Dirichlet-Neumann Relation

Yi-Hsuan, Lin

Example 1. Look at heat equation u; = g,
Gi=G 1 2
! o , then G(z,t) = —e™ %, where G is a Green’s function
G(z,0) = (x) 4mt
for this initial value problem.
Now, consider the initial boundary value problem: Let h(x,t) be the source

of the heat equation, and u® = w(0,t)) is Dirichlet boundary condition and

ud = u,(0,t) is Neumann boundary condition. Then the heat equation u; =

Ugz + h(x,t) has the following representation:
t oo oo
uwt) = [ [ )Gyt - )dyds+ [ (w06l vty
0 Jo 0

+/O G(—y,t — s)u,(0,s)ds — /0 G.(—y,t — s)u(0, s)ds.

Goal: PDE —Dirichlet-Neumann Relation !
Ut = Ugy z,t >0
u(z,0) =0 x>0
u(0,t) =u(t) t>0
ug(0,8) =ul(t) t>0
and x separately, and we define

Example 2. and take the Laplace transform in ¢

oo . [ee]
Ul(z,s) :/ e Stu(z, t)dt , U, s) = / e U (x, s)dx
0 0
and use the well-known results in L-transform, we have
L(us) = —uls=0 + sL(u) and L(uzz) = —Uy|smo — EU|u=o + E2L(U),

where L is the Laplace transform and we have used the notation U.
By using above consequences, the heat equation becomes

sU = ¢U —UY —¢u°.

Therefore,
A 1
U = UO + gUO ’
(5—\/5)(€+\/§)(m )
we use the inverse Laplace transform in £ variable, but we need to avoid the
singularities, that is, we want to integrate over the part which U is analytic, so

we can do the following thing:

100+ L R
Ul(z,s) 1 / U(f,s)e&df.

2mi —i00+L



By the residue theorem, we have

Uz, s) = eV {W} +e Vo {U{;\/E\(/];}7

note that eV®* — oo as , it is an unstable mode. Thus, we want
U2+ /sU° 0
Vs + /s ’
S
it is the Dirichlet-Neumann Relation. So we have U2 = —/sU° = —TUO,that
s
is,

EUO:— UO
s ° '

B

To invert Laplace transform in ¢, we have

1
Note that the trick is that we we the term — to invert the L-transform in t¢.
s

Now, we need to compute L~(
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where we set v = 7t and Dy = i fooo %(cosy + sin~y)d~y. Therefore,

s-a{(%-w) o)

we call this the Dirichlet-Neumann Relation.
U = Uge + h(z, 1)
Remark 3. If we consider < u(z,0) is given , we extend u(x,t) as an odd
u(0,t) =0
function in x to reduce the problem to pace initial value problem, which can be
2

xT
solved explicitly by G(z,t) = ﬁeiﬂ, the Green’s function of the initial value



problem. Then we still have the Dirichlet-Neumann Relation. On the other
hand, if we have the Neumann boundary condition on this problem, that is, we
have u,(0,¢) = 0 but we don’t know what is u(z,0), then we just need to extend
the function as an even function in z.

Now, we consider another example to observe the Dirichlet-Neumann rela-
tion in PDEs !

Example 4. Let us consider the equation

{ut—&—uw—kvy:Au:um—l—uyy

Vg — Vg + Uy = AV = Ugy + Uy

where the u; + u, + v, and v; — v, + u, are wave operators. We suppose

U _ o iyn > —st U
(V)@= [ cman [“et () et

Fourier transform in y and Laplace transform in ¢ and

U [* (U
( V ) (53”75) _‘/0 € ( %4 ) (3777775)d37
Laplace in z.

s+E—E+1? in U\ _( a-9u°-u?
in s—&— &+’ v ) \(-1=9vo-Vv) )~

where U? = U, (0,7, s), U° =U(0,n, s)...etc. Then rewrite

U\ [ ste—€ 4 in a-ou-u?
v ) in s ==&+ (-1=9vVo-vY )~

where

(5—1—5—52-1-772 in )_1 B 1
in s—E=& P&, 9)
s—E&— &+ —in
x —in s+&—&+0n?
(1-9Uu° -U,
N r-gve-vy )
2,2 :
where p(€,7, s) —det< s+¢& zrf +n 8—5—27752+772 > =& - (1+2s+

2n?)€2 + 52 + (1 + 2s)n? + n*. The roots of p are

1 1 1 1
AL = \/2+s+2\/1+4s+772 and \y = \/2—1—3—2\/1—1—45—1—772
and A3 = —X9, Ay = —A1. Note that \y < A3 < 0 < Ay < A;. Stability requires
that

Resy, = Resy, = 0.

)



Then we want to find the Dirichlet-Neumann relation in U° V? U2, VO, By
using Resy, = Resy, = 0, we have

U, = %(1 S WA Al)(z; 22+ X5~ M) o

and

VP = [82((1/\2 ))(—Az—Ai—/\1(1+A1)(1+4s+/\%—3)\§+/\§(—1+2A1))
(=14 A = 25(2 4+ A1+ X2)) + A5(1+ M) = 20° = 20 + Ao (Mt + A7 — ) JU°
%( 1— Xy — M)V

Invert Laplace in s first: (A\; and Ag)

Trick: Use [*7 aestds = —1 [* da¢sts then we have
—400 t J—ioco Os
1 1
o\ aty1ts

95 /1 1 1 2 .
2 i ts (§ +/ 7t S) +n?
For 8—3, which is analytic around Res = 0 but % is not uniformly (in 7)

2
analytic around Res = 0. Since (% + 1/% + s) +n% < 0 is a trouble for X,

2
then we look for s such that (% + W/i + s) +n? = —72 for some T real. By
easy calculation, we have

7(7]2 +7'2) +ivn? + T2

For 7 = 0, s = —n? 4 in, there are two curves have problems, then we need to
avoid the path C' = {s = —n? & in} of the integration.

1 1
o0 . )\ . - — 4 + S
/ e"””dy/ e“gds = //emyGSt 2 : dsdn
— 00 R2—_C Js 2
2\/4114—5\/(;—\/}14—5) +n?

— //einy+ime[—i\/m—(n2+72)]Tdey|z:O

= wave solution (Kirchhoff & Hadamard).

Dirichlet-Neumann Relation: Hadamard-Kirchhoff convolve with initial values.

Example 5. Let u € R? satisfy

14+ A 0 0 1 _ _
ut—i—( 0 —1+A>u’3+(1 0>uy—Au—um+uyy.



Assume u(0,y,t) = u’(y,t), us(0,9,t) = u°(y,t) and u(z,y,0) = 0 (throwing
initial data to the source). Take Fourier in y, and note Fyu(z,n2,t) = v(z, n2,t).
Then we have

1+A 0 0 —in? B B 5
vt—i—( 0 _1+A>'Um+<_i772 0 V= Ugy — (72)°0.

In addition, we take Laplace transform in ¢ and write (L;v)(x,n2,s) = V(x, 12, 8) =
o —st
Jo e *v(x, n2, t)dt, then we have

(50 Y (v

Finally, take the Laplace transform in = and write L, (V) = V(f, 72, 8), we can
obtain

N 1+A 0 10 0 —i772 S 2Yr 170 1,0 27
SV+< 0 —1+A)(£V V)+< —in? 0 V=£V-EVi-V,/ —(n)°V.

Now, we want to invert the Laplace transform in ¢ first, then we have

s+ (1 +AN)E—E+4n3 —ing o, 1-A—¢ 0 0
( —in) ’ s+(1+A)§§2+n§)V_ V1+( 0 1A§)V

and call det A(E, 72, s) = p(&, 2, 8), regarded as the polynomial in £ and A(&, 79, s) =

s+ (1+A)8 =€+ +n3 —ins
( iy s+ (14 NE—2+ng ) So we calculate that
p(§m2,8) = & =20 + (=1 — 25 — 205 + A*)E + (25A + 203)¢

+8% + 5 + 2815 + 15
= I (€= Xi(n2,9)

where 7;(n2,s) are the four roots of the characteristic polynomial p(¢, 72, s).
Then

. 1 -1-A-¢ 0
V = ——— A&, n,8)" —V°+( )V0>
p(E, 72, 3) (&, m2,5) ( z 0 1-A—¢
= Lyoy gy
p p
f(€77727s) 0 9(5777273) 0
VY + V.,
Iy (€ = Aj(n2, 9)) Iy (€= Aj(n2,9))
where f,g are 2 by 2 matrices and the inverse Laplace transform in £ is

1 100 100
V(z,n2, 5) [VO/ efw£d§+V£/ ewadg}.

271 —i00 —100

)

Note that deg, f = 3, deg g = 2 and deg, p = 4, then we can do the contour
integral to the infinity and

1 100

f : f
= god ge Rese—y. = | 7.
2mi ) © P ]Z_‘;( 685Ajp)e
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By using mathematica, we have distinct four roots and rearrange their order to
A < A3 < 0 < Ao < Aq, by the stability we get that

VO(Rese—s, %) + VO(Rese, %) ~0

for j = 1,2. We have the Dirichlet-Neumann Relation for j = 1,2. On the other
hand, for a well-posed problem, one relation should suffice well-posed situation
have means |A| < 1. The two relations j = 1,2 are identical and we actually
get only one relation. Dirichlet-Neumann relations give that

(0% «
V2ms) = (202 ) V) = aV (oneo)

{l-s = - A 20 H AT 20+ M + A3

h =
whnere gy . 1—A—|—)\1+)\2
1
R G N VI Vi
s+ (C1+ )M =M {s+n3+ (-1 + M) — A3}
g1 = —1 and
T— A+ + X

. {-1+s+n3+20 —+A2+ (=1 4+ A)da + (=1 + A+ X)) \1 } "
22 = — -

1-A+X+ X

we invert the transform of A;,A2 and , then we invert . Now,

1—A+X+ X
1 100 . . .
we (A) compute 57 )i e**\; (12, s)ds would not involve simply residue cal-
)
1
culation and (B) then m Worse.

oA
To solve the case (B), by using (A), we invert —— instead and use “Fourier

path method”. Recall that A; are the roots of p, then we have the roots relations

s
as follows: Y- A; = 2A = C; and II\; = s® + 2n3s + 3 + i3 = Cyand Z/\ ! =
k
—2As — 23N = C3. If we let o : {1,2,3,4} — {1,2,3,4} be a permutation
and the relations C; depending on Aq, A2, A3, A4, we have Cj(A1, A2, Az, A\y) =
Ci(As(1), Ao(2)s Ao (3)s Ao(a)), invariant under all the permutation o. There is a
theorem in algebra can help us solve the question.

Theorem 6. If a polynomial p(A1, AaA3, \y) is invariant under all permutation
o, then p(A1, A2, Az, A1) = Q(A1, A2, Ag, Ay) for some polynomial Q.

Back to the example and by using the above theorem, the polynomial p
becomes a polynomial in 2A, —2As — 2n3A, ..., 5% + 2n2s + 02 + 1, ie., the
polynomial in these coefficients of the characteristic polynomial p and we write

1 1
S S— s T,r(1— A+ Aoy + Ay
T— A+ M+ ( 1= A+ Ao +Aa<2>) (Mo W+ Aotz)

and II5 (1 — A+ Xy (1) + As(2)) is invariant under all permutations. This implies
that the polynomial of the coefficients of the characteristic polynomial of p is
equal to the polynomial of the coefficients 2A,..., s% + 2n3s +n3 + n3.

Recall the case A = 0, we have calculated that A\; = \/% +s+3VT+4s+n3

with |[A1] - 0 as |s| — oo, it is convenient for varying the contour integral in




o

ds and 95

. . 1 oA
the complex plane, i.e., instead, we compute — [*7°_ est=L —0

2me 0s
as |s| — oo. For the general case |A| < 1, we also consider the integral

i 10 est a)‘] (7727 S)
ds

ds.
omi s

where \;(n2, s) is a root of p(&, 72, s) = 0. Instead, going back to the case A =0,

then \y = \/% +s— %\/1 + 4s + n3varying s and fix 72 € R. It is bad when
%4—8 — %\/ 1+ 4s+n3 < 0 since the Riemann surfaces will appear. So we can set
%—i—s — %\/1 +4s+n3 = —n? and look at the branching curves for Ay (A2 = i\1).

Since p(A2(n2, 8), M2, 8) = 0, then set p(ini, na, s(n1,n2)) = 0, where s(ny,n2) is
a solution of p which is a polynomial in s of degree 2. Then

s:z‘(Ami\/M)—(nf+W§)-

Therefore, we use the change of variable, then we have

1" (ONj 1 dimy ds
— stZ70 de — s(mm2)t 2201 22 g
omi ). ¢ 9s 2 / c ds dp

= i = es(ﬁlyﬁz)tdnl.
2r J_

Further inversion in 75, we can get

1 [ , 1 -
%/ /emzyes(m,772):‘,d771d172 _ %//emlm-i-mzyes(mmz)tdnld?b

and rewrite s(n1,72) as the form s(n1,n2) = %i,/t + [ ]¢, as a combination of
Huygens and dissipation terms, note that we have used the previous skill that
we integrate over a region in R? — O, where C is the singularities occurring.
Finally, use Fourier transform in 7; and 7.



