Liapunov-Schmidt reduction

Yi-Hsuan Lin

1 Tools.

Definition 1. Let X and Y be Banach spaces. A bounded linear operator $L: X \to Y$ is called *Fredholm* if the following two conditions hold.

- (a) $\operatorname{Ker} L$ is a finite-dimensional subspace of X.
- (b) Range L is a closed subspace of Y of finite codimension.

Definition 2. If L is Fredholm, the *index* of L is the integer i(L) = dim(kerL) - codim(rangeL).

Proposition 3. If $L: X \to Y$ is Fredholm, then there exists closed subspaces M and N of X and Y, respectively, such that (a) $X = kerL \oplus M$ and (b) $Y = N \oplus rangeL$.

Remark 4. In the following discussion, we assume L is Fredholm and its index is zero. By the definition of the index, it is easy to see that dim(kerL) = dimN, where N is the subspace of Y introduced in the proposition3. If $kerL = \{0\}$, then L is onto and hence, by the closed graph theorem, L is invertible. Thus, we have the following implication for Fredholm operators of index zero: If $kerL = \{0\}$, then L is invertible.

2 Liapunov-Schmidt reduction.

Let $\Phi: X \times \mathbb{R}^{k+1} \to Y$, $\Phi(0,0) = 0$ be a smooth mapping between Banach spaces. We want to use the Liapunov-Schmidt reduction to solve the equation $\Phi(u, \alpha) = 0$ for u as a function of α near (0, 0). Let L be the differential of Φ at the origin; in symbols $Lu = \underset{h \to 0}{lim} \frac{\Phi(u,0) - \Phi(0,0)}{h}$. (note that the linear operator L is the Frechet derivative of $\Phi)$

We assume that L is the Fredholm operator with index zero.

We have the L-S reduction in the following several steps :

1. Decompose X and Y:

2(b).

- (a) $X = kerL \oplus M$.
- (b) $Y = N \oplus rangeL$.

***Reason**: The hypothesis that L is Fredholm guarantees that the above splittings are possible. Moreover, kerL and N are finite-dimensional.

2. Split the equation Φ(u, α) = 0 into an equivalent pair of the equations:
(a) EΦ(u, α) = 0
(b) (I - E)(u, α) = 0
where E : Y → rangeL is the projection associated to the splitting in

***Reason**: This is primarily notational and requires no comment.

- Use the equation 1(a) X = kerL ⊕ M : to write u = v + w, where v ∈ kerL and w ∈ M. Apply the implicit function theorem to solve EΦ(u, α) = 0 for w as a function of v and α. This leads to a function W : kerL × R^{k+1} → N such that EΦ(v + W(v, α), α) = 0.
 *Reason: We want to show that the implicit function theorem is applicable. We extract a map F : kerL × M × R^{k+1} → rangeL from 2(a); i.e., F(v, w, α) = EΦ(v + w, α). This differential of F with respect to w at the origin is EL = L. Now we argue that L : M → rangeL is invertible.(For simplicity, I don't want to say too much details in this notes.)
- 4. Define $\phi : kerL \times R^{k+1} \to N$ by $\phi(v, \alpha) = (I E)\Phi(v + W(v, \alpha), \alpha)$. ***Reason**: This is primarily notational and requires no comment.
- 5. Choose a basis v₁, v₂, ...v_n for kerL and a basis v^{*}₁, v^{*}₂, ...v^{*}_n for (rangeL)[⊥]. Define g: Rⁿ × R^{k+1} → Rⁿ by g_i(x, α) = < v^{*}_i, φ(x₁v₁+...+x_nv_n, α) >.
 *Reason: In the writing (rangeL)[⊥] we are using (for the first time) the fact that Y is equipped with the inner product in the L²-sense (i.e. we write < u, v >= ∫_Ω u(x)v(x)dx). Since L is Fredholm with index zero, dimkerL = dim(rangeL)[⊥] and both dimensions are finite. Thus the bases for kerL and (rangeL)[⊥] contain the same number of vectors.

We summarize the outcome of the Liapunov-Schmidt reduction.

Proposition 5. If the linearization of $\Phi(u, \alpha) = 0$ is a Fredholm operator of index zero, then solutions of this equations are (locally) in one-to-one correspondence with solutions of the finite system $g_i(x, \alpha) = 0$, $i = 1, 2, \dots n$. where g_i is defined by $g_i(x, \alpha) = \langle v_i^*, \phi(x_1v_1 + \dots + x_nv_n, \alpha) \rangle$.