
Dirichlet-Neumann Relation

Yi-Hsuan, Lin

Example 1. Look at heat equation ut = uxx{
Gt = Gxx

G(x, 0) = δ(x)
, then G(x, t) =

1

4πt
e−

x2

4t , where G is a Green's function

for this initial value problem.

Now, consider the initial boundary value problem: Let h(x, t) be the source
of the heat equation, and u0 = u(0, t)) is Dirichlet boundary condition and
u0x = ux(0, t) is Neumann boundary condition. Then the heat equation ut =
uxx + h(x, t) has the following representation:

u(x, t) =

ˆ t

0

ˆ ∞
0

h(y, s)G(x− y, t− s)dyds+

ˆ ∞
0

u(y, 0)G(x− y, t)dy

+

ˆ t

0

G(−y, t− s)ux(0, s)ds−
ˆ t

0

Gx(−y, t− s)u(0, s)ds.

Goal: PDE =⇒Dirichlet-Neumann Relation !

Example 2.


ut = uxx x, t > 0

u(x, 0) = 0 x > 0

u(0, t) = u0(t) t > 0

ux(0, t) = u0x(t) t > 0

and take the Laplace transform in t

and x separately, and we de�ne

U(x, s) =

ˆ ∞
0

e−stu(x, t)dt , Û(ξ, s) =

ˆ ∞
0

e−ξxU(x, s)dx

and use the well-known results in L-transform, we have

L(us) = −u|s=0 + sL(u) and L(uxx) = −Ux|x=0 − ξU |x=0 + ξ2L(U),

where L is the Laplace transform and we have used the notation U .
By using above consequences, the heat equation becomes

sÛ = ξÛ − U0
x − ξU0.

Therefore,

Û =
1

(ξ −
√
s)(ξ +

√
s)

(
U0
x + ξU0

)
,

we use the inverse Laplace transform in ξ variable, but we need to avoid the
singularities, that is, we want to integrate over the part which U is analytic, so
we can do the following thing:

U(x, s) =
1

2πi

ˆ i∞+L

−i∞+L

Û(ξ, s)eξxdξ.

1



By the residue theorem, we have

U(x, s) = e
√
sx

{
U0
x +
√
sU0

√
s+
√
s

}
+ e−

√
sx

{
U0
x −
√
sU0

−
√
s−
√
s

}
,

note that e
√
sx →∞ as , it is an unstable mode. Thus, we want

U0
x +
√
sU0

√
s+
√
s

= 0,

it is the Dirichlet-Neumann Relation. So we have U0
x = −

√
sU0 = − s√

s
U0,that

is,
1

s
U0
x = − 1√

s
U0.

To invert Laplace transform in t, we have

u0x =

[(
L−1(

1√
•

) ∗ u0
)

(t)

]
t

.

Note that the trick is that we we the term
1

s
to invert the L-transform in t.

Now, we need to compute L−1(
1√
s

):

L−1
(

1√
s

)
=

1

2πi

ˆ 0

∞

eiτt(
1√
2

+ i 1√
2

)√
τ

(−i)dτ +

ˆ ∞
0

e−iτt(
1√
2
− i 1√

2

)√
τ

(i)dτ


=

1

2π

ˆ ∞
0

1√
τ

{
eiτt

1√
2

+ i 1√
2

+
e−iτt

1√
2
− i 1√

2

}
dτ

=
1

2π

ˆ ∞
0

1√
τ

{√
2 cos τt+

√
2 sin τt

}
dτ

=
1√
t

1

2π

ˆ ∞
0

√
2

γ
(cos γ + sin γ)dγ

=
1√
t
D0,

where we set γ = τt and D0 = 1
2π

´∞
0

√
2
γ (cos γ + sin γ)dγ. Therefore,

u0x = ∂t

{(
D0√
t
∗ u0

)
(t)

}
,

we call this the Dirichlet-Neumann Relation.

Remark 3. If we consider


ut = uxx + h(x, t)

u(x, 0) is given

u(0, t) = 0

, we extend u(x, t) as an odd

function in x to reduce the problem to pace initial value problem, which can be

solved explicitly by G(x, t) = 1
4πte

−x
2

4t , the Green's function of the initial value
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problem. Then we still have the Dirichlet-Neumann Relation. On the other
hand, if we have the Neumann boundary condition on this problem, that is, we
have ux(0, t) = 0 but we don't know what is u(x, 0), then we just need to extend
the function as an even function in x.

Now, we consider another example to observe the Dirichlet-Neumann rela-
tion in PDEs !

Example 4. Let us consider the equation{
ut + ux + vy = ∆u = uxx + uyy

vt − vx + uy = ∆v = vxx + vyy

where the ut + ux + vy and vt − vx + uy are wave operators. We suppose(
U
V

)
(x, η, s) =

ˆ ∞
−∞

eiyηdη

ˆ ∞
0

e−st
(
u
v

)
(x, y, t)dt,

Fourier transform in y and Laplace transform in t and(
Û

V̂

)
(ξ, η, s) =

ˆ ∞
0

e−ξx
(
U
V

)
(x, η, s)dx

Laplace in x.(
s+ ξ − ξ2 + η2 iη

iη s− ξ − ξ2 + η2

)(
Û

V̂

)
=

(
(1− ξ)U0 − U0

x

(−1− ξ)V 0 − V 0
x

)
,

where U0
x = Ux(0, η, s), U0 = U(0, η, s)...etc. Then rewrite(

Û

V̂

)
=

(
s+ ξ − ξ2 + η2 iη

iη s− ξ − ξ2 + η2

)−1(
(1− ξ)U0 − U0

x

(−1− ξ)V 0 − V 0
x

)
,

where(
s+ ξ − ξ2 + η2 iη

iη s− ξ − ξ2 + η2

)−1
=

1

p(ξ, η, s)

×
(
s− ξ − ξ2 + η2 −iη

−iη s+ ξ − ξ2 + η2

)
×
(

(1− ξ)U0 − U0
x

(−1− ξ)V 0 − V 0
x

)
,

where p(ξ, η, s) = det

(
s+ ξ − ξ2 + η2 iη

iη s− ξ − ξ2 + η2

)
= ξ4 − (1 + 2s +

2η2)ξ2 + s2 + (1 + 2s)η2 + η4.The roots of p are

λ1 =

√
1

2
+ s+

1

2

√
1 + 4s+ η2 and λ2 =

√
1

2
+ s− 1

2

√
1 + 4s+ η2

and λ3 = −λ2, λ4 = −λ1. Note that λ4 < λ3 < 0 < λ2 < λ1. Stability requires
that

Resλ1
= Resλ2

= 0.
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Then we want to �nd the Dirichlet-Neumann relation in U0, V 0, U0
x , V

0
x . By

using Resλ1
= Resλ2

= 0, we have

U0
x =

1

2
(1− λ2 − λ1)U0 +

i(1 + λ2 − λ1)(1− 2λ2 + λ22 − λ21)

4η
V 0

and

V 0
x = [

i(λ2 − λ1)

8(1 + 4s)η3
(−λ2 − λ22 − λ1(1 + λ1)(1 + 4s+ λ21 − 3λ31 + λ22(−1 + 2λ1))

×(−1 + λ21 − 2s(2 + λ1 + λ2)) + λ22(1 + λ1)− 2η2 − 2λ1η
2 + λ2(λ1 + λ21 − η2)]U0

+
1

2
(−1− λ2 − λ1)V 0.

Invert Laplace in s �rst: (λ1 and λ2)

Trick: Use
´ i∞
−i∞ αestds = − 1

t

´ i∞
−i∞

∂α
∂s e

stds, then we have

∂λ1
∂s

=

1
2 +

√
1
4 + s

2
√

1
4 + s

√(
1
2 +

√
1
4 + s

)2
+ η2

.

For ∂λ1

∂s , which is analytic around Res = 0 but ∂λ2

∂s is not uniformly (in η)

analytic around Res = 0. Since
(

1
2 +

√
1
4 + s

)2
+ η2 < 0 is a trouble for λ2,

then we look for s such that
(

1
2 +

√
1
4 + s

)2
+ η2 = −τ2 for some τ real. By

easy calculation, we have

s = −(η2 + τ2)± i
√
η2 + τ2.

For τ = 0, s = −η2 ± iη, there are two curves have problems, then we need to
avoid the path C =

{
s = −η2 ± iη

}
of the integration.

ˆ ∞
−∞

eiηydy

ˆ
R2−C

est
∂λ2
∂s

ds =

ˆ ˆ
eiηyest

1
2 −

√
1
4 + s

2
√

1
4 + s

√(
1
2 −

√
1
4 + s

)2
+ η2

dsdη

=

ˆ ˆ
eiηye[−i

√
η2+τ2−(η2+τ2)]tdτdη

=

ˆ ˆ
eiηy+iτxe[−i

√
η2+τ2−(η2+τ2)]τdτdy|x=0

= wave solution (Kirchho� & Hadamard).

Dirichlet-Neumann Relation: Hadamard-Kirchho� convolve with initial values.

Example 5. Let u ∈ R2 satisfy

ut +

(
1 + Λ 0

0 −1 + Λ

)
ux +

(
0 1
1 0

)
uy = ∆u = uxx + uyy.
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Assume u(0, y, t) = u0(y, t), ux(0, y, t) = u0(y, t) and u(x, y, 0) = 0 (throwing
initial data to the source). Take Fourier in y, and note Fyu(x, η2, t) = v(x, η2, t).
Then we have

vt +

(
1 + Λ 0

0 −1 + Λ

)
vx +

(
0 −iη2
−iη2 0

)
v = vxx − (η2)2v.

In addition, we take Laplace transform in t and write (Ltv)(x, η2, s) = V (x, η2, s) =´∞
0
e−stv(x, η2, t)dt, then we have

sV +

(
1 + Λ 0

0 −1 + Λ

)
Vx +

(
0 −iη2
−iη2 0

)
V = Vxx − (η2)2V.

Finally, take the Laplace transform in x and write Lx(V ) = V̂ (ξ, η2, s), we can
obtain

sV̂+

(
1 + Λ 0

0 −1 + Λ

)
(ξV̂−V 0)+

(
0 −iη2
−iη2 0

)
V̂ = ξ2V̂−ξV 0−V 0

x−(η2)2V̂ .

Now, we want to invert the Laplace transform in ξ �rst, then we have(
s+ (1 + Λ)ξ − ξ2 + +η22 −iη2

−iη2 s+ (−1 + Λ)ξ − ξ2 + η22

)
V̂ = −V 0

x +

(
−1− Λ− ξ 0

0 1− Λ− ξ

)
V 0

and call detA(ξ, η2, s) = p(ξ, η2, s), regarded as the polynomial in ξ andA(ξ, η2, s) =(
s+ (1 + Λ)ξ − ξ2 + +η22 −iη2

−iη2 s+ (−1 + Λ)ξ − ξ2 + η22

)
. So we calculate that

p(ξ, η2, s) = ξ4 − 2Λξ3 + (−1− 2s− 2η22 + Λ2)ξ2 + (2sΛ + 2η22)ξ

+s2 + η22 + 2sη22 + η42

= Π4
j=1 (ξ − λj(η2, s))

where ηj(η2, s) are the four roots of the characteristic polynomial p(ξ, η2, s).
Then

V̂ =
1

p(ξ, η2, s)
A(ξ, η2, s)

∗
(
−V 0

x +

(
−1− Λ− ξ 0

0 1− Λ− ξ

)
V 0

)
=

f

p
V 0 +

g

p
V 0
x

=
f(ξ, η2, s)

Π4
j=1 (ξ − λj(η2, s))

V 0 +
g(ξ, η2, s)

Π4
j=1 (ξ − λj(η2, s))

V 0
x ,

where f, g are 2 by 2 matrices and the inverse Laplace transform in ξ is

V (x, η2, s) =
1

2πi

[
V 0

ˆ i∞

−i∞
eξx

f

p
dξ + V 0

x

ˆ i∞

−i∞
eξx

g

p
dξ

]
.

Note that degξ f = 3, degξ g = 2 and degξ p = 4, then we can do the contour
integral to the in�nity and

1

2πi

ˆ i∞

−i∞
eξx

f

p
dξ =

4∑
j=1

(
Resξ=λj

f

p

)
eλjx.
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By using mathematica, we have distinct four roots and rearrange their order to
λ4 < λ3 < 0 < λ2 < λ1, by the stability we get that

V 0(Resξ=λj

f

p
) + V 0

x (Resξ=xj

g

p
) = 0

for j = 1, 2. We have the Dirichlet-Neumann Relation for j = 1, 2. On the other
hand, for a well-posed problem, one relation should su�ce well-posed situation
have means |Λ| < 1. The two relations j = 1, 2 are identical and we actually
get only one relation. Dirichlet-Neumann relations give that

V 0
x (η2, s) =

(
α11 α12

α21 α22

)
V 0(η2, s) = αV 0(η2, s),

where α11 = −
{

1− s− η22 − Λ2 + 2λ1 + λ21 + 2λ2 + λ1λ2 + λ22
}

1− Λ + λ1 + λ2
,

α12 = − i

1− Λ + λ1 + λ2
,

α21 = −i
{
s+ η22 + (−1 + Λ)λ1 − λ21

}{
s+ η22 + (−1 + Λ)λ2 − λ22

}
1− Λ + λ1 + λ2

and

α22 = −
{
−1 + s+ η22 + 2Λ−+Λ2 + (−1 + Λ)λ2 + (−1 + Λ + λ2)λ1

}
1− Λ + λ1 + λ2

. If

we invert the transform of λ1,λ2 and
1

1− Λ + λ1 + λ2
, then we invert α. Now,

we (A) compute
1

2πi

´ i∞
−i∞ estλj(η2, s)ds would not involve simply residue cal-

culation and (B) then
1

1− Λ + λ1 + λ2
worse.

To solve the case (B), by using (A), we invert
∂λ2
∂s

instead and use �Fourier

path method�. Recall that λj are the roots of p, then we have the roots relations

as follows:
∑
λj = 2Λ = C1 and Πλj = s2 + 2η22s + η22 + η42 = C4and

∑
λj
λk

=

−2Λs − 2η22Λ = C3. If we let σ : {1, 2, 3, 4} → {1, 2, 3, 4} be a permutation
and the relations Cj depending on λ1, λ2, λ3, λ4, we have Cj(λ1, λ2, λ3, λ4) =
Cj(λσ(1), λσ(2), λσ(3), λσ(4)), invariant under all the permutation σ. There is a
theorem in algebra can help us solve the question.

Theorem 6. If a polynomial p(λ1, λ2λ3, λ4) is invariant under all permutation

σ, then p(λ1, λ2, λ3, λ4) = Q(λ1, λ2, λ3, λ4) for some polynomial Q.

Back to the example and by using the above theorem, the polynomial p
becomes a polynomial in 2Λ, −2Λs − 2η22Λ, ..., s2 + 2η22s + η22 + η4, i.e., the
polynomial in these coe�cients of the characteristic polynomial p and we write

1

1− Λ + λ1 + λ2
=

(
Πσ

1

1− Λ + λσ(1) + λσ(2)

)(
Πσ 6=I(1− Λ + λσ(1) + λσ(2)

)
and Πσ(1−Λ + λσ(1) + λσ(2)) is invariant under all permutations. This implies
that the polynomial of the coe�cients of the characteristic polynomial of p is
equal to the polynomial of the coe�cients 2Λ,..., s2 + 2η22s+ η22 + η42 .

Recall the case Λ = 0, we have calculated that λ1 =
√

1
2 + s+ 1

2

√
1 + 4s+ η22

with |λ1| 9 0 as |s| → ∞, it is convenient for varying the contour integral in
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the complex plane, i.e., instead, we compute
1

2πi

´ i∞
−i∞ est

∂λ1
∂s

ds and

∣∣∣∣∂λ1∂s
∣∣∣∣→ 0

as |s| → ∞. For the general case |Λ| < 1, we also consider the integral

1

2πi

ˆ i∞

−i∞
est

∂λj(η2, s)

∂s
ds.

where λj(η2, s) is a root of p(ξ, η2, s) = 0. Instead, going back to the case Λ = 0,

then λ2 =
√

1
2 + s− 1

2

√
1 + 4s+ η22varying s and �x η2 ∈ R. It is bad when

1
2 +s− 1

2

√
1 + 4s+η22 < 0 since the Riemann surfaces will appear. So we can set

1
2 +s− 1

2

√
1 + 4s+η22 = −η21 and look at the branching curves for λ2 (λ2 = iλ1).

Since p(λ2(η2, s), η2, s) = 0, then set p(iη1, η2, s(η1, η2)) = 0, where s(η1, η2) is
a solution of p which is a polynomial in s of degree 2. Then

s = i

(
Λη1 ±

√
η21 + η22

)
−
(
η21 + η22

)
.

Therefore, we use the change of variable, then we have

1

2πi

ˆ i∞

−i∞
est

∂λj
∂s

ds =
1

2πi

ˆ
es(η1,η2)t

∂iη1
∂s

ds

dη1
dη1

=
1

2π

ˆ ∞
−∞

es(η1,η2)tdη1.

Further inversion in η2, we can get

1

2π

ˆ ∞
−∞

ˆ
eiη2yes(η1,η2)tdη1dη2 =

1

2π

ˆ ˆ
eiη1x+iη2yes(η1,η2)tdη1dη2

and rewrite s(η1, η2) as the form s(η1, η2) = ±i√t + [ ]t, as a combination of
Huygens and dissipation terms, note that we have used the previous skill that
we integrate over a region in R2 − C, where C is the singularities occurring.
Finally, use Fourier transform in η1 and η2.
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