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1 Tools.

De�nition 1. Let X and Y be Banach spaces. A bounded linear operator
L : X → Y is called Fredholm if the following two conditions hold.

(a) KerL is a �nite-dimensional subspace of X .
(b) RangeL is a closed subspace of Y of �nite codimension.

De�nition 2. If L is Fredholm, the index of L is the integer i(L) = dim(kerL)−
codim(rangeL).

Proposition 3. If L : X → Y is Fredholm, then there exists closed subspaces
M and N of X and Y, respectively, such that

(a) X = kerL⊕M and (b) Y = N ⊕ rangeL.

Remark 4. In the following discussion, we assume L is Fredholm and its
index is zero. By the de�nition of the index, it is easy to see that dim(kerL) =
dimN , where N is the subspace of Y introduced in the proposition3. If
kerL = {0}, then L is onto and hence, by the closed graph theorem, L is
invertible. Thus, we have the following implication for Fredholm operators
of index zero: If kerL = {0}, then L is invertible.

2 Liapunov-Schmidt reduction.

Let Φ : X × Rk+1 → Y , Φ(0, 0) = 0 be a smooth mapping between Banach
spaces. We want to use the Liapunov-Schmidt reduction to solve the equation
Φ(u, α) = 0 for u as a function of α near (0, 0). Let L be the di�erential of
Φ at the origin; in symbols
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Lu = lim
h→0

Φ(u, 0)− Φ(0, 0)

h
. (note that the linear operator L is the

Frechet derivative of Φ)
We assume that L is the Fredholm operator with index zero.

We have the L-S reduction in the following several steps :

1. Decompose X and Y :
(a) X = kerL⊕M .
(b) Y = N ⊕ rangeL.
*Reason: The hypothesis that L is Fredholm guarantees that the
above splittings are possible. Moreover, kerL andN are �nite-dimensional.

2. Split the equation Φ(u, α) = 0 into an equivalent pair of the equations:
(a) EΦ(u, α) = 0
(b) (I − E)(u, α) = 0
where E : Y → rangeL is the projection associated to the splitting in
2(b).
*Reason: This is primarilyh notational and requires no comment.

3. Use the equation 1(a) X = kerL ⊕M : to write u = v + w, where
v ∈ kerL and w ∈ M . Apply the implicit function theorem to solve
EΦ(u, α) = 0 for w as a function of v and α. This leads to a function
W : kerL×Rk+1 → N such that EΦ(v +W (v, α), α) = 0.
*Reason: We want to show that the implicit function theorem is ap-
plicable. We extract a map F : kerL×M ×Rk+1 → rangeL from 2(a);
i.e., F (v, w, α) = EΦ(v + w, α). This di�erential of F with respect to
w at the origin is EL = L. Now we argue that L : M → rangeL is
invertible.(For simplicity, I don't want to say too much details in this
notes.)

4. De�ne φ : kerL×Rk+1 → N by φ(v, α) = (I − E)Φ(v +W (v, α), α).
*Reason: This is primarily notational and requires no comment.

5. Choose a basis v1, v2, ...vn for kerL and a basis v∗1, v
∗
2, ...v

∗
n for (rangeL)⊥.

De�ne g : Rn×Rk+1 → Rn by gi(x, α) =< v∗i , φ(x1v1 + · · ·+xnvn, α) >.
*Reason: In the writing (rangeL)⊥ we are using (for the �rst time)
the fact that Y is equipped with the inner product in the L2-sense (i.e.
we write < u, v >=

´
Ω
u(x)v(x)dx ). Since L is Fredholm with index

zero, dimkerL = dim(rangeL)⊥ and both dimensions are �nite. Thus
the bases for kerL and (rangeL)⊥ contain the same number of vectors.
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We summarize the outcome of the Liapunov-Schmidt reduction.

Proposition 5. If the linearization of Φ(u, α) = 0 is a Fredholm operator
of index zero, then solutions of this equations are (locally) in one-to-one
correspondence with solutions of the �nite system gi(x, α) = 0, i = 1, 2, · · ·n.
where gi is de�ned by gi(x, α) =< v∗i , φ(x1v1 + · · ·+ xnvn, α) >.
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