Theory and Application of Homogenization
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Abstract

The note is mainly for personal record, if you want to
read it, please be careful. I followed Prof. Fang-Hua Lin’s lecture
in NCTS, Taiwan. He gave a series of lectures of homogenization
theory during Dec 17-19, 2012. We separate this notes into three
parts: Applied Analysis, Homogenization and Figenvalue Problem.

1 Applied Analysis

What is applied analysis? We have two viewpoints of this: Concentrations
and Oscillations.

1.1 Concentrations

Example 1.1. Sacks-Uhlenbeck bubbling (beyond conformal dimension (i.e.
two dimension)): Harmonic maps and Minimal surfaces.

Example 1.2. Gromov (pseudo-holomorphic curves): Compactness =>Selberg-
Witten theory.

Example 1.3. Yamabe problems: Studied in math biology (spikes, higher
dimensional patterns).

Example 1.4. Particle like solutions: BEC, vortices (filaments), super-
conductivity, codimention two concentration.

Example 1.5. Singularities (L. Simon), shocks (sharp interfaces), defects
(motion by mean curvature), Ricci flows (black holes).



1.2 Oscillations

Example 1.6. Measures: Wigner measure (in quantum mechanism), Young
measure, Defect measure, H-measure (homogenization measure, introduced
by Luc Tartar and Gerand), microlocal measure.

Example 1.7. Averaging Principle: Large number laws, hydrodynamics,
Homogenization.

Example 1.8. Weak continuity (conservation laws), compensate compact-
ness, viscosity method (convexity and monotonicity).

2 Homogenization

We only consider elliptic equations with periodic coefficients and theory of
homogenization.

2.1 Goals

1. Composite materials (in practical use).
2. A lot of classical physics can be explained by using homogenization.

3. (Pure) Mathematical reasons : Used in the Hopf conjecture.

Conjecture 2.1. (Hopf conjecture) A Riemannian metric is defined on a
torus without conjugate points, then the metric will be flat.

It was solved by using the ideas in homogenization.

2.2 Elliptic Equations with Periodic Coefficients

First, we consider the ODE case as follows:

Lemma 2.2. (Floquet Theory)

d
d_f = A(t)x, with A(x) is periodic in t, then

¢(t) = P(t) exp(Ct)

is the fundamental solution matriz, where C is a constant matriz and P(t)
15 pertodic in t.



Now, we consider the PDE case: Let L be a uniformly elliptic opera-
tor with periodic coefficients in R™. Suppose L is either of the form L =
div(A(z)V) or of the form L = —a"(x)03,, . Then

Theorem 2.3. (Avellanda-Lin, 1989) If Lu = 0 in R", and maxg,, |u(z)| <
MR™, for a sequence of R — oo, then u is a polynomial of degree m with
periodic coefficients. That is, w(z) = 37, <, Ga(@)z® with aq(x) is periodic
mn x.

Remark 2.4. (a) This is a type of Liouville’s theorem.
(b) Moser-Struwe (1992) proved that there are solutions of the PDE

—Au+v(z,u) =0in R",

with u(z) = a -z + B,(z), for any a € R", and B,(z)'s are bounded.

(c) Caffarelli-R. de Llave (2001): Planelike minimal surface in (R", g),
g(x) is periodic in .

(d) P. Kuchment: Floquet Theory for Partial Differential Equations,
Birkhauser, Basel (1993).

Theorem 2.5. (M. Avellaneda and F. H. Lin, 1991)
Let G and Gy be Green functions of L and Lg, then

&
_ <
]G(x,y) Go(l‘,y)‘ = ’x_y’n_lv
Co
C

for some constants Cy, Cy, Cs and periodic matriz P(x), and for oll (x,y) €
R™ x R™ with |z —y| > 1.

Consequences:

0 g 0 0
1. Operators %(L)’lﬁ, %(L)*lﬁ, (L)*l/QW, 1 <a,pB <n,areall
bounded from LP(R™) into weak L'(R") (Calderon-Zygmund theorem).

2. 1f Lu = div F in R", then |jullyremn) < CH?HLP(Rn) (DeGiorgi’s the-
orem).

82"‘ %(L)_1 are bounded from L?(R") to L?(R") (and

from L'(R™) to weak L'(R")), 1 < p < oo, if and only if divA = 0.

3. The operator
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4. If divA=0, then Lu = f in R™ implies ||u||w2r@n)y < C|| f|| 1o @n)-

5. If Lu =0 in HY (a half space) and u = f on OHY, then |[u*||zsomm) <
Cllfllromry, 1 < p < oo. Here u* is the usual Hardy-Littlewood

maximal function (Fatou’s theorem, introduced in the Stein’s small
book).

Quasilinear Elliptic Equations and Hamilton-Jacobi Equations, the corre-
sponding studies were carried out by Lions- Papanicolaou-Varadhan, and by
C. Evans. Fully nonlinear differential and fully nonlinear integral equations
with periodic coefficients were studied by L. Cafferelli et al. The study of
these equations with periodic 1 coefficients in large domain <= the study
of same type equations with periodic € coefficients (¢ < 1) in a bounded do-
main. The latter is called homogenization problem. We show two problems
in homogenization:

Problem 2.6. (The Inverse Problem)
Consider the equation

uf(x,0) = ¢o(x) J r €} : (2.1)
u(z,t) =0 (z,t) € 90 x [0,T]

D (1) — div(a? (Z)us ) =0  in Qx [0,T], @ C R
€

Assumptions: (1) M < (a¥(y)) < AI, for some 0 < A < A < oo. (2)
al(y+z)=a9(y) VzeR", yeR". 3)0<e<x 1.

One observes at time ¢ = Tj a possible solution of u¢ of (2.1) to find a
function f¢(z). How can one construct a solution of (2.1) for 0 < t < Ty. We
know the backward heat equation is ill-posed.

Questionl: How can one assert that f(z) is actually close to u®(z,Tp),
for a solution of (2.1)7? Is there a criteria?

Question2: If f<(x) is indeed close to some u(x,Tp), then is it possible
to construct uf(z,t) for 0 < t < Ty? For question, it means, if ||f(x) —
u(x, Tp)|| < 9, can one construct from f¢(x) an approximate solution V°(z,t)
such that

1VO(z,t) — u(z,t)]| < O for 0 <ty <t <Ty?

Here VO(z,t) is distinct from the truly solution and in order to do so, one
requires t > to(a) > 0 and ty(a) — 0 as o — 0, and all constants are
independent of e. We know that w(d) — 0 as § — 0, this is a Hadamard
(sense) criterion.



J. Hadamard: Well-posed problems in PDEs - (a) Existence, (b) Unique-
ness, (c¢) Stability (Continuous dependence). But this is not useful in numer-
ical computations, we introduce John’s idea.

F. John: Well-behaved problems in Numerical PDEs - Here given an error
¢, in data (observation, grid size, ---), one wants the numerical solutions
to be within O(e®), a > 0, error of the theoretical solution. e.g. When

1
w(0) = NI

method fails.
For simplicity, we first consider the Laplacian case:

< 0.1, this implies § < e7'% is so small that the numerical

up—Au =0 in Q x [0,7]
u=0 on 092 x [0,T] .
u(x,0) = o(x)

Questionl: Ay, + Mgy, = 0 in Q with [, ¢ide = 1 and \;’s are eigen-
values with 0 < A\; < Ay < A3 < -+ — 00, by Weyl’s asymptotic formula,
we have A\, ~ C(n, [Q)k¥". Then | [ f(z)¢r(x)dz| < ||f||r2ze~ T + 6 and
[ f(@)pr(x)dr = are ™7, then we can solve u(x,t) = Yoo, are oy ()
and ||u(z,t) — u.(z,t)|| < 5+ e T < 2§ by choosing T large (by using
spectrum method).

To estimate |\, — A\x| < ¢ for some ¢, Vk € N, e > 0, the difficulty is that
we don’t know how to choose NV, and in theoretical sense, we want to k, e
are independent of the space variables. If ¢ is small, this inverse problem can
be solved.In early homogenization theory, we only known Aj, — A\; as e = 0
for all fixed k, and we couldn’t estimate the speed of convergence; but now
we can have the finer result of |\, — A\x| V& € N and Ve > 0 (we need more
technical estimates for these results).

Look at the following equation:

0. {amwj(;)uzj) S
u(x) = f on 05}

{Au =0 inQ
converges to (R) :
u=f on 0f2
Since the (R) is the homogenized convergence of the (L), w.l.o.g. we can
assume the limit is Laplacian and denote this convergence to be the ho-
mogenized convergence. We have a lot of ideas of solving the (R)-equation
(call it homogenized-problem), so we borrow these ideas and apply to the
(L)-equation (call it e-problem)!

In periodic homogenization: e=periodic size, A=grid size, u.=solution to
the e-problem, ug=solution to the homogenized problem, and ua=solution



to the A-problem (numerical) by using finite difference method to the ho-
mogenized problem.
Question: How close ua to u.?

Total error boundﬁO(Aﬂ%—O(w(i)), where w(d)=theoretical error bound
of ||ua — wup||. Obviously, one wishes to have total error< O(A?), for some
a > 0. Thus, we need w(d) < O(64) for some large A as possible, but
in some statistical homogenization or nonlinear elliptic homogenization, the
best known w(d) may be given by

c|log |~ for some small a > 0.

Such estimate is often sufficient (or actually best possible) in the theory,
but it is Ill-behaved for practical numerical computations. Moreover, in the
computational situation, we always change the grid size in order to make the
e-problem more specific, and get a better estimate.

Problem 2.7. (Boundary Control by J. L. Lions)

Counsider
Utt—AUZO IHQX[O,T]

u=yg on 02 x [0, 7T

u(z,0) = ug

u(x,0) = uy
Question: (ug,u;) € L? x L?, does there exist T' > 0 and g € L*(92 x [0,T])
such that u(z,T) = wu(x,T) = 07 Since this is a wave equation, having
finite speed propagation, we only need to consider the minimal time 7', it
is interesting to consider the minimal time T'(optimal control time) and the

minimal ||g||r2.
Consider the forward wave heat equation

o —Ap =0 in Q x [0,7]
=0 on 082 x [0, T (2.2)
¢(z,0) = ¢o, ¢1(x,0) = ¢

0
let y = a—¢ on Q x [0, 7] and define an operator L; (a Dirichlet-to-Neumann
v

map) by
Lt(¢07 ¢1) = (_ylvy())u
where yo = y(z,0) and y; = y(z,0) and y(z,t) solves the adjoint equation



of (2.2)

Yir — Ay =0 in Q x[0,7T]
y(@,T) = y(z, T) =0 (2.3)
y:% on 082 x [0, 7]

and call (2.3) the backward equation (note that in general, the backward

o 9o\’
equation is il-posed), and (L(¢g, ¢1), (¢o, ¢1)) = fOT Jo a—f dSdt.

Lemma 2.8. (LafaHo, Pohozaev)
For T > Ty, > 0 (1y is large) such that for ¢ a solution of (2.2), we have

T
2 2
cr(lldollze + llo1l72) < /0 /39

for some constants cr, Cr > 0 depending on T'.

0

2
5 dSdt < Cr([goll7> + llo1ll72)  (2.4)

The right hand side estimate of (2.4) is by using Pohozaev identity, but
in general, the left hand side is wrong even if all the coefficients are smooth
. When the left hand side holds, we have the coercive property to get L, is
invertible (i.e., we can use the Lax-Milgram theorem to inverse the problem

for the product form (L:(¢o, ¢1), (d0, ¢1))|t=0). For (uo,u1) given, (o, 1)

0
such that L;(do, ¢1) = (—uq,up) if g = 8_i)) The minimum time 7T is large

than Tj, in order to find the optimality, we need to use the techniques in
microlocal analysis and presumably assumed time Tj to be unique.Now back

to the homogenization problem, consider L. = 8mi(aij(£)8xj) and [ju? =1
€
be such that L.u. + A\cue = 0 in €.

ou, |’
Question: Is it true that c\, < fan[O 1] ai do < CA.?
b ]/€

In the control problem, we consider

0? o ..

gt () = 5 -(a¥()us,) =0 in 2 x [0,7]

x; € J
u(x,0) = do € H', uj(2,0) = ¢, € L? (2:5)
u(z,t) =g on 92 x [0, T

Question: Ts there a time Ty > 0 such that for T > Ty, Jg¢ € L?(99 x
[0, T7]) such that the solution u®(z,t) of (2.7) satisfies u*(x,T) = uf(x,T) = 07
Answer: In general situations, we cannot find such ¢¢, we need ||¢¢[|z2 <

ouc |?
Cllgollmr + ¢1llz2) and [og, 007 |52 = (IVSollZ2 + |¢11172). To get such

ove
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estimates, the idea comes from considering the equation
8ttu—Au:O in  x [O,T]
u=0 on 0N x [0, 7]
u(z,0) = ¢r, u(x,0) =0

by separation of variable, it’s easy to get a solution of the form wu(x,t) =
dx(x) cos VL, where ¢y satisﬁes Apy+Apy = 0 and [,¢3 =1 and X =

0
fQ |VCZSA ~CQ) faQ ‘ (b/\

balance) and apply thls idea to solve the original homogenization problem.

, the final step is the key point (it is dimensional

2.3 G-Convergence (S. Spagnolo)

Counsider
—div(a(z)Vu) = f inQ
u=>0 on 0f)

where a(z) satisfies 0 < a < a(z) < f < oo a.e. and u € H}(Q) for any
f € H (), by Lax-Milgram lemma, we get

ul| g ) < Cln, o, B[ fl| 10

Question: Suppose there are sequence a'™ (z), f™(z) such that || f™]|2
1 and o < a™(z) < B, then |[u™]|cv) + |[u™]|m < Cp. Assume
u™ — u>) in C% for some oy (G — G in C* off diagonal), also
a™ — a(>®) in L™ weak™* , is there a(>(x) such that

—div(a'®)(2)Vu>®)) = f)  in Q 0

u(>®) =0 on 00
The answer is no! If is true for the question 3A%(x) = (agf(z)) such that
al < A®(z) < BI and —div(A®(z)Vul®) = f)(z), valued with a(™ (x)I
replacing by A (z), the problem will appear on the diagonal parts.

2.3.1 Essence of DeGiorgi-Spagnolo G-convergence theorem

1. Let T,, : H — H*, {T,} is a sequence of bounded, linear operators
with ||T,|| < M for all n = 1,2,---. Assume (T,,u,u) = A||u||*, A >0
Vn > 1, this implies 3{T,,;} and T, in L(H, H*) such that Vf € H*,

T, un; = f,solutions {uy,, } converges weakly in H such that Tooue = f
2

M
and (Thou, u) > N|ul|* and || Thoul|s < THUH Vu € H.



2. If T, = —div(A,(2)V), then T, = —div(As(z)V). If |A, ()€ < M|€]
M2
and (A, (2)€,€) = AEP%, then [Ax(2)¢] < —=[¢] and (Ax(2)E,€) =
A&
3. IfA(z) = A(%) with ellpticity A(y) and A(y) is periodic, then Ay (z) =

1
A is a constant (translation invariant) operator as before (— — 00).
€

How to find A,,7 Note that the limit of diagonal operator T), is not necessarily
be diagonal, in homogenization theory, call T,, — T' to be I'-convergence.

Example 2.9. (ODE case)

Consider g
—(a(Z)us) = f(x)
u(0) =u(l) =0

with f € L2([0,1]) and A < a(2) < A.
€
(a) u® — ug in H}([0,1]), u® — ug in L?
(b) let & (x) = a(f)ug, &. converges to & weakly in H! and strongly in
L2 ‘
(c)

—_

1
— (=) in L*®-weak™ (by using Riemann-Lebesgue lemma), u =
a

T
a(z)
§e 1 d o .
— (=)&), —&o = 0 (one of it is strong convergence, the other is weak
a(%) a dx

convergence, and their product must be weak convergence).

Upg
Hence we get the homogenized equation | — = f(x).

—~
~—

1
a

2.3.2 WKB-Analysis

Leue = —ai(a"j(g)u6 )= f(x) in Q and u, = 0 on 9. Suppose that a(y)
€

is periodic with period 1 and MEP < a(y)&& < AJE%, ut — ug in HY(Q)
and

Lug = a.(a%juzj) =f inQ

ug =0 on 02



Remark 2.10. If such (a¥/) exists, then a¥ is a constant matrix.

x
Let y = =, we write u.(z) = uo(z,y) + Y, €"ui(z,y), where ui(z,y)’s
€

are periodic in y with period 1. Note that given a smooth function ¢(z,y),

s
y = —, then
€
Le(¢(m7 y)) = E_2A2¢ + 6_1A1¢ + A()gb,
where
( iy 0?
= A4
AO =4 (y) ax,(“)xé
o .. o, .. 0
A = —(q¥ () —) + ——(a¥ (1) —
g, .. 0
Ay = (0 () 2=
Therefore,
Leue - (6_2A2 + 6_1*’41 + AO) Z Gkuk(ZE, y) - f(x)a
k=0

this 1mphes AQUO = 0, AQ'LLl + A1U0 = 0 and A2u2 + A1u1 + AoUo = f by
comparison of e-coefficients.
2.3.3 Conclusions

1. up(x,y) = up(x) (a solution on T™ of an elliptic operator), Liug = 0
(just think the Laplace equation).

n 0 > (‘3u1 n 0 . 8u0
(i () 2L — N\ i) 220 —
2. Zi,j:l 8y1 (a‘ (y) ayj (:U7 y)) Zz,]:l ayl (CZ (y) a] (.Z')) Uy (l’, y)
Juyg 0 oxi(y) 0

Sis ) g and Ty () 5 2 = = S, 50 (0),

3. Ayus = f(x) — Ayuy — Aguyg is solvable on T" ﬁan(f(x) — Ajug —
Apug)dy = 0 is a necessary condition by Fredholm alternative. The
latter implies Lug = f(x), and a¥ = (o) + 37 | <aijg—);j>. Here the
function y is the standard corrector term in homogenization theory.

If a¥(z) = o’ (x), then a¥ = a’%; if (a¥(z)) > 0, then (a¥) > 0. Indeed,

~ o o .
atl = an akl(y)a— (X' (y) + vi) E (X’ (y) + y;) dy, and the integrand part is
zZero. Yk Y

We cannot get the speed of convergence from the theory, but it is impor-

tant to estimate the rate of convergence.
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Remark 2.11. Even (a¥(z)) = a(x)I, (a¥) may not be diagonal, where a¥ =
(> r_, a*(y)) may not be zero when i # j.

Conjecture 2.12. (via WKB expansions)
(A) ue — ug strongly in L? as € — 0.
(B) ue(x) — (up(z) + ex(z)Vuo(x)) — 0 strongly in H' as e — 0.
€
2.4 Method of oscillating test functions

o
We start with Leu® = f in Q with zero boundary data <— [, a”(=)u$,v,,dr =
6 3

f(x)v(z)dr Yo € HE(Q). uf converges to u’ weakly in Hi(Q2) and Ly =
Q 0 0

AL g L0
—divA on T™, as before, a¥ = (a") + <a“a—X]>.
Yi

T
Lemma 2.13. We may assume a”(—)u;j — & in L*(;R™), hence
€

—/Q§ -Vudr = /vadx (2.6)
Yo € HY(Q).

Proof. Let n € C§°(§2) and let v.(x) = o + ex(—) and apply v = 7 - v, in
(2.6), note that nv. € H}(Q), then

T
€

— [ e, +veaie = [ frnds
Q e Q
as € = 0, [, fvendr — [, fendz. Note
i\ e 1 _ ij TN 1 ¢ 0 Gk
a (_)uxivexjndx - (CL (_)Uexj)nxiu dx — Na; U A dx
Q € ' Q € Q
as € — 0. Therefore,
- [@nea + gumde = [ frade,
Q Q

but [, foxide = — [,(&'n+ & - xiVn)dz, hence

/agjugindx:/gn.
Q Q
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. . . . ij € € S 0 0
The original proof is by using Div-Curl lemma, a”(—)ug ug, — a”u, ug,

8|8

as an energy convergence, the interesting part is a”(~)u; — aVuy and

[

0,0

€
u
Tj T4

.. ~
\ 0 5 (" N, € o€ : :
ug, — up weakly, but a (e)umjumi still converges to a“u (in general,

the product of weak convergences does not imply the weak convergence).

2.5 Elliptic Operators with Oscillating Periodic Coeffi-
cients

Consider a family of elliptic operators L, = — 0 (a‘-"-ﬁ(g)i), e > 0. Let
8$i Y e 0:15]-

A=Ay = (afjﬁ(y)), 1<4,7<d, 1<a,p <m. Assume that A is real and

uniformly elliptic, symmetric (i.e. afjﬁ = aff‘), A is Holder continuous and

periodic w.r.t Z¢ (i.e. A(y+ z) = A(y), Vz € Z4).

Consider the boundary value problem

{Le(uﬁ) = div(f) in Q

ue subject to some kind of boundary condition.

describes a stationary process in strongly inhomogeneous medium with pe-
riodic structure and € > 0 is the inhomogeneous scale, € is very small with
respect to the other length scales in the problem (if € and the length scale are
compatible, in phiycal situations, anything can happen and it is not easy to
predict). As € — 0, uc — uq strongly in L*(Q2) and weakly in H'(Q), where
up is a solution of an elliptic system with constant coefficients,

{Lo(uo) = div(f) in Q

ug subject to some kind of boundary condition.

where Ly = —div(AV) and A may be computed explicitly by using A(y).
There are three problems:

1. Uniform regularity estimates.
2. Uniform solvabilities of boundary value problems.
3. Convergence rates of ||u,. — uo|.

We give interior gradient estimate for e-problem:

12



Theorem 2.14. (Abellaneda and F. H. Lin, 1987)
Suppose that L(u.) =0 in Q and B(x,2r) C Q. Then

C
V(o) < [ )l

where C' is independent of e.

Let D(z,r) = B(z,r)NQ and A(z,r) = B(x,r) N0, where z € 952 and
0 < r < rp, then we have Lipschitz estimates with Dirichlet condition:

Theorem 2.15. (Avellaneda-Lin)
Let Q be a C** domain. Suppose that

L (uc) =0 in D(x,2r)
u. =0 on Az, 2r).

Then

C 1 1/2
Vel ooy < & (— / |ue<y>|2dy) |
() r ‘D<x’27ﬂ)| D(z,2r)

where C' is independent of e.

Remark 2.16. There is no uniform Holder estimate for Vu, (we can see it in
the following example). There is no Lipschitz estimate on C' domains (even
for constant coefficients) and the condition of symmetric is not needed.

uE

d
Example 2.17. Look at — | ———— | = 0. It’s easy to find a solution

dx 2+Cos£
€

u(x) = 2z + esin% converges to u°(z) = 2z as e — 0 with u°(x) satisfying

(u®)"(x) = 0. —u(x) = 2+ cos N weakly by Riemann-Lebesgue lemma
and it can never be a strong cgnvergence. Note that the first derivative
of u¢ is bounded (not C' since when ¢ is small, the derivative has highly
oscillation in z-variable), so we can only expect the best possible regularity
for the homogenization theory in PDE is the Lipschitz regularity (Similar
to the KAM theory). In the following, we consider the Neumann boundary
data problem:

Lipschitz Estimates for Solutions with Neumann boundary conditions

13



Theorem 2.18. (Kenig-Lin-Shen, 2010)
Let Q be a CY* domain, suppose that

Le(u)=0 in D(z,2r)

ou
<= A(z, 2r).
. 0 on A(x,2r)

Then ”
C 1
Vol < & (g [ tPar)
(D) r |D(J},2T)| D(z,2r)

o 8
where C' is independent of € and nole that (gﬁ:) = nl(m)agﬁ(%)gzz

Main Steps of the Proof:
First, we need a type of Maximum Principle as follows:

Lemma 2.19. (Miranda Mazimum Principle)
Let u, satisfy

Lau.=0 in{
Ue = @ on O
then
||tell ooy < ClIl|~(00)-
Here C(> 1) is not necessarily to be 1.

Construction and estimates of boundary correctors for Neumann condi-
tions. Let Pf = Pjﬁ(x) = 2;(0,...,1,...0) with 1 in the $-th position and
let ¢ = (gbf‘jﬁ), where for each 1 < j <d, 1 <8 <m, gbfd = (gbi/j, ’¢szﬁ)
is a solution to the Neumann problem

L(¢?) =0 in Q
0, sy_ 0 s
81/6 (¢€7j) - a_l/()(PJ ) on aQ

Theorem 2.20. (Kenig-Lin-Shen, 2010)
Let Q be a C** domain. Then

Vol (@) < C.
Now, we need to estimate the boundary correctors:

x
Let w = ¢ — x — ex(—), where the function x is the corrector appeared

in the previous sections. Then L.(w) = 0 in €, write

ow
w(x) = Ne(x,y
@)= [ Nz

do(y),

14



where N (z,y) is a matrix of Neumann (kernel) functions for L. in  (just like

w
the Poisson formula for Neumann boundary problem) and — can be written

ov,

as tangential derivatives of some g;; with ||g;;||z@0) < Ce (we borrow the
ideas of the representation of the Poisson kernel to write the solution in
the explicit form and estimate the solution by the representation formula).
One can prove Holder estimates for solutions with Neumann conditions by a
compactness argument which does not involve correctors. Hence, N,(x,y) is
Holder continuous. This, together with the uniform Rellich estimates (Kenig-
Shen, 2009), gives

/m [Vy {Ne(z,y) — Ne(z,y)} |do(y) < C,

if |x — z| < ¢r and r = dist(x, 02). Moreover, one can obtain

Ce

Vool = O+ G o)

Use a standard blow-up argument to finish the proof.

2.6 A compactness argument

Recall that we have introduced the notions of D(xz,r) and A(z,r), we give
the following lemma:

Lemma 2.21. There exist €y, k, 0 and C' with the following property. Suppose

e
that Le(u.) = 0in D(0,1), a_u =g on A(0,1) and u.(0) = g(0) = 0. Assume
Ve '
that € < 0""teq for some | > 1. Then there ewist constants B} € RI™ for

j=0,1,--- 1 =1 such that
<n(o)A, Bg> —0, |BI|<CJ

and
-1

||ue — Z 0" (nd, BY) || (po,gy < 0",
=0

where nl(x) = ngbj(@_jx? Qy,), ¥j(x) = 077(0z) and
J = max{||gllcon(ao), [ltell L o.1))}-

There are two steps proving this lemma: 1. j = 0 by contradiction; 2.
j > 1 by induction. Use the above results, we can get the “real” Lipschitz
Estimates for Neumann Problems:
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Theorem 2.22. Let Q be a bounded C domain, 0 <n < a <1 and ¢ > d.
Then for any g € C"(0Q) and F € LY(Q) with [, F + [,,9 = 0, the weak

solution to

L(u)=F in§)

Oue
o g on OS2

satisfy the estimate

IVl [ @) < C(]l9]

cn@a) + | Fl|La@)-

Remark 2.23. In the case of elliptic equations (m = 1) in Lipschitz domains,
the LP Dirichlet problem for L.(u.) = 0 for 2 — § < p < oo was solved by
B. Dalhberg (1990, unpublished). The LP Neumann and regularity problems
for 1 < p <2+ 0 were solved by Kenig and Shen (2009).

In the case of elliptic systems (m > 1), the L? Dirichlet, Neumann, and
regularity problems for L.(u.) = 0 in Lipschiz domains were solved by Kenig
and Shen (2009), using the method of layer potentials.

If m > 1 and is C%?, the LP Dirichlet problem was solved by Avellaneda-
Lin (1987), and the LP? Neumann and regularity problems as well as rep-
resentations by layer potentials were solved by Kenig-Lin-Shen (2010), for
1 <p<oo.

2.7 Another approach
Recall two functional spaces: Morrey space and Campanato space.

Definition 2.24. We call Morrey’s space, denoted by

1
MP* =S u € LP(Q)] sup — |ulPdr < oo
zoe,p<diama P~ J Bpy(o)
and Campanato’s space is denoted by
P P 1 p
CP* =< u e LP(Q)] sup — U — Uy, p[Pdr < 00 3,
z0eQ,p<diama P~ J By(o)

where u,,, = f, (z0) u(y)dy, there are a lot of properties of these spaces, we
P
don’t give details here.

Lemma 2.25. (Morrey’s lemma)
Suppose uw € HY(BY) such that

1
- / |Vul? < Mr*®
"% J Br(wo)
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1
for some o € (0,1), Vg € By/2(0) and Vr € (0, 5), then uw € C*(By/2) and

Hu||ca(31/2) < CO(”)M'

Lemma 2.26. (Campanato’s lemma)
Let u € L*(BY) be such that

1
— U — gy o [*dr < M7**
7" J By (o)

1
Vo € Bi2(0) and Vr € (0, 5), then u € C*(By/2) and

Hu‘ |Ca(Bl/2) < C(”)M

Remark 2.27. Let A(x) be such that \I < A(x) < Al , period 1 and ||A|cs <
M for some constant M and 5 € (0,1). L ={L, = div(A(f)V), A satisties
€

the previous assumptions}. Consider L, = 0, u, € H'(By) and L, € L,
then we have

HUEHC(‘(BUQ) S C(n>>\7A>Oé>67M)Hu€HL2(B1)7 Vo € (07 1)

This estimate is distinct from the standard DeGiorgi’s theorem (recall that
in DeGiorgi theorem states the C*-estimate for some o € (0, 1) and the right
hand side constant C' is universal). Moreover, the above three lemmas are
all dimensional balance on the left hand side.

Lemma 2.28. There are positive constants 0y = 6p(n, \,A) € (0,1) (is
computable), eg = eo(n,\, A, M,a,3) € (0,1) (not computable) such that
VL. = L, € L and Lou, =0 in By with u. € H'(By) and fBl u?=1. Then

1

2 2a
o |te = tie0|"d < 057,
0 J By, (0)

here a € (0,1) is given Ve < €.

Proof. By contradiction: Suppose to the contrary that there is a sequence

Al = A(=), e — 0and A”s satisty the conditions mentioned before, then
T EZ

Lou =0in By and [ |u“|?dz = 1 such that

1
o |u

0 BGO (0)

€4

2dx > 03"

_ &
UQO

17



for i = 1,2,---. We may assume A’(y) — A(y) uniformly for y € T" (n-
dimensional tori) and A(y) satisfies previous conditions again. Then

La., = div(A(Z)V) = Ly = div(A,V)

€;

3

homogenized as ¢ — 0 since A'(y) — A(y) in L*® (uniformly). WLOG,
say u“ — wuy weakly in H]! (B;) and u% — wg strongly in L*(B;) (after
extracting a subsequence of {u}) with Loug = 0 in By, then fB1 lug* < 1
by [5, [u]* < 1. Therefore,

92>i

2 2a
2 o |up — g g,|“dx > 65
0 J By, (0)

is impossible by taking @ sufficiently small (Note that Lyug = 0, then
|VUO|Loo(Bl/2) < C(n, A\, A) with ||u0||%2(31) =1). O

Lemma 2.29. (Iteration)
Let Lc € L, Leuc = 0 in By with ||uel|r2p,) < 1, for k=1,2,--- K, for
some K. If 9—1 < €, then

0

[ ulds < @

ue(6ox) — uep,
0o
B;. By lemma 1, fBeo Ve — Ve g, |Pdx < 63, then get the conclusion in lemma

Proof. For k =1, let v, = , then fBl |ve|> <1 and Lov, =0 in

€
2 for k = 2, then continue this process until some K such that oK < € but
0
€ €

kN
W > € (00 ~ 60). OJ

Lemma 2.30. If u satisfies before conditions, then

1
][ lu€ — utPdr < Nor** ¥r € (0, =].
B, 2

Recall that if Lu = 0 in By and u € L?(B,), u satisfies e S5, (20 |

I"(z)2dz < Mr® for some 6 € (0, 1), where I"(x) = uy, 9, + (2 — 20) (V) 2y s
then u € C*°. Recall a corrector x(y) introduced before: div(A(y)Vx(y)) =
—divA(y) on T", then v, = = + ex(f) is a solution of L.v. = 0.

€

u(z)—

18



Lemma 2.31. (Lemma 2.28’)
All the assumptions hold as before. Then

1
/ |[u® — (ug, + v (Vu)g,)|* < 9(2)5, for0 <6 < a.
B

ont+2
057" J s,

It can be regarded as a Taylor expansion starting from the quadratic
terms, for smoothness case, the power n + 2 can be replaced by n + 4. The
way to prove this lemma is similar as lemma 2.28, assuming the contrary and
let 6y small to get a contradiction.

Lemma 2.32. (Lemma 2.29’)
Ifﬁ_elg < €p, then

1 €

[ @)~ )P < 6
9, By

where I*(z) = z + ex(%).

Lemma 2.33. (Lemma 2.30’)
Elliptic regularity C%° for § < a and

1
iz [ )~ a4 B (o (D))o < Nor®, for0 <7 <
r(0)

N —

The homogenization theory did not tell you the speed of convergence,
but it is rather important; the corrector function y we considered before
did not involve the boundary data, so we need to get a “new” corrector in
order to deal with the boundary estimate. We consider these problems in
the following section.

2.8 Convergence rate in periodic homogenization

For a single equation, L.u® = f in ) with zero boundary condition, f €
LP(Q),p > n. Let

welw) = u'(2) = ((x) + ex(2) Ve (a)),

where 1 is the solution of Lou’ = 0 and Lg is the limit of L. as ¢ — 0,
w.lo.g., call Au’ = Lou® and u° = 0 on 9. By standard elliptic regularity,
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u® € WFP(Q) and Vaul € WP(Q) — C*(Q) ¢ L®(Q) by Sobolev embedding
theorem (remember p > n).

Low, = div(F, :2" O(e) in O(LP)
welog = —ex(Z)Vug = Oe)  in L,

then ||we||re) < O(€) =||ue — uol|ro) < Co(€) by the setting of w..

Theorem 2.34. (Kenig-Lin-S., 2012)

Suppose that A is elliptic, periodic, and if m > 2, Hélder continuous. Let
Q be CY1. Let F € L*(Q) and u. € H(Q) be the unique weak solution to
Lc(ue) = F in Q. Then

Hue — UOHLz(Q) S CGHFHLQ(Q)a (27)

9, Ot i

(e = uo = {62; = P/} Iy < Cell Flla (2.8)

where C depends only on A and . PB( ) = z;(6%%), and gb - 18 the Dirichlet
corrector, defined by Le(gbg ) =0 1in Q and ¢>ﬁ =P’ on 89

J

B
The key formula: Let w, = u, — ug — {(bfj — Pjﬁ}%, suppose that
, z;
L (ue) = Lo(up) and Le(gbgj) = 0. Then
0 oy Ty 0%
Le(we) - Gami {szk( )8$]axk}
0 *u]
By 0
- { ()65 a) - mis 1axjaxk}
aﬁ N By T 82u3

Remark 2.35. Since H¢ﬁ — PﬂHLoo(Q) < Ce, the H' estimate (2.9) implies
the L? estimate (2.7). Tt m = 1, the L2-estimate (2.7) is known (Moskow-
Vogelius, 1996; G. Grisco, 2006). Also, it is known that if ; € Q,

r Ou’
||ue — ug — ex (=) 5=

- a—IjHHl(Ql) < Ce||F|| 20

|[te — up — GXj(E)%HHl(Q) < C'P||F|| g,
J



where (Xﬁj ) are correctors for L, in R

Suppose A is symmetric. Let {\.x} denote the sequence of Dirichlet
eigenvalues in an increasing order for L. in 2. One may use the H! estimate
(2.9) to show that

Ak — Aokl < Ce(Aop)®?,

where C is independent of ¢ and k.

Theorem 2.36. (Convergence rate in H'/?, Kenig-Lin-S., 2011)
Suppose that A € C*(Q) is elliptic, periodic and symmetric and let 2 be
CUL. Let u. € HY(Q) be the unique solution to L(u.) = F in Q and

B

r ou

We = Ue — Uy — EX(E)(?_:CO-'
j

Then

1/2
HwEHHl/Q(Q) + (/ |Vwe(l‘)‘2dzst($,aQ)dl’) S CGHFHLQ(Q);
Q

where C' depends only on A and §2.
What about the Lipschitz domain?

Theorem 2.37. (Kenig-Lin-S., 2011)
Let Q be a bounded Lipschitz domain. Suppose that A is elliptic, periodic,
symmetric, and Holder continuous. Suppose that

L(u)=F in§
Ue = f on 0S)

where F € L*(Q) and f € H'(0Q). Then

1 g
[|ue = wollz2(0) < Ce(| el + 1) {||F[| 20y + || ]l on) §
for any o > 0, where C' depends only on A,Q and o.

Proof. Replace ug by v, where v, solves a Dirichlet problem for Ly in €2, a
slightly larger domain such that dist(99, €)=~ €. The interior estimate for
e-periodic domain will get the term In e and the boundary estimate is similar
to the before estimate. m

Remark 2.38. Nothing comes for free. The spirit of the homogenization
problem is the limiting of control is not the control of limiting.
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Theorem 2.39. (Convergence rate in LP, Kenig-Lin-S., 2012)
Suppose that A € C® is elliptic, periodic, m > 2 and let Q € O,
Suppose that

{Le(ue) =F in

ue =0 on 0
Then
|[ue = wol|ai) < Cel|F||1r(q)
. 1 1 1
holds if 1 <p<d and—:——a, orp>d and g = 0o. Moreover,
q P

_ _1
e = ol [y < Celln(e™ +2)] 4| F | age.

In the paper Avellaneda-Lin, 1987, they proved the following fact:
Let Ge(z,y) denote the matrix of Green functions for L. in 2. Then

|Ge(z,y)| < Clo -y,
VoGe(z,y)| +|V,Ge(z,y)] < Cla -y,
V.V, Ge(z,y)| < Clz — y’_d-
The theorem follows from the asymptotic expansion of Green functions:
‘Gﬁ(xay) _G0<x7y)‘ S Ce’x_yllid (29)

for any z,y € Q and x # y.
The proof of (2.9) relies on the following:

Lemma 2.40. (Boundary L™ estimate)
Suppose that

{Le(ue) = Lo(ug) in Do,

)
Ue = U on Ao,

where D, and A, are introduced before. Then for p > d,

|ue = uol|Le(p,y < C [ue — uo| + Ce||[Vuo|| Lo (,,)
DQT‘

_ad
+ Cpﬂ“l p HVQUO| |LP(D2T)-

Proof. Use the representation by Green functions. Since G.(z,y) and Gy(z, y)
are Green functions of L. and Ly, respectively, we have

—L.G(z,y) =9, and — LoGo(z,y) = 6.
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Note that u, and wug satisfy

)

{Leu6 = f e LP(R") and {Louo =f

Ug(OO) =0 U()(OO) =0

then we can represent u, and ug as u.(x) = [ Gc(z,y)f(y)dy and uo(x) =
[ Go(x,y)f(y)dy and |Jue — uollz < Cel|f]|re for n < p < co. More-

over, |Ge(z,y) — Go(z,y)||ps < Ce for 1 < ¢ < Ll For x fixed, let
Yy n —

1
A= {5 <|lz—y|l < 2}, for y in this region, we have L.G.(z,y) = 0 and

LoGo(z,y) = 0 and denote v.(y) and vo(y) to be solutions of these equations,
respectively. Then we have ||vc(y) — vo(y)|lLeay < Ce and by DeGiorgi’s
theorem, we get

1Go(z,y) = Ge(z,y)|| < Ce.

After rescaling back, it is easy to get
Ce

|z —y|nt

1Go(x,y) = Ge(, y)|| <

Finally, scan all the annulus region A to get the whole domain estimate. [J

Theorem 2.41. (Convergence rate in WP, Kenig-Lin-S., 2012)
Suppose A satisfies the previous conditions and Q € C**. Suppose that

{Le(ue) = Lo(up) in Q

Ue = Ug on 0f).
Then
3 5, Oy -1 413-1]
||te — up — {Qb@j - Pj }%lewp(g) < Celln(e™ +2)]">77 HFHU’(Q)v
J

where 1 < p < oo and C depends on p, A and €.
The proof of the theorem uses the asymptotic expansion for V.G (z,y):

P o 0 In[fe |z — y| + 2]
_ I, . [—— <
|8xl GE(x7 y) aml ¢€J (.T) axj GO<:C7 y)‘ — C€

2.10
|z — y|4 (2.10)

for any z,y € Q and x # y. We also obtain asymptotic expansions for
V,Ge(z,y) and V,V,Gc(z,y).
The proof of (2.10) relies on the following:
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Lemma 2.42. Suppose that

Then for any p € (0,1),
ou, 0 % C

 Ox; >~ - e — to| + Cer®™ || Vug|| L
H@:L“Z- 5$i¢’j axjHL (Dy) . |ue — ug| er” |[Vuol|L (Dar)
+ Celnle 'r + 2]||V2uo|| L ()

+

CET’p| |V2u0HCO,p(D27‘).

IN

What about Neumann Boundary Conditions? Convergence rates are also
obtained for solutions with Neumann boundary conditions. Let N.(x,y)
denote the matrix of Neumann functions for L. in €). Then

INe(z,y)| < Clz -y,
Vo Ne(2, )| + [VyNe(z,y)| < Clz —y|',
|VszN€(x,y)| <Clz - y|_d-

Theorem 2.43. (Kenig-Lin-S., 2012)
Suppose A satisfies the previous conditions and Q € C%, then

Infe !z — y| + 2]
|z — y|¢t

|Ne(z,y) — No(z,y)| < Ce

for any x,y € Q and x # y, where C depends on A, Q.

Theorem 2.44. (Kenig-Lin-S., 2012)
Suppose A satisfies the previous conditions and Q € C*“. Then for any

pe(0,1),

0 0 0 _Infe g + 2]
_— Y L < (Cel—p 2 Y 7 A
IaxiNe(w,y) %we,y(x) o, No(z,y)| < Ce P—T

Y

where 1o = diam$) and C depends on p, A and €.

Note that 1. ; is the Neumann corrector for L. in €2, defined by

Le(y.,) =0 in Q
9 5 9 s
= P! Q.
8V6w5’” ol on 0
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Lemma 2.45. (Boundary L™ estimate)
Suppose that L.(u.) = Lo(ug) in Do, and u. = ug on Ag,.. Then forp > d,

Jue = wollzmoy < O = uo
Dar.
+ Celnle 'r + 2]||Vug|| £ (pay)
_d
+ Cer' » |V oo (Dsy) -
Lemma 2.46. (Boundary Lipschitz estimate)

Suppose that L.(u.) = Lo(ug) in Do and ue = ug on Ay,.. Then, if
O<e<g and p > 0,

ou, 0 Oug C

|5 = s Gelimy < ©f =

Cer~ " Infe "7y + 2| Vo | oo (1))
Ce'~Pr="Infe ro + 2]||Vuol| Lo Dy

Cer? In[e 'ro + 2][|V?uo || o (Da)

IA

+ o+

where ro = diamf).

Remark 2.47. The asymptotic expansion of V.G (z,y) leads to
Pe(xvy) = P0<x7y)we(y) + R€<x7 y)v
where P,(x,y) is the Poisson kernel for L. on €2, and

ln[e_1|x —y| + 2]
|z —yl

|Be(z,y)| < Ce

for any x € €, y € 9€). This improves a result of Avellaneda and F. H. Lin.
We also obtain asymptotic results for the Dirichlet-to-Neumann Map as well
as for the operator V(L.)™!'V.

Theorem 2.48. Suppose that A is elliptic, periodic, and Holder continuous.
Let Q be C*“. Suppose that

Le(ue) =0 in Q2 and Lo(ve) =0 in 2
Ue = fe on OS2 Ve = We fe on 0f).

Then for 1 < p < oo,

— 1
e = vell o) < C {eln(e™r0 + 221 || fello o0y

where ro = diamS).
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3 Eigenvalue problem and nondivergence oper-
ator

3.1 Asymptotic of eigenvalues and eigenfunctions in pe-
riodic homogenization

Consider the eigenvalue problem

Le¢e,k + )\e,k(be,k =0 in (2 fork=1.92. ...
Gor =0 on 99 I
where [, ¢?,dr =1 and L. = 0 (aij(z)i) it is known that
QVek 8.1'1 € al'j ’

0<)\671<>\5’2§)\E’3§"'—>OO.

If we consider —L.u, = f in © with u. = 0 on 9Q and f € L*(), then we
can let T, = (—L.)~! such that u. = T,.(f). Note that T, : L*(Q) — H}(Q) —

L*(Q) and T. > 0 is a self-adjoint linear operator. Let p.p = , then

€,k
feq > fe2 > -+ — 0. Say L. converges homogenized to Ly, a constant elliptic

operator and {¢g} are eigenfunctions with respect to g are eigenvalues of
Ly. For all k fixed, Acp — Ao as € = 0.

Question: Can we find an upper bound of |\ — Aox| (There are many
mathematicians considered this problem such as Zhikon, Kozlov, Oleinik,
Mostow, Vogelius, Santosa, Castro, Zuazua, Bardos, Rauch, Cristo,...)? They
found |Acx — Aox| < C’O«el/g‘/\a,C !

Theorem 3.1. |\, — Aox| < Coe)\é/lf.

Remark 3.2. Weyl’s asymptotic formula tells us Aoy &~ C(n, |Q[)k*™ and by
using minimax principle, we can get \.x &~ Aoy (the constant is universal).
By minimax principle, we know

Aer = max min (—Lev,v) .
Xi—1 veHY(Q)NXp_1,|[v]| ;2=1

Moreover, if €,/Ao > 1, the theorem holds trivial; it is interesting only when

€v/ Mok < 1. In general, the estimate is optimal. Prove this theorem, we need
a lemma:

Lemma 3.3. (Minimaz) |per — tor| < max{ac, b} < co\/fiore, where

e = min |(T. = To)f, f) |,

Nfll2=1,fLVo k-1
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b, = min ((Te =To) f, f) |-

Al p2=10LVe k-1

Since you don’t know what space you will take, both need to be considered.

Proof. For a.: Let ug = Ty f and ue = 1. f, if f1Vyx—1 and || f]|z2 = 1, then

(ug, f) = (Tof, f) < pox and [|[Vug2. < ¢ [, aliugguoe, = ¢ {f,uo) < cpop,
then we have

1l < el Vaollz < cpgly-

Moreover, we have

| (ue —uo, f) | < | (ue —uo — (@c(x) — 2)Viug, f) | + 1 {(¢e(x) — 2) Vg, f) |
< Cepgli + | {(9e(x) — 2)Vuo, f) || 12
< Cepyt,

where ¢.(z) is the boundary corrector to the Dirichlet boundary problem. [

Example 3.4. Look at 1-dimensional case:

d
@(CW

usk(0) = u*(1) =0

[

JuSk) + Aeput =0 in [0,1]

By Strum-Liouville’s theorem, we know there exist k-nodal domains, say

1
the first nodal domain is [0, IF] with I¥ = — + O(e) and u®* | is the first

ko
eigenfunction. A, &~ k? by €4/ Ao & ke. Call A\ ; the first eigenvalue of Ly,
d ~ ~
on [0, 1], where LuS* = d—(a(z)ug’k) and A.; converges to \; as € — 0 with
T €

Xl is the first eigenvalue of the homogenized operator Ly = lim o L. (the
limit is under the homogenization sense as we mentioned in section 2). And
for the k-th eigenvalue, we have |\, — \g| > Coy(ke). Therefore,

e — Ao| = Coek® = coeNyy.
Consider the homogenization problem

{Le(ue) =f inQ Loug=f 1nQ

ug =0 on 0f)

converges to
ue =0 on 0f)

then as before, [Ju.—uo | 2@, < Coellfl 2@, 1o |(Te=T0) 2@ = 1T~
TO(f)”L2(Q) S C(]EHfHL2(Q), then HCTe — TO”L2—>L2 S 006. By the functional
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1 1
| — ] <
7‘)\e,k )\O,k‘_ 0e

then [A.x — Ao| < Coerf ;. (by Weyl's asymptotic again).
The key estimate (H'-estimate) is similar as before: (recall that ¢, is the
corrector)

analysis, we have |ue ;. —po x| < Coe (need to check it). i.e

8u0

lue = uo = (9e(x) = 2) 5" llmz () < Crell fllrae)

|pe(x) — || o) < Ce and ||[Vo| o) < C.

Theorem 3.5. (Dirichlet-to-Neumann control)

e,
/ | ¢ k|d < CoN2, W0 < e < 1,Vk,
o0

|8¢€k

°ds < C ey if €Aer, < 1(not optimal).

Castro-Zuazua proved (in fact, they consider the 1-dimensional problem):

9. 1
/]¢k|d~)\3/zwhen62% .
o0 )\e,k

a¢e k

Theorem 3.6. faﬂ| [?ds > Cole if €der < 1.

Proof. Stepl: Require e)\g,k < 1, by Rellich identity, we know that

1
_/ |v¢e,k|2dx ~ )\e,lm
€ Q.

where Q. = {x € Q;dist(x,00Q) < 3¢} (in general, the above estimate is not
true, but here it gives a compatibility).

Step2: Jacobian of ¢.(x) > ¢o > 0 if dist(z,0Q) < 3¢, here we assume
o e Chl.

Step3: Consider a cube ()5 and its subcube (), inside () with the bound-
ary I'. On this region, we impose a Cauchy problem

{Au =0 in Qo

u=20 on I

/ wldr > co/ uldx
Q1 2
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(Jo, IVulPdz > ¢ [, |Vul?dz), then

/]?Fds Zc*/ u?dx (3.1)
r v 1

0
(fp |8—u|2ds > ¢ [, [Vul*dz, respectively). Finally, we divide the annulus
v 1

region {2, into many small “cubes”, there are some good cubes which can give
the compatibility as the above estimate, but there are still some bad cubes
cannot satisfy the estimate (3.1), but we can prove the fact that these bad
cubes only have small portions of €2, them add up all of them to get the
desired estimate. O]

In the final section, we consider the nondivergent operator:

3.2 Nondivergent operator
82
8%8%

Let (a”) be a positive definite and periodic, consider A = a*

Lemma 3.7. There is a smooth, periodic p(x) > 0 such that

2

0 g
Ap = i) — — 1

Proof. Any solution of Au = 0 on T" is a constant by the maximum principle.
Fredholm alternative gives A*p = 0 has a unique (to a constant factor)
periodic solution p # 0. Normalize p so that (p) = 1, this p > 0 on T". If
p changes sign, then 3f > 0 and f # 0 such that (p, f) = 0 and therefore
Au == f wold have a periodic solution. But this is not possible via maximum
principle (= p > 0)! Let u > 0 be a smooth solution of the elliptic equation
of au;; + b'u; + cu = 0, if u(zy) = 0 for an interior point zg, then u = 0. O

Now, let b; = ;(paij), by lemma, we have div 5 =0. Thus 3(b;;) such
Z;
_>
that b = le(bZ]> with bij = —bjiand <b”> = 0. Hence QU5 = f if and only

if pajjui; = pf or div|(pay; —bij)us,] = pf, and set A;(y) = p(y)ai;(y) —bi;(y)-
In this case, the corrector y = 0, i.e. div(AVy) = —divA = 0.
Now, consider the homogenization of nondivergence solution of PDEs:

_a'ij($7 E’ Due)u;’ﬂf = b($7 E7 Due) in Q
€ J €
ut =0 on 02,
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where a”/,b: R xY x R® — R, with Y = Z", periodic in y variable. Assume
M Az, y,p)§ = Mol€, [A(z,y, p| < C and b(z,y,p) < C(1+|p|?).
Fix x € Q, p € R", consider the adjoint problem

—(aij(@,y,p)m(p, 2, Y))yy, =0 in R”,

where m is Y-periodic. It has a positive solution m unique subject to nor-
malization [, m(p, z,y)dy = 1. Define average coefficients

aij(map) :/m&ij(x,y,p)dy,
Y

b(x, p) ZAb(w,y,p)m(x,y,p)dy~

Homogenized problem

—cﬁ(m, Du)ug,,;, = b(z, Du) in
u=20 on 0f).

Theorem 3.8. Assume {u}cso is bounded, then there is a sequence {u}
and u € C(£2) such that u“ — u uniformly on Q and u is a weak solution of
the homogenized problem.

Proof. Elliptic estimate under the quadratic growth of b = {u‘} C C%(Q)
for some 8 > 0. Ju“ — u. Fix v € C*(Q) and if u — v has a strict maximum
at xg € Q). Using Fredholm alternative, we find a solution w of the corrector
problem

_aij(xlb Y, D/U(xo)>wyiyj = aij (moa y'DU<x0)) - &ij(x(]? D’U(xo))vﬂfiﬂ?j ('TO)

— [b(zo, y, Dv(xo)) — blzo, Dv(zp))]

with w is Y-periodic. Define the perturbed test function v¢(x) = v(z) +
T

e>w(=), then v*(z) — v(x) uniformly as ¢ — 0. Then u®%* — v has a
€

local maximum at a point z., with z, — x¢ as k — oo. By the maxi-
TiTj

Dvé(z.) = Dv(z,.) + eDw(xE), D*v¢(x.) = D*v(x,) + Dzw(&). This implies
€

€

mum principle, —a¥(x., E, Dov(x))vs. . < b(z, E, Dve(x,)) for € = ¢, and
€ €

—a" (2o, Y, Dv(20)) (Vya; (20) + wis(y)) < b(wo, ys, Dv(wo)) + 0(1).
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3.3 Homogenization of Hamilton-Jacobi equations

T
H(Due,us,2,5) =0 in Q
{ (Duf,uf, x e) in (3.2)

u(x) =0 on 052
where €2 C R” bounded smooth. Assumptions on H:
1. y — H(p,u,z,y) is periodic (period 1).
2. limyy|00 H(p, u, x,y) = oo uniformly on [—L, L] x Q x R" VL.
3. w— H(p,u,z,y) — pu increasing in u.
4. H is Lipschitz on any Br(0) x [-L, L] x Q@ x R" VL > 0.

The vanishing viscosity solution method implies that Ve > 0, 3 a viscosity
solution u¢ of (3.2). Moreover, such u¢ is unique and [|u||o1iq < M < 00
Ve € (0,1). We introduce Lions-Papanicolaou-Varadhan lemma.

Lemma 3.9. For each p € R", u € R, x € €, there is a unique real number
A for which the PDE

H(Dyvp,u,z,y) =X inR"
v 18 periodic in y

has a solution v € C%Y(T"). Denote N\ = H(p,u,z) for p € R", u € R,
x e .

Effected Hamiltonina H and the Cell Problem

H(D,v + p,u,r,y) = H(p,u,r) in R®
v is periodic,

H has the same property as H.
Now, we introduce the result proved by Caffarelli and L. C. Evans.
Consider F(D?u,y) = 0, F is uniformly elliptic in D?*u and 1-periodic in
y € R™. Let ucbe a viscosity solution of F(D?u(z), f) =0in Q and u. =0
€
on IN.Let S = {A € M" : F(A+ D*w,y) = 0 has a solution on T"}, S
describes the zero set of a uniformly elliptic equation F(D?u) = 0. This F
is called the homogenized limit which introduced by Evans.

Fact 3.10. Let u. be a bounded solution of F(DQuE,E) = 0 in By, then
€

Uue|p,,, € C* for some a > 0 and |[ucl|ca(p, ) < Cllucl|z=,)-
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d
Proof. F(D*ue, =) = F(0, %)+ ) = F(tDu., Z)dt = F(0, %)+ [ Fyy(tD*u, =)dt
€ € € € €
D}ue = 0, this forms ag;(v)us,, (z) + fo(r) = 0, by using Krylov-Safanov
theorem, we can get the conclusion. O

Theorem 3.11. Let {u,} be a sequence of solutions of F(D%u,,, £) =0,
€k

ex — 0 and u,, — ug in C* as k — oco. Then uy is a viscosity solution of
F(DZUO) = 0.

In the end of this lecture, we give some open problems.

3.4 Open problems

1. Let {x;}°, C R be such that
(a) |z; — xj| > 3 whenever i # j.
Let 0 < ¢ <1, ¢ € C5°(By) and Ap(x) = 0 + ay Doy oz — ),
hence I < A(z) < I+ Cy(al,)).
What are asymptotic behavior of its Green function G4(z,y)? Are
there similar results as in periodic cases?

2. Rate of Convergence in
(a) Statistical homogenization 7
(b) Homogenization of Hamilton-Jacobi equation?
(c) Nonlinear equations?
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