Dirichlet-Neumann Relation

Yi-Hsuan, Lin

Example 1. Look at heat equation $u_{t}=u_{x x}$

$$
\left\{\begin{array}{l}
G_{t}=G x x \\
G(x, 0)=\delta(x)
\end{array} \quad, \text { then } G(x, t)=\frac{1}{4 \pi t} e^{-\frac{x^{2}}{4 t}} \text {, where } G\right. \text { is a Green's function }
$$ for this initial value problem.

Now, consider the initial boundary value problem: Let $h(x, t)$ be the source of the heat equation, and $\left.u^{0}=u(0, t)\right)$ is Dirichlet boundary condition and $u_{x}^{0}=u_{x}(0, t)$ is Neumann boundary condition. Then the heat equation $u_{t}=$ $u_{x x}+h(x, t)$ has the following representation:

$$
\begin{aligned}
u(x, t)= & \int_{0}^{t} \int_{0}^{\infty} h(y, s) G(x-y, t-s) d y d s+\int_{0}^{\infty} u(y, 0) G(x-y, t) d y \\
& +\int_{0}^{t} G(-y, t-s) u_{x}(0, s) d s-\int_{0}^{t} G_{x}(-y, t-s) u(0, s) d s
\end{aligned}
$$

Goal: PDE \Longrightarrow Dirichlet-Neumann Relation !
Example 2. $\left\{\begin{array}{ll}u_{t}=u_{x x} & x, t>0 \\ u(x, 0)=0 & x>0 \\ u(0, t)=u^{0}(t) & t>0 \\ u_{x}(0, t)=u_{x}^{0}(t) & t>0\end{array}\right.$ and take the Laplace transform in t and x separately, and we define

$$
U(x, s)=\int_{0}^{\infty} e^{-s t} u(x, t) d t, \hat{U}(\xi, s)=\int_{0}^{\infty} e^{-\xi x} U(x, s) d x
$$

and use the well-known results in L-transform, we have

$$
L\left(u_{s}\right)=-\left.u\right|_{s=0}+s L(u) \text { and } L\left(u_{x x}\right)=-\left.U_{x}\right|_{x=0}-\left.\xi U\right|_{x=0}+\xi^{2} L(U)
$$

where L is the Laplace transform and we have used the notation U.
By using above consequences, the heat equation becomes

$$
s \hat{U}=\xi \hat{U}-U_{x}^{0}-\xi U^{0}
$$

Therefore,

$$
\hat{U}=\frac{1}{(\xi-\sqrt{s})(\xi+\sqrt{s})}\left(U_{x}^{0}+\xi U^{0}\right)
$$

we use the inverse Laplace transform in ξ variable, but we need to avoid the singularities, that is, we want to integrate over the part which U is analytic, so we can do the following thing:

$$
U(x, s)=\frac{1}{2 \pi i} \int_{-i \infty+L}^{i \infty+L} \hat{U}(\xi, s) e^{\xi x} d \xi
$$

By the residue theorem, we have

$$
U(x, s)=e^{\sqrt{s} x}\left\{\frac{U_{x}^{0}+\sqrt{s} U^{0}}{\sqrt{s}+\sqrt{s}}\right\}+e^{-\sqrt{s} x}\left\{\frac{U_{x}^{0}-\sqrt{s} U^{0}}{-\sqrt{s}-\sqrt{s}}\right\}
$$

note that $e^{\sqrt{s} x} \rightarrow \infty$ as, it is an unstable mode. Thus, we want

$$
\frac{U_{x}^{0}+\sqrt{s} U^{0}}{\sqrt{s}+\sqrt{s}}=0
$$

it is the Dirichlet-Neumann Relation. So we have $U_{x}^{0}=-\sqrt{s} U^{0}=-\frac{s}{\sqrt{s}} U^{0}$, that is,

$$
\frac{1}{s} U_{x}^{0}=-\frac{1}{\sqrt{s}} U^{0} .
$$

To invert Laplace transform in t, we have

$$
u_{x}^{0}=\left[\left(L^{-1}\left(\frac{1}{\sqrt{\bullet}}\right) * u^{0}\right)(t)\right]_{t} .
$$

Note that the trick is that we we the term $\frac{1}{s}$ to invert the L-transform in t. Now, we need to compute $L^{-1}\left(\frac{1}{\sqrt{s}}\right)$:

$$
\begin{aligned}
L^{-1}\left(\frac{1}{\sqrt{s}}\right) & =\frac{1}{2 \pi i}\left[\int_{\infty}^{0} \frac{e^{i \tau t}}{\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right) \sqrt{\tau}}(-i) d \tau+\int_{0}^{\infty} \frac{e^{-i \tau t}}{\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right) \sqrt{\tau}}(i) d \tau\right] \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} \frac{1}{\sqrt{\tau}}\left\{\frac{e^{i \tau t}}{\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}}+\frac{e^{-i \tau t}}{\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}}\right\} d \tau \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} \frac{1}{\sqrt{\tau}}\{\sqrt{2} \cos \tau t+\sqrt{2} \sin \tau t\} d \tau \\
& =\frac{1}{\sqrt{t}} \frac{1}{2 \pi} \int_{0}^{\infty} \sqrt{\frac{2}{\gamma}}(\cos \gamma+\sin \gamma) d \gamma \\
& =\frac{1}{\sqrt{t}} D_{0}
\end{aligned}
$$

where we set $\gamma=\tau t$ and $D_{0}=\frac{1}{2 \pi} \int_{0}^{\infty} \sqrt{\frac{2}{\gamma}}(\cos \gamma+\sin \gamma) d \gamma$. Therefore,

$$
u_{x}^{0}=\partial_{t}\left\{\left(\frac{D_{0}}{\sqrt{t}} * u^{0}\right)(t)\right\},
$$

we call this the Dirichlet-Neumann Relation.
Remark 3. If we consider $\left\{\begin{array}{l}u_{t}=u_{x x}+h(x, t) \\ u(x, 0) \text { is given } \\ u(0, t)=0\end{array}\right.$, we extend $u(x, t)$ as an odd function in x to reduce the problem to pace initial value problem, which can be solved explicitly by $G(x, t)=\frac{1}{4 \pi t} e^{-\frac{x^{2}}{4 t}}$, the Green's function of the initial value
problem. Then we still have the Dirichlet-Neumann Relation. On the other hand, if we have the Neumann boundary condition on this problem, that is, we have $u_{x}(0, t)=0$ but we don't know what is $u(x, 0)$, then we just need to extend the function as an even function in x.

Now, we consider another example to observe the Dirichlet-Neumann relation in PDEs !

Example 4. Let us consider the equation

$$
\left\{\begin{array}{l}
u_{t}+u_{x}+v_{y}=\Delta u=u_{x x}+u_{y y} \\
v_{t}-v_{x}+u_{y}=\Delta v=v_{x x}+v_{y y}
\end{array}\right.
$$

where the $u_{t}+u_{x}+v_{y}$ and $v_{t}-v_{x}+u_{y}$ are wave operators. We suppose

$$
\binom{U}{V}(x, \eta, s)=\int_{-\infty}^{\infty} e^{i y \eta} d \eta \int_{0}^{\infty} e^{-s t}\binom{u}{v}(x, y, t) d t
$$

Fourier transform in y and Laplace transform in t and

$$
\binom{\hat{U}}{\hat{V}}(\xi, \eta, s)=\int_{0}^{\infty} e^{-\xi x}\binom{U}{V}(x, \eta, s) d x
$$

Laplace in x.

$$
\left(\begin{array}{cc}
s+\xi-\xi^{2}+\eta^{2} & i \eta \\
i \eta & s-\xi-\xi^{2}+\eta^{2}
\end{array}\right)\binom{\hat{U}}{\hat{V}}=\binom{(1-\xi) U^{0}-U_{x}^{0}}{(-1-\xi) V^{0}-V_{x}^{0}},
$$

where $U_{x}^{0}=U_{x}(0, \eta, s), U^{0}=U(0, \eta, s)$...etc. Then rewrite

$$
\binom{\hat{U}}{\hat{V}}=\left(\begin{array}{cc}
s+\xi-\xi^{2}+\eta^{2} & i \eta \\
i \eta & s-\xi-\xi^{2}+\eta^{2}
\end{array}\right)^{-1}\binom{(1-\xi) U^{0}-U_{x}^{0}}{(-1-\xi) V^{0}-V_{x}^{0}},
$$

where

$$
\begin{aligned}
\left(\begin{array}{cc}
s+\xi-\xi^{2}+\eta^{2} & i \eta \\
i \eta & s-\xi-\xi^{2}+\eta^{2}
\end{array}\right)^{-1}= & \frac{1}{p(\xi, \eta, s)} \\
& \times\left(\begin{array}{cc}
s-\xi-\xi^{2}+\eta^{2} & -i \eta \\
-i \eta & s+\xi-\xi^{2}+\eta^{2}
\end{array}\right) \\
& \times\binom{(1-\xi) U^{0}-U_{x}^{0}}{(-1-\xi) V^{0}-V_{x}^{0}},
\end{aligned}
$$

where $p(\xi, \eta, s)=\operatorname{det}\left(\begin{array}{cc}s+\xi-\xi^{2}+\eta^{2} & i \eta \\ i \eta & s-\xi-\xi^{2}+\eta^{2}\end{array}\right)=\xi^{4}-(1+2 s+$ $\left.2 \eta^{2}\right) \xi^{2}+s^{2}+(1+2 s) \eta^{2}+\eta^{4}$. The roots of p are

$$
\lambda_{1}=\sqrt{\frac{1}{2}+s+\frac{1}{2} \sqrt{1+4 s}+\eta^{2}} \text { and } \lambda_{2}=\sqrt{\frac{1}{2}+s-\frac{1}{2} \sqrt{1+4 s}+\eta^{2}}
$$

and $\lambda_{3}=-\lambda_{2}, \lambda_{4}=-\lambda_{1}$. Note that $\lambda_{4}<\lambda_{3}<0<\lambda_{2}<\lambda_{1}$. Stability requires that

$$
\operatorname{Res}_{\lambda_{1}}=\operatorname{Res}_{\lambda_{2}}=0
$$

Then we want to find the Dirichlet-Neumann relation in $U^{0}, V^{0}, U_{x}^{0}, V_{x}^{0}$. By using $\operatorname{Res}_{\lambda_{1}}=\operatorname{Res}_{\lambda_{2}}=0$, we have

$$
U_{x}^{0}=\frac{1}{2}\left(1-\lambda_{2}-\lambda_{1}\right) U^{0}+\frac{i\left(1+\lambda_{2}-\lambda_{1}\right)\left(1-2 \lambda_{2}+\lambda_{2}^{2}-\lambda_{1}^{2}\right)}{4 \eta} V^{0}
$$

and

$$
\begin{aligned}
V_{x}^{0}= & {\left[\frac { i (\lambda _ { 2 } - \lambda _ { 1 }) } { 8 (1 + 4 s) \eta ^ { 3 } } \left(-\lambda_{2}-\lambda_{2}^{2}-\lambda_{1}\left(1+\lambda_{1}\right)\left(1+4 s+\lambda_{1}^{2}-3 \lambda_{1}^{3}+\lambda_{2}^{2}\left(-1+2 \lambda_{1}\right)\right)\right.\right.} \\
& \left.\times\left(-1+\lambda_{1}^{2}-2 s\left(2+\lambda_{1}+\lambda_{2}\right)\right)+\lambda_{2}^{2}\left(1+\lambda_{1}\right)-2 \eta^{2}-2 \lambda_{1} \eta^{2}+\lambda_{2}\left(\lambda_{1}+\lambda_{1}^{2}-\eta^{2}\right)\right] U^{0} \\
& +\frac{1}{2}\left(-1-\lambda_{2}-\lambda_{1}\right) V^{0} .
\end{aligned}
$$

Invert Laplace in s first: $\left(\lambda_{1}\right.$ and $\left.\lambda_{2}\right)$
Trick: Use $\int_{-i \infty}^{i \infty} \alpha e^{s t} d s=-\frac{1}{t} \int_{-i \infty}^{i \infty} \frac{\partial \alpha}{\partial s} e^{s t} d s$, then we have

$$
\frac{\partial \lambda_{1}}{\partial s}=\frac{\frac{1}{2}+\sqrt{\frac{1}{4}+s}}{2 \sqrt{\frac{1}{4}+s} \sqrt{\left(\frac{1}{2}+\sqrt{\frac{1}{4}+s}\right)^{2}+\eta^{2}}}
$$

For $\frac{\partial \lambda_{1}}{\partial s}$, which is analytic around Res $=0$ but $\frac{\partial \lambda_{2}}{\partial s}$ is not uniformly (in η) analytic around Res $=0$. Since $\left(\frac{1}{2}+\sqrt{\frac{1}{4}+s}\right)^{2}+\eta^{2}<0$ is a trouble for λ_{2}, then we look for s such that $\left(\frac{1}{2}+\sqrt{\frac{1}{4}+s}\right)^{2}+\eta^{2}=-\tau^{2}$ for some τ real. By easy calculation, we have

$$
s=-\left(\eta^{2}+\tau^{2}\right) \pm i \sqrt{\eta^{2}+\tau^{2}}
$$

For $\tau=0, s=-\eta^{2} \pm i \eta$, there are two curves have problems, then we need to avoid the path $C=\left\{s=-\eta^{2} \pm i \eta\right\}$ of the integration.

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{i \eta y} d y \int_{\mathbb{R}^{2}-C} e^{s t} \frac{\partial \lambda_{2}}{\partial s} d s & =\iint e^{i \eta y} e^{s t} \frac{\frac{1}{2}-\sqrt{\frac{1}{4}+s}}{2 \sqrt{\frac{1}{4}+s} \sqrt{\left(\frac{1}{2}-\sqrt{\frac{1}{4}+s}\right)^{2}+\eta^{2}}} d s d \eta \\
& =\iint e^{i \eta y} e^{\left[-i \sqrt{\eta^{2}+\tau^{2}}-\left(\eta^{2}+\tau^{2}\right)\right] t} d \tau d \eta \\
& =\left.\iint e^{i \eta y+i \tau x} e^{\left[-i \sqrt{\eta^{2}+\tau^{2}}-\left(\eta^{2}+\tau^{2}\right)\right] \tau} d \tau d y\right|_{x=0} \\
& =\text { wave solution (Kirchhoff \& Hadamard). }
\end{aligned}
$$

Dirichlet-Neumann Relation: Hadamard-Kirchhoff convolve with initial values.
Example 5. Let $u \in \mathbb{R}^{2}$ satisfy

$$
u_{t}+\left(\begin{array}{cc}
1+\Lambda & 0 \\
0 & -1+\Lambda
\end{array}\right) u_{x}+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) u_{y}=\Delta u=u_{x x}+u_{y y}
$$

Assume $u(0, y, t)=u^{0}(y, t), u_{x}(0, y, t)=u^{0}(y, t)$ and $u(x, y, 0)=0$ (throwing initial data to the source). Take Fourier in y, and note $F_{y} u\left(x, \eta_{2}, t\right)=v\left(x, \eta_{2}, t\right)$. Then we have

$$
v_{t}+\left(\begin{array}{cc}
1+\Lambda & 0 \\
0 & -1+\Lambda
\end{array}\right) v_{x}+\left(\begin{array}{cc}
0 & -i \eta^{2} \\
-i \eta^{2} & 0
\end{array}\right) v=v_{x x}-\left(\eta_{2}\right)^{2} v
$$

In addition, we take Laplace transform in t and write $\left(L_{t} v\right)\left(x, \eta_{2}, s\right)=V\left(x, \eta_{2}, s\right)=$ $\int_{0}^{\infty} e^{-s t} v\left(x, \eta_{2}, t\right) d t$, then we have

$$
s V+\left(\begin{array}{cc}
1+\Lambda & 0 \\
0 & -1+\Lambda
\end{array}\right) V_{x}+\left(\begin{array}{cc}
0 & -i \eta^{2} \\
-i \eta^{2} & 0
\end{array}\right) V=V_{x x}-\left(\eta_{2}\right)^{2} V
$$

Finally, take the Laplace transform in x and write $L_{x}(V)=\hat{V}\left(\xi, \eta_{2}, s\right)$, we can obtain
$s \hat{V}+\left(\begin{array}{cc}1+\Lambda & 0 \\ 0 & -1+\Lambda\end{array}\right)\left(\xi \hat{V}-V^{0}\right)+\left(\begin{array}{cc}0 & -i \eta^{2} \\ -i \eta^{2} & 0\end{array}\right) \hat{V}=\xi^{2} \hat{V}-\xi V^{0}-V_{x}^{0}-\left(\eta_{2}\right)^{2} \hat{V}$.
Now, we want to invert the Laplace transform in ξ first, then we have
$\left(\begin{array}{cc}s+(1+\Lambda) \xi-\xi^{2}++\eta_{2}^{2} & -i \eta_{2} \\ -i \eta_{2} & s+(-1+\Lambda) \xi-\xi^{2}+\eta_{2}^{2}\end{array}\right) \hat{V}=-V_{x}^{0}+\left(\begin{array}{cc}-1-\Lambda-\xi & 0 \\ 0 & 1-\Lambda-\xi\end{array}\right) V^{0}$
and call $\operatorname{det} A\left(\xi, \eta_{2}, s\right)=p\left(\xi, \eta_{2}, s\right)$, regarded as the polynomial in ξ and $A\left(\xi, \eta_{2}, s\right)=$

$$
\begin{aligned}
&\left(\begin{array}{cc}
s+(1+\Lambda) \xi-\xi^{2}++\eta_{2}^{2} & -i \eta_{2} \\
-i \eta_{2} & s+(-1+\Lambda) \xi-\xi^{2}+\eta_{2}^{2}
\end{array}\right) . \text { So we calculate that } \\
& p\left(\xi, \eta_{2}, s\right)= \xi^{4}-2 \Lambda \xi^{3}+\left(-1-2 s-2 \eta_{2}^{2}+\Lambda^{2}\right) \xi^{2}+\left(2 s \Lambda+2 \eta_{2}^{2}\right) \xi \\
&+s^{2}+\eta_{2}^{2}+2 s \eta_{2}^{2}+\eta_{2}^{4} \\
&= \Pi_{j=1}^{4}\left(\xi-\lambda_{j}\left(\eta_{2}, s\right)\right)
\end{aligned}
$$

where $\eta_{j}\left(\eta_{2}, s\right)$ are the four roots of the characteristic polynomial $p\left(\xi, \eta_{2}, s\right)$. Then

$$
\begin{aligned}
\hat{V} & =\frac{1}{p\left(\xi, \eta_{2}, s\right)} A\left(\xi, \eta_{2}, s\right)^{*}\left(-V_{x}^{0}+\left(\begin{array}{cc}
-1-\Lambda-\xi & 0 \\
0 & 1-\Lambda-\xi
\end{array}\right) V^{0}\right) \\
& =\frac{f}{p} V^{0}+\frac{g}{p} V_{x}^{0} \\
& =\frac{f\left(\xi, \eta_{2}, s\right)}{\Pi_{j=1}^{4}\left(\xi-\lambda_{j}\left(\eta_{2}, s\right)\right)} V^{0}+\frac{g\left(\xi, \eta_{2}, s\right)}{\Pi_{j=1}^{4}\left(\xi-\lambda_{j}\left(\eta_{2}, s\right)\right)} V_{x}^{0}
\end{aligned}
$$

where f, g are 2 by 2 matrices and the inverse Laplace transform in ξ is

$$
V\left(x, \eta_{2}, s\right)=\frac{1}{2 \pi i}\left[V^{0} \int_{-i \infty}^{i \infty} e^{\xi x} \frac{f}{p} d \xi+V_{x}^{0} \int_{-i \infty}^{i \infty} e^{\xi x} \frac{g}{p} d \xi\right]
$$

Note that $\operatorname{deg}_{\xi} f=3, \operatorname{deg}_{\xi} g=2$ and $\operatorname{deg}_{\xi} p=4$, then we can do the contour integral to the infinity and

$$
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{\xi x} \frac{f}{p} d \xi=\sum_{j=1}^{4}\left(\operatorname{Res}_{\xi=\lambda_{j}} \frac{f}{p}\right) e^{\lambda_{j} x}
$$

By using mathematica, we have distinct four roots and rearrange their order to $\lambda_{4}<\lambda_{3}<0<\lambda_{2}<\lambda_{1}$, by the stability we get that

$$
V^{0}\left(\operatorname{Res}_{\xi=\lambda_{j}} \frac{f}{p}\right)+V_{x}^{0}\left(\operatorname{Res}_{\xi=x_{j}} \frac{g}{p}\right)=0
$$

for $j=1,2$. We have the Dirichlet-Neumann Relation for $j=1,2$. On the other hand, for a well-posed problem, one relation should suffice well-posed situation have means $|\Lambda|<1$. The two relations $j=1,2$ are identical and we actually get only one relation. Dirichlet-Neumann relations give that

$$
V_{x}^{0}\left(\eta_{2}, s\right)=\left(\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right) V^{0}\left(\eta_{2}, s\right)=\alpha V^{0}\left(\eta_{2}, s\right)
$$

where $\alpha_{11}=-\frac{\left\{1-s-\eta_{2}^{2}-\Lambda^{2}+2 \lambda_{1}+\lambda_{1}^{2}+2 \lambda_{2}+\lambda_{1} \lambda_{2}+\lambda_{2}^{2}\right\}}{1-\Lambda+\lambda_{1}+\lambda_{2}}$,

$$
\begin{aligned}
& \alpha_{12}=-\frac{i}{1-\Lambda+\lambda_{1}+\lambda_{2}}, \\
& \alpha_{21}=-i \frac{\left\{s+\eta_{2}^{2}+(-1+\Lambda) \lambda_{1}-\lambda_{1}^{2}\right\}\left\{s+\eta_{2}^{2}+(-1+\Lambda) \lambda_{2}-\lambda_{2}^{2}\right\}}{1-\Lambda+\lambda_{1}+\lambda_{2}} \text { and } \\
& \alpha_{22}=-\frac{\left\{-1+s+\eta_{2}^{2}+2 \Lambda-+\Lambda^{2}+(-1+\Lambda) \lambda_{2}+\left(-1+\Lambda+\lambda_{2}\right) \lambda_{1}\right\}}{1-\Lambda+\lambda_{1}+\lambda_{2}} . \text { If }
\end{aligned}
$$

we invert the transform of λ_{1}, λ_{2} and $\frac{1}{1-\Lambda+\lambda_{1}+\lambda_{2}}$, then we invert α. Now, we (A) compute $\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{s t} \lambda_{j}\left(\eta_{2}, s\right) d s$ would not involve simply residue calculation and (B) then $\frac{1}{1-\Lambda+\lambda_{1}+\lambda_{2}}$ worse.

To solve the case (B), by using (A), we invert $\frac{\partial \lambda_{2}}{\partial s}$ instead and use "Fourier path method". Recall that λ_{j} are the roots of p, then we have the roots relations as follows: $\sum \lambda_{j}=2 \Lambda=C_{1}$ and $\Pi \lambda_{j}=s^{2}+2 \eta_{2}^{2} s+\eta_{2}^{2}+\eta_{2}^{4}=C_{4}$ and $\frac{\sum \lambda_{j}}{\lambda_{k}}=$ $-2 \Lambda s-2 \eta_{2}^{2} \Lambda=C_{3}$. If we let $\sigma:\{1,2,3,4\} \rightarrow\{1,2,3,4\}$ be a permutation and the relations C_{j} depending on $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$, we have $C_{j}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)=$ $C_{j}\left(\lambda_{\sigma(1)}, \lambda_{\sigma(2)}, \lambda_{\sigma(3)}, \lambda_{\sigma(4)}\right)$, invariant under all the permutation σ. There is a theorem in algebra can help us solve the question.

Theorem 6. If a polynomial $p\left(\lambda_{1}, \lambda_{2} \lambda_{3}, \lambda_{4}\right)$ is invariant under all permutation σ, then $p\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)=Q\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ for some polynomial Q.

Back to the example and by using the above theorem, the polynomial p becomes a polynomial in $2 \Lambda,-2 \Lambda s-2 \eta_{2}^{2} \Lambda, \ldots, s^{2}+2 \eta_{2}^{2} s+\eta_{2}^{2}+\eta^{4}$, i.e., the polynomial in these coefficients of the characteristic polynomial p and we write

$$
\frac{1}{1-\Lambda+\lambda_{1}+\lambda_{2}}=\left(\Pi_{\sigma} \frac{1}{1-\Lambda+\lambda_{\sigma(1)}+\lambda_{\sigma(2)}}\right)\left(\Pi_{\sigma \neq I}\left(1-\Lambda+\lambda_{\sigma(1)}+\lambda_{\sigma(2)}\right)\right.
$$

and $\Pi_{\sigma}\left(1-\Lambda+\lambda_{\sigma(1)}+\lambda_{\sigma(2)}\right)$ is invariant under all permutations. This implies that the polynomial of the coefficients of the characteristic polynomial of p is equal to the polynomial of the coefficients $2 \Lambda, \ldots, s^{2}+2 \eta_{2}^{2} s+\eta_{2}^{2}+\eta_{2}^{4}$.

Recall the case $\Lambda=0$, we have calculated that $\lambda_{1}=\sqrt{\frac{1}{2}+s+\frac{1}{2} \sqrt{1+4 s}+\eta_{2}^{2}}$ with $\left|\lambda_{1}\right| \nrightarrow 0$ as $|s| \rightarrow \infty$, it is convenient for varying the contour integral in
the complex plane, i.e., instead, we compute $\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{s t} \frac{\partial \lambda_{1}}{\partial s} d s$ and $\left|\frac{\partial \lambda_{1}}{\partial s}\right| \rightarrow 0$ as $|s| \rightarrow \infty$. For the general case $|\Lambda|<1$, we also consider the integral

$$
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{s t} \frac{\partial \lambda_{j}\left(\eta_{2}, s\right)}{\partial s} d s
$$

where $\lambda_{j}\left(\eta_{2}, s\right)$ is a root of $p\left(\xi, \eta_{2}, s\right)=0$. Instead, going back to the case $\Lambda=0$, then $\lambda_{2}=\sqrt{\frac{1}{2}+s-\frac{1}{2} \sqrt{1+4 s}+\eta_{2}^{2}}$ varying s and fix $\eta_{2} \in \mathbb{R}$. It is bad when $\frac{1}{2}+s-\frac{1}{2} \sqrt{1+4 s}+\eta_{2}^{2}<0$ since the Riemann surfaces will appear. So we can set $\frac{1}{2}+s-\frac{1}{2} \sqrt{1+4 s}+\eta_{2}^{2}=-\eta_{1}^{2}$ and look at the branching curves for $\lambda_{2}\left(\lambda_{2}=i \lambda_{1}\right)$. Since $p\left(\lambda_{2}\left(\eta_{2}, s\right), \eta_{2}, s\right)=0$, then set $p\left(i \eta_{1}, \eta_{2}, s\left(\eta_{1}, \eta_{2}\right)\right)=0$, where $s\left(\eta_{1}, \eta_{2}\right)$ is a solution of p which is a polynomial in s of degree 2 . Then

$$
s=i\left(\Lambda \eta_{1} \pm \sqrt{\eta_{1}^{2}+\eta_{2}^{2}}\right)-\left(\eta_{1}^{2}+\eta_{2}^{2}\right)
$$

Therefore, we use the change of variable, then we have

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{s t} \frac{\partial \lambda_{j}}{\partial s} d s & =\frac{1}{2 \pi i} \int e^{s\left(\eta_{1}, \eta_{2}\right) t} \frac{\partial i \eta_{1}}{\partial s} \frac{d s}{d \eta_{1}} d \eta_{1} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{s\left(\eta_{1}, \eta_{2}\right) t} d \eta_{1}
\end{aligned}
$$

Further inversion in η_{2}, we can get

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int e^{i \eta_{2} y} e^{s\left(\eta_{1}, \eta_{2}\right) t} d \eta_{1} d \eta_{2}=\frac{1}{2 \pi} \iint e^{i \eta_{1} x+i \eta_{2} y} e^{s\left(\eta_{1}, \eta_{2}\right) t} d \eta_{1} d \eta_{2}
$$

and rewrite $s\left(\eta_{1}, \eta_{2}\right)$ as the form $s\left(\eta_{1}, \eta_{2}\right)= \pm i \sqrt{ } t+[] t$, as a combination of Huygens and dissipation terms, note that we have used the previous skill that we integrate over a region in $\mathbb{R}^{2}-C$, where C is the singularities occurring. Finally, use Fourier transform in η_{1} and η_{2}.

