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Abstract

The note is mainly for personal record, if you want to read it,

please be careful. This short note was given by Prof. Alexis Vasseur in

NCTU, 2014. For more regularity result for NS-equation, we refer readers

to G. Seregin's lecture notes.

1 Introduction

For the incompressible Navier-Stokes equation{
∂tu− u · ∇u+∇p−∆u = 0

∇ · u = 0
, (1.1)

rewrite the equation as−∆p =
∑
i,j ∂

2
ijuiuj , then we have p =

∑
i.j [(−∆)−1∂2

ij ]uiuj
and

‖p‖Lp/2Lq/2 ≤ Cq‖u‖2LpLq .
From the (NS) · u, we can get

∂t
|u|2

2
+∇ · (u |u|

2

2
+ p)) + |∇u|2 −∆

|u|2

2
≤ 0. (1.2)

Theorem 1.1. (Leray-Hopf) For all initial value u0 ∈ L2(R3), ∃u ∈ L∞L2,
∇u ∈ L2L2 such that u is a solution to (NS) and satis�es (*).

What can we get from the energy ?

1. Local study for small energy. Smallness on some quantity (or u) can imply
regularity.

2. Global property on the �ow (without the smallness condition). Canonical
scaling of the equation: If u is a solution to (1.1) and (1.2) in R+ × R3,
then for ε ≤ 1, we set{

uε(t, x) = εu(t0 + ε2t, x0 + εx)

pε(t, x) = ε2p(t0 + ε2t, x0 + εx)

is still a solution to (NS) (it is a good idea to get Prodi-Serrin condition).

Now we set Qr = (−r, 0)×Br in the following lecture.

Theorem 1.2. ∃η > 0 such that any solution of (1.1) and (1.2) verifyingˆ
Q2

|u|3dxdt+

ˆ
Q2

|p|3/2dxdt ≤ η,

then we have |u| ≤ 1 in Q1 and |∇nu| ≤ Cn in Q1/2.
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2 DeGiorgi Method

In 1957, DeGiorgi got a very useful theorem for the elliptic regularity (call it
DeGiorgi-Nash-Moser iteration). For the standard elliptic equation

∇ · (A(x)∇u) = 0, (2.1)

A(x) only satis�es 1
ΛI ≤ A(x) ≤ ΛI. If u ∈ L2(Ω) solves this equation, then

u ∈ Cαloc(Ω). There are two steps:

1. L2 implies L∞.

2. L∞ implies Cαloc.

Lemma 2.1. (Energy method) ∃η > 0 such that for any solution u solves (2.1),
if
´
B2
|∇u|2dx ≤ η, then |u| ≤ 1 in B1.

Use the DeGiorgi's method, let ck = 1− 2−k, uk = (u− ck)+, Uk =
´
|∇uk|2dx

and B̃k = B1+2−k(0), then we want to show

Uk ≤ CkUβk−1

for some β > 1. If U0 � 1, then Uk → 0 as k →∞. Now we let (u− ck)ϕk be

the test function with ϕk as a cuto� function of B̃k−1 and ϕk|B̃k = 1, then we
can obtain

Uk ≤
ˆ
|∇(ϕkuk)|2dx ≤ Ck

ˆ
B̃k

u2
kdx.

From the Sobolev embedding theorem, we have uk−1 ≥ C‖uk‖22N
N−2

. More-

over, from the Tchebyshev's inequality, we can get χ{uk>0} ≤ uk−1

ck−ck−1
and

χ{uk>0} ≤ (2kuk−1)γ , for some γ ≥ 0. Then

Uk ≤ Ck
ˆ
B̃k−1

u
2N
N−2

k−1 dx ≤ C
kU

N
N−2

k−1 ,

where β = 1 + 2
N−2 = N

N−2 .

3 Prodi-Serrin Criteria

Theorem 3.1. 3 ≤ p <∞ with 2
p + 3

q ≤ 1, for any u solves (1.1) and (1.2) in

R+ × R3 verifying ‖u‖LpLq <∞, then u is smooth for t ≥ t0.

Remark 3.2. Theorem 3.1 is still true for 1 ≤ p < 3. For p =∞, we need other
techniques.

Proof. We set (uε, pε) to be as before, then we calculate

‖uε‖LpLq(Q2) = ε1−
3
p−

2
q ‖u‖LpLq(t0−ε2,t0)×Bε(x0)).

Then for ε small enough, ‖uε‖LpLq(Q2) + ‖pε‖Lp/2Lq/2(Q2) ≤ η, by the before

lemma, we can get |uε| ≤ 1 (which means |u| ≤ 1
ε and note that we need t far

away from 0 since if t is very small, then ε will be very tiny so that 1/ε will be
very large).
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4 Partial Regularity

Theorem 4.1. (CKN) u is a solution to (1.1) and (1.2), Ω = {(t, x)|u is not locally bounded at (t, x)},
then dimH(Ω) ≤ 1 and H1(Ω) = 0.

By Sche�er's early result, we have

Theorem 4.2. dimH(Ω) ≤ 5
3 .

For ε �xed, we set

Fε(t, x) =

 
Q̃2ε(t,x)

|u| 103 (s, y)dsdy +

 
Q̃2ε(t,x)

|p| 53 (s, y)dsdy,

where Q̃ε(t, x) = (t−ε2, t)×Bε(x), and we have ‖Fε‖L1 ≤ C. If Fε(t, x) ≤ ηε− 10
3 ,

then (t, x) /∈ Ω. Use (uε, pε) to verify the hypothesis and uε is smooth near (t, x),
we obtain

|Ω| ≤ |{Fε(t, x) ≥ η

ε
10
3

}|

≤ ε
10
3

η

ˆ
Fε(t, x)dxdt ≤ Cε5− 5

3 ,

and note that the exponent 5
3 is dimension.

Theorem 4.3. ∃η > 0 such that any solution of (1.1) and (1.2) verifying

ˆ
|M(∇u)|2dxdt+

ˆ
Q2

|∇2p|dxdt ≤ η

and ∀t ∈ (−2, 0),
´
B1
u(t, x)dx = 0. Then |u| ≤ 1 in Q1.

For more details, we refer readers to see The De Giorgi method for regularity

of solutions of elliptic equations and its applications to �uid dynamics. Luis A.

Ca�arelli and Alexis F.
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