Liapunov-Schmidt reduction

Yi-Hsuan Lin

1 Tools.

Definition 1. Let X and Y be Banach spaces. A bounded linear operator $L: X \rightarrow Y$ is called Fredholm if the following two conditions hold.
(a) $\operatorname{Ker} L$ is a finite-dimensional subspace of X.
(b) Range L is a closed subspace of Y of finite codimension.

Definition 2. If L is Fredholm, the index of L is the integer $i(L)=\operatorname{dim}(\operatorname{ker} L)-$ codim(rangeL).

Proposition 3. If $L: X \rightarrow Y$ is Fredholm, then there exists closed subspaces M and N of X and Y, respectively, such that
(a) $X=\operatorname{ker} L \oplus M$ and (b) $Y=N \oplus$ rangeL.

Remark 4. In the following discussion, we assume L is Fredholm and its index is zero. By the definition of the index, it is easy to see that $\operatorname{dim}(\operatorname{ker} L)=$ $\operatorname{dim} N$, where N is the subspace of Y introduced in the proposition3. If $\operatorname{ker} L=\{0\}$, then L is onto and hence, by the closed graph theorem, L is invertible. Thus, we have the following implication for Fredholm operators of index zero: If $\operatorname{ker} L=\{0\}$, then L is invertible.

2 Liapunov-Schmidt reduction.

Let $\Phi: X \times R^{k+1} \rightarrow Y, \Phi(0,0)=0$ be a smooth mapping between Banach spaces. We want to use the Liapunov-Schmidt reduction to solve the equation $\Phi(u, \alpha)=0$ for u as a function of α near $(0,0)$. Let L be the differential of Φ at the origin; in symbols
$L u=\lim _{h \rightarrow 0} \frac{\Phi(u, 0)-\Phi(0,0)}{h}$. (note that the linear operator L is the Frechet derivative of Φ)
We assume that L is the Fredholm operator with index zero.
We have the L-S reduction in the following several steps :

1. Decompose X and Y :
(a) $X=\operatorname{ker} L \oplus M$.
(b) $Y=N \oplus$ rangeL.
*Reason: The hypothesis that L is Fredholm guarantees that the above splittings are possible. Moreover, $\operatorname{ker} L$ and N are finite-dimensional.
2. Split the equation $\Phi(u, \alpha)=0$ into an equivalent pair of the equations:
(a) $E \Phi(u, \alpha)=0$
(b) $(I-E)(u, \alpha)=0$
where $E: Y \rightarrow$ rangeL is the projection associated to the splitting in 2(b).
*Reason: This is primarilyh notational and requires no comment.
3. Use the equation 1(a) $X=k e r L \oplus M$: to write $u=v+w$, where $v \in \operatorname{ker} L$ and $w \in M$. Apply the implicit function theorem to solve $E \Phi(u, \alpha)=0$ for w as a function of v and α. This leads to a function $W: \operatorname{ker} L \times R^{k+1} \rightarrow N$ such that $E \Phi(v+W(v, \alpha), \alpha)=0$.
*Reason: We want to show that the implicit function theorem is applicable. We extract a map $F: \operatorname{ker} L \times M \times R^{k+1} \rightarrow$ range L from 2(a); i.e., $F(v, w, \alpha)=E \Phi(v+w, \alpha)$. This differential of F with respect to w at the origin is $E L=L$. Now we argue that $L: M \rightarrow$ range L is invertible.(For simplicity, I don't want to say too much details in this notes.)
4. Define $\phi: \operatorname{ker} L \times R^{k+1} \rightarrow N$ by $\phi(v, \alpha)=(I-E) \Phi(v+W(v, \alpha), \alpha)$.
*Reason: This is primarily notational and requires no comment.
5. Choose a basis $v_{1}, v_{2}, \ldots v_{n}$ for $k e r L$ and a basis $v_{1}^{*}, v_{2}^{*}, \ldots v_{n}^{*}$ for $(\text { range } L)^{\perp}$. Define $g: R^{n} \times R^{k+1} \rightarrow R^{n}$ by $g_{i}(x, \alpha)=<v_{i}^{*}, \phi\left(x_{1} v_{1}+\cdots+x_{n} v_{n}, \alpha\right)>$.
*Reason: In the writing (rangeL) ${ }^{\perp}$ we are using (for the first time) the fact that Y is equipped with the inner product in the L^{2}-sense (i.e. we write $\left.\langle u, v\rangle=\int_{\Omega} u(x) v(x) d x\right)$. Since L is Fredholm with index zero, $\operatorname{dimker} L=\operatorname{dim}(\text { range } L)^{\perp}$ and both dimensions are finite. Thus the bases for $k e r L$ and (rangeL) ${ }^{\perp}$ contain the same number of vectors.

We summarize the outcome of the Liapunov-Schmidt reduction.
Proposition 5. If the linearization of $\Phi(u, \alpha)=0$ is a Fredholm operator of index zero, then solutions of this equations are (locally) in one-to-one correspondence with solutions of the finite system $g_{i}(x, \alpha)=0, i=1,2, \cdots n$. where g_{i} is defined by $g_{i}(x, \alpha)=<v_{i}^{*}, \phi\left(x_{1} v_{1}+\cdots+x_{n} v_{n}, \alpha\right)>$.

