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Abstract

The note is mainly for personal record, if you want to

read it, please be careful. I followed Prof. Fang-Hua Lin's lecture

in NCTS, Taiwan. He gave a series of lectures of homogenization

theory during Dec 17-19, 2012. We separate this notes into three

parts: Applied Analysis, Homogenization and Eigenvalue Problem.

1 Applied Analysis

What is applied analysis? We have two viewpoints of this: Concentrations
and Oscillations.

1.1 Concentrations

Example 1.1. Sacks-Uhlenbeck bubbling (beyond conformal dimension (i.e.
two dimension)): Harmonic maps and Minimal surfaces.

Example 1.2. Gromov (pseudo-holomorphic curves): Compactness =⇒Selberg-
Witten theory.

Example 1.3. Yamabe problems: Studied in math biology (spikes, higher
dimensional patterns).

Example 1.4. Particle like solutions: BEC, vortices (�laments), super-
conductivity, codimention two concentration.

Example 1.5. Singularities (L. Simon), shocks (sharp interfaces), defects
(motion by mean curvature), Ricci �ows (black holes).
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1.2 Oscillations

Example 1.6. Measures: Wigner measure (in quantum mechanism), Young
measure, Defect measure, H-measure (homogenization measure, introduced
by Luc Tartar and Gerand), microlocal measure.

Example 1.7. Averaging Principle: Large number laws, hydrodynamics,
Homogenization.

Example 1.8. Weak continuity (conservation laws), compensate compact-
ness, viscosity method (convexity and monotonicity).

2 Homogenization

We only consider elliptic equations with periodic coe�cients and theory of
homogenization.

2.1 Goals

1. Composite materials (in practical use).

2. A lot of classical physics can be explained by using homogenization.

3. (Pure) Mathematical reasons : Used in the Hopf conjecture.

Conjecture 2.1. (Hopf conjecture) A Riemannian metric is de�ned on a
torus without conjugate points, then the metric will be �at.

It was solved by using the ideas in homogenization.

2.2 Elliptic Equations with Periodic Coe�cients

First, we consider the ODE case as follows:

Lemma 2.2. (Floquet Theory)
dx

dt
= A(t)x, with A(x) is periodic in t, then

φ(t) = P (t) exp(Ct)

is the fundamental solution matrix, where C is a constant matrix and P (t)
is periodic in t.
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Now, we consider the PDE case: Let L be a uniformly elliptic opera-
tor with periodic coe�cients in Rn. Suppose L is either of the form L =
div(A(x)∇) or of the form L = −aij(x)∂2

xixj
. Then

Theorem 2.3. (Avellanda-Lin, 1989) If Lu = 0 in Rn, and maxBR |u(x)| ≤
MRm, for a sequence of R → ∞, then u is a polynomial of degree m with
periodic coe�cients. That is, u(x) =

∑
|α|≤m aα(x)xα with aα(x) is periodic

in x.

Remark 2.4. (a) This is a type of Liouville's theorem.
(b) Moser-Struwe (1992) proved that there are solutions of the PDE

−∆u+ v(x, u) = 0 in Rn,

with u(x) = α · x+Bα(x), for any α ∈ Rn, and Bα(x)′s are bounded.
(c) Ca�arelli-R. de Llave (2001): Planelike minimal surface in (Rn, g),

g(x) is periodic in x.
(d) P. Kuchment: Floquet Theory for Partial Di�erential Equations,

Birkhauser, Basel (1993).

Theorem 2.5. (M. Avellaneda and F. H. Lin, 1991)
Let G and G0 be Green functions of L and L0, then

|G(x, y)−G0(x, y)| ≤ C1

|x− y|n−1
,

|∇xG(x, y)− P (x)∇xG0(x, y)| ≤ C2

|x− y|n
,

|∇x∇yG(x, y)− P (x)P (y)∇x∇yG0(x, y)| ≤ C3

|x− y|n+1
,

for some constants C1, C2, C3 and periodic matrix P (x), and for all (x, y) ∈
Rn × Rn with |x− y| ≥ 1.

Consequences:

1. Operators
∂

∂xα
(L)−1 ∂

∂β
,
∂

∂xα
(L)−1/2, (L)−1/2 ∂

∂xβ
, 1 ≤ α, β ≤ n, are all

bounded from Lp(Rn) into weak L1(Rn) (Calderon-Zygmund theorem).

2. If Lu = div
−→
F in Rn, then ‖u‖W 1,p(Rn) ≤ C‖

−→
F ‖Lp(Rn) (DeGiorgi's the-

orem).

3. The operator
∂

∂xα
∂

∂xβ
(L)−1 are bounded from Lp(Rn) to Lp(Rn) (and

from L1(Rn) to weak L1(Rn)), 1 < p <∞, if and only if divA = 0.
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4. If divA=0, then Lu = f in Rn implies ||u||W 2,p(Rn) ≤ C||f ||Lp(Rn).

5. If Lu = 0 in Hn
+ (a half space) and u = f on ∂Hn

+, then ||u∗||Lp(∂Hn
+) ≤

C||f ||Lp(∂Hn
+), 1 < p < ∞. Here u∗ is the usual Hardy-Littlewood

maximal function (Fatou's theorem, introduced in the Stein's small
book).

Quasilinear Elliptic Equations and Hamilton-Jacobi Equations, the corre-
sponding studies were carried out by Lions- Papanicolaou-Varadhan, and by
C. Evans. Fully nonlinear di�erential and fully nonlinear integral equations
with periodic coe�cients were studied by L. Ca�erelli et al. The study of
these equations with periodic 1 coe�cients in large domain ⇐⇒ the study
of same type equations with periodic ε coe�cients (ε� 1) in a bounded do-
main. The latter is called homogenization problem. We show two problems
in homogenization:

Problem 2.6. (The Inverse Problem)
Consider the equation

∂tu
ε(x, t)− div(aij(

x

ε
)uεxj) = 0 in Ω× [0, T ], Ω ⊂ Rn

uε(x, 0) = φ0(x) x ∈ Ω

uε(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ]

. (2.1)

Assumptions: (1) λI ≤ (aij(y)) ≤ ΛI, for some 0 < λ ≤ Λ < ∞. (2)
aij(y + z) = aij(y) ∀z ∈ Rn, y ∈ Rn. (3) 0 < ε� 1.

One observes at time t = T0 a possible solution of uε of (2.1) to �nd a
function f ε(x). How can one construct a solution of (2.1) for 0 < t < T0. We
know the backward heat equation is ill-posed.

Question1 : How can one assert that f ε(x) is actually close to uε(x, T0),
for a solution of (2.1)? Is there a criteria?

Question2 : If f ε(x) is indeed close to some uε(x, T0), then is it possible
to construct uε(x, t) for 0 < t < T0? For question, it means, if ||f ε(x) −
uε(x, T0)|| ≤ δ, can one construct from f ε(x) an approximate solution V δ(x, t)
such that

‖V δ(x, t)− uε(x, t)‖ ≤ O(δα) for 0 < t0 ≤ t ≤ T0 ?

Here V δ(x, t) is distinct from the truly solution and in order to do so, one
requires t ≥ t0(α) > 0 and t0(α) → 0 as α → 0, and all constants are
independent of ε. We know that ω(δ) → 0 as δ → 0, this is a Hadamard
(sense) criterion.
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J. Hadamard: Well-posed problems in PDEs - (a) Existence, (b) Unique-
ness, (c) Stability (Continuous dependence). But this is not useful in numer-
ical computations, we introduce John's idea.

F. John: Well-behaved problems in Numerical PDEs - Here given an error
ε, in data (observation, grid size, · · · ), one wants the numerical solutions
to be within O(εα), α > 0, error of the theoretical solution. e.g. When

ω(δ) =
1√

log δ
≤ 0.1, this implies δ ≤ e−100 is so small that the numerical

method fails.
For simplicity, we �rst consider the Laplacian case:

ut −∆u = 0 in Ω× [0, T ]

u = 0 on ∂Ω× [0, T ]

u(x, 0) = φ(x)

.

Question1 : ∆φk + λkφk = 0 in Ω with
´

Ω
φ2
kdx = 1 and λj's are eigen-

values with 0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞, by Weyl's asymptotic formula,
we have λk ≈ C(n, |Ω|)k2/n. Then |

´
f(x)φk(x)dx| ≤ ||f ||L2e−λkT + δ and´

Ω
f(x)φk(x)dx = ake

−λkT , then we can solve u(x, t) =
∑N

k=1 ake
−λktφk(x)

and ||u(x, t) − u∗(x, t)|| ≤ δ + e−λNT ≤ 2δ by choosing T large (by using
spectrum method).

To estimate |λεk − λk| ≤ c for some c, ∀k ∈ N, ε > 0, the di�culty is that
we don't know how to choose N , and in theoretical sense, we want to k, ε
are independent of the space variables. If c is small, this inverse problem can
be solved.In early homogenization theory, we only known λεk → λk as ε→ 0
for all �xed k, and we couldn't estimate the speed of convergence; but now
we can have the �ner result of |λεk − λk| ∀k ∈ N and ∀ε > 0 (we need more
technical estimates for these results).

Look at the following equation:

(L) :

{
∂xi(a

ij(
x

ε
)uεxj) = 0 in Ω

uε(x) = f on ∂Ω
converges to (R) :

{
∆u = 0 in Ω

u = f on ∂Ω

Since the (R) is the homogenized convergence of the (L), w.l.o.g. we can
assume the limit is Laplacian and denote this convergence to be the ho-
mogenized convergence. We have a lot of ideas of solving the (R)-equation
(call it homogenized-problem), so we borrow these ideas and apply to the
(L)-equation (call it ε-problem)!

In periodic homogenization: ε=periodic size, ∆=grid size, uε=solution to
the ε-problem, u0=solution to the homogenized problem, and u∆=solution
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to the ∆-problem (numerical) by using �nite di�erence method to the ho-
mogenized problem.

Question: How close u∆ to uε?

Total error bound≤O(∆β)+O(ω(
ε

∆
)), where ω(δ)=theoretical error bound

of ||u∆ − u0||. Obviously, one wishes to have total error≤ O(∆α), for some
α > 0. Thus, we need ω(δ) ≤ O(δA) for some large A as possible, but
in some statistical homogenization or nonlinear elliptic homogenization, the
best known ω(δ) may be given by

c| log δ|−a for some small a > 0.

Such estimate is often su�cient (or actually best possible) in the theory,
but it is Ill-behaved for practical numerical computations. Moreover, in the
computational situation, we always change the grid size in order to make the
ε-problem more speci�c, and get a better estimate.

Problem 2.7. (Boundary Control by J. L. Lions)
Consider 

utt −∆u = 0 in Ω× [0, T ]

u = g on ∂Ω× [0, T ]

u(x, 0) = u0

ut(x, 0) = u1

Question: (u0, u1) ∈ L2×L2, does there exist T > 0 and g ∈ L2(∂Ω× [0, T ])
such that u(x, T ) = ut(x, T ) = 0? Since this is a wave equation, having
�nite speed propagation, we only need to consider the minimal time T , it
is interesting to consider the minimal time T (optimal control time) and the
minimal ||g||L2 .

Consider the forward wave heat equation
φtt −∆φ = 0 in Ω× [0, T ]

φ = 0 on ∂Ω× [0, T ]

φ(x, 0) = φ0, φt(x, 0) = φ1

(2.2)

let y =
∂φ

∂ν
on Ω× [0, T ] and de�ne an operator Lt (a Dirichlet-to-Neumann

map) by
Lt(φ0, φ1) = (−y1, y0),

where y0 = y(x, 0) and y1 = yt(x, 0) and y(x, t) solves the adjoint equation
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of (2.2) 
ytt −∆y = 0 in Ω× [0, T ]

y(x, T ) = yt(x, T ) = 0

y =
∂φ

∂ν
on ∂Ω× [0, T ]

(2.3)

and call (2.3) the backward equation (note that in general, the backward

equation is il-posed), and (Lt(φ0, φ1), (φ0, φ1)) =
´ T

0

´
∂Ω

∣∣∣∣∂φ∂ν
∣∣∣∣2 dSdt.

Lemma 2.8. (LafaHo, Pohozaev)
For T ≥ T0 > 0 (T0 is large) such that for φ a solution of (2.2), we have

cT (‖φ0‖2
L2 + ‖φ1‖2

L2) ≤
ˆ T

0

ˆ
∂Ω

∣∣∣∣∂φ∂ν
∣∣∣∣2 dSdt ≤ CT (‖φ0‖2

L2 + ‖φ1‖2
L2) (2.4)

for some constants cT , CT > 0 depending on T .

The right hand side estimate of (2.4) is by using Pohozaev identity, but
in general, the left hand side is wrong even if all the coe�cients are smooth
. When the left hand side holds, we have the coercive property to get Lt is
invertible (i.e., we can use the Lax-Milgram theorem to inverse the problem
for the product form (Lt(φ0, φ1), (φ0, φ1))|t=0). For (u0, u1) given, ∃(φ0, φ1)

such that Lt(φ0, φ1) = (−u1, u0) if g =

(
∂φ

∂ν

)
. The minimum time T is large

than T0, in order to �nd the optimality, we need to use the techniques in
microlocal analysis and presumably assumed time T0 to be unique.Now back

to the homogenization problem, consider Lε = ∂xi(a
ij(
x

ε
)∂xj) and

´
Ω
u2
ε = 1

be such that Lεuε + λεuε = 0 in Ω.

Question: Is it true that cλε ≤
´
∂Ω×[0,T ]

∣∣∣∣∂uε∂νε

∣∣∣∣2 dσ ≤ Cλε?

In the control problem, we consider
∂2

∂t2
uε(x, t)− ∂

∂xi
(aij(

x

ε
)uεxj) = 0 in Ω× [0, T ]

uε(x, 0) = φ0 ∈ H1, uεt(x, 0) = φ1 ∈ L2

uε(x, t) = g on ∂Ω× [0, T ]

(2.5)

Question: Is there a time T0 > 0 such that for T ≥ T0, ∃gε ∈ L2(∂Ω ×
[0, T ]) such that the solution uε(x, t) of (2.7) satis�es uε(x, T ) = uεt(x, T ) = 0?

Answer : In general situations, we cannot �nd such gε, we need ‖gε‖L2 ≤

C(‖φ0‖H1 + ‖φ1‖L2) and
´
∂Ω×[0,T ]

∣∣∣∣∂uε∂νε

∣∣∣∣2 ≈ (‖∇φ0‖2
L2 + ‖φ1‖2

L2). To get such
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estimates, the idea comes from considering the equation
∂ttu−∆u = 0 in Ω× [0, T ]

u = 0 on ∂Ω× [0, T ]

u(x, 0) = φλ, ut(x, 0) = 0

by separation of variable, it's easy to get a solution of the form u(x, t) =
φλ(x) cos

√
λt, where φλ satis�es ∆φλ + λφλ = 0 and

´
Ω
φ2
λ = 1 and λ =

´
Ω
|∇φλ|2 ≈C(Ω)

´
∂Ω

∣∣∣∣∂φλ∂ν
∣∣∣∣2, the �nal step is the key point (it is dimensional

balance) and apply this idea to solve the original homogenization problem.

2.3 G-Convergence (S. Spagnolo)

Consider {
−div(a(x)∇u) = f in Ω

u = 0 on ∂Ω

where a(x) satis�es 0 < α ≤ a(x) ≤ β < ∞ a.e. and u ∈ H1
0 (Ω) for any

f ∈ H−1(Ω), by Lax-Milgram lemma, we get

||u||H1
0 (Ω) ≤ C(n, α, β)||f ||H−1(Ω).

Question: Suppose there are sequence a(m)(x), f (m)(x) such that ||f (m)||L2 ≤
1 and α ≤ a(m)(x) ≤ β, then ||u(m)||Cγ(Ω) + ||u(m)||H1 ≤ C0. Assume
u(m) → u(∞) in Cα0 for some α0 (G(m) → G(∞) in Cα o� diagonal), also
a(m) → a(∞) in L∞ weak* , is there a(∞)(x) such that{

−div(a(∞)(x)∇u(∞)) = f (∞) in Ω

u(∞) = 0 on ∂Ω
?

The answer is no! If is true for the question, ∃A∞(x) = (a∞ij (x)) such that

αI ≤ A∞(x) ≤ βI and −div(A∞(x)∇u(∞)) = f (∞)(x), valued with a(m)(x)I
replacing by A(m)(x), the problem will appear on the diagonal parts.

2.3.1 Essence of DeGiorgi-Spagnolo G-convergence theorem

1. Let Tn : H → H∗, {Tn} is a sequence of bounded, linear operators
with ||Tn|| ≤ M for all n = 1, 2, · · · . Assume 〈Tnu, u〉 = λ||u||2, λ > 0
∀n ≥ 1, this implies ∃{Tnj} and T∞ in L(H,H∗) such that ∀f ∈ H∗,
Tnjunj = f , solutions {unj} converges weakly inH such that T∞u∞ = f

and 〈T∞u, u〉 ≥ λ||u||2 and ||T∞u||∗ ≤
M2

λ
||u|| ∀u ∈ H.
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2. If Tn = −div(An(x)∇), then T∞ = −div(A∞(x)∇). If |An(x)ξ| ≤M |ξ|

and 〈An(x)ξ, ξ〉 ≥ λ|ξ|2, then |A∞(x)ξ| ≤ M2

λ
|ξ| and 〈A∞(x)ξ, ξ〉 ≥

λ|ξ|2.

3. IfAε(x) = A(
x

ε
) with ellpticityA(y) andA(y) is periodic, thenA∞(x) ≡

A∞ is a constant (translation invariant) operator as before (
1

ε
→∞).

How to �nd A∞? Note that the limit of diagonal operator Tn is not necessarily
be diagonal, in homogenization theory, call Tn → T to be Γ-convergence.

Example 2.9. (ODE case)
Consider 

d

dx
(a(

x

ε
)uεx) = f(x)

uε(0) = uε(1) = 0

with f ∈ L2([0, 1]) and λ ≤ a(
x

ε
) ≤ Λ.

(a) uε ⇀ u0 in H1
0 ([0, 1]), uε → u0 in L2

(b) let ξε(x) = a(
x

ε
)uεx, ξε converges to ξ0 weakly in H1 and strongly in

L2.

(c)
1

a(
x

ε
)
→ (

1

a
) in L∞-weak* (by using Riemann-Lebesgue lemma), uεx =

ξε
a(x

ε
)
⇀ (

1

a
)ξ0,

d

dx
ξ0 = 0 (one of it is strong convergence, the other is weak

convergence, and their product must be weak convergence).

Hence we get the homogenized equation

u0x

(
1

a
)


x

= f(x).

2.3.2 WKB-Analysis

Lεuε = − ∂

∂xi
(aij(

x

ε
)uεxj) = f(x) in Ω and uε = 0 on ∂Ω. Suppose that aij(y)

is periodic with period 1 and λ|ξ|2 ≤ aij(y)ξiξj ≤ Λ|ξ|2, uε ⇀ u0 in H1
0 (Ω)

and L̂u0 =
∂

∂xi
(âijuxj) = f in Ω

u0 = 0 on ∂Ω
.
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Remark 2.10. If such (âij) exists, then âij is a constant matrix.

Let y =
x

ε
, we write uε(x) = u0(x, y) +

∑
k ε

kuk(x, y), where uk(x, y)'s

are periodic in y with period 1. Note that given a smooth function φ(x, y),

y =
x

ε
, then

Lε(φ(x, y)) = ε−2A2φ+ ε−1A1φ+ A0φ,

where 

A0 ≡ aij(y)
∂2

∂xi∂xj

A1 ≡
∂

∂yi
(aij(y)

∂

∂xj
) +

∂

∂xj
(aij(y)

∂

∂yj
)

A2 ≡
∂

∂yi
(aij(y)

∂

∂yj
)

.

Therefore,

Lεuε = (ε−2A2 + ε−1A1 + A0)
∞∑
k=0

εkuk(x, y) = f(x),

this implies A2u0 = 0, A2u1 + A1u0 = 0 and A2u2 + A1u1 + A0u0 = f by
comparison of ε-coe�cients.

2.3.3 Conclusions

1. u0(x, y) ≡ u0(x) (a solution on T n of an elliptic operator), L1u0 = 0
(just think the Laplace equation).

2.
∑n

i,j=1

∂

∂yi
(aij(y)

∂u1

∂yj
(x, y)) = −

∑n
i,j=1

∂

∂yi
(aij(y)

∂u0

∂j
(x)) =⇒ u1(x, y) =∑n

l=1 χl(y)
∂u0

∂xl
and

∑n
i,j=1

∂

∂yi
(aij(y)

∂χl(y)

∂yl
) = −

∑n
i=1

∂

∂yi
(ail(y)).

3. A2u2 = f(x) − A1u1 − A0u0 is solvable on T n =⇒
´
Tn

(f(x) − A1u1 −
A0u0)dy = 0 is a necessary condition by Fredholm alternative. The

latter implies L̂u0 = f(x), and âij = 〈aij〉+
∑n

l=1

〈
aij
∂χj
∂yl

〉
. Here the

function χ is the standard corrector term in homogenization theory.

If aij(x) = aji(x), then âij = âji; if (aij(x)) > 0, then (âij) > 0. Indeed,

âij =
´
Tn
akl(y)

∂

∂yk
(χi(y) + yi)

∂

∂yl
(χj(y) + yj) dy, and the integrand part is

zero.
We cannot get the speed of convergence from the theory, but it is impor-

tant to estimate the rate of convergence.
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Remark 2.11. Even (aij(x)) = a(x)I, (âij) may not be diagonal, where âij =〈∑n
k=1 a

ik(y)
〉
may not be zero when i 6= j.

Conjecture 2.12. (via WKB expansions)
(A) uε → u0 strongly in L2 as ε→ 0.

(B) uε(x)− (u0(x) + εχ(
x

ε
)∇u0(x))→ 0 strongly in H1 as ε→ 0.

2.4 Method of oscillating test functions

We start with Lεu
ε = f in Ω with zero boundary data⇔−

´
Ω
aij(

x

ε
)uεxivxjdx =´

Ω
f(x)v(x)dx ∀v ∈ H1

0 (Ω). uε converges to u0 weakly in H1
0 (Ω) and Lχ =

−divA on T n, as before, âij = 〈aij〉+

〈
ail
∂χj
∂yl

〉
.

Lemma 2.13. We may assume aij(
x

ε
)uεxj → ξi in L

2(Ω;Rn), hence

−
ˆ

Ω

ξ · ∇vdx =

ˆ
Ω

fvdx (2.6)

∀v ∈ H1
0 (Ω).

Proof. Let η ∈ C∞0 (Ω) and let vε(x) = x + εχ(
x

ε
) and apply v = η · vε in

(2.6), note that ηvε ∈ H1
0 (Ω), then

−
ˆ

Ω

aij(
x

ε
)uεxi(vεηxj + vε,xjη)dx =

ˆ
Ω

fvεηdx,

as ε→ 0,
´

Ω
fvεηdx→

´
Ω
fxηdx. Note

ˆ
Ω

aij(
x

ε
)uεxiv

l
εxj
ηdx =

ˆ
Ω

(aij(
x

ε
)vlεxj)ηxiu

εdx→
ˆ

Ω

ηxiu
0âikdx

as ε→ 0. Therefore,

−
ˆ

Ω

(âijηxiu
0 + ξjχlη)dx =

ˆ
Ω

fηxldx,

but
´

Ω
fηχldx = −

´
Ω

(ξlη + ξ · χl∇η)dx, hence

ˆ
Ω

âiju0
xi
ηdx =

ˆ
Ω

ξlη.
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The original proof is by using Div-Curl lemma, aij(
x

ε
)uεxju

ε
xi
→ âiju0

xj
u0
xi

as an energy convergence, the interesting part is aij(
x

ε
)uεxj ⇀ âiju0

xj
and

uεxi ⇀ u0
xi

weakly, but aij(
x

ε
)uεxju

ε
xi

still converges to âiju0
xj
u0
xi

(in general,

the product of weak convergences does not imply the weak convergence).

2.5 Elliptic Operators with Oscillating Periodic Coe�-
cients

Consider a family of elliptic operators Lε = − ∂

∂xi

(
aαβij (

x

ε
)
∂

∂xj

)
, ε > 0. Let

A = A(y) = (aαβij (y)), 1 ≤ i, j ≤ d, 1 ≤ α, β ≤ m. Assume that A is real and

uniformly elliptic, symmetric (i.e. aαβij = aβαji ), A is Holder continuous and

periodic w.r.t Zd (i.e. A(y + z) = A(y), ∀z ∈ Zd).
Consider the boundary value problem{

Lε(uε) = div(f) in Ω

uε subject to some kind of boundary condition.

describes a stationary process in strongly inhomogeneous medium with pe-
riodic structure and ε > 0 is the inhomogeneous scale, ε is very small with
respect to the other length scales in the problem (if ε and the length scale are
compatible, in phiycal situations, anything can happen and it is not easy to
predict). As ε → 0, uε → u0 strongly in L2(Ω) and weakly in H1(Ω), where
u0 is a solution of an elliptic system with constant coe�cients,{

L0(u0) = div(f) in Ω

u0 subject to some kind of boundary condition.

where L0 = −div(Â∇) and Â may be computed explicitly by using A(y).
There are three problems:

1. Uniform regularity estimates.

2. Uniform solvabilities of boundary value problems.

3. Convergence rates of ||uε − u0||.

We give interior gradient estimate for ε-problem:

12



Theorem 2.14. (Abellaneda and F. H. Lin, 1987)
Suppose that Lε(uε) = 0 in Ω and B(x, 2r) ⊂ Ω. Then

|∇uε(x)| ≤ C

rd+1

ˆ
Br

|uε(y)|dy,

where C is independent of ε.

Let D(x, r) = B(x, r)∩Ω and ∆(x, r) = B(x, r)∩ ∂Ω, where x ∈ ∂Ω and
0 < r < r0, then we have Lipschitz estimates with Dirichlet condition:

Theorem 2.15. (Avellaneda-Lin)
Let Ω be a C1,α domain. Suppose that{

Lε(uε) = 0 in D(x, 2r)

uε = 0 on ∆(x, 2r).

Then

||∇uε||L∞(D(x,r)) ≤
C

r

(
1

|D(x, 2r)|

ˆ
D(x,2r)

|uε(y)|2dy
)1/2

,

where C is independent of ε.

Remark 2.16. There is no uniform Holder estimate for ∇uε (we can see it in
the following example). There is no Lipschitz estimate on C1 domains (even
for constant coe�cients) and the condition of symmetric is not needed.

Example 2.17. Look at
d

dx

 uεx

2 + cos
x

ε

 = 0. It's easy to �nd a solution

uε(x) = 2x + ε sin
x

ε
converges to u0(x) = 2x as ε → 0 with u0(x) satisfying

(u0)′′(x) = 0.
d

dx
uε(x) = 2 + cos

x

ε
⇀ 2 weakly by Riemann-Lebesgue lemma

and it can never be a strong convergence. Note that the �rst derivative
of uε is bounded (not C1 since when ε is small, the derivative has highly
oscillation in x-variable), so we can only expect the best possible regularity
for the homogenization theory in PDE is the Lipschitz regularity (Similar
to the KAM theory). In the following, we consider the Neumann boundary
data problem:

Lipschitz Estimates for Solutions with Neumann boundary conditions

13



Theorem 2.18. (Kenig-Lin-Shen, 2010)
Let Ω be a C1,α domain, suppose thatLε(uε) = 0 in D(x, 2r)

∂uε
∂νε

= 0 on ∆(x, 2r).

Then

||∇uε||L∞(D(x,r)) ≤
C

r

(
1

|D(x, 2r)|

ˆ
D(x,2r)

|uε(y)|2dy
)1/2

,

where C is independent of ε and note that

(
∂uε
∂νε

)α
= ni(x)aαβij (

x

ε
)
∂uβε
∂xj

.

Main Steps of the Proof:
First, we need a type of Maximum Principle as follows:

Lemma 2.19. (Miranda Maximum Principle)
Let uε satisfy {

Lεuε = 0 in Ω

uε = φ on ∂Ω
,

then
||uε||L∞(Ω) ≤ C||φ||L∞(∂Ω).

Here C(> 1) is not necessarily to be 1.

Construction and estimates of boundary correctors for Neumann condi-
tions. Let P β

j = P β
j (x) = xj(0, . . . , 1, . . . 0) with 1 in the β-th position and

let φε = (φαβε,j ), where for each 1 ≤ j ≤ d, 1 ≤ β ≤ m, φβε,j = (φ1β
ε,j, · · · , φ

mβ
ε,j )

is a solution to the Neumann problemLε(φ
β
ε,j) = 0 in Ω

∂

∂νε
(φβε,j) =

∂

∂ν0

(P β
j ) on ∂Ω.

Theorem 2.20. (Kenig-Lin-Shen, 2010)
Let Ω be a C1,α domain. Then

||∇φε||L∞(Ω) ≤ C.

Now, we need to estimate the boundary correctors:

Let w = φ − x − εχ(
x

ε
), where the function χ is the corrector appeared

in the previous sections. Then Lε(w) = 0 in Ω, write

w(x) =

ˆ
∂Ω

Nε(x, y)
∂w

∂νε
dσ(y),

14



where Nε(x, y) is a matrix of Neumann (kernel) functions for Lε in Ω (just like

the Poisson formula for Neumann boundary problem) and
∂w

∂νε
can be written

as tangential derivatives of some gij with ||gij||L∞(∂Ω) ≤ Cε (we borrow the
ideas of the representation of the Poisson kernel to write the solution in
the explicit form and estimate the solution by the representation formula).
One can prove Holder estimates for solutions with Neumann conditions by a
compactness argument which does not involve correctors. Hence, Nε(x, y) is
Holder continuous. This, together with the uniform Rellich estimates (Kenig-
Shen, 2009), gives

ˆ
∂Ω

|∇y {Nε(x, y)−Nε(z, y)} |dσ(y) ≤ C,

if |x− z| ≤ cr and r = dist(x, ∂Ω). Moreover, one can obtain

|∇φε(x)| ≤ C +
Cε

dist(x, ∂Ω)
.

Use a standard blow-up argument to �nish the proof.

2.6 A compactness argument

Recall that we have introduced the notions of D(x, r) and ∆(x, r), we give
the following lemma:

Lemma 2.21. There exist ε0, κ, θ and C with the following property. Suppose

that Lε(uε) = 0 in D(0, 1),
∂uε
∂νε

= g on ∆(0, 1) and uε(0) = g(0) = 0. Assume

that ε < θl−1ε0 for some l ≥ 1. Then there exist constants Bj
ε ∈ Rdm for

j = 0, 1, · · · , l − 1 such that〈
n(0)Â, Bj

ε

〉
= 0, |Bj

ε | ≤ CJ

and

||uε −
l−1∑
j=0

θκj
〈
njε, B

j
ε

〉
||L∞(D(0,θl)) ≤ θl(1+κ)J,

where njε(x) = θjφ ε

θj
(θ−jx,Ωψj), ψj(x) = θ−jψ(θjx) and

J = max{||g||C0,η(∆(0,1)), ||uε||L∞(D(0,1))}.

There are two steps proving this lemma: 1. j = 0 by contradiction; 2.
j ≥ 1 by induction. Use the above results, we can get the �real� Lipschitz
Estimates for Neumann Problems:

15



Theorem 2.22. Let Ω be a bounded C1,α domain, 0 < η < α < 1 and q > d.
Then for any g ∈ Cη(∂Ω) and F ∈ Lq(Ω) with

´
Ω
F +

´
∂Ω
g = 0, the weak

solution to Lε(uε) = F in Ω
∂uε
∂νε

= g on ∂Ω

satisfy the estimate

||∇uε||L∞(Ω) ≤ C(||g||Cη(∂Ω) + ||F ||Lq(Ω).

Remark 2.23. In the case of elliptic equations (m = 1) in Lipschitz domains,
the Lp Dirichlet problem for Lε(uε) = 0 for 2 − δ < p < ∞ was solved by
B. Dalhberg (1990, unpublished). The Lp Neumann and regularity problems
for 1 < p < 2 + δ were solved by Kenig and Shen (2009).

In the case of elliptic systems (m ≥ 1), the L2 Dirichlet, Neumann, and
regularity problems for Lε(uε) = 0 in Lipschiz domains were solved by Kenig
and Shen (2009), using the method of layer potentials.

If m ≥ 1 and is C1,α, the Lp Dirichlet problem was solved by Avellaneda-
Lin (1987), and the Lp Neumann and regularity problems as well as rep-
resentations by layer potentials were solved by Kenig-Lin-Shen (2010), for
1 < p <∞.

2.7 Another approach

Recall two functional spaces: Morrey space and Campanato space.

De�nition 2.24. We call Morrey's space, denoted by

Mp,λ =

{
u ∈ Lp(Ω)| sup

x0∈Ω,ρ<diamΩ

1

ρλ

ˆ
Bρ(x0)

|u|pdx <∞

}
and Campanato's space is denoted by

Cp,λ =

{
u ∈ Lp(Ω)| sup

x0∈Ω,ρ<diamΩ

1

ρλ

ˆ
Bρ(x0)

|u− ux0,ρ|pdx <∞

}
,

where ux0,ρ =
ffl
Bρ(x0)

u(y)dy, there are a lot of properties of these spaces, we

don't give details here.

Lemma 2.25. (Morrey's lemma)
Suppose u ∈ H1(Bn

1 ) such that

1

rn−2

ˆ
Br(x0)

|∇u|2 ≤Mr2α

16



for some α ∈ (0, 1), ∀x0 ∈ B1/2(0) and ∀r ∈ (0,
1

2
), then u ∈ Cα(B1/2) and

||u||Cα(B1/2) ≤ c0(n)M.

Lemma 2.26. (Campanato's lemma)
Let u ∈ L2(Bn

1 ) be such that

1

rn

ˆ
Br(x0)

|u− ux0,r|2dx ≤Mr2α

∀x0 ∈ B1/2(0) and ∀r ∈ (0,
1

2
), then u ∈ Cα(B1/2) and

||u||Cα(B1/2) ≤ C(n)M.

Remark 2.27. Let A(x) be such that λI ≤ A(x) ≤ ΛI , period 1 and ||A||Cβ ≤
M for some constant M and β ∈ (0, 1). L = {Lε = div(A(

x

ε
)∇), A satis�es

the previous assumptions}. Consider Lεuε = 0, uε ∈ H1(B1) and Lε ∈ L,
then we have

||uε||Cα(B1/2) ≤ C(n, λ,Λ, α, β,M)||uε||L2(B1), ∀α ∈ (0, 1).

This estimate is distinct from the standard DeGiorgi's theorem (recall that
in DeGiorgi theorem states the Cα-estimate for some α ∈ (0, 1) and the right
hand side constant C is universal). Moreover, the above three lemmas are
all dimensional balance on the left hand side.

Lemma 2.28. There are positive constants θ0 = θ0(n, λ,Λ) ∈ (0, 1) (is
computable), ε0 = ε0(n, λ,Λ,M, α, β) ∈ (0, 1) (not computable) such that
∀Lε = LAε ∈ L and Lεuε = 0 in B1 with uε ∈ H1(B1) and

´
B1
u2
ε = 1. Then

1

θn0

ˆ
Bθ0 (0)

|uε − uε,θ0|2dx ≤ θ2α
0 ,

here α ∈ (0, 1) is given ∀ε ≤ ε0.

Proof. By contradiction: Suppose to the contrary that there is a sequence

Aiεi = Ai(
x

εi
) , εi → 0 and Ai's satisfy the conditions mentioned before, then

Lεiu
εi = 0 in B1 and

´
B1
|uεi |2dx = 1 such that

1

θn0

ˆ
Bθ0 (0)

|uεi − uεiθ0|
2dx > θ2α

0

17



for i = 1, 2, · · · . We may assume Ai(y) → A(y) uniformly for y ∈ Tn (n-
dimensional tori) and A(y) satis�es previous conditions again. Then

LAεi = div(A(
x

εi
)∇)→ L0 = div(A0∇)

homogenized as ε → 0 since Ai(y) → A(y) in L∞ (uniformly). WLOG,
say uεi → u0 weakly in H1

loc(B1) and uεi → u0 strongly in L2(B1) (after
extracting a subsequence of {uεi}) with L0u0 = 0 in B1, then

´
B1
|u0|2 ≤ 1

by
´
B1
|uεi |2 ≤ 1. Therefore,

θ2 ≥ 1

θn0

ˆ
Bθ0 (0)

|u0 − u0,θ0|2dx > θ2α
0

is impossible by taking θ su�ciently small (Note that L0u0 = 0, then
|∇u0|L∞(B1/2) ≤ C(n, λ,Λ) with ||u0||2L2(B1) = 1).

Lemma 2.29. (Iteration)
Let Lε ∈ L, Lεuε = 0 in B1 with ||uε||L2(B1) ≤ 1, for k = 1, 2, · · ·K, for

some K. If
ε

θk0
≤ ε0, then

ˆ
B
θk

(0)

|uε − uεθk |dx ≤ (θk0)2α.

Proof. For k = 1, let vε =
uε(θ0x)− uε,θ0

θα0
, then

´
B1
|vε|2 ≤ 1 and Lεvε = 0 in

B1. By lemma 1,
´
Bθ0
|vε− vε,θ0|2dx ≤ θ2α

0 , then get the conclusion in lemma

2 for k = 2, then continue this process until some K such that
ε

θK0
≤ ε0 but

ε

θK+1
0

> ε0 (θk0 ≈
ε

ε0
).

Lemma 2.30. If uε satis�es before conditions, then

 
Br

|uε − uεr|2dx ≤ N0r
2α ∀r ∈ (0,

1

2
].

Recall that if Lu = 0 in B1 and u ∈ L2(B1), u satis�es
1

rn+2

´
Br(x0)

|u(x)−
lr(x)|2dx ≤Mr2δ for some δ ∈ (0, 1), where lr(x) = ux0,θ0 + (x−x0)(∇u)x0,r,
then u ∈ C1,δ. Recall a corrector χ(y) introduced before: div(A(y)∇χ(y)) =

−divA(y) on Tn, then vε = x+ εχ(
x

ε
) is a solution of Lεvε = 0.
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Lemma 2.31. (Lemma 2.28')
All the assumptions hold as before. Then

1

θn+2
0

ˆ
Bθ0

|uε − (uεθ0 + vε(∇uε)θ0)|2 ≤ θ2δ
0 , for 0 < δ < α.

It can be regarded as a Taylor expansion starting from the quadratic
terms, for smoothness case, the power n + 2 can be replaced by n + 4. The
way to prove this lemma is similar as lemma 2.28, assuming the contrary and
let θ0 small to get a contradiction.

Lemma 2.32. (Lemma 2.29')

If
ε

θk0
≤ ε0, then

1

θ
k(n+2)
0

ˆ
B
θko

|uε(x)− lkε (x)|2dx ≤ θ2δk
0 ,

where lkε (x) = x+ εχ(
x

ε
).

Lemma 2.33. (Lemma 2.30')
Elliptic regularity C1,δ for δ < α and

1

rn+2

ˆ
Br(0)

|uε(x)− [arε +
−→
brε (x+ εχ(

x

ε
))]|2dx ≤ N0r

2δ, for 0 < r ≤ 1

2
.

The homogenization theory did not tell you the speed of convergence,
but it is rather important; the corrector function χ we considered before
did not involve the boundary data, so we need to get a �new� corrector in
order to deal with the boundary estimate. We consider these problems in
the following section.

2.8 Convergence rate in periodic homogenization

For a single equation, Lεu
ε = f in Ω with zero boundary condition, f ∈

Lp(Ω),p > n. Let

wε(x) = uε(x)− (u0(x) + εχ(
x

ε
)∇u0(x)),

where u0 is the solution of L0u
0 = 0 and L0 is the limit of Lε as ε → 0,

w.l.o.g., call ∆u0 = L0u
0 and u0 = 0 on ∂Ω. By standard elliptic regularity,
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u0 ∈ W 2.p
0 (Ω) and∇u0 ∈ W 1,p(Ω) ↪→ Cα(Ω) ⊂ L∞(Ω) by Sobolev embedding

theorem (remember p > n).{
Lεwε = div(Fε) = O(ε) in ∂(Lp)

wε|∂Ω = −εχ(
x

ε
)∇u0 = O(ε) in L∞,

then ||wε||L∞(Ω) ≤ O(ε) =⇒||uε − u0||L∞(Ω) ≤ C0(ε) by the setting of wε.

Theorem 2.34. (Kenig-Lin-S., 2012)
Suppose that A is elliptic, periodic, and if m ≥ 2, Hölder continuous. Let

Ω be C1,1. Let F ∈ L2(Ω) and uε ∈ H1
0 (Ω) be the unique weak solution to

Lε(uε) = F in Ω. Then

||uε − u0||L2(Ω) ≤ Cε||F ||L2(Ω), (2.7)

||uε − u0 − {φβε,j − P
β
j }
∂uβ0
∂xj
||H1

0 (Ω) ≤ Cε||F ||L2(Ω). (2.8)

where C depends only on A and . P β
j (x) = xj(δ

αβ), and φβε,j is the Dirichlet

corrector, de�ned by Lε(φ
β
ε,j) = 0 in Ω and φβε,j = P β

j on ∂Ω.

The key formula: Let wε = uε − u0 − {φβε,j − P β
j }
∂uβ0
∂xj

, suppose that

Lε(uε) = L0(u0) and Lε(φ
β
ε,j) = 0. Then

Lε(wε) = ε
∂

∂xi

{
Fαγ
jik(

x

ε
)
∂2uγ0
∂xj∂xk

}
+

∂

∂xi

{
aαβij (

x

ε
)[φβγε,k(x)− xkδβγ]

∂2uγ0
∂xj∂xk

}
+ aαβij (

x

ε
)
∂

∂xj
[φβγε,k(x)− xkδβγ − εχβγk (

x

ε
)]

∂2uγ0
∂xj∂xk

.

Remark 2.35. Since ||φβε,j − P β
j ||L∞(Ω) ≤ Cε, the H1 estimate (2.9) implies

the L2 estimate (2.7). If m = 1, the L2-estimate (2.7) is known (Moskow-
Vogelius, 1996; G. Grisco, 2006). Also, it is known that if Ω1 b Ω,

||uε − u0 − εχβj (
x

ε
)
∂uβ0
∂xj
||H1(Ω1) ≤ Cε||F ||L2(Ω),

||uε − u0 − εχβj (
x

ε
)
∂uβ0
∂xj
||H1(Ω) ≤ Cε1/2||F ||L2(Ω),
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where (χβj ) are correctors for Lε in Rd.
Suppose A is symmetric. Let {λε,k} denote the sequence of Dirichlet

eigenvalues in an increasing order for Lε in Ω. One may use the H1 estimate
(2.9) to show that

|λε,k − λ0,k| ≤ Cε(λ0,k)
3/2,

where C is independent of ε and k.

Theorem 2.36. (Convergence rate in H1/2, Kenig-Lin-S., 2011)
Suppose that A ∈ Cα(Ω) is elliptic, periodic and symmetric and let Ω be

C1,1. Let uε ∈ H1
0 (Ω) be the unique solution to Lε(uε) = F in Ω and

wε = uε − u0 − εχ(
x

ε
)
∂uβ0
∂xj

.

Then

||wε||H1/2(Ω) +

(ˆ
Ω

|∇wε(x)|2dist(x, ∂Ω)dx

)1/2

≤ Cε||F ||L2(Ω),

where C depends only on A and Ω.

What about the Lipschitz domain?

Theorem 2.37. (Kenig-Lin-S., 2011)
Let Ω be a bounded Lipschitz domain. Suppose that A is elliptic, periodic,

symmetric, and Hölder continuous. Suppose that{
Lε(uε) = F in Ω

uε = f on ∂Ω

where F ∈ L2(Ω) and f ∈ H1(∂Ω). Then

||uε − u0||L2(Ω) ≤ Cε(| ln ε|+ 1)
1
2

+σ
{
||F ||L2(Ω) + ||f ||H1(∂Ω)

}
for any σ > 0, where C depends only on A,Ω and σ.

Proof. Replace u0 by vε, where vε solves a Dirichlet problem for L0 in Ωε, a
slightly larger domain such that dist(∂Ω, ∂Ωε)≈ ε. The interior estimate for
ε-periodic domain will get the term ln ε and the boundary estimate is similar
to the before estimate.

Remark 2.38. Nothing comes for free. The spirit of the homogenization
problem is the limiting of control is not the control of limiting.
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Theorem 2.39. (Convergence rate in Lp, Kenig-Lin-S., 2012)
Suppose that A ∈ Cα is elliptic, periodic, m ≥ 2 and let Ω ∈ C1,1.

Suppose that {
Lε(uε) = F in Ω

uε = 0 on ∂Ω
.

Then
||uε − u0||Lq(Ω) ≤ Cε||F ||Lp(Ω)

holds if 1 < p < d and
1

q
=

1

p
− 1

d
, or p > d and q =∞. Moreover,

||uε − u0||L∞(Ω) ≤ Cε[ln(ε−1 + 2)]1−
1
d ||F ||Ld(Ω).

In the paper Avellaneda-Lin, 1987, they proved the following fact:
Let Gε(x, y) denote the matrix of Green functions for Lε in Ω. Then

|Gε(x, y)| ≤ C|x− y|2−d,

|∇xGε(x, y)|+ |∇yGε(x, y)| ≤ C|x− y|1−d,

|∇x∇yGε(x, y)| ≤ C|x− y|−d.

The theorem follows from the asymptotic expansion of Green functions:

|Gε(x, y)−G0(x, y)| ≤ Cε|x− y|1−d (2.9)

for any x, y ∈ Ω and x 6= y.
The proof of (2.9) relies on the following:

Lemma 2.40. (Boundary L∞ estimate)
Suppose that {

Lε(uε) = L0(u0) in D2r

uε = u0 on ∆2r

,

where Dr and ∆r are introduced before. Then for p > d,

||uε − u0||L∞(Dr) ≤ C

 
D2r

|uε − u0|+ Cε||∇u0||L∞(D2r)

+ Cpεr
1− d

p ||∇2u0||Lp(D2r).

Proof. Use the representation by Green functions. SinceGε(x, y) andG0(x, y)
are Green functions of Lε and L0, respectively, we have

−LεGε(x, y) = δy and − L0G0(x, y) = δy.
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Note that uε and u0 satisfy{
Lεuε = f ∈ Lp(Rn)

uε(∞) = 0
and

{
L0u0 = f

u0(∞) = 0
,

then we can represent uε and u0 as uε(x) =
´
Gε(x, y)f(y)dy and u0(x) =´

G0(x, y)f(y)dy and ‖uε − u0‖L∞ ≤ Cε||f ||Lp for n < p < ∞. More-

over, ‖Gε(x, y) − G0(x, y)‖Lqy ≤ Cε for 1 ≤ q <
n

n− 1
. For x �xed, let

A =

{
1

2
≤ |x− y| ≤ 2

}
, for y in this region, we have LεGε(x, y) = 0 and

L0G0(x, y) = 0 and denote vε(y) and v0(y) to be solutions of these equations,
respectively. Then we have ‖vε(y) − v0(y)‖Lq(A) ≤ Cε and by DeGiorgi's
theorem, we get

‖G0(x, y)−Gε(x, y)‖ ≤ Cε.

After rescaling back, it is easy to get

‖G0(x, y)−Gε(x, y)‖ ≤ Cε

|x− y|n−1
.

Finally, scan all the annulus region A to get the whole domain estimate.

Theorem 2.41. (Convergence rate in W 1,p, Kenig-Lin-S., 2012)
Suppose A satis�es the previous conditions and Ω ∈ C2,α. Suppose that{

Lε(uε) = L0(u0) in Ω

uε = u0 on ∂Ω.

Then

||uε − u0 − {φβε,j − P
β
j }
∂uβ0
∂xj
||W 1,p(Ω) ≤ Cε[ln(ε−1 + 2)]4|

1
2
− 1
p
|||F ||Lp(Ω),

where 1 < p <∞ and C depends on p,A and Ω.

The proof of the theorem uses the asymptotic expansion for ∇xGε(x, y):

| ∂
∂xi

Gε(x, y)− ∂

∂xi
φε,j(x) · ∂

∂xj
G0(x, y)| ≤ Cε

ln[ε−1|x− y|+ 2]

|x− y|d
(2.10)

for any x, y ∈ Ω and x 6= y. We also obtain asymptotic expansions for
∇yGε(x, y) and ∇x∇yGε(x, y).

The proof of (2.10) relies on the following:
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Lemma 2.42. Suppose that{
Lε(uε) = L0(u0) in D2r

uε = u0 on ∆2r.

Then for any ρ ∈ (0, 1),

||∂uε
∂xi
− ∂

∂xi
φε,j ·

∂u0

∂xj
||L∞(Dr) ≤

C

r

 
D2r

|uε − u0|+ Cεr01||∇u0||L∞(D2r)

+ Cε ln[ε−1r + 2]||∇2u0||L∞(D2r)

+ Cεrρ||∇2u0||C0,ρ(D2r).

What about Neumann Boundary Conditions? Convergence rates are also
obtained for solutions with Neumann boundary conditions. Let Nε(x, y)
denote the matrix of Neumann functions for Lε in Ω. Then

|Nε(x, y)| ≤ C|x− y|2−d,

|∇xNε(x, y)|+ |∇yNε(x, y)| ≤ C|x− y|1−d,

|∇x∇yNε(x, y)| ≤ C|x− y|−d.

Theorem 2.43. (Kenig-Lin-S., 2012)
Suppose A satis�es the previous conditions and Ω ∈ C1,1, then

|Nε(x, y)−N0(x, y)| ≤ Cε
ln[ε−1|x− y|+ 2]

|x− y|d−1

for any x, y ∈ Ω and x 6= y, where C depends on A,Ω.

Theorem 2.44. (Kenig-Lin-S., 2012)
Suppose A satis�es the previous conditions and Ω ∈ C2,α. Then for any

ρ ∈ (0, 1),

| ∂
∂xi

Nε(x, y)− ∂

∂xi
ψε,j(x) · ∂

∂xj
N0(x, y)| ≤ Cε1−ρ

ln[ε−1r0 + 2]

|x− y|d−ρ
,

where r0 = diamΩ and C depends on ρ,A and Ω.

Note that ψε,j is the Neumann corrector for Lε in Ω, de�ned byLε(ψ
β
ε,j) = 0 in Ω

∂

∂νε
ψβε,j =

∂

∂ν0

P β
j on ∂Ω.
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Lemma 2.45. (Boundary L∞ estimate)
Suppose that Lε(uε) = L0(u0) in D2r and uε = u0 on ∆2r. Then for p > d,

‖uε − u0‖L∞(Dr) ≤ C

 
D2r

|uε − u0|

+ Cε ln[ε−1r + 2]‖∇u0‖L∞(D2r)

+ Cεr1− d
p‖∇2u0‖L∞(D2r).

Lemma 2.46. (Boundary Lipschitz estimate)
Suppose that Lε(uε) = L0(u0) in D2r and uε = u0 on ∆2r. Then, if

0 < ε <
r

2
and ρ > 0,

‖∂uε
∂xi
− ∂

∂xi
φε,j ·

∂u0

∂xj
‖L∞(Dr) ≤

C

r

 
Dr

|uε − u0|

+ Cεr−1 ln[ε−1r0 + 2]‖∇u0‖L∞(D2r)

+ Cε1−ρr−ρ ln[ε−1r0 + 2]‖∇2u0‖L∞(D2r)

+ Cεrρ ln[ε−1r0 + 2]‖∇2u0‖L∞(D2r),

where r0 = diamΩ.

Remark 2.47. The asymptotic expansion of ∇xGε(x, y) leads to

Pε(x, y) = P0(x, y)ωε(y) +Rε(x, y),

where Pε(x, y) is the Poisson kernel for Lε on Ω, and

|Rε(x, y)| ≤ Cε
ln[ε−1|x− y|+ 2]

|x− y|d

for any x ∈ Ω, y ∈ ∂Ω. This improves a result of Avellaneda and F. H. Lin.
We also obtain asymptotic results for the Dirichlet-to-Neumann Map as well
as for the operator ∇(Lε)

−1∇.

Theorem 2.48. Suppose that A is elliptic, periodic, and Holder continuous.
Let Ω be C2,α. Suppose that{

Lε(uε) = 0 in Ω

uε = fε on ∂Ω
and

{
L0(vε) = 0 in Ω

vε = ωεfε on ∂Ω.

Then for 1 < p <∞,

‖uε − vε‖Lp(Ω) ≤ C
{
ε[ln(ε−1r0 + 2)]2

}1/p ‖fε‖Lp(∂Ω)

where r0 = diamΩ.
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3 Eigenvalue problem and nondivergence oper-

ator

3.1 Asymptotic of eigenvalues and eigenfunctions in pe-
riodic homogenization

Consider the eigenvalue problem{
Lεφε,k + λε,kφε,k = 0 in Ω

φε,k = 0 on ∂Ω
for k = 1, 2, · · · ,

where
´

Ω
φ2
ε,kdx = 1 and Lε =

∂

∂xi
(aij(

x

ε
)
∂

∂xj
), it is known that

0 < λε,1 < λε,2 ≤ λε,3 ≤ · · · → ∞.

If we consider −Lεuε = f in Ω with uε = 0 on ∂Ω and f ∈ L2(Ω), then we
can let Tε = (−Lε)−1 such that uε = Tε(f). Note that Tε : L2(Ω)→ H1

0 (Ω) ↪→
L2(Ω) and Tε ≥ 0 is a self-adjoint linear operator. Let µε,k =

1

λε,k
, then

µε,1 > µε,2 ≥ · · · → 0. Say Lε converges homogenized to L0, a constant elliptic
operator and {φ0,k} are eigenfunctions with respect to λ0,k are eigenvalues of
L0. For all k �xed, λε,k → λ0,k as ε→ 0.

Question: Can we �nd an upper bound of |λε,k − λ0,k| (There are many
mathematicians considered this problem such as Zhikon, Kozlov, Oleinik,
Mostow, Vogelius, Santosa, Castro, Zuazua, Bardos, Rauch, Cristo,...)? They
found |λε,k − λ0,k| ≤ C0ε

1/3λ5
0,k !

Theorem 3.1. |λε,k − λ0,k| ≤ C0ελ
3/2
0,k .

Remark 3.2. Weyl's asymptotic formula tells us λ0,k ≈ C(n, |Ω|)k2/n and by
using minimax principle, we can get λε,k ≈ λ0,k (the constant is universal).
By minimax principle, we know

λε,k = max
Xk−1

min
v∈H1

0 (Ω)∩Xk−1,||v||L2=1
〈−Lεv, v〉 .

Moreover, if ε
√
λ0,k ≥ 1, the theorem holds trivial; it is interesting only when

ε
√
λ0,k < 1. In general, the estimate is optimal. Prove this theorem, we need

a lemma:

Lemma 3.3. (Minimax) |µε,k − µ0,k| ≤ max{aε, bε} ≤ c0
√
µ0,kε, where

aε = min
||f ||L2=1,f⊥V0,k−1

| 〈(Tε − T0)f, f〉 |,
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bε = min
||f ||L2=1,f⊥Vε,k−1

| 〈(Tε − T0)f, f〉 |.

Since you don't know what space you will take, both need to be considered.

Proof. For aε: Let u0 = T0f and uε = Tεf , if f⊥V0,k−1 and ‖f‖L2 = 1, then

〈u0, f〉 = 〈T0f, f〉 ≤ µ0,k and ‖∇u0‖2
L2 ≤ c

´
Ω
âiju0xiu0xj = c 〈f, u0〉 ≤ cµ0,k,

then we have
‖f‖H−1 ≤ c‖∇u0‖L2 ≤ cµ

1/2
0,k .

Moreover, we have

| 〈uε − u0, f〉 | ≤ | 〈uε − u0 − (φε(x)− x)∇u0, f〉 |+ | 〈(φε(x)− x)∇u0, f〉 |
≤ Cεµ

1/2
0,k + ‖ 〈(φε(x)− x)∇u0, f〉 ‖L2

≤ Cεµ
1/2
0,k ,

where φε(x) is the boundary corrector to the Dirichlet boundary problem.

Example 3.4. Look at 1-dimensional case:
d

dx
(a(

x

ε
)uε,kx ) + λε,ku

ε,k = 0 in [0, 1]

uε,k(0) = uε,k(1) = 0
.

By Strum-Liouville's theorem, we know there exist k-nodal domains, say

the �rst nodal domain is [0, lkε ] with l
k
ε =

1

k
+ O(ε) and uε,k|[0,lkε ] is the �rst

eigenfunction. λε,k ≈ k2 by ε
√
λ0,k ≈ kε. Call λ̃ε,1 the �rst eigenvalue of Lkε

on [0, 1], where Lεu
ε,k
x =

d

dx
(a(

x

ε
)uε,kx ) and λ̃ε,1 converges to λ̃1 as ε→ 0 with

λ̃1 is the �rst eigenvalue of the homogenized operator L0 = limε→0 Lε (the
limit is under the homogenization sense as we mentioned in section 2). And

for the k-th eigenvalue, we have |λ̃ε,k − λ̃k| ≥ C0(kε). Therefore,

|λε,k − λ0,k| ≥ C0εk
3 = c0ελ

3/2
0,k .

Consider the homogenization problem{
Lε(uε) = f in Ω

uε = 0 on ∂Ω
converges to

{
L0u0 = f in Ω

u0 = 0 on ∂Ω

then as before, ‖uε−u0‖L2(Ω) ≤ C0ε||f ||L2(Ω), i.e., ‖(Tε−T0)f‖L2(Ω) = ‖Tε(f)−
T0(f)‖L2(Ω) ≤ C0ε||f ||L2(Ω), then ‖Tε − T0‖L2→L2 ≤ C0ε. By the functional
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analysis, we have |µε,k−µ0,k| ≤ C0ε (need to check it). i.e., |
1

λε,k
− 1

λ0,k

| ≤ C0ε,

then |λε,k − λ0,k| ≤ C0ελ
2
0,k (by Weyl's asymptotic again).

The key estimate (H1-estimate) is similar as before: (recall that φε is the
corrector)

‖uε − u0 − (φε(x)− x)
∂u0

∂x
‖H1

0 (Ω) ≤ C1ε‖f‖L2(Ω),

‖φε(x)− x‖L∞(Ω) ≤ Cε and ‖∇φε‖L∞(Ω) ≤ C.

Theorem 3.5. (Dirichlet-to-Neumann control)

ˆ
∂Ω

|∂φε,k
∂ν
|ds ≤ C0λ

3/2
ε,k , ∀0 ≤ ε ≤ 1,∀k,

ˆ
∂Ω

|∂φε,k
∂ν
|2ds ≤ C∗λε,k if ελε,k ≤ 1(not optimal).

Castro-Zuazua proved (in fact, they consider the 1-dimensional problem):

ˆ
∂Ω

|∂φε,k
∂ν
|2ds ≈ λ

3/2
ε,k when ε2 ≈ 1

λε,k
.

Theorem 3.6.
´
∂Ω
|∂φε,k
∂ν
|2ds ≥ C0λε,k if ελε,k ≤ 1.

Proof. Step1: Require ελε,k ≤ 1, by Rellich identity, we know that

1

ε

ˆ
Ωε

|∇φε,k|2dx ≈ λε,k,

where Ωε = {x ∈ Ω; dist(x, ∂Ω) ≤ 3ε} (in general, the above estimate is not
true, but here it gives a compatibility).

Step2: Jacobian of φε(x) ≥ c0 > 0 if dist(x, ∂Ω) ≤ 3ε, here we assume
∂Ω ∈ C1,1.

Step3: Consider a cube Q2 and its subcube Q1 inside Q2 with the bound-
ary Γ. On this region, we impose a Cauchy problem{

∆u = 0 in Q2,

u = 0 on Γ.

If ˆ
Q1

u2dx ≥ c0

ˆ
Q2

u2dx
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(
´
Q1
|∇u|2dx ≥ c0

´
Q2
|∇u|2dx), then

ˆ
Γ

|∂u
∂ν
|2ds ≥ c∗

ˆ
Q1

u2dx (3.1)

(
´

Γ
|∂u
∂ν
|2ds ≥ c∗

´
Q1
|∇u|2dx, respectively). Finally, we divide the annulus

region Ωε into many small �cubes�, there are some good cubes which can give
the compatibility as the above estimate, but there are still some bad cubes
cannot satisfy the estimate (3.1), but we can prove the fact that these bad
cubes only have small portions of Ωε, them add up all of them to get the
desired estimate.

In the �nal section, we consider the nondivergent operator:

3.2 Nondivergent operator

Let (aij) be a positive de�nite and periodic, consider A = aij
∂2

∂xi∂xj
.

Lemma 3.7. There is a smooth, periodic p(x) > 0 such that

A∗p =
∂2

∂xi∂xj
(aijp) = 0, 〈p〉 = 1.

Proof. Any solution of Au = 0 on Tn is a constant by the maximum principle.
Fredholm alternative gives A∗p = 0 has a unique (to a constant factor)
periodic solution p 6= 0. Normalize p so that 〈p〉 = 1, this p > 0 on Tn. If
p changes sign, then ∃f ≥ 0 and f 6= 0 such that 〈p, f〉 = 0 and therefore
Au == f wold have a periodic solution. But this is not possible via maximum
principle (⇒ p ≥ 0)! Let u ≥ 0 be a smooth solution of the elliptic equation
of aijuij + biui + cu = 0, if u(x0) = 0 for an interior point x0, then u ≡ 0.

Now, let bj =
∂

∂xi
(paij), by lemma, we have div

−→
b =0. Thus ∃(bij) such

that
−→
b = div(bij) with bij = −bjiand 〈bij〉 = 0. Hence aijuij = f if and only

if paijuij = pf or div[(paij−bij)uxj ] = pf , and set Ãj(y) = p(y)aij(y)−bij(y).
In this case, the corrector χ = 0, i.e. div(A∇χ) = −divA = 0.

Now, consider the homogenization of nondivergence solution of PDEs:{
−aij(x,

x

ε
,Duε)uεxixj = b(x,

x

ε
,Duε) in Ω

uε = 0 on ∂Ω,

29



where aij, b : R× Y ×Rn → R, with Y = Zn, periodic in y variable. Assume
ξTA(x, y, p)ξ ≥ λ0|ξ|2, |A(x, y, p| ≤ C and b(x, y, p) ≤ C(1 + |p|2).

Fix x ∈ Ω, p ∈ Rn, consider the adjoint problem

−(aij(x, y, p)m(p, x, y))yiyj = 0 in Rn,

where m is Y -periodic. It has a positive solution m unique subject to nor-
malization

´
Y
m(p, x, y)dy = 1. De�ne average coe�cients

ãij(x, p) =

ˆ
Y

maij(x, y, p)dy,

b̃(x, p) =

ˆ
Y

b(x, y, p)m(x, y, p)dy.

Homogenized problem{
−ãij(x,Du)uxixj = b̃(x,Du) in Ω

u = 0 on ∂Ω.

Theorem 3.8. Assume {uε}ε>0 is bounded, then there is a sequence {uεi}
and u ∈ C(Ω) such that uεi → u uniformly on Ω and u is a weak solution of
the homogenized problem.

Proof. Elliptic estimate under the quadratic growth of b ⇒ {uε} ⊂ Cβ(Ω)
for some β > 0. ∃uεi → u. Fix v ∈ C2(Ω) and if u− v has a strict maximum
at x0 ∈ Ω. Using Fredholm alternative, we �nd a solution w of the corrector
problem

−aij(x0, y,Dv(x0))wyiyj = aij(x0, y.Dv(x0))− ãij(x0, Dv(x0))vxixj(x0)

− [b(x0, y,Dv(x0))− b̃(x0, Dv(x0))]

with w is Y -periodic. De�ne the perturbed test function vε(x) = v(x) +

ε2w(
x

ε
), then vε(x) → v(x) uniformly as ε → 0. Then uεk − vεk has a

local maximum at a point xεk with xεk → x0 as k → ∞. By the maxi-

mum principle, −aij(xε,
xε
ε
,Dvε(xε))v

ε
xixj
≤ b(xε,

xε
ε
,Dvε(xε)) for ε = εk and

Dvε(xε) = Dv(xε) + εDw(
xε
ε

), D2vε(xε) = D2v(xε) +D2w(
xε
ε

). This implies

−aij(x0, y∗, Dv(x0))(vxixj(x0) + wij(y∗)) ≤ b(x0, y∗, Dv(x0)) + oε(1).
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3.3 Homogenization of Hamilton-Jacobi equations{
H(Duε, uε, x,

x

ε
) = 0 in Ω

uε(x) = 0 on ∂Ω
(3.2)

where Ω ⊂ Rn bounded smooth. Assumptions on H:

1. y → H(p, u, x, y) is periodic (period 1).

2. lim|p|→∞H(p, u, x, y) =∞ uniformly on [−L,L]× Ω× Rn ∀L.

3. u→ H(p, u, x, y)− µu increasing in u.

4. H is Lipschitz on any BL(0)× [−L,L]× Ω× Rn ∀L > 0.

The vanishing viscosity solution method implies that ∀ε > 0, ∃ a viscosity
solution uε of (3.2). Moreover, such uε is unique and ‖uε‖C0,1(Ω) ≤ M < ∞
∀ε ∈ (0, 1). We introduce Lions-Papanicolaou-Varadhan lemma.

Lemma 3.9. For each p ∈ Rn, u ∈ R, x ∈ Ω, there is a unique real number
λ for which the PDE {

H(Dyvp, u, x, y) = λ in Rn

v is periodic in y

has a solution v ∈ C0,1(Tn). Denote λ = H(p, u, x) for p ∈ Rn, u ∈ R,
x ∈ Ω.

E�ected Hamiltonina H and the Cell Problem{
H(Dyv + p, u, x, y) = H(p, u, x) in Rn

v is periodic,

H has the same property as H.
Now, we introduce the result proved by Ca�arelli and L. C. Evans.
Consider F (D2u, y) = 0, F is uniformly elliptic in D2u and 1-periodic in

y ∈ Rn. Let uεbe a viscosity solution of F (D2uε(x),
x

ε
) = 0 in Ω and uε = 0

on ∂Ω.Let S = {A ∈ Mn×n
s : F (A + D2w, y) ≡ 0 has a solution on Tn}, S

describes the zero set of a uniformly elliptic equation F (D2u) = 0. This F
is called the homogenized limit which introduced by Evans.

Fact 3.10. Let uε be a bounded solution of F (D2uε,
x

ε
) = 0 in B1, then

uε|B1/2
∈ Cα for some α > 0 and ‖uε‖Cα(B1/2) ≤ C‖uε‖L∞(B1).
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Proof. F (D2uε,
x

ε
) = F (0,

x

ε
)+

´ 1

0

d

dt
F (tD2uε,

x

ε
)dt = F (0,

x

ε
)+

´ 1

0
Fij(tD

2uε,
x

ε
)dt·

D2
ijuε = 0, this forms aεij(x)uεxixj(x) + fε(x) = 0, by using Krylov-Safanov

theorem, we can get the conclusion.

Theorem 3.11. Let {uεk} be a sequence of solutions of F (D2uεk ,
x

εk
) = 0,

εk → 0 and uεk → u0 in Cα as k → ∞. Then u0 is a viscosity solution of
F (D2u0) = 0.

In the end of this lecture, we give some open problems.

3.4 Open problems

1. Let {xi}∞i=1 ⊂ Rn be such that
(a) |xi − xj| ≥ 3 whenever i 6= j.
(b) ∪∞i=1B5(x) ⊇ Rn.
Let 0 ≤ φ ≤ 1, φ ∈ C∞0 (B1) and Akl(x) = δkl + a0

kl

∑∞
i=1 φ(x − xi),

hence I ≤ A(x) ≤ I + Cn(a0
kl).

What are asymptotic behavior of its Green function GA(x, y)? Are
there similar results as in periodic cases?

2. Rate of Convergence in
(a) Statistical homogenization ?
(b) Homogenization of Hamilton-Jacobi equation?
(c) Nonlinear equations?
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