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Abstract

Continuous-time algebraic Riccati equations (CAREs) can be transformed, à la Cayley,
to discrete-time algebraic Riccati equations (DAREs). The efficient structure-preserving dou-
bling algorithm (SDA) for DAREs, from [E.K.-W. Chu, H.-Y. Fan, W.-W. Lin, A structure-
preserving doubling algorithm for periodic discrete-time algebraic Riccati equations, preprint
2002-28, NCTS, National Tsing Hua University, Hsinchu 300, Taiwan, 2003; E.K.-W. Chu,
H.-Y. Fan, W.-W. Lin, C.-S. Wang, A structure-preserving doubling algorithm for periodic
discrete-time algebraic Riccati equations, preprint 2002-18, NCTS, National Tsing Hua Uni-
versity, Hsinchu 300, Taiwan, 2003], can then be applied. In this paper, we develop the
structure-preserving doubling algorithm from a new point of view and show its quadratic
convergence under assumptions which are weaker than stabilizability and detectability, as
well as practical issues involved in the application of the SDA to CAREs. A modified version
of the SDA, developed for DAREs with a “doubly symmetric” structure, is also presented.
Extensive numerical results show that our approach is efficient and competitive.
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1. Introduction

In this paper we investigate a structure-preserving doubling algorithm [24,37] for
the computation of the symmetric positive semi-definite (s.p.s.d.) solution X (i.e.
X � 0) to the continuous-time algebraic Riccati equation (CARE):

− XGX + ATX + XA + H = 0, (1)

where A ∈ Rn×n, X ∈ Rn×n, R ∈ Rm×m is symmetric positive definite (or s.p.d.;
i.e. R > 0), G = BR−1BT � 0 and H = CTC � 0 with B ∈ Rn×m and CT ∈ Rn×p

being of full column rank.
Eq. (1) arises frequently in solving the continuous-time linear optimal control

problem:

min
u

J = 1

2

∫ ∞

0

(
xTCTCx + uTRu

)
dt subject to ẋ = Ax + Bu. (2)

The optimal feedback control u∗ for (2) is given by

u∗ = −R−1BTXx, (4)

where X is the s.p.s.d. solution to the CARE (1). We assume that the pair (A, B) is
stabilizable (S) (i.e. if wTB = 0 and wTA = λwT for some λ ∈ C, then Re(λ) < 0
or w = 0) and that the pair (A, C) is detectable (D) (i.e. (AT, CT) is stabilizable).
Under assumptions (S) and (D), the CARE (1) has been proved to possess a unique
s.p.s.d. solution [39].

Consider the 2n × 2n Hamiltonian matrix H associated with the CARE (1):

H =
[

A −G

−H −AT

]
, (5)

which satisfies

HJ = −JHT , J =
[

0 In

−In 0

]
with In denoting the identity matrix of order n. By (5), the CARE (1) can be written
as

H

[
I

X

]
=

[
I

X

]
�, (6)

where � ∈ Rn×n and the spectrum σ(�) is on the stable left half plane C−. Under
assumptions (S) and (D), the Hamiltonian matrix H has exactly n eigenvalues on
C−. If the columns of [XT

1 , XT
2 ]T span the stable invariant subspace of H, then X1

is nonsingular and X = X2X
−1
1 � 0 solves the CARE (1) (see, e.g., [39,44]).

A numerically backward stable algorithm care, proposed by Laub [39], computes
X by applying the QR algorithm with reordering [4,16,48] to the eigenvalue prob-
lem Hx = λx. Unfortunately, the QR algorithm preserves neither the Hamiltonian
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structure of H nor the associated splitting of eigenvalues. A structure-preserving
algorithm has been proposed by Ammar and Mehrmann [1] which utilizes orthogo-
nal symplectic transformations in computing a basis for the stable invariant subspace
of H. A stable symplectic orthogonal method has been suggested by Byers [19]
but applied only to systems with single input or output. Many iterative methods have
been suggested for solving CAREs over the past 20 years. Newton’s method has been
applied in extensive literature [28,31,38,41,47]. A defect correction method for mod-
ifying an approximate solution has also been proposed by Mehrmann and Tan [43].
These methods require a good starting approximate solution, and can therefore be
regarded as iterative refinement methods, to be combined with other direct methods
(see Bunse-Gerstner et al. [17,18] or Mehrmann [41] for details). The structure-pre-
serving matrix sign function methods (MSGM) [7,11–14,20,21,27,33,46] have been
extended by Barraud [8,9] and Gardiner and Laub [29].

A class of methods, referred to as the doubling algorithms (DA), has attracted
much interests in the 70s and 80s (see [2] and the references therein). These meth-
ods originate from the fixed-point iteration derived from the discrete-time algebraic
Riccati equation (DARE):

Xk+1 = ÂTXk(I + ĜXk)
−1Â + Ĥ .

Instead of producing the sequence {Xk}, doubling algorithms produce {X2k }. CAREs
can be tackled after being transformed to DAREs via the Cayley transform. However,
the convergence of the algorithm was proven only when Â is nonsingular [2], and
for (Â, Ĝ, Ĥ ) which is stabilizable and detectable [36]. DAs were largely forgotten
in the past decade. Recently, DAs have been revived for (periodic) DAREs, because
of a better theoretical understanding. Stronger convergence results have been proved
for (Â, Ĝ, Ĥ ) under weaker assumptions than stabilizability and detectability [24].
Superior numerical results, in comparison to state-of-the-art methods on a wide range
of test problems, have been obtained because of the stronger structure-preserving
properties and the superior operations count.

In this paper, we propose a doubling algorithm for CAREs. The CAREs are trans-
formed to DAREs, with the corresponding Hamiltonian matrix transformed into a
symplectic matrix pair by the Cayley transform. Nice convergence properties are
inherited from the structure-preserving doubling algorithm (SDA) [24] applied to the
corresponding DARE. The SDA preserves matrix pairs in SSF which is a stronger
property than symplecticity. In the CARE setting, the matrix sign function methods
preserve the Hamiltonian structure in H while the SDA preserves, in each itera-
tive step, the associated symplectic matrix pair (N̂, L̂) in SSF. Although under the
influence of numerical errors, the matrix pairs through the SDA retain their stabil-
izability, detectability as well as eigenstructures (with exactly half of the spectrum
being stable; see details in [24]). This stronger structure-preserving property is its
main strength and the reason of its accuracy. In Section 4, a modified version of
the SDA (SDA_m) is developed, for “doubly symmetric” DAREs, where Â, Ĝ = Ĥ

are symmetric and persymmetric. The SDA_m preserves the symplectic and doubly
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symmetric structures of the DARE, resulting in better accuracy than the SDA. We
have extensively tested the SDA against the MSGM and care. Numerical results
showed that the doubling algorithm for CAREs is competitive and promising.

Finally, it is important to stress that matrix sign functions can be applied to more
general Hamiltonian matrices in other applications, such as those from H∞ control
with G and H being indefinite. A scaling strategy [21] may also accelerate its con-
vergence. Also, the SDA requires the transformation of the CARE by the Cayley
transform, which requires the estimation of the parameter γ (see Section 3).

2. SDA and matrix sign function method

In this section we propose a structure-preserving doubling algorithm (SDA) for
solving the CARE (1) based on the doubling algorithms in [24,37]. In addition, the
well-known structure-preserving matrix sign function methods [7,11–14,20,21,27,
33,46] are also reviewed from the point of view of preserving Hamiltonian structure.

Let H be the set of 2n × 2n Hamiltonian matrices, i.e.,

H =
{
H

∣∣∣∣H =
[

A −G

−H −AT

]
; A, H, G ∈ Rn×n; H, G � 0

}
. (7)

Note that if H ∈ H then HJ = −JHT. We call a 2n × 2n matrix pair (N,L)

symplectic if NJNT = LJLT. Let S be the set of 2n × 2n symplectic matrix
pairs in the standard symplectic form (SSF):

S =
{

(N̂, L̂)

∣∣∣∣L̂ =
[
I Ĝ

0 ÂT

]
, N̂ =

[
Â 0

−Ĥ I

]
;

Â, Ĥ , Ĝ ∈ Rn×n; Ĝ, Ĥ � 0

}
. (8)

It is easily seen that symplecticity is weaker than symplecticity in SSF. Our pro-
posed algorithm preserves the stronger structure and gives rise to better numerical
performance.

We shall show how the CARE (1), associated with the corresponding Hamiltonian
matrix

H ≡
[

A −G

−H −AT

]
=

[
A −BR−1BT

−CTC −AT

]
∈ R2n×2n

can be transformed to an equivalent DARE.
By using the Cayley transform with some appropriate γ > 0, the Hamiltonian

matrix H can be transformed to a symplectic matrix pair (N,L) ≡ (H + γ I,H −
γ I) [41,42]. In the following, we construct an equivalence transformation from
(N,L) to a symplectic matrix pair (N̂, L̂) ∈ S.

Let

Aγ ≡ A − γ I, Āγ ≡ A + γ I.
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Starting from

N =
[

Āγ −G

−H −AT
γ

]
, L =

[
Aγ −G

−H −ĀT
γ

]
,

we choose a γ > 0 such that the matrices Aγ and Aγ + GA−T
γ H are well-con-

ditioned (see Section 3 later for details). To transform the symplectic matrix pair
(N,L) to (N̂, L̂) ∈ S, let

T1 ≡
[

A−1
γ 0

HA−1
γ I

]
, T2 ≡

[
I 0

0
( − HA−1

γ G − AT
γ

)−1

]
,

T3 ≡
[
I A−1

γ G

0 I

]
.

Simple calculations produce

N̂=
[

Â 0
−Ĥ I

]
= T3T2T1N

= T3T2

[
A−1

γ Āγ −A−1
γ G

HA−1
γ Āγ − H −HA−1

γ G − AT
γ

]

= T3

[
A−1

γ Āγ −A−1
γ G( − HA−1

γ G − AT
γ

)−1(
HA−1

γ Āγ − H
)

I

]
and

L̂ =
[
I Ĝ

0 ÂT

]
= T3T2T1L

= T3T2

[
I −A−1

γ G

0 −HA−1
γ G − ĀT

γ

]
= T3

[
I −A−1

γ G

0
( − HA−1

γ G − AT
γ

)−1( − HA−1
γ G − ĀT

γ

)] ,

where

Â = (
Āγ + GA−T

γ H
)(

Aγ + GA−T
γ H

)−1
,

Ĝ = −A−1
γ G + A−1

γ G
(
AT

γ + HA−1
γ G

)−1(
ĀT

γ + HA−1
γ G

)
,

Ĥ = (
AT

γ + HA−1
γ G

)−1(
HA−1

γ Āγ − H
)
.

Note that L−1N = L̂
−1

N̂. Since Āγ = Aγ + 2γ I , it follows that:

Â = I + 2γ
(
Aγ + GA−T

γ H
)−1

, (9)
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Ĝ = 2γA−1
γ G

(
AT

γ + HA−1
γ G

)−1 = 2γA−1
γ GA−T

γ

(
I + HA−1

γ GA−T
γ

)−1
,

(10)

Ĥ = 2γ
(
AT

γ + HA−1
γ G

)−1
HA−1

γ = 2γ
(
I + A−T

γ HA−1
γ G

)−1
A−T

γ HA−1
γ .

(11)

From (10), (11) and Lemma A.1 in Appendix A, we know that the matrices Ĝ and Ĥ

are positive semi-definite. We thus obtain the desired symplectic matrix pair in SSF,
i.e.,

(N̂, L̂) ≡
([

Â 0
−Ĥ I

]
,

[
I Ĝ

0 Â T

])
∈ S,

where Â, Ĝ and Ĥ are given by (9)–(11). The DARE associated with the symplectic
matrix pair (N̂, L̂) in SSF is

X = Â TX(I + ĜX)−1Â + Ĥ (12)

on which the efficient SDA [24] can be applied. Note that X is the unique s.p.s.d.
solution to the above DARE as well as the CARE (1). Moreover, in Theorems 1 and
2 of [37], the pairs (Â, B̂) and (Â, Ĉ) are proven to be stabilizable and detectable,
respectively, where the matrices Ĝ = B̂B̂T and Ĥ = ĈTĈ are full rank decomposi-
tions (FRD).

Using (9)–(11) to transform the CARE (1) to an equivalent DARE (12) with the
associated symplectic matrix pair (N̂, L̂) in SSF, the SDA in [24] can then be
modified to the following algorithm for CAREs: (with Im denoting the imaginary
axis).

2.1. Structure-preserving doubling algorithm (SDA):

Input: H =
[

A −G

−H −AT

]
∈ H with σ(H) ∩ Im = ∅; ε

Output: the stabilizing solution X = XT � 0 to the CARE (1).
Find an appropriate value γ̂ > 0.

Compute Â0 ← I + 2γ̂ (Aγ̂ + GA−T
γ̂

H )−1, Ĝ0 ← 2γ̂ A−1
γ̂

G(AT
γ̂

+ HA−1
γ̂

G)−1,

Ĥ0 ← 2γ̂ (AT
γ̂

+ HA−1
γ̂

G)−1HA−1
γ̂

, j ← 0;

Do until convergence:
Compute Âj+1 ← Âj (I + Ĝj Ĥj )

−1Âj , Ĝj+1 ← Ĝj + Âj Ĝj (I + Ĥj Ĝj )
−1ÂT

j ,

Ĥj+1 ← Ĥj + ÂT
j (I + Ĥj Ĝj )

−1Ĥj Âj , j ← j + 1;

If ‖Ĥj − Ĥj−1‖ � ε‖Ĥj‖, Stop;

End
Set X ← Ĥj .
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2.2. Convergence of SDA

Let N̂ =
[

Â 0
−Ĥ I

]
, L̂ =

[
I Ĝ

0 ÂT

]
, where Ĝ = ĜT, Ĥ = ĤT. Suppose N̂ −

λL̂ has no eigenvalues on the unit circle and there exist nonsingular Q, Z such that

QN̂Z =
[
Js 0
0 I

]
, QL̂Z =

[
I 0
0 Js

]
, (13)

where the spectrum λ(Js) ∈ Os ≡ {λ : |λ| < 1}. In the following we quote the con-
vergence results for the SDA algorithm from [24,25].

Theorem 2.1 [24]. Let N̂ =
[

Â 0
−Ĥ I

]
and L̂ =

[
I Ĝ

0 ÂT

]
, where Ĝ = ĜT, Ĥ =

ĤT. Suppose N̂ − λL̂ has no eigenvalues on the unit circle and there exist non-

singular Q, Z such that (13) holds. Denote Z =
[
Z1 Z3
Z2 Z4

]
, Zi ∈ Rn×n for i =

1, 2, 3, 4. If Z1 and Z4 are invertible, then the sequences {Âj , Ĥj , Ĝj } computed
by the SDA algorithm satisfy

(i) ‖Âj‖ = O(‖J 2j

s ‖) → 0 as j → ∞,

(ii) Ĥj → X, where X solves the DARE (12) :
X = ÂTX(I + ĜX)−1Â + Ĥ ,

(iii) Ĝj → Y, where Y solves the dual DARE

Y = ÂY (I + ĤY )−1ÂT + Ĝ. (14)

Moreover, the convergence rate in (i)–(iii) above is O
(
|λn|2j

)
, where |λ1| � · · · �

|λn| < 1 < |λn|−1 � · · · � |λ1|−1 with λi, λ−1
i being the eigenvalues of N̂ − λL̂

(including 0 and ∞).

The following lemma proves that the stabilizability and detectability properties
are preserved by the SDA throughout its iterative process. From Lemma A.1 and the
SDA algorithm, the matrices Ĝj and Ĥj are positive semi-definite for each j � 1.

Lemma 2.2 [24]. The stabilizability of (Â, B̂) implies that (Âj , B̂j ) is stabilizable,
where Ĝj = B̂j B̂

T
j � 0 is a FRD of Ĝj for each j � 1. The detectability of (Â, Ĉ)

implies that (Âj , Ĉj ) is detectable, where Ĥj = ĈT
j Ĉj � 0 is a FRD of Ĥj for each

j � 1.

Theorem 2.3 [24]. Let N̂ =
[

Â 0
−Ĥ I

]
and L̂ =

[
I Ĝ

0 ÂT

]
, where the matrices

Ĝ = B̂B̂T � 0 (FRD) and Ĥ = ĈTĈ � 0 (FRD). Assume that (Â, B̂) is stabilizable
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and (Â, Ĉ) is detectable. Then the sequences {Âj , Ĥj , Ĝj } computed by the SDA
satisfy (i), (ii), (iii) as in Theorem 2.1.

Remarks. Theorem 2.1 directly proves, under the assumptions that N̂ − λL̂ have
no unit modulo eigenvalues and Z1, Z4 are invertible, that the sequences {Âj , Ĥj ,

Ĝj } generated by the SDA converge to zero and the unique s.p.s.d. solutions of
the DAREs in (12) and (14), respectively. Lemma 2.2 shows the preservation of
stabilizability and detectability of the iterates (Âj , Ĝj , Ĥj ) generated by the SDA.
Furthermore, in Theorem 2.3, we see that the assumptions in Theorem 2.1 are weaker
than conditions (S) and (D). This distinction of preserving the symplectic structure
in SSF, as well as the difference in operation counts, are responsible for the superior
performance of the SDA.

On the other hand, for a given H =
[

A −G

−H −AT

]
∈ H with σ(H) ∩ Im = ∅,

the matrix sign function of H can also be used to develop a structure-preserving
method for computing the stabilizing solution of CARE (1). A thorough discussion
and the details of practical implementation are given in [21,41]. The main MSGM
algorithm is described as follows. Other modified versions can be found in [5,8,9,22,
29] and references therein.

Matrix sign function algorithm: [7,11–14,20,21,27,33,46]

Input: H =
[

A −G

−H −AT

]
∈ H with σ(H) ∩ Im = ∅; ε.

Output: the stabilizing solution X = XT � 0 to the CARE (1).
LetH0 ← H, j ← 0.
Do until convergence:

ComputeHj+1 ← 1
2 (Hj + H−1

j ), j ← j + 1;
If ‖Hj − Hj−1‖ � ε‖Hj‖, Stop;

End
sgn(H) ← Hj ;

Solve (I − sgn(H))

[
X1
X2

]
= 0;

Compute X ← X2X
−1
1 .

Remarks

(i) Notice that

[
X1
X2

]
spans the stable invariant subspace of the H.

(ii) Both the SDA and the matrix sign function algorithm require 32
3 n3 flops for each

iterative step.
(iii) When working with the Hamiltonian matrix H, a more efficient and structure-

preserving version of the classical matrix sign function iteration can be derived
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by working only with symmetric matrices JH. Details may be consulted in
[21,41].

3. Practical implementation of SDA

3.1. Selection of γ̂

Here we first derived the forward error bounds of matrices Â0 ≡ Â, Ĝ0 ≡ Ĝ and
Ĥ0 ≡ Ĥ given in (9)–(11), respectively. According to these forward errors, we can
design a numerical scheme to determine an appropriate value γ̂ > 0. In the following
roundoff analysis, we use fl(·) to denote computed floating point values. The quantity
u is the unit roundoff (or machine precision), which is typically of order 10−8 or
10−16 in single and double precision computer arithmetic, respectively. When A and
B are m × n real matrices, the matrix B := |A| if bij = |aij | for all i, j , and A � B

if aij � bij for all i, j . The 1-, ∞- and Frobenius matrix norms are denoted by ‖ · ‖1,
‖ · ‖∞ and ‖ · ‖F, respectively.

We assume that the LU factorizations of Aγ and Wγ ≡ Aγ + GA−T
γ H are com-

puted by Gaussian elimination with partial pivoting (GEPP). We write these com-
puted LU factors as LA, UA, LW and UW , respectively. Recall that

Aγ + �Aγ = LAUA, |�Aγ | � γn|LA| |UA|, (15)

Wγ + �Wγ = LWUW, |�Wγ | � γn|LW | |UW | (16)

with γn := nu/(1 − nu) (see, e.g., [32–Theorem 9.3]). Then we have

fl(W−1
γ ) = W−1

γ + E1, |E1| � cnu |W−1
γ | |LW | |UW | |fl(W−1

γ )|, (17)

where cn is a modest constant. From (17), the forward error bound in evaluating Â

in (9) is

fl(Â) = Â + E2,

|E2| � 4γ cnu |W−1
γ | |LW | |UW | |fl(W−1

γ )| + u |Â| + O(u2). (18)

Furthermore, from (15), we have

Ĝγ ≡ fl(2γA−1
γ G) = 2γA−1

γ G + E3,

|E3| � 2γ cnu |A−1
γ | |LA| |UA| |Ĝγ |, (19)

hence the forward error bound in evaluating Ĝ in (10) is

fl(Ĝ) = Ĝ + E4,

|E4| � 2γ cnu |A−1
γ | |LA| |UA| |Ĝγ | |W−1

γ |T
+ cnu |fl(Ĝ)| |UT

W | |LT
W | |W−1

γ |T. (20)
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Finally, from (15), we have

Ĥγ ≡ fl(2γHA−1
γ ) = 2γHA−1

γ + E5,

|E5| � 2γ cnu |Ĥγ | |LA| |UA| |A−1
γ | (21)

and the forward error bound in evaluating Ĥ in (11) is

fl(Ĥ ) = Ĥ + E6,

|E6| � 2γ cnu |W−1
γ |T|Ĥγ | |LA| |UA| |A−1

γ |
+ cnu |W−1

γ |T|UT
W | |LT

W | |fl(Ĥ )|. (22)

For GEPP, we have in practice ‖ |LA| |UA| ‖∞ ≈ ‖Aγ ‖∞ and ‖ |LW | |UW | ‖∞ ≈
‖Wγ ‖∞, and it follows from (18), (20) and (22) that:

‖fl(Â) − Â‖∞ � 4cnuγ κ∞(Wγ ) ‖fl(W−1
γ )‖∞ + u ‖Â‖∞ + O(u2), (23)

‖fl(Ĝ) − Ĝ‖∞ � 2cnuγ κ∞(Aγ ) ‖W−1
γ ‖1‖Ĝγ ‖∞

+cnuκ1(Wγ ) ‖fl(Ĝ)‖∞, (24)

‖fl(Ĥ ) − Ĥ‖∞ � 2cnuγ κ∞(Aγ ) ‖W−1
γ ‖1‖Ĥγ ‖∞

+cnuκ1(Wγ ) ‖fl(Ĥ )‖∞, (25)

where κ1(Wγ ) ≡ ‖Wγ ‖1‖W−1
γ ‖1, κ∞(Wγ ) ≡ ‖Wγ ‖∞‖W−1

γ ‖∞ and κ∞(Aγ ) ≡
‖Aγ ‖∞‖A−1

γ ‖∞.
In order to control the forward error bounds of Â, Ĝ and Ĥ , we consider the

following min–max optimization problem, to determine an optimal value γ̂ > 0:

min
γ>0

F(γ ) ≡ max
i=1,2,3

{fi(γ )}, (26)

where f1(γ ) := γ κ∞(Wγ ), f2(γ ) := γ κ∞(Aγ ) and f3(γ ) := κ1(Wγ ). Since the
condition numbers κ∞(Wγ ), κ∞(Aγ ) and κ1(Wγ ) approach 1 as γ → ∞, it fol-
lows that F(γ ) becomes unbounded as γ → ∞. Extensive numerical experiments
on randomly generated matrices indicate that F(γ ) is a strictly convex function
in the neighborhood of the optimal γ̂ where the global minimum of F(γ ) occurs.
For illustration, we report a sample of graphs of f1(γ ), f2(γ ), f3(γ ) and F(γ )

in Figs. 1 and 2. From Theorem 2.1, we know that if γ approaches 0 and ∞, the
symplectic matrix pair (N̂, L̂) has eigenvalues close to one, leading to very slow
convergence of the SDA. This can be avoided through the min-max optimization
problem (26).

We can apply the Fibonacci search method to compute an approximate value of
γ̂ , see, e.g., [10–p. 272]. Our experience indicates that three to five iterations of
Fibonacci search are adequate to obtain a suboptimal yet acceptable approximation
to γ̂ .
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3.2. Symmetry of Ĝ0 and Ĥ0

If the matrices G and H are of low-rank, say G = ggT � 0 and H = hTh � 0,
then so are Ĝ0 and Ĥ0. Indeed, by using the Sherman–Morrison–Woodbury formula
(SMWF) twice, it can be seen that

Ĝ0 = 2γA−1
γ G

(
AT

γ + HA−1
γ G

)−1

= 2γA−1
γ ggT(

AT
γ + hhTA−1

γ ggT)−1

= 2γ
[
A−1

γ ggT(
A−T

γ − A−T
γ hhT(

I + A−1
γ ggTA−T

γ hhT)−1

×A−1
γ ggTA−T

γ

)]
= 2γ

{(
A−1

γ g
)[

I − (
A−1

γ g
)T

hhT(
I + (

A−1
γ g

)(
A−1

γ g
)T

hhT)−1

×(
A−1

γ g
)](

A−1
γ g

)T}
= 2γ

{(
A−1

γ g
)(

I + (A−1
γ g

)T
hhT(

A−1
γ g

))−1(
A−1

γ g
)T}

= 2γ
{(

A−1
γ g

)(
KT

g Kg

)−1(
A−1

γ g
)T}

(Cholesky decomposition)

= 2γ
(
A−1

γ gK−1
g

)(
A−1

γ gK−1
g

)T
.

Similarly, by applying the same techniques, we also have

Ĥ0 = 2γ
(
AT

γ + HA−1
γ G

)−1
HA−1

γ

= 2γ
(
AT

γ + hThA−1
γ ggT)−1

hThA−1
γ

= 2γ
[
A−T

γ − A−T
γ hThA−1

γ

(
I + ggTA−T

γ hThA−1
γ

)−1
ggTA−T

γ

]
hThA−1

γ

= 2γ
{
(hA−1

γ )T[
I − (hA−1

γ )
(
I + ggTA−T

γ hThA−1
γ

)−1

× ggT(hA−1
γ )T]

(hA−1
γ )

}
= 2γ

{
(hA−1

γ )T(
I + (hA−1

γ )ggT(hA−1
γ )T)−1

(hA−1
γ )

}
= 2γ

{
(hA−1

γ )T(
KhK

T
h

)−1
(hA−1

γ )
}

(Cholesky decomposition)

= 2γ (K−1
h hA−1

γ )T(K−1
h hA−1

γ ).

3.3. Computation of Âj , Ĝj and Ĥj

We now propose a structured and efficient procedure for the computation of Âj ,
Ĝj and Ĥj in the SDA algorithm, respectively, where Ĝ0 = B̂0B̂

T
0 � 0, Ĥ0 =

ĈT
0 Ĉ0 � 0 are FRDs. For j = 0, 1, 2, . . ., we let Wj ≡ (I + Ĝj Ĥj )

−1. It is easily
seen that ĤjWj = WT

j Ĥj and ĜjW
T
j = WjĜj are s.p.s.d. for each j � 1. By the

SMWF we can derive the formulae
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Wj = (
I + Ĝj Ĥj

)−1 = I − B̂j

(
I + B̂T

j Ĥj B̂j

)−1
B̂T

j Ĥj , (27)

ĜjW
T
j = Ĝj − Ĝj Ĉ

T
j

(
I + Ĉj Ĝj Ĉ

T
j

)−1
Ĉj Ĝj = B̂j

(
I + B̂T

j Ĥj B̂j

)−1
B̂ T

j ,

(28)

WT
j Ĥj = Ĥj − Ĥj B̂j

(
I + B̂T

j Ĥj B̂j

)−1
B̂T

j Ĥj = ĈT
j

(
I + Ĉj Ĝj Ĉ

T
j

)−1
Ĉj .

(29)

When the matrices B and C start with low ranks in (1), we can improve the effi-
ciency of our computation further by the following compression process. Compute
the Cholesky decomposition of the s.p.d. matrices WG,j ≡ (

I + B̂T
j Ĥj B̂j

) =
KT

B,jKB,j and WH,j ≡ (
I + Ĉj Ĝj Ĉ

T
j

) = KC,jK
T
C,j , respectively. For j = 0, 1,

2, . . ., application of (27)–(29) leads to

Âj+1 = Â2
j − Âj B̂j

(
I + B̂T

j Ĥj B̂j

)−1
B̂T

j Ĥj Âj , (30)

Ĝj+1 = Ĝj + Âj B̂j

(
I + B̂T

j Ĥj B̂j

)−1
B̂T

j ÂT
j

= [
B̂j , Âj B̂jK

−1
B,j

] [
B̂T

j

K−T
B,j B̂

T
j ÂT

j

]
≡ B̂j+1B̂

T
j+1 � 0 (FRD) (31)

and

Ĥj+1 = Ĥj + ÂT
j ĈT

j

(
I + Ĉj Ĝj Ĉ

T
j

)−1
Ĉj Âj

= [
Ĉ T

j , ÂT
j Ĉ T

j K−T
C,j

] [
Ĉj

K−1
C,j Ĉj Âj

]
≡ ĈT

j+1Ĉj+1 � 0 (FRD), (32)

where B̂j+1 and ĈT
j+1 are the full column rank compressions of

[
B̂j , Âj B̂jK

−1
B,j

]
and

[
ĈT

j , ÂT
j ĈT

j K−T
C,j

]
, respectively. In general, rank(B̂j+1) > rank(B̂j ) and

rank(Ĉj+1) > rank(Ĉj ), and the compression process becomes unprofitable when
the ranks of B̂j+1 and Ĉj+1 approach n.

3.4. Error analysis of SDA

We consider the forward error bounds of the computed matrices Âj+1, Ĝj+1 and
Ĥj+1 in the SDA algorithm for one iterative step j . Since KB,j and KC,j are the
computed Cholesky factors of matrices WG,j and WH,j , respectively, it follows that:

K̂B ≡ fl(K−T
B,j B̂

T
j ) = K−T

B,j B̂
T
j + �E1,

|�E1| � c1u |K−T
B,j | |KT

B,j | |K̂B | (33)

and

K̂C ≡ fl(K−1
C,j Ĉj ) = K−1

C,j Ĉj + �Ẽ1,

|�Ẽ1| � c̃1u |K−1
C,j | |KC,j | |K̂C |, (34)
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where c1 and c̃1 are modest constants. Therefore, we have

fl(K−T
B,j B̂

T
j ÂT

j ) = fl(K̂BÂT
j ) = K−T

B,j B̂
T
j ÂT

j + �E2,

|�E2| � c2u |K−T
B,j | |KT

B,j | |K̂B | |ÂT
j | (35)

and

fl(K−1
C,j Ĉj Âj ) = fl(K̂CÂj ) = K−1

C,j Ĉj Âj + �Ẽ2,

|�Ẽ2| � c̃2u |K−1
C,j | |KC,j | |K̂C | |Âj |, (36)

where c2 and c̃2 are modest constants.
If rank

(
B̂T

j

) = �, then from Theorem 18.4 of [32] and (31), there exist an ortho-

gonal matrix QB ∈ R2�×2� and a computed upper triangular matrix fl
(
B̂T

j+1

)
with

full row rank, such that[
B̂T

j

fl
(
K̂BÂT

j

)] +
[
�B1
�B2

]
= QB

[
fl
(
B̂T

j+1

)
0

]
, (37)

where |�Bj | � c3u G�

(|B̂ T
j | + |K− T

B,j | |B̂ T
j | |ÂT

j |) for j = 1, 2, with c3 being a

modest constant and ‖G�‖F = 1
2 .

From (35) and (37), we have[
B̂T

j

K−T
B,j B̂

T
j ÂT

j

]
+

[
�B1

�B̃2

]
= QB

[
fl
(
B̂T

j+1

)
0

]
, (38)

where |�B̃2| � c2u |K−T
B,j | |KT

B,j | |K̂B | |ÂT
j | + c3u G�

(|B̂T
j | + |K−T

B,j | |B̂T
j | |ÂT

j |).

Pre-multiplying both sides of (38) by QT
B , it follows that:[

B̂T
j+1
0

]
+ QT

B

[
�B1

�B̃2

]
=

[
fl
(
B̂T

j+1

)
0

]
(39)

and we deduce that

‖fl
(
B̂T

j+1

) − B̂T
j+1‖F � c4u ‖B̂j‖F + c5u κs

(
KT

B,j

) ‖K̂b‖F‖Âj‖F, (40)

where c4 and c5 are modest constants, and κs
(
KT

B,j

) ≡ ‖ |K−T
B,j | |KT

B,j | ‖∞ is the

Skeel condition number of KT
B,j . Furthermore, applying a similar argument with the

help of (36), we can derive that

‖fl(Ĉj+1) − Ĉj+1‖F � c6u ‖Ĉj‖F + c7u κs(KC,j ) ‖K̂C‖F‖Âj‖F, (41)

where c6 and c7 are modest constants.
On the other hand, it follows from (33) that:

fl
(
K−T

B,j B̂
T
j Ĥj Âj

) = K−T
B,j B̂

T
j Ĥj Âj + �E3,

|�E3| � c8u |K−T
B,j | |KT

B,j | |K̂B | |Ĥj | |Âj |, (42)

where c8 is a modest constant. From (35) and (42), the forward error bound of com-
puting Âj+1 is
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‖fl(Âj+1) − Âj+1‖F

� c9u ‖Âj‖2
F + c10u κs

(
KT

B,j

) ‖B̂j‖2
F‖K̂−1

B,j‖2
F‖Ĥj‖F‖Âj‖2

F, (43)

where c9 and c10 are modest constants.
When the Skeel condition numbers κs

(
KT

B,j

)
and κs(KC,j ) in (40) and (41) are

bounded from above by acceptable numbers, the accumulation of error will be damp-
ened by the fast rate of convergence at the final stage of the iterative process. Danger,
if any, lies in the early stage of the process before the λ2j

n convergence factor dom-
inates. It is unlikely to have any ill-effect, as the accumulated error in the matrix
additions and multiplications should be of magnitude around a small multiple of the
machine accuracy.

As the SSF properties are preserved in the SDA, any error will be a structured
one, only pushing the iteration towards a solution of a neighboring SSF system.
Thus the algorithm is stable in this sense, when the errors are not too large and when
stabilizability and detectability are maintained. For large js, as Âj → 0, Ĝj and Ĥj

converge to the unique s.p.s.d. solutions of (14) and (12), respectively. Danger again
will only comes at the initial stage of the iteration. Corresponding checks may be
prudent in the algorithm.

4. SDA_m

A matrix A is persymmetric when A is symmetric with respect to the main anti-
diagonal [30–p. 193]. When the DARE transformed from the CARE (1) has the
additional property that the initial data Â0, Ĝ0 = Ĥ0 ∈ R2�×2� are symmetric and
persymmetric, the additional structure can be preserved in a modified version of the
SDA (SDA_m). For simplicity, we consider only when γ = 1. This doubly symmet-
ric type of DAREs appear in the Examples 10 and 17 of Section 5 (originally from
[15]).

For convenience, in the SDA, we denote for j = 1, 2, . . .

A ≡ Âj , G ≡ Ĝj = Ĥj ,

A+ ≡ Âj+1, G+ ≡ Ĝj+1 = Ĥj+1. (44)

Since A, G = H are symmetric and persymmetric of even order, we write

A =
[

a1 a2ζ

ζa2 ζa1ζ

]
, G =

[
g1 g2ζ

ζg2 ζg1ζ

]
, (45)

where a1, a2, g1 and g2 ∈ R�×� are symmetric and ζ = [e�, . . . , e1] with ej being
the j th column of I�. In the SDA, we shall show that Â, Ĝ and Ĥ are also symmetric
and persymmetric with Ĝ = Ĥ , with
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A+ =A(I + G2)−1A =
[

â1 â2ζ

ζ â2 ζ â1ζ

]
, (46)

G+ =G + AG(I + G2)−1AT =
[

ĝ1 ĝ2ζ

ζ ĝ2 ζ ĝ1ζ

]
. (47)

Let

q1 ≡ g1 + g2, q2 ≡ g1 − g2, α1 ≡ a1 + a2, α2 ≡ a1 − a2. (48)

Simple manipulation leads to

â1 = 1

2

[
α1(I + q2

1 )−1α1 + α2(I + q2
2 )−1α2

]
, (49)

â2 = 1

2

[
α1(I + q2

1 )−1α1 − α2(I + q2
2 )−1α2

]
, (50)

ĝ1 =g1 + 1

2

[
α1(I + q2

1 )−1q1α1 + α2(I + q2
2 )−1q2α2

]
, (51)

ĝ2 =g2 + 1

2

[
α1(I + q2

1 )−1q1α1 − α2(I + q2
2 )−1q2α2

]
. (52)

Furthermore let

q1 = [U1, V1]
[
�1 0
0 −�1

] [
UT

1

V T
1

]
, q2 = [U2, V2]

[
�2 0
0 −�2

][
UT

2

V T
2

]
(53)

be the spectral decompositions of q1 and q2, respectively, with �1, �1, �2 and �2
being nonnegative diagonal matrices. Then â1, â2, ĝ1 and ĝ2 in (49)–(52) can be
computed by the following symmetric forms:

ξ1 ≡α1U1(I + �2
1)

−1UT
1 α1 − α1V1(I + �2

1)
−1V T

1 α1,

ξ2 ≡α2U2(I + �2
2)

−1UT
2 α2 − α2V2(I + �2

2)
−1V T

2 α2,

â1 = 1

2
{ξ1 + ξ2}, â2 = 1

2
{ξ1 − ξ2}; (54)

η1 ≡α1U1(I + �2
1)

−1�1U
T
1 α1 − α1V1(I + �2

1)
−1�1V

T
1 α1,

η2 ≡α2U2(I + �2
2)

−1�2U
T
2 α2 − α2V2(I + �2

2)
−1�2V

T
2 α2,

ĝ1 =g1 + 1

2
{η1 + η2}, ĝ2 = g2 + 1

2
{η1 − η2}. (55)

The SDA_m computes Â, Ĝ in (46) and (47) using the symmetric forms (54) and
(55) and considerably improves the accuracy of Examples 10 and 17 in the next
section.
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5. Numerical examples

For the tables in the following examples, data for various methods are lists in
columns with obvious headings. The heading “care” is for the care command in
MATLAB [40], “MSGM” is for the matrix sign function method [21], and “SDA”
(or “SDA_m”) stands for our SDA (or SDA_m) algorithm. There is no iteration
numbers to report for care and an ‘∗’ in the tables indicates a failure of convergence
in obtaining a solution. In the graphs, “ratio_care” and “ratio_MSGM” are the ratio
of the CPU-times for care and MSGM to that of the SDA, respectively. For the
comparison of residuals, the “normalized” residual (NRes) formula is applied in the
numerical examples, i.e.,

NRes ≡ ‖ATX̃ + X̃AT − X̃GX̃ + H‖
‖ATX̃‖ + ‖X̃AT‖ + ‖X̃GX̃‖ + ‖H‖ ,

where X̃ is an approximate solution and ‖ · ‖ denotes the 2-norm for matrices.
Some numerical examples from [15] involved very large data sets, which have not

been repeated here. Twenty examples were presented in [23]. We retain the number-
ing of examples in [23], comment upon all of them but present only five representa-
tive ones in this paper.

In the MSGM, the scaling strategy suggested in [21] was implemented. For a
fairer comparison, similar convergence criteria were used in all the methods and the
solutions were not refined.

All computations were performed using MATLAB/Version 6.0 on a Compaq/
DS20 workstation. The machine precision is 2.22 × 10−16.

Example 5. The example is identical to Example 5 of [15], which has been pre-
sented originally in [45]. This is a 9th-order continuous state space model of a tubular
ammonia reactor. The actual system matrices are

A =



−4.019 5.12 0 0 −2.082 0 0 0 0.87
−0.346 0.986 0 0 −2.34 0 0 0 0.97
−7.909 15.407 −4.096 0 −6.45 0 0 0 2.68
−21.816 35.606 −0.339 −3.87 −17.8 0 0 0 7.39
−60.196 98.188 −7.907 0.34 −53.008 0 0 0 20.4

0 0 0 0 94.0 −147.2 0 53.2 0
0 0 0 0 0 94.0 −147.2 0 0
0 0 0 0 0 12.8 0 −31.6 0
0 0 0 0 12.8 0 0 18.8 −31.6


,

BT =
 0.010 0.003 0.009 0.024 0.068 0 0 0 0

−0.011 −0.021 −0.059 −0.162 −0.445 0 0 0 0
−0.151 0 0 0 0 0 0 0 0

 ,

H = I9, R = I3.

The numerical results are given in Table 1.
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Table 1
Results for Example 5

SDA MSGM care

NRes 1.68 × 10−15 1.73 × 10−13 4.64 × 10−14

Iter. no. 9 8 –

Table 2
Results for Example 6

SDA MSGM care

NRes 5.78 × 10−13 3.11 × 10−8 1.91 × 10−12

Iter. no. 10 9 –

Example 6. The example is identical to Example 6 of [15], which has been pre-
sented originally in [26]. This control problem for a J-100 jet engine is a special
case of a multivariable servomechanism problem. To save space, we shall not list the
system matrices here. We report the numerical results in Table 2.

Example 10. The example is identical to Example 10 of [15], which has been pre-
sented originally in [6]. Here, the system matrices are

A =
[
ε + 1 1

1 ε + 1

]
, G = I2, H =

[
ε2 0
0 ε2

]
.

The exact stabilizing solution X is given by

x11 = x22 = 1

2

[
2(ε + 1) +

√
2(ε + 1)2 + 2 + √

2ε
]
,

x12 = x21 = x11/[x11 − (ε + 1)]. (56)

The corresponding DARE is doubly symmetric and the SDA_m was applied (see
details in Section 4). The numerical results with ε = 1, 10−3, 10−5 and 10−7 are
given in Table 3.

Example 11. The example is identical to Example 11 of [15], which has been pre-
sented originally in [35]. This example represents an algebraic Riccati equation aris-
ing from a H∞-control problem [49]. Let

A =
[

3 − ε 1
4 2 − ε

]
, B =

[
1
1

]
, R = 1, H =

[
4ε − 11 2ε − 5
2ε − 5 2ε − 2

]
.

The matrix

X =
[

2 1
1 1

]
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Table 3
Results for Example 10

SDA SDA_m MSGM care

ε = 1 NRes 0.00 × 100 0.00 × 100 4.69 × 10−16 9.36 × 10−17

Rel. err. 1.96 × 10−16 1.96 × 10−16 8.80 × 10−16 3.83 × 10−16

Iter. no. 4 4 2 –

ε = 10−3 NRes 1.58 × 10−14 1.43 × 10−16 1.11 × 10−13 9.20 × 10−17

Rel. err. 1.82 × 10−11 2.22 × 10−16 2.22 × 10−13 4.08 × 10−16

Iter. no. 16 13 12 –

ε = 10−5 NRes 2.28 × 10−12 1.11 × 10−16 1.07 × 10−11 5.53 × 10−17

Rel. err. 7.16 × 10−7 1.76 × 10−16 2.14 × 10−11 2.60 × 10−16

Iter. no. 22 19 18 –

ε = 10−7 NRes 1.49 × 10−10 1.32 × 10−16 3.31 × 10−9 2.06 × 10−17

Rel. err. 6.04 × 10−8 4.44 × 10−16 6.63 × 10−9 1.36 × 10−16

Iter. no. 12 26 20 –

Table 4
Results for Example 11

SDA MSGM care

ε = 1 NRes 0.00 × 100 1.69 × 10−16 1.97 × 10−16

Rel. err. 1.26 × 10−16 1.25 × 10−15 9.68 × 10−16

Iter. no. 5 2 –

ε = 0 NRes 3.06 × 10−16 ∗ 5.06 × 10−17

Rel. err. 2.66 × 10−9 ∗ 7.68 × 10−9

Iter. no. 28 ∗ –

is the stabilizing solution for ε > 0. For ε = 0, the solution X is obtained by an
H -invariant Lagrangian subspace, i.e., a solution in the sense of H∞-control. The
numerical results with ε = 1, 0 are given in Table 4.

Example 12. The example is identical to Example 12 of [15], which has been pre-
sented originally in [34]. Let

V = I − 2

3
vvT, vT = [

1 1 1
] ; A0 = ε diag(1, 2, 3),

H0 = diag(ε−1, 1, ε);
we have

A = V A0V, G = ε−1I3, H = V H0V.

The solution is

X = V diag(x1, x2, x3)V ,
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Table 5
Results for Example 12

SDA MSGM care

ε = 1 NRes 2.01 × 10−16 1.78 × 10−15 3.00 × 10−16

Rel. err. 4.33 × 10−16 2.78 × 10−15 5.03 × 10−16

Iter. no. 6 4 –

ε = 106 NRes 1.62 × 10−15 2.22 × 10−4 2.19 × 10−15

Rel. err. 2.58 × 10−15 6.33 × 10−4 4.92 × 10−15

Iter. no. 11 10 –

where

x1 = ε2 +
√

ε4 + 1, x2 = 2ε2 +
√

4ε4 + ε, x3 = 3ε2 +
√

9ε4 + ε2.

The numerical results with ε = 1, 106 are given in Table 5.

Example 15. The example is identical to Example 15 of [15], which has been pre-
sented originally in [39–Example 4] and [3]. This example arises from a mathemat-
ical model of position and velocity control for a string of high-speed vehicles. If N

vehicles are to be controlled, the size of the system matrices will be n = 2N − 1,
the number of control inputs will be m = N , and the number of outputs will be
p = N − 1, respectively. The comparison of normalized residuals are reported in
Table 6 for N = 5, 20, 60, 100, 140 and 180. Fig. 3 reports the comparison of CPU
times for care, MSGN and the SDA.

Example 17. The example is identical to Example 17 of [15], which has been pre-
sented originally in [39–Example 6]. The system matrices are

A =



0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
0 · · · · · · 0 0

 , B =



0
...
...

0
1

 , R = r, CT = √
q



1
0
...
...

0

 .

It is known from [39] that x1n = √
qr . Therefore, we may use the relative error

in x1n, i.e., RE ≡ (|x1n − √
qr|)/√qr , as an indicator of the accuracy of the res-

ults. The corresponding DARE is doubly symmetric and the SDA_m was applied
(see details in Section 4). Table 7 reports the comparison of normalized residuals
computed by SDA, SDA_m and care for n = 6, 12, 18, 24, 30. We also report the
comparison of relative errors in x1n computed by above three algorithms in Table 8.
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Table 6
Comparison of normalized residuals for Example 15

SDA MSGM care

N = 5 NRes 1.61 × 10−16 8.75 × 10−15 2.53 × 10−15

Iter. no. 5 6 –

N = 20 NRes 3.85 × 10−16 3.55 × 10−14 6.15 × 10−15

Iter. no. 5 6 –

N = 60 NRes 1.53 × 10−15 2.32 × 10−13 8.14 × 10−15

Iter. no. 7 8 –

N = 100 NRes 2.15 × 10−15 6.62 × 10−13 2.55 × 10−14

Iter. no. 8 9 –

N = 140 NRes 3.05 × 10−15 6.50 × 10−12 3.60 × 10−14

Iter. no. 8 9 –

N = 180 NRes 1.25 × 10−14 4.64 × 10−12 2.01 × 10−13

Iter. no. 9 9 –

5.1. Comments on numerical results

We have tested 20 examples in [23] to illustrate the accuracy and efficiency of the
SDA applied to CAREs, in comparison to the MSGM [21] and care in MATLAB
[40]. Some of these examples have parameters to vary their sizes or conditioning. In
what follows, we shall comment upon all the examples in [23], thus retaining the old
labelling of the examples:

(1) Comparing with care for all the examples, solutions with better or comparable
accuracy were obtained using the SDA in far less time. This comparison has
been difficult as care yields no iteration numbers and the CPU time information
from MATLAB is not always accurate.

(2) The best indication of the efficiency of the SDA over care comes from Example
15 (with varying dimension n), where care required two to eight times more
CPU times than the SDA. This is consistent with the findings in [24] for DAREs.
Keep in mind that the SDA requires far less number of flops than care in each
iteration, as the operations in the SDA are performed in Rn×n whereas those for
care are carried out in R2n×2n.

(3) For examples with varying conditioning, such as Examples 9–14, 17 and 18,
the SDA out-performed care and converges to more accurate solutions in less
time. For the ill-conditioned Example 20, care failed while the SDA succeeded
without difficulty.

(4) In Example 11 (in H∞ control), some eigenvalues were numerically on the
imaginary axis and assumptions in the theory were practically violated. The
stronger structure-preserving property of the SDA enabled it to produce an
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Fig. 3. Comparison of CPU times for Example 15.

accurate solution when the MSGM failed. Somehow, care produced a slightly
less accurate solution using much more CPU time.

(5) In Examples 10 and 17, the CAREs gave rise to DAREs which were “doubly
symmetric” (see Section 4 for details). The SDA_m improved the efficiency of
the SDA for these examples, obtaining comparable accuracy for Example 10
while out-performing care for Example 17.

(6) Comparing to the MSGM for ill-conditioned problems, the SDA performed bet-
ter in terms of accuracies or number of iterations. This is consistent with the
fact that while both the SDA and MSGM are structure-preserving, the former
preserves more structure than the latter. For some well-conditioned problems,
the efficiency and accuracy of the SDA and MSGM are comparable. For a few
simple small examples, the MSGM converged quickly and was superior to the
SDA. Note that the work involved in an iteration for either method is similar.

(7) The MSGM, with similar operations count to SDA, was generally more effi-
cient than care, especially for well-conditioned problems. For ill-conditioned
problems (such as Example 10), the MSGM was sometimes less accurate than
care.
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Table 7
Comparison of normalized residuals for Example 17

n NRes_SDA NRes_SDA_m NRes_MSGM NRes_care

q, r = 1 6 4.50 × 10−15 3.56 × 10−16 8.87 × 10−15 1.80 × 10−14

12 3.63 × 10−10 3.22 × 10−14 9.68 × 10−12 1.23 × 10−11

18 9.47 × 10−5 1.83 × 10−11 4.63 × 10−9 9.46 × 10−9

24 2.47 × 10−2 2.34 × 10−8 9.88 × 10−6 3.25 × 10−7

30 4.80 × 10−1 3.52 × 10−5 3.47 × 10−2 7.17 × 10−4

q, r = 100 6 2.59 × 10−15 2.82 × 10−16 1.20 × 10−11 1.02 × 10−15

12 4.81 × 10−10 2.94 × 10−14 4.11 × 10−9 1.58 × 10−11

18 4.33 × 10−5 2.26 × 10−11 1.78 × 10−6 7.83 × 10−9

24 7.24 × 10−1 2.90 × 10−8 1.37 × 10−2 1.50 × 10−5

30 3.07 × 10−1 1.45 × 10−5 2.94 × 10−1 4.38 × 10−3

Table 8
Comparison of relative errors in x1n for Example 17

n RE_SDA RE_SDA_m RE_MSGM RE_care

q, r = 1 6 1.94 × 10−14 1.11 × 10−15 2.22 × 10−14 5.68 × 10−14

12 3.99 × 10−10 1.68 × 10−13 4.92 × 10−11 5.61 × 10−11

18 8.73 × 10−5 6.37 × 10−11 2.35 × 10−8 2.68 × 10−8

24 3.09 × 10−1 6.39 × 10−8 3.29 × 10−5 6.16 × 10−6

30 6.49 × 10−1 1.57 × 10−4 1.40 × 10−1 8.37 × 10−3

q, r = 100 6 2.13 × 10−15 9.95 × 10−16 3.27 × 10−11 7.67 × 10−15

12 6.04 × 10−10 1.83 × 10−13 2.30 × 10−8 6.13 × 10−11

18 5.87 × 10−4 1.16 × 10−10 2.95 × 10−5 2.70 × 10−8

24 2.02 × 10−1 1.32 × 10−7 2.39 × 10−2 5.20 × 10−5

30 4.60 × 10−1 5.67 × 10−5 2.98 × 10−1 1.71 × 10−2

6. Conclusions

Solving CAREs as DAREs, after applying the Cayley transform, has previously
been investigated by many. Recent developments and better understanding of dou-
bling algorithms, especially the structure-preserving properties and efficiency of the
SDA [24], give this old approach a new lease of life. In addition, we have studied
how the parameter γ in the Cayley transform can be chosen optimally. A Fibonacci
search for choosing γ was suggested in Section 3, together with the details of other
issues involved in the practical implementation of the SDA. We have also developed
the SDA_m which preserves the structure of some doubly symmetric DAREs. Exten-
sive numerical results show that this approach of solving CAREs using the SDA is
efficient and competitive, especially for ill-conditioned problems.
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Appendix A

Lemma A.1. If �T = � � 0 and �T = � � 0, then �(I + ��)−1 � 0 and (I +
��)−1 � 0.

Proof
It suffices to prove that �(I + ��)−1 � 0. Notice that if � is positive definite,

then the matrix �(I + ��)−1 = (�−1 + �)−1 is also positive definite. Now, since
the matrix �T = � � 0, we know that � + εI is positive definite for ε � 0, and
hence we have

(� + εI)[I + �(� + εI)]−1 > 0. (A.1)

Let ε → 0, we obtain the desired result. Similarly, it can be shown that
(I + ��)−1� � 0.

Acknowledgment

We would like to thank Professor Ralph Byers and the referee for their valuable
comments and suggestions on the manuscript.

References

[1] G. Ammar, V. Mehrmann, On Hamiltonian and symplectic Hessenberg forms, Linear Algebra Appl.
149 (1991) 55–72.

[2] B.D.O. Anderson, Second-order convergent algorithms for the steady-state Riccati equation, Inter-
nat. J. Control 28 (1978) 295–306.

[3] M. Athans, W. Levine, A. Levis, A system for the optimal and suboptimal position and velocity
control for a string of high-speed vehicles, in: Proc. Fifth Int. Analogue Computation Meetings,
Lausanne, Switzerland, 1967.

[4] Z. Bai, J. Demmel, On swapping diagonal blocks in real Schur form, Linear Algebra Appl. 186
(1993) 73–95.

[5] Z. Bai, J. Demmel, Using the matrix sign function to compute invariant subspaces, SIAM J. Matrix
Anal. Appl. 19 (1998) 205–225.

[6] Z. Bai, Q. Qian, Inverse free parallel method for the numerical solution of algebraic Riccati equa-
tions, in: J.G. Lewis (Ed.), Proc. Fifth SIAM Conf. Appl. Linear Algebra, Snowbird, UT, June 1994,
SIAM, Philadelphia, PA, 1994, pp. 167–171.

[7] L. Balzer, Accelerated convergence of the matrix sign function, Internat. J. Control 21 (1980) 1057–
1078.

[8] A.Y. Barraud, Investigation autour de la function signe d’une matrice, application á l’ équation de
Riccati, R.A.I.R.O. Automatique 13 (1979) 335–368.

[9] A.Y. Barraud, Produit étoile et function signe de matrice. application á l’ équation de Riccati dans le
cas discrete, R.A.I.R.O. Automatique, 14 (1980) 55–85.

[10] M.S. Bazaraa, H.D. Sheraii, C.M. Shetty, Nonlinear Programming, John Wiley and Sons, 1993.



E.K.-W. Chu et al. / Linear Algebra and its Applications 396 (2005) 55–80 79

[11] A.N. Beavers, E.D. Denman, Asymptotic solutions to the matrix Riccati equation, Math. Biosci. 20
(1974) 339–344.

[12] A.N. Beavers, E.D. Denman, A computational method for eigenvalues and eigenvectors of a matrix
with real eigenvalues, Numer. Math. 21 (1974) 389–396.

[13] A.N. Beavers, E.D. Denman, A new similarity transformation method for eigenvalues and eigen
vectors, Math. Biosci. 21 (1974) 143–169.

[14] A.N. Beavers, E.D. Denman, A new solution method for matrix quadratic equations, Math. Biosci.
20 (1974) 135–143.

[15] P. Benner, A.J. Laub, V. Mehrmann, A collection of benchmark examples for the numerical solu-
tion of algebraic Riccati equations I: Continuous-time case, Tech. Rep. SPC 95-22, Fakultät für
Mathematik, TU Chemnitz-Zwickau, 09107 Chemnitz, FRG, 1995. Available from: http://www.tu-
chemnitz.de/sfb393/spc95pr.html.

[16] J.H. Brandts, Matlab code for sorting real Schur forms, Numer. Linear Algebra Appl. 9 (2002)
249–261.

[17] A. Bunse-Gerstner, R. Byers, V. Mehrmann, A chart of numerical methods for structured eigenvalue
problems, SIAM J. Matrix Anal. Appl. 13 (1992) 419–453.

[18] A. Bunse-Gerstner, V. Mehrmann, D. Watkins, An SR algorithm for Hamiltonian matrices, based on
Gaussian elimination, Methods Oper. Res. 58 (1989) 15–26.

[19] R. Byers, A Hamiltonian QR-algorithm, SIAM J. Sci. Statist. Comput. 7 (1986) 212–229.
[20] R. Byers, Numerical stability and instability in matrix sign function based algorithms, in: C. Byrnes,

A. Lindquist (Eds.), Computational and Combinatorial Methods in System Theory, North-Holland,
1986, pp. 185–200.

[21] R. Byers, Solving the algebraic Riccati equation with the matrix sign function, Linear Algebra Appl.
85 (1987) 267–279.

[22] R. Byers, C. He, V. Mehrmann, The matrix sign function method and the computation of invariant
subspaces, SIAM J. Matrix Anal. Appl. 18 (1997) 615–632.

[23] E.K.-W. Chu, H.-Y. Fan, W.-W. Lin, A structure-preserving doubling algorithm for continuous-time
algebraic Riccati equations, preprint 2002-28, NCTS, National Tsing Hua University, Hsinchu 300,
Taiwan, 2003.

[24] E.K.-W. Chu, H.-Y. Fan, W.-W. Lin, C.-S. Wang, Structure-preserving algorithms for periodic dis-
crete-time algebraic Riccati equations. Internat. J. Control 77(8) (2004) 767–788.

[25] E.K.-W. Chu, H.-Y. Fan, W.-W. Lin, C.-S. Wang, A structure-preserving doubling algorithm for
periodic discrete-time algebraic Riccati equations, preprint 2002-18, NCTS, National Tsing Hua
University, Hsinchu 300, Taiwan, 2003.

[26] E.J. Davison, W. Gesing, The systematic design of control systems for the multivariable servomeche-
nism problem, in: M.K. Sain, J.L. Peczkowsky (Eds.), Alternatives for Linear Multivariable Control,
Nat. Eng. Consortium Inc., Chicago, IL, 1978.

[27] E. Denman, R. Beavers, The matrix sign function and computations in systems, Appl. Math. Com-
put. 2 (1976) 63–94.

[28] L. Dieci, Some numerical considerations and Newton’s method revisited for solving algebraic Ricc-
ati equations, IEEE Trans. Automat. Control 36 (1991) 608–616.

[29] J. Gardiner, A.J. Laub, A generalization of the matrix-sign-function solution to the algebraic Riccati
equations, Internat. J. Control 44 (1986) 823–832.

[30] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., The Johns Hopkins University Press,
1996.

[31] S. Hammarling, Newton’s method for solving the algebraic Riccati equation, NPL Rep. DITC 12/82,
Nat. Phys. Lab., Teddington, Middlesex TW11 OLW, UK, 1982.

[32] N.J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied
Mathematics, 1996.

[33] J.L. Howland, The sign matrix and the separation of matrix eigenvalues, Linear Algebra Appl. 49
(1983) 221–332.



80 E.K.-W. Chu et al. / Linear Algebra and its Applications 396 (2005) 55–80

[34] P.Hr. Petkov, N.D. Christov, M.M. Konstantinov, On the numerical properties of the Schur approach
for solving the matrix Riccati equation, Systems Control Lett. 9 (1987) 197–201.

[35] G.D. Ianculescu, J. Ly, A.J. Laub, P.M. Papadopoulos, Space station freedom solar array H∞ control.
Talk at 31st IEEE Conf. on Decision and Control, Tucson, AZ, December, 1992.

[36] M. Kimura, Convergence of the doubling algorithm for the discrete-time algebraic Riccati equation,
Internat. J. Systems Sci. 19 (1988) 701–711.

[37] M. Kimura, Doubling algorithm for continuous-time algebraic Riccati equation, Internat. J. Systems
Sci. 20 (1989) 191–202.

[38] D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Trans. Automat.
Control AC-13 (1968) 114–115.

[39] A.J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat. Control
24 (1979) 913–921.

[40] MathWorks, MATLAB user’s guide (for UNIX Workstations), The Math Works, Inc., 1992.
[41] V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Springer-Verlag, 1991.
[42] V. Mehrmann, A step toward a unified treatment of continuous and discrete time control problems,

Linear Algebra Appl. 241–243 (1996) 749–779.
[43] V. Mehrmann, E. Tan, Defect correction methods for the solution of algebraic Riccati equations,

IEEE Trans. Automat. Control AC-33 (1988) 695–698.
[44] C.C. Paige, C.F. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear Algebra Appl.

41 (1981) 11–32.
[45] L. Patnaik, N. Viswanadham, I. Sarma, Computer control algorithms for a tubular ammonia reactor,

IEEE Trans. Automat. Control 25 (1980) 642–651.
[46] J. Roberts, Linear model reduction and solution of the algebraic Riccati equation by the use of the

sign function, Internat. J. Control 32 (1980) 667–687.
[47] N. Sandell, On Newton’s method for Riccati equation solution, IEEE Trans. Automat. Control AC-19

(1974) 254–255.
[48] G.W. Stewart, HQR3 and EXCHNG: Fortran subroutines for calculating and ordering the eigen-

values of a real upper Hessenberg matrix, ACM Trans. Math. Software 2 (1976) 275–280.
[49] K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddle River,

NJ, 1996.


	Introduction
	SDA and matrix sign function method
	Structure-preserving doubling algorithm (SDA):
	Convergence of SDA

	Practical implementation of SDA
	Selection of "024F
	Symmetry of G"055BG0 and H"055BH0
	Computation of A"055BAj, G"055BGj and H"055BHj
	Error analysis of SDA

	SDA_m
	Numerical examples
	Comments on numerical results

	Conclusions
	References

