0 if and only if p(B) < 1. Hence
we want to find an M so that M 1A ~ [ with A = M — N. Consider

M Az = M0,
then

Tivr1 — (] — M_IA) x; + M_lb
= (I-MYM~-N))z;+M'b, (4.7.17)
M™'Nz; + M~'b.
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Here A = M — N is called a splitting iterative scheme and Mz = r should be easily

solvable. The iteration (4.7.17) is called a preconditioned fixed point iteration.
Jacobi: A=D-—(L+R).

Gauss-Seidel: A= (D - L) - R.

SOR (Successive Over Relaxation): Az =b, wAzr = wb, (w > 1),

wA = wD—-wL—-wR
= (D—-wlL)—[(1-w)D+wR]
= M-N.
This implies,
i1 = (D—wL) (1 —w)D+wR]z; + (D —wL) 'wb
= M 'Nz;+ M 'wb
(M™'N =1—(D—wL)'wA).

SSOR (Symmetric Successive Over Relaxation): A is symmetric and A
L—L". Let

M,: =D —wL, nd MY =D —wL”,
N,: =(1-w)D+wL?, *® NI = (1—w)D +wL.

Then from the iterations

wai+1/2 = NwlL’i‘i‘Wb,

ME%H = NZ%‘H/z + wb,
follows that

Tip1 = (MJTNIMJINY) 2+
Gr;+w (M;TNIMS + M;T) b
= le + M(w)ilb.

But

(1 —w)D+wL)(D—wL)™ +1

= (wL—D —wD+2D)(D —wL) ™ +1
= I+ (2-w)DD—-wL)™ +1
=(2-w)D(D —wL)™,

Thus |
Mw) ' =w(D-wL")  (2—w)D(D —wL)™,

then

2
S
|
\y
3
E)
|
h
-
©
I
=

- D—

(4.7.18)
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For a suitable w the condition number of M (w)~Y2AM (w)~Y/2,i.e., cond(M (w)~Y2AM (w)~1/?),
can be considered smaller than cond(A). Axelsson(1976) showed (without proof): Let

T
D
j = max zTAz (< cond(A))
and T( LT 1)
e (LD'L" — ;D)r _ 1
= > —.
d T;%{ xT Ax !
Then (2u)?
1+ = +wo
cond (M(w)’l/zAM(w)’l/Q) < 42“ g K(w)
w

* 2 *\ 3 CI *) .
for w* = YeW T k(w*) is minimal and k(w*) =1/24 /(1/2 4 6)p. Especially

cond (M(w") 2 AM(w)?) <+ /(]2 F Seond(4) ~ /cond (4],

Disadvantage : u, 6 in general are unknown.

SSOR + Conjugate Gradient method.
SSOR + Chebychev Semi-iterative Acceleration (later!)

4.8 Incomplete Cholesky Decomposition

Let A be sparse and symmetric positive definite. Consider the Cholesky decomposition
of A= LLT. L is a lower triangular matrix with l; > 0 (i = 1,...,n). L can be heavily
occupied (fill-in). Consider the following decomposition

A=LL" - N, (4.8.1)

where L is a lower triangular matrix with prescribed reserved pattern £ and N is “small”.

. . (i,i)€EE, i=1,..,n
Reserved Pattern: FE C {1,...,n} x{1,...,n} with { (.)€ E = (i) E

For a given reserved pattern E we construct the matrices L and N as in (4.8.1) with

i) A =LL"-N, (4.8.2a)
(ii) L: lower triangular with {;; >0 and [;; #0 = (i,j) € E,  (4.8.2b)

First step: Consider the Cholesky decomposition of A,

(34 DG A)(F ),

where A, = A; — aaT /a;;. Then
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For the Incomplete Cholesky decomposition the first step will be so modified. Define
b1 = (1)217 ....,bnl)T and cl = (0217 ....,Cnl)T by

—fan Gyer, [ 0 (GEE
i = { 0, otherwise, ¢t = bj1 = a1 = —aj;, otherwise. (4.8.3)
Then
(e BTN (0 N\ _ 5
A= ( b, A ) ( o 0 )~ By - C. (4.8.4)

Compute the Cholesky decomposition on B, we get

Boz( Vau 0)<I y )(\/a_“ blT/}/“_”>=LlBlL1T (4.8.5)

bi/vau I 0 B 0
and
_ biby "
By =4, — . (4.8.6)
ail
Then
A - LlBlLlT - Cl. (487)
Consequently, compute the Cholesky decomposition on Bj:
By, = LyBy LY — O,
with
1 0 0 0
0 = 0 0 = *
L2 = * 1 : and CQ = DX
0 = 1 0 = 0
Thus,
A= L1 LB LY LT — LiCoLT — Oy (4.8.8)
and so on, hence
A=Ly - L LY LT -C, y —Cpg—---— Oy (4.8.9)
with

Lemma 4.8.1 Let A be s.p.d. E be a reserved patten. Then there is at most a decompo-
sition A = LL™T — N, which satisfies the conditions:

(4.8.2b) : L is lower triangular with l;; > 0, l; # 0= (i,7) € E.
(4.82¢) : N = (ny), nyy =0, if (i,§) € E.
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PTOOf' Let A = LLT — N = I/ET N Then ayp = lll = l - l11 = l11 (SiIlCQ ln is
positive). Also, axy = lp1li1 — ng1 = lplin — g1, S0 we have

If (/ﬂ 1) EF—=ny=nu=0=1[; = l_kl = akl/ln, (4811&)
If (/{5 1) € F = lkl = lkl =0= ng = Ng1 = —ax1- (4.8.11b)
Suppose that ly; = ly;, ng; = T, for k=14,--- ,n, 1 <i <m — 1. Then from

m—1
m=lm +Zlmkzi2 +Zl_3nk
k=1

follows that 1, = lym. Also from

m—1 m—1
Ay = lrmlmm + Z lrklmk - Ny = Zrmimm + Zrk[mk — Ny
k=1 k=0
and (4.8.11) follows that 1.y, = Ry and Ly, = by (1 > m). [ |

The Incomplete Cholesky decomposition may not exist, if

m—1

Sm = Qmm — Z(lmk)2 <0.
k=1
Example 4.8.1 Let
1 -1 0 2
-1 2 -1 0

o -1 2 =3
2 0 -3 10

10 0 0
» -1 -1 0 0 .
The Cholesky decomposition of A follows L = 0 -1 1 0 Consider the In-
2 2 —-11
complete Cholesky decomposition with patten
x x 0 X
x x x 0
E=EB(4)= 0 x X X
x 0 x X

Above procedures (4.8.3)-(4.8.10) can be performed on A until the computation of ly4 (see
proof of Lemma 4.8.1),

Iy =0y — 15, — 13— 153, =10—-9 -4 = -3,

The Incomplete Cholesky decomposition does not exit for this pattern E. Now take

x x 0 0 1 0 0 0
X X X _ -1 1 0 O
FE = 0 x x x = L exists and L = 0 -1 1 0
0 0 x x 0 0 -3 1
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Find the certain classes of matrices, which have no breakdown by Incomplete Cholesky
decomposition. The classes are

M-matrices, H-matrices.

Definition 4.8.1 A € R™"*" is an M-matrix. If there is a decomposition A = ol — B with
B>0(B>0sb;>0fori,j=1,...n) and p(B) = max {|\| : A is an eigenvalue of B}
< 0. Equivalence: a;; <0 fori#j and A~ > 0.

Lemma 4.8.2 A is symmetric, a;; < 0, © # j. Then the following statements are
equivalent

(i) A is an M-matriz.

(ii) A is s.p.d.

Proof: (i) = (ii): A =0l — B, p(B) < 0. The eigenvalues of A have the form o — A,
where ) is an eigenvalue of B and |A| < o. Since A is real, so 0 — A > 0 for all eigenvalues
A, it follows that A has only positive eigenvalues. Thus (ii) holds.

(ii) = (i): For a;; <0, (i # j), there is a decomposition A = ol — B, B > 0 (for example
o = max(a;)). Claim p(B) < 0. By Perron-Frobenius Theorem 4.1.7, we have that p(B)
is an eigenvalue of B. Thus o — p(B) is an eigenvalue of A, so 0 — p(B) > 0. Then (i)
holds. |

Theorem 4.8.3 Let A be a symmetric M -matriz. Then the Incomplete Cholesky method
described in (4.8.3)-(4.8.10) is executable and yields a decomposition A = LLT — N, which
satisfies (4.8.2).

Proof: 1t is sufficient to show that the matrix B; constructed by (4.8.3)-(4.8.7) is a
symmetric M-matrix.

(i): We first claim: By is an M-matrix. A = By — C} < BO, (since only negative elements
are neglected). There is a k > 0 such that A = kI — A By = kI — BO with A >0,
By > 0, then By < A. By Perron-Frobenius Theorem 4.1.7 follows p(By) < p(A) < k.
This implies that By is an M-matrix.

(ii): Thus By is positive definite, hence B, = L' B, (Ll_l)T is also positive definite. B
has nonpositive off-diagonal element, since B; = A; — % Then By is an M-matrix (by
Lemma 4.8.2) n

Definition 4.8.2 A € R™*". Decomposition A = B — C' is called regular, if B~* > 0,
C >0 (regular splitting).

Theorem 4.8.4 Let A=Y > 0 and A = B — C is a reqular decomposition. Then
p(B1C) < 1. i.e., the iterative method Bxyyy = Cxy + b for Ax = b is convergent
for all xy.

Proof: Since T = B™'C >0, B"Y(B—C)=B'A=1-T, it follows that

(I-T)A'=DB""
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Then

k k
0<Y B =T (I-T)A" = (I -T"H)A <A™
i=0 i=0
That is, the monotone sequence Zf:o T'B~! is uniformly bounded. Hence T¥B~! — 0
for k — oo, then T — 0 and p(T) < 1. u

Theorem 4.8.5 If A~' > 0 and A = B, — C, = By — Cs are two reqular decompositions
with 0 < C, < Cs, then it holds p(B, 1 C}) < p(By *Cy).

Proof: Let A=B—C, A=t > 0. Then
p(B7C) = p((A+C)7'C) = p([A(I + A7) C)

= p(I+A'C)'A0) = %.

A
[A = —— monotone for A > 0].

14+ A
Because 0 < €} < Oy it follows p(A™'Cy) < p(A7'Cy). Then

o(Bi~'Cy) = p(A~'CY) < p(A~1Cy)

— — o(By~ L
1+ p(A71C1) = 14 p(A71Cy) PBCa)

since A — 1%\ is monotone for A > 0. [ ]

Theorem 4.8.6 If A is a symmetric M-matriz, then the decomposition A = LLT — N
according to Theorem 4.8.3 is a regular decomposition.

Proof:  Because each L' > 0, it follows (LLT)™' > 0, (from (I —leT)™" = (I + leT),
[>0). N=C,+Cy+---+C,_qand all C; > 0. [ |

Definition 4.8.3 A € R™" is called an H-matriz, if the matric H = H(A) which is
defined by

h_{ Qi Zf Z:.]a
Y _|aij|7 Zf 27&]7

1s an M-matriz.

Theorem 4.8.7 (Manteuffel) For any symmetric H-matriz A and any symmetric re-
served pattern E there exists an uniquely determined Incomplete Cholesky decomposition

of A which satisfies (16.2). [Exercise !].

History:

(i) CG-method, Hestenes-Stiefel (1952).

(ii) CG-method as iterative method, Reid (1971).

(iii) CG-method with preconditioning, Concus-Golub-Oleary (1976).

(iv) Incomplete Cholesky decomposition, Meijerink-Van der Vorst (1977).

(v) Nonsymmetric matrix, H-matrix, Incomplete Cholesky decomposition, Manteufel
(1979).

Other preconditioning:
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(i) A blockform A = [A;;] with A;; blocks. Take M = diag[A, ..., Akl

(if) Try Incomplete Cholesky decomposition: Breakdown can be avoided by two ways.
If 2, = a; — Zz;lllfk < 0, breakdown, then either set [;; = 1 and go on or set
lig=0, (k=1,..,i—1) until z; > 0 (change reserved pattern E).

(iii) A is an arbitrary nonsingular matrix with all principle determinants # 0. Then
A = LDR exists, where D is diagonal, L and R” are unit lower triangular. Consider
the following generalization of Incomplete Cholesky decomposition.

Theorem 4.8.8 (Generalization) Let A be annxn matriz and E be an arbitrary reserved
pattern with (i,i) € E,i=1,2,...,n. A decomposition of the form A = LDR— N which
satisfies:

(i) L is lower triangular, l; =1, l;; # 0, then (i,j) € E,

(11) R is upper triangular, ri; =1, r;; # 0, then (i,j) € E,

(i1i) D is diagonal # 0,

() N = (n;j), nij =0 for (i,7) € E.
is uniquely determined. (The decomposition almost exists for all matrices).

4.9 Chebychev Semi-Iteration Acceleration Method

Consider the linear system Ax = b. The splitting A = M — N leads to the form
v=Tr+f T=M7"'Nand f=M"b (4.9.1)
The basic iterative method of (4.9.1) is
Tpp1 = Ty + f. (4.9.2)
How to modify the convergence rate?

Definition 4.9.1 The iterative method (4.9.2) is called symmetrizable, if there is a ma-
triz W with detW # 0 and such that W(I — T)W =1 is symmetric positive definite.

Example 4.9.1 Let A and M be s.p.d., A=M — N and T = M~'N, then
[—T=1-M"'N=M"'M-N)=M"A.
Set W = M2, Thus,
W(I—T)YW"=MPMTAM Y2 = M~Y2AM Y2 s5.p.d.

(i): M (a“) Jacobi method.

(ii): M (2 (D —wL)D™ (D — wL™) SSOR-method.
(iii): M = LLT Incomplete Cholesky decomposition.
(iv): M =1 = xp41 = (I — A)xy + b Richardson method.

Lemma 4.9.1 If (4.9.2) is symmetrizable, then the eigenvalues p; of T are real and
satisfy
wi <1, fori=1,2,...,n. (4.9.3)
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Proof: Since W (I —T)W~!is s.p.d., the eigenvalues 1 — p; of I — T are large than zero.
Thus y; are real and (4.9.3) holds. n

Definition 4.9.2 Let v = Tx, + [ be symmetrizable. The iterative method

up = Zo,
U1 = a(Tup+ )+ (1 — a)ug (4.9.4)
= (aT+ (1 —a)u, + af = Touy + af.

is called an Extrapolation method of (4.9.2).

Remark 4.9.1 T, = oT + (1 — «)! is a new iterative matriz (Ty = T). T, arises from
the decomposition A= M — (N + (£ = 1)M).

Theorem 4.9.2 If (4.9.2) is symmetrizable and T has the eigenvalues satisfying p; <
o < oo <y, < 1, then it holds for a* = > 0 that

2##

,un - ,ul .
——————— = minp(7,). 4.9.5
S min () (19.5)

Proof:  Eigenvalues of T, are au; + (1 —a) =1+ a(u; — 1). Consider the problem

1> p(Ta*) =

minmax |1 + a(u; — 1)| = min!
(6% (2

= [+alp, -1 =[1+alm -1),
— l1+a(u,—1)=a(l —pu,) —1 (otherwise uy = py,).

then 1+ a*(u, — 1) = 2=, n

This implies a = a* m 2—p—pn

From (4.9.2) and (4.9.4) follows that

k

k
Uy = E ag;x;, and E ap; = 1

i=0 i=0
with suitable ax;. Hence, we have the following idea:
k
Find a sequence {a;}, k=1,2,...,i=0,1,2,...,k and > ax; = 1 such that
i=0
k
U = Zakixi, Uy = X (496)

i=0
is a good approximation of z* (Azx* = b). Hereby the cost of computation of u; should
not be more expensive than xy.
Error: Let

er =2 — x5, ep = Treq, €0 = 19 — * = uy — * = dy. (4.9.7)

Hence,

d, = u,—x2"= Za;ﬂ-(a:i — ") (4.9.8)

= Pk( Jeo = Pr(T )dm



126 Chapter 4. Iterative Methods for Solving Large Linear Systems

where .
Pe(d) =D aw\’ (4.9.9)
i=0

is a polynomial in A with Py(1) = 1.
Problem: Find Py such that p(Py(T")) is possible small.

Remark 4.9.2 Let ||z||w = ||[Wx|2. Then

| Tz |lw
T = max ———

C e |WTW =Wz,
20 IWx||2
= |[WTW |y = p(T),

because WTW =1 is symmetric. We take || - ||w-norm on both sides of (4.9.8) and have

ldillw < IPR(D)llwlldollw = WPL(T)W 12 doll2 (4.9.10)
= [PeWTW ) lalldollw = p(Pe(T)lldollw-

Replacement problem: Let 1 > pu, > --- > uy be the eigenvalues of T'. Determine
min [{max |Py(A)] : 1 <A < pp} = deg(Pr) < k, Pi(1) =1]. (4.9.11)
Solution of (4.9.11): The replacement problem (4.6.35)
max{|Pr(A\)|: 0 < a <\ < b} =min!, Pr(0) =1

has the solution

o0 =n i [kt

Substituting t - 1 — A, A — 1 — ¢, (p1, tn) = (1 — pin, 1 — p1), the problem (4.9.11) can
be transformed to the problem (4.6.35). Hence, the solution of (4.9.11) is given by

2t — p11 — pin 2— 1 — o
=T, (— Ty (——). 4.9.12
Qi(t) = Ti( = )/ i ( I ) ( )

Write Qg (t) :=

k
ar;t'. Then we have

=0

k
U = E Afi Ly
i=0

which is called the optimal Chebychev semi-iterative method.
Effective Computation of w;: Using recursion of T} as in (4.6.36), we get

To(t) = 1, Ti(t) = t, Teor(t) = 20Ti(t) — Toor(2).
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Transforming Ty (t) to the form of Qx(t) as in (4.9.12) we get

Qo(t) =1, Qu(t) = H =pt+(1—p) (4.9.13a)
and
Qr+1(t) = [pt + (1 — p)ler+1Qx(t) + (1 — cr1) Qr—1(1), (4.9.13b)
where
b= 2 ~ 2T(1/7) dr— M= Hn (4.9.14)

= 1= —————andr=——"—.
2= — T 1T (1)) 2— 1 — fin
Claim: (4.9.13b)

Qr(t) = Tk:-i—l( g >/Tk+1 (;)
1 2t—,u1 L 2t — iy — 2t — iy —
T, T (—
Tk+1(1/7”)[ ( fi1 = fn ) k< fi1 = fn ) ‘ 1< fi1 = fn )}
_ 2Bl 2 ) Ti(Fatee) | T o) T (o)
T (1/7) f1 = [n T(l/r) T (Bte)  Tea(l/r)
= Crppt + (1 = p)]Qx(t) — [1 = Crya]Qr1(1),

since

2t — 1 — iy 2t — py — pn

M1 — 2— 1 — pn
and
2T(1/r) _ Ty (1/r) — 2Tx(1/r)
T1(1/7) rTy1(1/7)
—rTy_1(1/r) _ —T—1(1/r)
T (1/7) Tepa(1/r)

1_Ck+1 = 1-

Recursion for wuy:
diyr = Qra(T)do = (pPT + (1 = p)I)er1Qr(T)do + (1 — cxy1)Qr—1(T')do,
et = (T + (1 —=p))cppx” + (1 — cpyr)a™ +p(I = T)x" g
Adding above two equations together we get
uprr = [PT+ (1= p)l]erpug + (1 — cpr)up—1 + ceapf
= CppP{Tur + f — up} + crrug + (1 — Cpgr) up—1.
Then we obtain the optimal Chebychev semi-iterative Algorithm.
Algorithm 4.9.1 (Optimal Chebychev semi-iterative Algorithm)

N —HMn — 2 J—
Let r = —“—LQ o D= cp =2
Ug = Zo,
Fork=1,2,---, (4.9.15)

Upyr = Crp1 [P(Tup + f) 4+ (1 = pug) + (1 — cpqr) up—1,
Ck+1 = (1 — 7“2/4 Ck)fl.
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Remark 4.9.3 Here up.1 can be rewritten as the three terms recursive formula with two
parameters as in (4.7.5):

Upr1 = Cpp [p(Tup + f)+ (1 —p)ug]) + (1 — cpar) ugp—1
= Cpy1 [pM! ((M A)ug +b) + (1 — p)ug] + tp—1 — Crartip—y
= Cri1 [uk +pM (b — Auy) — wy— 1] + Up_1
= Cpa1 [Uk + P2k — Up—1] + Up—_1,

where Mz, = b — Aug,. [ |

Recursion for ¢;: Since

— -9
“ rTy(1/r)  r % ’
thus
1 2 1 1
Tt <—) = ;Tk (;) — T (—) (from (4.6.36))
It follows
1 — TTk+1 (%) — 1 o 7«_2 2Tk_1 (%) — 1 _ ﬁc
1 2Tk (1) 4| T () 4"
Then we have ]
. H1 Hn
= th r=————. 4.9.16
ST A= e T 2= = (4.9.16)
Error estimate: It holds
2~y — i\ | .
lwr — 2*||w < | T, (#) luo — 2*||w- (4.9.17)
1 — Mn
Proof: From (4.9.10) and (4.9.12) we have
ldillw = [|Qu(T)dollw < p(Qk(T)) lldollw
< max {|Qr(A)] : 1 <A < pa}[|dollw
2 — 1 — pin \ |
< 'Tk () ol
H1 — Hn
[ |

We want to estimate the quantity g, := |Tx(1/7)|™' (see also Lemma 4.6.9). From
(4.6.37) we have

() - |

_<1+\/r1—7r2)k+ (1-@)’“]

(1 4+ VI= ) 4 (1— m)k}
(r2)k/2

[(1+VI=r)k+ (1 _m)k]
[+ VI= )1 —vI=—m)]"?

( k2 c—k/2)

N = N = N = DN | —
T
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| k] @ R gs i |17
08| 5]0.0426| 8 |14]9.06(4)|17-18] 31
0.9 | 10]0.1449 | 9-10 | 18 | 1.06(-2) | 22-23 | 43
0.95| 20| 0.3159 | 11-12 | 22 | 5.25(-2) | 20-30 | 57
0.99 | 100 | 0.7464 | 14-15 | 29 | 3.86(-1) | 47 |95

J , ./
Table 4.3: Convergence rate of g, where j : <£ﬁ> R qq, qs and J ), = qa, gs.

Hn — 1 M—=A k-1 A

T = = e KR = —

2_M1_Mn /\1+/\n /{—f_]-, /\n

2
Thus, from ¢ = L’r \/7% = <£:> follows
VE—1\"

<2 . 4.9.18
G < <\/E+1 ( )

That is, after k steps of the Chebychev semi-iterative method the residual ||uy — z*||w is

k
reduced by a factor 2 (ﬁ;}) from the original residual ||ug — z*||w .

-1
If piin = 1 = 0, then g, = Ty, (2;5") . Table 4.3 shows the convergence rate of the

quantity g.
All above statements are true, if we replace i, by o, (1, > pn) and pg by p) (p] < 1),
because A is still in [uy, 1, ] for all eigenvalue A of T'.

Example 4.9.2 Let 1 > p = p(T). If we set i, = p, ) = —p, then p and r defined in
(4.9.14) become p =1 and r = p, respectively. Algorithm 4.9.1 can be simplified by

Uy = To,

uy = Tug + f, (4.9.19)
U1 = Crp1 (Tur + f) + (1 = g1 Jup—1,

Chp1 = (1 — (p2/4) ck,)f1 with ¢; = 2. [ |

Also, Algorithm 4.9.1 can be written by the form of (4.9.19), by replacing T by
To- =T, = (pT + (1 —p)I) and it leads to

Uk+1 = Ck+1 (Tpuk + f) + (1 - Ck-i—l) Up—1- (4920)
Here ppy + (1 — p) = 3572 and pu,, + (1 — p) = 275~ are eigenvalues of T),.
Remark 4.9.4 (i) In (4.9.15) it holds (r = p)
2

Co>c3>c4 >, and lim ¢, =

o ﬁ (Exercise/)
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(i1) If T is symmetric, then by (4.9.12) we get

|Qe(T)]|l2 = max{|Qx(w;)| : ps is an eigenvalue of T'}
< max{|QeN)]: —p <A< p}

n ()

, (p=p(T)).

- L I C e il 4.9.21
2R T (wy — 1R (4.9.21)

1— 2 . 2
where ¢ = =wp — 1 with wy = .
1+4/ 1—p2 b b 1+ 1—p2

4.9.1 Connection with SOR Method
Recall

(i) The SOR method solves linear system Az = b (standard decomposition A = I —
L— R):

e = (I —wL)™((1 — w) +wR)z™ + w(I —wL)™ b (4.9.22)
= LoV +w(l —wL)™, O<w<?2
(ii) A =1T— L — R is called 2—consistly ordered, if the eigenvalues of oL + o 'R are

independent of «,

(iii) (Theorem) A =1 — L — R and A is 2-consistly ordered. If A has real eigenvalues
and p(L + R) < 1, then it holds

wpy — 1 =p(Ly,) < p(Ly,), w#w, (4.9.23)

_ 2
where wy, = oy e
Consider (4.9.1) again

r=Tx+f, A=M-N, T=M7'N, f=M"b

Assume that

all eigenvalues of T are real and p(7T') < 1. (4.9.24)
Then the following linear system (of order 2n) is equivalent to (4.9.1).
r=Ty+f
’ 4.9.2
{ y=Tz+ f. (4.9.25)

*k *

%)
(4.9.25), then z;* = z* solves (4.9.1). Because z1* — 25" = —T'(z;* — 29*) and —1 is not
an eigenvalue of T', so z1* = 2. Let

That is, if 2* solves (4.9.1), then { i } solves (4.9.25), reversely, if z* = [ “ } solves
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Then (4.9.25) can be written as

s=Jz+h (4.9.26)
and [ — J is 2—consistly ordered. Applying SOR method to (4.9.26) we get

0 0 0T
J:L+R.:[T o]+[o o}

and

Let z; = [ i } Then we have

Yi

EREE CEPEMTRAREY!
hence

Tiv1 = (1—w)r,+wly +wf =w{Ty; + f —x;} + x;, (4.9.28a)
Yir1 = CL)TIZ'+1 + (1 — w)yi + (A)f = W{TLL’1'+1 + f - yz} + vi, (4928b)
The optimal value w, for (4.9.27) is given by

1
1+1-22())

Wy =
Lemma 4.9.3 It holds o(J) = o(T)U{—0c(T)}, where o(T) = spectrum of T'. Especially
p(T) = p(J).

Proof: Let A € o(T). There exists  # 0 with Tz = Az. Then

1]ofz] = o))

2
Thus we have o(J) D o(T)U{—0c(T)}. On the other hand, from J? = [ =0 ] follows

0o 1717
that if X is an eigenvalue of J, then A\? = p? for one p € o(T), so A = p or —u. Thus

o(J) Co(T)U{—0o(T)}.

[ |
We then have
2 1—+/1—=p%T)
wp = , plLwp) =wp— 1= . 4.9.29
1+ /1—p*T) ( ) 1+ /1= p%T) ( )
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4.9.2 Practical Performance

Zo, Yo, T1, Y1, T2, Y2,
£ M A N |
C()v Cla <27 <37 C47 C57

Coi = x5, Qi1 =¥, ©1=0,1,2,...
Then (4.9.28) can be written as

Gri=w{TG+ =G} + G, 1=1,2,-- (4.9.30)
with o = g and (; = yo = Txog + f. Comparing (4.9.30) with (4.9.19) we get
Ujt1 = CZ'+1{TUZ' + f - ui,l} + Ui—1, 1= 1, 2, LN (4931)

Since ¢; converges to wy, the optimal Chebychev acceleration method is referred to as a
variant SOR method.

Error estimate of (4.9.30): Write (4.9.30) as

CGeyr = wp{TC+ f — Ce1} + G,

CO = Xy,
G = TG+ [
Let
er =C—ax*. (Az" =) (4.9.32)
Then we have
€ = CU - 33*7
&1 = T507
Ek+r1 — waéTk + (1 — wb>€k_1.

Since z* = wp{Tx* + f — 2"} 4+ x*, it follow that
Er = T’k(T)g(], (4933)
where 7y (x) is a polynomial of degree < k, and

o = 1,
r(t) = t, (4.9.34)
TE+1 (t) = wbtrk(t) + (1 — wb)rk_l(t).

Either solve this difference equation or reduce to Chebychev polynomials of 2nd kind.
Sk+1 (t) = 2t8k(t) — Sk_l(t),

S(](t) = 1,
81(t> = 2t.
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In fact si(cos@) = sin((k + 1)#)/sinf. One can estimate ||ri(T)|| (see Varga p.146) by:
Let T' be Hermitian. Then

|lrk(T)|| = max{|rr(u;)| : i is an eigenvalue of T}
= max{|ry(p)| : —p(T") < p < p(T)}
= (- D {1+ /T2 (D)}
This implies
klim |re(T)|[M* = Ve, — 1 .
—00
From (4.9.21) follows that

klim HQk(T)Hl/k =vw, — 1.
—00

4.10 GCG-type Methods for Nonsymmetric Linear
Systems

Recall: A is s.p.d. Consider the quadratic functional

1
F(zx) = éxTAx ) (4.10.1)
Az* = b <= m]%n F(z) = F(z2")
TeR™
Consider

1 1
o(r) = §(b — Ax)TA_l(b — Az) = F(x) + §bTA_1b, (4.10.2)
where %bTA_lb is a constant. Then

1
Az* =b <= ¢(2") = min p(z) = [min F(z)] + EbTA_lb

zER™ reR™
CG-method:

Given xg, 179 = po = b — Axg
for k=0,1,...

ap = TkTpk/Pprka

Tg4+1 = Tk + QkPr,

Tk4t1 =Tk — OékApk (E b — Al‘k_H)

Prt1 = The1 + B

Bk = =11 Ap/f Apr(= i Thd /TR TE)
end for

Numerator: 7, ((re — riq1) /o) = (=i mes1) /o
Denominator: p;‘prk = (r,{ + ﬁk_m;‘f_l)((?“k — Thy1)/ o) = (rfm)/ak.

Remark 4.10.1 CG method does not need to compute any parameters. It only needs
matrix vector and inner product of vectors. Hence it can not destroy the sparse structure
of the matrixz A.
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The vectors r, and py generated by CG-method satisfy:

pzrk (pi,Ti) =0, i<k
7" rj=(ri,r;) =0, i %J
Ap] = (pl7Apj) { #]
Tpp1 = Xo + Zf:o a;p; minimizes F(z) over x = xo+ < po, -+ , Pk >.

4.10.1 GCG method(Generalized Conjugate Gradient)

GCG method is developed to minimize the residual of the linear equation under some
special functional. In conjugate gradient method we take

1 _ 1 _ 1
o(r) = §(b — Ax)TAT (b - Ax) = ETTA ly = §||7“H2A,1,

where ||z||4-1 = V2T A=z,

Let A be a unsymmetric matrix. Consider the functional
1 T
f(#) = 5(b— Az)"P(b  Az),

where P is s.p.d. Thus f(x) > 0, unless * = A7'b = f(z*) = 0, so z* minimizes the
functional f(x).
Different choices of P:

(i) P=A"1 (Aissp.d) = CG method (classical)

(ii) P =1 = GCR method (Generalized Conjugate residual).
L T L2
F(a) = 5(b— A)"(b— Av) = |3

Here {r;} forms A-conjugate.

(iii) Consider Mt Ax = M~'b. Take P = MTM > 0 = GCGLS method (Generalized
Conjugate Gradient Least Square).

(iv) Similar to (iii), take P = (A 4+ AT)/2 (note: P is not positive definite) and M =
(A+ AT)/2 we get GCG method (by Concus, Golub and Widlund). In general, P
is not necessary to be taken positive definite, but it must be symmetric (P = P).
Therefore, the minimality property does not hold.

Let
(z,y)o = 3" Py = (2,9)0 = (y, 7).
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Algorithm 4.10.1 (GCG method)

Given g, 1o = po = b — Axg

for k=0,1,---
ar = (ri; Apr)o/ (Apr, Apr)o (4.10.3a)
L1 = T + QgPy (4.10.3b)
Th41 =T — OzkApk (E b— Aka) (4103(3)
B = —(Arier, Ap)o/(Api, Aoy i =0,1,- k  (4103d)
k
Pht1 = The1 + Z @UC)]% (4.10.3¢)
i=0
end for

In GCG method, the choice of {Bi(k) b | satisfy:

(The1, Api)o =0, 1<k (4.10.4a)
(rre1, Ari)o =0, i<k (4.10.4b)
(Api, Apj)o =0, i # ] (4.10.4c)

Theorem 4.10.1 4,1 = zo + Zf:o ayp; minamizes f(z) = 5(b — Az)TP(b — Axz) over
x=x9+ < po, - ,Pr >, where P is s.p.d.

(The proof is the same as that of classical CG method).

If P is indefinite, which is allowed in GCG method, then the minimality property
does not hold. xj; is the critical point of f(x) over z = xo+ < po, -+ , pr >.
Question: Can the GCG method break down? i.e., Can oy in GCG method be zero?
Consider the numerator of ay:

(re, Apr) = (rr, Ari)o [by (4.10.3e) and (4.10.4a) |
= 1l PAr,
ri AT Pry, [Take transpose]
Tl’_: (PA+2ATP) .
From (4.10.5), if (PA+ AT P) is positive definite, then oy # 0 unless 7, = 0. Hence if the
matrix A satisfies (PA+ AT P) positive definite, then GCG method can not break down.
From GCG method, r; and p; can be rewritten by

(4.10.5)

T = Vr(A)ro, (4.10.6a)
pr = or(A)ro, (4.10.6b)

where ¢ and ¢y are polynomials of degree < k with 1,(0) = 1 [by (4.10.3¢), (4.10.3¢e)].
From (4.10.6a), (4.10.6b) and (4.10.4b) follows that

(Thy1, A 7o), = 0, i=0,1,--- k. (4.10.7)
From (4.10.6a), (4.10.6b) and (4.10.3d), the numerator of ﬁi(k) can be expressed by
(Argir, Api)o = 11 AT PAp; = rl AT PApi(A)rg. (4.10.8)
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If ATP can be expressed by

ATP = Po,(A), (4.10.9)
where 6, is some polynomial of degree s. Then (4.10.8) can be written by
(Arpy1, Api)o = 7"1?+1ATPA%(A)T0
= 11 POs(A)Api(A)rg (4.10.10)
= (rk+1, AO5(A)pi(A)ro)o-
From (4.10.7) we know that if s + i < k, then (4.10.10) is zero, i.e.,(Argy1, Ap;)o = 0.
Hence Bfk) =0,72=0,1,--- .k —s. But only in the special case s will be small. For
instance,
(i) In classical CG method, A is s.p.d, P is taking by A~!. Then ATP = AA™' =1 =
A7'A = A716,(A), where 0(z) = z,s = 1. So, Bi(k) =0, for all i + 1 < k, it is only
B # 0,
(ii) Concus, Golub and Widlund proposed GCG method, it solves M 1Az = M~1b. (A:
unsymmetric), where M = (A+ AT)/2 and P = (A+ AT)/2 (P may be indefinite).

e Check condition (4.10.9):
(M7PAY'P=AT"M'M = AT = M(2I — M'A) = P(2] — M A).
Then
O, (M1A) =21 — M A,
where 0;(z) =2 —x, s = 1. Thus Bi(k) =0,i=0,1,--- ,k — 1. Therefore we only

use 1,1 and pg to construct pgy.

e Check condition ATP + PA:
(M7'A)T"M + MM™*A = A" + A indefinite
The method can possibly break down.
(iii) The other case s = 1 is BCG (BiCG) (See next paragraph).

Remark 4.10.2 FEzcept the above three cases, the degree s is usually very large. That
is, we need to save all directions p; (i =0,1,--- k) in order to construct pyy1 satisfying
the conjugate orthogonalization condition (4.10.4c). In GCG method, each iteration step
needs to save 2k + 5 vectors (Tpy1, That, Prits LADi Mo, {pi}i,), k + 3 inner products
(Here k is the iteration number). Hence, if k is large, then the space of storage and the
computation cost can become very large and can not be acceptable. So, GCG method, in
general, has some practical difficulty. Such as GCR, GMRES (by SAAD) methods, they
preserve the optimality (p > 0), but it is too expensive (s is very large).

Modification:

(i) Restarted: If GCG method does not converge after m + 1 iterations, then we take
Try1 as xg and restart GCG method. There are at most 2m + 5 saving vectors.

(ii) Truncated: The most expensive step of GCG method is to compute ﬁfk), 1 =
0,1, -+, k so that pg, satisfies (4.10.4c). We now release the condition (4.10.4c)
to require that py41 and the nearest m direction {p|i}%_,_, ., satisfy the conjugate
orthogonalization condition.
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4.10.2 BCG method (A: unsymmetric)

BCG method is similar to the CG method, it does not need to save the search direction.
But the norm of the residual produced by BCG method does not preserve the minimal

property.
Solve Az = b by considering ATy = ¢ (phantom). Let

() ()

7 =b.

Consider

Take P = ATZ (P = PT) with Z = ( é ) . This implies

AT7 = 7ZA and ATP = PA.

From (4.10.9) we know that s = 1 for AZ = b. Hence it only needs to save one
direction p; as in the classical CG method.

Algorithm 4.10.2 (Apply GCG method to A = b)

Given xg = ( ;2 ), ]50:?0:1;—[1%: < ;2 )
for k=0,1,...

ay = (Frs Apr)o/ (Apr, Apr)os

Tpy1 = Tk, + Py,

Fret = T — AP, Pt = Frar + Bibi

B = —(AFpsr, Apr)o/ (A, Apr)o-
end for

Algorithm 4.10.3 (Simplification (BCG method))

Given xg,pg =19 = b — Axg
Choose T, Py = To
for k=0,1,...
ar = (P, %)/ (P, Apr),
Th+1 = Tk + O Pk,
Th1 = Tk — APy Trp1 =T — akATﬁk
Br = (i1, Tk+1)/(fk, Tk)
Pret1 = Tkt + BiDk,  Prr1 = Thy1 + Bibr-
end for

PO 0 AT A .
From above we have (Apy, Apr)o = (Apy, ATpy) < . ) ( AT%,C ) = 2(pr, Apy.).
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BCG method satisfies the following relations:

rpi=rpi=0, i<k (4.10.11a)
P ATp = prApi =0, i<k (4.10.11b)
rafi=rri =0, i<k (4.10.11c)

Definition 4.10.1 (4.10.11c) and (4.10.11b) are called biorthogonality and biconjugacy
condition, respectively.

Property 4.10.1 (i) In BCG method, the residual of the linear equation does not satisfy
the manimal property, because P is taken by

s, [0 AT
P=A Z_(A_1 .

and P is symmetric, but not positive definite. The minimal value of the functional
f(x) may not exist.

(ii) BCG method can break down, because Z = (ATP + PA)/2 is not positive definite.
From above discussion, ay can be zero. But this case occurs very few.

GCG

GCR, GCR(k) BCG
Orthomin(k) CGS
Orthodir BiCGSTAB
Orthores QMR
GMRES(m) TFQMR
FOM

Axelsson LS

4.11 CGS (Conjugate Gradient Squared), A fast Lanczos-
type solver for nonsymmetric linear systems

4.11.1 The polynomial equivalent method of the CG method
Consider first A is s.p.d. Then the CG method

Ty = b — AZEO = Po
for 1=0,1,2,---
a; = (ri, i)/ (pi, Api) = (ri,7:) [ (Di, Api)
Ti+1l = Ty + a;p;
Tiy1 = T — a; Ap;
Dit1 = Tiy1 + bip;
bi = —(riv1, Api) [ (Dis Api) = —(riv1, Tiv1) /(1 70)
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g

ro=b—Axg, p.1=1,p1=-1
for n=0,1,2,---
Pn = 7“71;7‘”, Bn = pn/pn—l
DPn = Tn + 5npn—1
On = pzApm Qp = pn/an
Tnal = Tn — Q@ Apy
Tpt1 = Tp + Qupn (rn =b— Azy)

Remark 4.11.1 1. E, =71 A7, = minge,y 1k, [|0 — Az 4

2. Tg?”m = pndnmu pZApm = O'nénm

From the structure of the new form of the CG method, we write

Tn = on(A)ro,  pn=Un(A)rg

where ¢,, and 1),, are polynomial of degree < n. Define ¢o(7) =1 and ¢_1(7) = 0. Then

we find
Pn = Spn(A)TO + 5n¢n71(14)?"o = %(A)To
with
Un(T) = @n(T) + Butbn-1(7),
and
Tnt1 = @Pn(A)ro — an A, (A)ro = @ni1(A)ro
with

Pn1(T) = on(T) — TP (7).

(4.11.12a)
(4.11.12b)
(4.11.13a)

(4.11.13b)

The CG method can be re-iterpreted as an algorithm for generating a system of

(orthogonal) polynomials. Define the symmetric bilinear form (-, -) by

(¢, ) = [e(A)ro] ¥ (A)ro.

We have (¢, ¢) > 0. Since A is symmetric, we can write

(. 0) = rg p(A)Y(A)ro.

Furthermore, from the associate law of matrices

(¢0,9) = (¢, 00)

for any polynomial ¢, 6 ,1. Here (-,-) is semidefinite, thus (¢, ¢) = 0 may occur!

The polynomial equivalent method of the CG method :

=1 0 1=0p1=1

for n=20,1,2,---
P = (Pns#n)s Bn = pn/pPa-
U = On + Ba¥n_1
Op = (wnu le)n), Qp = pn/an
Ontl = ©n — apbih,.
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where 0(7) = 7.
The minimization property reads

0~ 'p)
En — n 0—1 n) = : (907 )
(¢n, 0" 0n) i =0

We also have
(i, SOj) =0, i#j from (ﬁ'ﬂ’j) =0, i#j.
(i, 00;) =0, i#j from (p;, Ap;) =0, i#j.

Theorem 4.11.1 Let [-, | be any symmetric bilinear form satisfying

[ox. ¥] = e, x¥] Ve, ¢, x € PN

Let the sequence of v, and 1, be constructed according to PE algorithm, but using |-, -]
instead (-,-). Then as long as the algorithm does not break down by zero division, then

©n and ¥, satisfy
[@n; Spm] = pnénma [wna ewm] = O'n(snm

with 6(1) = 7.
Proof: By induction we prove the following statement:

[Vn—1,00k] = 0101k, [P0 Yx) =0 (4.11.14)

VYn>0, —1<k<n-—1witho_;=0. If n =0, this is true since ©)_;(7) = 0. Suppose
(4.11.14) holds for n < m and let k¥ < m. Then by PE algorithm, it holds

[Yrms OUk] = [Pms O] + Bl m—1, 03] (4.11.15)

Substitute ¢y, = (pr — @r+1)/ag in the first term. The second term is zero for k < m—1,
by hypothesis. Thus

Wm, 9¢k] = [9077“ (pk] _Oé[spm’ SOm_H] + 5m0m715m71,k7 vk S m — 1.
k

If k <m — 1, then [¢,, 0] = 0. For k = m — 1 we have
[wma dem—l] = _pm/am—l + /Bmo_m—l = 07

which proves first part of (4.11.14) for n =m + 1.
Second Part: Write

[me—I—la W] = [mey wk] - Oém[@/)m’ 0¢k]7 vk S m.

If £k < m—1, then [pn11, %] = 0 by hypothesis. Using the algorithm and choosing k = m
we get

[‘Pm—&-l, 1/}7%] = [SOma Om + quvbm—l] - am[¢m7 8¢m] = Pm — Q0O = 0,

which proves the second part of (4.11.14).



it implies

[90717 gpk] = [¢n>¢k] - Bn[(;ona wk—l] = O, VE < n.

Together with the first part of (4.11.14), we prove the theorem. u
The theorem is valid as long as the algorithm does not break down. For this reason
we shall use orthogonal polynomial for ¢, and 1, whether or not the bilinear forms
involved are inner products.
In the following, we want to generalize the CG Algorithm to the nonsymmetric case.
Consider

Ax =05, A: nonsymmetric.

Given g, rg = b — Axg, let 7o be a suitably chosen vector. Define [-, -] by

[0, ¥] = 75 p(A)(A)ro = (9(A")7o) ¥ (A)rg

and define p_; = p_; = 0. (If A symmetric : (¢,1) = rp(A)Y(A)ry). Then we have

rn = (Pn(A)rm fn :Qpn<AT)7:07
Pn = %(A)To, ﬁn:wn<AT)7:O

with ¢, and 1, according to (4.11.12b) and (4.11.13b). Indeed, these vectors can be
produced by the Bi-Conjugate Gradient algorithm:

Algorithm 4.11.1 (Bi-Conjugate Gradient algorithm)

Given rg = b — Axg, p_1 = p_1 and 7o arbitrary
Forn=20,1,---
Pn = 7:?;7’,“ Bn = pn/pn—l
Pn =Tn + Bnpn—h ﬁn =7, + Bnﬁn—l
Op = ﬁZ:Apm Op = pn/Un
Togl = Tn — OpADn,  Trp1 = T — @ ATD,
Tpt1 = Tn + OpPnp.

Property 4.11.1 r, =b— Az, rf7; =0, j #k and pf ATp; =0, j # k.

Remark 4.11.2 The Bi-Conjugate Gradient method is equivalent to the Lanczos biorthog-
onalization method.

Km - Spa’n<vm) = Span(ro, ATOa e 7Am_1T0) = Spa’n<p07p1a e 7pm—1)7

m—1,

Lm - Span(wm) = Span@:()v ATfOJ T, (AT) TO) = Span(ﬁ()vﬁl’ e 7]5m—1)'

Remark 4.11.3 In practice 7 is often chosen equal to ro. Then, if A is not too far from
being S.P.D., the bilinear expressions |-, -] and [-,0-] will be positive semi-definite, and the
algorithm will converge in the same way, and by the same argument as does the ordinary
CG algorithm in the SPD-case!
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4.11.2 Squaring the CG algorithm: CGS Algorithm

Assume that Bi-CG is converging well. Then r,, — 0 as n — oco. Because r,, = ¢,,(A)ro,
©n(A) behaves like contracting operators.

e Expect: ¢, (AT) behaves like contracting operators (i.e., 7, — 0). But ”quasi-residuals”
7, is not exploited, they need to be computed for the p,, and o,.

e Disadvantage: Work of Bi-CG is twice the work of CG and in general ATv is not easy
to compute. Especially if A is stored with a general data structure.

e Improvement: Using Polynomial equivalent algorithm to CG.

Since Pn = [SDn,SDn] and On = [d)nvewn]v ['a ] has the property [@Xad]] = [%X%U] Let
wo = 1. Then

Pn = [9007 @i]? On = [@07 ewi]

{ Pnt+1 = Pn — anewn;
wn = ¥n + ﬁnz/}n—l-

e Purpose: (i) Find an algorithm that generates the polynomials ¢? and 1?2 rather than
©n and .

(i) Compute the approximation solution z, with r, = ¢2(A)ry as residuals (try to
interpret). Because p, = 7 r, with r, = ©2(A)rg, 7, and p, need not to be computed.
How to compute 2 and ¢2?

wi = [Qon + ann—l}Q = @121 +28,0nn-1 + ﬁfﬂbi_p
SDEL—H = [Spn - anewn]Q = SDEL - 205n990nwn + 043192%21

Since

Qpnqu)n = SOn[SOn + Bn¢n—1] = 90121 + Bngondjn—la

we only need to compute p,%, 1, ¢2 and 2. Now define for n > 0 :

(I)n = (;0721’ 671 = SOn@anb \Ilnfl = @52_1-

Algorithm 4.11.2 (CGS)

Pp=1.600=V_,=0,p_1 =1

for n=20,1,---
Pn = [17 (I)n]a Bn = pn/pn—l

on =1[1,0V,], «,=py/on, O)=r,
9n+1 = Yn - anﬁ\lln
(Dn-l—l =, — ane(Yn + ®n+1)
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Define r, = @,(A)ro, ¢ = On(A)70, P = VU, (A)ro,
ro=0b— Arg,qo =p-1=0,p_1 =1

for n=0,1,---
Pn =T0Tn,  Bn = Pn/Pn
Uy = Ty + /BnQn
Pn = Un + Bn(Qn + 5npn—1)
Un = Apn

Op = TeVn, Q= pp/on
Gn+1 = Up — QpUp

Toe1 = Tn — O A(Up + Gnit)
Tl = Tn + @ (Uy + @uat)-

Since rog = b — Axg, ryy1 — rn = A(x, — xp41), we have that r,, = b — Azx,. So this
algorithm produces x,, of which the residual satisfy

Ty = gpi(A)ro.

Remark 4.11.4 Fach step requires twice the amount of work necessary for symmetric
CG. However the contracting effect of p,(A) is used twice each step. The work is not
more than for Bi-CG and working with AT is avoided.

4.12 Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsym-
metric Linear Systems

Algorithm 4.12.1 (Bi-CG method)

Given xo, ro = b— Axg, (To,70) 0, po =1, po =po = 0.
Fort=1,2,3,---

pi = (Tic1,7i1)

Bi = (pi/pi-1)

Pi = Ti—1 + Bipi1

Di = Ti—1 + BiDi—1

v; = Ap;

a; = p;i/ (Di, vi)

Ti = Ti—1 T aup;

Stop here, if x; is accurate enough.

TP =Tl — U = 11 — o Ap;

Ty =Ti_1— Oéz‘ATﬁz‘

end for
Property 4.12.1 (i) r; L 7o,...,7j—1 and 7; L ro,...,7j_1.

(ii) three-term recurrence relations between {r;} and {7;}.
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(iii) It terminates within n steps, but no minimal property.
Since rfi’CG = ¢, (A)rg and @BFCG = ¢, (AT)7, it implies that
(rj,7) = (93 (A)ro, i AT)Fo) = (pi(A)p;(A)ro, 7o) =0, i <.
Algorithm 4.12.2 (CGS method)

Given g, 19 = b — Axg, (r0,70) # 0, To =170, po =1, po = qo = 0.

Fort=1,2,3,---
Pi = (7:0;7“1‘—1)
B = Pz‘/ﬂz‘—1

u=ri_1+ B¢
pi = u+ B(gi—1 + Bpi—1)

v = Ap;
O‘:pi/(f()vv)
¢ =u— Qv
w:u+q,~

Ty = T+ qw
Stop here, if x; is accurate enough.
r; =11 — cAw

end for

We have r&9S = ¢, (A)%rg. ‘
From Bi-CG method we have 777 = ¢;(A)ro and p;y; = 1;(A)re. Thus we get

Vi(A)ro = (pi(A) + Biy1vi1(A)) 7o,
and

wi(A)ro = (wim1(A) — A1 (A)) 1o,
where 1; = @; + Bi1i—1 and ¢; = @1 — ;0;_1. Since

(¢i(A)ro, 0 (AT)F) =0, j<i,

it holds that '
QOZ‘(A)’I“O 1 fo, AT’I:(), ey (AT)Z_I’I:O

if and only if

(@5 (A)pi(A)ro,7o,) =0

for some polynomial ¢; of degree 7 < i for j = 0,1,---,i—1. In Bi-CG method,
we take ¢; = ¢; 7; = ¢;(AT)Fy and exploit it in CGS to get TJ»CGS = 5 (A)ro. Now
ri = @i(A)pi(A)ro. How to choose @; polynomial of degree i so that ||r;|| satisfies the
minimum. Like polynomial, we can determine the optimal parameters of ¢; so that ||r]|
satisfies the minimum. But the optimal parameters for the Chebychev polynomial are in

general not easily obtainable. Now we take

Yi = ni(I),

where
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UG EEyAES ey wzﬁ).

Here w; are suitable constants to be selected.

Define
rj =n;(A)p;(A)ro
Then
ri = ni(A)pi(A)ro
= (I —wid)ni-1(A) (pi-1(A) — ;AY;1(A)) 1o
= {(mi—1(A)pi—1(A) — a; A1 (A)i1(A)) } o
—wiA{(ni—1(A)pi—1(A) — @i Ani—1(A)Yi1(A))} 1o
= rio1 — Ap — wiA(T¢—1 - OéiApi)
and

piv1 = ni(A)i(A)rg

= mi(A) (0i(A) + Bir1vi-1(A)) 7o
(A)ei(A)ro + Bis1 (1 — wiA)ni—1(A)vi1(A)ro
ni(A)pi(A)ro + Bisini—1(A)i—1(A)ro
_ﬁiJrlwiAnifl( )wiq( )0

= 7+ Big1(pi — wilps).

Recover the constants p;, §;, and «a; in Bi-CG method. We now compute ;: Let

piv1 = (To, i(A)pi(A)rg) = (ni(AT)f()? SOi(A)TO) :

From Bi-CG we have o;(A)ro L all vectors p;_(AT)7y, where p;_; is an arbitrary poly-
nomial of degree i — 1. Consider the highest order term of n;(A”) (when computing p;y1)
is (—1)'wiwy - - - wi(AT)%. From Bi-CG method, we also have

Pit1 = (SDi(AT)fO, %(A)To) :
The highest order term of ¢;(A") is (—1)ay - - - a;(AT)". Thus

Bi = (ﬁz’/ﬁz‘—l) (Oéz'—l/wz'—l) )
because

Bi = Pi _ (o - it (A7)0, i1 (A)1r0)
' pi1 - (an- o (A7) 270, pia(A)ro)

(‘gi x :g_::iwl - wi g (A7), <Pi—1(14)7“o>
- TR 7 o
(wi = -w,-_; wy -+ wia (A7), 907;—2(14)7”0)

= (pi/pi-1) (ai_1/wi—1).

Similarly, we can compute p; and «;. Let

ri=ri_1 —YAy, x;=x;_1+yy (side product).

Compute w; so that r; = n;(A)p(A)rg is minimized in 2-norm as a function of w;.
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Algorithm 4.12.3 (Bi-CGSTAB method)

Given xg, 1o = b — Axg, To arbitrary, such that (Fo,79) # 0, e.g. To = 7o,
po=a=wy=1, vg=po=0
Fori=1,2,3,---

pi = (To,7i-1)

B = (pi/pi-1)(a/wi-1)

Pi = Tic1 + B(pi-1 — wi—1vi—1)
v; = Ap;

a = p;/(Fo, vi)
S =T;j—1 — QU;

t=As
wi = (t,8)/(t,1)

T =T +ap;+wis (= xi_1 + ap; + wi(rio1 — aApy))
Stop here, if x; is accurate enough.

T, =8 — wit [: i1 — OéApZ — wiA(rz-_l — OéApZ) =Ti—1 — A(@pz + wi(ri_l - OéApz)]
end for

Preconditioned Bi-CGSTAB-P:
Rewrite Az = b as

Ai=b with A=K{'AK;!,
where © = K;'# and b = K;'b. Then
]51‘:>K1_1p2‘, 1~)Z'Z>K1_1’Ui, 7:1':>K1_1Ti,

5= Kflsi, £:> Kflti, T = Kg.fz‘,
o = K1 .

4.13 A Transpose-Free Qusi-minimal Residual Algo-
rithm for Nonsymmetric Linear Systems

Given g, 79 = b — Az and 7y arbitrary such that 737 # 0, e.g. 7y = ro. We know that
wh (b — AzBC) =0, Ywe K,(7, AT), 229 c 2o+ K, (1o, A).

The nth iterate, 25 generated by Bi-CG is defined by Petrov-Galerkin method.

’I"SCG = @n(A)Tm $n € Pna 9071(0) =L
T;}GS — (gpn(A))QTO, Iy € Lo+ Kzn(7"07 A)-
pBICGSTAB  — (U)o, (A)rg,  @n € 2o + Kan(ro, A).
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Choose zg € RN, set py = ug =19 = b — Azp, vo = Apy,
Choose T such that py = 71ry # 0,
forn=0,1,2,---

Opn-1 = fgvnq, Op_1 = pnfl/o'nfl;

qn = Up—1 — Op—-1Un—1,

Ty = Tyt + A1 (Un—1 + qn),

Ty = Tpo1 — 01 A(Un_1 + @),

If x,, converges, stop;

Pn = ngn, B = Pn/Pn—1

Up = Ty + Bnan
Pn = Un + Bn(Qn + ﬁnpn—l)u
v, = Ap,.
end for
Note that
a,_1 # 0 for all n, (4.13.1)
and
Up—1 = SOnfl(A)%Lfl(A)?“o, n = SOn(A)wn—l(A)T(); (4-13-2)

where ,,, 1, are generated by

Un(T) = on(T) + Bathn1(7), to=1 (4.13.3)

and
(7)) = On1(T) — an 1 Tn (7). (4.13.4)

4.13.1 Quasi-Minimal Residual Approach

Set
_ Up—1, 1fm:2’l‘b—1, odd
o { gn,  if m=2n, even (4.13.5)
and
2 :
_ [ en(A)r, if m=2n+1, odd
e { on(A)pn_1(A)ro, it m = 2n, even (4.13.6)

From r¢¢% = ©2(A)ry follows that wa, 1 = r$%. Using (4.13.2) and (4.13.4) we get

Un-1(A) = A7 ——(pn-1(A) — ¢a(A)).

Qn—1

Multiply above equation by ¢, (A), then the vectors in (4.13.5) and (4.13.6) are related
by
1
Ay = ————— (W, — Wing1)- (4.13.7)
Al (m-1)/2]
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By (4.13.1), a|(m—1)/2) in (4.13.7) # 0. Let

Ym:[ylvaa”' 7ym]a Wm-i-l:[wla"' 7wm7wm+l]-

Then from (4.13.7) we get

AY,, = W1 B9, (4.13.8)
where
1 0
-1 1
B — diag(c, g, a1, 1, + A pam—1)2)) " (4.13.9)
-1 1
0 —1

is an (m + 1) x m lower bidiagonal matrix.
By (4.13.3), (4.13.4) and (4.13.1) we have that polynomials ¢, and 1, are of full
degree n. With (4.13.2) and (4.13.5) it implies

Km(%’ A) = Spﬁm{yhy% e 7ym} = {sz ‘ z € Rm} (41310)
But any possible iterate x,, must lie in xg + K,,(r9, A). Thus
Ty = Xo + Yz for some z € R™. (4.13.11)

From (4.13.8) and w; = 1y (see wa, 41 = r$9%) follows that the residual satisfies

P =10 — AYpz = Wi (e — BO)2). (4.13.12)
Let
Qi1 = diag(wy, wa, -+, Wig1),  wy >0, (4.13.13)
be any scaling matrix, rewrite (4.13.12) as
P = Wit Ot (Fn — HE 2), (4.13.14)
where
fsr = wiel™ HO =, BY. (4.13.15)

We now define the m-th iterate, x,,, of the transpose-free quasi-minimal residual
method (TFQMR) by
T = To + YnZm, (4.13.16)

where z,, is the solution of the least squares problem
T = U fmsr = Hi 2|2 = min | fonir — Hz]l2 (4.13.17)
By (4.13.9), (4.13.13) and (4.13.15) it implies that H has full column rank m. Then
Zm 1s uniquely defined by (4.13.17). In general, we set
wg = w2, kE=1,--- ,m+1.

This implies that all columns of Wm+1Q;1+1 are unit vectors.
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Consider
T =0+ YiZm, Zm=H, fm, (4.13.18)
where

i, f
(e) — m _ m
Hm—[*”,*landfmﬂ—[ « }
By (4.13.9), (4.13.13) and (4.13.15) follows H,, nonsingular, thus
Zm = [, g, Q- - - aaL(mfl)/QJ]T (4.13.19)

and
W1 = | fms1r — HY Zmllo- (4.13.20)

Comparing (4.13.18) and (4.13.19) with update formula for iterate 2% in CGS Algo-
rithm we get
Ton = 2G5 (4.13.21)

n

Lemma 4.13.1 Let w; > 0,m > 1 and

H H(e) *
m ( hm+1,m 6% ) ( 0 hm+1,m ) ( )

be an (m + 1) x m upper Hessenberg matriz of full column rank m. For k =m — 1,m,
let 2, € R* denote the solution of the least-square problem

Tk = Héﬁél [ frs1 — HIEE)ZH% frrn = wiey™ € RM (4.13.23)

Moreover, assume that H,, in (4.15.22) is nonsingular. Set Z,, := H, ' f,,. Then

m = (1=¢2) ( Z”E)‘l > + 2, (4.13.24)
Tm = Tm—lemcma (41325)

where ) '
Om = ——fnsr — HZnll2s e = ———== (4.13.26)

Cm = :
Tm—1 \/ 1+ an
4.13.3 TFQMR Algorithm
From (4.13.24), (4.13.11) and (4.13.18) are connected by

T = (1 = )Tt + T (4.13.27)
By (4.13.25), (4.13.26) and (4.13.20) follows that

m 1
0,, = v +1, Cm=—F7—— and T, = Ty_10mCn. (4.13.28)

Tm—1 \/1—1—972”
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Setting
Ay = ——— (T — T1)- (4.13.29)

Rewrite (4.13.27) and get
Ty = Ton—1 + N, (4.13.30)
where 7, = 2,0 (m-1)/2). By (4.13.18) and (4.13.19) we get
i‘m :$O+Ym2m7 Zm = [O{(),Oéh"' 7aL(m—1)/2J]T7

and thus

Tm = Tm1 + A (m—1)/2|Ym-

Together with (4.13.29) and (4.13.30) (m replaced by m — 1) we have

0% M
Ay = Y + 2L g (4.13.31)

| (m-1)/2]

where 02,_, = i%;

Remark 4.13.1

~ 1.
dm = _<xm71 + Ym — xmfl) =Ym + _[xmfl - $m,1]
o) a

1
= UYm + a(xm—l — Tm—2 — nm—ldm—1>

1 1,
= Unm + _(adm—l - nm—ldm—l) = UYm + —(Oé - nm—l)dm—l
(6% (6%

1 nma 1 1—¢? 1
= m _ — Nlm— dm— = Ym m— — dm— .
Ym + 04(07271—1 Nm—1)Am—1 = Ym + — (Mm—1( Z_ ))dm-1

o
From (4.13.5) and (4.13.6), ¢,, and u,, in CGS Algorithm follows
Yon = Yon-1 — On—1Un-1, Yant1 = Want1 + Bplzn. (4.13.32)
Multiplying the update formula for p, in CGS Algorithm by A we get
U = Ayoni1 + Bn(Ayon + Brvn_1), for v, = Ap,. (4.13.33)
By (4.13.7) w,,’s can be generated by
Wing1 = Wi — | (m—1)/2]| AYm. (4.13.34)

Combining (4.13.28), (4.13.30)-(4.13.34) we get the TFQMR Algorithm in standard
weighting strategy wy = ||wg||2.
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Choose x, € RN
Set WL =Yy =T = b— A?L’(), Vo = Ayl, d() = 0, To = HTO||27 (90 = O, o = 0,
Choose T such that py = 71ry # 0,
For n=20,1,2,--- do
set Op_1 =710  Upn—1, Q1 = Pn—1/0n—1, Yon = Yon—1 — Op—1Un_1,
Form =2n—1,2n do
set Wyt = Wy — Q1 AYp,
em = me+1H2/7—m717 Cm = 1/ V I+ 972n7
Tm = 7—mflemcmy Nm = C?n()énfh
dm = Um + (egnflnm—l/an—lﬁlm—la
Ty = Tpp—1 + nmdmv
If z,, converges, stop;
End for
set Pn = 76 Want1, Bn = Pn/Pn-1,
Yon+1 = Won+1 + ﬁny02n7
Up = Ay2n+l + 6n<Ay2n + 571,”71—1)-
End for

4.14 GMRES: Generalized Minimal Residual Algo-
rithm for solving Nonsymmetric Linear Systems

Algorithm 4.14.1 (GCR)

Input: Given xq, compute pg = rg = b — Axg;
Output: solution of linear system Ax = b.
Iterate 1 = 0,1,2,-- -,
compute a; = (13, Api) /(Api, Api),
Tit1 = T; + Py,
Tip1 = 75 — i Ap; = b — Ay,

Piv1 =Tix1+ ) @('Z)pj;
=0

,Bj(i) are chosen so that (Api11, Ap;) =0, for 0 < j <i.
End;

It requires that 1(A” 4+ A) is symmetric positive definite.

Example 4.14.1 Let
0 1 1
A{—lO] and b[l}.

Take xo = 0. Then we obtain the following results:
e Fori =0 in Algorithm 4.14.1, we have that ag = 0 which implies that x1 = x¢ and
ry =71g. Thus py = 0.

e Fori =1 in Algorithm 4.1/.1, we see that a division by zero when computing o
and break down.
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4.14.1 FOM algorithm: Full orthogonalization method

For GMRES method,

(a) CANNOT break down, unless it has already converged.
(b) 1/2 storage required than GCR,
(c) 1/3 fewer arithmetic operations than GCR

Main goal: Find orthogonal basis for Ky = {rg, Arg, -+, A* g}, i.e., span(K}) =<
v1, -, v, >, where v; Lv; for ¢ # j.

Theorem 4.14.1 (Implicit Q theorem) Let AQ, = Q1H; and AQy = Q2H,y, where
H,, Hy are Hessenberg and 1, Q2 are unitary with Q1e; = Q2e1 = q1. Then Q1 = Qs
and H1 = HQ.

Proof: Let
[ hyy hyg e e hy, |
har  hao :
Al @ @l=la @@l o . . e : S (414)
: R S
L 0 T 0 hn,nfl hnn
Then we have
Aqr = higi + haige. (4.14.2)

Since ¢; Lgo, it implies that
hi1 = qiAq1/4iqu-
From (4.14.2), we get that
G2 = ha1ga = Aqy — huq.

That is

@2 =@/l@ll:  and o = |G-
Similarly, from (4.14.1),

Aqa = hiaqi + haaga + h3ags,

where

hi2 =qiAge and  hyy = ¢; Ago.
Let

g3 = Aga — h12q1 + haago.
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an
T 1IICTT

3= q/|gsll2 and  hse = [|Gs],

and so on. Therefore, [gq,- - , ¢,] are uniquely determined by ¢;. Thus, uniqueness holds.
Let K, = [v1, Avy, -+, A" loy] with |[vi|ls = 1 is nonsingular. K, = U,R, and
Unel = V1. Then

[0 . 0 x|
1 . D%
AK, = K,C, = [v1, Avy, - A" o] | 9 - o0t ] (4.14.3)
. S
| 0 0 1 = |

Since K, is nonsingular, (4.14.3) implies that
A=K,C,K;' = (U,R,)C(R,'U").
That is
AU, = U, (R,Cy R,

where (R, C,R,') is Hessenberg and U,e; = v;. Because < U,, >=< K,, >, find AV, =
V,.H, by any method with V,e; = v, then it holds that V,, = U,, i.e., vﬁf) = ugf) for

1=1,---.n. [ |

Algorithm 4.14.2 (Arnoldi algorithm)

Input: Given vy with |jvy||a = 1;
Output: Arnoldi factorization: AVy = ViHy + hji1 V1167 -
Iterate j = 1,2, -+,
compute h;; = (Av;,v;) fori=1,2,--- 7,
U1 = Av; — 370 hijvi,
hjsrg = 10j41ll2,
Vi1 = Ui/ g

End;

Remark 4.14.1 (a) Let Vi = [v1,--- ,v] € R™* where v;, for j = 1,...,k, is gener-
ated by Arnoldi algorithm. Then Hy, = V,' AV} is upper k x k Hessenberg.

(b) Arnoldi’s original method was a Galerkin method for approzimate the eigenvalue of

In order to solve Az = b by the Galerkin method using < K >=< V; >, we seek
an approximate solution z, = zg + 2z, with 2, € Ky =< 7y, Arg, -+, A*'ry > and
To — b— A[L‘g.

Definition 4.14.1 {xz.} is said to be satisfied the Galerkin condition if ry = b — Axy, is
orthogonal to Ky for each k.
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The Galerkin method can be stated as that find
T =20+ 2, with 2z, €V
such that
(b— Axp,v) =0, Ywvel,
which is equivalent to find
2 = Viyp € Vi
such that
(ro — Az, v) =0, Vovel.
Substituting (4.14.5) into (4.14.6), we get
Vil (ro — AViyr) = 0,
which implies that

ye = (Vi AVi) " lrolles.

(4.14.4)

(4.14.5)

(4.14.6)

(4.14.7)

Since Vj, is computed by the Arnoldi algorithm with vy = ro/||70||, yx in (4.14.7) can be

represented as
ye = Hi rolles
Substituting it into (4.14.5) and (4.14.4), we get
xy, =m0 + Vi H, H|rolle1.
Using the result that AV, = V. Hy, + hk+1,kvk+1e;€, 7, can be reformulated as

r, = b— Ary =19 — AViyr = ro — (ViHy + hi1xVks16} )Un

= 19— Villroller — hirrrel Yrverr = — (Prt1 k€t Ur)Vk -

Algorithm 4.14.3 (FOM algorithm: Full orthogonalization method)

Input: choose xqy, compute ro = b — Axg and v1 = ro/||rol|;
Output: solution of linear system Az = b.
Iterate j = 1,2,--- | k,
compute h;; = (Av;,v;) fori=1,2,--- 7,
U1 = Av; — 370 hijvi,
hjsrg = 10j11ll2,
Vi1 = Ui/ Pjgn -
End;
Form the solution:
Ty = 7o + Viyr, where yy, = ||rol| H, 'ey.
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accurate. Fortunately, it is simple to determine a posteriori when k is sufficiently large
without having to explicitly compute z;. Furthermore, we have

16 — Azy|| = yyr rleg il

Property 4.14.1 (FOM) (a) ry//vks1 =1 Ly, 1% ]

(b) FOM does NOT break down <= If the degree of the minimal polynomial of vy is
at least k, and the matriz Hy is nonsingular.

(c) The process terminates at most N steps.

A difficulty with the full orthogonalization method is that it becomes increasingly
expensive when k increases. There are two distinct ways of avoiding this difficulty.

(i) restart the algorithm every m steps

(ii) wv;+1 are only orthogonal to the previous ¢ vectors. Hy is then banded, then we have
incomplete FOM(/).

A drawback of these truncation techniques is the lack of any theory concerning the
global convergence of these truncation technique. Such a theory is difficult because there
is NO optimality property similar to that of CG method. Therefore, we consider GMRES
which satisfies an optimality property.

4.14.2 The generalized minimal residual (GMRES) algorithm

The approximate solution of the form xg + 2z, which minimizes the residual norm over
zr € Kj, can in principle be obtained by following algorithms:

e The ORTHODIR algorithm of Jea and Young;

e the generalized conjugate residual method (GCR);

¢ GMRES.
Let
[ hi1 hig hig ]
ha1 hop ha g
Vie= v, ui], = 0o . : c R+ xk

By Arnoldi algorithm, we have

AV, = Vi1 Hy. (4.14.8)
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To solve the least square problem:

min ||r, — Az|js = min ||b — A(z, + 2)||2, (4.14.9)
zeK zeK}
where Kj, =< 1o, A1y, -+ , A lry >=< vy, -+ v, > with v; = ”:m Set z = V,y, the

least square problem (4.14.9) is equivalent to

wmin J(y) = min |50, — AVigll2, 8= [l (4.14.10)
)

yERk
Using (4.14.8), we have
J(y) = Vi [Ber — Hiyl|l2 = [|Ber — Hyyllo- (4.14.11)
Hence, the solution of the least square (4.14.9) is
Ty = Lo+ Vi,
where y;, minimize the function J(y) defined by (4.14.11) over y € RF.

Algorithm 4.14.4 (GMRES algorithm)

Input: choose xqy, compute ro = b — Axg and v1 = ro/||rol|;
Output: solution of linear system Az = b.
Iterate j = 1,2,--- |k,
compute h;; = (Av;,v;) fori=1,2,--- 7,
Vi1 = Avj = 325y hijui,

hjsrg = 10j11ll2,
Vi1 = Ui/ -
End;
Form the solution:
x = xo + Viyg, where y, minimizes J(y) in (4.14.11).

Difficulties: when £ is increasing, storage for v;, like k, the number of multiplications is
like %k;zN .

Algorithm 4.14.5 (GMRES(m) algorithm)

Input: choose xqy, compute ro = b — Axg and vi = ro/||rol|;
Output: solution of linear system Ax = b.
Iterate j = 1,2,--- ,m,
compute h;; = (Avj,v;) fori=1,2,--- 4,
Oj11 = Avj — izl hijvs,

hjsrg = 10j11ll2,

Vi1 = Vi1 /Py
End;
Form the solution:

T = To + VinYm, where y,, minimizes || fe; — ﬁmy | fory € R™.
Restart: Compute 1, = b — Axy, , if ||rml| is small , then stop,

else , Compute xy = T, and vy =1,/ || rim ||, GoTo Iterate step.




4.14 GMRES Generallzed Minimal Residual Algorlthm for solving

Consider the matrix f]k, and let us suppose that we want to solve the least squares
problem:

min || fe; — Hyy |2

yERK

Assume Givens rotations F; , 2 =1...,7j such that
X X X X X X X X
X X X X X X X
Fjo e RH;=F;..Fi | 0 x x x |= x x | =R; e RUTDX
0 0 x x X
0 0 0 x 0

In order to obtain R;; we must start by premultiptying the new column by the previous
rotations.

[ X X X X 4] [ x x x x +]

X X X X + X X X +

~ 0 X X X + ~ X X +
Hj+1: 0 O % X+ :>F}FH+1 « —l—
0 0 0 x + 0 r

0 0 0 0 + | i 0 h |

The principal upper (j + 1) x j submatrix of the above matrix is nothing but R;, and
h := hjis ;41 is not affected by the previous rotations. The next rotation Fj; defined by

cim1 = r/(r?+ )2
Sj+1 = —h/(T2+h2)1/2.

Thus, after k steps of the above process, we have achieved
QrHy = Ry
where Qy is a (k+ 1) x (k + 1) unitary matrix and
J(y) =Il Ber — Hey =1l QulBer — Hug] =1l g — Ruy I (4.14.12)

where gp = Qrfe;. Since the last row of Ry is a zero row, the minimization of (4.14.12)
is achieved at y, = R,;lgk , where R; and g, are removed the last row of R; and the last
component of g, respectively.

Proposition 4.14.1 || vy ||=|| b — Az ||=| The (k+1)-st component of gi |.

To avoid the extra computation needed to obtain x; explicitly we suggest an efficient
implementation of the last step of GMRES(m). To compute z,, we need to compute H,,
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and vy, ..., vy,. Since vy, - - - , vy, are known, we need to compute h; ,,, fori =1,... ,m+1,
of the form ) )
h’ll cee hlm—l hlm
hor - :
0 hm,mfl hmm
L 0 hm—i—l,m i

with R = (Avy,, v;), for @ < m. Here hy,11,, satisfies

m+1m = Avy, — thmvz 2= Avy, ||* - thma

because
- E himvi = hm+1,mvm+17 Uma1 1 Vi, for i = 17 oo, M.
=1

Now we will show how to compute r,, = b — Ax,, from v;’s i+ = 1,...,m and Awv,,.
From (4.14.11) the residual vector can be expressed as

T'm = m—H[ﬁel - j:[mym]
Define ¢t = [tl, t27 Ce m—l—l] = 561 mym Then
Uy = (Z ti0;) + tmg1Umst
=1

- Z ti Uz + tm-‘rl Avm Z hl mUZ

m+1 m

= b+ Av,, + Z =t 1P/ P 1,m) Vi

m+1,m

Assume the first m —1 Arnoldi steps have been performed that the first m — 1 columns of
H,, and the first m vectors v;,i = 1,...,m are available. Since we will not normalize v; at
every step, we do not have explicitly v; but rather w; = p;v;, p; are some known scaling
coefficient (e.g., p; = ||v;]]). We have shown that 7, is a linear combination of Av,, and
v;’s, i = 1,...,m. Hence after m steps we do not need v,,.;. (Note that computing
Ums1 and its norm costs (2m + 1)n multiplications. So elimination of its computation
is a significant saving). So using vy, ..., v, and Av,, we can compute restarting vector
v1 =7/ || Tm || and don’t need to compute v,,,1. Then

= m+1 A + Z - tm+1hi,m/hm+1,m)vi-

herl m

By Proposition 4.14.1 it holds that || r,, ||2=]| the (k + 1)-st component of g |. So v; :=
T/ || T [l2-
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GMRES CANNOT break down! GCR can break down when A is not positive real, i.e.,
%(A—{— AT) is not symmetric positive definite. We assume that the first m Arnoldi vectors
can be constructed. That is, hjy1; # 0, for j = 1,2,...,m. In fact, if hj1o ;11 # 0, the
diagonal element ;4 ;11 of R, satisfies

2 )1/2

_ o 2
Tirrjer = (Ciam — Sjpihjyaji1) = (1" + hjei40) " > 0.

Hence, the diagonal elements of R,, do not vanish and the least squares problem J(y) =
min || g,,, — Rmyl|, can be solved, establishing that the algorithm can not break down if
hjy1; #0,for j=1,...,m.

Thus the only possible potential difficulty is that during the Arnoldi process we en-
counter iy ; = 0. From Arnoldi’s algorithm it is easily seen that

(i) AV; = V;H; which means that K; spanned by V; is invariant. Note that if A is
nonsingular then the eigenvalues of H; are nonzero. J(y) in (4.14.10) at the jth
step becomes

J(y) = [|Bor = AVyy|| = [|Bor = ViH,y|| = [[V;[Ber — Hyyll| = [|Ber — Hyl -

Since H; is nonsingular, the above function is minimum for y = H; '8e; and the
corresponding minimum norm is zero, i.e., the solution x; is exact.

Conversely, assume z; is the exact solution and z;, for i = 1,...,j — 1 are not, i.e.
rj=0but r, #0, fori=0,1,...,7 — 1. From Proposition 4.14.1 we know that

751l = sjel_1gj-1 = sjllrjall = 0.

Then s; = 0 (||7j—1]| # 0) which implies that h; 1 ; = 0, i.e., the algorithm breaks
down and ?;41; = 0 which proves the result.

(i) 941 =0and v; # 0, for i =1,...,j < the degree of minimal polynomial of ry = vy
is equal to 7.

(<) Assume that there exists a polynomial p; of degree j such that p;j(A)v; = 0
and p; is the polynomial of the lowest degree for which this is true. Therefore,
Kj+1 =<< Ul,A’Ul,"' ,Aj’l)l >= Kj SO 6j+1 € Kj+1 = Kj and f)j_H_LKj, then
Uj41 = 0. Moreover, if 9; = 0 for some 7 < j then there is a polynomial p; of degree
i such that p;(A)v; = 0. This contradicts the minimality of p,.

(=) There is a polynomial p; of degree j such that p;(A)v; = 0 (by assumption
Uj1 =¢,0; # 0,4 =1,...,7). p; is the polynomial of the lowest degree for which
this is true. Otherwise, we have v; = 0, for some ¢ < j 4+ 1 by the first part of this
proof. This is contradiction.

Proposition 4.14.2 The solution x; produced by GMRES at step j is exact which is
equivalent to

(i) The algorithm breaks down at step j,

(i) Tjp1 =0,
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fiii) hyerg = 0,

(iv) The degree of the minimal polynomial of rq is j.

Corollary 4.14.1 For an n X n problem GMRES terminates at most n steps.

This uncommon type of breakdown is sometimes referred to as a “Lucky” breakdown
is the context of the Lanczos algorithm.

Proposition 4.14.3 Suppose that A is diagonalizable so that A= XDX ™! and let

(m) _ i
e = min max M)l
PEP,,p(0)=1 X €0(A) ’p( )’

Then
|| < £(X)™ [froll
where k(X) = || X||[| X!
When A is positive real with symmetric part M, it holds that
lrmll < [L = a/B]™2 |Iroll,

where o = (A\puin(M))? and 8 = A (AT A).
This proves the convergence of GMRES(m) for all m, when A is positive real.

Theorem 4.14.2 Assume Ay, ..., A\, of A with positive(negative) real parts and the other
eigenvalues enclosed in a circle centered at C' with C' > 0 and have radius R with C' > R.

Then
R m—v |/\ _)\| 2 R m—v
(m) « |2 —_
) —[C] P H by —M [C]
where
D= nax, INi— | and d= ;Iglin | A -
j=v+1,-- N o

Proof: Consider p(z) = r(z)q(z) where r(z) = (1—z/A1)--- (1—2/X,) and ¢(z) arbitrary
polynomial of deg < m — v such that ¢(0) = 1. Since p(0) = 1 and p()\;) = 0, for
1=1,...,v, we have

(m) < | < . .
e™ < _max fp(A)| < max | |r(A;)] max  lg()].

It is easily seen that

_ A=Al Y
s )= max H i

By maximin principle, the maximin of |¢(z)| for z € {\;}X,,, is no larger than its
maximin over the circle that encloses that set. Taking o(z ) = [(C = z)/C]™" whose
maximin modulus on the circle is (R/C)™" yields the desired result. [

Corollary 4.14.2 Under the assumptions of Proposition 4.14.3 and Theorem 4.14.2,
GMRES(m) converges for any initial xqy if

m > vLog {S—g/{()()l/”] /Log [%‘ .
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Chapter 5

The Unsymmetric Eigenvalue
Problem

Generalized eigenvalue problem (GEVP):

Given A, B € C™". Determine A\ € C and 0 # 2z € C" with Av = ABxz. \ is
called an eigenvalue of the pencil A — AB (or pair(A, B)) and z is called an eigen-
vector corresponding to A. A is an eigenvalue of A — AB <= det(A — AB) = 0.
(0(A,B) ={A € C|det(A—AB)=0}.)

Definition 5.0.2 A pencil A — A\B (A, B € R™*") or a pair(A, B) is called regular if
that

(i) A and B are square matrices of order n, and
(ii) det(A—AB) #0.
In all other case (m #n or m =n but det(A — AB) = 0), the pencil is called singular.

Detailed algebraic structure of a pencil A — AB see Matrix theory II, chapter XII (Gant-
macher 1959).

Eigenvalue Problem (EVP):
Special case in GEVP when B = I, we have A € C and 0 # x € C" with Ax = Az. \is
an eigenvalue of A and x is an eigenvector corresponding to A.

Definition 5.0.3 (a) o(A) = {\ € C|det(A — \I) =0} is called the spectrum of A.
(b) p(A) =max{| A |: A € 0(A)} is called the radius of o(A).
(c) P(N\) =det(A — A) is called the characteristic polynomial of A.

s

Let P(A) = JJ(A = X)), A # X\i(i # ) and im(m = n.

i=1

Example 5.0.2 A = {g z},B: {é 8] = det(A—AB)=2—- X and 0(A,B) =
{2}
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Example 5.0.3 A = {(1) §|,B: {8 é| — det(A — AB) =3 and 0(4A, B) = 0.

Example 5.0.4 A — [é g],B: [(1) 8] — det(A — AB) = 0 and o(A, B) = C.
Example 5.0.5 det(uA — AB) = (2u — A\p
p=1:Ar =A\Br = \=2.
)\:1:Bx:pr:>u:O,/L252>)\:oo,)\:2.
o0(A, B) = {2,00}.

Example 5.0.6 det(uA — AB) = - 3p
w=1: no solution for \.
A=1:Bx = pAr = p=0,0.(multiple)
o(A, B) = {00, 0}.

Let
m(\;) := algebraic multiplicity of ;.
n(\;) :=n —rank(A — \;I) = geometric multiplicity.
1 <n(\) <m(\).
If for some 4, n(A\;) < m(\;), then A is degenerated (defective). The following statements
are equivalent:

(a) A is diagonalizable: There exists a nonsingular matrix 7" such that T-'AT =
diag(Mi, -+, An).

(b) There are n linearly independent eigenvectors.
(c) A is nondefective, i.e. V X € 0(A) = m(\) = n(A).
If A is defective then eigenvector + principle vector = Jordan form.

Theorem 5.0.3 (Jordan decomposition) If A € C"*", then there exists a nonsingu-
lar X € C™"  such that X 'AX = diag(Jy,--- ,J;),where

Ao 1 0
Ji:
0 A

s m; X m; and my+ - +my = n.

Theorem 5.0.4 (Schur decomposition) If A € C"*" then there ezists a unitary ma-
triz U € C™" such that U*AU(= U YAU) a upper triangular.

- A normal(i.e. AA* = A*A) <= F unitary U such that U*AU = diag(A1, -+, \n), i.c.

Aui = Niwg,  ujuy = 0y
- A hermitian(i.e. A* = A) <= A is normal and oc(A) C R.

- A symmetric(i.e. AT = A/A € R™") <= 3 orthogonal U such that UTAU =
diag(Ay, -+, \p) and o(A) C R.
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5.1 Orthogonal Projections and C-S Decomposition

Definition 5.1.1 Let S C R"™ be a subspace, P € R"™" is the orthogonal projection onto
S if

Range(P) = S,
P =P, (5.1.1)
pT=p

Y

where Range(P) = R(P) = {y € R" | y = Pz, for some x € R"}.
Remark 5.1.1 Ifz € R", then Pxr € S and (I — P)z € S*.

Example 5.1.1 P = vv® /vTv is the orthogonal projection onto S = span{v},v € R".

S=span{ v}
=

Figure 5.1: Orthogonal projection

Remark 5.1.2 (i) If P, and P, are orthogonal projections, then for any z € R™ we have
| (Py— P)z |l3= (Pi2)" (I — Po)z + (P22)" (I — )z (5.1.2)

If R(Py) = R(P2) = S then the right-hand side of (5.1.2) is zero. Thus the orthog-
onal projection for a subspace is unique.

(ii) IfV = [vy,---, V] is an orthogonal basis for S, then P = VVT is unique orthogonal
projection onto S.

Definition 5.1.2 Suppose S; and Ss are subspaces of R™ and dim(Sy) = dim(Sy). We
define the distance between S, and Sy by

diSt(Sl, SQ) :H P1 — P2 ”2, (513)
where P; is the orthogonal projection onto S;, i =1,2.

Remark 5.1.3 By considering the case of one-dimensional subspaces in R?, we obtain
a geometrical interpretation of dist(-,-). Suppose S; = span{z} and Sy = span{y} and
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S, =span{y}

= S, =span{x}

| @ |la=|l y lo= 1. Assume that 27y = cos0,0 € [0,3]. It follows that the difference
between the projections onto these spaces satisfies

P — Py =ax"” —yy" = afr — (yT2)y|" — [y — (2Ty)x]y”.

If 0 =0(= x =y), then dist(Sy, S2) =|| PL — Ps ||2=sinf = 0.
If 0 # 0, then

Us = [ur, uz] = [z, —[y — (y" z)z]/ sin ]
and
Ve = [v1, 0] = [[z — (2"y)y]/sin 6, 1]
are defined and orthogonal. It follows that
P, — Py, = U, diag[sin®,sinf] V.

is the SVD of Py — P,. Consequently, dist(Sy,S2) = sinf, the sine of the angle between
the two subspaces.

Theorem 5.1.1 (C-S Decomposition, Davis / Kahan(1970) or Stewart(1977))
IfQ = [ Qu G2 } is orthogonal with Q11 € R¥* and Qg € R7*I(k > j), then there

Q21 Qn
exists orthogonal matrices Uy, Vi € R¥** and orthogonal matrices Uy, Vo € R?*J such that
I 0 |0
{Ul O]T[Qn QIQHW 01_ 0 cls (5.1.4)
0 U Qa1 Q2 0 Vs 0 —SsC
where

C =diag(c1,- -+ ,¢;), ¢ =cosb;,
S =diag(s1,--- ,sj), S =sinb,

Lemma 5.1.1 Let Q) = 81 } be orthogonal with ()1 € R™ ™. Then there are unitary
2

matrices Uy, Uy and W such that

ul o Q1 | C

] [& ][]
where C = diag(cy,-+- ,¢;) > 0, and S = diag(sy, -+ ,8,) > 0 with ¢ + s7 = 1,1 =
1,--+ ,n.
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Proof: Let UL QW = C be the SVD of Q. Consider

L8 Law ]
0 I|[@Q [ QW
has orthogonal columns. Define Q; = Q,W. Then C? + Q¥Qy = I or QFQ, = I — C?
diagonal, thus QQTQ2 is diagonal. Which means that the nonzero column of Q- are
orthogonal to one another.If all the columns of Q, are nonzero, set S = QQTQQ and
Uy = Q2571 then we have UTUy = I and UFQ, = S. Tt follows the decomposition.

If Q)5 has zero columns, normalize the nonzero columns and replace the zero columns
with an orthogonal basis for the orthogonal complement of the column space of Q. It is

easily verified that U, so defined is orthogonal and S = UJ Q- is diagonal. Tt also follows
that decomposition. [ |

Theorem 5.1.2 (C-S Decomposition) Let the unitary matric W € C"*" be parti-

tioned in the form W = Wi W , where Wiy € C™" with r < . Then there exist
War W
. b . T n—r - T n—r
unitary matrices U = diag( Uy , Us ) and V = diag( Vi , Vo ) such that
r -x 0] r
UwWv=1|% I 0] }r : (5.1.5)
0 0 I| In—2r

where T = diag(yi, -+ ,7) > 0 and ¥ = diag(oy,- -+ ,0,) > 0 with 42 + 0 = 1,i =
1

Proof: Let I' = UW7;V; be the SVD of Wy, with the diagonal elements of ' : 1y <
VeSS <l=p == te
' = diag(I", I_y).

The matrix [ Wi ] V1 has orthogonal columns. Hence

W2 1

=[Gl )] [ ) ] oo

Since I and I'? are diagonal, (W5, V1)*(Ws,V}) is diagonal. So the columns of Wy, V) are
orthogonal. Since the ith diagonal of I —I'? is the norm of the ith column of W5, V;, only
the first k(k < r < mn —r) columns of W5V} are nonzero. Let ﬁg be unitary whose first
k columns are the normalized columns of Wy V;. Then

. )
U5 W1V = [ 0},

where 3 = diag(oy,- -+ ,0%,0,---,0) = diag(¥', 0), U, € Clr=r)x(n=r)  SQince
r

diag(Uy, Up)* ( %{Z ) Vi=|( =
0
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has orthogonal (orthonormal) columns, we have v? + 0% = 1,i = 1,--- ,r. (¥’ is nonsin-
gular).
By the same argument as above : there is a unitary Vo € C*=)*®=") guch that

UTW12‘/2 - (T7 0)7

where T' = diag(m,- -+ ,7,) and 7; < 0. Since 77 4+ 77 = 1, it follows from 7} + o7 = 1
that T' = —X. Set U = diag(Uy,Us) and V' = diag(V1,V2). Then X = U*WV can be

partitioned in the form

Yo - 0 0] }

07l 0 0 0 | Wwr—k
X = X0 X33 X34 X35 }k}

0 O X43 X44 X45 }’I“ —k

0 0 X53 X54 X55 }n —2r

Since columns 1 and 4 are orthogonal, it follows ¥’ X34 = 0. Thus X34 = 0 (since ¥
nonsigular). Likewise X35, X43, X535 = 0. From the orthogonality of columns 1 and 3, it

follows that —I"Y 4+ ¥/ X33 = 0, so X33 = [, The matrix Us = Xa Xas is unitary.
Xs54 Xss
Set U, = diag(I, Us)Us and U = diag(Uy, Us). Then URWYV = diag(I, .k, Us) X with
I 0 =X 00
0O I 0 0O
X=X 0 I 00
0 0 0 I 0
0O 0 0 01
The theorem is proved. u

Theorem 5.1.3 Let W = [Wy, Ws] and Z = [Zy, Zs] be orthogonal, where Wy, Z; € R™*k
and Wy, Zo € R If S = R(W,) and Sy = R(Z,) then

dist(S1, S2) = /1~ 02, (W Z)) (5.1.6)

Proof: Let Q = WTZ and assume that k > j = n — k. Let the C-S decomposition of Q
be given by (5.1.2), (Qij = W Z;, 4,7 =1,2). It follows that

| WEZy |lo=[| Wi Zy |lo= 55 = \/1 =& = /1 =02, (W] Z)).

Since Wi, W{ and Z,Z! are the orthogonal projections onto S; and Sy, respectively. We
have

dist(Sy,Sy) = || WiW{ — 2,21 ||,
= | WT(W1W1T - 21Z1T>Z 2
0 Wiz
= || |:W2TZ1 0 :| ”2
= Sj.
If k < j, the above argument by setting Q = [Wo, W1]7[Z,, Z1] and noting that

Omin(W3 Z1) = Omin(Wi Z3) = s;.
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5.2 Perturbation Theory

Theorem 5.2.1 (Gerschgorin Circle Theorem) If X 'AX = D+F, D = diag(dy,--- ,d,)
and F has zero diagonal entries, then o(A) C |J;_, D, where

n

Di={zeC|lz—d|< > Ifil}.

J=1,j#i

Proof: Suppose A € 0(A) and assume without loss of generality that A # d; for ¢ =
1,-++,m. Since (D — M) + F' is singular, it follows that

n

L[ (D= ADTF o= Y |fisl / ldi — Al

=1
for some k(1 < k < n). But this implies that A\ € Dj. [ ]

Corollary 5.2.1 If the union M, = U§:1 D;; of k discs D;;,j =1,--- , k, and the union
My of the remaining discs are disjoint, then M, contains exactly k eigenvalues of A and
M, exactly n — k eigenvalues.

Proof: Let B = X 'AX = D+ F, fort € [0,1]. Let B; := D + tF, then By =
D, B; = B. The eigenvalues of B, are continuous functions of t. Applying Theorem 5.2.1
of Gerschgorin to By, one finds that for ¢ = 0, there are exactly k eigenvalues of By in M,
and n—k in M,. (Counting multiple eigenvalues) Since for 0 < ¢ < 1 all eigenvalues of B;
likewise must lie in these discs, it follows for reasons of continuity that also k eigenvalues
of A lie in M; and the remaining n — k in M. [ |

Remark 5.2.1 Take X = I, A = diag(A) + offdiag(A). Consider the transformation
A — ATYAN with N = diag(dy, -+ ,0,). The Gerschgorin discs:

n

ik O
Di={2€C||z—ay| < = Pij-
(reCllemals 3| =)
p
1 € €
Example 5.2.1 Let A = | ¢ 2 e |, Dy ={z | |[z—1| < 2}, Dy = D3 = {z |
€ € 2
|z — 2| < 2¢}, 0 < e < 1. Transformation with A = diag(1, ke, ke), k > 0 yields
) 1 ke ke
A=ATAN=| + 2 ¢
% € 2

For A we have p; = 2ke2, py = p3 = %—i— e. The discs Dy and Dy = D for A are disjoint if
p1+p2 =2k’ + 1 +e< 1.

For this to be true we must clearly have £ > 1. The optimal value k, for which D; and
Dy (for A) touch one another, is obtained from p; + p2 = 1. One finds
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k= =1+e+0()

1 —e++/(1—¢€)?2—8€

and thus p; = 2ke? = 2¢ + O(¢3). Through the transformation A — A the radius p; of
D, can thus be reduced from the initial 2¢ to about 2¢2.

Theorem 5.2.2 (Bauer-Fike) If i is an eigenvalue of A+ E € C" and X 1AX =
D =diag(Ay, -+, \y), then

A—pul < E
min (A= gl < 5y(X) | E [l

where || - ||, is p-norm and ky(X) =|| X [[,|| X1 I, -

Proof: We need only consider the case u ¢ o(A). If X~1(A+ E — ul)X is singular, then
sois I+ (D — ul) ™ (X 'EX). Thus,

L <[ (D = pl) (X TTEX) [|,< | X Mol £ [l X 15

Theorem 5.2.3 Let Q*AQ = D+N be a Schur decomposition of A with D = diag(My, -+, \n)
and N strictly upper triangular, N* = 0. If p € 0(A+ E), then

A—pl < 0, 0%
Ag“&' p < max{6,6n},

where 0 =|| E ||la S0y || N |5

Proof: Define § = minye,(a) |A — p|. The theorem is true if § = 0. If § > 0, then
I — (ul — A)7'E is singular and we have

L < [[(pl—A)E |2
< (= A)7 B 2

(1 = D) = NJ"H laf| £ ]2 -

Since (ul — D) is diagonal it follows that [(ul — D)~'N|* = 0 and therefore

n—1

[(uI = D) = NJ* = S [(u — D)"'NJ¥(uI — D)

k=0

Hence we have

LE |

1<

n—1
1
2
max{1, F}Z I N [I5,
k=0

from which the theorem readily follows. [ |
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1 2 3 0 00
Example 5.2.2 f A= | 0 4 5 and E = 0 0 O0|. Theno(A+FE) =
0 0 4.001 0.001 0 O

{1.0001,4.0582,3.9427} and A’s matrix of eigenvectors satisfies ro(X) = 107. The Bauer-
Fike bound in Theorem 5.2.2 has order 10%, but the Schur bound in Theorem 5.2.3 has
order 10°.

Theorems 5.2.2 and 5.2.3 each indicate potential eigenvalue sensitively if A is non-
normal. Specifically, if #2(X) and || N ||37! is large, then small changes in A can induce
large change in the eigenvalues.

Example 5.2.3 If A = [ 8 S) } and F = [ 10(110 8 ], then for all A € o(A) and

pea(A+E), ]A—p| =107 . So a change of order 1071° in A results in a change of
order 107! in its eigenvalues.

Let A be a simple eigenvalue of A € C"*" and x and y satisfy Ax = Az and y*A = A\y*
with || # |l2=|| v ||o= 1. Using classical results from Function Theory, it can be shown
that there exists differentiable x(e) and A(¢) such that

(A+eF)x(e) = Ne)z(e)

with || z(g) ||]2= 1 and || F' ||2< 1, and such that A(0) = X and z(0) = . By differentiating
and set € = 0:

Az(0) + Fx = A(0)x + A2(0).
Applying y* to both sides and dividing by y*z —
F@,y) =y" + Pa-1(@)y" "+ Poa(@)y" 7+ -+ pu(@)y + po(2).
Fix x, then f(z,y) = 0 hasnroots y1(x), -+ ,yn(x). f(0,y) = 0 hasnrootsy;(0),--- ,y,(0).

Theorem 5.2.4 Suppose y;(0) is a simple root of f(0,y) = 0, then there is 6; > 0 such
that there is a simple root y;(x) of f(x,y) = 0 defined by

yi(z) = y;(0) + pnz + ppa® + -+, (may terminate!)
where the series is convergent for |x| < ;. (yi(z) — v:(0) as v — 0).

Theorem 5.2.5 If y,(0) = - -+ = y,,(0) is a root of multiplicity m of f(0,y) = 0, then
there exists 0 > 0 such that there are exactly m zeros of f(x,y) = 0 when |x| < § having
the following properties:

(a) Yo m;=m, m;>0. The m roots fall into r groups.
(b) Those roots in the group of m; are m; values of a series

y1(0) + pa 2 + P2+ -

1
corresponding to the m; different values of z defined by z = x™: .
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Let \; be a simple root of A and x; be the corresponding eigenvector. Since \; is
simple, (A — A\1I) has at least one nonzero minor of order n — 1. Suppose this lies in the
first (n — 1) rows of (A — A\ I). Take 1 = (An1, An2, -+ -, Apn). Then

A 0
Ao 0

A-xn| 7= .1
Apn 0

since Z;;l an;jAn; = det(A — M\I) = 0. Here A,; is the cofactor of a,;, hence it is a
polynomial in A; of degree not greater than (n — 1).

Let A\i(e) be the simple eigenvalue of A 4+ ¢F and x;(e) be the corresponding eigen-
vector. Then the elements of z(¢) are the polynomial in A;(¢) and €. Since the power
series for \;(¢) is convergent for small €, so x1(g) = o1 + €2, + 225 + - - - is a convergent

" Fef _ 1
= <

gz~ Jya|
to the reciprocal of s(\) = |y*z| as the condition number of the eigenvalue A.

Ae) = A(0) + A(0)e + O(£2), an eigenvalue A may be perturbed by an amount ﬁ,

if s(A) is small then A is appropriately regarded as ill-conditioned. Note that s(A) is
the cosine of the angle between the left and right eigenvectors associated with A and is
unique only if A is simple. A small s(\) implies that A is near a matrix having a multiple
eigenvalue. In particular, if A is distinct and s(\) < 1, then there exists an E such that
A is a repeated eigenvalue of A + E and

power series ‘)\(O)‘ . The upper bound is attained if F' = yx*. We refer

s(\)
1B s ——=)
1—3s%(A)
this is proved in Wilkinson(1972).
1 2 3 0 00
Example 5.24 If A= | 0 4 5 and F = 0 0 O0|. Theno(A+FE) =
0 0 4.001 0.001 0 O

{1.0001, 4.0582, 3.9427} and (1) = 0.79 x 10°, s(4) = 0.16 x 102, 5(4.001) = 0.16 x 103
Observe that || E ||z /s(A) is a good estimate of the perturbation that each eigenvalue
undergoes.

If X is a repeated eigenvalue, then the eigenvalue sensitivity question is more compli-

(1) ? and F' = [ (1) 8 1 then o(A+¢F) = {1 £ /ea}. Note
that if @ # 0 then the eigenvalues of A 4+ ¢F" are not differentiable at zero, their rate of

change at the origin is infinite. In general, if A is a detective eigenvalue of A, then O(¢)

cated. For example A =

perturbations in A result in O(&?%) perturbations in A where p > 2 (see Wilkinson AEP
pp.77 for a more detailed discussion).

We now consider the perturbations of invariant subspaces. Assume A € C"*" has
distinct eigenvalues Ay, ---, A, and || F' [[= 1. We have

(A+eF)ai(e) = Ale)zn(e), | orle) [lo=1,
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and

yr(E)(A+el) = M(e)yr(e), | unle) =1,
for k=1,--- ,n, where each A\z(¢),z(¢) and yx(e) are differentiable. Set ¢ =0 :
where A\, = M\(0) and zp = x(0). Since {z;}?, linearly independent, write 4(0) =
Yo, a;x;, so we have

n

Z a;(Ni — A\p)x; + Foy = )\k(O)xk

ik
But y}(0)xy = yfzy =0, for i # k and thus

a; =y Fap/[(Ae — N)yixi], i #k.
Hence the Taylor expansion for z(e) is

B - Y Fay, ‘ 9
xp(e) =xp +e¢ 2 {—(/\k W } x; + 0(e%).

Thus the sensitivity of z, depends upon eigenvalue sensitivity and the separation of A\
from the other eigenvalues.

1.01 0.01 1
0.00 0.99 5(0.99)
and associated eigenvector # = (0.4472, —8.944)”. On the other hand, A = 1.00 of the

= 1.118

Example 5.2.5 If A = [ ], then A = 0.99 has Condition

"nearby” matrix A+ F = L01-0.01 has an eigenvector & = (0.7071, —0.7071)7.
0.00 1.00
Suppose
* Ty Ty | }p
AQ = 5.2.1
@AQ [ 0 T22} tg=n—p ( )

is a Schur decomposition of A with
Q=4 Q) (5.2.2)
p n-—p
Definition 5.2.1 We define the separation between T and Ty by

| ThwZ - ZT:
sepp(Th, Taz) = min I T Tz ||F22 ||F

Definition 5.2.2 Let X be a subspace of C", X is called an invariant subspace of A €
Cm if AX CX (te.z€ X = Ar € X).

Theorem 5.2.6 A € C", V € C"*" and rank(V') = r, then there are equivalent:
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(a) there exists S € C™" such that AV =VS.

(b) R(V) is an invariant subspace of A.
Proof: Trivial! n

Remark 5.2.2 (a) If Sz = pz,z # 0 then u is eigenvalue of A with eigenvector V z.
(b) IfV is a basis of X, then V.=V (V*V)"2 is an orthogonal basis of X.

Theorem 5.2.7 A € C"", @ = (Q1,Q2) orthogonal, then there are equivalent:

(a) If Q*AQ = B = { gi g;z } then By = 0.

(b) R(Q1) is an invariant subspace of A.

B. B
Proof: Q*AQ = B < AQ = QB = (Q1,Q,) [ B; BZ 1 . Thus AQy = Q1B +

Q2321-

(a) By =0, then AQy = Q1B11, so R(Q;) is an invariant subspace of A (from Theorem
5.2.6).

(b) R(Q,) is invariant subspace. There exists S such that AQ; = Q1S = Q1B11+Q2Bo;.
Multiply with @7, then

S =Q1Q1S = Q101811 + Q1Q2By:.
S0 S =B = Q2851 =0 = Q5Q)2B82; = 0= By = 0. [

Theorem 5.2.8 Suppose (5.2.1) and (5.2.2) hold and for E € C"™ we partition Q*EQ
as follows:

* Ell E12
EO —
@EQ [ Es En ]

with FEyy € RP*P qnd Eyy € R(=P)x (D), If
d = 56p2(T11;T22)_ H En Hz - H Es H2> 0

and
| Bt ll2 (| Taz |l2 + || Enz |l2) < 6°/4.

Then there exists P € C" K%k gych that
| Plla< 2| B2 |2 /6

and such that the column of Q1 = (Q1 + Q2P)(I + P*P)~2 form an orthonormal basis
for a invariant subspace of A+ E.(See Stewart 1973).
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Lemma 5.2.1 Let {s,,} and {p,} be two sequence defined by

Sm41 = Sm/<1 - 277pm8m)7 Pm+1 = npfnSerl? m = 07 17 27 T (523)
and
So =0, po=0Y (5.2.4)
satisfying
dno’y < 1. (Here o,m,v>0) (5.2.5)

Then {s,,} is monotonic increasing and bounded above; {p,} is monotonic decreasing,
converges quadratically to zero.

Proof: Let
T = SmPm, m=0,1,2,---. (5.2.6)
From (5.2.3) we have
_ 22 2 _ 2 2
Tl = Smt1Pm+1 = NS/ (1 = 20Pmsm)” = nay, /(1 — 2nzy)7, (5.2.7)
(5.2.5) can be written as
0< 20 < — (si 2<1) (5.2.8)
ro < —. nce xy= = — 2.
0 1 stnce 0= Sopo =07 7
Consider
v=f(z), f(x)=n2*/(1-2nz)* x>0. (5.2.9)
By
df (z) 2nx

dx (1 —2nx)3’
. : . N df(z)
we know that f(z) is differentiable and monotonic increasing in [0, 1/27), and —a lz=0=0
T

: The equation (5.2.9) has zeros 0 and 1/4n in [0,1/2n). Under Condition (5.2.8) the
iteration x,, as in (5.2.7) must be monotone decreasing converges quadratically to zero.
(Issacson & Keller ”Analysis of Num. Method 1996, Chapter 3 §1.) Thus

Smt1 1 B 2N,
Sm 1—-2nz,, N 1 - 2nz,,

:1+tm7

where t,, is monotone decreasing, converges quadratically to zero, hence

S.

J+1

smer = so] [ 22 = so] [0 +1)

j=0 "/ j=0
= x
. . m

monotone increasing, and converges to SOH(l + tj) < 00, SO p,, = — monotone de-
: Sm
Jj=0

creasing, and quadratically convergent to zero. [ |
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Theorem 5.2.9 Let

PA12P + PAH — AQQP — A21 =0 (5210)

be the quadratic matriz equation in P € C=Ux (1 <[ < n), where

A A | _
|: A21 A22 :| = A, O'(AH) ﬂO’(AQQ) = @
Define operator T by:
TQ = QA — AnQ, Qe Cr (5.2.11)
Let
n=I A, 7= Ax| (5.2.12)
and
o=|T7" = sup [ T7'P|. (5.2.13)
I1PlI=1
If
dnoty < 1, (5.2.14)

then according to the following iteration, we can get a solution P of (5.2.10) satisfying
| P [|< 207, (5.2.15)

and this iteration s quadratic convergence.

(m) (m)
Iteration: Let A, = Aa) A%ﬁl) ,  Ag = A.
Ay’ Ag
(i) Solve
TP = P A — AP, = A (5.2.16)

and get P, € Cn=Oxl.
(ii) Compute

AgTH) = A%n) + A12 P,
ARG = AR — P A,

AT = —PLALP,.
Goto (i), solve Ppy1.
Then .
P= %E&;Pi (5.2.17)

is a solution of (5.2.10) and satisfies (5.2.15).
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Proof: (a) Prove that for m =0,1,2,---, T..! exist: denote
| T, = om, (T=Ty, o=o0), (5.2.18)
then
A A (Il P [l o < L. (5.2.19)

By induction, m = 0, from o(A11)[()o(A) = 0 we have Ty = T is nonsingular. From
(5.2.12)-(5.2.14) it holds

Al Az ([l Po [l oo =4n || T Agy || 0 < 4o’y < 1.
Suppose T),;! exists, and (5.2.19) holds, prove that 7,7}, exists and
4l Az (Il Py | omgr <1,

From the definition

SGP(AH,AQQ) Hlﬁlf || QA1 — ApQ ||

and the existence of T~! follows sep(A;1, Ag) =|| T~ || '= o7, and by the perturbation
property of "sep” follows

Sep(AgTH), Ag;“)) = sep(AgT) + AP, Ag;) — P,A1p)

> sep(AV]), AS) — || AP || = || PmAr ||
1-2|A Pl om
Om

From
sep(AH,AQQ) S m1n{|)\1 — )\2| : )\1 S O'(All), )\2 € O'(Agg)}.

We have o(A7™) N o (A5 ) = 0, hence T);,!, exists and

1

(AT AGH) = Tk, (|7 = ok

sep

From (5.2.20) it follows

Om

T 1=20 Al Pull om

(5.2.21)

Um—i—l
Substitute (5.2.19) into (5.2.21), we get 041 < 20,,, and

I Poner <0 Ty A5 1< 0 || P [P A ||< ARCEE

Hence
2| Az Il Progr | s <2 Arg ||| P || o < 1/2.

This proved that T,! exists for all m =0,1,2,--- and (5.2.19) holds.
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(b) Prove || P, || is quadratic convergence to zero. Construct sequences {gm, }, {sm}, {pm}
satisfying

IASY 1< Gy O < Sy | P I< P (5.2.22)
From
ASTY = —PL AP, (5.2.23)
follows
| AS <l Ave ] P 1< 197 (5.2.24)
Define {g,,} by
Qi1 = M0y Go =3 (5.2.25)
From (5.2.21) we have
Omt1 < 1—28%' (5.2.26)
Define {s,,} by
Sm41 = 1_28%, So = 0; (5.2.27)

From (5.2.16) we have
| P 1< Tt (11 ASY 1= o || AS 1< S

Define {p,,} by
Pt = Sit1Gmtl = P Smt1,  Po = 07. (5.2.28)
By Lemma 5.2.1 follows that {p,,} \, 0 monotone and form (5.2.22) follows that ||
P,, ||[— 0 quadratically.

(c) Prove P™ — P and (5.2.15) holds. According to the method as in Lemma
5.2.1. Construct {z,,} (see (5.2.6),(5.2.7) ), that is

2

nxm Sm
] = ———— — s = — 5.2.29
T = 2 T T 20y, (5:2:29)
and then . Nz
m+41 m
I = - 5.2.30
Pt = = P ( )
By induction! For all m = 1,2,--- we have
< L < = (5.2.31)
Pm 2pm—l> Tm 477 <L
In fact, substitute
2
1o no-y 1
= < = 5.2.32
1—2nxqg 1-—2no%2y 2 ( )

1
into (5.2.30) and get p; < SPoi From (5.2.29) and (5.2.32) it follows that

1 T 2 1
=—(—] <—.
1 n(l—an()) 4n
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For m =1, (5.2.31) holds. Suppose for m (5.2.31) holds, form (5.2.30), we have

1
Pm+1 < §pm;
. 1 NTm 2 1
by (5.2.29) it holds 41 = — | ——— that is (5.2.31) holds for m+1. Hence
n\1-2yz,,) ~
(5.2.31) holds for all nature number m. Therefore p,, < po/2™, m = 1,2,---, hence

p™ converges, where

pm) — Z <Zm: %) o =2 ( 2ml+1> . (5.2.33)

Let

P =3%"p;.

1=0

From (5.2.22),(5.2.28) and (5.2.33) follows that

| P™ ||< Z | P, ||< Zpi <2 (1— 2m+1)p0 =9 (1— 5 +1) o7y.
=0 =0 m

Let m — oo, then (5.2.15) holds. By (b) the limit matrix P as in (5.2.17) is quadratic
convergence. u

Theorem 5.2.10 Let A, E € C™", 7, € C™! be the eigenmatriz of A corresponding
to AH c Cle (26 AZl = ZlAH) and Z{{ZI = I, 1 S l S n. Let 7 = (Zl,ZQ) be

unitary. Denote

Z*AZ:<A11 AIZ)’ T*E7 — (Ell E12)‘

0 Ay Eor Eo
Define T as in (5.2.11). Suppose 0(A11) (o (Aw) =0 and | T7' || (| Ewy || + || Ex2 |
) < 1. Let
;= [ 7= A Byl 5=|E 2.34
0= =1 A+ Exell, 7=[Eaxall. (5234)

1= [T B ]+ 1 B2 (1)

If
47625 < 1, (5.2.35)

then there exists P € C"=UXU with || P ||< 267 such that
Zy = Zy + Z,P € C™! (5.2.36)

is the eigenmatriz of A= A+ E corresponding to A’ = Ay + Fyy + (Ajs + E19)P.
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Proof: Prove that there exists L = { }rjl 1.0 J with || P ||< 264 such that
n—l
L[ An+En Ap+E Al x
[ Exn A + Ey 0 = ( )
This is resulted from solving the following equation
P(Alg + ElZ)P + P<A11 + Ell) — (AQQ + E22)P — E21 = O (5238)

Let
TP = P(AH + E11) - (A22 + EQQ)P.

By (5.2.34),(5.2.35) and
I 770 = { inf | | P(Au + Bu) — (A + Ea)P [}
< { inf || PAH — AZQP || — Sup || PE11 — EQQP ||} !

O IP|I=t |P|=1
< s
T A= T Bl Ea )

— 5-’
we have

4| (A + Ew) [l TV 1P| Ba |1 45677 < 1.

Because the condition (5.2.14) in Theorem 5.2.9 is satisfied, by Theorem 5.2.9, the equa-
tion (5.2.38) has a solution P satisfying || P ||< 267%. Then it follows the result from

(5.2.37). m

Remark 5.2.3 Normalized Zy + ZoP —s (Zy + Z,P)(I + PHP)= . Consider
dist(Z1, (Z1 + ZyP)(I + PTP))
= V=2, 12(2 + Z,P)(1 + PHP) 7]

= \/1— 02, (I + PHP)3]
= /1 — [omax (] + PHP)]-!

1
<\ 1-——0
\/ P

_ Pk
+ T PT3

Example 5.2.6 Let n =3, =2,k =1,

6 —1]1 0.5 —0.1] 03
A=|1 4|0 —{ﬁ“ ﬁ”}, E=|—-04 03 |-02 —{gﬂ ?21,
0 0|1 N 0.3 —02] 0.3 AT
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6.5 —1.1| 1.3 ~ ~
A=A+E=1|06 43 0.2‘[4” 412}
03 —02] 1. An Az
5 0
The Jordan form of Ais | 0 0
0 1

} , 0o(An) =1{5,5}, o(Axn)={1}.
0

1 |, which satisfies AZ; = Z1Aq; .

0

3

1

5

0
1
The eigenmatrix of A is Z; = [ 0
0

-1

3
Question 1: Compute || 7~ [|= _51 ; o= ]’ and [[Aiz]loc = 1, || Er2floc = 0.3,
| Ea1 ||oo= 0.5, || E11 ||oo= 0.7, || Ea2 ||oc= 0.3, to make sure the conditions in Theorem

117
5.2.10, which are ¢ = 0.6, 7 = 1.3, & = 0.5. Then check 4752y = 125 < 1, ie.,
(5.2.35) is satisfied. )
Question 2: From theorem 5.2.9, take Ag = A. For allm =0,1,2,--- , we solve
PuAy — A P = AR,

and get

AP o 1)

P, = AéT)Sm, where S, = AgT) - 22 (m) .
0 A

Compute AT =A™ 4 A4LPp, AP = Al — P A, and AT = — P ALP,,.
And then go back to solve P, 1. Then

Compute || AT [|o=? when m = 0,1,2,3. and || P, ||oc=7 when m = 0,1,2, 3.
1 0] » I 0

Compute Ay = [ _p® T } A [ O } ~7.

Compute Z; ~ Z~f3):[ [ } =7.

Compute A’ = Aﬁ) =7.

5.3 Power Iterations

Given A € C™" and a unitary Uy € C"*". Consider the following iteration:

Ty = Ur AUy, for k=1,2,3, - (5.3.1)
where T),_1 = Uy Ry, is the QR factorization of Ty_; and set T, = R,U}. Since
Tr = (UpUy - - - Up)*A(UpUy - - - Uy,), (5.3.2)

it is obvious that each T} is unitary similar to A.
Is (5.3.2) always ”converges” to a Schur decomposition of A ?
Iteration (5.3.1) is called the QR iterations. (See Section 5.4)



182 Chapter 5. The Unsymmetric Eigenvalue Problem
5.3.1 Power Method

Let A be a diagonalizable matrix,

with
Ail > Ao > [As] >0 > [\ (5.3.4)

and let ug # 0 be a given vector. From the expansion

=1

follows that
A’ug = aN;r; = ANj{oxy + a;(—=)%z; ). 5.3.6
o= Y ootn = il + 30 ) 530
Thus the sequence of \]°A°uy converges to a multiplicity of z;. We consider two possi-
bilities of normalization :

(A) || || - a given vector norm:
For +=0,1,2,...,
Vit1 = Au;
kis1 = ||viga]] (5.3.7)

Ujr1 = Ui+1/ki+1 with initial Uo
End

Theorem 5.3.1 Under the assumption (5.3.4) and ay # 0 in (5.3.5) holds for the se-
quence defined by (5.3.7)

1— 00
lim e'u; = o &, where € = M
=00 21| |ou A
Proof: It is obvious that
us = Aup/ || A%uol| ke = [|A%uoll /[ A" uol|. (5.3.8)

This follows from A\, *A’uy — a2 that

A A%l = [aall[a]],
M| TTHAT | = el )
and then
A T Ao | /]| A || = M| M — 1.

From (5.3.6) follows now for s — oo

u, = ¢&° Aug = ozt — i A (5.3.9)
’ [Asuol|  flawzy + 32| larz]] (2] |oa]
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]
(B) Let [ be a linear functional:
Consider

For i=0,1,2,....
Vit = Aug,
kivi =1(vit1) e.g. en(vig1),e1(vip1), (5.3.10)
Uit1 = Viy1/kip1 with initial ug.

End

Then it holds

Theorem 5.3.2 Under the assumption of theorem 5.5.1, consider the method defined by
(5.3.10) and suppose that l(v;) # 0, fori=1,2,---, and l(x1) # 0. Then holds

hmk; =N and  lim u; = ——

Proof: As above we show that
u; = Aug [1(A'ug) ks = 1(AMug) /1A ).
From (5.3.6) we get for s — oo
AU (Aug) — aql(xy),

)\1_S+1Z(AS_IUQ> — all(xl),

thus
M — 1
Similarly for ¢ — oo,
; n Aj i
wy = A’yo _ e + Zj:2 Oéj(A_l) Lj _, (5.3.11)
I(Atug) gz +>--+) ayl(zy)
|
Remark 5.3.1 (a) As linear functionall, a fix component k will always be chosen l(x) =
xr, k fix.
(b) The above argument also holds, if \ is a multiple eigenvalue.
(c) The iteration (5.3.10) follows
n Ai s
1(Auq) anl(my) + 35y i (52)°U(zy)
ks = [(As=1uyg) o n Ajys—1
Uo arl(z1) + 275, oy (5H)* ()
A
= M+O( 2. (5.3.12)
A1
That is the convergence depends on | i—f |. In the case |§—f] = 1 the iteration does

not converge. Sometimes one can make the number ]i—ﬂ small if we replace A with
A+al, then the eigenvalue \; of A are transformed into \; + « and the convergence
will be described by (maxi:1|i‘iiz|)s. But this correction is not remarkable. The
more useful method is use the inverse iteration . (See later !)
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Now consider the case : A real and
A=Rae [l > Pl == Al (5.3.13)
We can choose 5 = Z; such that
Az, = Mz1, ATy = MT1 = M\oTy.

Let ug be real and let

n
Uy = a1 + a1 + g T, A = fyew, ay = pe'?.
i>3

Then from (5.3.6) and (5.3.10) we have

n
S —
ASUO = Oél)\il’l +041)\1 T+ E OZZAfZL’z
>3

- v
>3

It happens oscillation without convergence!
Let B ) )
hA)=A=M)A=X) =N =pA—q p=X A+ ¢=—X\.

Then

(A% — p A — gA®)ug = anXy® h(\y) 1 + an XS () Ty + Z aih(Ai) Az
‘:5“ IR

Together with

, . n i
1(A%ug) = r*{pe’ @D (21) + pe~ @A (7)) + Z ai(=)%U()}
Y

1=3

follows

(As-i—? _ pAs-‘rl _ qAS)UO
l(AS'U,())

In this limit case usy 0, usr1 and ug are linearly dependent. For fix s we determine py and

¢s such that

— 0.

ks+2ks+1us+2 - pkerluerl —qus =

|Bsr2ksi1tisra — Psksyitist1 — Gstis|l2 = min!
We have to project the lot of kg oksi1usio on the plane determined by kg iusq and
ug, this leads
ks+2ks+1us+2 - pks+lus+1 — qUs 1 Us+i, 1= 07 1

ul ug ul ug ok ul ju
( syitlert Uty )(P +1):k8+1k5+2< o +2). (5.3.14)

Ug Usy1 Ug Us s Ug Usy2

or

We can show that p, — p, ¢s — q.
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5.3.2 Inverse Power Iteration

Let a be an approximate eigenvalue of Ay, i.e., a & Ay, then (ol — A)~! has eigenvalues

L L —L_ Substitute A by (el — A)~!, then the convergence is determined

a—Aa—Xxa? OV a—An”
Consider
For i=01,2,...,
Vit1 = (Oé] — A)*lui,
k’z‘_;,_l = Z(Ui+1)> (5315)

Uir1 = Viy1/kip1 with initial vector wug,

End

Let A and uo be given and satisfy (5.3.3) and (5.3.5) respectively. Then we have the
following theorem.

Theorem 5.3.3 If | a — Ay |[< |a— N, for i # 1 and suppose that oy # 0, I(xq) # 0,
and l(v;) # 0 for all i in (5.3.15) then holds

. 1 1
maki=ioy sy
. _
lhj& u; = s (5.3.16)
Variant I: (5.3.15) with constant c.
Variant II: Updating a.
Given ) = a and wuy.
For 1=0,1,2,...,
Vig1 = (Oé(z)[ — A)_lul-, (5 3 17)

kivh = l<Ui+1>>
S Vigl d ay: — v —
Uit1 = kir1 and Q(i+1) = X@E) — g

1
i+l

End

Show that: The method (5.3.17) is quadratic convergence.
Let o) =~ A1, u; = w1, and [ (x1) = 1. The remaining components of z; are smaller than
1 (Here I(2) = z1). Let

U = (14 )2y + 3 elMay, & =atm -\ (5.3.18)
j=2
and
O = max([e\™)], -+, [e0™)], &™), (5.3.19)

Claim: There exist a constant M independent on m with
Omy1 < ME2,. (5.3.20)
Let ™ ~ ¢;. Then we have

14 &1 " €j
Vit = kppattisy = — oy £y — o 5.3.21
+1 +1Um41 o) — A1 1 ]z:; Comy — A, J ( )
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and
1 Ej )\1)
= = Oy — (= A)[( il L
Qm+1) Q(m) - Uy — (i — A)[(1 +€1) + Z a(m) y ;1]
= am) — (am) — M)+ O0(0n)) = A + 5m0(5m). (5.3.22)
From (5.3.21),
u _ Kmt1tms1
m+1 —km+1
€ — M) gilagm — A1) .
e [(1—'—61 1+ ] Qf”l‘i‘@l"’ —x',l]
; Oé(m) A ; amy = A
gi(am = M) gi(@m = A1) 1
=[x+ J 10 1]
; (1+€1)(Oé(m) —)\]) J J; (1+€1)(04(m) —)\]) a1

with ™™ = O(62). This implies 6,1 < M6Z,.

5.3.3 Connection with Newton-method

Consider the nonlinear equations

Au— du =0,
Tu =1,

for n + 1 unknowns u and \. Let

F( K ) = ( ?ﬁu_ff ) — 0. (5.3.23)

Newton method for (5.3.23):

()= (3= (5), (), (#(3), )
P

and write the first n equations and the last equation separately

where

Multiplying with F’ (K)
and simplify

(%)
(A — Aij)ui—&—l = ()‘Z'—i-l — )\Z)uz, ZTUH_l = 1. (5324)
We see that (5.3.24) identifies with (5.3.17) and is also quadratic convergence.
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Variant III: A is real symmetric and «,,,; = Rayleigh Quotient

Give wug with |Juglls =1 and oy = ul Auo,

For m=0,1,2,...,
m = mI —A -t ™
Um1 = (@ml = A)"u (5.3.25)
u _— ———_——
m+1 lvmt1ll2?

Qg1 = Uy Allygr .

End

Claim: The iteration (5.3.25) is cubic convergence.
The eigenvectors x; of A form an orthonormal system

To; =6 (5.3.26)

As above, let 5 ) and 4, be defined in (5.3.18) and (5.3.19). From (5.3.26) follows

@—&M

lumlZ=1=(1+e)?+> =142+ &

j>2 j=1

So g1 < 262 = O(62). That is
2Y%m m

Ay = U Ay, = Ai(1+ 1) Z /\]53 (5.3.27)

j>2

— )\1 -+ 281)\1 -+ Z )‘j8]2' = )\1 —+ O(éi)

j=1
Thus &™) = O(62,). On the other hand,
2
T (1 +e1)? 5
Uppi1VUmil = s Yy
o (am) = M) S5 (amm) = Ay)?
14¢e g2gm)2
— 14 i )
| m>—A1‘ { Z T+ 2 ag) AP
1+0(85,)
Therefore
1+ &1 j 6 A(m) >\1
Un+r = 1 )(1+0(0,,))( )
a(m) - >\1 j>2 Oé(m) Y 1+ €1
_z(m)
€€
= [0+ Y J(1+0(3,,))
; (1 + 81>(Oé(m) - )\j)
_— +€(m+1 )1 +Z€m+1)
7>2

with | e 1< M3 j=1,---.n). Asin (5.3.27) we have
J m
’a(m+1) )‘1’ C (57271-‘:-1) C (66 )
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5.3.4 Orthogonal Iteration

Given )y € C™*? with orthogonal columns and 1 < p < n.

Fork=1,2,---
Zk = AQk’—la
QiR = Zy, (QR decomposition) (5.3.28)
End
Note that if p = 1 this is just the power method. Suppose that
Q" AQ =T = diag(\) + N, | = -+ = |\l (5.3.29)
is a Schur decomposition of A and partition ), T and N as follows
S T, T Nu N
_ _ 1 412 _ 11 Vig
Q - @a Qﬁ aT_ ( 0 T22 )7 N = ( 0 N22 ) (5330)
If [\,| > [Aps1| we define D,(A) = R(Q.) = Range(Qp) is a dominant invariant
subspace . It is the unique subspace associated with associated with A, -, A,. The
following theorem (without proof see Golub/Vanloan p.215) shows that the subspace
R(Qk) generated by (5.3.28) converges to D,(A) at a rate proportional to |’\f\—:1|k under

reasonable assumptions.

Theorem 5.3.4 Let the Schur form of A be given by (5.3.29) and (5.3.30). Assume that
|Ap| > |Aps1] and that 6 > 0 satisfies

(14 0)Ap| > [[N][

If Qo € C™*P with Q{Qo = I, and d = dist|D,(A*),R(Qo)] < 1, then Q) generated by
(5.3.28) satisfy

(14+60)"
V1—d?

When 6 is chosen large enough then the theorem essentially shows that

1Twllr | Apal + ||N||F/(1+0)]k

diSt[Dp<A>7,R(Qk>] < sep(Tn, T12) |)‘p| - ”NHF/(l + 0)

1+

dist[Dp(A), R(Qi)] < e hpia /Mol

where ¢ depends on sep(T11,T12) and | N||r. Needless to say, the convergence can be very
slow if the gap between |\,| and |A,41| is not sufficiently wide. To prove this theorem we
need to prove the following two lemmas 5.3.1 and 5.3.3.

Tll T12

Lemma 5.3.1 LetT = { 0 T

} and define the linear operator ¢ : CP*7 — CP*9 by

gD(X) = THX — XTQQ.

Then ¢ is nonsingular <= o(T11) No(Ty) = ¢. if ¢ is nonsingular and (Z) = =T},

then YITY = diag(Th1, Th), where Y = [ % ]Z 1 :
q
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Proof: “<=": Suppose ¢(X) =0 for X # 0 and

X, 0

UXV:{O 0

} . 2. =diag(o;), 1 =rank(X).

Substituting into 77, X = X1y gives
Ay Apg X 0 1% 0 By B
Ay Ag O 0| |00 By Bay |’

U*TMU = (AZ]) and V*TQQV = (BZ])

where

By comparing blocks, we see that Ay; = Bjs = 0 and o(A;;) = o(Bi1). Conversely,
¢ # 0(An) =0(B1) Co(Thy) No(Ty).

“=": If XA € o(T11) N o(Tsy), then there are x # 0, y # 0 satisfy T332 = Az and
y*Tye = Ay*. This implies ¢(xzy*) = 0.

Finally, if ¢ nonsingular, then Z exists and

_ Ty TnZ — ZTe +T) T 0
1 _ 1 L 22 12 | _ 11
yory - [ B “ }_{O T}
|
{ Another proof }
For A € C"™*™ and B € C"™*™ define the Kronecker product of A and B by
CLHB cee almB
AR B = : : — [aijB]ZE‘:l c Crmmxmn
CLmlB cee ammB
Let C = [c1,- -+ ,¢,) € C™™. Define
C1
vec(C)= | : | e C"™.
Cn
Consider the linear matrix equation
AX - XB=C. (5.3.31)

Lemma 5.3.2 vec(AX — XB) = (I ® A— BT @ Ivec(X).

Proof:
(AX); = AX; — vec(AX) = (I ® A)vec(X),

(XB); =Y b Xp = by, -+ byl ]vec(X).
k=1
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By linearity of vec we have
vec(AX — XB) = vec(AX) —vec(XB) = [(I @ A) — (BT ® I)]vec(X).

|

Let G=[I® A— BT ®1I)], X =vec(X), r = vec(C). Then the equation (5.3.31) is

equivalent to Gx = r and the equation (5.3.31) has a unique solution <= o(A)No(B) =
¢. There are unitary ()1, Z; such that

ryook % s; 0 0
0 0 ry x % Sy

(5.3.31) becomes

e Ale — X 1B; = Cl, where X = QTXZ:[
<~ Gll’l =1,

where G; = [I ® A; — By ® I] and x1 = vec(X7), 1 = vec(Cy). Also

det(Gr) =[] (ri—my).

1<i1<m
1<j<n

Hence we have 0(A)No(B) = ¢ <= (r; —s;) #0 (i =1,---m,j =1,---n) <
det(Gy) # 0 <= Ghz; = r1, has a unique solution. <= the equation (5.3.31) has a
unique solution X. [ ]
Exercise:

(a) Consider the linear matrix equation AXB — CXD = R where A,C € C™,
B, D € C"" and X, R € C™*™. The equation has a unique solution <= (A, C)N

o(B,D) = ¢.
b) Consider AX -YB=F, where A, B,C,D, XY, R, S € C™*". The equation
CX-YD=S

has a unique solution (X,Y) <= ¢(A,C) No(B, D) = ¢.

Lemma 5.3.3 Let Q*AQ =T = D + N (Schur decomposition). D is diagonal and N
is strictly upper triangular. Let A\ = max{|n| : det(A — nl) = 0} and p = min{|n| :
det(A—nl)} =0. If 0 > 0, then

[N

| A% ||y < (14 0)" A + m]k, k> 0. (5.3.32)

If A is nonsingular and 6 > 0 satisfies (1 + 0)|p| > || N||F, then

A e < (L) ol k20 (5:3.33)
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Proof: For 6 > 0, define A = diag(1, 146, (1460),--- , (1+60)"" 1) and ky(A) = (1+6)" L.
But |ANAZ| < ||N||p/(1+6), thus

1AM = Tl = [ATHD + ANATH A,
Ra( D)D) + [ANAT]*

<
< (140" A+ IN]R/ (1 +0))"

On the other hand, if A is nonsingular and (1 4 0)|u| > ||N||F, then

IADTINA™Y, < 1

and thus,
A2 = T s = [ATHI + ADTINATHTIDTEA
< R(D)[ID7Ho/[L = [ADTINATH o]
1
< 1+ JF

|l = [IN]l7/ (1 +6)

]
{ proof of Theorem 5.3.4: } By induction A*Qy = Qx(Ry - - - Ry). By substituting (5.3.29),
(5.3.30) into this equality we get

- [ Jo

where Vi, = Q,Qx and Wy, = Q3Q)y. Using Lemma 5.3.1 there is an X € CP*(n=P) guch

that !
I X | Tn T12 I X . T11 0
O I 0 T22 0 I o O T22 ’
Moreover since sep(771, To2) = the smallest singular value of ¢(X) = 177, X — X Ts,. From

(b(X) = —T12 follows
1 X < [|Thellr/sep(Th1, Taz).

Thus

KA

Vie — XWy
0 T% Wo

W :|(Rk”R1)
Assume V) — XWj is nonsingular. Then
Wi = To,Wo (Vo — XWo) ' T (Vi — XW4).
From Theorem 5.1.3 follows that
dist[Dy(A), R(Qr)] = |Q5Q%ll2 = [[Wi2-
Then

dist[Dy(A), R(Qw)] < [Tl (Vo = XWo) ™ I Ti o[t + 1. 1] (5.3.34)
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We prove V) — XWj is nonsingular. From A*Q) = QT follows that

AN(Qa = QpX") = (Qu — Qs X")TH,

which implies orthogonal column of Z = (Q, — QBX*)([—FXX*)*% are a basis of D,(A*).
Also

(Vo — XWo) = (I + XX*)2Z*Q,.
This implies
op(Vo — XWy) > 0,(Z* Qo) = 0,(Vo — XWy) > 0,(Z7Qp) = V1 —d? > 0.

Hence Vy — X, is invertible and |[(Vy — XWp) 7|2 < \/1;_7. By Lemma 5.3.1 we get
I T55012 < (14 0)" P Al + [N 2/ (1 + )",

and
1T [l < (L+ )P/ = IN]|2/(1+ 6)]".

Substituting into (5.3.34) the theorem is proved. u
5.4 QR-algorithm (QR-method, QR-iteration)
Theorem 5.4.1 (Schur Theorem) There ezists a unitary matriz U such that

AU = UR,
where R is upper triangular.

Iteration method (from Vojerodin):

Set U() = I,
For +=0,1,2,--- (5.4.1)
AU; = U1 Riv1, (an QR factorization of AU;.) o
End
If U; converges to U, then for ¢ — oo
Ri—l—l = U;iHAUz — U*AU.
We now define

Then from (5.4.1) we have
Az‘ - U;;lAUZ',1 - Ul*f]_Ule - QlRZ
On the other hand from (5.4.1) substituting ¢ by ¢ — 1 we get

RU:, =UrA
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and thus

So (5.4.1) for Uy = I and A; = A is equivalent to:

Fori=1,2,3,---
A, = Q;R; (QR factorization of A;),
A1 = RiQs.

End

Equations (5.4.3)-(5.4.4) describe the basic form of QR algorithm. We prove two impor-
tant results. Let

Pi=Q1Qs---Qi, S;=RiRi1-- Ry (5.4.5)

Then hold
Ay = PrAP = S;AS]Y, i=1,2,-- (5.4.6)
A" = BS; i=1,2,--. (5.4.7)

(5.4.6) is evident. (5.4.7) can be proved by induction. For i = 1, A; = Q1 Ry, Suppose
(5.4.7) holds for i. Then

AH—I = APZSZ = ‘PZAZ+1SZ (fI‘OIIl (546) )
= PiQi+1Ri+1Si = Pi+15i+1-

Theorem 5.4.2 Let A € C™*™ with eigenvalues \; under the following assumptions:

(a)
|A1] > [Aa| > -+ |An| > 0; (5.4.8)

(b) The factorization
A=XAX"! (5.4.9)

with X~' =Y and A = diag(\1,- -+, \,) holds. HereY has an LR factorization.

Then QR algorithm converges. Furthermore
(a) lim; o ag-ik) =0, for j >k, where A; = (a§2);
(b) llmZ_H)o a](;]z - Ak, fOT k = ]_7 . e 7/n/.

Remark 5.4.1 Assumption (5.4.9) is not essential for convergence of the QR algorithm.
If the assumption is not satisfied, the QR algorithm still converges, only the eigenvalues
on the diagonal no longer necessary appear ordered in absolute values, i.e. (b) is replaced
by (b)) lim; 00 ag,z = Aeiy, B =1,2--- 0, where 7 is a permutation of {1,2,--- ,n}. (
See Wilkinson pp.519 )
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Proof: { of Theorem 5.4.2 } Let X = QR be the QR factorization of X with r; > 0 and
Y = LU be the LR factorization of Y with ¢; = 1. Since A = XAX ! = QRAR'Q",

we have

Q*AQ = RAR™ (5.4.10)

is an upper-triangular matrix with diagonal elements \; ordered in absolute value as in
(5.4.8). Now
AS = XA X' = QRALU = QRA*LA AU
and since
A\, 0, 1 < k,
(NLA™ )i = () = ¢ L, i =k,
Ak —0, 1>k as s — oo,

where A°LA™° = [ + E,, with lim,_,., E, = 0. Therefore
A* = QR(I + E)N°U = Q(I + RE,RMRAU = Q(I + F,)RA*U

with lim,_,. F, = 0. From the conclusion of QR factorization the matrices () and R
(ri; > 0) depend continuously on A (A = QR). But I =11 is the QR factorization of
I, therefore it holds for the Q)R factorization:

I+ F,= Cstvs-
Thus for F, — 0, we have lim,_,» Qs = I and lim, .., B, = I. From (5.4.7) we have
A* = (QQ,)(R,RAU) = P,R,.

So from the "uniqueness” of Q)R factorization there exists a unitary diagonal matrix Dj
with

P;Ds = QQS — Q
Thus from (5.4.6) we have
DfA;1D; = DiP;AP,D; — Q*AQ = RAR™. (5.4.11)
The assertions (a) and (b) are proved. n

Remark 5.4.2 One can show that lim,_,, Qs = diag(lj\\z|). That is in general Q5 does
not converge to I and then P, does not converge. Therefore D, does not converge to I
and (5.4.11) shows that the elements of As over the diagonal elements oscillate and only

converge in absolute values.

Let A be diagonalizable and the eigenvalues such that
|)\1| S — |)\y1| > |)\V1+1| S — ‘)\VQ‘ > .= ])\Vs| (5,4.12)

with vy, = n. We define a block partition of n x n matrix B in s blocks By, for k,¢ =
1,2, s
B = [Bké]i,zzl-
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Theorem 5.4.3 (Wilkinson) Let A be diagonalizable and satisfy (5.4.12) and (5.4.9).
Then it holds for the blocks A} of A; that

(a) lim; o AEQ =0, J>k;
(b) The eigenvalues of Ag,z converges to the eigenvalues A\, 41, , Ay

e

Special case: If A is real and all the eigenvalues have different absolute value except
conjugate eigenvalues. Then

y ]
X

X X + +

X X 4+ +

X 4+ + + +

X X + 4+ + + +

X X + 4+ ++ +

A —

0

Theorem 5.4.4 Let A be an upper Hessenberg matrix. Then the matrices Q; and A; in
(5.4.3) and (5.4.4) are also upper Hessenberg matrices.

Proof: It is obvious from A;,; = R,-AZ»R;1 and ); = AZRZ-_I. [ |

5.4.1 The Practical QR Algorithm

In the following paragraph we will develop an useful QR algorithm for real matrix A. We
will concentrate on developing the iteration

Compute orthogonal Qg such that Hy = Qf AQ, is upper Hessenberg.

For k=1,2,3,---

Compute QR factorization Hjy = QpRy;

Set Hy 1 = RpQu; (5.4.13)
End

Here A € R™™", ); € R™™" is orthogonal and R; € R™*" is upper triangular.

Theorem 5.4.5 (Real Schur Decomposition) If A € R™*" then there exists an or-
thogonal () € R™ ™ such that

Rll RIQ e le
0 Ry -+ Rop

QraQ=| . : (5.4.14)
0 0 - Rym

where each Ry is either 1 X 1 or 2 X 2 matriz having complex conjugate eigenvalues.
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Proof: Let k be the number of complex conjugate pair in o(A). We prove the theorem by
induction on k. The theorem holds if £ = 0. Now suppose that £ > 1. If A = y+iu € o(A)
and p # 0, then there exists vectors y and z € R™(z # 0) such that

Ay +iz) = (v +ip)(y +iz),

ie.,

-

The assumption that p # 0 implies that y and 2z span a two dimensional, real invariant
subspace for A. It then follows that

A=l | 7, ).

Tll T12

UTAU =
[ 0 T

] with o (T11) = {A, A}

By induction, there exists an orthogonal U so that UT Ty, U has the require structure.

The theorem follows by setting Q) = Udiag(ls,U). [ |

Algorithm 5.4.1 (Hessenberg QR step)

Input: Given the upper Hessenberg matrizc H € R™*";
Compute QR factorization of H: H = QR and overwrite H with H = RQ;
Fork=1,--- ,n—1,
Determine ¢y and sy with ¢; + si =1 such that

{Ck o {hkk]_{*}

—sk Ck | | hksre | [ O]
[hkj}: . Sk}[hkj]
Pt | — Sk Ck hig1j |-

End;

End:

Fork=1,--- ,n—1,
Fori=1,--- k+1,

[hites higesr] = [Pk, i o] [ o } :

—SE Ck

Forj=k,--- n,

End;
End;

This algorithm requires 4n? flops. Moreover, since QT = J(n —1,n,0,1)---J(1,2,
0,) is lower Hessenberg H = QR is upper Hessenberg. Thus the QR iteration preserves
Hessenberg structure.

We now describe how the Hessenberg decomposition QF AQy = H =upper Hessenberg
to be computed.

Algorithm 5.4.2 (Householder Reduction to Hessenberg Form) Given A € R"*".
The following algorithm overwrites A with H = QY AQo, where H is upper Hessenberg
and Qo = Py --- P,_5 is a product of Householder matrices.
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Fork=1,---,n—2,
Determine a Householder matriz P, of order n — k such that
Ak41,k *
_ : 0
B ' =1 .
Qnp,k 0
Compute A = PF AP, where P, = diag(Iy, Py).
End;

This algorithm requires §n3 flops. )y can be stored in factored form below the

subdiagonal A. If )y is explicitly formed, an additional %n?’ flops are required.

Theorem 5.4.6 (Implicit Q Theorem) Suppose Q = [q1,- -+ ,qn] andV = [v1,- -+, vy]
are orthogonal matrices with QT AQ = H and VT AV = G are upper Hessenberg. Let k
denote the smallest positive integer for which hyyy, = 0 with the convention that k = n,
if H is unreduced. If vi = ¢, then v; = £q; and |hi;—1| = |gii-1|, for i = 2,--- k.
Moreover if k < n then ggy1x = 0.

Proof: Define W = VTQ = [wy,--- ,w,] orthogonal, and observe GW = WH. For
1=2,---k, we have

i—1
hz‘,i—lwi = Guw;_1 — Z hj,i—le
j=1
Since wy; = ey, it follows that [wy,--- ,wy]| is upper triangular and thus w; = *+e;
for i = 2,--- k. Since w; = Vg and h;;—1 = w] Gw;_1, it follows that v; = +¢; and
\hii—1| = |gii-a| for i =2,--- k. If hyy1 = 0, then ignoring signs we have

gk = erGer = ep GWey = (e, W)(Hey)

k k
T 2 { E : T
= €k+1 hlkWel = hikekﬂei =0.
=1

=1

Remark 5.4.3 The gist of the implicit QQ theorem is that if QT AQ = H and ZTAZ = G
are each unreduced upper Hessenberg matrices and ) and Z have the same first col-
umn, then G and H are “essentially equal” in the sense that G = D 'HD, where
D = diag(£1,--- ,£1).

We now return to Hessenberg QR iteration in (5.4.13):

Give orthogonal @ such that H = QF AQ, is upper Hessenberg.
For k=1,2,3,---

H=QR, (QR factorization)

H := RQ, (upper Hessenberg)
End
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Without loss of generality we may assume that each Hessenberg matrix produced by
(5.4.13) is unreduced. If not, then at some stage we have

H = |: Hll H12

3 pPXp <
0 H } with Hy; € R (1 <p<n).

The problem “decouples” into two small problems involving H;; and Hj,. The term
“deflation” is also used in this context, usually when p = n — 1 or n — 2. In practice,

decoupling occurs whenever a subdiagonal entry in H is suitably small. For example in
EISPACK if

’thrl,p‘ < eps(‘hpm’ + ’hp+1,p+1‘)> (5.4.15)

then hy,yq, is “declared” to be zero.
Now we will investigate how the convergence (5.4.13) can be accelerated by incorpo-
rating “shifts”. Let p € R and consider the iteration

Give orthogonal Qg such that H = QI AQ, is upper Hessenberg.

For k=12,
H—ul =QR, (QR factorization) (5.4.16)
H = RQ + pnl,

End

The scale p is refereed to a shift. Each matrix H in (5.4.16) is similar to A, since
RQ+pl = QT(QR+ ul)Q = QT HQ.

If we order the eigenvalues \; of A so that |A\; — p| > --- > |\, — p|, then Theorem
5.4.5 says that the p-th subdiagonal entry in H converges to zero with rate ]A’;:%M“\k . Of
course if A, = A\,41 then there is no convergence at all. But if ;¢ is much closer to A, than
to the other eigenvalues, the convergence is required.

Theorem 5.4.7 Let p be an eigenvalues of an n X n unreduced Hessenberg matriz H.
If H = RQ + pl, where (H — pl) = QR is the QR decomposition of H — pul, then
hpn—1 =0 and hy, = .

Proof: If H is unreduced, then so is the upper Hessenberg matrix H — pl. Since
QT (H — pI) = R is singular and since it can be shown that

’7“7;7;’ 2 |hi+17i|a 1= ].,2, e, N — ]_, (5417)

it follows that r,, = 0. Consequently, the bottom row of H is equal to (0,---,0, u). H
5.4.2 Single-shift QR-iteration

Give orthogonal @y such that H = Qf AQ, is upper Hessenberg.

For k=1,2,---
H; — hpol = Q;R;;,  (QR factorization) (5.4.18)
Hip1 = RiQ; + hynl,

End
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Quadratic convergence
If the (n,n — 1) entry converges to zero and let

X X X X
m X X X X
X X X X

P,
then one step of the single shift QR algorithm leads:
QR=H — hy I, H=RQ + hp,1.
After n — 2 steps in the reduction of H — h,,,,I to upper triangular we have

X X
X

X X X
m Q@ X X X
O ot X X X

And we have (n,n — 1) entry in H is given by

7 e%b
nn—1 — .
2+ a?

If ¢ < a, then it is clear that (n,n — 1) entry has order 2.

5.4.3 Double Shift QR iteration

hmm hmn
hnm hnn
then h,, would tend to be a poor approximate eigenvalue. A way around this difficulty
is to perform two single shift QR steps in succession, using a; and as as shifts:

If at some stage the eigenvalues a; and as of [ ] (m = n—1) are complex, for

H—al = QiR
Hy, = RiQi+ail,

Hy —a] = (Q:R,, (5.4.19)
Hy = RyQs+aql.

We then have

(Q1Q2)(RoRy) = Qi(Hy—axl)Ry = Q1(R1Qy + a1l — ax]) Ry
= (Q1R1)(Q1R1) + a1 (Q1R1) — as(Q1Ry)
= (H—al)(H—al)+a,(H —a1l) —as(H — aq 1)
— (H—aD)(H —as]) = M, (5.4.20)

where
M= (H —a1l)(H — ax]). (5.4.21)
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Note that M is a real matrix, since

M = H? — sH +tI,

where s = a1 + as = hpyn + hpn € R and t = a1a2 = hpmhinn — Ponhm € R. Thus,
(5.4.20) is the QR factorization of a real matrix, and we may choose @); and ()2 so that
Z = )1Q)s is real orthogonal. It follows that

Hy = Q3H1Q2 = Q3(QTHQ1)Q2 = (Q1Q2) " H(Q1Q2) = Z"HZ
is real. A real H, could be guaranteed if we
(a) explicitly form the real matrix M = H? — sH + tI;
(b) compute the real QR decomposition M = ZR and
(c) set Hy =ZTHZ.

But since (a) requires O(n?) flops, this is not a practical course. In light of the Implicit
Q theorem, however, it is possible to effect the transition from H to Hy in O(n?) flops if
we

(a') compute Me,, the first column of M;

(b") determine Householder Matrix P, such that

Py(Mey) = aeq, (a#0);

(c') compute Householder matrices Py,--- , P,_5 such that if Z; = PyP,--- P,_y the
ZITHZ, is upper Hessenberg and the first column of Z and Z; are the same. If
ZTHZ and ZI' HZ, are both unreduced upper Hessenberg, then they are essentially
equal.

Since Me; = (1,9,2,0,---,0)T, where x = h¥, + hishoy — shiy +t, y = hor(hyi+
hos — 8), 2z = hagihss. So, a similarity transformation with Py only changes rows and
columns 1, 2 and 3. Since B H P, has the form

[ x x x x x x|
X X X X X X
X X X X X X
X X X X X X |’
0 0 0 x x X
| 0 0 0 0 x x|
it follows that
[ x x x x x x| [ x x x x x x| [ x x x x x x|
X X X X X X X X X X X X X X X X X X
><><><><><><g()><><><><><§()><><><><><
X X X X X X 0 X X X X X 0 0 x x X X
0 0 0 x x X 0 X X X X X 0 0 x x X X
| 00 0 0 x x| | 00 0 0 x x| | 0 0 x x X X |
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X X X X X X X
X X X X X X X

ﬁ 0 X X X X X g 0
0 0 x X X X 0

0 0 0 x x X 0

| 0 0 0 x Xx x| 0

o O X X X

0

O O X X X X

X X X X X

0

X X X X X

X

X X X X X

X

Py, = diag(Iy, Py, I,__3), Py is 3 x 3-Householder matrix. The applicability of Theorem
5.4.6 (Implicit @-theorem) follows from that Pye; = ey, for k = 1,--- ,n —2, and that F,

and Z have the same first column. Hence Z,e; = Ze;.

Algorithm 5.4.3 (Francis QR step) Given H € R™"™ unreduced whose trailing 2 X 2
principal submatriz has eigenvalues a; and as, the following algorithm overwrites H with
ZYHZ, where Z = Py - - - P,_y is a product of Householder matrices and Z*(H —ayI)(H —

asl) is upper triangular.

Set
m:=n—1;
§ = hmm + hnn;

t:= hmmh’nn - hmnhnm;
xr = hi + h12h21 — Shll + t,’
y = hoi(hy1 + hog — s);
2= horhsy;

For k=0,--- ,n—2,
If k <n—2, then

x *
pk Yy = 0 ’
z 0

Set

Py ][5 )

Set

End if

T = Ngto i1

Y= hpgsprr;

If k <n—3, then z := hgjaps1;
End for;

H = PkHng P, = dzag (IkJ Pka [nfkf?));
else determine a Householder matriz P,_o € R?>*? such that

Determine a Householder matriz P, € R**3 such that

H = Pn,QHPgLQ, PR,Q = dzag (Infg, Pnfg),'

This algorithm requires 6n? flops. If Z is accumulated into a given orthogonal matrix,

an additional 6n? flops are necessary.

Algorithm 5.4.4 (QR Algorithm) Given A € R™™ and a tolerance ¢, this algorithm
computes the real schur decomposition QT AQ = T. A is overwritten with the Hessenberg

decomposition.
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Using Algorithm 5.4.2 to compute the Hessenberg decomposition
QTAQ = H,
where Q = Py --- P,_5 and H is Hessenberyg;
Repeat: Set to zero all subdiagonal elements that satisfy
|hiic1| < € (|hai| + |hiz1,i-1]);
Find the largest non-negative q and the smallest non-negative p such that

Hiy Hys His p
H = 0 Hyy  Hos n—p—gq ,
0 0 Hss q
p n—p—q q
where Hsg is upper quasi-triangular and Hyy is unreduced (Note: either
p or q may be zero).

If g = n, then upper triangularize all 2 x 2 diagonal blocks in H that have
real eigenvalues, accumulate the orthogonal transformations if necessary,
and quit.

Apply a Francis QR-step to Has:

Hyy := ZTH22Z;'

If Q and T are desired, then Q := Q diag(1,, Z, 1,);

Set H12 = ngZ and H23 = ZTH23,'

Go To Repeat.

This algorithm requires 15n flops, if Q and T' are computed. If only the eigenvalues
are desired, then 8n3 flops are necessary.

5.4.4 Ordering Eigenvalues in the Real Schur From

If QTAQ = { Tél %Z } with 717 € RP*P and o(T11) U 0(Ts) = ¢, then the first p
columns of () span the unique invariant subspace associated with (7};). Unfortunately,
the Francis iteration leads QEAQr = Tr in which the eigenvalues appear somewhat
randomly along the diagonal of 7. We need a method for computing an orthogonal
matrix Qp such that QETrQp is upper quasitriangular with appropriate eigenvalues
ordering.

Let A € R?*2, suppose

At
Q}QAQF:TF:[Ol ;22}7 AL F# Ao

Note that Trx = Aoz, where z = [ \ t12)\ } Let Qp be a given rotation such that
2 — A1

«

Qg.ﬁl] = |i 0 :| . If@ = QFQD7 then
(QTAQ) €1 = QgTF (@Qper) = )\QQlTj (Qper) = Aaen

and so

e[ ]
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Using this technique, we can move any subset of o(A) to the top of T's diagonal. See

Algorithm 7, 6-1 pp.241 (Golub & Van Loan: Matrix Computations). The swapping gets
a little more complicated when T has 2 x 2 blocks. See Ruhe (1970) and Stewart (1976).

Block Diagonalization

Let
Ty T --- Ty g
|0 T T | 542
0 - 0 Ty | I

be a partitioning of some real Schur form Q7 AQ = T € R™ " such that o(T11), -+, 0(T,,)

are disjoint. There exists a matrix Y such that Y™!'TY = diag(T41,- -, Ty,)- A practical
procedure for determining Y is now given together with an analysis of Y'’s sensitivity as
a function of the above partitioning.

Partition I, = [Ey, - - , E,| conformally with T" and define Y;; € R™*" as follows:

Y;j = In + EiZijEJT, 1< j’ Zij e R™Xnj
It follows that if ¥;;'T'Y;; = T = (T};) then T and T are identical except that

Ty = TiZij — ZijLy; + T,

Ty =TwiZij+ Ty (k=1,---,1—1).
This T;; can be zeroed provided we have an algorithm for solving the Sylvester equation
FZ —-7G=C, (5.4.23)
where F' € RP*P (G € R™*" are given upper quasi-triangular and C' € RP*",

Bartels and Stevart (1972): Let C' = [c1, -+ ,¢] and Z = [z1,---, 2] be column
partitionings. If gj+1 4 = 0, then by comparing columns in (5.4.23) we find

k
Fzy, — E Jik2i = C-
i=1
Thus, once we know 2z, --- , 2x_1 then we can solve the quasi-triangular system

k—1
(F - gkk)zk =cp + Z girz; for z.

i=1

If gry16 # 0, then z;, and 2,1 can be simultaneously found by solving the 2p x 2p system

k—1
E=gul —gmil k| | Ck 9ikZi _
~Gkml  F =Gl || 2m | - 1 (m=k+1). (54.24)
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By reordering the equations according to permutation (1,p+1,p+2,--- ,p,2p), a banded
system is obtained that can be solved in O(p?) flops. The detail may be found in Bartel
and Stewart (1972) and see algorithm 7.6-2, 6-3 pp.243 (Golub & Van Loan Matrix
Computation).
Connection with variant inverse iteration

Now let A € C"*™. The QR algorithm with respect to the sequence {k;}°; of shift:

Al - A7
(A — kD) = QiR;,
Aiyn = RQi+ kI, P=0Q1Q2 Q.

e e}

o0, is then created

Theorem 5.4.8 Let p, denote the last column of Ps. The sequence {ps}
by the variant inverse iteration:

Po = €en, k1 =p, Apo,
fors=20,1,2,---

~ " —1 ~ o~ -1/2
Psr1 = (A" — ko1 D) " ps, T = (Ps+1ps+1) )
Pst1 = Tst1Dst+1,  Kspa = p:+1APs+1-

Proof: AP, = P,A,,; implies

Py = PQsiRe Ry = Pu(Acpy — ko IR
= (A- Ks—i-l[)PsRs_—:l

and therefore )
Piyi = (A" — kg1 I) ' Py R, (since P;* = P).

If we denote by  the last diagonal element of R, 1, then p,, = (A* — ko1 1) 'pgr. From
(Asi1 — ko1t I) " RE, | = Qg41 follows that

Ry 1 PHA = kgt I) WA — ke ) ' PsRE =1

and then r =ry . |
Deflation “Remove” a computed eigenvalue and eigenvector from a matrix.

(a) Deflation from Hotelling: A is symmetric and real. Let A; and z; be the computed
eigenvalue and eigenvector respectively, and 272, = 1. Then

B=A-— >\1I1.Z’1<

has the following relation

ANixi, jF#1L
T v J )
ij = A.lej - )\1171.1'1 T; = { 0]‘ .’L']j, ] _ 1’

where Az; = \jz; j=1,---,n. B has the eigenvalues {0, Ao, -+ , A\, }.
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(b) Deflation from Wielandt: Let A be arbitrary. We know the fact, that a left eigenvector
y to p and a right eigenvector = to A for A # u are orthogonal:

0=(y" Az —y"(Ax) = py"z — Mz = (n—Ny' =

Let A\ and x; be the given eigenvalue and the eigenvector respectively. Let u # 0 be a
vector with u”z; # 0. Then
B=A—zu".

From
BZEl = /\1l‘1 — (UTZL'l).I‘l = (/\1 — uTxl)xl

follows that the eigenvalue \; is transformed to \; — u’z;. If X # \; an eigenvalue, then
follows from yTA = My? (y # 0) and y'B = yTA — (yTx)u? = A\y? that ) is also an
eigenvalue of B. But the right eigenvectors are changed.

(c) Deflation with similarity transformation
A is arbitrary. Let x1, \; be given with Az; = A\jx;. Find a matrix H such that
Hzxy = key(k # 0). Then holds

HAH 'Hzy = M\ Hx;, and HAH 'e; = \e.
That is HAH ! has the form

HAH™ ' = < |0 )
ﬂLo .

B has the eigenvalues o(A) \ {\}.

5.5 LR, LRC and QR algorithms for positive definite
matrices

(a). LR-algorithm: Given matrix A. Consider

A=A,

fori=1,2,3,---
A; = L;R;, (LRfactorization of A;)
Ai+1 = Rsz

(5.5.1)

From (5.4.5)—(5.4.7) we have

Pi:=1Ly--- L, S;:=R;-- Ry,
Aip1 = PTTAP, = 5;AS,
A" = BS;.

There exists the convergence theorem as Theorem 5.4.2.

Advantage: less cost of computation at each step.
Disadvantage: LR factorization does not always exist.
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(b). LRC-algorithm:

Let A be symmetric positive definite. Then the LR factorization exists. So we have
the following iterative algorithm

A=A,

fori=1,2,3,---
A; = L;LT, (Cholesky factorization of A; )
Ai+1 = LZTLl

(5.5.4)

Similar to (5.4.5)-(5.4.7) we also have

Pii=1L1Ly--- Ly,
Apyr = PLYAP, = PLAPT,
AF = p.PL.

Because all P; are positive definite, the LRC algorithm is always performable.

Theorem 5.5.1 Let A be symmetric positive definite with eigenvalues Ay, -+, \,. Then
the LRC' algorithm converges: The sequence Ay converges to a diagonal matriz A with
the eigenvalues of A on the diagonal. If A = diag(\;), where Ay > Ao > -\, > 0,
A =UAUT and UT has a LR factorization, then A; converges to A.

Proof: Let L; = (ﬁfj) and sF, =>"" ak, 1 <m < n. Since all A;, are positive definite
and af. > 0, we have

0<sh < Z a¥ = trace of Aj = trace of A.
i=1
Thus s* are boupded. From Ay = L,LY follows af, = Zp 1 |€ |>. From Ay, = LT Ly
follows afi™ = > [¢f|?. Hence sk, = Y7 1Zp_ |€ 2 and sk+1 S D | |2

The sklzze shows clearly that s’“rl > sF . So s* converges, and then af = sF — s¥ |
and spt — sy =30 Z] motl (Ek ) — 0. This shows that €5, — 0, p # j and since

ak = (Efl) + Zp:l ( ip) and af > 0, so (% converges. So L; converges to a diagonal

matrix. Here A; = L; L.
Second part: From A = UAUT, UT = LR follows
A = UNUT=R'L"NLR  (s=2t)
= RTA"(AT'LTA") (A'LAT") A'R.
Since A'!LA~t = I + E, with E, — 0 and by continuity of LL”-factorization we have
(AT'LTAY) (MLPAY) = (T+ EB) I+ E) =LY, Ly—1T
and o
A*=R'A'L,- LAN'R = P,PT.

We now have two different LL?-decomposition of A%. There is a unitary diagonal matrix

D, with .
P.D, = RTATL,
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and hence

D;'A, D, = D;'P7'AP,D,
= LA (RTART) AL,
LA™ (LTALTT) AL,

Since A = UAU™' = RTL"AL™"R™" and L"AL™" is a upper triangular with diagonal
A, it holds AT LTAL=TA* — A and because of L, — I, it holds D;'A,, 1D, — A, also
As+1 — A. |

Remark 5.5.1 (i) One can also develop shift-strategy and deflation technique for LR
and LRC' algorithm as in QR algorithm.

(ii) If A is a (k, k)-band matriz, then Ly is a (k,0)-band matriz and therefore Ay = LT L,
is also a (k, k)-band matriz. The band structure is preserved.

(c). QR-algorithm for positive definite matrices
We apply @ R-algorithm (5.4.3)—(5.4.4) to symmetric matrices. From

Aiy1 = Q7 AiQi
follows that A; are symmetric.

Theorem 5.5.2 The QR algorithm converges for positive definite matrices.

The proof follows immediately from the following Theorem 5.5.3.
We consider now the iteration of QR algorithm

Ai1 = Q7 AiQi
and the iterations of LRC algorithm

Ai = LZLT

7

Ai-{-l - L;FLl

Theorem 5.5.3 The (i + 1)-th iteration Ajy1 of QR algorithm for positive definite A
corresponds to the (2i + 1)-th iteration As;y1 of LRC algorithm for i =0,1,2,--- .

Proof: From (5.4.5)-(5.4.7) we have

and .

Similarly, from (5.5.2) and (5.5.3) with P, = L, - - - L;, we have
A'=PBPI A, =PrAPT. (5.5.9)

From(5.5.8) follows
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On the other hand from (5.5.9) with ¢ < 2i follows

A2i - pzlﬁg;

From the uniqueness of LRC factorization of positive diagonal follows S; = 1527; and hence
according to (5.5.8) (5.5.9) it holds

A1 = S;AST = PEAP,T = Ay,
|
The proof of Theorem 5.5.2 is now from Theorem 5.5.1 and Theorem 5.5.3 evident.

Remark 5.5.2 For positive definite matrices two steps of LL™T algorithm are as many
as one step of QR algorithm. This shows that QR algorithm is much more favorable.

5.6 qd-algorithm (Quotient Difference)

We indicated in Remark 5.5.1(ii), the band structure is preserved by LR algorithm. Let
A = A; be a (k,m)-band matrix. Then all L;, (k,0)—, all R;, (0, m)— and all A;, (k, m)-
band matrices, respectively. Especially tridiagonal form is preserved. A transformation
of LR-algorithm for tridiagonal matrices derives to gd-algorithm. A tridiagonal matrix

a1 B ) 0
Yo G B3
A= SRS (5.6.1)
B
0 An  Qn

for 3; # 0 (i =2,---,n) can be transformed with D = diag(l,ﬁ},ﬁ}ﬂ}, oo Byne Bn) to
the form DAD~! = A, where

a1 0
Moo 1
A= (5.6.2)
1
0 Yo On

with v, = nyi and «; = ;. Hence without loss of generality we can study the form
(5.6.2) for tridiagonal matrices. We now apply LR-algorithm to (5.6.2):

af 1 0 1 0
A, — Vo L= e ’
' 1
0 Ve, 0 e, 1
g 1 0
R, = R . (5.6.3)
L
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The LR factorization A, = LyR, can be obtained by element comparison:

LD af =g,
( ) 71 zQz 1> ) s 1Yy

( ) afzef—i_Qf’ i:27"'7n7
(G,i+1): 1=1-1, i=1,-.,n—1.

(5.6.4)

We can determine e, g7 from above equations for a given A, in the sequence ¢7, €3, g5, €3, g3,
..,q> and compute Az = RsLg by

St =g s, i=1,--,n—1
astl = g (5.6.5)
,yf+1_ql € 7’2277n

We write s 4 1 instead of s in (5.6.4), then we can eliminate A, and obtain

(aerl ) s+1+qs+1_qf_'_e%9+1’ Z‘:L... ,N
{ (2! =)estlgstl = goes, i=2.om (5.6.6)

For the convenience of notation we suppose

e;j=0, e =0 s=12---. (5.6.7)
The equations (5.6.6) can be represented by the gd-scheme and the Rhomben rules:
qd-Scheme
(flij =)0 qf—H e§+1
(61 :) 0] qf €2 %
QSH e Gy ey
T B AR M 0(= €Z+11)
gt 0 (: eflil)
The first equations in (5.6.6) can be formulated as sum rule:
@
et €y
qurl
The sum of elements of upper rows is equal to the sum of elements of lower rows. Thus,
G =g e — et (5.6.8)

The second equations in (5.6.6) can be formulated as product rule:

S
€

s+1 s
q1, 1 q?,
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The product of elements of upper rows is equal to the product of elements of lower rows.
Thus,

s €i4;
et = . (5.6.9)
41

With these rules a new gd-rows can be determined by sum and product rules from left
to right. Start according to (5.6.4) with s = 1. The formulas (5.6.8)(5.6.9) interpret the
name quotient-difference algorithm.

5.6.1 The gd-algorithm for positive definite matrix

If Ain (5.6.1) is positive definite, then det A > 0, and it also holds for A because
det A = det Ddet Adet D™' = det A > 0. This also holds for principal determinants
hi, -, hy of A. They are positive and equal to principal determinants of A, respectively.
In general we have

Lemma 5.6.1 If a matriz B is diagonal similar to a positive definite matrixz C, then all
principal determinants of B are positive.

Lemma 5.6.2 A matriz in the form (5.6.2) is diagonal similar to a symmetric tridiag-
onal matrix, if and only if, v; > 0, for1=2,--- . n. Especially this matriz is irreducible.

Proof: If v; > 0, then D7'AD is symmetric, where

D = diag(1,ty, tots, -+ ,ta---1t,), t;:= Vi -

Reversely, if D is a diagonal matrix, D = diag(d;) and A = D'AD symmetric, then
Qijit1 = di+1/di = Giy1; = Vi(di/dir1) and diJrl/di # 0. Soy; = (di,i+1)2 > 0. u

Theorem 5.6.1 The qd-algorithm converges for irreducible, symmetric positive definite
tridiagonal matrices. i.e. If A is irreducible and positive definite, then it holds the quan-

tities computed from (5.6.2) (5.6.4) (5.6.8)(5.6.9):

e; >0, lime;=0 i=2,---,n, (5.6.10)
S§—00

¢>0, lmg=0 i=1,-n (5.6.11)
S—00

Hereby \;,i =1,--- ,n are the eigenvalues of A and satisfy
AL> A > >0, > 0. (5.6.12)

Proof: Let h¥ be the i-th principal determinant of 4. We first show that by induction
on k:
k>0,i=2-,n ¢>0 hr>0i=1--,n

For A = Ay, Lemma 5.6.1 shows that: A} > 0,5 = 1,--- ,n. In addition we have from
A, = L,R, that
hi=q--q, 1=1-,n (5.6.13)

7
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Hence for s = 1 : ¢ > 0,4 = 1,--- ,n. From Lemma 5.6.2 follows v; = 7} > 0,i =

ct=1t [k >0

2,--+ ,n, so from (5.6.4) we get
We suppose the above assertion is true until k£ — 1, then from (5.6.5) follows
/sz - qzk 6’71 > 07

so from Lemma 5.6.2 and Lemma 5.6.1 we have that Aj is diagonal similar to a symmetric
matrix, which must be positive definite, because Ay, is similar to A. Hence all hk > 0.
Therefore from (5.6.13) ¢F and from (5.6.4) ef are also positive.
We now show that
hme =0, ILmqf:qi>O.

k—o00
From (5.6.6) for ¢ = n, ¢t + 5t = ¢ follows that ¢® is monotone decreasing, so ¢
converges and effl q — qfﬁl approaches to zero. Adding the following equations
together

Kl _ ok okt
qn qn ’fl ?
k-+2 k+1 k+1 k+2
p—1 = Gp— 1+en — €p—1s
k+v+1 _  k+v k+v k+v+1
qn v - qn v + €n+1—u - en—u )
we get that
k—l—l k+2 k+1/+1 k+1 k+1/ htrt
ie.,
k+1 _ k k+v+1
Py =Py —Ch_p -
The sequence pl’f is positive, monotone decreasing, so it converges, for v =1,---, n — 1.

Hence ¢* converges to a number ¢, > 0, thus limy_ e = 0. So lim,_,o L, = I and
hence

a1 0
lim A, = lim L,R, = lim R, = 1
S—00 S—00 S5—00 X

0 dn

This shows that ¢; are the eigenvalues of A and A. It is necessary to show that ¢; are in
decreasing order. Suppose ¢;/q;_1 > 1 for one i, then also holds for all s, ¢} / g, > 1
This contradicts that

e =eiqi /qi | and €] — 0.
On the other hand, ¢; = ¢;_1 is not possible, since a tridiagonal matrix with nonzero

subdiagonal only possesses simple eigenvalues. [ ]

Remark 5.6.1 [t is remarkable that the qd-algorithm has the advanced applications in
the numerical mathematics for the computation of roots of polynomials.
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Chapter 6

The Symmetric Eigenvalue problem

6.1 Properties, Decomposition, Perturbation Theory

A Hermitian <= A = A" <= A = (ai), @i = agi, 0,k =1,--+ n.
A symmetric <= A = A, A = AT <= a;, = aw;, @i, = Gip, i,k =1,--- ,n.

Theorem 6.1.1 (Schur Decomposition for Hermitian matrices) If A € C"*" is
Hermitian (real symmetric), then there exists a unitary (orthogonal) Q) such that

Q*AQ =N= dzag()\la 7)\71),
Aql:)\lQZJ ZZl?ana Q:[thqn]

(1.1)

Proof: Let Q*AQ = T be the Schur Decomposition of A. It follows that 7" must be a
direct sum of 1 x 1 and 2 x 2 matrices, since T is Hermitian. But a 2 x 2 Hermitian
matrix can not have complex eigenvalues. Consequently, 7" has no 2 x 2 block along its
diagonal. [ ]

Classical techniques:

There are extremely effetive techniques based on the minimax principle, for investi-
gating the eigenvalues of the sum of two symmetric matrices.

Let X be a symmetric matrix defined by

X = {:szag(ai)] (f=1-m).

We wish to relate the eigenvalues of X with the «.
Suppose that only s of the components of a are non-zero. If a; is zero, then «; is an
eigenvalue of X. There exists a permutation P such that

o b 0
Y =P'XP=| b|diag(53) 0 ,
0 0 |diag(v)

where no component of b is zero, diag(5;) is of order s, and diag(~;) is of order n — 1 — s.
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The eigenvalues of X are therefore +; together with those of the matrix Z defined by

7= ( ; dmbgTw > |

If s =0, Z is the single element v and hence the eigenvalues of X are diag(c;) and «.
Otherwise examine the characteristic polynominal of Z:

S

(=N ] Zb2H Bi—\) =0. (1.1.1)

i=1 J=1 i#£j
Suppose that there are only ¢ distinct values among the 8;. W.l.0.g. we may take them to
be By, , B¢ with multiplicities 1,79, - - - , 1y respectively, so that ry +ry + -+ + 1, = s.

Clearly the left-hand side of (1.1.1) has the factor

H . )\ rl—l

=1

~

so that f3; is an eigenvalue of Z of multiplicity (r; — 1).
Dividing (1.1.1) by II!_;(8; — A\)" we see that the remaining eigenvalues of Z are the

roots of
t

0= (a=N) =) GB-N"=a-f), (1.1.2)

i=1
where ¢? is the sum of the r; values bjz- associated with (; and is therefore strictly positive.
A graph of f(\) against A is given as follows, where it is assumed that distinct §; are in
decreasing order.

It is immediately evident that the t+1 roots of « = f(A) which we denote by d1, 9o, - -+, d¢41
satisfy

00 > 01 > By Bic1 >0 > B (Z =23, ,t); By > 5t+1 > —00 (113)
The n eigenvalues of X therefore fall into three sets:

(1) The eigenvalues v1,- - ,7n-1-s corresponding to the zero a;. These are equal to
n — 1 — s of the «.

(2) s —t eigenvalues consisting of r; — 1 values equal to 8; (i = 1,2,--- ,t). These are
equal to a further s — t of the ;.

(3) t+ 1 eigenvalues equal to ¢; satisfying (1.1.3). If ¢ = 0 then 6, = a.

Let the eigenvalues of X be denoted by Ay > Ay > --- > A,. Then it is an immedi-
ate consequence of our enumeration of the )\; above that if the «; are also arranged in
nonincreasing order then

Mo 22X >ay > 2> Qpq > Ay (1.1.4)

In other words the «; separate the \; at least in the weak sense.



6.1 Properties, Decomposition, Perturbation Theory 215

Consider now the eigenvalues of X’ derived from X by replacing o and «’. The
eigenvalues of X’ will equal to those of X as far as sets (1) and (2) are concerned.

Let us denote those in (3) by 67, &5, -+, ;. Now for A > 0, we have
df ! c?
— =1 —>1 1.1.5
PSP Y i (115)

and hence §;' — §; lies between 0 and o — o. We may write
(51‘/—62‘:77%(0/—01), (116)

where 0 < m; < 1 and Zf:i m; =1. Ift =0then ;' = ¢’ and §; = e and §,'—6; = o/ —a.
Hence we may write in all cases

(51'/ — 61 = mi(o/ — CY),

where 0 < m,; <1 and Z’;} m; = 1. Since the other eigenvalues of X and X’ are equal,
we have established a correspondence between n eigenvalues Ai,--- , A\, and A/, -+, A,/
of X and X' respectively.

)\il—)\i :mi(o/—a), (117)

where m; = 0 for the eigenvalues from sets (1) and (2).

Now let C' = A + B, where A and B are symmetric and B is of rank 1. There exists
an orthogonal matrix R such that R" BR = [%%} , p# 0. Let

RTAR = {O‘ a’ }

An—l
Then there is an orthogonal matrix S of order n-1 such that

ST A, 1S = diag(as),

110
o-afifs]
then @ is orthogonal and
a b p| 0
@A+ 5)Q= { b diag(om} i {0 O]’

where b = ST a, the eigenvalues of A and of (A + B) are therefore those of

al T ud |etel b
b | diag(c;) A b | diag(cw) |’

and if we define () by
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and if we denote these eigenvalues by \; and )\; in decreasing order, then they satisfy

Hence when B is added to A, all eigenvalues of the latter are shifted by an amount which
lies between zero and the eigenvalue p of B. We summary the above discussion as the
following theorem.

Theorem 6.1.2 Supose B = A+ 7ccl, where A € R™" is symmetric, ¢ € R has unit
2-norm and T € R. If 1 > 0 then

X(B) € [Ni(A), M1 (A)], i=2,3,....n,

while if T < 0 then

In either case

where my +mg+ -+ +my, =1 and m; > 0. [ |
Let A;(A) denote the ith largest eigenvalue of A. Then

A(A) € A1 (A) < - < A (A). (1.2)
Definition 6.1.1 If A = A*,x # 0, then

T
Rla] = ' Az

Tz
is called the Rayleigh-Quotient of x, sometimes denoted by R[z, A].
Theorem 6.1.3 If A = A*, then it holds
M(A) < Rlz] < \(A). (1.3)
Proof: From (1.1) we have

w*Av UAU*z  y*Ay Y0 Nlyil?
Rlz| = = = = == = U*z). 14
2] T*T o UU*x y*y 2:;1 |vi|? -y z) (4

Thus R[z] is a convex combination of \;, it follows (1.3). u
Corollary 6.1.4

AM(A) = max Rlz] and X, (A) = rﬁg}?[m]
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Theorem 6.1.5 (Weyl) If A is Hermitian with eigenvalues \y > Xy > -+ > X\, and
eigenvectors uy, - - - , Uy, then it holds

ANi=max{R[z] 2 #0,x Lug,k=1,---,i—1}, (1.5)
fori=1,--- n.

Proof: It is clear for ¢ = 1. Let ¢ > 1. If x L wy,---,u;—1 then ujz = 0, for k =
1,--+,i—1. Soy = U*x satisfies y, = 0,k = 1,--- ;i — 1 (Here U = [ug, - ,uy,)). It
follows from (1.4) that

ST
Rla] = Z];Z ]||y]|2| <\
Zj:i [l
For x = u;, we have R[z] = );, so (1.5) holds. [

Theorem 6.1.6 (Courant-Fischer) Under above assumptions we have

Ai = {pl’{r'l’i)rrll}l.i.{ma:p{R[m] cx#0,x Lpg,k=1,---,i—1}} (1.6)
Ai = dimérﬁr:linr}rlii{max{R[x] cx e S\ {0}}}. (1.7)
Ai = d%%é{mm{R[x] cx e S\ {0}}}. (1.8)

Proof:
(1.6)<= (1.7) trivial.
(1.7) = (1.8): Applying (1.7) to —A, we then have

Ai(—A) = min  {max{—R[zx]:z € S\ {0}}}.

dimS=n+1—1
That is
“Anpi-i(A) = = max {min{—Rlz]:x € S\ {0}}}.
(Use max(—a;) = —min(a;), min(—a;) = —max(a;)). By substituting i — n+ 1 —1

follows (1.8).
Claim (1.6): Since \; = max,«o(R[z]), for i =1 it is true.

Consider ¢ > 1 : Let py,--- ,p;—1 # 0 be given. The linear system

pefr=0, k=1,---,1—1,
upfr =0, k=i14+1,---,n

has a solution = # 0, because of n — 1 homogenous equations with n variables. Let
U=[uy,- - ,u,]. Then

Rla] = x *UAU; T ZJ? il $2|g >,
v UU*x Zj:l |U*I|j

But pjz =0,k=1,---,i—1s0

max{R[z]: = Lpg, k=1,--- i =1} > \.
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This implies
Ai < min {max{R[z]: v Lp,k=1---,1—1}}.
{pr}izh

Now set p = ug, k= 1,--+ ,i — 1. By (1.5) we have the equality (1.6). [ |

Theorem 6.1.7 (Separation theorem) A is Hermitian with eigenvalues A, < A\,—1 <
<o < Aq. Let

11 Tt a1,n—1
An—l =

ap-1,1 *°° (Gp-1n—1

be the n — 1 principal submatriz of A with eigenvalues X, | < --- < \{. Then it holds
Aot SN <A, fors=1,-- n—1.

Proof: Let z = [ g 1 € C", where x € C"!. Then

T*A,_1x 2FAz

T*r 2z

Applying (1.5) to A,—; we have

/ *An_ /
Ay = max{m*—lx:O#xEC”’l,xJ_ui,izl,~~,5—1}
e
*A '
= max{ Z:O#ZEC",ZJ_[UZ},egz:O,izl,...’s—l}
z*¥z 0
> {?Slinl.max{R[z]:zJ_pi,z'zl,---,s}:)\5+1 (By(1.6)).
Diti—q L.

therefore Ayy1 < \,. Here u; is the eigenvector of A,_;. Now set A — —A then

Asp1(—A) < N (— A1)

Thus
_)‘n—S(A) < _A;l—S(An_l)'
It follows
/\n—S(A) > )‘;z—s(An—l)~
Hence we have A\,,_; > ans. By setting s — n — s, we have \; > /\;. |

Theorem 6.1.8 (Separation theorem) Let \; > --- > X, be the eigenvalues of A and
AN > > X | be the eigenvalues of B', where B’ is obtained by scratching a row and
the same column of A, then A1 < N,/ < A\,. Further consequence are: If B consists of
by scratching two rows and the coresponding columns of B', i.e., A — B’ — B, then we
have

Aip2 < )‘;+1 < )\;l < >\; < A and Mg < )\;/ <\

In general: Let B be the principal submatriz of A of order n — r, then
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Theorem 6.1.9 (Perturbation theorem) Let A, E be Hermitian. Then it holds

A(A) + M(E) < MA+E) < MA) + M(E), i=1,-- .n (1.9)
Proof: For z # 0, Rz, A+ E] = Rlz, A| + R[z, E]. Thus
Rz, Al + A(E) < Rlz, A+ E] < Rlz, A + i (E).
Applying (1.6) we get
A(A) + M(B) < M(A+ E) < M(A) + M(E).
|

Corollary 6.1.10 (Monotonic theorem) If E is positive semidefinite, then it holds
Ai(A+ E) = Xi(A).
Corollary 6.1.11 (Weyl’s theorem) It holds

INi(A+ E) — N(A)] <max{\(F),—\.(E)}
= max{|)\,(E)|,@ =1, ’n} - p(E) = HEHQ

= spectral radius of E.

Theorem 6.1.12 (Hoffmann-Wielandt) If A, E are Hermitian matrices, then

DA+ E) = M(A) < Bl = Q_M(E))*.

Proof: Later!

Definition 6.1.2 A matriz B = (b;;) is called double stochastic(d.s.), if (1) b;; > 0. (2)
Z;‘lzl sz = 2?:1 bjl = 1, fO'I” Z,] = 1’ Seen.

Remark: The d.s. matrices form a convex set D.

Example: Let I be orthogonal and W = (wy;). Then (|w|?) = W is double stochastic.

Example: Let P be a permutation matrix. Then P is double stochastic (Extreme point
of D).

Theorem 6.1.13 (Birkhoff) D is the convex closure of the permutation matrices, that
18, for B € D, there exists aq, -+, and Py, --- , P, permutations such that

BZXT:OZZ'])Z‘, aiZO, Zr:&zzl
i=1

i=1
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(Without Proof!)

Remark: Let [ be a linear functional from D into R. Then it holds

PePerm. PePerm.

min [(P) <I(B) = l(i a;p;) < max [(P).

Proof of Hoffmann-Wielandt theorem 6.1.12: Let
A=UAU*, A =diag((A),---, M(A)),

A+ E=VAV* A =diag\(A+E), -, \(A+ E)) = diag(\:).
Then

—E = A—(A+E)=UAU*-VAV*
= V(V*UA - AV*U)U*
= V(WA —AW)U*

and since W = V*U is unitary, we have

IEN: = IWA=AW|G =Y wa(h = M)

ik=1

= Y |wil|\ = Mef* = I(W) > I(P) (for some P)
i,k=1

(Hereby W = (|wi|) is in D).

= Z Ak — Aegry|? (for some permutation )
k=1

— IHT}HZ |)\k — S\ﬁ(k)’2
k=1

= ) (M(A) = Me(A+ E))>. (Exercise!)

k=1
u
Perturbation theorem of invariant subspaces ( eigenvectors )
Theorem 6.1.14 A € R™" symmetric, S € R™ ™ symmetric and
AQi — Q1S = B, with Q, € R™™, QTQ, = I,,.. (1.10)
Then there exist eigenvalues Ny, -+, X, of A such that
A= Xi(S)] < (1Bl (1.11)
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Proof: Extend @); to an orthogonal matrix @ = (Q1, Q2), then

TA TA T T
e = (G5 88 )- (ol ) oo

(S 0 OTE, ETQ, \ _
= (0 opag—x )+ (Ghe ") =mer

Here QTE, = QT AQ, — S is symmetric. Corollary 6.1.10 results

A

= Xi(S)| < [ E]l2.

Show that: ||E||s = ||E1|2 for suitable X.

It holds || E4 |2 < ||E]l2- The equality holds immediately from the Extension Theorem
of Kahan(1967):
H

FEzxtension Lemma: Let R = [ B

}, H = H*. There exists a W such that the ” extend’

H B

matrix A = [ oW

} satisfies ||All2 = || Rz
Proof of Extension Lemma: Let p = ||R||o. For any choice of W we have p* < || A?||,
(by separation theorem). The theorem requires that for some W the matrix p? — A? is
positive semidefinite.

Take any o > p, show that 62 — A% > 0 for some W depending on . Then a limiting
argument show that, as ¢ — p*, im W (o) exists.

For any W: Define R = [ B } Write A = (R, R). Then

*

w
e [ 18 ]
and i
L P R | |
where
U(o) = 0®> — R*[I + R(c> — R*"R)"'R*|R,
V(o) = 0?[I — B(c* — H*)"'B*].

Since 0% > p* = ||R||3 = |R*R||2 = ||RR*||2, 0* — R*R, 0® — RR* and 0 — H? are all
positive definite. By Sylvester’s Inertia theorem we have V(o) positive definite. U(o)
depends on W.

The trick of the proof: To find a W such that U(c) = V(0), and then from Sylvester’s
follows 02 — A% > 0.
First we prove that

W(o) = —BH(c®> — H)'B* = —B(c* — H*)"'HB".
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From above

U(o) =0”— BB*—~W? — (BH + WB)(¢” — H> — B*B)"'(HB* + B*'W).

Consider
(0_2 - H2 _ B*B)—l
— ((72 _ H2)71 4 (0_2 _ H2)7lB*[I _ B(U2 _ H2)7lB*]le(02 _ H2>71
(Scherrman-Morrison formula)

= S+ SB*XBS,

where
S = (02 - H2)—1

and

X=(-B(e>-H)»'B)'=(I—-BSB*)™".
Set Y = BSHB*. Then by SH = HS we get
U(c) = o>~ BB*—W?*—(BH + HB)(S + SB*XBS)(HB* + B*W)
= 0> —BB*—W?—-BSH’B*+ WY +YXY + WBSB*XY + YW

+ WBSB*W +YXBSB*W + WBSB*W + WBSB*XBSB*W
= V(o) + Q (remainder term).

Then
Q = W2H+WYH+YXY+WI - X HXY +YW+W({I - X HW
+YX(I - XYW+ W - X HXT-XHW
= YXY +WXY +YXW+WXW
= Y +W)X({Y +W)=0.
Thus

W(o)=-Y = —BSHB* = —B(o> — H*) 'HB".

The matrix W (o) is a rational, and therefore meromorphic function of complex variable o.
Its only singularities are poles in any neighborhood of which ||[W |2 must be unbounded.
However |[W||2 < ||Alls < o for all ¢ > p and thus W (o) must be regular at ¢ = p and
so W(p) = lim,_,,+ W(o). By continuity of norm we have

[A(P)]l2 = lim_[[A(o)]l2 = p.
o—p

Generalized Extension Theorem (C. Davis-Kahan- Weinberger)
Given H, B, E arbitary, then there exists W with

115w )], =me [ 5 )] v 2

2

= max{
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So for suitable X we have

QlEl T
FEly = = (;2 FE = | EY]lo.
|| ||2 || |: Q%‘El ”2 || 1”2 || 1”2

Theorem 6.1.15 A € R™™ and S € R™* "™ are symmetric and AX; — XS = Fy, where
X, € R™™ satisfies 0,,(X1) > 0, then there exists eigenvalues N}, --- , A, of A such that
[Ai = (9] < 1B ll2/ o (X0).

Proof: Let X; = Q1 R; be the (Q R-decomposition of X;. By substituting into AX; —
XS = E; we get

AQI - QIS - F17
where S; = Ri{SR, ! and Fy = E; R, *. The theorem follows by applying theorem 6.1.14
and noting that A(S) = A(S1) and || Fi||2 < ||E1|l2/om(X1). u

The eigenvalue bounds in theorem 6.1.14 depend on the size of the residual of the
approximate invariant subspace, i.e., upon the size of || AQ; —Q1.5||. The following theorem
tells how to choose S so that this quantity is minimized when || - || = || - || -

Theorem 6.1.16 If A € R™™ is symmetric and Q; € R™™ satisfies QT Q, = I,,, then

min [|AQy — Q15||r = [|[AQ: — QI(Q{AQI)HF = - Ql@r{)AQluF-

SeRme

Proof: Let Q; € R™ (™™™ be such that Q = [Q1, Q2] is orthogonal. For any S € R™*™
we have

”AQ1 - Q1SH% - HQTAQl - QTQ1SH?J - ||Q{AQ1 - S”%“ + ||Q5AQ1||%-

Clearly, the minimizing S is given by S = Q7 AQ;. [ |

Theorem 6.1.17 Suppose A € R™" is symmetric and Q; € R™* satisfies QT Q, = I.

If
ZN(Q1AQ\)Z = diag (61,--- 6,) = D

is the Schur decomposition of QT AQ, and Q1Z = [y1, -+ ,yx|, then

[Ay; — Oyl = |(I — Q1QT)AQ1 Zesll» < I(1 — Q1QT)AQu |

forv=1,--- k. The 0; are called Ritz values, the y; are called Ritz vectors, and the
(0;,y;) are called Ritz pairs.

Proof: Ay; — 0y,=AQ1Ze; — Q1ZDe;=(AQ, — Q1(QT AQ,))Ze;. The theorem follows
by taking norms. [ ]

Definition 6.1.3 The inertia of a symmetric matriz A is a triplet of integers (m, z,p),
where m, z and p are the number of negative, zero and positive elements of o(A).
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Theorem 6.1.18 (Sylvester Law of Interia) If A € R"*" is symmetric and X € R"*"
in nonsingular, then A and XTAX have the same inertia.

Proof: Suppose \.(A) > 0 and define the subspace Sy C R" by
SO = Span{X_chla e 7X_1q7”}7 q; 7é Oa

where Ag; = \;(A)g; and i = 1,--- ,r. From the Minimax characterization of \,(X7AX)
we have T Ax (T Ax
M(XTAX) = max miny(T—)y > min y(T—)y
dim(S)=r yeS Y-y YyESo yy

Now for any y € R" we have

T(yT
VXX 5 5 (X)2, while for y € 5.
y'y

It is clear that
ANy )
yI(XTX)y — 7707

Thus,
y"(XTAX )y y" (X" X)y

A(XTAX) > irelg;{ yT(XTX)y yTy } 2> A(A)on(X)%

An analogous argument with the roles of A and X7 AX reversed shows that
M(A) > N (XTAX) o, (X1 = M (XTAX) Joy (X)2.

It follows that A and X7 AX have the same number of positive eigenvalues. If we apply
this result to —A, we conclude that A and X7 AX have the same number of negative
eigenvalues. Obviously, the number of zero eigenvalues possessed by each matrix is also
the same. [ |
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6.2 Tridiagonalization and the Symmetric QR-algorithm

We now investigate how the practical Q)R algorithm develop in Chapter 1 can be special-
ized when A € R™" is symmetric. There are three obvious observations:

(a) If Qu" AQy = H is upper Hessenberg, then H = H” must be tridiagonal.

(b) Symmetry and tridiagonal band structure are preserved when a single shift QR step
is performed.

(c) There is no need to consider complex shift, since o(A) C R.

Algorithm 2.1 (Householder Tridiagonalization) Given symmetric A € R™™ "™ the fol-
lowing algorithm overwrites A with Qo7 AQy = T, where T is tridiagonal and Qy =
Py --- P,_5 is the product of Householder transformations.

Fork=1,2,--- . n—2,
determine a Householder P, € R"* such that

*
Ap+1,k 0
Py : =

This algorithm requires %n?’ flops. If Q) is required, it can be formed with an additional
(2/3)n3 flops.

We now consider the single shift QR iteration for symmetric matrices.

T =QFAQ,, (tridiagonal)
For k=0,1,---

T—ul =QR, (QR decomposition) (6.2.1)
T := RQ+ pl.
Single Shift: Denote T' by
aq bz
T — by ap
by,
b, ay

We can set (a) u = a, or (b) a more effective choice to shift by the eigenvalues of

|: Ap—1 bn

b a } that is closer to a,. This is known as the Wilkinson shift and is given by

w=a,+d— sign(d)\/d*>+ b2, where (6.2.2)
d=(an_1—ay)/2. o

Wilkinson (1968) has shown that (6.2.2) is cubically convergent with either shift strategy,
but gives heuristic reasons why (6.2.2) is prefered.
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Implicit Shift:

As in the unsymmetric QR iteration, it is possible to shift implicitly in (6.2.1). Let
¢ = cos(f) and s = sin(f) by computed such that

R R

then Jie; = Qey, where QTTQ = RQ + pl =T (as in (6.2.1)) and J; = J(1,2,6).

LT, =

o o+ X X
S O X X X
o X X X 4+
X X X © O
X X oo o

We are thus in a position to apply implicit ) theorem provided we can compute rotations
Jo, -+, J,_1 with the property that if Z = J; --- J,_; then Ze; = Jie; = Qe; and Z7TZ
is tridiagonal.

[ x x 0 0 0] x x 0 0 0
X X X 4+ 0 x x x 0 0
T=JITlh=|0 x x x 0|, T:=J'TJl3=|0 x x X +
0 + X X X 0 0 x x X
| 0 0 0 x x| 0 0 4+ x x
[ x x 0 0 0]
X X x 0 0
T=JTJ,=|0 x x x 0
0 0 x x x
| 0 0 0 x x|

Algorithm 2.2 (Implicit Symmetric QR step with Wilkinson Shift) Given an unre-
duced symmetric tridiagonal matrix 7" € R™", the following algorithm overwrites T'
with ZTTZ, where Z = Jy - -+ J,_1 is the product of Givens rotation with ZT(T — ul) is
upper triangular and p is Wilkinson shift.

d = (tn—l,n—l — tnn)/Z,

R t?z,n—l/[d + Sign(d)\/ d? + t%,n—l]a
x =1t — W,

Z = tgl,

For k=1,--- ,n—1,

determine ¢ = cos(#), s = sin(f)

o [ 5]

T:= J]ZTJ]“ J}c = J(k?,k? + 1,«9).
If k <n—1, then  :=tp114, 2= thtok
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Algorithm 2.3 (Symmetric QR algorithm) Given symmetric matrix A € R™™™ and a
tolerance ¢, the following algorithm overwrites A with Q7AQ = D + E, where Q is
orthogonal, D is diagonal and E satifies ||F||s ~ eps||A||2.

Using Algorithm 2.1 compute
A= (Pl"'Pn_l)TA(Pl"’Pn_Q) =1T.
Repeat set a;11,; and a; ;41 to zero if
aiv1i] = |aiiv1| < €(las| + |aivrit1])
forany i =1,--- ,n—1.
Find the largest ¢ and the smallest p such that if
AH 0 0 }p
A= 0 Ay 0 n—p—q
0 0 A33 }q
then Ass is diagonal and Ay has no zero subdiagonal elements.
If ¢ = n then stop.
Apply algorithm 2.2 to Ag, A = diag(1,,Z,1,)" A diag(1,,Z,1,) ,
Go to Repeat.

This algorithm requires about (2/3)n? flops and about 5n? flops if Q is accumulated.
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6.3 nce Again: € dSingular value ecomp081t10n

Let A € R, If UTAV = diag(oy,- - ,0,) is the SV D of A (m > n) then

VI(ATA)V = diag(o},--- ,02) € R™" and (3.1)
UT(AATU = diag(c?,--- ,02,0,---,0) € R™". (3.2)
Moreover if U = [ Uy, U, ] and we define the orthogonal ) by
Q- i { vV Vv 0
V20U U V22U, |
then
| 0 AT 4
Q A 0 Q = diag(oy,-++ 04, =01, ,—0p,0,-+,0). (3.3)

These connections to the symmetric eigenvalue problem allow us to develop an algorithm
for SV D as previous section.

Theorem 6.3.1 If A € R™*", then for k=1,--- min{m,n},

TA A
or(A) = max  { min u} = max {min | Az}l
dimS=k,dimT=k z€SyeT ||z||2]|y]|2 dimS=k - z€5 ||z||2

Proof: Exercise! Prove theorem 6.1.5 (Weyl) and theorem 6.1.6 (Courant-Fisher)! ®

OAT} d{( 0 (A+E)

A 0 A+ E) 0 and theorem6.1.8

By applying theorem 6.1.9 to [
to AT A we obtain

Corollary 6.3.2 If A and A+ E are in R™*"(m > n), then fork=1,2,--- .n
lok(A+ E) — ox(A)] < 01(E) = || Elo-

Corollary 6.3.3 Let A= [ay,--- ,a,] be a column partitioning of A € R"™*"(m > n). If
A, =lay, - ,a,], then forr=1,--- n—1,

Ul(Ar-‘rl) Z Ul(Ar) Z UQ(AT+1) > Z UT(AT+1) Z UT(AT) Z 0T+1(AT+1)‘

Theorem 6.3.4 If A and A+ E are in R™*"(m > n), then

n

Y lon(A+ E) — on(A)]* < ||Ef3.

0 AT 0 (A+ E)T
Proof: Apply Theorem 6.1.12 to {A 0 } and [ (A+ E) 0 . [ |

We now show a variant of the QR algorithm can be used to comput SV D of a matrix.
Equation (3.1) suggests:
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(a) Form C' = AT A;

(b) Use the symmetric QR algorithm to compute V' C'V; = diag(c?);
(c) Use QR with column pivoting to upper triangularize B = AV;:

UT(AV)IL = R.

Since R has orthogonal columns, it follows that U7 A(V411I) is diagonal.

A preferable method for computing the SV D is described in Golub and Kahan(1965).
The first step is to reduce A to upper bidiagonal form using algorithm 7.5 or 7.6 in part
I:

[ di fo O]
B b
ULAVg = | -+ | = R
0 O dn
i O i

The remaining problem is thus to compute the SV D of B. Consider applying an implicit
QR step (algorithm 8.2) to the tridiagonal matrix 7' = BT B:

2+ [ dnfa

dmfn — d%+ f2 ] (m = n — 1) that is closer to

(a) Compute the eigenvalue A\ of [
d2 + f2.

(b) Compute ¢; = cost and s; = sinf; such that
E Y
s1 di fo 0|’

(c) Compute Givens rotations Jy,- -, J,_1 such that if Q = J;---J,_; then QTTQ is
tridiagonal and Qe; = Jiey.

and set J; = J(1,2,6,).

Note that these calculations require the explicit formation of BT B, which is unwise
in the numerical standpoint. Suppose instead that we apply Givens rotation J; above to
B directly. This gives
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Determine Givens rotations Uy, Vo, Us,--- ,V,,_1 and U,_; to chase the nonzero ele-
ment down the diagonal:

[ x x 4+ i [ x x i
X X X X
B:=UlIB= X X ., B:=BV,= + X X ,
X X X X
L X_ L X_
[ x  x i [ x x ]
X X + X X
B:=U{B= X X , B:=BV;= X X
X X + x X
L ><_ L ><_

The process terminates with a new bidiagonal B as follows

B = (UnT—1 ) "UlT)B(J1V2 Vi) = U'Bv.

Since each V; has the form V; = J(i,i+1,6;), i = 2,--- ,n—1, it follows that Ver = Qe;.
By implicit @ theorem we can assert that V' and () are essentially the same. Thus we can
implicitly effect the transition from T to T' = BBT by working directly on the bidiagonal
matrix.

It is necessary for these claims to hold that the underlying tridiagonal matrices be
unreduced. This is the condition for the performance of implicit ()R method.

di f O
Let B = d2 I (BTB)Z'J'_;,_1 = fi-i—ldi == O, then:
O dn

Either f;,; = 0: B is reduced to B = (%‘%) two small problems.

Or d;=0: What happens?
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For Example

Sy

Il
oo oo X
oo oo X
oo X X o
O X X oo
X X © oo

=

[\

Il

=)

S

Il

=

—  B:=J1(2,3,0)B =
Rotation
in (2,3)

—  B:=Jy(2,4,0)B =
Rotation
in (2,4)

—  B:=J5(2,5,0)B =
Rotation
in(2,5)

Criteria: For smallness within B’s band are usually of the the form
fil < e(ldia] +|di]) and |di| < €[| B,

where € is a small multiple of the unit roundoft.

O O OO X OO O X oo ooX
O OO X OO OO X oo ooX
O XD O OO X OO OO X oo
X X|©O O OX X oo © X X X o

X X O oo X X OoX © X X oo o

)
e
)

Algorithm 3.1 (Golub-Kahan SV D Step) B € R"™*" is bidiagonal having nonzero sub-
diagonal and diagonal, the following algorithm overwrites B with the bidiagonal matrix
B = UTBV, where U and V are orthogonal and V is essentially the orthogonal matrix
that would be obtained by applying algorithm 8.2 to T = BT B. Let p be the eigenvalue
of the trailing 2 x 2 sumatrix of 7' = BT B that is closer to t,,.

Yy = tin—p

z = tlg

For k=1,--- ., n—1,

Determine ¢ = cos# and s = sin # such that

c s
vod| 5 0=k
B = BJ(kk+1,0)

Yy = bk
2 = bytik

Determine ¢ = cosf and s = sin 6 such that

c —s y| | x
N
B:=Jk,k+1)'B
If k <n—1,then y := by pt1, 2 := by pso.
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This algorithm requires 20n flops and 2n square roots. Accumulating U requires 4mn
flops and V requires 4n? flops.

Algorithm 3.2 (The SV D Algorithm) Given A € R™" (m > n) and € a tolerance,
the following algorithm overwrites A with UTAV = D + E, where U € R™" is or-
thogonal, V' € R™™ is orthogonal, D € R™*™ is diagonal, and E satisfies ||E|s =~
eps||Alle. Using algorithm 7.5 or 7.6 in Part I to compute the bidiagonalization A :=
Uy - U)TAVL - Vo).

Repeat
Set a; ;41 to zero if |a; ;11| < €(ai| + |@iv1i41]) foranyi=1,--- ,n—1
Find the largest ¢ and the smallest p such that
Ay O 0 p
0 Ayp 0 n—p—4q
0 0 Ass q
0 0 0 m—n
Then Ass is diagonal and Ass has a nonzero subdiagonal.
If ¢ = n then stop.
If any diagonal entry in Ass is zero then zero the subdiagonal entry in the
same row and go to Repeat.
Apply algorithm 3.1 to Ass,
A= diag(1,,U, Ism-n)T Adiag(1,,V,1,).
Go to Repeat

A:



6.4 Jacobi Methods 233
6.4 Jacobi Methods

Jacobi(1846) proposed a method for reducing a Hermitian matrix A = A* € C™" to
diagonal form using Givens rotations. Let A € C™*™ be a Hermitian matrix, there exists
a unitary U such that

U AU = diag(A, - -+, An)- (4.1)

The Jacobi method constructs U as the product of infinite many two dimensional Givens
rotations. Fix indices i, k, ¢ # k, Given a Givens Rotation

1 0 :
O 5 O
0 1 : : .
.. P eiacosw - - - Szngo . . . 1
1 0
: 0 1 :
_Sznw eiacosgo k
: 1 0
O E O
: ; 0 1
i k

Hereby «, ¢ are free parameters, if A is real symmetric then o = 0. Set V = Uy,
B =V*AV. Then

Asj, S 7é i, k
bsj = eiacosgpaij — simpakj, S = ) ] 7é 7:7 k (43)
sinpa;j + e“*cospayg;, s==k

by = €'“cospag; — singag, 5 F# 1,k (4.4)
bsk‘ — SinSDCLsz‘ + @iO‘CoS@CLSk’ S ;é i’ k |

bir = singcospe™(a; — ap) + e**(cos®p — sin*p)ay;
bri = bik

bii = cos*pay; + sin*pag, — singcosple” “ag; + ¢ “a]
bk = sin’pay; + cos*pag, — sinpcosple “ag; + e a

(4.5)

We denote here the Frobenius norm (Hilbert-Schmidt norm) by e(A) = />, ¢ |aix[* and

define the ”outer norm” by
g(A) = > laul?,
itk

which is only a seminorm (that is g(4) = 0 = A = 0 does not hold). We also have
e(UA) = €(A) = ¢(AV) for unitary U, V. Therefore

e(A) =€e(V*AV) = ¢(B),
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that is
> agsl> =Y bl (4.6)
j78 j?s

On the other hand one computes
|CL“’|2 + ‘akk‘2 + 2|a,-k|2 = ‘bm|2 + |bkk|2 + 2|b2k|2 (47)

Together with b;; = a;; j # i, k follows from (4.6) and (4.7)
D lal® =D byl + 2aif? — 2bif?
i#s s

or

g*(A) = 2lawl* + 2/bu|* = g*(B). (4.8)

To make g(B) as small as possible we choose the free parameters a, ¢ such that by = 0.
Multiplying the first equation in (4.5) by 2~ and set by to zero:

sin2p(ag, — ai) = 2 cos*ay, — 2" sin*Qa;y,. (4.9)
We exclude the trivial case a;; = 0 (then set V' = I). Suppose that a;; # 0. Compare
the imaginary part in (4.9) which results 0 = I'm(a;ze™). This equation holds for a =

—arga;,. From age® = |az|. (4.9) leads to

2|aix|(cos* — sin*¢) = sin2¢(arr — ai),

where
Ak — Qij
cot2p = ————. 4.10
(4.10) has exactly one solution in (-7, §]. The choice o = —arga;; 4+ 7 leads to the
same matrix B. For symmetric A, we choose o = 0, then ¢ is obtained by
cot2¢p = Gk — Gai
Zaikz
So the Jacobi method proceeds: Ay := A, an iteration sequence Ag, Ay, -+ is con-

structed by A1 = VALV, A, = (a}). Hereby V,, has the form of (4.2). The
underlying pivot pairs ¢, k of V,, is formed according to a rule of choice so that the un-

derlying a, ¢ are chosen satisfying aj;t! = 0.

Choice rules:

(1) choose (i, k) such that
a| = max |a™|.
’ zkl jts | js

This is the classical Jacobi method.
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Theorem 6.4.1 Let A be Hermitian. V = Uy is as in (4.2) where (i,k) are chosen so
that |a| is mazimal with o, ¢ according to (4.10). Let B = V*AV. Then it holds

2 _n—2
¢*(B) < p*¢*(A)  with p= % <1 (4.11)
n?—n
Proof: There are n? — n off-diagonal elements, so g%(A) < (n? — n)|ag|”. Thus |ax|? >
——g*(A), hence

n®—n—2

n2 —

7*(B) = g*(A) = 2|au|* < g*(A).

Theorem 6.4.2 The classcial Jacobi method converges, that is, there exists a diagonal
matriz A so that lim,,_, A,, = A.

Proof: From (4.11) follows g(A,,) — 0, so a'™ = 0 for all 7 # s. It remains to show

the convergence of diagonal elements. From (4.5) and (4.10) follows that

|bi; — ay| = |sin2 d(agk — azi) — |aix|2 sin ¢ cos @|
= |agm| |2sin® ¢ cot 2¢ — 2sin ¢ cos )|
sin ¢
A < lal.
ol 15221 < o

Analogously, |bxr — agx| < |au|. If now i, k are the pivot indices of A,,, then from above
we have

s — g < laj] < 9(An) < pTg(A).

Thus

m

m m m m m+q— p

This shows that the convergence of diagonal. [ |

Schonage (1964) and Van Kempen (1966) show that for k large enough there is a

constant ¢ such that g(Ar,n) < cg(Ag)?, N = @, i.e., quadratic convergence. An

earlier result established by Henrici (1958) when A has distinct eigenvalue.

(2) choose (1, k) cyclically, e.g., (i,k) = (1,2),(1,3),...,(L,n); (2,3),...,(2,n); ...;(n —
1,n);(1,2),(1,3),.... This is the cyclic Jacobi method.

Algorithm 4.1 (Serial Jacobi cyclic Jacobi) Given a symmetric A € R"*" and § > eps,
the following algorithm overwrites A with UT AU = D + E, where U is orthogonal, D is
diagonal, and E has a zero diagonal and satisfies || £ ||[p< 0| A ||
5= Al
Do until g(A) < 62
Forp=1,2,...,n—1,
Forg=p+1,--- ,n,
Find J = J(p, q,0) such that the (p,q) entry of J* AJ is zero,
A= JAJ
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This algorithm requires 2n3 flop per sweep. An additional 2n® flop are required if U is
accumulated. (Hereby it is customary to refer to each set of @ rotations as a sweep).
A proof of quadratic convergence see Wilkinson (1962) and Van kempen (1966).

Remark 4.1 In classical Jacobi method for each update O(n?) comparsions are required
in order to locate the largest off-diagonal element. Thus much more time is spent by
searching than updating. So the cyclic Jacobi method is considerably faster than classical
Jacobi method.

(3) When implementing serical Jacobi method, it is sensible to skip the annihilation of
a;, if its modulus is less than some small (sweep-dependent) parameter, because the net
reduction of g(A) is not worth to cost. This leads to what is called threshold Jacobi
method.

Given a threshold value d, choose the indices pair (i,k) as in (2). But perform the
rotation only for |a}| > 4. If all |al}| < 6, then we substitute § by 6/2 and so on. Details
concering this variant of Jacobi’s algorithm may be found in Wilkinson (AEP p.277ff).

Remark 4.2 (1) Although the serial Jacobi method (2) and (3) converge quadratically,
it is not competitive with symmetric QR algorithm. One sweep of Jacobi requires as
many flops as a complete computation of symmetric QR algorithm. However, the Jacobi
iteration is attractive, for example, the matrix A might be close to a diagonal form. In
this situation, the QR algorithm loses its advantage.

(2) The Jacobi iteration is adapted to parallel computation. A given computational task,
such as a sweep, can be shared among the various CPUs thereby reducing the overall
computation time.

(3) In practice we usually apply the choice (2) or (3).

(4) It is not necessary to determine ¢ explicitly in (4.10), since only ¢ = cos¢ and s = sing

are needed. From (4.10) follows 15_24(512—?5;4 = (“Z’Fa__lj’g)z, a quadratic equation in s?. The

sign is determined by (4.10).
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6.5 Some Special Methods

6.5.1 Bisection method for tridiagonal symmetric matrices

Let A be tridiagonal, real and symmetric. Write

[ aq bl 0 0
b1 a9 bg :
0 by a
A=| . 27 (5.1)
0 0
e bn—l
L 0 0 bn—l Qp,
Let Ay be the kth principal submatrix
[ aq b1 0 0
bl a9 bQ :
0 by a
A, — . 2 Qs
0 0
b
i 0 ... 0 bk—l ag
and
fk()\) = det()Jk — Ak>, for k = 1, e, N (52)
(fn(A) = Characteristic polynomial of A.)
Write fo(A) =1 and fi(\) = A — a; we have the recursive formula:
frQ) = (N —ap) fie1(N) =07 fea(N), k=2,...,n. (5.3)

It holds:

Theorem 6.5.1 Ifb; # 0 in (5.1) fori = 1,....,n, then fir(\) has k real simple roots,
k=0,...,n. For1 <k <n—1 the roots of fr()\) separate the roots of fri1(\).

Proof: Since Ay is real symmetric, it follows form (5.2) that the roots of fi(\) are real.
The rank of A\I, — Ay is at least k — 1 (scratsch the first row and k-th column, and then
consider b; # 0), therefore the dimension of the zero spaces of AI, — Ay is not bigger than
one, so we have simple roots.

n = 2: fi has the root a; and fa(a;) = —b2 < 0 (from (5.3), k = 2 and A\ = a;), both
roots of f, must lie on the right and left sides of a;, respectively.

Suppose the assertion is true for £ = 2,...,n — 1, we shall prove that it is also true
for k = n. It only needs to show that the roots of f,_ | separate the roots of f,.

Let py > pg > -+ > p,_1 be the roots of f,_ ;. From (5.3) we have

Supti) = =02 fua (i),
Su(pin) = =07y faa(pis1). (5.4)
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The roots of f,,_, separate the roots of f,,_1, there exists exactly one root of f,,_o between
i and g4, that is, sgnf, o(w;) = —sgnf,_2(pir1). Therefore it holds also for f,, (because
of (5.4)), so there is at least one root of f,, in (u;41, p;) from Roll’e theorem, for i =
L...,n—2.Ttis f(1) = =02, fu_2(p1) <0, since f,_o(A) = A"2 + .- and all roots
of f,_o are on the left side of u;.

On the other hand f,, — oo for A — 00, so there exists an other root of f,, in (u1, 00).
Similarly, we can show that there is a root of f,, in (—oo, p,_1). This shows that f,, has
n distinct, simple roots, which are separated by the roots of f,_;. [ |

The sequence of functions fo, f1,- -, f, satisfies in each bounded interval [a,b] the
following conditions:

(S1) fi(x) is continuous, i =0, . .., n.

(S2) fo(x) has constant sign in [a, 0].

(S3) fi(x)=0= fi1(Z)fixi(®) <0,i=1,...,n—1,
fo(Z) =0 = foa(Z) #0.

(S4) if z is a root of f,, and h > 0 small, then

AL JulE + 1)

fna(T =) fna(Z+ )
(S1) and (S2) are trivial, (S3) can be proved by (5.3) and fo = 1: fi11(Z) = —b? f;i_1(Z),
so fi—1(Z)fir1(Z) < 0. If fi_1(Z) = 0, then from (5.3) fi2(Z) = 0= --- = fo(z) = 0.
Contradiction! So f;—1(Z)fi41(Z) < 0. For (S4): It is clear for largest root z, the others
follow from induction.

S = —1 and sgn = +1.

Definition 6.5.1 A sequence of functions with (S1)-(S4) is called a Sturm chain on
la, b].

If z € [a,b], then fo(x), fi(x),- -, fu(x) are well-defined. Let

sgn fi(x) — sgnfiyi(w)]. (5.5)

For fi(x) # 0, i = 0,...,n.V(z) is the number of the sign change of the sequence
fo(x),..., fu(z). If fi(x) =0, 1 <k <n—1, then V(z) is no differnce, whether sgn 0 is
defined by 0,1 or —1. Only sgnf,(z) must be defined for f,(x) = 0, we set

fu(x) =0 = sgufn(z) = sgnfo1(z). (5.6)

Theorem 6.5.2 Let fy,..., f, be a Sturm chain on [a,b] and f,(a)f.(b) # 0. Then
fn(x) has m =V (a) — V(b) roots in [a,b].
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Proof: 2 runs from a to b, what happens with V' (x)? V(z) is constant in an interval, if
all fy(x) #0,k=0,...,n, z €[a,b].

(a) x runs through a root Z of fi(z), 1 < k < n — 1. If follows from (S3) that V(z)
remains constant.

(b) x runs through a root z of f,(z). Then from (S4) a sign changes is lost. So
V(a) — V(b) = the number of roots of fi(z) in (a,b). u

For special case as in (5.2), fx(A) is the characteristic polynomial of A;. Since fi(\) —
oo for A — oo, so V(b) = 0 for large enough b.

Theorem 6.5.3 If fi(z) are defined as in (5.2) and V(z) as in (5.5), then holds
V(a) = the number of eigenvalues of A which are larger than a.

Proof: (1) f.(a) # 0. Apply theorem 6.5.2 for large b.

(2) fu(a) =0, for € > 0 small sgnf;(a+¢€) =sgnfi(a),i=0,--- ,n—1and sgnf,(a+¢€) =
sgnfy,—1(a+ €) from (S4). Thus V(a) = V(a + ¢€) for € > 0. So by theorem 6.5.3 V(a) =
the number of eigenvalues of A, which are large than a + € for arbitrary small ¢ > 0. ®

Calculation of the eigenvalues

Theorem 6.5.3 will be used as the basic tool of the bisection method in locating and
separating the roots of f,(\). Let Ay > Ay > ... > A, be the eigenvalues of A as in
(5.1) and A is irreducible (i.e., b; # 0). Using the Gerschgorin circle theorem 5.2.1 all
eigenvalues lie in [a, b], with

a= @iﬁnﬂ{ai — [bil = [bi-1[}

b= 52%{@@' + [bi| + [bi-a]},

where by = b,, = 0.

We use the bisection method on [a, b] to divide it into smaller subintervals. Theorem
6.5.3 is used to determine how many roots are contained in a subinterval, and we seek
to obtain subintervals that will contain the desired root. If some eigenvalues are nearly
equal, then we continue subdividing until the root is found with sufficient accuracy.

Let al®, b© be found with V(a®) > &k, V(b(®) < k. Then by theorem 6.5.3 we have
M € (a0,0)].

Determine

0) 4 p(0)
a\"”’) 4+ b
V( 5 )=wv

0 0

v>k=al = —a( )+ b0 b .= pO
-_ 2 7 *
0 0

v<k=ab:=a9 p®) .= —a( '+ 50

) * 2 )

we have A € (aM,bM]. So ) is always contained in a smaller interval. The evaluation

of V(M) is simply computed by (5.3).
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Example 11.1 Consider

2 1 0 0
1 2
T=109
: .. .. S |
0 ... 0 1 2]

By Gershgorin theorem all eigenvalues lie in [0,4]. 0 and 4 are not the eigenvalues of T’
(Check!). The roots of T are labeled as

0<)\6§)\5§---§)\1<4-

The roots can be found by continuing the bisection method.

A fe(N) V(A Comment

0.0 7.0 6 Ag >0

4.0 7.0 0 A <4

2.0 -1.0 3 M <2< )\3

1.0 1.0 4 Ay <1< A <2
0.5 | -1.421875 ) 0<X<0b< A<l
3.0 1.0 2 2< A3 <3< N
3.5 | -1.421875 1 3< A <3b< A <4

Remark 5.1 Although all roots of a tridiagonal matrix may be found by this technique,
it is generally faster in that case to use the QR algorithm. With large matrices, we usually
do not want all roots, so the method of this section are preferable. If we only want some
certain specific roots, for example, the five largest or all roots in a given interval, it is
easy to locate them by using theorem 6.5.3.

6.5.2 Rayleigh Quotient Iteration

Suppose A € R™" is symmetric and x # 0 is a given vector. A simple differentiation
reveals that

2T Az

A= Rlz] = (5.7)

xlx
minimizes [|[(A — AI)x||s. The scalar r(x) is called the Rayleigh quotient of z. If x
is an approximate eigenvector, then r(z) is a reasonable choice for the corresponding
eigenvalue. On the other hand, if A is an approximate eigenvalue, then inverse iteration
tells us that the solution to (A — Al)z = b will almost always be a good approximate
eigenvector.
Combining these two ideas lead to the Rayleigh-quotient iteration:

Given xy with ||zl = 1.

For k =0,1,...

pu, = R[] (5.8)

Solve (A — puxl)zpy1 = xy, for zpq

Thi1 = Zk1/ || 242
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Parlett (1974) has shown that (5.8) converges globally and the loccally cubically. (See
also Chapter I).

6.5.3 Orthogonal Iteration with Ritz Acceleration

Given @y € R™? with QI Qo = I,,.
For k=0,1,...

2y, = AQk-1,

Qr Ry = Zy, (QR-~decomposition).

Let QT AQ = diag()\;) be the Schur decomposition of A and Q = [qy,. .., qy], and |\;| >
|Ag| > ... |A,|. If follows from theorem 5.3.4 that if

(5.9)

d = dist[D,(A), R(Qu)] < 1,

then

1 A
dist[D,(A), R(Qr)] < |,
We know that (Stewart 1976) if Ry = [rl(f)] then

Ai .
i =M= 0(52 ), i=1. .

This can be an unacceptably slow rate of convergence if \; and \;y; are of nearly equal
modulus. This difficulty can be surmounted by replacing )5, with its Ritz Vectors at each
step:

Given @y € R™? with QI Qo = I,,.

For k=0,1,...

Z = AQk-1,

QrRr = Zy (QR decomposition), (5.10)

~ T ~

Sk = Q1 AQx,

Ul'SiUyx = Dy (Schur decomposition),

Qr = QrU.
It can be shown that if

Dy = diag(0®,...,0%) and 6] > ... > |9,

p p

then

A .
6 = XA = 155 i=1p

Thus the Ritz values 95’“) converge in a more favorable rate than the rff ) in (5.9). For
details, see Stewart (1969) and Parlett’s book chapters 11 and 14.
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6.6 eneralize efinite Eigenvalue Problem Ax =

ABzx

6.6.1 Generalized definite eigenvalue problem

Az = \Buz, (6.1)

where A, B € R"*" are symmetric and B is positive definite. (In practice A, B are very
large and sparse).

Theorem 6.6.1 The eigenvalue problem (6.1) has n real eigenvalues X; associated with
egienvectors x; satisfying

Here {x;}"_, can be chosen such that I Bx; = d;; (B-orthogonal), i,j =1,...,n.
Proof: Let B = LL" be the Cholesky decomposition of B. Then Azx; = \;Bx; <=
Av; = NLL 2, <= LYAL™T(LT2;) = \(LT2;) <= Cz = Nz, where C = L7YAL™!
symmetric and z; = LTx;. Since ); are the eigenvalues of the symmetric matrix C, they

are real. The vectors z; can be chosen pairwisely orthogonal, i.e., 2] 2; = &;; = 2 LLT2; =
z! Bz;. |

Let X = [z1,---,x,). Then from above we have X"BX = I and (XTAX);; =
! Az; = N\jal Bx; = \;6;; which implies XTAX = A = diag(\y,- -+, \,). That is, A, B
are simultaneously diagonalizable by a congruence transformations.

Numerical methods for (6.1):
(a) Bisection method,

(b) Coordinate relaxation,

(c¢) Method of steepest descent.

(a) Bisection methods:

Basic tool: Sylvester law of inertia

Definition 6.6.1 Two real, symmetric matrices A, B are called congruent, if there exists
a nonsingular C' such that

A= CTBC. (6.3)
We denote it by A ~ B.
Defintion 6.6.2 The inertia of a symmetric matriz A is a triplet of integers
in(A) = (7(A),v(A),0(A)) (6.4)

7(A) = the number of positive eigenvalues of A (geometry multiplicity),
v(A) = the number of negative eigenvalues of A (geometry multiplicity),
d(A) =n — rank(A) = the number of zero eigenvalues of A.
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Theorem 6.6.2 (Sylvester law of inertia) Two real, symmetric matrices are congru-
ent if and only if they have the same inertia.

Proof: (1) A, B real and symmetric. Suppose zn(A) in(B), there exist orthogonal U
and V such that UAUT = Ay = diag(\(A), - )\n(A)) Wlth AM(A) > > N\ (A) and
VBVT = Ay = diag(M\(B), -+ , \,(B)) with /\1( ) > - An(B).

Claim: A; is congruent to Ay. Since in(A) = in(B), it holds either A\;(A)\;(B) > 0 or
Ai(A) = X\(B) = 0. Set D = diag(d;), where

di = izgg)v if )\z(A))\Z(B) >
L, if \;(A)Ni(B)

0
0

Then DTAsD = Ay, so A ~ B.

(2) Suppose A ~ B. Claim: in(A) = in(B). Let A = CTBC, UAUT = A, and
VBVT = A, as above. These imply A; = PTA,P, where P = VICU?T. Assume that
in(A) # in(B). Clearly 6(A) = §(B) = 7(A) # n(B). Without loss of generality we can
suppose 7(A) < w(B). The homogenous linear system

x; =0, i=1,---,m(A),
{ (Pr); =0, i=xn(B)+1,---n, (6.5)
has a nonzero solution = # 0, since it has fewer than n equations. With this x we have

0 > Z Ni(A)2? = 2" Ao = 2" PT Ay Pa
= Z)\Z(B)(Pxﬁ >0
i=1
7(B)
= Y B
i=1

That is, there is an i (1 < i < 7(B)) with (Pzx); # 0, contradiction!

Second Part of Proof:
Show that B and CT BC have the same inertia. Because they have the same rank, it
is sufficient to show that: 7(B) = n(CTBC).
If \.(B) >0, let Bq; = \i(B)g; and Sy = span{C~'q,,---,C *q,}. Then
T AT T T
B
M(CTBC) = max min re 7 C; G > min - 2% CT Cz
dim S=r z€S, ©#0 Tt x x€Sp, #0 rx
2TCTBCx 2TCTCx
min
zes, e20 xTCTCx  2Tx
2'CTBCx 2TCTCx

> mn ——— min
zeSy, 220 L CTCx zeRnxn, o0 Tz

= M(B)o,(C)* >0, (Sincex € Sy = Cx € Span(qi,--- ,q,))
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where 01 (C) > -+ > 7,(C) > 0 are the singular values of C'. So we have \.(CTBC) > 0
and 7(CTBC) > m(B). Exchange the role of B and CT BC' we obtain 7(CT BC) = =(B).

Important inequality:
From above we have \,.(CTBC) > \.(B)o2(C). Change B and CT BC we then obtain

M(B) > M\ (CTBCYo?(C™Y) = \.(CTBC)

ot (C)
This imply
A (CTBC)
200) > 2 > 02(0). 6.6
HO) 2 T g 2 00 (6.6)
It holds also for the negative eigenvalues of B and CTBC. [ |

Corollary 6.6.3 If A = CTBC, C nonsingular (A ~ B), then it holds for nonzero
eigenvalues

Ar(4)
Ar(B)

a1 (C) >

Lemma 6.6.4 A nonsigular, real and symmetric and has a LR-decomposition
A=LR, (6.7)

where L 1s lower triangular with l; = 1 and R is upper triangular with ry; # 0, 1 =
1,---,n. Then holds

m(A)=#{i:ry; >0}  and v(A)=#{i:r; <0}
Proof: Let D = diag(ry;). Then R = D~'R has "one” on the diagonal. This implies
A=LR=LDR=A" =R'DL".
The decomposition A = LDR, where L, R has "one” on the diagonal is unique, therefore
L=RT. So
A=LDL" = AKX D = in(A) = in(D).

But 7(D) = #{i : r;; > 0}, the assertion is proved. [

Theorem 6.6.5 Let A, B be real, symmetric and B positive definite, « be a given real
number. Then holds

(A —aB) = #{eigenvalues of (6.1) larger than o}
v(A—aB) = #{eigenvalues of (6.1) smaller than o}
(A —aB) = #{multiplicity of «a as an eigenvalues of (6.1)}
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Proof: Az = ABx < Cy = )y, where C = L7'AL™!, B = LLT and LTz = y. By
theorem 6.6.2 (Sylvester law of inertia) we have

in{(A—aB)} =in{L YA —aB)L '} =in{(C — al)}.

Since C' — af has the eigenvalues \; — a > 0, we have
T(A—aB)=#{i: N —a>0} =#{i: \; > a}.

Similarly, we also have the assertions for ¥(A — aB) and §(A — aB). n

Remark 6.1 Theorem 6.6.5 leads to a bisection method for (6.1). If [a,b] is an interval,
which contains the desired eigenvalues, then by calculation of in(A — “T“’B) we know
that the desired eigenvalues lie in [a, 2] or [E2, b]. It requires the LU decomposition of

A — aB, which in general is indefinite.

(b) Methods of Coordinate relaxatoin:
This method requires only the calculation of Ax and Bx. Consider the generalized
Rayleigh quotient ,
xt Ax
Rlx] = By (6.8)
Let 2 = LTz, C = L7'AL™T and B = LLT (Ax = ABz). C is symmetric, let Cu; =
Aiu; and Ay > Ay > -+ > \,. By theorem 6.1.6 we have

2TCz
2Tz

Ai = max{R[z,C]| = cz L, g <i, z# 0}

From (6.8) follows that
B xT Ax B ALYALT, 27Oz
- 2TBx 2Tz 2Ty

Therefore we have the following new version of connection between the eigenvalues and
Rayleigh quotient of generalized definite eigenvalues problem (6.1).

Rlx]

Theorem 6.6.6 Let \; > --- > )\, be the eigenvalues of Ax = ABx satisfying Ax; =
NBx;,i=1,---,n. It holds
2T Ax T .
Ai = max{R[z] = Tpy ¢ Bx; =0, j<i, v#0}. (6.9)
Proof: Az, = \;Bx; <= Cu; = Nu;,u; = LTz, Let z = LTz, then 2z L u; < z"u; =
0 <= 2'LL"2z; = 0 <= 27 Bx; = 0. These imply that

210z .
{sz rz Lwj,j <i,z#0}
2T Ax .
= {xTBx 2’ Bx; =0,j <i,x #0}.
Take maximum and from (1.5) follows (6.9). u

Similarly, theorem 6.1.6 (Courant-Fischer) can be transfered to:
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Theorem 6.6.7 For the eigenvalues Ay > Ao+ > N\, of Ax = ABx it holds

T
. xt Ax
i = min max — (6.10)
{p1, - pi-1hs pjz =0, z! Bx
1<j<ép;i#0 1<j<i,x#0
T
) xt Ax
Ai = min max ————, (6.11)
dimS=n+1—i z€S,x#0 QZTBSC
T
. ot Az
A; = max min : (6.12)
dimS=i z€S,2#0 v1 Bx
|

Theorem 6.1.7 (Separation theorem) can be transfered to:

Theorem 6.6.8 A, B are real, symmetric and B is positive definite. A,_1 and B,_,
are obtained by scratching the last row and column of A and B respectively. For the
eigenvalues \y > Ao > -+ > A\, > 0 of Az = ABx and py > pe > --+ > ly_q of
Ap_12 = ABy_yx it holds

/\s-l—lS:usS)\sy s=1,--,n—1 (613>

and
A= max Rlz], A\, = min R|x]. (6.14)
]

Problem: How to compute the smallest eigenvalue A, and its associated eigenvector?
Ideal: Minimize Rayleigh quotient R[z] on a two dimension subspace.

Basic Problem: Given two linearly independent vectors z,y. Minimize R[z] on the
from x and y generated subspace generated by x and y.

Let ' = ¢z + 7y, then

(r +y) " Al¢r +9y) _ P*o+207f +4°p
(92 +9y)TB(gx +vy)  ¢*B+ 2079+

where o = 27 Az, B =2"Bx, f=2TAy, g=2"By, p=y"Ay and ¢ = y" By. Let

R[z'] = (6.15)

A—{‘jj“,é—{gg},f—{ﬂ. (6.16)
Then e
Rlo) = 242,
' Bx

where A, B are symmetric and B is positive definite. Applying (6.14) to A and B we
get that R[z'] has the minimum R’, where R’ is the smallest eigenvalue of the problem
AZ = ABz. That is,

det(A — R'B) = 0, quadratic equation in R'. (6.17)
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Compute the associated eigenvector (to R') Z = (¢,v)" from one of the following
equations:

(a=R'B)p+(f—Rg)y=0 (6.18)
(f=Rg)g+(p—Rq)y=0 (6.19)

@(A—R’B)[i] = 0.

Case 1: p— R'q #0 (p/q = y" Ay/y" By = R[y] > R'):
From (6.19) implies ¢ # 0. Set ¢ = 1. From (6.19) follows

f—Ryg
= - 6.20
R (6:20)
and that
¥=x+yy (6.21)

is the solution of the basic problem. Case 1 is called normal case.

Case 2: p — R'qg = 0: This implies f — R'g = 0, because
0=det(A— R'B) = (a— RB)(p— Rq)— (f — R'g)".
(a) If a — R'B # 0, then ¢ = 0 and 7 is arbitray. Set 2’ = y.
(b) If « = R'8 =0, then A = R'B = R[Z| = R for all Z € Span(x,y). Set 2/ = .

The method of coordinate relaxation

Given a starting vecor y; # 0.

Yi+1 is determined by y; as follows:

Set © = y;,y = ex, k =1 mod n and

Solve the basic problem with respect to  and y.
Let 2’ be the solution. Set ;1 = 2'/|2'|.

We obtain the sequence of vectors y1, s, ys, - - - such that
R[] = Rlya] = Rlys] =2 -+ = A
Remark to the computational cost
(1) Compute A, B: compute
p=y"Ay = e/ Aex = ap, q = e} Bep = by,

u = Az and v = Bz, and then

f=ylAr =clu=w, g=y"Bx=clv=nuy,

Ty and B = zTw.

Construct A and B.

a=2"Ar ==z

(2) Solve the quadratic equation det(A — R'B) =0 in R’
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(3) Solve 2/ = x + ~ey.

(4) Az’ and Bz’ (for the next step) can be computed implicitly. We use the following
updating:
Ax' = Ax + yAeg, (Ax'); = uj + vajy,

Bz’ = Br + yBey, (Bz'); = v; + vbj.
Remark 6.2 If R[y;] < min;(a;;/b;;) = min; R[e;], then it happens only normal case:
Rq—p=R'bix — arx < Rly1|brx — agr, < 0.
Since R[y1] < agk/brk, so R'q — p # 0, a normal case!

Theorem 6.6.9 Let

Rly1] < min Z— (6.22)
Then it holds
lim Rly;| = A. (6.23)
11— 00

Here X is an eigenvalue of (6.1) Ax = ABz, and each accumulation point of {y;} is the
associated eigenvector to .

Corollary 6.6.10 If (6.22) holds and
R[] < Ap-t, (6.24)
Then lim; o Rly;] = An. If A is simple, then holds:

Zlggo yi =y exwists and y 1s the eigenvector to \,.
Proof of theorem 6.6.9 Only normal case!
yir1 1s a function of ex(k =i mod n) and y;. Let y;.1 = Ti(y;). The function Ty is
continuous in ;, since for fix y the solution 2’ of basic problem depends continously on
the given z. (normal case!)
For Rlyi1] > R[ys] > --+ > A\, there exists the limit point A. Show that:

A = lim R[y;] is an eigenvalue.
1—00

In addition we show that an accumulation point y of the sequence {y; } satisfies Ay = ABy.
Let ;) be the convergence subsequence of {y;}, i.e., lim; o yru) = y. Without loss
of generality there are infinite 7 (i) satisfying 1 = r(i) mod n. So
y = Zlinoé Ynk(i)4+1 and Rly] = A.

Since T} is continuous, where

Tvy = lim T1Ypre)+1 = M Ynrg)+o
71— 00 71— 00
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which implies R[T1y] = A. Thus, R[T1y] = Rly] = A = v =0 = y = T1y and
f—=Xg=0. So f=(Ay), and g = (By)1 = (Ay)1 = A(By)1. Also T is continuous, we
have

Ty = Toy = Im Toynry+2 = m ypp)4s,
71— 00 71— 00

then A = R[y| = R[T»y|. As above we also have v = 0 and then y = Thy. So f = \g, thus
(Ay)2 = A(By)2, and so on. It follows Ay = ABy. [

Proof of Corollaray 6.6.10

The first part is trivial, since A, is the unique eigenvalue smaller than A,,_;. The normal-
ized eigenvectors to A, are +x/|z|, where Az = \,x. Two possible accumulation points
are separate. Let y; &~ x/|z|, then Ay; ~ \,By;. This follows f ~ \,g, so v = 0, thus
Yir1 ~ y;. A second accumulation point can not appear. [ |

As relaxation method by solving linear system, we introduce an ”overcorrect” x' =
r+wyy (1 < w < 2) for the csae 1 instead of 2/ = x + vyy. We describe the above
discussion as the following algorithm:

Algorithm 6.1 (Coordinate over relaxation method to determine the smallest eigenvalue
of symmetric generalized definite problem Az = A\Bx)

Let A, B € R™" be symmetric and B positive definite.
Step 1: Choose a relaxation factor w € (1,2), tolerance §,¢ € R, and a starting vector
r € R"\{0}. Compute a := 27 Az, b := 2" Bx and r := a/b.

Step 2: Set R0 := Rppin := 7.
Forj=1,2,---.n

Compute f:> 7 ajxTe, §:=> 1y bk, p:=aj;, ¢q:=Dbj
Determine the smallest eigenvalue r; of

(L7 2105 a5 -

(2.1) If |p — r1q| > €, then set

ﬁ;: _wf—’l‘1g €T = l‘j+ﬁ,a::@+25f+ﬂ2pa

g—riq’ 7

b:=b+28g+ [%g,r:= 7

(2.2) If |[p —rq| <€, and |a — rib| > € then set
T =ej,a:=Dpb:=q,r:= 7
(2.3) If [p — rq| <€, and |a — r1b] < € then stop. Set

Rinaz := max(r, Rya,) and Ry, = min(r, Rm).
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Step 3: If % < 1—4, then go to step 2, otherwise stop.

A detail discussions for determining optimal w can be found in:
H.R.Schwarz: Numer. Math. 23, 135-151 (1974).
H.R.Schwarz: Finite Elemente, Teubner Verlag.

(c) Methods of steepest descent

Recall that at a point x; the function ¢ : R®* — R decreases most rapidly in the
direction of the negative gradient —</¢(xy). The method is called the gradient or steepest
descent method. Here we have

o(x) = Rla] = F22.
It holds
Grado(z) = 2 B@é;{ l;;)f Ac)Bz] _ xéx(m _Rl#|Bz).  (6.25)

Thus, Grad R[z] (=Grad ¢(z)) = 0 <= R|x] is the eigenvalue and z is the associated

: d . : :
eigenvector & i stationary point of R[z].

Methods of steepest descent:
Given y; # 0. y;11 is determined by y;.
(1) Search direction
pi = (A = R[yi| B)y;. (6.26)

If p; = 0 stop, otherwise
(2) Solve the basic problem with = = y; and y = p;.

If 2’ is the solution, then set
/

xXr
Yit1 = 711 (6.27)
)
Go to (1).
Lemma 6.6.11 Let B =1. Then holds
pi (A= R'B)y; = p{ pi, B = Rly;11), (6.28)
pI(A—R'B)p; > 0, if p; # 0. (6.29)

FEspecially, it happens only normal case, thus the function T(y;) = yix1 = T(y;) is con-
tinuous.

Proof: Since p!y; = 0 (by computation!), we have
pi (A= R'B)y: = p{(A— Rly|B)yi+ (Rly:] — R')pi By
T
= D; DPi-

If p; # 0, then f — R'g = pl' Ay, — R'pI By; = pI'p; > 0 (by (6.28)). From (6.18) and
f—Rg+#0= ¢ +#0. Hence the minimum is not at y = p; , so R[p;] > R'. Thus

p{ (A— R'B)y; = p; (A— R[p;)B)p; + (R[p;] — R')p; Bp; > 0.
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So (6.29) holds. i.e. p — R'q # 0 = normal case!l = T is continuous. u

Theorem 6.6.12 Let B = I, and the sequence of vectors {y;} is obtained by the method
of steepest descent (6.26),(6.27). Then it holds with r; = R[y;] that

(1) lim; o r; = X is an eigenvalue of A .
(2) Each accumulation point of {y;} is the eigenvector of A corresponding to A.

(3) Ifyr = > ._, awxy is the expansion of the starting vector by normalized eigenvectors
{zp}ie, of A, (Ax; = Nxy with A\, < Ay < -+ < A\y) and o, # 0, then it holds

lim r; = \,.
1—00

Proof: Since riy > ry > --- > A, there exists the limit point A with lim;_..r; = A. Let
z be an accumulation point of {y; }ien, i€,

1—>00 1—00
Since T(T : y; — y;11) is continuous, so

lim Ty, = zlggo Yn(i)41 = Tzli)rglo Un(i) = 1'z.

1—00
This implies
R[T2] = lim Ryngi)+1] = A.
1— 00
From R[Tz] = R[z] and v = 0 we have Tz = 2. (Since Grad R[z] = 0, z is the eigenvector
to R[z] = A). Thus (1),(2) are established.
Claim (3): Let y; = >_p_, aixy. Prove that o is determined by af. Since

n

pi=(A—rl)y; = Z()\k — 73) QT
k=1

from (6.28)(6.29) follows

f—rinig _ p?(A - Ti+1B)yi

p—ring  p (A—riaB)pi
Since .
Yi +7ipi = Z a1+ %i(A — 7:)] By,
k=1
we get
i + iDi - af (L+ 5\ — i
Yit1 = IRl B n ( gl ) By

ly: +vipill g (21 (@2 (1 + 7i( A — 13))2)12
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This implies ‘
i+l _ o, (147N —13))
T V(@) (A — )2

it ol (143N — )
it ol \ T4\ —1) )
Assume that {r;} does not converge to \,, but to A, > \,,. Then

(67

We then have

Yn(i) — TT, = af(i) — +1 and ozz(i) — 0.

On the other hand, since

A—1; <0, A\y—1; <0, v, <0and N\, —1r; <\ — 1y,

we have . \
+2i(An = 1) > 1.
I+ 'YiO‘r - ri)
From (6.31) follows that
o] |
| > Jaf

This contradicts that a™® — 0.

(6.30)

(6.31)
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Further methods for the symmetric eigenvalue problem Ax = ABx

A, B € R™" are symmetric and B is positive definite. Reduction to the ordinary
eigenvalue problem:

(1) B~'Axz = Az, the symmetry is lost.

(2) B=LL", L7'AL™"2 = Az with LTx = 2, Cholesky method.

Remark: For a given vector z we can compute L™ 'AL Tz as follow: Comupte z; from
LTz = z by backward substitution. Then z, = Az;. Compute z3 from Lzg = 2z, by
forward substitution. We can use the sparsity of B (also L) and A.

Caution: L='AL~T is in general dense.

(3) Theoretically, B has (unique) positive definite square root B2, i.e., BY/2B'/?
= B, B~Y2AB~12z = \z. Computation of BY/? is expensive. Let B = UDUT, where U
is orthogonal and D is diagonal with D > 0. Then

B = (UDY*U"\(UD'*U") = BY? = UD"?UT,
where D = diag(d;) and DY? = diag(\/d;).

Consider
Ax = ABx, A, B symmetric and B positive definite.

Let Ay > XAy > -+ >\, > 0 be the eigenvalues of (6.1). Recall that the power method
and the inverse iteration for B = I:
Power method:
Given xg # 0,
fori=0,1,2,---,
Yirr = Az, Kip1 = [|yiga]],
Tit1 = yi—i—l/ki—i-l-

(6.32)

x; converges to the eigenvector of the eigenvalue \; and k; — || as i — 0.

Inverse power method:

Given ¢ # 0,

fori=10,1,2,---
o; = x] Az;/x] z; Rayleigh quotient (6.33)
(A - 0i1)$i+1 = kiy17;,
g1 is chosen so that ||z;q|| = 1.

Cubic convergence.

Transfer to the problem (6.1):
Power method (6.32) < A <> B7'A:

Given xg # 0,

fori =0,1,2,---,
Byiy1 = Azi, kiv1 = [[yia|
Tip1 = Yig1/Kig1.

(6.34)
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We must solve one linear system in each step. In general, Cholesky decomposition of B
is necessary.

Inverse power method for Az = \Bux:

Given xg # 0,
fori=0,1,2,---,
o; = xT Ax; /2T B, (6.35)

(A - UiB)IiH = ki1 By,
ki1 is chosen so that ||z;41]|p = 1.

Reduction: Let B = LL”. Substitute A by L' AL™T in (6.33) then we have (here
Ti > Z):

ZILTYALTT Tz ol Axg o
o; = = — , where L™ z;, = x;,
2l z x; Bx;

and
(L_lAL_T — O_il)zi+1 = ki—i—lzi = (A — UiB)ZL’H_l = ki—f—lB-ri'

Let Ay > Ay > -+ >\, be the eigenvalues of A — AB. Then the power iteration (6.34)
converges to \;. Let {#;}!; be the complete system of eigenvectors.i.e.,

Zi;TBi'] = (5@' and JAZZTAZIAJ] = )\151] for all Z,j = 1, e, n.

Let yr = D27 ¢j&, Yo = Y1y ;. Then it holds

i=1"1

n n n
_ k+ls -1 kr _ ky 4
Yki1 = E ¢,z =B A E T = E CiNZ;
i—1 i=1 i=1

This implies that ci™ = \;c¥, and thus ¢¥ = M\c!. Therefore, we have
= A
U = N {ctiy + Z()\—V)kcii“,, .
1
v=2
Normalizing y, we get that x; converges to 2.

Cost of computation:
Matrix x vector Ax;,
Solve the linear system By, 1 = Az;.
Determination of the eigenvalue: ki1 — |Aq].
Although we have k; 1 — |A1], the better approximation of A\; is Rz;]. Let z; =
21 + ed, where d € span{Zs,---2,} and ||d|| = 1. Then

(21 + ed)T A(Z1 + €d)
(#1 + ed)TB(21 + €d)
2T Ady + 2dTAd &7 Ady
#TBi, + d'Bd ~ iT By
= A\ +O0(€).

Rlz;] = Rz +ed =

+ O(€%)
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Error of eigenvalue ~~ (error of eigenvector)®.

Compute the other eigenvalues and eigenvectors:

Suppose Ai, Z; are computed. Power method does not converge to Ay, 1, if it satisfies
v’Bi, =0, i=0,1,2,---. (6.36)

If we start with xq satisfying 2l B#; = 0, then all iterate x; satisfy (6.36) theoretically
(since ¢} = 0). Because of roundoff error we shall perform the reorthogonalization:

Byjiy1 = Az,
Yir1 = Jir1 — (2] Biir1)i
Tiv1 = Yir1/ | Yiv1ll -
In general: Suppose Ay, -\, 21, -, are computed, then we perofrm the following
reorthogonalization:
Byiy1 = Axi,
Yit1 = Yi+1 — Zg?:l(l’;rByi—i-l)x]
Tiv1 = Yir1/||Yivall -

Here 2! Bi; =0, for j=1,--- ,p,and i =0,1,2,-- .

Simultaneous vector-iteration:
Determine the p (p > 1) largest eigenvalues and the associated eigenvectors of (6.1).

Compute simultaneuously the approximations xgi), e ,:El(j). Let
X0 =@ 2) € Ry (6.37)

We demand X satisfies the following relation:
XX =, (6.38)

Since 27 Bx; = &;4, the columns of X are nearly B-orthogonal. From (6.34) we con-
struct X@ by A A
BY® = Ax(-D (6.39)
and then ' '
X0 =y, (6.40)

where C; € RP*P and is chosen such that (6.38) is satisfied. We have the following meth-
ods for determining C; .

(a) Apply orthogonalization algorithm to the columns of Y, then C; is an upper trian-
gular matrix. ' A A ‘
Let Y = (yg‘)7 e ,yl(,’)) and X = (xg’), e ,mg)).

For k=1,---,p,

hk _yki - Ez/ 1(yk) B ) )7
ZEk —hk/(hTBhk)1/2
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(@ (0)

The first column z;” is the same as that we apply power method to z;’. Convergence

can be slow.

(b) Define G; = YO BY® | then G is pos1t1ve definite. There exists an orthogonal
matrix V; and D; = diag(d;) Wlth dy >dy>--->d, >0 such that

G; = ViD;V!.
Let X® = YOO, where
C,=ViD;'* and D;'? = diag(1/\/dy,- -+ ,1//d,). (6.41)
Check

X0'Bx® = ¢IyW pyOc, = (v,D;V*)TGy(viD; )
—-1/2 —1/2
= D;V*VIGviD VP =1,

So the columns of X are B-orthogonal. Method (b) brings the approximations in the
correct order.

Example: Let XV = (29, 73, 71), where 2! Bx; = §;; and Az; = \;Bx;,i,j = 1,2, 3.
Method (a): X@ = XM Y@ = B71AX® = (M\y29, A3z3, \j21). Then

X(2) = (1’2,[[‘371’1) = X(l)

Method (b):
M0 0 M0 0
Go=10 X 0|, D=0 X 0],
0 0 N 0 0 N
010 0 X' 0
Va=100 1|, Co=WD,"?=| 0 0 X'
100 ANT00
Then

X(2) = Y(2)02 = (C(Zl,ZL‘Q,[Eg,).

Method (b) forces the eigenvectors in the correct order.
(6.39) and (6.40) imply Treppen iteration (F.L. Bauer 1957) :

For B = I: .
AXOED —y® Oo-1 = XOR, (6.42)

where R; is upper triangular.
p = n: See the connection with QR Algorithm.

A; = X(i*I)TAX(iflx Q; = X(ifl)Tx(i)7

A Qsza Az-l—l R Qz
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p < n: and B = LLT positive definite: Treppen iteration for L=AL~T leads to Z® :

L'AL T 200 = ZzOR, . 70" 70 = [ (6.43)
Let X0 = L7720 rewrite (6.43) to X
AX(-D = pxOR, (6.44)

and
XO'LTLX® = [, = XO' BX®,

p

Improvement: B = I. Recall

Theorem 6.6.13 A is real and symmetric, Q € R™*P orthogonal and S € RP*P sym-

metric, then for an eigenvalue \;(S) of S there exists an eigenvalue \,(A) of A such
that
IA(S) = A, (A)] < |AQ — QS|l2, i =1, ,p.

Theorem 6.6.14 Let Sy = QTAQ, then
1AQ — QSoll2,r < [[AQ — QS|2,r
for all symmetric matrix S € RP*P.

For given orthogonal matrix X @, if we construct S; = X® AX®_ then the eigenvalues of
S; are the optimal approximations to the eigenvalues of A (optimal error estimation).
Also good error estimation for eigenvectors. From S;z = pz follows that

AXOy — X0z = (AXD — XD5))2,
IAX©2) = p(XD2)|l2 < JAXD = XOG;]la] 2]

So Xz is a good approximation to an eigenvector of A.

B =positive definite:
Given n x p matrix S with rank(S) = p. Let & = span(S). Find a new base of S,
which presents a good approximation to eigenvectors of

Ax = A\Bu.
(6.1) is equivalent to :
Az = A& with A = B"Y2AB7'2 4 = BY?z, (6.45)
Orthonormalize B'/2S(S — B'/2S) and results
S = BY25(8TBS)~1/2, (6.46)

(CheckSTg = 1,). From above we know that the eigenvalue p,; of H = STAS are
a good approximation to an eigenvalue of (6.45), so of (6.1) and g; is the associated
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eigenvector, then S g; is a good approximation to an eigenvector of (6.45), so B~/ 28 Ji
an approximation to an eigenvector of (6.1). Rewrite A, B, S:

A

H = (STB5>—1/2STBl/ZB—l/QAB—l/QBl/Qs(STBS)—1/2
(STBS)Y2(STAS)(STBS)~\/?

Then H g; corresponds to
(STAS — ;ST BS) (STBS) 124, = 0,
hv_/

i
1.e.

A, = STAS,

(As — piBs)gi = 0 with { B. = STBS.

(6.47)
If S is given, construct A,, By. The eigenvalues of A,z = uB,z are good approximations
to eigenvalues of (6.1). Compute the eigenvectors g; of (6.47), then Sg; are approxima-
tions to the eigenvectors of (6.1).

Some variant simultaneuous vector iterations (B = I):

(a)

) YW = AX =D,
) Orthonormalize Y®) = Q,R, (QR decomposition),
) Compute H, = QL AQ,,
) Solve the complete eigenvalue system for H,,
H, = GV@VGZ, G, : orthogonal and O, : diagonal,
(5) X® = Q,G, (The element of ©, are in decreasing order).

(6.48)

The computation of (1) and (3) are expansive, it can be avoided by the following way.
Since the invariant subspaces and eigenvectors of A and A~ are equal, so we can consider
the matrix A~2 instead of A. The eigenvectors of Q1 A~2Q, are the good approximations
for the eigenvectors of A.

Compute
IP

QTA2QV_(V)TXV1 AA2AX(V I)R—
(Here Q, = AX®"YR>! from (1) (2) above)
=R,R, = (R,R))"

So we have the following new method:

(b)

(1) Y®) = AX¥=1),

(2) Orthonormahze Y® =Q,R,,

(3) Compute H,=R, RT. (6.49)
(4) Solve H, = P, AQPT P, : orthogonal, A, : diagonal,

()

v v o

5) XW =Q,P,.



6.6 Generalized Definite Eigenvalue Problem Ax = A\Bzx 259
(¢) Third variant compution of @,
Find F, such that YWE, is orthogonal. So
FIyW'yWE, = 1 (6.50)
and
YO YW = FTE = (R E)) T
On the other hand Y F,, diagonalize A~2, i.e
FfY(”)A_QY(”)TFV = A ? diagonal. (6.51)

From (6.51) and because of Y) = AX®=1 follows

A2 =FT XV AA2AX“VF, = FTF,.

~
I

Thus I = A,FTF,A, and then F,A, is orthogonal. Using (6.50), we have

o,=y®"y® (FyTASHA2(ATLEY
(F,A)T A2

N——" \,./ N——
ortho. diag. ortho.

(F,A,)™

The diagonal elements of AZ are the eigenvalues of H, and the column of F,A, are the

eigenvectors of H,, therefore we can compute F, as follows:

Y™ = AX@=D,
2 Compute H, =YWy ),

(1)

) A
(B)Compute H, = B,A2BT complete eigensystem of H,,
(4)

HNXW =YW B A (=YWE).

The cost of computation of (6.52) is more favorable than of (6.49).

(6.52)
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Chapter 7

Lanczos Methods

In this chapter we develop the Lanczos method, a technique that is applicable to large
sparse, symmetric eigenproblems. The method involves tridiagonalizing the given matrix
A. However, unlike the Householder approach, no intermediate (an full) submatrices
are generated. Equally important, information about A’s extremal eigenvalues tends to
emerge long before the tridiagonalization is complete. This makes the Lanczos algorithm
particularly useful in situations where a few of A’s largest or smallest eigenvalues are
desired.

7.1 The Lanczos Algorithm

Suppose A € R™*" is large, sparse and symmetric. There exists an orthogonal matrix @),
which transforms A to a tridiagonal matrix 7.

QTAQ =T = tridiagonal. (7.1.1)

Remark 7.1.1 (a) Such Q can be generated by Householder transformations or Givens
rotations.

(b) Almost for all A (i.e. all eigenvalues are distinct) and almost for any ¢ € R"
with ||q1||2 = 1, there exists an orthogonal matriz Q with first column q; satisfying
(7.1.1). q determines T uniquely up to the sign of the columns (that is, we can
multiply each column with -1).

Let (z € R™)
Klz,A,m] = [v, Az, A%z, A" 2] € R™™. (7.1.2)
K[z, A,m] is called a Krylov-matrix. Let
K(z,A,m) = Range(K[z, A,m]) = Span(z, Az,--- , A" 'z). (7.1.3)

K(z, A,m) is called the Krylov-subspace generated by K[z, A, m].

Remark 7.1.2 For each H € C™™ or R™™ (m < n) with rank(H) = m, there exists
an @ € C™™ or R™™ and an upper triangular R € C™ ™ or R™™ with Q*Q = I,,
such that

H = QR. (7.1.4)
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Q@ is uniquely determined, if we require all r;; > 0.

Theorem 7.1.1 Let A be symmetric (Hermitian), 1 < m <n be given and dimkK(x, A,m) =
m then

(a) If
is an QR factorization, then QF, AQ,, = T,, is an m x m tridiagonal matriz and
satisfies
AQm = Qme + rmeﬁ, Q:nrm =0. (716)

(b) Let ||z||2 = 1. If Qn € C™™ with the first column x and QF,Q. = L, and satisfies
AQm = QT + el
where T, s tridiagonal, then
Kz, A,m] =[x, Az, - , A" 2] = Quler, Ter, -+, T e (7.1.7)
is an QR factorization of K[z, A,m].

Proof: (a) Since
AK(x, A j) C K(r. A j+1), j<m. (7.18)

From (7.1.5), we have

So we have

(718 ‘
giy1 L K(z,Aji) D AK(z, A1 — 1) = A(span(qi,- -+, qi—1)).
This implies
¢ 1A =0, j=1,---,i—1 i+1<m.

That is
(QrAQn) i = (1) = q¢fAg; =0 for i > j + 1.

So T, is upper Hessenberg and then tridiagonal (since 7}, is Hermitian).
It remains to show (7.1.6). Since

[.CE, Al’, e 7Am71x] = QmRm

and

m,. T
+ A"zxe, |

AKx,A,m] = K[z, A, m]
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we have

0 0
AQuBom = QuBm | * . + QuQL A zel + (I — Q@) A xel .
0 | 1. 0
Then
" 0 07
AQu = QulRn |1 | QAR (1 - QuQ) Al Ry
- : 1.
= QulRn |1 R QAT (1 - QuQ) A e,
| 0 | 1' 0 | ™
= QnH,+ rme% with Q) r, =0,
where H,, is an upper Hessenberg matrix. But Q;, AQ,, = H,, is Hermitian, so H,, = T,,

is tridiagonal.
(b) We check (7.1.7):
x = Qe coincides the first column. Suppose that i-th columns are equal, i.e.

A = QT
Az = AQ.T: ey
= QT+ rmep) Ty e

i T rpi—1
= Qul,e+rpe, T e

But el Ti-te; = 0 for i < m. Therefore, Az = Q,, T, the (i + 1)-th columns are equal.
It is clearly that (e;, T,eq, -+, T te;) is an upper triangular matrix. [ ]

Theorem 7.1.1 If x = ¢ with ||q1]|2 = 1 satisfies
rank(K[z, A,n]) =n

(that is {x, Ax,--- , A" 'z} are linearly independent), then there exists an unitary matriz
Q with first column g, such that Q*AQ =T s tridiagonal.

Proof: From Theorem 7.1.1(a) m = n, we have @, = Q unitary and AQ = QT.
Uniqueness: Let Q*AQ =T, Q*AQ =T and Qe; = Qey

= Klq,An]=QR=QR
= Q=QD, R=DR.

Substitute @ by @D, where D = diag(ey,--- ,€,) with |¢;| = 1. Then
(@D)"A(QD) = D*Q*AQD = D*TD = tridiagonal.
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So @ is unique up to multiplying the columns of @ by a factor € with |¢| = 1. [ |
In the following paragraph we will investigate the Lanczos algorithm for the real case,
ie., Ae R™™,
How to find an orthogonal matrix Q = (¢i, - -+ , ¢,) with QTQ = I, such that QT AQ =
T = tridiagonal and @ is almost uniquely determined. Let

AQ = QT, (7.1.10)
where
ar B 0
Q:[q17"'7Q’n] and T = ﬁl
S ' ﬁnfl
O anl 7%
It implies that the j-th column of (7.1.10) forms:
Agj = Bij—1gj-1 + o595 + Bigj+, (7.1.11)

for j =1,--- ,n with f; = 8, = 0. By multiplying (7.1.11) by ¢] we obtain
qJTqu = ;. (7.1.12)

Define r; = (A — o;I)q; — Bj—1¢j—1. Then

i = Bjqj+1
with
and if 5; # 0 then
q]‘+1 = Tj/ﬁj- (7114)

So we can determine the unknown «;, 3;, ¢; in the following order:

Given qi, oy, 11, b1, G2, 2, 1202, q3,-" - .

The above formula define the Lanczos iterations:

J=0,1r9=q, B=1,¢p=0
Do while (5; # 0)

G =rify . d=+1

I Tj4/ K (7.1.15)
a; = ql Ag;

rj = (A—a;l)g; — Bj-1q5-1,

Bj = |lrjll-

There is no loss of generality in choosing the 3; to be positive. The g; are called Lanczos
vectors. With careful overwriting and use of the formula o; = qu(qu — Bj-1¢j—1), the
whole process can be implemented with only a pair of n-vectors.



7.1 The Lanczos Algorithm 265

Algorithm 7.1.1 (Lanczos Algorithm) Given a symmetric A € R™"™ and w € R"
having unit 2-norm. The following algorithm computes a j X j symmetric tridiagonal
matrix 7 with the property that o(7;) C 0(A). The diagonal and subdiagonal elements

of Tj are stored in ay,- -+ ,a; and By, --- , Bj_1 respectively.
v;:=0 (i=1,---,n)
Bo =1
j:=0

Do while (5; # 0)
if (7 #0), then

fori=1,---,n,
t = w;, w; = v;/Bj,v; == —pjt.
end for
end if
v:i=Aw + v,
=7+ 1
aj = wl,
V=V — ajw,
8 = ol

Remark 7.1.3 (a) If the sparity is exploited and only kn flops are involved in each call
(Aw) (k < n), then each Lanczos step requires about (4+k)n flops to execute.

(b) The iteration stops before complete tridiagonalizaton if q; is contained in a proper
invariant subspace. From the iteration (7.1.15) we have

ar [
5 - .
A(Qh”' an):(Qh"' 7Qm) 61 B ! +£OJ 7075QO+1Z
rm\;?n
5m—1 (6799

Bm =0 if and only if r, = 0.
This implies
Alqr, -+ am) = (@1, 5 Gm) T
That is
Range(q1, -+, qm) = Range(K|[q, A, m))

1s the invariant subspace of A and the eigenvalues of T,, are the eigenvalues of A.

Theorem 7.1.2 Let A be symmetric and q; be a given vector with ||q1||o = 1. The Lanc-

z0s iterations (7.1.15) runs until j = m where m = rank|q, Aq1,--- , A" 'q1]. Moreover,
forj=1,---,m we have
AQ; = QT +rjel (7.1.16)
with
o b
T‘j: 51 . ' . ’ and Qj:[q17"'7Qj]

5;‘—1 %
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has orthonormal columns satisfying Range(Q;) = K(aq, A, j).

Proof: By induction on j. Suppose the iteration has produced Q; = [¢q1,- - ,¢;] such
that Range(Q;) = K(q, 4, j) and QjTQj = I;. It is easy to see from (7.1.15) that (7.1.16)
holds. Thus

T T T
Qj AQJ = ,Tj + Qj Tjej .
Since o; = ¢l Aq; for i =1,--- ,j and
0 AG = ¢ (Bigier + iy + Bic1qio1) = 411 (Bigir) = Bi

fori=1,---,j — 1 we have QT AQ; = T;. Consequently Q7r; = 0.
If r; # 0 then g;+1 = r;/||r;||2 is orthogonal to ¢, - - ,¢; and

gj+1 € Span{Aq;,q;,qj-1} C K(q1, A, j+1).

Thus Q7,,Q;+1 = I;j11 and Range(Qj41) = K(q1, A, j +1).
On the other hand, if r; = 0, then AQ; = Q;7;. This says that Range(Q;) =
K(q1, A, 7) is invariant. From this we conclude that j = m = dim[K(q, A, n)]. [ |
Encountering a zero 3; in the Lanczos iteration is a welcome event in that it signals
the computation of an exact invariant subspace. However an exactly zero or even small
B; is rarely in practice. Consequently, other explanations for the convergence of T;s
eigenvalues must be sought.

Theorem 7.1.3 Suppose that j steps of the Lanczos algorithm have been performed and
that
SIT;S; = diag(6,--- ,6;)

is the Schur decomposition of the tridiagonal matriz T, if Y; € R is defined by
Y=y, 9] = Q;S;
then fori=1,---,j we have
[ Ays — Oiyill = 1581155l
where S; = (Spq)-
Proof: Post-multiplying (7.1.16) by S; gives
AY; = Y;diag(:,- -+ ,0;) +rjel S,

ie.,
Ayz = Qlyl + Tj(@?sjﬁi) N 1= ]_, e ,j.

The proof is complete by taking norms and recalling ||r;||2 = |5;]. u
Remark 7.1.4 The theorem provides error bounds for Tjs eigenvalues:

min |0; — u| < |Bjllsu| i=1,---,].
Jnin 16; — pul < 18;11s;:] J
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Note that in section 10 the (6;,y;) are Ritz pairs for the subspace R(Q);).
If we use the Lanczos method to compute AQ; = Q;1; + rje? and set £ = Tww
where 7 = 1 and w = agq; + br;, then it can be shown that

T

(A+ E)Q; = Q;(T; + ta’eje] ) + (1 + Tab)rje; .
If 0 =1+ 7ab, then the eigenvalues of the tridiagonal matrix

Ty =T;+ Ta’eje]
are also eigenvalues of A+ FE. We may then conclude from theorem 6.1.2 that the interval
[Ai(T}), Ai—1(Tj)] where i = 2,--- 4, each contains an eigenvalue of A + E.

Suppose we have an approximate eigenvalue A of A. One possibility is to choose Ta?
so that

det(Tj — NI;) = (o +7a® — N)pj_1(\) — 5?_12%'—2(5\) =0,

where the polynomial p;(x) = det(T; — xI;) can be evaluated at \ using (5.3).
The following theorems are known as the Kaniel-Paige theory for the estimation of
eigenvalues which obtained via the Lanczos algorithm.

Theorem 7.1.4 Let A be n X n symmetric matrix with eigenvalues \y > --- >\, and
corresponding orthonormal eigenvectors zi,--- ,z,. If 01 > --- > 0; are the eigenvalues
of T; obtained after j steps of the Lanczos iteration, then

(A — An) tan (¢y)°
[ci1(1+2p1)]%

A > 01 > A —

where cos ¢1 = |qf 21|, pr = (M1 — X2) /(M2 — A\n) and cj_1 is the Chebychev polynomial of
degree j — 1.

Proof: From Courant-Fischer theorem we have

9, — y'Tyy Q)T AQy) w' Aw
1 = Imax T — Imax T = max ) T .
vA yly w0 (Qiy)T(Qiy)  otweK(anAg) wlw

Since \; is the maximum of w’ Aw/w”w over all nonzero w, it follows that A\; > 6;. To
obtain the lower bound for 6, note that

T
q1 P(A)Ap(A)q
0, —
' ebn T T p(A)Pa

Y

where P;_; is the set of all 7 — 1 degree polynomials. If

n
q1 = Z d;z;
i=1

then - ,
Qipp<A)Ap(A)91 _ Zi:l dip(%-) Y
¢ p(A)*q >y dip(Ni)?
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O T dp(h)? +El o dip(Xi)*

We can make the lower bound tight by selecting a polynomial p(x) that is large at x = Ay
in comparison to its value at the remaining eigenvalues. Set

~ny
Ao — A\,

p(x) = cj_1]— 142+
where ¢;_1(2) is the (j — 1)-th Chebychev polynomial generated by

cj(z) = 2z¢j-1(2) —cj_a(z), co=1,c0 =2

These polynomials are bounded by unity on [-1,1]. It follows that |p();)| is bounded by
unity for i = 2,--- ,n while p(A1) = ¢j_1(1 + 2p;). Thus,

1—d?) 1
di C?—1<1 +2p1)

01> A — (M _An)(
The desired lower bound is obtained by noting that tan (¢;)? = (1 — d3)/d3. u

Corollary 7.1.5 Using the same notation as Theorem 7.1.4

(A1 — \n) tan?(o,,)
C?—l(l + 2pn)

)

where p, = (A1 — )/ (M — A1) and cos (¢,) = |qf 2]
Proof: Apply Theorem 7.1.4 with A replaced by —A. [ |

Example 7.1.1

1 1
L., = >
T 0L - )P T G+ 20)P
A .
R = (A—j)%’l) power method
A1/ A2 j=5 j=25

1.5 [ 11x107%/3.9x1072 [ 1.4 x107%/35x107° | L;_1/R;_,
1.01 |5.6x1071/92x 1071 | 28 x 1074/6.2 x 107! | L;_1/R; 4

Rounding errors greatly affect the behavior of algorithm 7.1.1, the Lanczos iteration.
The basic difficulty is caused by loss of orthogonality among the Lanczos vectors. To
avoid these difficulties we can reorthogonalize the Lanczos vectors.
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7.1.1 Reorthogonalization

Since
AQj = QT + rjej,
let
AQ; — Q;T; = rjel + F; (7.1.17)
1-Q7Q; = CI+A;+C;, (7.1.18)

where C} is strictly upper triangular and A; is diagonal. (For simplicity, suppose (C}); i+1 =
0 and A; =0.)

Definition 7.1.1 0; and y; = (Q);s; are called Ritz value and Ritz vector, respectively, if
T‘]'Si = 9182

Let @j = diag(@l, tee ,6]') = SJTESJ, where Sj = [ S1 - S5 ]

Theorem 7.1.6 (Paige Theorem) Assume that (a) S; and ©; are exact ! (Since j <
n). (b) local orthogonality is maintained. (i.e. ¢} ,¢;=0,1=1,...,j—1, roqj =0, and
(Oj)i,i—‘rl =0 ) Let

FlQ-QiF, = K;— K],
AT, —T;A; = N;j— N,
Gj = S]T(K] + Nj)Sj = (nk)

Then
(a) yZTQjH = Tiz'/ﬁjv;; where y; = stz'; Bji = ﬁijz'-
(b) Fori#k,

(0; — 0p)yT yr, = r,-,-(si“) — e (Z2) = (rap — Ti)- (7.1.19)

ji Sk
Proof: Multiplied (7.1.17) from left by QT, we get
QjAQ; — Q7 QT = Qjrje] + Q] Fj, (7.1.20)
which implies that
QFATQ; — T5Q] Q; = ejrj Q; + F Q. (7.1.21)
Subtracted (7.1.20) from (7.1.21), we have
Q] v)e; — e (Qf )"
= (C]T; = T,C7) + (CiT; = T;C) + (AT — TjA)) + Ff Q; — Q;F]
= (C]T; = T;Cf) + (CiT; = T;C;) + (N; = Nj ) + (K; — KJ).
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This implies that

(Qjry)ej = CiT; — T;Cj + N; + K.
Thus,

Yi 1By = s (Qir)e; s = i (CT; — T;Ch)si + 57 (Nj + Kj)s;
(S?sti)ei — HZ(S;TCJSZ) -+ Tiis

which implies that

T'ii
sz qj+1 = 5—]2
Similarly, (7.1.19) can be obtained by multiplying (7.1.20) from left and right by s/ and
s;, respectively. [ |

Remark 7.1.5 Since

v T _{ O(esp), if |Bj| = O(1), (not converge!)
Yi dj+1 Bji 0(1), if |Bjil = O(esp), (converge for (6;,vy;))

we have that qu+1yz‘ = O(1) when the algorithm converges, i.e., gj+1 s not orthogonal to
< @, > where Qjs; = y;.

(i) Full Reorthogonalization by MGS:
Orthogonalize g;41 to all ¢1,---,¢; by

J
4j+1 = Gj+1 — Z(QJ‘TH(E)%-
1=1

If we incorporate the Householder computations into the Lanczos process, we can
produce Lanczos vectors that are orthogonal to working accuracy:

o := ¢1 (given unit vector)
Determine Py = I — QUOUg/UgUO so that Pyrg = eq;
ar = qf Aq;
Doj=1,---,n—1,
rj = (A—a;)q — Bj-1gj-1 (Bogo = 0),
w = (Pj_1--- FRy)rj,
Determine P; = I — 2v;v] /v v; such that Pjw = (wy,- -+ ,wj, 5,0, ,0)7,
41 = (Po - Bj)eju,

T
1 = g1 Agi

This is the complete reorthogonalization Lanczos scheme.
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(ii) Selective Reorthogonalization by MGS
If 8] = O(/eps), (6;,y;) “good” Ritz pair
DO C]j+1J-Q1, ceey Qj
Else not to do Reorthogonalization

(iii) Restart after m-steps
(Do full Reorthogonalization)

(iv) Partial Reorthogonalization
Do reorthogonalization with previous (e.g. k = 5) Lanczos vectors {q1, ..., qr}

For details see the books:
Parlett: “Symmetric Eigenvalue problem” (1980) pp.257—
Golub & Van Loan: “Matrix computation” (1981) pp.332—

To (7.1.19): The duplicate pairs can occur!
i #k, (0; — 0p) vl yr = O(esp)
—~—

O(),if yi = yr = Qi = Qs
How to avoid the duplicate pairs 7 The answer is using the implicit Restart
Lanczos algorithm:
Let

AQj = QJCTJ + Tj(i?
be a Lanczos decomposition.

e In principle, we can keep expanding the Lanczos decomposition until the Ritz pairs
have converged.

Unfortunately, it is limited by the amount of memory to storage of @;.

Restarted the Lanczos process once j becomes so large that we cannot store @);.

— Implicitly restarting method

Choose a new starting vector for the underlying Krylov sequence

A natural choice would be a linear combination of Ritz vectors that we are interested
in.

7.1.2 Filter polynomials

Assume A has a complete system of eigenpairs (\;, ;) and we are interested in the first
k of these eigenpairs. Expand u; in the form

k n
Uy = Z%l‘i + Z Yii-
i=1

i=k+1

If p is any polynomial, we have

p(A)u = Z%p(&)l’i + ) vip(N)zi.

i=k+1
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e Choose p so that the values p(\;) (i = k+1,...,n) are small compared to the values

e Then p(A)u, is rich in the components of the z; that we want and deficient in the
ones that we do not want.

e p is called a filter polynomial.

e Suppose we have Ritz values p1, ..., ty, and pgi1, ..., by are not interesting. Then

take
p(t) = (t — pirsr) -+ (E — i)

7.1.3 Implicitly restarted algorithm
Let

be a Lanczos decomposition with order m. Choose a filter polynomial p of degree m — k
and use the implicit restarting process to reduce the decomposition to a decomposition

AQk = Qi + Brdesrey
of order k with starting vector p(A)u;.

Let vy, ..., v, be eigenvalues of T, and suppose that vy, ..., v,,_; correspond to the
part of the spectrum we are not interested in. Then take

p(t) = (t —va)(t —w2) - (t = vmsp).
The starting vector p(A)u; is equal to
p(Au; = (A—vppl) - (A—l)(A—11Duy
= (A=vmD)[-- (A =D [(A=wnlu]]].

In the first, we construct a Lanczos decomposition with starting vector (A—wvy1)uy. From
(7.1.22), we have

(A=v1DQm = Qum(Tom — 1) + Bmgmerel (7.1.23)
QmUlRl + 5QO+1€S@>

where
Tm — V1] == UIRI

is the QR factorization of T;, — k1. Postmultiplying by U;, we get

(A — Vll)(QmU1> = (QmUl)(RlUl) + ﬁQOJrl(e%Ul)'
It implies that

AQW = QWTY + B by,

where

QW =Q,Uy, TO =RU +unl, bW =clU.
Q%) : one step of single shifted QR algorithm)
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Remark 7.1.6

° Q%) s orthonormal.

By the definition of T&l), we get

[ ]
DTDUL = Uy(RaUy + i DU = Uy Ry + i =T, (7.1.24)
Therefore, vy, vs, ...,V are also eigenvalues of .

o Since T, is tridiagonal and Uy is the Q-factor of the QR factorization of T,, — 11,
it implies that Uy and T&l) are upper Hessenberg. From (7.1.24), T,S}) 18 symmetric.
Therefore, T is also tridiagonal.

e The vector bf,llfl = el Uy has the form
T 1 1 _
o 0 o o]

i.e., only the last two components of bfilrl are nonzero.
e For on postmultiplying (7.1.23) by ey, we get

(A—wD)g = (A= D) (Qmer) = QD Ryey = rVgl".

‘ . 1
Since T, s unreduced, r§1)

multiple of (A — k11)q.

1s nonzero. Therefore, the first column of Q,(%) s a

Repeating this process with vy, ..., vy, _, the result will be a Krylov decomposition
AQUMM = QG PTI® 4 Bga bl

with the following properties

%’? ~%) is orthonormal.

1i. T&m_k) is tridiagonal.

iii. The first £ — 1 components of b,(;n +_1k)

T
are zero.
iv. The first column of Q4 * is a multiple of (A—=uwl) - (A—vpiDaq.

Corollary 7.1.1 Let vy, ..., v, be eigenvalues of T,,. If the implicitly restarted QR step
1s performed with shifts vy, ..., Vm_s, then the matrix T ™ has the form

T(m=Fk) _

m

(m—k) (m—k)
Tkk Tk:,m—k ]

m—k
0 Tl§+1,k-)i-1

where Tk(:nl_kil s an upper triangular matrix with Ritz value vy, ..., Vpm_i on its diagonal.
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Therefore, the first k& columns of the decomposition can be written in the form

m—k m—k m—k m—Fk
AQl(c ) — Ql(c )Tkgk ) + tk+1,kq;g+1 )65 + ﬁkukam+1€£7

where Q,(gm_k) consists of the first £ columns of Q%T _k), T,g;n_k) is the leading principal

submatrix of order k of Tn(szk), and ug,, is from the matrix U = Uy - - - U,,,_;. Hence if
we set

Qr = Q"
T = T3,
B = ltieratTy” + Brtimiga [z
Q1 = B;;l(tkﬂ,kq;ﬁfk) + BrUmkGm+1),

then
AQy = QxTy + Prrsrel

is a Lanczos decomposition whose starting vector is proportional to (A — 1)+ (A —
Vm—k[)(h .

e Avoid any matrix-vector multiplications in forming the new starting vector.
e Get its Lanczos decomposition of order k for free.

e For large n the major cost will be in computing QU.

7.2 Approximation from a subspace

Assume that A is symmetric and {(ay, z;) }1; be eigenpairs of A with a; < g < -+ < .
Define

T Ax

Ty

p(x) = pl(x, A) =

Algorithm 7.2.1 (Rayleigh-Ritz-Quotient procedure)

Give a subspace ST = span{Q} with QTQ = I,,,;

Set H = p(Q) = QT AQ;

Compute the p (< m) eigenpairs of H, which are of interest,
say Hg; = 0;9; fori=1,...,p;

Compute Ritz vectors y; = Qg;, fori=1,...,p;

Check ||Ay; — 0:yill2 < Tol, fori=1,...,p.

By the minimax characterization of eigenvalues, we have

a; = )\;j(A) = min maxp(f, A).

FiCR» feFi
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Define

B; = min maxp(g,A), forj <m.
GICS™ geGi

Since G C S™ and S™ = span{Q}, it implies that G = QG for some GI C R™.
Therefore,

p; = min maxp(s,H) = \;(H) =4,
GICR™ seGi

fory=1,....m
For any m by m matrix B, there is associated a residual matrix R(B) = AQ — @B.

Theorem 7.2.1 For given orthonormal n by m matriz @),
IR < IR(B)

for all m by m matriz B.

Proof: Since

R(B)'R(B) = Q"A*Q - B*(Q’ 4Q) - (Q'4Q)B + B'B
= Q'A°Q - H®+ (H - B)'(H - B)
= R(H)*R(H)+ (H — B)*(H B)

and (H — B)*(H — B) is positive semidefinite, it implies that |R(B)||* > ||[R(H)||*>. =
Since

Hg; =0,9;, fori=1,... m,
we have that
Q" AQg; = 0;g;,
which implies that
QQTA(Qgi) = 0:(Qg;).-

Let y; = Qg;. Then QQTy; = Q(QTQ)g; = vi. Take Py = QQT which is a projection on
span{@}. Then

(QQT)A% = Hi(QQT)yZ-,
which implies that
Po(Ay, — 6,y;) =0,

i.e., r; = Ayl — 92yl 1L 8™ = span{Q}.
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Theorem 7.2.1 Let 0; for j = 1,...,m be eigenvalues of H = QT AQ. Then there is
aj € o(A) such that

6, — ay| < [|Rll2 = [ AQ — QH]lp, forj=1,...,m.
Furthermore,
> (0, —ay)* <2||R|.

Jj=1

Proof: See the detail in Chapter 11 of “The symmetric eigenvalue problem , Par-
lett(1981)”. [ |

Theorem 7.2.2 Let y be a unit vector 6§ = p(y), o be an eigenvalue of A closest to 0
and z be its normalized eigenvector. Let r = miny, .o |Ni(A) — 0| and ¥ = Z(y,z). Then

0 —al < r@)l*/r. |sing] < [Ir(y)ll/r.
where r(y) = Ay — 0y.
Proof: Decompose y = z cost) + wsin with 27w = 0 and |Jw||s = 1. Hence
r(y) = z(aw — @) cosp + (A — Q)wsin .
Since Az = az and 27w = 0, we have 27 (A — 6)w = 0 and so

Ir()11z = (o = 0)* cos® v + [|(A — Qw3 sin* 9 > ||[(A — Ow|[3sin* . (7.2.25)

Let w = Zaﬁéa &z;. Then
I(A = O)wl3 = [0 (A = )(A = O)w| =) (i = 0% = 1a() &) =7
a;Fo a;Fo
Therefore,
: I (w)ll2
< —==
|siny| < .

Since 7(y) Ly, we have
0=1y"r(y) = (o —0) cos’ ¢ +w' (A — )wsin? 1),

which implies that

L= cos’y  w'(A—0Ow
T s’y fO—a

From above equation, we get

1 a—10 5 k wl (A - 0w

-2 _ _ o _
Sznw—k+1_wT(A—a)w’ cos Ck+1 wi(A-a)w

(7.2.26)
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Substituting (7.2.26) into (7.2.25), ||r(y)||3 can be rewritten as

7|5 = (0 — a)w" (A — a)(A — 0)w/w' (A — a)w. (7.2.27)

By assumption there are no eigenvalues of A separating o and 6. Thus (A —al)(A—01)
is positive definite and so

w'(A=a)(A=Ouw = Y o —alla; - 0|

a;Fo
> 7> lai—alg
a;Fa
> 7l Z (@i — )&l = rlw" (A — a)wl. (7.2.28)
a;Fa
Substituting (7.2.28) into (7.2.27), the theorem’s first inequality appears. [ |

100 years old and still alive : Eigenvalue problems
Hank / G. Gloub / Van der Vorst / 2000

7.2.1 A priori bounds for interior Ritz approximations
Given subspace S™ = span{Q}, let {(0;,v;)}™, be Ritz pairs of H = QT AQ and Az, =

aizi,izl,...,n.

Lemma 7.2.3 For each j < m for any unit s € S™ satisfying sz, =0,i=1,...,7—1.

Then
j—1
Q5 S 9]' S p(S) + Z(O{_l — 91) SiIl2 ’QDZ (7229)
J:l
< p(s)+ Z(Oé—1 — ;) sin” ¢,

i=1
where ¥; = Z(y;, z;).

Proof: Take

j—1
s=1t+ Z TiYi;
=1

where tLy; fori =1,...,5 — 1 and [|s|]| = 1. Assumption s7z; =0fori=1,...,5—1
and

lyi — zicosislly = (yi — zicosvy)” (y; — zicos ;)
= 1—cos? W — cos? Ui + cos® 1,

= 1 —cos®t; =sin® 1,
lead to

il = [sTws] = |7 (i — 2 cos ¥)| < ||s]2] sinep).
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Let (6;,9;) for i = 1,...,m be eigenpairs of symmetric H with g7 g, = 0 for i # k and
= g;- Then

0 =g/ (Q"AQ)gr = y] Ayx for i+ k. (7.2.30)
Combining (7.2.30) with T Ay; = 0, we get

=T At + Z T Ay;)r?

Thus
j—1
p(s) —a_y = tH(A—a_t+ 2(91 —a_q)r?
i=1
T i1
> PA- et (AtTta_l)t + 121(91 - 04_1)7’?
j—1
> p(t) —a_y + 2(92 — o) sin® ;.
i=1

Note that p(t) > 0; = min{p(u);u € S™ uly, i < j}. Therefore, the second inequality
n (7.2.29) appears. u
Let p;; = Z(2,y;) fori=1,...,nand j=1,...,m. Then ¢; = ¢; and

n

Yy; = Z Zi COS Qi (7231)
i=1
|cos ;| < |singy (7.2.32)
n j—1
Z cos® py; = sin®p; — Z cos® pij (7.2.33)
i=j+1 i=1

Proof: Since y/y; = 0 for i # j and
|(1/; cos @; — Zi)T(yi cos p; — z;)| = sin® Pis
we have

|cos | = |yJTZz| = ’Z/]'T(yz' cos ©; — %)
ly;ll2llys cos i — 2|2 < | sin gy,

IN

From (7.2.31),

yj? yj Z cos” Pij

which implies that

7j—1 n
sin® p; = 1 — cos® pj; = Z cos® pij + Z cos® ;. (7.2.34)
i=1 i=j+1
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Lemma 7.2.4 For each j=1,...,m,

7—1
sing; < i)+ Z a1 — a;)sin® ;] /(@ — ;) (7.2.35)
=1

Proof: By (7.2.31),

n

p(yj, A — Oéj]) = 9]‘ — Oéj = Z(Oéz — Oéj) COS2 QOZJ

i=1

It implies that

0; —oz]+z a; — o) cos? ©Dij

n

= Z (o — ) cos® @y

i=j+1
2
> (aj11 — ) E cos” ©;j
i—j+1

j—1

= (aj;1 — ay)(sin® pj — Z cos® ;). (from (7.2.35))

i=1

Solve sin? ; and use (9.3.10) to obtain inequality (7.2.35) u
Explanation: By Lemmas 7.2.3 and 7.2.4, we have

j=1: 6, <p(s), sT2,=0. (Lemma 7.2.3)

0 — oy P(S) -0 7

j=1: sin®p < < , 821 =0. (Lemma 7.2.4)
O — (g Q9 — O
: _ —«
P22t 82 p(s) + o —an)sint g < pls) + (o — o) A0,
2 —

T2 =8T2 =0, 72, =0. (Lemma 7.2.3)

(Lemma7.2.4) _ i 2
j=2: sin?¢p, < (03 — ) + (a3 — a1) sin” oy
3 — (9
Jj=15=2 t o a3 — t) — «
7 o)+ (0 —an) (B0 gy @z o) m o
Qg — Q3 — Qg Qg —

7.3 Krylov subspace

Definition 7.3.1 Given a nonzero vector f, K™(f) = [f, Af,..., A" f] is called Krylov
matriz and S,, = K™(f) = (f, Af, ..., A" f) is called Krylov subspace which are created
by Lanczos if A is symmetric or Arnoldi if A is unsymmetric.
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Lemma 7.3.1 Let {(6;,y:)}", be Ritz pairs of K™ (f). If w is a polynomial with degree
m—1 (i.e., we P™ 1) then w(A)f Ly if and only if w(0x) =0, k=1,...,m.

Proof: 7 <7 Let

w(&) = (§ = O)m(E),
where 7(§) € P™2. Thus

m(A)f € K™(f)
and
vew(A)f = ye(A—0)m(A)f
= rpm(A)f
= 0. (orl(@Q) =K"(f))
7 =7 exercise! [ |
Define
p(§) = g@ —0;) and m(E) = (5" _@gk).
Corollary 7.3.2
” — m(A)f
[l (A) f]
Proof: Since 7(0;) = 0 for §; # 6y, from Lemma 7.3.1,
m(A) f Ly, Vi # k.
Thus, mx(A)f // yr and then y; = %. u

Lemma 7.3.3 Let h be the normalized projection of f orthogonal to Z?, Z7 = span(z1, . .., z;).
For each m € P™ 1 and each j < m,

sin Z(f, 27) ||m(A)h]| 7"
cos Z(f,27) |m(ayl)

Proof: Let ¢ = Z(f,Z7) = cos™!||f*Z7|| and let g be the normalized projection of f
onto Z7 so that

p(r(A)f,A—a;l) < (o, — «j) : (7.3.36)

f =gcosy + hsin.
Since Z’is invariant under A,
s=m(A)f =n(A)gcosty + m(A)hsin,
where m(A)g € Z7 and 7(A)h € (Z7)". A little calculation yields
g (A — a;I)7*(A)g cos® ¢ + h*(A — a; 1) m*(A)hsin® ¢
[ (A)f1? '

The eigenvalues of A are labeled so that a; < ap < -+ < «,, and

p(S>A_aj[) =

(7.3.37)
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(a) v*(A— ;v <0 for all v € Z7, in particular, v = 7(A)g;

(b) w*(A — a; 1w < (o, — o) |Jw||* for all w € (Z7)*, in particular, w = 7(A)h.

Used (a) and (b) to simplify (7.3.37), it becomes

|7 (A)h||sin]?
p(s, A —ayl) < (an, — ay) {W}

The proof is completed by using

Is]|? = |7 (A) f||* = ZW ;) cos® Z(f, zi) > 7 () cos® Z(f, z;).

=1

7.3.1 The Error Bound of Kaniel and Saad
The error bounds come from choosing m € P™! in Lemma 7.3.3 such that
(i) |m(cy)| is large, while ||7(A)h|| is small as possible, and
(ii) p(s, A — a;I) > 0 where s = w(A)f.
To (i): Note that

v (o) cos? Z(f, 2
ZZ_JJ;} (@) %) <max7m’(a;) < max 7w(7).
Zz’:j+1 cos® Z(f, Zj) i>j TE[aj41,0n]

I (A)h||* =
Chebychev polynomial solves min epn—; maX eja,,,,a,] T 2(1).
To (ii): The following facts are known:
(a) 0 <6; —j, (Cauchy interlace Theorem)
(b) 0; —a; < p(s,A—oyl), if sly;, forall i < j, (By minimax Theorem)

(c) 0;—aj < p(s, A—a;I)+ 37" (o — i) sin® Z(yi, %), if s 1z, foralli < j. (Lemma
7.2.3)

Theorem 7.3.4 (Saad) Let 6, < --- < 0, be the Ritz values from K™(f) (by Lanczos
or Arnoldi) and let (o, z;) be the eigenpairs of A. For j =1,...,m,

sin Z(f, Z])Hk 1(%)
) cos Z(f, Z7)T,,—;(1+ 2r)

2

0§9j—04j§(04n—

and

sin 2(f, 29) T2 (252
~cosL(f, Z0) (1 +2r)’

tan Z(z;, K™) <

where r = (o; — aji1) /(11 — ).
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Proof: Apply Lemmas 7.3.3 and 7.3.1. To ensure (b), it requires s Ly; fori =1,...,j—1.
By Lemma 7.3.1, we construct

m(&) = (E—01) - (§=0,_)7(§), TeP".
By Lemma 7.3.3 for this 7 (¢) :

(ARl o 1A= 01) - (A=) [T (A)A]
[m(ay)] (e = 01) -+ (ag = 0|7 (ex;)]

1

<.
|

—a — O max |7T( )|

IN
—

i} Oy — Qk TE[oj41,04] |7T( ])
7| —o 7(7)|
< H - "1 min ‘max
ol —ap [ werm g |7 (ay)|
la « 1
n — Gk
= : (7.3.38)
ooy —ag| Tnj(142r)

since h L Z7. On combining (b), Lemma 7.3.3 and (7.3.38), the first of the results is
obtained.

To prove the second inequality:

7 is chosen to satisfy m(a;) =0 fori =1,...,7 — 1 so that

s=m(A)f = zjm(ay) cos Z(f, z;) + m(A)hsin .
Therefore,

sin Z( f, Zj)”W(A)hH
cos Z(f, z)|m(aj)|

where 7(§) = (£ —aq) -+ (§ — aj_1)7(§) with 7(&) € P™J. The proof is completed by
choosing 7 by Chebychev polynomial as above. [ ]

tané( ) J) =

Theorem 7.3.5 Let §_,, < ... < 0_y be Royleigh-Ritz values of K™(f) and Az_; =
a_jz_j forj=mn,....1 witha_, <--- < a_;, then

2

sin Z(f, 279) [Tty (52557 k)]

0<a;—0_;<(a_;—a) [ cos Z(f, z—j)Tin—j(1 + 2r)

and

sin Z(f, Z77)
= s 2(F,2)

tan(z_;, K™) <

a_p—a_p\2
Hk—f]+1 ( oa_l;—a,j )
T j(1+2r) ’

where r = (a_j—1 —a_;)/(a_, —a_j_1).
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Theorem 7.3.6 (Kaniel) The Rayleigh-Ritz (0;,y;) from K™(f) to (o, z;) satisfy

. : i—1 /o, —on 2
sin Z(f, 27) [Tio (822

0<0;—a; < (an—q
<b;—a; < (o ;) cos Z(f, 2)) T (1 4 2r)

-1

+3 (an — ag)sin? Z(yg, 2i)
1

.

B
Il

and

. ‘
sin? Z(y;, 2) < (0; — o) + >0 (aje1 — ag) sin® Z(yg, Zk:)’
Qj+1 — Qj

where r = (o — ajr1) /(11 — ).

7.4 Applications to linear Systems and Least Squares

7.4.1 Symmetric Positive Definite System

Recall: Let A be symmetric positive definite and Az* = b. Then x* minimizes the
functional

() = %xTA:L’ — vl (7.4.1)

An approximate minimizer of ¢ can be regarded as an approximate solution to Az = b.

One way to produce a sequence {xj} that converges to z* is to generate a sequence
of orthonormal vectors {¢;} and to let z; minimize ¢ over span{q,--- ,q;}, where j =
1,---,n. Let Q; = [q1, -, ¢qj]. Since

vespan{a -} > o) = Sy (QTAQ) — v (QTD)

for some y € R7, it follows that
7 = Qs (7.4.2)
where
(QF AQy)y; = Q}b. (7.4.3)

Note that Az, = b.
We now consider how this approach to solving Az = b can be made effective when A
is large and sparse. There are two hurdles to overcome:

(i) the linear system (7.4.3) must be easily solved;

(ii) we must be able to compute x; without having to refer to ¢, - ,¢; explicitly as
(7.4.2) suggests.

To (i): we use Lanczos algorithm algorithm 7.1.1 to generate the ¢;. After j steps we
obtain
AQ; = Q;T; +rjej, (7.4.4)
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where

03] 51 0
T, = QT AQ; = b ?‘2 ; and Tjy; = QT b. (7.4.5)
c . . j—l
O 5]'_1 Oéj

With this approach, (7.4.3) becomes a symmetric positive definite tridiagonal system
which may be solved by LDLT Cholesky decomposition, i.e.,

T; = L;D,L7, (7.4.6)
where
1 0
: dy 0
Ly=|" and D, = 0
-0 0 d;
Compared the entries of (7.4.6), we get
dl = Qq,
for i=2,---,j
A 7.4.7
Hi = 51—1/651'—1, ( )
di = o — Bi—1fu
Note that we need only calculate
pi = Pi1/dia 748
dj = a; =By (7:48)
in order to obtain L; and D; from L;_; and D;_;.
To (ii): Trick: we define C; = [e1, -+, ¢;] € R and p; € R7 by the equations
IT — O,
Gl = @ (7.4.9)

L;D;p; = erb
and observe that
z; = Q;T;'QTb = Q;(L;D;LT)'QTb = Cjp;.
It follows from (7.4.9) that
[e1, pacy + o, -+ i+ ¢l = - g5l

and therefore
Ci =06l ¢ = a5 — pigi
If we set p; = [p1,---,p;]" in L;D;p; = Q7b, then that equation becomes

P1 Q?
p2 q@ b
LiaD;oy |0 . B 2
0"'0/,1/'61'_1 d . - M
] ‘ J pi1 qu,lb
B2
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Since Lj—le—lpj—l = Q}llb, it follows that

pj = { p;jl } P = (g b= pidiapi1)/d;

and thus
Q:_] o ]p] == ijlpjfl + p]cj = xjil + pjcj

This is precisely the kind of recursive formula for x; that we need. Together with (7.4.8)
and (7.4.9) it enables us to make the transition from (g;_1,¢;—1,2;-1) to (gj,¢;, ;) with
a minimal amount of work and storage.

A further simplification results if we set ¢; = b/ where By = ||b||2. For this choice
of a Lanczos starting vector we see that ¢f'b = 0 for i = 2,3,--- . It follows from (7.4.4)
that

Azy = AQyy; = QTyy; +rjejy; = Q;Q7b +rjejy; = b+ rje]y;.

Thus, if 8; = ||rj|]2 = 0 in the Lanczos iteration, then Az; = b. Moreover, since ||Az; —
bll2 = Bjlej y;l, the iteration provides estimates of the current residual.

Algorithm 7.4.1 Given b € R" and a symmetric positive definite A € R™*". The
following algorithm computes x € R" such that Az = b.

Bo = [|bll2, 1 = b/ Bo, 1 = qlTAQMdl =aq,c = q, 11 =b/ay.
Forj=1,--- ,n—1,
rj = (A—0a;)q — Bi—1g5-1  (Bogo = 0),
Bi = lrillz,
If 3; = 0 then
Set 2 = z; and stop;
else
G+1 =15/B;,
Qjy1 = QJT+1AQj+17
i+ = B;/d;,
djy1r = o1 = w13,
Pit1 = —pir1dip;/dji,
Ci+1 = j+1 — Hj+165,
Tjr1 = Tj + Pj+1Cj+1,
end if
end for

¥ =x,.

This algorithm requires one matrix-vector multiplication and 5n flops per iteration.
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7.4.2 Symmetric Indefinite Systems

A key feature in the above development is the idea of computing LDL? Cholesky de-
composition of tridiagonal Tj. Unfortunately, this is potentially unstable if A, and con-
sequently T}, is not positive definite. Paige and Saunders (1975) had developed the
recursion for x; by an L@ decomposition of T;. At the j-th step of the iteration we will
Given rotations Ji, -+, J;—1 such that

dy 0
€9 dQ

TpJy---Jj=L;j=| fs e ds

0 fi e dj |

Note that with this factorization, x; is given by
x5 = Qyy; = QT ' QT b= Wjs;,
where W; € R and s; € R/ are defined by
Wj = ijl ce Jj,1 and Lij = Q?b

Scrutiny of these equations enables one to develop a formula for computing x; from
xj—1 and an easily computed multiple of w;, the last column of W;.

7.4.3 Connection of Algorithm 7.4.1 and CG method

Let

ij . Iterative vector generated by Algorithm 7.4.1

¢ . Tterative vector generated by CG method with , 2§ = 0.

Since r§¢ = b — Azg = b= p§°, then
b'b L

CcG _
bTAbb =z

— ,0G,

Claim: 2% =2l fori=1,2,-- |
(a) CG method (A variant version):

o = 0, To = b,
Fork=1,--- n,
if r,_1 = 0 then set x = x;,_; and quit.
else By =1L ri1/ri ori2 (81 =0),
Pk =Tr-1+ Bebr—1  (p1 = 10),
ar =1i Te-1/pt Ap, (7.4.10)
Tk = Tp—1 + QkPr,
Tk = Th—1 — R ApE,
end if
end for
T = T,.
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Define Ry = [ro, -+ ,7%_1] € R™* and

1 —B, 0
B = L
- =Dk
0 1

From p; = 1 + Bjpj—1 (j = 2,--- , k) and p; = 19, it follows R, = P;Bj. Since the
columns of P, = [py,- -, px] are A-conjugate, we see that

RY ARy, = B diag(pl Apy,-- -, pt Apy) By

is tridiagonal. Since span{py,--- ,py}=span{rg, - ,r,_1 }=span{b, Ab,--- , A*"1b} and
ro,- -+ ,Tr_1 are mutually orthogonal, it follows that if

Ak = diag(ﬁm T 751@—1)7 62 = Hri‘|27

then the columns of Rkﬁlzl form an orthonormal basis for span{b, Ab,--- , A¥=1h}. Con-
sequently the columns of this matrix are essentially the Lanczos vectors of algorithm
7.4.1,ie., ¢ = £rSS/B;1 (i =1,--- k). Moreover,

Ty = AN ' Bl diag(p] Api) By, 1\

The diagonal and subdiagonal of this matrix involve quantities that are readily avail-
able during the conjugate gradient iteration. Thus, we can obtain good estimate of A’s
extremal eigenvalues (and condition number) as we generate the zy in (7.4.11).

L

piOG = ¢;’ - constant.

Show that ¢ are A-orthogonal. Since
C]Lf = Qj = Cj = Qij_Ta
it implies that

T AT T EEp—
= L;'L;D;,LTL;" = Dj.

So {¢;})_, are A-orthogonal.

(b) It is well known that 2§ minimizes the functional ¢(z) = 27 Az — b"x in the

subspace span{ro, Arg, - - - , A7~ 'ro} and 2 minimize ¢(x) = 327 Az—b" x in the subspace

span{qi, - - - ,q;}. We also know that K¢, A, j] = Q;R; which implies (g1, 4, j) =span

{(h; e 7q]} But q1 = b/||b||27 o = b’ S0 span {T07AT0, o 7AJ717”0} = ,C(q17Aaj) =Spall

{q1,- - ,q;} therefore we have ijG = [EJL )



288 Chapter 7. Lanczos Methods
7.4.4 Bidiagonalization and the SVD

Suppose UT AV = B the bidiagonalization of A € R™ " and that

U = [ula"' ,um], UTUZ[m»

Vo= o), VIV = I, (7.4.11)
and
[ a1 B 0 7
B = By | (7.4.12)
0 Qy,
0 0 |

Recall that this decomposition serves as a front end for the SV D algorithm. Unfortu-
nately, if A is large and sparse, then we can expect large, dense submatrices to arise
during the Householder transformation for the bidiagonalization. It would be nice to

develop a method for computing B directly without any orthogonal update of the matrix
A.
We compare columns in the equations AV = UB and ATU = VBT

Avj = agu; + B auja, Poug = 0, ATuy = oy + Bivjen, Bavng =0,
for j =1,--- ,n. Define
rj = Av; — Bj_1u;—1 and p; = ATuj — a;v;.
We may conclude that

a; = £|rill2,  w; = ri/a;,

Vjt1 :pj/ﬁja B; = i”PjH2-

These equations define the Lanczos method for bidiagonaling a rectangular matrix (by
Paige (1974)):

Given v; € R™ with unit 2-norm.
= Avy, o = ||7“1||2-
For j=1,--- ,n,

If a; = 0 then stop;

else
uj =rifag, pj = ATu; — agvj, B = ||pj, (7.4.13)
If 3; =0 then stop; h
else
Vi1 = Pi/Bjs ri1 = Avjir — Bijug, agyr = |12
end if
end if

end for
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It is essentially equivalent to applying the Lanczos tridiagonalization scheme to the sym-

0 4 } . We know that

metric matrix C' = [ AT 0

Ai(C) = 0i(A) = =Anim-i+1(C)

for + = 1,--- ,n. Because of this, the large singular values of the bidiagonal matrix
ar B 0
B; = ' ' tend to be very good approximations to the large singular
e Bia
0 Oéj
values of A.

7.4.5 Least square problems

As detailed in chapter III the full-rank LS problem min||Az — b|| can be solved by the
bidiagonalization (7.4.11)-(7.4.12). In particular,

n
st = VyLs = E a;V;,
i=1

where y = (a1, -+ ,a,)7 solves the bidiagonal system By = (ulb,--- ,ulb)T.

Disadvantage: Note that because B is upper bidiagonal, we cannot solve for y until the
bidiagonalization is complete. We are required to save the vectors vy, - - - , v, an unhappy
circumstance if n is very large.

Modification: It can be accomplished more favorably if A is reduced to lower bidiagonal
form:

- 0
B g
UTAV = B = R . o om>n+l,
. an
0 B
0 - - 0
where V' = [vy,- -+ ,v,] and U = [uq, - -+ , up,]. It is straightforward to develop a Lanczos
procedure which is very similar to (7.4.13). Let V; = [vy,--- ,v;], U; = [ug, -+ ,u;] and
o 0
By
Bj — ER(]+1)X]
o
L 0 i

and consider minimizing || Az — b||2 over all vectors of the form x = Vjy, y € R’. Since

1AVy = bll2 = [|UTAVyy = UTbllo = || By — Ufyiblla + Y (uf ),

i=j+2
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it follows that z; = Vjy; is the minimizer of the LS problem over span{V;} , where y;
minimizes the (j + 1) x j LS problem min||Bjy — U}, ,b[|5. Since B; is lower bidiagonal,
it is easy to compute Jacobi rotations Ji, - -, J; such that
R,
Jj-- J1B; = { J ]

is upper bidiagonal. Let J; - -- JlUﬂlb = { Ci] } , then

R d;
1Byy — UTblla = 1, Ty — Ty U, bl = u[ J]y—{ J]HQ.

)

SO yj = Rj_ldj, ZE']' = V}y] = ‘/JRj_ld] = Wjdj. Let
Wi = (W1, wj), w; = (vj — wj—arj—15) /75

where r;_; ; and r;; are elements of R;. R; can be computed from R; ;. Similarly,

di_ :
dj = { imh x; can be obtained from z;_:

0;

di_
zj = Wid; = (W1, wy) { isjl } = Wjidj1 4 w;d;.

Thus
ZL‘j = l’j_l —|— wjéj.

For details see Paige-Saunders (1978).

7.4.6 Error Estimation of least square problems

Continuity of AT of the function: R™*"™ — R™*" defined by A —— AT.

Lemma 7.4.2 If {A;} converges to A and rank(A;) = rank(A) = n, then {A]} also
converges to AT,

Proof: Since lim A7 A; = AT A nonsingular, so
11— 00

AF = (ATA)TAT 2% (AT A) AT = AT

10
Example 7.4.1 Let A, = | 0 & | withe > 0 and Ay = , then A, — Ay as
0 0

OO =
o O O

1 0 0 1 00
- + _
S%O,Tcmk(Ao)<2.ButAg_{O /e 017L>A —{O 0 O]as&t—ﬂ).
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Theorem 7.4.3 Let A, B € R™*"  then holds

|A* = BY[|p < V2| A = Bl p max{[|A*[|3, || B*]3}.
Without proof.

Remark 7.4.1 It does not follow that A — B implies AT — BT. Because AT can
diverges to 0o, see example.

Theorem 7.4.4 If rank(A) = rank(B) then
|AT = B¥||r < pll AT|J2[| BT [l2/| A = Bllr,
where
_ { V2, if rank(A) < min(m,n)

1, ifrank(A) = min(m,n).

Pseudo-Inverse of A: A™ is the unique solution of equations

ATAAY = AT, (AAT)* = AAY,
AAYA = A, (ATA) = ATA.

Py = AAT is Hermitian. P, is idempotent, and R(Ps) = R(A). P4 is the orthogonal
projection onto R(A). Similarly, R(A) = A" A is the projection onto R(A*). Furthermore,

pis = lIb— AATD|y = (I — AAT)b]l;.
Lemma 7.4.1 (Banach Lemma) ||B~! — A7'|| < ||A - B||||A7Y]|B7].

Proof: From ((A+d§A)™' — AN (A+6A) =1—1T— A"'0A, follows lemma immediately.
]

Theorem 7.4.5 (i) The product PgPi can be written in the form
PsPL = (B*) RyE*PY,
where P+ =1 — Py, B= A+ E. Thus |PgPx]| < ||B*|2||E]|.
(ii) If rank(A) = rank(B), then ||Ps Py | < min{||B* 2, | AT} E]].
Proof:
PgPif = PPy = (BY)'B*Py = (B")(A+ E)'Pf = (B")'E*P}
(BY)'BY(BY)'E"Py = (BY)"RgE"Py (|Rsl < 1,]|Px] <1).

Part (ii) follows from the fact that rank(A) < rank(B) = ||PgP1|| < ||Pg Pal|. Exercise!
(Using C-S decomposition). [ |
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Theorem 7.4.6 It holds

Bt — A* = - B*PyER4AT + B*PyPF — RER,A™.
BY — AT = —-BTPgER AT + (B*B)"RgE*P{ — RgE*Py(AA*)T.

Proof:
_B*BB*(B — A)ATAA* + B*BB*(I — AA*) — (I — B*B)(A*A)A*
— _BY(B— A)A* + B*(I — AA*) — (I — B*B)A*
Bt — A" (Substitute Pg = BBT, E=B — A, Ry = AA",--- ).

Theorem 7.4.7 If B= A+ E, then
IBY = A%||r < V2Bl p max{||A*[|3, | B¥[|3}.

Proof: Suppose rank(B) < rank(A). Then the column spaces of F} and F» are orthog-
onal to the column space of F3. Hence

1B =AMl = |+ Bl + B3l (I - BYB)B* =0).
Since I} + Fy = BT (PgEAT P4 + PgPy), we have
IFy + Follz: < IBFI(1Ps EAY Pallf + | PP |I7).
By Theorems 7.4.5 and 7.4.6 follows that
|PeEAT Pallt + | PPalle < |PREA|% + || Py Pall?
= |[|PsEAT|% + ||1P5 BAT|%
IEAT|E < | E[FIAT]S.
Thus
Iy + Follr < |AT A BTN Ellr - (P Pa = PyERAAT = PEAT).
By Theorem 7.4.6 we have
IBslr < [ATIR5RAllr = AT ||2| RaRE |l = [|A*||2]| AT ER|
< ATIEIE] P
The final bound is symmetric in A and B, it also holds when rank(B) > rank(A). ®
Theorem 7.4.8 If rank(A) = rank(B), then
1B = A |lp < V2| AT [|2|| BT |lo| Ell . (see Wedin (1973))

From above we have

1B+ = A*|r TR
W <Ak (A
B S V2R

This bound implies that as E approaches zero, the relative error in B* approaches zero,
which further implies that B™ approach A*.

Corollary 7.4.9 limp 4 Bt = A" <= rank(A) = rank(B) as B approaches A.
(See Stewart 1977) [
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7.4.7 Perturbation of solutions of the least square problems

We first state two corollaries of Theorem (SVD).

Theorem 7.4.10 (SVD) If A € R™*" then there exists orthogonal matrices U = [uy, - - -
R™™ and V = [vy,-++ ,v,] € R™™ such that UTAV = diag(oy,--- , 0,) where p =
min(m,n) and oy > gy > --- > 0, > 0.

Corollary 7.4.11 If the SVD 1is given by Theorem 7.4.10 and o1 > -+ > 0, > 0,41
=-.-=0,=0, then

(a) rank(A) =r.
(b) N(A) =span{vsr, -+ vn}.
(c) Range(A) =span{uy,--- ,u,}.

(d) A =37_ouv! = U VT where U, = [u1,- ,u,], V, = [v1,-++,v,] and &, =
diag(oy,--- ,0;).

(e) Az =0f+-+07.
(f) [[All2 = o1
Proof: exercise !

Corollary 7.4.12 Let SVD of A € R™ "™ is given by Theorem 7.4.10. If k < r =
rank(A) and Ay, = ¥ ol then

min ”A—XHQ = ”A_AkH2 = Ok+1- (7414)

rank(X)=k,XcRm*n

Proof: Let X € R™*" with rank(X) =k. Let 7q,--- , 7, with 7y > --- > 7,, > 0 be the
singular values of X. Since A = X + (A — X) and 71 = 0, then o441 = |71 — o] <
|A — X||o. For the matrix Ay = USVT (X = diag(oy, -+ ,0%,0,- -+ ,0)) we have

1A = Aplle = [UE = Z)V T2 = |2 = L2 = ops.

LS-problem: ||Az — b||s=min! = x5 = AT0D.

Perturbated LS-problem: ||(A+ E)y — (b+ f)|z =min! = y=(A+E)*(b+ f).

Lemma 7.4.13 Let A, E € R™" and rank(A) =r.

(a) If rank(A+ E) > r then holds ||(A+ E)*[s > .

(b) If rank(A+ E) <r and ||[A*|2]|E||2 < 1 then rank(A+ E) =r and

lar),
| A7 LT,

[(A+B) > <

U] €
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Proof: Let 7 > --- > 7, be the singular values of A + F.

To (a): If 74 is the smallest nonzero singular value, then k& > r + 1 because of rank(A +
E) > r. By Corollary 7.4.6, we have ||E||s = |[(A+ E) — Al|s > 7,41 > 7 and therefore
1A+ E) 2 = 1/ = 1/[| El2.

To (b): Let 01 > - -+ > 0, be the singular values of A, then o, # 0 because of rank(A) = r
and [|[At|2 = 1/o,. Since ||[AT|]2||E|l2 < 1 so ||E|]2 < oy, and then by Corollary 7.4.6 it
must be rank(A + E) > r, so we have rank(A + E) = r. By Weyl’s theorem (Theorem
6.1.5) we have 7, > 0, — || E'||2 and furthermore here o, — || E||3 > 0, so one obtains
1A+ E) 2 = 1/m < 1/(0r = [[Ell2) = AT |2/ (1 = | AT [|2[| E]]2)-
]
Lemma 7.4.14 Let A,E € R™" b, f € R™ and x = A™b, y = (A+ E)*(b+ f) and
r=0b— Ax, then holds
y—1 = [—(A+E)"EAT" +(A+E)T(I — AA™")
+(I - (A+ E)Y(A+ E) AT )b+ (A+ E)*f
= —(A+E)Y Ex+(A+E)Y (A+E)"'E'y
+(I - (A+E)"(A+E)ETAT™ 2+ (A+E)"f.
Proof: y —z = [(A+ E)" — AT]b+ (A+ E)*f and for (A + E)* — A" one has the
decomposition
(A+ E)t — A" = —(A+E)"EAT"+(A+E)" — A"
+(A+ E)f(A+E — A)A*
= —(A+E)"EAT"+(A+ E)"(I — AA™)
—(I—(A+E)t(A+ E))At.
Let C := A+ E and apply the generalized inverse to C' we obtain C* = CTCC* =
CrCt' Ct and
AT(I — AAT) = AT — ATAAT = AT — ATAT AT = AT — ATATT AT =,
also At = ATA*" At and (I — C*C)CT = 0. Hence it holds
CH(I — AAY) = CTCT ET(I — AAY)
and
(I-CTC)A* = (I — CTC)ETAT A*,
If we substitute this into the second and third terms in the decomposition of (A+FE)"—A*
then we have the result (r = (I — AAT)b, x = ATh):
y—1z = [—(A+E)TEA* +(A+E)"(A+ E)* ET(I — AA")
+(I—(A+E)"(A+ E)ETAT A* b+ (A+ E)*f
— —(A+E)*Ezx+ (A+E)"(A+ E)*" ETr
+(I—(A+E)'(A+ E)ETAY 2+ (A+ E)tf.
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7.5 Unsymmetric Lanczos Method
Theorem 7.4.15 Let A,E € R™" b feR™ andx=ATb#0,y=(A+E)"(b+ f)
and r =b— Az. If rank(A) =r, rank(A+ E) <r and ||A*]|2]|E|l2 < 1, then holds

< NALNA™: Bl A Bl il (e ]

T = ATRIEN LAl - T = AT RIE [[All2 ]2 [All2]lz]l

ly — |2
]l

Proof: From Lemma 7.4.14 follows
ly =zl < (A4 E) 2| Ell2llz]l2 + [[(A 4+ E) T2l Ell2llrll2 + [1£]l2]

HII = (A+ E) (A + E) |2l Ell2]| A7 [|2]|]]2-

Since I — (A+ E)T(A+ E) is symmetric and it holds
(I—(A+E)Y"(A+E)?=1—-(A+E)"(A+E).

From this follows || — (A+ E)*(A+ E)||s =1, if (A+ E)"(A+ E) # I. Together with

the estimation of Lemma 7.4.13(b), we obtain
1A A"

ly ==l < 2| Ell2llll2 + 1/ 1|2 + IE2]Ir 2

L= [[A*[|o[[ £ 1= [[A*[|o[[ £

A2 [IE]l: ||7“||2]

and
- All2||AT E
ly =zl _ _| ||2ﬂ 2 l2|| 2 Al ;
[l L=l AT LBl [ [[Allz  [[Allllzlla 1= (A2l £z [|A]l2 2]
|
7.5 Unsymmetric Lanczos Method
Suppose A € R™"™ and that a nonsingular matrix X exists such that
ar M 0
XAx =1 |t @
o a1
0 /Bn—l Ay,
Let
X =[x, ,z]and X T =Y = [y, -+, yn].
Compared columns in AX = XT and ATY = YT7, we find that
Azj = yjiamjo + gy + Bzt Yoro =0
and
ATy; = Bi_1yio + oy + v, Poyo =0
for j=1,--- ,n — 1. These equations together with Y*X = I, imply a; = yJ Az; and
Bizjr =75 = (A — y); — Yj-1%-1,
7.5.1
= (A—a)y; — By (7:5.1)

Vi¥i+1 = DPj
These is some flexibility in choosing the scale factors 3; and 7;. A “canonical” choice is

[9;ll2 and ~v; = 27, p; giving:

to set 8, =
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Algorithm 7.5.1 (Biorthogonalization method of Lanczos)

Given x1,y; € R" with 21z, = yly, = 1.
Forj=1,--- , n—1,
a; :y;‘-FAa:j,

Ty = (A - Oéj)xj — Yj-1Tj-1 (7096‘0 = 0),
Bj = |2
If B; > 0 then
T = 15/ 5;, (7.5.2)

pj= (é —a;)"y; — Bi—yi—1 (Boyo = 0),
Vi = TPy
else stop;

If v; # 0 then yj1 = p;/7; else stop;
end for

a, = 2L Ay,,.

Define X; = [z1, -, 2], Y; = [y1,--- ,y;] and T} to be the leading j x j principal
submatrix of T', it is easy to verify that

Az‘{(j = X5 + %’6;‘21

Remark 7.5.1 (i) plv; = B;v;2] Y41 = By from (7.5.1).
(ii) Break of the algorithm (7.5.2) occurs if pj~; = 0:

(7.5.3)

(a) v, =0= B; =0. Then X, is an invariant subspace of A (by (7.5.3)).
(b) pj =0=; =0. ThenY; is an invariant subspace of AT (by (7.5.3)).
(€) pjv; = 0 but |[p;ll;ll # 0, then (7.5.2) breaks down. We begin the algorithm

(7.5.2) with a new starting vector.

(iii) If pf’yj is very small, then v; or B; small. Hence y;j41 or x4 are large, so the
algorithm (7.5.2) is unstable.

Definition 7.5.1 An upper Hessenberg matrizc H = (h;;) is called unreducible, if hiy1,; #
0, fori=1,--- ,n—1 (that is subdiagonal entries are nonzero). A tridiagonal matriz T =
(ti;) is called unreducible, if t;;—1 #0 fori=2,--- ,nandt;;41 #0 fori=1,--- ,n—1.

Theorem 7.5.2 Let A € R"™". Then

(i) If z # 0 so that K|x1, A,n| = [x1, Azy,- -+, A" 21| nonsingular and if X is a non-
singular matriz such that Klxi, A,n] = X R, where R is an upper triangular matriz,
then H = X 1AX is an upper unreducible Hessenberg matriz.

(ii) Let X be a nonsingular matriz with first column 1 and if H = X 'AX is an upper
Hessenberg matriz, then holds

K[z1,A,n]| = XKley, H,n] = XR,

where R is an upper triangular matriz. Furthermore, if H is unreducible, then R
s nonsingular.
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(iii) If H = X 'AX and H = Y~YAY where H and H are both upper Hessenberg

matrices, H is unreducible and the first columns x1 and y1 of X and Y, respectively,
are linearly dependent, then J = XY is an upper triangular matriz and H =

JIHJ.
Proof: ad(i): Since x1, Azy,--- , A" 'z, are linearly independent, so A"z, is the linear
combination of {x, Axy, -+, A" 'z}, i.e., there exists cp, - , ¢, such that

n—1
Anl'lz E CiAliCl.
1=0

Let
0 0 Co
o= |1 “
0
0 1 Cn—1

Then we have Klzy, A,n|C = [Axi, A%z, -, A" oy, A%ry] = AKlxy, A;n]. Thus
XRC = AXR. We then have

X 'AX =RCR'=H

is an unreducible Hessenberg matrix.
ad(ii): From A = XHX ! follows that Alz; = XH'X 12, = X H’e;. Then

Klxy,An] = (v, Azy, - A" '] = [Xey, XHey, -+, XH" ey
= Xlei,Hey, -, H" tey].
If H is upper Hessenberg, then R = [e;, Hey, -+, H" le] is upper triangular. If
H is unreducible upper Hessenberg, then R is nonsingular, since r1; = 1, 799 = hay,
r33 = hathgo, - -+, and so on.

ad(iii): Let y; = Azy. We apply (ii) to the matrix H. It follows K[z, A,n] = XR;.
Applying (ii) to H, we also have K[y1, A,n] = YR,. Here Ry and R are upper triangular.
Since y; = A\x1, SO
AK[z1,A,n] = AXR; = YR,.
Since R, is nonsingular, by (ii) we have R, is nonsingular and X 'Y = AR, Ry = J
is upper triangular. So

H=Y'AY = (Y ' X)X 'AX(X'Y) = J'HJ.
|

Theorem 7.5.3 Let A € R, z,y € R" with K[z, A,n] and K[y, AT, n] nonsingular.
Then

(i) If B = K[y, A", n]"K[z,A,n] = (yTA™22);,-1..n has a decomposition B =
LDLT, where L is a lower triangular with l;; = 1 and D is diagonal (that is all prin-
cipal determinants of B are nonzero) and if X = K|z, A,n|L™1, then T = X 1AX
1s an unreducible tridiagonal matrix.
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(i) Let X,Y be nonsingular with

(a) T = XTAX, T =Y 'AY unreducible tridiagonal,
(b) the first column of X and Y are linearly dependent,

(c) the first row of X and Y are linearly dependent.
Then XY = D diagonal and T = DT D.

(iii) If T = X 'AX is unreducible tridiagonal, = is the first column of X and Y is the
first row of X1, then
B = K[y, A", n]" K[z, A,n]

has a LDLT decomposition.
Proof: ad(i):
X =Klz,An|L™" = XLT = K[z, A,n]. (7.5.4)
So the first column of X is . From B = LDL" follows
Kly, A" n)" = LDL" K[z, A,n]™*
and then
K[y, A" ,n] = K[z, A,n] "LDL" = X TDL". (7.5.5)

Applying Theorem 7.5.2(i) to (7.5.4), we get that X' AX is unreducible upper Hessen-
berg. Applying Theorem 7.5.2(i) to (7.5.5), we get that

XTATX T =(xtAax)!
is unreducible upper Hessenberg. So X "'AX is an unreducible tridiagonal matrix.

ad(ii): T and T are unreducible upper Hessenberg, by Theorem 7.5.2(3) we have X 1Y
upper triangular on the other hand. Since 77 = XTATX T and 77 = YTATY T
are unreducible upper Hessenberg, then by Theorem 7.5.2(iii) we also have YT X~ T =
(X71Y)T is upper triangular. Thus X 'Y is upper triangular, also lower triangular so
the matrix XY is diagonal.

ad(iii): exercise! [
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Arnoldi Method

8.1 Arnoldi decompositions

Suppose that the columns of K}, are linearly independent and let
K1 = U1 Ry

be the QR factorization of Ky .

Theorem 8.1.1 Let ||ui|lo = 1 and the columns of Kyi1(A,uy) be linearly independent.
Let Ugpy = [ w1 -+ uggr | be the Q-factor of Kigii. Then there is a (k + 1) X k
unreduced upper Hessenberg matriz

i @11 SRR f}m
hoi hoy - ha,
Hy = : with — hip1; # 0
hig—1  hik
i Prg1n
such that
AU}, = Uy 1 Hy. (8.1.1)

Conversely, if Ug11 is orthonormal and satisfies (8.1.1), where Hyisa (k+1)xk unreduced
upper Hessenberqg matriz, then Uy, q is the Q-factor of Kii1(A, uy).

Proof: (“=") Let K} = U,Ry, be the QR factorization and Sy = R,;l. Then

0 0 ~
AU, = AK Sk = Ky { S, } = Upt1Rra [ S, } = Up1 Hy,

where

- 0
Hk:Rk+1[Sk1
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It implies that Hj, is a (k + 1) x k Hessenberg matrix and

i B _ Ti1401
i+1,0 = Tit1,i4+1Si = .
T

Thus by the nonsingularity of Ry, H,, is unreduced.
(“<") If k =1, then

Au1 = h11u1 + h21U2.

It follows that

1 h
KA w) = fun Awn] = [uy s [ 0 ha ]
21

Since [uy us] is orthonormal, [uy us] is the Q-factor of K.
Assume Uy, is the Q-factor of Kj(A,uy), i.e.

Ky (A, uy) = UpRy,
where Ry is upper triangular. If we partition
0 Dhptik
then from (8.1.1)
Kk+1(A,U1> = [ Kk(A,ul) Auk ]
= [ UpRy, Uy +Bk+1,kuk+1 }
R, Iy
= U, N .
[ ko Uk+1 } { 0 hk—s—l,k}

Hence Uy is the Q-factor of Ky, 1. [ |

Definition 8.1.1 Let Uy € C™***Y be orthonormal. If there is a (k+1) x k unreduced
upper Hessenberg matriz Hy such that

AU, = Uy Hy, (8.1.2)

then (8.1.2) is called an Arnoldi decomposition of order k. If H, is reduced, we say the
Arnoldi decomposition is reduced.

Partition

. o,
o= ,
g { P k€l }

and set

B = hisre
Then (8.1.2) is equivalent to
AU, = UpHy, + Brugiiey -
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Theorem 8.1.2 Suppose the Krylov sequence Ky 1(A,u1) does not terminate at k + 1.
Then up to scaling of the columns of Uyy1, the Arnoldi decomposition of Kyy1 is unique.

Proof:  Since the Krylov sequence Kj1(A, u1) does not terminate at k + 1, the columns
of Ky1(A,uyp) are linearly independent. By Theorem 8.1.1, there is an unreduced matrix
Hy. and (8, # 0 such that

AU, = U.H;, + Bkukﬂef, (813)

where Uy 41 = [Uy, u41] is an orthonormal basis for KCpy1(A, u1). Suppose there is another
orthonormal basis Uy = [U;.C Ug1) for Kgi1(A,uq), unreduced matrix Hy and By £ 0
such that

AU, = U Hy, + Brligser .
Then we claim that
U,fukﬂ =0.
For otherwise there is a column ; of Uk such that
;= augq1 + Uga, o #0.
Hence
Aty = aAug + AUga

which implies that A@; contains a component along A**'u;. Since the Krylov sequence
Ki11(A, up) does not terminate at k + 1, we have

}Ck+2<A7 Ul) # Kk+1(Aa Ul)-

Therefore, At lies in KCxi9(A, ) but not in Kyy1(A, uy) which is a contradiction.
Since U1 and Ukﬂ are orthonormal bases for Cy41(A, u1) and Ui i U1 = 0, it follows
that

R(U) =R(U;)  and  Ufliigsr =0,
that is
U, = U@
for some unitary matrix ). Hence
AURQ) = (UxQ)(Q" HrQ) + Briis (£ Q),
or

AU, = Uk(QHﬁkQ) + BkﬂkﬂegQ. (814)
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On premultiplying (8.1.3) and (8.1.4) by U/, we obtain

H, = Ul AU, = Q" H,Q.
Similarly, premultiplying by u;’ ;, we obtain
5k€£ = UfﬂAUk = Bk(“kHﬂﬂkH)eZQ-

It follows that the last row of @ is wyel, where |wy,| = 1. Since the norm of the last
column of () is one, the last column of () is wyeg. Since Hy is unreduced, it follows from
the implicit ) theorem that

Q = diag(wy, -+ ,wg), |wil=1,7=1,... k.

Thus up to column scaling Uy, = U,Q is the same as U. Subtracting (8.1.4) from (8.1.3),
we find that

Brtk+1 = Wi PBrlip41

so that up to scaling uy,, and g, are the same. [ |

Theorem 8.1.3 Let the orthonormal matriz Uy, satisfy
AUy = Upyr Hy,

where Hy is Hessenberg. Then H, is reduced if and only if R(Uy) contains an eigenspace
of A.

Proof: (“=") Suppose that H, is reduced, say that hjt1; = 0. Partition

| Hio Hy
H’“_{ 0 Ha

:| and Uk = [ U11 U12 ],
where Hyp is an j X j matrix and Uy, is consisted the first j columns of U, ;. Then

H H
A[ Un Ui ] = [ Un Uiz ugsr ] [ - 12 } .

0  Hy
It implies that
AU = U Hy

so that Uj; is an eigenbasis of A. R
(“«<=") Suppose that A has an eigenspace that is a subset of R(Uy) and Hj, is unre-
duced. Let (A, Uyw) for some w be an eigenpair of A. Then

0 = (A= M)Upw = (Uppr Hy — ANUp)w

N T N
= (Uk+1Hk — AUkt { 0 ]) w = Upr1 Hyw,
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FIA:[H,C—)\I]'

where

T
D1 ke,

Since H,y is unreduced, the matrix Uk+1lfl » is of full column rank. It follows that w = 0
which is a contradiction. [ |
Write the k-th column of the Arnoldi decomposition

AUy, = UpHy, + Brugief,
in the form
Auy, = Uphy, + Brtggr-
Then from the orthonormality of Uy, we have
Since
Brugs1 = Auy, — Uphy
and [|ugs1|]2 = 1, we must have
Br = [ Aug, — Uphy||2
and
U1 = By (Aug — Urhy,).
Algorithm 8.1.1 (Arnoldi process)
1. Fork=1,2,...
3. v = Auk — Ukhk
4 B = Prgrp = [[v]|2
5 Up1 = U[ﬁk
9]
7

3 Hyy g
H. —
g [ 0 Atk

end for k

The computation of ugyq is actually a form of the well-known Gram-Schmidt algo-
rithm. In the presence of inexact arithmetic cancelation in statement 3 can cause it to
fail to produce orthogonal vectors. The cure is process called reorthogonalization.

Algorithm 8.1.2 (Reorthogonalized Arnoldi process)

Fork=1,2,...
v = Auk — Ukhk
w=Ufv.
hk = hk + w.

v=1v—Uw.
Br = hi+16 = ||v]|2
Uk+1 = U{ﬁk

i, — |:Hk—1 hy, }

0 Atk
end for k
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Let yi(k) be an eigenvector of Hj associated with the eigenvalue /\Ek) and xgk) = Ukygk)
the Ritz approximate eigenvector.

Theorem 8.1.4

(A= 2D = hy ey g
and therefore,

k k k
1A = AP0y = [y il Ty,

8.2 Krylov decompositions

Definition 8.2.1 Let uy, us, ..., upy1 be linearly independent and let Uy = [ug - -+ wy).
AUk = UkBk + uk+1b£{+1

is called a Krylov decomposition of order k. R(Uyy1) is called the space spanned by
the decomposition. Two Krylov decompositions spanning the same spaces are said to be
equivalent.

Let [V v]¥ be any left inverse for Ugy1. Then it follows that
B, =V"AU, and b, =0"AU;.

In particular, By, is a Rayleigh quotient of A.
Let

AUy = Uy B + g1y

be a Krylov decomposition and ) be nonsingular. That is
~ ) A By,

Then we get an equivalent Krylov decomposition of (8.2.5) in the form

s = (m[§ 2 ([ 2]

-1
= [ U@  upt1 } [ ngka ]
= (UQ)(Q7'BQ) + tps1 (b1 Q)- (8.2.6)

The two Krylov decompositions (8.2.5) and (8.2.6) are said to be similar.
Let

Yty = upy1 — Upa.
Since uy, . .., U, Ugr1 are linearly independent, we have v # 0. Then it follows that
AUy = Up(By, + abi’. ) + g1 (V05 1)-

Since R([Ux ugt1]) = R([Uk Tg41]), this Krylov decomposition is equivalent to (8.2.5).
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Theorem 8.2.1 FEvery Krylov decomposition is equivalent to a (possibly reduced) Arnoldi
decomposition.

Proof: Let
AU = UB + ub"

be a Krylov decomposition and let

be the QR factorization of U. Then
AU = AUR™) = (UR™Y)(RBR™Y) + u(b®*R™') = UB + ub”

is an equivalent decomposition. Let

i =~""(u—Ua)
be a vector with [i]|; = 1 such that U”@ = 0. Then

AU = U(B + ab™) + a(y0") = UB + ab"
is an equivalent orthonormal Krylov decomposition. Let ) be a unitary matrix such that
b"Q = [|bl|zef
and QY BQ is upper Hessenberg. Then the equivalent decomposition
AU = AUQ) = (UQ)(Q"BQ) + (b Q) = UB + ||b]|ziie},

is a possibly reduced Arnoldi decomposition where

U4 =Q"U"a = Q"R MUMa = 0.

8.2.1 Reduction to Arnoldi form
Let

AU = UB + ub”

be the Krylov decomposition with B € C***. Let H; be a Householder transformation
such that

bH H, = Bey,.
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Reduce HI BH, to Hessenberg form as the following illustration:

X X X X ® ® ® X
Bi= | X X Xl op=BH,=|% %%
X X X X ® ® ® X
X X X X 0 0 ® x
[+ + + + © O + +
+ o+ o+ 4 & 6 + +
B:=H}B= B := BH
~ 2 o+ | ’ 0 & + +
| 0 0 ® X 0 0 ® x
—* * * *
B=Hip=|% * * *
- 3 0@ + +
| 0 0 ® X
Let
Q=HHy - Hy1.
Then Q¥ BQ is upper Hessenberg and
b"Q = (V" Hy)(Hy- - Hyy) = Bef (Hy -~ Hy 1) = Bej -
Therefore, the Krylov decomposition
A(UQ) = (UQ)(Q"BQ) + Buey, (8.2.7)

is an Arnoldi decomposition.

8.3 The implicitly restarted Arnoldi method

Let
AU, = UpHy, + Brupsrer

be an Arnoldi decomposition.

e In principle, we can keep expanding the Arnoldi decomposition until the Ritz pairs
have converged.

Unfortunately, it is limited by the amount of memory to storage of Uy.

Restarted the Arnoldi process once k becomes so large that we cannot store Uj,.

— Implicitly restarting method

— Krylov-Schur decomposition

Choose a new starting vector for the underlying Krylov sequence

A natural choice would be a linear combination of Ritz vectors that we are interested

1.
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8.3.1 Filter polynomials

Assume A has a complete system of eigenpairs (\;, ;) and we are interested in the first
k of these eigenpairs. Expand u; in the form

k n
up = Z%ﬂ?i + Z Vi
i=1

1=k+1

If p is any polynomial, we have

k n
p(A)uy = Z%’p()\i)fm + Z Yip(Ni) ;.
i=1 i=k+1
e Choose p so that the values p(\;) (i = k+1,...,n) are small compared to the values
e Then p(A)uy is rich in the components of the z; that we want and deficient in the
ones that we do not want.
e p is called a filter polynomial.
e Suppose we have Ritz values pq, ..., ttm, and pig41, ..., 4y are not interesting. Then

take

p(t) = (t = psr) -+ (t — pm)-

8.3.2 Implicitly restarted Arnoldi
Let
AU, = Uy Hyy 4 Brntbmir€l, (8.3.8)

be an Arnoldi decomposition with order m. Choose a filter polynomial p of degree m — k
and use the implicit restarting process to reduce the decomposition to a decomposition

AUy, = UpHy, + Briig et

of order k with starting vector p(A)u;.
Let K1, ..., kK, be eigenvalues of H,, and suppose that k1, ..., Kk, correspond to the
part of the spectrum we are not interested in. Then take

p(t) = (t — k1) (t — ko) -+ (t = Fom_r)-
The starting vector p(A)u; is equal to

p(Au; = (A—Kmil) (A= ko) (A — K1)y
= (A= fmil) [ [(A= K2l [(A = R )u]]].
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In the first, we construct an Arnoldi decomposition with starting vector (A — k11)u;.
From (8.3.8), we have

(A— kiU, = Un(Hpy — 81d) + Byl (8.3.9)
= UleRl + ﬁmum—i-lez—‘m

where
H, —rkil =0Q1R,
is the QR factorization of H,, — k1I. Postmultiplying by @), we get
(A= 51 1)(Un@1) = (UnQ1)(R1Q1) + Brntims1 (e, Q1)
It implies that
AU = UDHD + Bt s1birs,

where
UD =U0,Q1, HY =RQ+ml, b =elQi
(Hfr}) : one step of single shifted QR algorithm)
Theorem 8.3.1 Let H,, be an unreduced Hessenberg matrixz. Then HY has the form
HO — { HY  ha ] 7

m 0 K1
where HY s unreduced.
Proof: Let
Hy, — kil = QlRl
be the QR factorization of H,, — x1I with
Q1 =G(1,2,0,)---G(m —1,m,0,,_1)

where G(i,i 4+ 1,0;) for i = 1,...,m — 1 are Given rotations. Since H,, is unreduced
upper Hessenberg, i.e., the subdiagonal elements of H,, are nonzero, we get
0; #0 for i=1,....,m—1 (8.3.10)
and
(R1)y #0 for i=1,...,m—1. (8.3.11)
Since k1 is an eigenvalue of H,,, we have that H,, — k[ is singular and then
(R1)mm = 0. (8.3.12)
Using the results of (8.3.10), (8.3.11) and (8.3.12), we get
HY = RiQy+ kil =RG(1,2,0)) - G(m—1,m,0p,_1)+ k1]
_ { HyY o }
0 &k |’

where fAngl) is unreduced. [ |
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Remark 8.3.1

° UT(,}) 18 orthonormal.

e Since H,, is upper Hessenberg and )y is the QQ-factor of the QR factorization of
H,, — k11, it tmplies that Q1 and HY are also upper Hessenbery.

o The vector bgif{ = el Q1 has the form

BOH _ [ .. g O (1)

m+1 7 m—1,m dmm )

i.e., only the last two components of bgll are nonzero.

e For on postmultiplying (8.3.9) by ey, we get

(A= ki Duy = (A= 51 1) (Upper) = UV Ryey = rﬁ)ugl).
Since H,, is unreduced, rﬁ)
multiple of (A — Kk11)uy.

is nonzero. Therefore, the first column of Ul is a

e By the definition of H,(,P, we get

QlH?S%)Q{I = Ql(RlQl + Hlj)QfI == QlRl + /ﬁ?lf = Hm

Therefore, ki, kKo, ..., Ky are also eigenvalues of oy,
Similarly,
(A= ro)UD = UDHY — kol ) + Bt 3160 (8.3.13)

= UE)Qsz + ﬁmum-l—lb;(yt)fi
where
H,(,%) — kol = Q2R

is the QR factorization of H,%) — kol with upper Hessenberg matrix )5. Postmultiplying
by @2, we get

(A= D) (ULQ2) = (U Qo) (RoQ2) + Bt 1 (W11 Q).
It implies that

where
U = U Qs

is orthonormal,

H7(;12) = RoQr + kol = Ko
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is upper Hessenberg with unreduced matrix Hﬁ)_Q and

bgszrhlr = bfv}LLI{QQ = qgll,megleQ + qa(nl,)meﬁQ2
[0 -+ 0 x x x].
For on postmultiplying (8.3.13) by e, we get
(A— H2I)u§1) = (A — ko) (UWey) = UP Ryey = Tﬁ)u§2).

Since HY is unreduced, 7“%21) is nonzero. Therefore, the first column of U is a multiple
of (A — ko D)ul?) = 1/7’8)(14 — ko) (A — K1 )uy.
Repeating this process with ks, ..., K,,_, the result will be a Krylov decomposition

AU = U= HE P 4 B b P
with the following properties

1. U&mfk) is orthonormal.

i, HOM s upper Hessenberg.

iii. The first £ — 1 components of b,(;ln +_1k)H are zero.

iv. The first column of U™ is a multiple of (A—ril) (A= Kl )uy.

Corollary 8.3.1 Let kq, ..., Kk, be eigenvalues of H,,. If the implicitly restarted QR step

1s performed with shifts k1, ..., Km_x, then the matriz HS ™ has the form
(m—k) (m—k)
Hm=Fk) _ Hkk Hk,m—k
m 0 T(mfk) ’
where T is an upper triangular matriz with Ritz value Ky, . .., km—p on its diagonal.

For k =3 and m = 6,

A[u U u‘u U u}

X X X|X X X

O O OO X X
O O O X X X
O O X[ X X X
o X X[ X X X
X X XX X X

+u[0 0 qlq ¢ q].
Therefore, the first k£ columns of the decomposition can be written in the form

AU,im_k) = U,Em_k)H,g’,f_k) + hk+17kuénlfk)€g + Brlmitim+ 1€}
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where U,im_k) consists of the first k columns of UL ", H ,gzl_k) is the leading principal

submatrix of order k of H&m_k), and @, is from the matrix Q = Q1 - Q,n—r. Hence if
we set

U, = U™,

H, = HYY,

B = Hthrl,ku;(;z;k) + BrtmrUm+1|l2,
Upy1 = Bgl(hm,ku;”jl_k) + BrGmitm+1),

then
AUy = UpH,y, + Byt i€}

is an Arnoldi decomposition whose starting vector is proportional to (A — k1) -+ (A —
Km—kl)uy.

e Avoid any matrix-vector multiplications in forming the new starting vector.
e Get its Arnoldi decomposition of order k for free.

e For large n the major cost will be in computing UQ.
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Chapter 9

Jacobi-Davidson method

References:

(i) Sleijpon, Henk and Van der Vorst, SIAM Matrix Anal, Appl, Vol.17, PP.401-425,
1996

(ii) BIT, Vol.36, PP.595-633, 1996.
(iii) STAM Sci comp, Vol.20, PP.94-125, 1998

(iv) Lehoucg and Meerbergen, Using generalized Cauchy Transformation within an in-
exact rational Krylov subspace method, 2001

9.1 JOCC(Jacobi Orthogonal Component Correction)

Consider
Axr = Az,
where A is a nonsymmetric diagonal dominant matrix (i.e., la;| > 3=, ai;|). Let
T
Al C ’
b F

with a being the largest diagonal element. Then

= E IR or

That is
A=a+CTz,
{ (F = \)z = —b. (9-1.2)
Jacobi proposed to solve (9.1.2) by the following Jacobi iteration with z; = 0
for k=1,2,...
_ T
91.3—05—1-0 2L <913)

(D — 6k1)2k+1 = (D — F)Zk —b
end

where D = diag(F).
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Remark 9.1.1 6, is not a Ritz value.

9.2 Davidson method

(Davidson’s method as an accelerated JOCC method)

Assume uy, = is an approximated eigenvector and 6, is the associated approx-
Rk

imated eigenvalue. The residual is given by

a— 0, +clz

re = (A — 01 )uy, = (F—0D)z b |- (9.2.4)
Davidson(1975) proposed computing ¢ from
(Da — Ox)ty, = —rg, (9.2.5)

where D4 = diag(A). It implies that

(16 D] ) [ =1 —r—onas)

For the component g, = [ 0 yl ]T of t;, orthogonal to u; = [ 10 }T, it follows that
(D=0 )y = —(F —0il)zp —b= (D — F)z, — (D — 0.1)z, — b, (9.2.6)
where D is the diagonal of F', or equivalently,
(D — 0, 1) (2 + yx) = (D — F)z, — b. (9.2.7)

Comparing (9.2.7) with (9.1.3), we see that z;+yy is the 2, that we would have obtained
with one step JOCC starting with zy.

Instead of taking 1 := [1, (2x + y&)T|* = up + i as the next approximating eigen-
vector, Davidson suggested computing Ritz vector of A with respect to

Skz—H = <UL, U, Uyl >=< U, " ,uk,tk >

= <Wp,...,041 >, (orthogonal basis)

where u; = eq,

a—u—kA—u—l—O t—*—*—f—o
k+1 — Uk Y = Uk yk ) k — yk - 0 yk )

i.e., compute a Ritz pair (0.1, ugr1) which is “nearest” the target value. Then compute

Try1 = (A — Op1l)ug; and GOTO (9.2.4).
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9.3 Jacobi Davidson method

In fact, we want to find the orthogonal complement for the current approximation uy
with respect to the desired eigenvector u of A. We are interested in seeing explicitly what
happens in the subspace u;*. Let

B = ([ — ukukT)A(I — ukukT), ukTuk =1
It follows that

= A=B+ AukukT -+ ukukTA — OkukukT. (938)

where (0, uy) is a given Ritz pair 0, = T
When we are in search of eigenvalue A of A choose to 6, then we want to have the
correction v L u; such that
Alug +v) = Mug + v). (9.3.9)
By (9.3.8) and Buy = 0, we have
(B—=M)v=—1+(\— 0 —up” Av)uy. (9.3.10)
Since
(B—X)ve<u™> and r= Au, — Oy L uy,
it follows that

(B—X)v=—r. (9.3.11)

Replacing A in (9.3.11) by 6, it holds that

(B —0pl)v=—r, (9.3.12)

that is
(I — upup ) (A — 0Nt = —7, t L wy. (9.3.13)
Remark 9.3.1 (a) If we take v = —r, then we obtain the same results as with the

Arnoldi or Lanzcos method.
(b) If we take v = —(Da — 0,,I) 1y, then we obtain the original Davidson method.

(c) Select suitable approzimations t L wy for the solution of (B — OpI)t = —r, with
t L Uk -
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Algorithm 9.3.1 (Jacobi-Davidson Algorithm)

Given a vector vy with ||vi|l2 = 1; set Vi = [vy].
Compute Wy = AV} and M, = V'Wh.
Dok=1,23,...
(i) Compute all the eigenpairs of the small size problem
(Mk - HIk)s =0.
(ii)  Select the desired (target) eigenvalue 0y and
let si be the associated normalized eigenvector.
(ili)  Compute uy, = Visy and r, = (A — Oxl)uy,.
(iv)  If (||rell2 <€), Set X\ = 0k, v = uy, Stop.
(v)  Solve (approximately) a t L wy from
(I —upup)(A —0pl) (I — ugpup)t = —1g.
(vi)  Orthogonalize t against Vi; Set vg1 =t/ || ]2 -
M, Vi w1
Ut Wh VE 1 Whia
(Vlll) Expand Wk+1 = [Wk7wk+1] and Vk-i—l = [Vk, Uk—i—l]

(vil)  Compute wii1 = Avgy, Mgy =

In the Jacobi-Davidson method, we must solve correction vector ¢ with ¢t L u; from
the correction equation

(I — wwf)) A(O) (I — wpuy, )t = —ry, (9.3.14)

where A(0;) = A — 0I. In the following, we discuss how to construct approximate
solution ¢ in (9.3.14) with three different methods.

(a) Method I: Use preconditioning iterative approximations, e.g., GMRES, to solve
(9.3.14). The method uses a preconditioner

M, = (I —w)) M (I —wf)) = (I —wpuy ) A(0r) (I — wpy,)

where M is an approximation of A () and an iterative method to solve Eq. (9.3.14). In
each of the iterative steps, it needs to solve the linear system

Mpt=y, tLu (9.3.15)
for a given y. Since ¢t L ug, Eq. (9.3.15) can be rewritten as
(I — ukug) Mt=y = Mt= (u;‘f./\/lt) U + Yy = npur + .
Hence
t =My + My,

where

_ o uMTly
= ut M=ty
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Note that if we set A(6x) = L+ D + U, then

M = (D+wL)D YD +wU)

is a SSOR preconditioner of A ().
(b) Method II: Since t L wuy, Eq. (9.3.14) can be rewritten as

A(Op)t = (up A(OR)t) ug — 13 = eug — 7, (9.3.16)
Let t; and t5 be approximated solutions of the following linear systems:
AO)t =—r and  A(Op)t = ug,
respectively. Then the approximated solution # for (9.3.16) is

T
- Ut
t=1t +ety for g= k1

Ugtg .

For the special case, the approximated solution ¢ for (9.3.16) can be

~ TM_17”
f=—M" Ty for e— k2 Tk 9.3.17
M e+ eM U, or u%M_luk’ ( )
where M is an approximation of A (6y).
(¢) Method III: Eq. (9.3.16) implies that
t = 5A(6’k)_1uk - A(Qk)_lrk = sA(Hk)_luk — Ug. (9318)

Let t; be approximated solution of the following linear system:

Then the approximated solution £ for (9.3.16) is

t=ct; —up for e= (u;‘gtl)*l
Remark 9.3.2 (i) If we choose ¢ = 0 in (9.3.17) and M = D4 — 01, then we obtain
Davidson method. In this case, t = —M ™'y, will not be orthogonal to uy.

(ii) Since t is make orthogonal to wy, the choice in (9.3.18) is equivalent with t =
S(A—Qk[)_luk. In this case, the method s just mathematically equivalent to
shift-invert iteration which converges locally quadratically. In finite arithmetics,
the vector (A — Gk])_l ur may make a “very small” angle with uy, so that it will be
impossible to compute a significant orthogonal search direction.

Assume that A is strongly diagonally dominant. We write
A=D,+ FE,

where D4 denotes the diagonal of A and assume that ||E|| < ||D4]| and aq; is the largest
diagonal element in absolute value.
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With Davidson’s method, from

T = Auk — Qkuk = (DA + E) Uk — Qkuk,
we obtain
1?: (DA — Gk])_l T = U + (DA - Qk])_l Euk

and (D — ka)fl FEuy, is not small compared with ;. This means that ¢ is expected to
recover some part of significant digits and this makes Davidson’s method work well for
diagonally dominant problems.

In Jacobi-Davidson method, we compute

t=c(Ds—0.0)  uy — (Da— 0,1 "7, T Loy
The factor ¢ is well-determined by
o uf M~y
up M=y,
Since A is strongly diagonally dominant,
ul M=ty
ul Mty
[ugll] (Da = 6:1) " 7| ”
lurl[[l (Da = 65T) ™" ]
= [[(Da—6D)" .

with M = (DA —Qk])

||6(DA—9k]>_1 ukH = (DA—QkI)_l U

<

(DA — QkI)_l UkH

Furthermore, since u, L 7, we have that {e (Da — 0,I) " ug, (Da — 0x1) " r} is linearly
independent, and therefore there will be hardly any cancelation in the computation of ¢.

Remark 9.3.3 ¢ is the combination of Shift-Invert and Davidson’s methods, where Shift-
Invert method is the part € (D — 0,1) " wy and Davidson’s method is (D — ;)" 7.

Consider Ax = Az and assume that \ is simple.

Lemma 9.3.1 Consider w with wTx # 0. Then the map
rw? rw?
FE,=(1—— (A=A (I - —

is a bijection from w* to w=.

T

(Extension: Fp:<I—M>(A—9])< —M>t:—r. tLu, rlu, tGuL?reuL.)

ulu ulu
p

Proof: Suppose yLw and F,y = 0. That is
rw’ rw?
I—— | (A=) | ——— |y=0.
(=) - (-3

(A— Ay = ex.

Therefore, both y and x belong to the kernel of (4 — AI)?. The simplicity of X implies
that y is a scale multiple of x. The fact that yLw and 27w # 0 implies y = 0, which
proves the injectivity of F,. An obvious dimension argument implies bijectivity. [ |

Then it holds that
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Theorem 9.3.2 Assume that the correction equation

(I—uwu")(A-0)(I-w')t=—r, tlu (9.3.19)

is solved exactly in each step of Algorithm 9.3.2. Assume uy = u — x and ulz has non-
trivial limit. Then if uy is sufficiently chosen to x, then u, — x with locally quadratical
convergence and

Proof: Suppose Ax = Ax with x such that x = u + z for z 1. u. Then
(A=0l)z=—(A-0)u+AN—0)zc=—r+(AN—0)z. (9.3.20)
Consider the exact solution z; L w of (9.3.19):
(I-—P)(A=0)zy=—({I—P)r, (9.3.21)

where P = uu”. Note that (I — P)r = r since ulr. Since z — (u+ 2;) = z — z; and
z = x — u, for quadratic convergence, it suffices to show that

Iz = (u+z1) | =z = 21l = O (JI=]1%) - (9.3.22)
Multiplying (9.3.20) by (I — P) and subtracting the result from (9.3.21) yields
(I{-P)(A-0)(z—2zn)=A—-0)I—-P)z+(A—0)({ — P)u. (9.3.23)
Multiplying (9.3.20) by u” and using r 1 u leads to

T _
Ao A=bDz (9.3.24)

ul'z
Since uf x has non-trivial limit, we obtain

ul (A—0I)z

| (A=) (1 - P2l = |2

(I-P)z|. (9.3.25)

From (9.3.23), Lemma 9.3.1 and (I — P)u = 0, we have

ls=al = |[0-Pa-ani]) 0-00-p:
= -pra-on) A D2 Gy

= O(l=1")-
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9.3.1 Jacobi Davidson method as on accelerated Newton Scheme

Consider Ax = A\r and assume that A is simple. Choose w?2 = 1. Consider nonlinear
equation
TA
Fu)=Au—0(uu=0 with 0(u)= wauu,
where |lul| = 1 or w'u = 1. Then F : {ulwTu = 1} — wt. In particular, r = F (u) =

Au—0(u)u L w.
Suppose uy ~ = and the next Newton approximation u1:

1
oF
Ug+1 = Ug — ( ) F(Uk)
U=Uug

u
is given by ugy 1 = ug + ¢, i.e., t satisfies that

(9_F
ou

Since 1 = u],,w = (uy +t)" w =1+ tTw, it implies that w”t = 0. By the definition of
F', we have

>t:F(uk):—r.

u=ug

0_F A0 - — (wTAu) uw! + 2(wTu) uwl A
Ju (wTu)
wlAu  , wwTA upw?
= A—QI—FWUM _m_(j_wTuk)<A_ekI>

consequently, the Jacobian of F acts on w™ and is given by

oF upw’
(a—uH)t_(I— )(A—Hk.])t, t 1w

wly,
Hence the correction equation of Newton method read as

ukwT

t 1w, ([— >(A—9kf)t=—7’a

wluy,

which is the correction equation of Jacobi-Davidson method in (9.3.19) with w = u.

9.3.2 Jacobi-Davidson with harmonic Ritz values
Definition 9.3.1 (Ritz value) If V, C C", then (0k,ux) is a Ritz pair if
up € Vi, Ug 75 0, Aup—0puy L V. (9326)

Definition 9.3.2 (Harmonic Ritz value) (Inverse of A implicitly) 0, € C is a har-
monic Ritz value of A with respect to Wy, if 0, is a Ritz value of A~! with respect to
Wi.
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Remark 9.3.4 A is a normal matriz. A~ is normal.

How to avoid computing A~! or solving linear system involving A?

Theorem 9.3.3 Let Vi, =< vy, vy, ..., >. 0 € C is a harmonic Ritz value of A with
respect to Wy, = AV, if and only if

Auy, — Opuy, L AV, for some nonzero uy, € V. (9.3.27)
If AV = W =< wy, ..., wg > with Vi, = vy, -+ ,v], Wi = [wy, -+ ,wi] and
Hy = (WIVD) ™ (W AV) (9.3.28)
then (9.3.27) is equivalent to
Hys = 0ys, up, = Vis for some s € C*.
The eigenvalues of Hy, are the harmonic Ritz values of A.

Proof: By (9.3.26), (Hgl,Auk) is a Ritz pair of A~! with respect to W, = AV, if and
only if

(A7 = 0. 1) (Aug) = =0, (Auy, — Opug) LAV,
for some uy € Vi. Note that (9.3.27) is equivalent to
AVys — 0, Vis W, for some s # 0,
which is equivalent to
W (AVES — 0,ViS) =0 < (W/IAV,) S =0, (W Vi) S
or Hips — 60,5 = 0. [ |

Remark 9.3.5 (a) The vector uy in (9.3.27) is called the harmonic Ritz vector associ-
ated with the harmonic Ritz value 0.

(b) If Vi, € R™™ (in general, Vi, € R™¥) then
Hy = (W)~ (WEAV,) = Vo'W Twl AV,
It implies that H, ' ~ A~L,

Bi-orthogonalization basis construction:

Suppose that V, =< vy, , v, > and AV, = W, =< wq,--- ,w > with V, =
[v1, -+ ,v] and Wy = [wy, - -+ ,wy] in such way that
AV, =W,
and

L, = WV,
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is lower triangular. We say Vj and W}, are bi-orthogonal.
Let

Hy, = L;" (WIWy).

Hence, if (6, s) is an eigenpair of Hy, then (6, Vis) is a harmonic Ritz pair.
We bi-orthogonalize ¢ with respect to V; and Wj:

‘@Fl

ti=t— VkL,leth and v =

S~

E

Then Vi1 = [Vk,vkﬂ] and Wiy = [WkaAUk+1]-
Correction equation:

I— ) (A —0) (1 — )t = —
wguk k wguk =

t L wy = Aug, where Hps=0s, up="Vs.

Using the assumption ¢ L wy, the correction equation can be rewritten as
(A= 6pl)t =eup—r,
which is equivalent to
t=e(A—60,D) " uy — (A—0,1) "7

Let M ~ A — 0,1 be a preconditioner of A — @;I. Then the approximated solution ¢ of
correction equation can be computed by

Trr-1
r wy M~ r
t=eM tuy— M 'r with e = —F——.
g wh M1y,

Algorithm 9.3.2 (JD with harmonic Ritz value and bi-orthogonal)

Start: choose vy with |Jvy||2 = 1, compute wy = Avy, Iy = whvy, hy = wlwy,
set l = 1, ‘/1 = [’Ul], W1 = [wl], Ll = [lll], H1 = [hll];
u=vy, W= wi, 9:%, compute r = w — Ou.

Iterate: Until convergence do:

Inner loop: For k=1,....,m—1,

(i) Solve approximation t 1L w,

(1- =) (a-on (1- 2 )t =—r
(ii)  Bi-orthogonalize t against Vi, and Wy,
t=t— Vil "WIt, wvpyy =1t/|[t]|2.
(iii)  Compute w1 = Avgyr, set Wiy = [Wh, wis1] and Vi = [V, Ugra]-
(iv)  Compute Lysi(k +1,:) = wi, Vi1, Hepi(k+1,:) = wl, ;Wi
(v)  Compute the smallest eigenpair (O, s) of Hyi1.
(vi)  Compute the harmonic Ritz vector w = Viy18/||Vi1s||, w = Au,
and r:= Au — Ou (= w — Ou).
(vii)  Test for convergence. Stop if satisfied.
Restart
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9.4 acobi-Davidson Type method for Generalize

Eigenproblems
Consider the generalized eigenvalue problem
pAz =ABz  (|jp*+ M\ =1).
9.4.1 The updating process for approximate eigenvector
Let (0, u) be a Ritz pair of (A4, B). Then
r=Au—60Bu L u.
The goal is to find an update z for v such that
z1lu and A(u+ z) = AB(u+ 2). (9.4.29)

By projecting the equation in (9.4.29) onto the space orthogonal to u with the projector
I — Z“ we obtain

*?

uA(u+ z)
A= —— 9.4.30
wB(u+z)’ ( 2)
uu* uu*
1 d (I - A—AB)(I — = —r = —(Au — ABu).(9.4.30b
s Lu and (I =) (A= AB)(I - )z = —r = —(Au — \Bu). (9.4.30b)
In practice, § = Z:gz, z 1 u and
(I =)A= 0B) |1 2 = —r = —(Au — OBu).
uru

9.4.2 Other projections for the eigenvector approximations

Assume
r=Au—60Bu L w for some w.
We look for an update z of w which is orthogonal to @ (@ L u), i.e.,
z 14 and A(u+ z) = AB(u+ 2).
For convenience, & = Bu. Similarly, select w L w and consider
ww* uu*

and @ = .

uru

The projections can be used to decompose the eigenproblem:

P(A=AB)(Qz + (I - Q)x) =0,

(A-ABjr=0+= { (I~ P)(A=AB)(Qz + (I - Q)x) = 0.
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With

*A *B
o= u’ 5:w u, a=Au— au, b = Bu — fu,

w*u w*u

and

(9.4.30) is equivalent to
~ wA(u+ z)
wBu+z)’

z L a and (I—ww

J(A—=AB)giz=—(a—A\b) — (a — \B)u'.

w*w

In practice, let

9:% and r =a — 60b = Au — 0 Bu.

Lemma 9.4.1 Let (A — AB)x = 0. Consider w and @ with @*x # 0 and (Bz)*w # 0.

Then the map
Bzw* xu*
F,=1- A—AB) I —

is a bijection from @ onto w*.

Proof: Supposey L u and F,y =0=y = 0. [ |

Theorem 9.4.1 Choose w = Bu. Assume u and w converge and u*x and w*Bx —»
0. Then, if the initial u ~ x, the sequence of u converges to x quadratically and 0 =
w*Au/w*Bu — A.

Proof: Suppose (A — AB)x =0, with z = u+ 2 for z L 4. Then
(A-0B)z=—-(A—0B)u+ (A —0)Bx = —r+ (A — 0)Bux. (9.4.31)
Consider the exact solution z; Lu of the correction equation:
(I —P)(A—0B) |gr 21 =—( — P)r. (9.4.32)
Since x — (u+ z1) = z — z; and z = x — u, for quadratic convergence, it suffices to show
lz = (u+ z1)[| = [lz = z1ll = O(||=|1%).
Multiplying (9.4.31) by (I — P) and subtracting the result from (9.4.32) yields

(I — P)(A—0B)(z — )= (A—0)(I — P)Bz + (\ — 6)(I — P)Bu.
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Multiplying (9.4.31) by w and using r L w leads to

~ w'(A—-0B)z
A== w*Bx

By assumption and (9.4.33), we obtain

w*(A—0B)z

I —-P)B
w*Bx ( )Bz

I3 6)(7 - P)B]| = H — o).

(9.4.33)

provided (I — P)(A — 6B)|z+ to be nonsingular (by Lemma 9.4.1) and (I — P)Bu =0

(since w = Bu).
In practice, w = w = Bu, u = B*w.

9.4.3 Equivalent formulations for the correction equation

The correction equation

ww*

(I -

JA—=0B)|gizy=—-1, =z La

w*w

LY

where ¢ = —w*(A — 0B)z/w*w.

is equivalent to

Theorem 9.4.2 The solution (9.4.34) is given by
z=(A—0B) (~r+ed) =—u+e(A—0B) w0

uwu

(A —60B) '

with € =

(9.4.34)

(9.4.35)

Proof: With z in (9.4.35), it holds that @ L z, and (A—60B)z = —r+cw. Since r L w =

(9.4.34) holds.
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