Liapunov-Schmidt reduction
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1 Tools.

Definition 1. Let X and Y be Banach spaces. A bounded linear operator
L: X — Y is called Fredholm if the following two conditions hold.

(a) KerL is a finite-dimensional subspace of X .

(b) RangelL is a closed subspace of Y of finite codimension.

Definition 2. If L is Fredholm, the index of L is the integer i(L) = dim(kerL)—
codim(rangel).

Proposition 3. If L : X — Y is Fredholm, then there exists closed subspaces
M and N of X and Y, respectively, such that
(a) X = kerL® M and (b)Y = N @ rangelL.

Remark 4. In the following discussion, we assume L is Fredholm and its
index is zero. By the definition of the index, it is easy to see that dim(kerL) =
dimN , where N is the subspace of Y introduced in the proposition3. If
kerL = {0}, then L is onto and hence, by the closed graph theorem, L is
invertible. Thus, we have the following implication for Fredholm operators
of index zero: If kerL = {0}, then L is invertible.

2 Liapunov-Schmidt reduction.

Let ®: X x RF! Y | ®(0,0) = 0 be a smooth mapping between Banach
spaces. We want to use the Liapunov-Schmidt reduction to solve the equation
®(u, ) = 0 for u as a function of o near (0,0). Let L be the differential of
® at the origin; in symbols



. ®(u,0) = 2(0,0)
Lu = lim
h—0

Frechet derivative of @)
We assume that L is the Fredholm operator with index zero.
We have the L-S reduction in the following several steps :

(note that the linear operator L is the

1. Decompose X and Y:
(a) X =kerL&® M.
(b) Y = N @ rangelL.
*Reason: The hypothesis that L is Fredholm guarantees that the
above splittings are possible. Moreover, kerL and N are finite-dimensional.

2. Split the equation ®(u,a) = 0 into an equivalent pair of the equations:
(a) EP(u,a) =0
(b) (I = E)(u, ) =0
where F : Y — rangelL is the projection associated to the splitting in
2(b).
*Reason: This is primarilyh notational and requires no comment.

3. Use the equation 1(a) X = kerL & M : to write u = v + w, where

v € kerL and w € M. Apply the implicit function theorem to solve
E®(u,a) = 0 for w as a function of v and «. This leads to a function
W : kerL x RE*1 — N such that E®(v + W (v, a),a) = 0.
*Reason: We want to show that the implicit function theorem is ap-
plicable. We extract a map F : kerL x M x R — rangelL from 2(a);
ie., F(v,w,a) = E®(v + w,«). This differential of F' with respect to
w at the origin is L = L. Now we argue that L : M — rangelL is
invertible.(For simplicity, I don’t want to say too much details in this
notes.)

4. Define ¢ : kerL x RF1 — N by ¢(v,a) = (I — E)®(v + W (v, ), ).
*Reason: This is primarily notational and requires no comment.

5. Choose a basis vy, vg, ...v, for ker L and a basis v}, v}, ...v* for (rangeL)*.
Define g : R x R*! — R by gi(x, ) =< v}, p(z101+ -+ 205, @) >.
*Reason: In the writing (rangeL)’ we are using (for the first time)
the fact that Y is equipped with the inner product in the L-sense (i.e.
we write < u,v >= [, u(x)v(z)dz ). Since L is Fredholm with index
zero, dimker L = dim(rangeL)* and both dimensions are finite. Thus
the bases for kerL and (rangeL)’ contain the same number of vectors.
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We summarize the outcome of the Liapunov-Schmidt reduction.

Proposition 5. If the linearization of ®(u,«) = 0 is a Fredholm operator
of index zero, then solutions of this equations are (locally) in one-to-one
correspondence with solutions of the finite system g;(x,a) =0,1=1,2,---n.
where g; is defined by g;(z, o) =< v}, d(z1v1 + -+ - + Ty, @) >.



