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Abstract

The note is mainly for personal record, if you want to read it,
please be careful. This note is given Prof. Jenn-Nan Wang ’s lecture
during the summer course in NCTS, 2015. We would like to introduce
the notation of the Dirichlet-to-Neumann map (DtN map) and discuss
its basic properties. The aim here is to study the inverse problem of
determining the parameters of the equation by the DtN map. For the
conductivity equation, this is known as the electrical impedance tomog-
raphy or Calderon’s problem. I plan to discuss fundamental questions of
the problem: uniqueness, stability, and reconstructions. The course will
be self- contained, but basic knowledge on PDE and Sobolev spaces is
helpful.

1 Introduction

Let Ω ⊂ Rn be an open bounded domain. Assume that ∂Ω is smooth. We take
u: electric potential on Ω. By Ohm’s law, J is a current, then

J = −∇u
R

= −γ(x)∇u,

R: resistance in Ω and γ(x) =
1

R(x)
: conductivity. Here γ(x) is a scalar function

(isotropic). When we have an anisotropic conductivity, then

Jα = −aαβ∂βu.

If there is no sink or no source in Ω, then for D b Ω,

0 =

ˆ
∂D

J · νdS = −
ˆ
∂D

γ(x)∇u · νdS

= −
ˆ
D

∇ · (γ(x)∇u)dx,

true for all D b Ω. Then

∇ · (γ(x)∇u) = 0 in Ω.
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1.1 Forward problem

Assume that γ(x| is known in Ω, γ(x) ≥ δ > 0 a.e., γ(x| ∈ L∞(Ω). Consider
the boundary value problem{

∇ · (γ∇u) = 0 in Ω,

u = f ∈ H1/2(∂Ω) on ∂Ω.
(1)

The problem (1) is well-posed, ∃!u ∈ H1(Ω) and ‖u‖H1(Ω) ≤ C‖f‖H1/2(∂Ω).

This can be proved by the Lax-Milgram theorem. Given any f ∈ H1/2(∂Ω),

∃!uf ∈ H1(Ω), one can determine the Neumann data and given by γ(x)
∂uf
∂ν
|∂Ω.

Hence, we can define

Λγ : f → γ(x)
∂uf
∂ν
|∂Ω : H1/2(∂Ω)→ H−1/2(∂Ω).

Call Λγ to be the Dirichlet-to-Neumann map (voltage-to-current).
Now if we have anisotropic medium, then the electric potential u satisfies

∂α(aαβ(x)∂βU) = 0 in Ω. (2)

Assume that (aαβ) ∈ L∞(Ω) is elliptic. ∃!uf ∈ H1(Ω) solving (2) and satisfying
uf |∂Ω = f ∈ H1/2(∂Ω). The Dirichlet-to-Neumann map Λa : H1/2(∂Ω) →
H−1/2(∂Ω) is given by

Λaf = aαβ∂βuνα,

ν = (ν1, · · · , νn) (also call Λaf to be the conormal derivative). We can also
study the elasticity system

N∑
jik=1

∂j(C
ijkl∂ku

l) : elliptic system.

Elasticity: Cijkl = Cklij = Cjikl = Cijlk. Ellipticity: Cijklξjξkηiηl ≥ c|ξ|2|η|2,
for all ξ, η ∈ Rn. For the elasticity system, we can specify the displacement
u|∂Ω, {∑N

ijkl=1 ∂j(C
ijkl∂ku

l) = 0 in Ω,

u = f on ∂Ω.

DN-map ΛC : f → Cijkl∂ku
lνj |∂Ω (displacement to traction).

1.2 Inverse problem

Assume that γ(x) is NOT known. But Λγ is given (i.e. you can take all possible
measurements on ∂Ω). The question now is to determine γ(x) from Λγ (also
assume γ(x) ≥ δ > 0 and γ ∈ L∞(Ω)).

Known: ∃Λ : γ → Λγ ∈ map from H1/2(∂Ω)→ H−1/2(∂Ω). Can we inverse
Λ and find Λ−1? Note that Λ is not linear, i.e., Λγ1+γ2 6= Λγ1 + Λγ2 . We are
interested in the well-posedness of the inverse problem.

1. Uniqueness (or the injectivity of Λ−1). If Λγ1 = Λγ2 , then γ1 = γ2.
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2. Stability. ‖γ1 − γ2‖L∞(Ω) ≤ ω(‖Λγ1 − Λγ2‖ 1
2 ,−

1
2
), ω(t) is modulus of

continuity.

3. Reconstruction. Reconstruct γ(x) from Λγ .

4. Existence. Characterize the DN map: Find conditions on T :
H1/2(∂Ω)→ H−1/2(∂Ω) bounded, linear.

To determine γ(x) from Λγ was proposed by Calderón (’60).

2 Calderón’s approach

Let us consider {
∇ · (γ(x)∇u) = 0 in Ω,

u = f on ∂Ω,

u is the minimizer of
´

Ω
γ(x)|∇u|2dx over u ∈ H1(Ω) with u|∂Ω = f . Define

Qγ(f) =

ˆ
Ω

γ(x)|∇u|2dx (power)

=

ˆ
∂Ω

fΛγfdS.

Knowing Qγ is equivalent knowing Λγ . We can find a bilinear form Bγ(·, ·) :
H1/2(∂Ω) × H1/2(∂Ω) from the quadratic form (by polarization) Bγ(f, f) =
Qγ(f) and Bγ(f, g) ∈ R. Bγ is symmetric, i.e., Bγ(f, g) = Bγ(g, f). This
implies that Λγ is symmetric,

〈Λγf, g〉 = 〈f,Λγg〉 .

In general, Λγ is self-adjoint, i.e., Λγ = Λ∗γ .

2.1 Linearization

Let γ = 1 + εh, ε � 1, h ∈ L∞(Ω). Consider ∇ · (γ(x)∇v) = 0 in Ω and we
write v = u+ εũ, where u satisfies ∆u = 0. Look at

lim
ε→0

Bγ(f, g)−B1(f, g)

ε
=

ˆ
Ω

h(x)∇uf · ∇ug

= dB1(f, g)(h) = 0,

where ∆uf = ∆ug = 0 in Ω, uf = f and ug = g on ∂Ω. dB1(f, g)(h) = 0 means
that ˆ

Ω

h∇u · ∇vdx = 0, ∀∆u = ∆v = 0. (3)

Does this imply that h ≡ 0 ? If we can show that

{∇u · ∇v|u, v are harmonic}

is dense in L2(Ω), then we are done.
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Consider ζ ∈ CN (N ≥ 2) and put the ansatz u = eζ·x, ∆u = (ζ · ζ)eζ·x = 0,
which implies ζ · ζ = 0. If we write ζ = Reζ + iImζ, then

ζ · ζ = |Reζ|2 + 2iReζ · Imζ − |Imζ|2 = 0,

if and only if
|Reζ| = |Imζ|, Reζ · Imζ = 0.

Let ζ1 =
1

2
(ξ − ik), ζ2 =

1

2
(−ξ − ik), |ξ| = |k|, ξ · k = 0, ξ, k ∈ RN (ζ1 · ζ1 =

ζ2 · ζ2 = 0). Substituting u = eζ1·x and v = eζ2·x into (3), implies

0 =

ˆ
Ω

h∇(eζ1·x) · ∇(eζ2·x)dx

= (ζ1 · ζ2)

ˆ
Ω

he(ζ1+ζ2)·x =

ˆ
Ω

h(x)e−ik·xdx

=

ˆ
RN

(χΩh)e−ik·xdx = (χ̂Ωh)(k),

for all k 6= 0. Thus, χΩh ≡ 0, or h = 0. The linearized DN map is locally
injective. But we can not conclude that Λ is locally injective, i.e., Λγ1 = Λγ2
and γ1, γ2 are close to 1, can we imply γ1 = γ2 ? The answer is NO and the
reason is NO implicit function theorem for Λ.

3 Proof of global uniqueness

This result was refered to Sylvester-Uhlmann 1987. Let γ1(x), γ2(x) ∈ C∞(Ω)
and Λγ1 ,Λγ2 be two corresponding DN maps. Assume that Λγ1 = Λγ2 , then
γ1 ≡ γ2. The conductivity equation ∇· (γ∇u) = 0 in Ω, Λγ is the DN map with
respect to this equation.

Schrodinger equation{
∆u− qu = 0 in Ω,

u = f ∈ H1/2(∂Ω) on ∂Ω,

where q(x) ∈ L∞(Ω). Assume 0 is not a Dirichlet eigenvalue of (∆− q). Define

the DN map Λq : f → ∂u

∂ν
|∂Ω. The inverse problem is given Λq to determine q.

Let v =
√
γu, i.e., u = γ−

1
2u, then

0 = γ−
1
2∇ · (γ∇(γ−

1
2 v)) = (∆− q)v,

where q =
∆
√
γ

√
γ

. Now if we can show that Λq1 = Λq2 implying q1 = q2, then

q = q1 = q2 =
∆
√
γ1√
γ

1

=
∆
√
γ2√
γ2

,

which means {
∆
√
γ1 − q

√
γ1 = 0,

∆
√
γ2 − q

√
γ2 = 0.
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If γ1 = γ2 = γ on ∂Ω, then
√
γ can be determined by solving{

∆
√
γ − q√γ = 0 in Ω,

√
γ|∂Ω is given,

then
√
γ1 =

√
γ2 of course in Ω.

3.1 Relation between Λγ and Λq with q =
∆
√
γ

√
γ

Assume that u solves ∇ · (γ∇u) = 0 in Ω with u|∂Ω = f .

Λq(
√
γf) =

∂(
√
γu)

∂ν
|∂Ω =

1

2
γ−

1
2
∂γ

∂ν
|∂Ωf +

√
γ
∂u

∂ν
|∂Ω

=
1

2
γ−

1
2
∂γ

∂ν
|∂Ωf + γ−

1
2 γ
∂u

∂ν
|∂Ω

=
1

2
γ−

1
2
∂γ

∂ν
|∂Ωf + γ−

1
2 Λγf,

i.e., ∀g ∈ H 1
2 (∂Ω),

Λq(g) =
1

2
γ−1 ∂γ

∂ν
|∂Ωg + γ−

1
2 Λγ(γ−

1
2 g)

or equivalently,

Λq(·) =
1

2
γ−1 ∂γ

∂ν
|∂Ω ·+γ−

1
2 Λγ(γ−

1
2 ·).

Theorem 3.1. (Kohn-Vogelius, CPAM ’84) Assume that γ1, γ2 ∈ C∞(Ω). If
Λγ1 = Λγ2 , then for all ` ∈ N ∪ {0},

(
∂

∂ν
)`γ1(x) = (

∂

∂ν
)`γ2(x), ∀x ∈ ∂Ω.

Corollary 3.2. Λγ1 = Λγ2 implies Λq1 = Λq2 with q1 =
∆
√
γ1√
γ

1

, q2 =
∆
√
γ2√
γ2

.

Problem 3.3. Λq1 = Λq2 implies q1 = q2, q1, q2 ∈ L∞(Ω). How do we solve it
?

Step 1. If Λq1 = Λq2 , then

0 = 〈Λq1f, g〉 − 〈f,Λq2g〉 =

ˆ
Ω

(q2 − q1)u1u2dx,

where ∆u1 − q1u1 = 0 = ∆u2 − q2u2, u1|∂Ω = f , u2|∂Ω = g, i.e.,

ˆ
Ω

(q1 − q2)u1u2dx = 0.

Can we show that q1 − q2 = 0 ?
Need to find special solutions of (∆− q)u = 0 in Ω.
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3.2 Complex geometrical optics (CGO) solutions

Our aim is to find u = eζ·x(1 + r), where ζ · ζ = 0, ζ ∈ CN and

‖r‖L2(Ω) ≤
C

|ζ|
,

where C = C(‖q‖, N,Ω).
Suppose that CGO solutions exist. Let ξ, k, η ∈ RN , N ≥ 3 and ζ1 =

ξ

2
− i(k

2
+
η

2
), |ξ|2 = |k|2 + |η|2, ξ · k = ξ · η = k · η = 0 imply ζ1 · ζ1 = 0. Choose

ζ2 = −ξ
2
− i(k

2
− η

2
), similarly, ζ2 · ζ2 = 0. ζ1 + ζ2 = −ik. Let

u1 = eζ1·x(1 + r1) and u2 = eζ2·x(1 + r2).

Thus,

0 =

ˆ
Ω

(q1 − q2)u1u2dx

=

ˆ
Ω

(q1 − q2)e(ζ1+ζ2)·x(1 + r1 + r2 + r1r2),

or ˆ
Ω

(q2 − q1)e−ik·x =

ˆ
Ω

(q1 − q2)e−ik·x(r1 + r2 + r1r2). (4)

Fix the frequency k, let |η| → ∞, then |ζ1|, |ζ2| → ∞ as well. Therefore the
right hand side of (4) will tend to zero since the decaying properties of r` for
` = 1, 2.

Remark 3.4. This approach does NOT work for N = 2 (there is no freedom to
fix k and change η).

3.3 Construction of CGO

Ansatz: u = eζ·xw and

e−ζ·x(∆− q)(eζ·xw) = (∆ + eζ · ∇ − q)w = 0.

If w = 1 + r, then r satisfies

(∆ + 2ζ · ∇ − q)r = q.

There are infinitely many solutions solving the above equation, the difficulty is

‖r‖L2(Ω) ≤
C

|ζ|
.

First of all, we assume q = 0 and consider

(∆ + 2ζ · ∇)r = f in Ω.

Goal: ‖r‖L2(Ω) ≤ C
‖f‖L2(Ω)

|ζ|
.
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The symbol of ∆ζ := ∆ + 2ζ · ∇ is

−|ξ|2 + 2iζ · ξ = −|ξ|2 + 2i(Reζ + iImζ) · ξ,

this symbol vanishes for some ξ 6= 0. The operator ∆ζ is NOT elliptic if we
consider ζ as another variable.

Theorem 3.5. Suppose ζ · ζ = 0, |ζ| ≥ k > 0, f ∈ L2
1+δ with −1 < δ < 0.

Then there exists a unique w ∈ L2
δ solving ∆ζw = f in RN and

‖w‖L2
δ
≤ C(δ,N, k)

|ζ|
‖f‖L2

1+δ
,

where ‖f‖2
L2
δ

=
´
RN (1 + |x|2)δ|f |2dx.

Corollary 3.6. Let −1 < δ < 0, there exists ε = ε(δ) and C = C(δ) such that
for every q ∈ L2

1+δ ∩ L∞1
2

and every ζ ∈ CN (ζ · ζ = 0) and

‖(1 + |x|2)
1
2 q‖L∞

|ζ|
≤ ε, (5)

there exists a unique solution u to

(∆− q)u = 0 in RN

of the form u = eζ·x(1 + r(x, ζ)) and

‖r‖L2
δ
≤ C

|ζ|
‖f‖L2

δ+1
.

Proof. (Sketch) Since ∆ζw = f , from Theorem 3.5, we have

‖∆−1
ζ f‖L2

δ
≤ C

|ζ|
‖f‖L2

1+δ
,

regard ∆−1
ζ : L2

1+δ → L2
δ and ‖∆−1

ζ ‖ ≤
C

|ζ|
. Take the conjugate operator

e−ζ·x(∆− q)(eζ·x(1 + r)) = (∆ζ − q)(1 + r) = 0,

or (∆ζ − q)r = q and (I − ∆−1
ζ q)r = ∆−1

ζ q, The inverse (I − ∆−1
ζ q)−1 exists

provided |ζ| � 1 (see Neumann series, and q ∈ L∞1/2 is guaranteed for the

existence of (5)).

Remark 3.7. The proof only works for isotropic conductivity, γ(x) is a scalar
function.

Theorem 3.8. (P. Hahner) Let ζ · ζ = 0, ζ ∈ CN and Ω is open bounded
domain in RN , N ≥ 2. Then ∃C = C(Ω, N) > 0 such that ∃φ solving

(D2 + 2ζ ·D)φ = f in Ω, (6)

and satisfying

‖φ‖L2(Ω) ≤
C

|ζ|
‖f‖L2(Ω), ‖∇φ‖L2(Ω) ≤ C‖f‖L2(Ω),

where D =
1

i
∇ (D2 = D ·D = −∆).
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Remark 3.9. To construct u = eζ·x(1 + φ), ζ · ζ = 0 satisfying (D2 + q)u = 0 in

Ω, ‖φ‖L2(Ω) ≤
C

|ζ|
. We need to prove the existence of

e−ζ·x(D2 + q)(eζ·x(1 + φ)) = 0 in Ω,

if and only if
(D2 + 2ζ ·D + q)φ = −q in Ω.

Proof. WLGO, we may assume that Ω ⊂ Q := [−π, π]N . ζ · ζ = 0 iff |Reζ| =
|Imζ|, Reζ · Imζ = 0. By rotation, we can also assume that ζ = s(e1 + ie2),

where e1, e2 are standard orthonormal basis in RN and s =
|ζ|√

2
. D2 + 2ζ ·

D = D2 + 2s(D1 + iD2). Let us consider a set of functions {ei(k+
e2
2 )·x}, k =

(k1, k2, · · · , kN ) ∈ ZN . Define the inner product

(u, v) =
1

(2π)N

ˆ
Q

uvdx, u, v ∈ L2(Q).

We can show that {wk := ei(k+
e2
2 )·x}k∈ZN is a complete orthonormal basis in

L2(Q). Let us write φ =
∑
φkwk, f =

∑
fkwk, and ‖f‖2L2 =

∑
|fk|2.

Observation: D(ei(k+
e2
2 )·x·) = ei(k+

e2
2 )·x(D + (k +

e2

2
))·. In order to satisfy

(6), φk satisfies

pkφk := [|k2 +
e2

2
|2 + 2s(k1 + i(k2 +

1

2
))]φk = fk, k ∈ ZN .

Note that pk is never 0 and φk =
fk
pk

and φ =
∑
φkwk. Now, we estimate φk,

|φk| =
|fk|

||k2 +
e2

2
|2 + 2s(k1 + i(k2 +

1

2
))|
≤ |fk|

s
.

So
∑
|φk|2 ≤

1

s2

∑
|fk|2, i.e., ‖φ‖L2(Q) ≤

C

s
‖f‖L2(Q).

Now, we note that Dφ =
∑
k φk(k +

e2

2
)wk. Therefore,

φk(k +
e2

2
) =

(k + e2
2 )fk

|k2 +
e2

2
|2 + 2s(k1 + i(k2 +

1

2
))
.

We consider two cases: One is |k +
e2

2
| < 4s, then

|φk(k +
e2

2
)| ≤ 4s

2s|k2 + 1
2 |
|fk| ≤ 4|fk|.

The other is |k +
e2

2
| ≥ 4s, then

||k +
e2

2
|2 + 2sk1| ≥ |k +

e2

2
|2 − 2s|k +

e2

2
|

≥ ||k +
e2

2
|2 − 1

2
|k +

e2

2
|2

=
1

2
|k +

e2

2
|2.
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So

|φk(k +
e2

2
)| ≤

|k + e2
2 ||fk|

1
2 |k + e2

2 |2
=

|fk|
1
2 |k + e2

2 |

≤ |fk|1
24s

=
|fk|
2s

.

Thus,
‖∇φ‖L2(Q) ≤ C‖f‖L2(Q).

4 Another construction (based on the Carleman
estimates)

Construct solutions u = eζ·xv satisfying (D2 + q)u = 0 in Ω. Write

ζ · x =
1

h
(α+ iβ) · x

=
1

h
(ϕ(x) + iψ(x)),

where |α| = |β| = 1, α ⊥ β, and ϕ(x) = α · x, ψ(x) = β · x. Now, we need to
solve

e−
ϕ+iψ
h (D2 + q)(e

ϕ+iψ
h (1 + r)) = 0,

or
e−

ϕ+iψ
h (D2 + q)(e

ϕ+iψ
h r) = f (= q) ∈ L2(Ω).

Want

‖r‖L2(Ω) = ‖ei
ψ
h r‖L2(Ω)

≤ Ch‖e−
ϕ+iψ
h (D2 + q)(e

ϕ+iψ
h r)‖L2(Ω)

if and only if
‖r̃‖L2(Ω) ≤ Ch‖e−

ϕ
h (D2 + q)e

ϕ
h r̃‖L2(Ω).

Theorem 4.1. (Carleman estimate) Let q ∈ L∞(Ω), ϕ(x) = α ·x with |α| = 1.
Then there exists C = C(Ω, N, ‖q‖L∞) > 0 and h0 = h0(Ω, N, ‖q‖L∞) > 0 such
that 0 < h ≤ h0, we have

‖v‖L2(Ω) ≤ Ch‖e
ϕ
h (D2 + q)(e−

ϕ
h v)‖L2(Ω), (7)

∀v ∈ C∞c (Ω).

Proof. It suffices to show

‖v‖L2(Ω) ≤ ch‖e
ϕ
hD2(e−

ϕ
h v)‖L2(Ω).

If this true, then (7) will be trivial since

‖v‖L2(Ω) ≤ ch‖e
ϕ
h (D2 + q − q)(e−

ϕ
h v)‖L2(Ω)

≤ ch‖e
ϕ
hD2(e−

ϕ
h v)‖L2(Ω) + Ch‖q‖∞‖v‖L2(Ω),
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by choosing h small enough and absorbing to the left hand side, then we are
done.

Let P0 = h2D2 = (hD)2 and

P0,ϕ = e
ϕ
hP0(e−

ϕ
h ) =

∑
j

(hDj + i∂xjϕ)2

=
∑
j

(hDj + iαj)
2 = (hD)2 − 1 + 2iα · (hD)

= A+ iB

with A = (hD)2−1, B = 2iα·(hD) and noting that A = A∗, B = B∗, [A,B] = 0
(constant coefficients). Our estimate is equivalent to

Ch‖v‖L2(Ω) ≤ C‖P0,ϕv‖L2(Ω).

Compute

‖P0,ϕv‖2L2(Ω) = (P0,ϕv, P0,ϕv)

= ((A+ iB)v, (A+ iB)v)

= ‖Av‖2L2 + ‖Bv‖2L2 − i([A,B]v, v)

= ‖Av‖2L2 + ‖Bv‖2L2 ≥ ‖Bv‖2L2

≥ C ′h2‖v‖2L2 ,

where the last inequality is given by the Poincare inequality.

Theorem 4.2. Let ϕ(x) = α · x, with |α| = 1 and q ∈ L∞(Ω). ∃C > 0, h0 > 0
such that for any f ∈ L2(Ω), there exists a solution v ∈ L2(Ω) solving

e
ϕ
h (D2 + q)(e−

ϕ
h v) = f in Ω

and
‖v‖L2(Ω) ≤ Ch‖f‖L2(Ω).

Proof. Let Pφ = e
ϕ
h (h2D2 +h2q)e−

ϕ
h = P0,ϕ +h2q and P ∗0,ϕ = P0,−ϕ +h2q. We

have the Carleman estimate for P ∗ϕ, i.e.,

‖v‖L2(Ω) ≤
C

h
‖P ∗ϕv‖L2(Ω),

for all v ∈ C∞c (Ω). Prove the existence by the Hahn-Banach theorem.
Define D = P ∗ϕC

∞
c (Ω) be a subspace of L2(Ω). A linear functional L : D → C

by
L(P ∗ϕv) = (v, f) ∀v ∈ C∞c (Ω).

Note that L is well-defined, i.e., P ∗ϕv1 = P ∗ϕv2 implies v1 = v2 by using the
Carleman estimate we proved before.

|L(P ∗ϕv)| = |(v, f)| ≤ ‖v‖L2‖f‖L2

≤ C

h
‖f‖L2‖P ∗ϕv‖L2 .
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Therefore, L is a bounded linear functional on D with the norm bounded by
C

h
‖f‖L2 . By the Hahn-Banach theorem, ∃ a bounded linear functional L̃ :

L2(Ω) → C and L̃|D = L and ‖L̃‖ ≤ C

h
‖f‖L2 . By the Riesz representation

theorem, there is a unique ũ ∈ L2 such that

L̃(w) = (w, ũ), w ∈ L2(Ω)

and ‖ũ‖L2(Ω) ≤
C

h
‖f‖L2 .

Then for any v ∈ C∞c (Ω), by the weak derivative

(v, Pϕũ) = (P ∗ϕv, ũ) = L̃(P ∗ϕv)

= L(P ∗ϕv) = (v, f),

i.e., Pϕũ = f and ‖ũ‖L2(Ω) ≤
C

h
‖f‖L2 , which implies

‖h2ũ‖L2(Ω) ≤ Ch‖f‖L2(Ω).

Theorem 4.3. For ρ = ϕ+ iψ (∇ρ ·∇ρ = 0), ϕ = α ·x. We can find a solution
u = e−

ρ
h (a+ r) solving (D2 + q)u = 0 in Ω and Lˆ

‖r‖L2(Ω) ≤ Ch‖q‖L2(Ω).

Proof. Want e
ρ
h (D2+q)(e−

ρ
h (a+r)) = 0 or e

ϕ
h (D2+q)(e−

ϕ
h (e−

iψ
h r)) = −e−

iψ
h (D2+

q)(e−
ρ
h a). RHS= −e−

iψ
h (−h02∇ρ · ∇ρ+ h−1[2∇ρ · ∇+ ∆ρ] + (D2 + q))a, want

∇ρ · ∇ρ = 0 and (2∇ρ · ∇+ ∆ρ)a = 0 (transport equation).

Note that ∇ρ · ∇ρ = 0 gives |∇ϕ| = |∇ψ| and ∇ϕ · ∇ψ = 0. Since ϕ(x) = α · x,
we choose ψ(x) = β · x with α ⊥ β, |β| = 1. By the choice of ϕ,ψ, the
transport equation holds automatically. We simply take a = 1 and ‖f‖L2(Ω) =
‖q‖L2(Ω).

5 Inverse scattering problem

Let us consider the acoustic equation in R3

(∆ + k2n(x))u = 0 in R3,

where k is the wave number and n(x) is refractive index. Assume that supp(m) ⊂
B (some ball) with m = n− 1, i.e., (∆ + k2m+ k2)u = 0 in R3 (perturbed) and
(∆ + k2)v = 0 in R3 (unperturbed, Helmholtz equation).

Take uinc satisfying (∆ + k2)uinc = 0, for example, uinc(x) = eikx·d, with
d ∈ S2 (d is the direction of the plane waves). Let u = uinc + us solving(∆ + k2n(x))u = 0 in R3,

us satisfies limr→∞ r(
∂us

∂r
− ikus) = 0,

where r = |x|.
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5.1 Lippmann-Schwinger equation

u = uinc − k2
´
R3 Φ(x, y)m(y)u(y)dy, Φ(x, y) =

1

4π

eik|x−y|

|x− y|
is the outgoing fun-

damental solution of ∆ + k2. When |x| � 1, |x− y| = |x| − x̂ · y+O(
1

|x|
), with

x̂ =
x

|x|
, then

u = uinc +
eik(x)

|x|
u∞(x̂) +O(

1

|x|2
),

where u∞(x̂) = − k
2

2π

´
R3 e
−ikx̂·ym(y)u(y)dy is called the far-field vector.

In most cases, we use the plane wave as the incident field, which means
uinc = eikx·d. We write

u∞(x̂) = a(d, x̂, k) : scattering amplitude.

Inverse problem: Determine n(x) (or m(x)) from a(d, x̂, k), ∀d, x̂ ∈ S2, for
one fixed k > 0.
Focus on the uniqueness theorem: a1(d, x̂, k) = a2(d, x̂, k), ∀d, x̂ ∈ S2, we want
to show that n1(x) = n2(x).

Remark 5.1. DN-map: Near field data. Scattering amplitude: Far-field data.

Aim: Reduce the problem to the inverse boundary value problem for (∆ +
k2n(x))u = 0 in B.

5.2 Rellich’s lemma

What happens if a(d, x̂, k) = 0 ?

Lemma 5.2. (Rellich’s lemma) If v solves (∆ + k2)v = 0 in Bc (the exterior
domain) and satisfies

lim
r→∞

ˆ
|x|=r

|v|2dS = 0, (8)

then v ≡ 0 in Bc.

Remark 5.3. There is no need to assume that k2 is not an eigenvalue of −∆.
Moreover, if we want to obtain the uniqueness from the DN-map, then we need
to add such assumption.

Corollary 5.4. If a1(d, x̂, k) = a2(d, x̂, k), then

us1(x) = us2(x) in Bc.

Proof. (∆ + k2)(us1 − us2) = 0 in Bc and us1 − us2 = O(
1

|x|2
). Then us1 − us2

satisfies the condition of the Rellich lemma.

Proof. (Proof of the Rellich lemma, a sketch) Using the spherical harmonic
Y mn (x̂). Any solution v of (∆ + k2)v = 0 in Bc is written by

v =

∞∑
n=0

n∑
m=−n

amn (r)Y mn (x̂).

12



Parseval’s formula says

ˆ
|x|=r

|v|2 = r2
∞∑
n=0

n∑
m=−n

|amn (r)|2.

(8) means that
lim
r→∞

r2|amn (r)|2 = 0.

On the other hand, amn (r) satisfies

d2amn
dr2

+
2

r

damn
dr

+ (k2 − n(n+ 1)

r2
)amn = 0.

The representation formula for amn (r) is

amn (r) = αmn h
(1)
n (rk) + βmn h

(2)
n (rk),

where h
(`)
n are spherical Hankel’s functions, ` = 1, 2. By the asymptotic behav-

iors of h
(`)
n (rk), ` = 1, 2, we can show that αmn = βmn = 0.

So far, we have shown that a1(d, x̂, k) = a2(d, x̂, k) implying that us1 = us2 in
Bc. This implies Λ1(us) = Λ2(us) for all scattered solutions us, where Λ1,Λ2

are DN-maps for (∆+k2nj(x))u = 0 in B (assume that k2 is not an eigenvalue).

Lemma 5.5. Span{us(·, d) : d ∈ S2} is dense in all solutions of (∆+k2n(x))u =
0 in B′ ⊃ B in the L2-sense.

Proof. See Isakov’s book, inverse problems for PDEs.

Remark 5.6. By the interior estimates for the elliptic equations, {us} will be
dense in the H1(B) and Span{us(·, d)|∂B} is dense in H1/2(∂B). Using this
lemma, Λ1 = Λ2.

Theorem 5.7. a1(d, x̂, k) = a2(d, x̂, k) ∀d, x̂ ∈ S2 implies n1(x) = n2(x).

Proof. Λ1 = Λ2 implies kn1(x) = kn2(x).

Remark 5.8. Conversely, if Λ1 = Λ2 on ∂B, then a1(d, x̂, k) = a2(d, x̂, k). In
fact, us1(x) = us2(x) in Bc.

Proof. Let us consider w∗ satisfying{
(∆ + k2n2)w∗ = 0, in B,

w∗ = us1 on ∂B.

Define w =

{
w∗, x ∈ B
us1, x ∈ Bc

. Since Λ2(w∗|∂B) = Λ1(w∗|∂B) = Λ1(us1), then

w ∈ H2
loc(R3). Solving (∆ + k2n2)w = 0 with Sommerfeld radiation condition.

By the uniqueness of the scattered solution, us2 = w = us1 in Bc. To show the
uniqueness mentioned before, we need to use the Rellich’s lemma and the unique
continuation property (n ∈ L∞ is a safe case).
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6 Stability estimates

Let ∇ · (γj(x)∇uj) = 0 in Ω and the DN-maps Λγj . We want to derive the
following estimate

‖γ1 − γ2‖L∞(Ω) ≤ ω(‖Λγ1 − Λγ2‖∗),

where ‖Λγ1 − Λγ2‖∗ = ‖Λγ1 − Λγ2‖H1/2(Ω)→H−1/2(∂Ω) and ω is a modulus of
continuity.

ω(t) ≤ 1

| log t|τ
, τ ∈ (0, 1).

This log type stability estimate is optimal. To derive this estimate, we need
smoothness assumptions on γj . We cannot just assume γj ∈ L∞(Ω).

Example 6.1. (Alessandrini) Consider γ1 = 1, γ2 =

{
1 + γ, 0 < |x| < r0,

1, r0 < |x| < 1,

0 < r0 < 1 and ∇ · (γj∇u) = 0 in D ⊂ R2, where D is a unit disc. Given

f ∈ H1/2(∂Ω). In terms of the Fourier series, f =
∑∞
k=−∞ f̂(k)eikθ. Then

Λγ1f(eiθ) =

∞∑
k=−∞

|k|f̂(k)eikθ,

Λγ2f(eiθ) =

∞∑
k=−∞

|k|2 + r(1 + r
2|k|
0 )

2 + r(1− r2|k|
0 )

f̂(k)eikθ.

Then

‖(Λγ1 − Λγ2)f‖H−1/2(∂Ω)

=

∞∑
k=−∞

(1 + |k|2)−
1
2 |k|2(1− 2 + r(1 + r

2|k|
0 )

2 + r(1− r2|k|
0 )

)(1 + |k|2)
1
2 |f̂(k)|2

≤(γr2
0)2‖f‖2H1/2(∂Ω).

Thus,
‖Λγ1 − Λγ2‖∗ ≤ γr2

0 and lim
r0→0

‖Λγ1 − Λγ2‖∗ = 0,

but
‖γ1 − γ2‖L∞(D) = γ > 0.

Theorem 6.2. Let Ω be a bounded open domain with smooth boundary in RN ,

N ≥ 3. Assume that γ1(x), γ2(x) ∈ Hs+2(Ω), s >
N

2
(γ1, γ2 ∈ C2(Ω)). Denote

Λγ1 ,Λγ2 the associated DN maps and ‖Λγ1 − Λγ2‖∗ is a before. Furthermore,

we assume ∃E > 0 s.t.
1

E
≤ γj(x) ≤ E and ‖γj‖Hs+2(Ω) ≤ E. Then ∃C =

C(Ω, N,E, s) and τ = τ(N, s) ∈ (0, 1) such that

‖γ1 − γ2‖L∞(Ω) ≤ ω(‖Λγ1 − Λγ2‖∗),

where ω(t) is a modulus of continuity satisfies ω(t) ≤ C

| log t|τ
, for 0 < t <

1

e
.

Remark 6.3. The log type stability estimate for Calderón’s problem is “optimal”
for general conductivity. It means that one cannot derive a Hölder type stability.
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6.1 Steps of proof

Step 1. Recall that q =
∆
√
γ

√
γ

and

Λq(f) =
1

2
γ−1 ∂γ

∂ν
|∂Ωf + γ−

1
2 Λγ(γ−

1
2 f) (9)

. Needs the stability estimates of (γ1 − γ2)∂Ω by Λγ1 − Λγ2 .

Lemma 6.4. ‖γ1 − γ2‖L∞(∂Ω) ≤ C‖Λγ1 − Λγ2‖∗ and ‖∂γ1

∂ν
− ∂γ2

∂ν
‖L∞(∂Ω) ≤

C‖Λγ1 − Λγ2‖σ∗ , where σ ∈ (0, 1) and C are given as before theorem.

Using Lemma 6.4 and (9), we can obtain

‖Λq1 − Λq2‖∗ ≤ C(‖Λγ1 − Λγ2‖∗ + ‖Λγ1 − Λγ2‖σ̃), σ̃ ∈ (0, 1).

Step 2. Using Green’s formula and the symmetric property of Λq, we have the
Alessandrini’s identityˆ

Ω

(q1 − q2)u1u2dx = 〈(Λq1 − Λq2)u1, u2〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

. (10)

Choose {η1, η2, ξ} forming orthogonal vectors, |η1| = |η2| = 1, ξ ∈ RN ,

ζ1 = − s√
2

(

√
1− |ξ|

2

2s2
η1 +

1√
2s
ξ + iη2), (ζ1 · ζ1 = 0, |ζ1| = s),

ζ2 =
s√
2

(

√
1− |ξ|

2

2s2
η1 −

1√
2s
ξ + iη2), (ζ2 · ζ2 = 0, |ζ2| = s).

Take u1 = eiζ1·x(1 + ρ1) and u2 = eiζ2·x(1 + ρ2) with ‖ρ1‖L2(Ω) ≤
C

|ζ1|
=
C

s
and

‖ρ‖L2(Ω) ≤
C

s
.

In order to estimate ‖u1‖
H

1
2 (∂Ω)

and ‖u2‖
H

1
2 (∂Ω)

. It suffices to estimate

‖uj‖H1(Ω) and use the standard trace theorem.

‖u1‖H1(Ω) ≤ ‖eiζ·x(1 + ρ1)‖L2(Ω) + ‖∇(eiζ·x(1 + ρ1))‖L2(Ω)

≤ Csesa, where a = sup
x∈Ω
|x|.

By the trace theorem, we have

‖uj‖
H

1
2 (∂Ω)

≤ Csesa ≤ Cesa,

provided that s is large.
Substituting u1, u2 into (10), we obtain

|
ˆ

Ω

(q1 − q2)e−iξ·xdx|

≤‖Λq1 − Λq2‖∗‖u1‖
H

1
2
‖u2‖

H
1
2

+ |
ˆ

Ω

(q1 − q2)e−iξ·x(ρ1 + ρ2 + ρ1ρ2)|

≤Cesa‖Λq1 − Λq2‖∗ +
C

s
.
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Let q̃j = χΩqj , then we actually get

|( ̂̃q1 − q̃2)(ξ)| ≤ Cesa‖Λq1 − Λq2‖∗ +
C

s
, s ≥ C ′(Ω, E,N, s).

Now we want to estimate ‖q1 − q2‖H−1(Ω).

‖q1 − q2‖2H−1(Ω) ≤ ‖q̃1 − q̃2‖2H−1(RN ) =

ˆ
RN

|( ̂̃q1 − q̃2)(ξ)|2

(1 + |ξ|2)
dξ

= (

ˆ
|ξ|<R

+

ˆ
|ξ|>R

)
|( ̂̃q1 − q̃2)(ξ)|2

(1 + |ξ|2)
dξ

≤ CecsRN‖Λq1 − Λq2‖2∗ +
CRN

s2
+

C

R2
,

where the last term cones from the apriori assumption on qj . Note that ‖qj‖L∞(Ω) ≤

M = M(E). Choose R such that
CRN

s2
=

C

R2
or R = Cs

2
N+2 . We now have

‖q1 − q2‖2H−1(Ω) ≤ Ce
Cs‖Λq1 − Λq2‖2∗ + Cs−

4
N+2 , s ≥ C”(Ω, E,N, s).

We now take s =
1

C
| log ‖Λq1 − Λq2‖∗|. Need ‖Λq1 − Λq2‖∗ < ε < 1 such that

s =
1

c
| log ‖Λq1 − Λq2‖∗| ≥ C”. So we have

‖q1 − q2‖2H−1(Ω) ≤ C(‖Λq1 − Λq2‖∗ + C| log ‖Λq1 − Λq2‖∗|−
4

N+2 .

Take ‖Λq1 − Λq2‖∗ even smaller to absorb the first term. In other words, we
have shown the following theorem.

Theorem 6.5. qj ∈ L∞(Ω), ‖qj‖ ≤ E (N ≥ 3).

‖q1 − q2‖H−1(Ω) ≤ ω(‖Λq1 − Λq2‖∗),

where ω(t) ≤ C| log t|−
2

N+2 , 0 < t < e−1.

Remark 6.6. In the proof, we only consider ‖Λq1 − Λq2‖∗ is small, i.e., ‖Λq1 −
Λq2‖∗ < ε = ε(E,N,Ω). For t not small, the estimate is obvious ! Moreover,
theorem holds for any qj ∈ L∞(Ω).

Step 3. Compute ∆(log
√
γj) = ∇ · ∇(log

√
γj) = ∇ · (

∇√γj
√
γj

) =
∆
√
γj

√
γj
−

|∇(log
√
γj)|2. Let w = log

√
γ1 − log

√
γ2 = log

√
γ1√
γ2

. ∇ · ((√γ1γ2)∇w) =
√
γ1γ2(q1−q2) with w|∂Ω = (log

√
γ1− log

√
γ2)|∂Ω, by the elliptic estimate, one

can get estimate on w.
Finally, to get estimate for γ1 − γ2, we compute

log γ1 − log γ2 =

ˆ 1

0

d

dt
log((1− t)γ2 + tγ1)dt

= (

ˆ 1

0

d

dt

1

(1− t)γ1 + γ2
dt)(γ1 − γ2).
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7 Reconstruction

Reconstruct γ(x) by Λγ (Nachman’s reconstruction, for N ≥ 3).

Step 1. Boundary reconstruction, one can reconstruct γ(x),
∂γ

∂ν
(x), ∀x ∈ Ω. We

can do this by the full symbol of Λγ : first order pseudodifferential operator.
Step 2. We can determine Λq by Λγ .
Step 3. Determine q from Λq.
Step 4. Solve {

∆
√
γ − q√γ = 0 in Ω,

γ|∂Ω is given.

For Step 3, we consider ∆u − qu = 0 in Ω → Λq and ∆v = 0 in Ω → Λ0, they
are well-defined. Thenˆ

Ω

quvdx =

ˆ
Ω

(v∆u− u∆v) =

ˆ
∂Ω

(vΛqu− uΛ0v)dS

=

ˆ
∂Ω

(Λq − Λ0)(v|∂Ω)(u|∂Ω)dS.

Let u = eζ1·x(1 + ρ) and v = eζ2·x with ζ1 · ζ1 = ζ2 · ζ2 = 0, ζ1 + ζ2 = −iξ.
Hence, we obtain

ˆ
Ω

qeζ1·x(1 + ρ)eζ2·x =

ˆ
∂Ω

(Λq − Λ0)(eζ2·x|∂Ω)(u|∂Ω)dS.

Let |ζ1| → ∞, then

ˆ
Ω

qe−iξ·x = lim
|ζ1|→∞

ˆ
∂Ω

(Λq − Λ0)(eζ2·x|∂Ω)(u|∂Ω)dS.

We need to know the boundary values of CGO solutions, which is contributed
by Nachman’s Annals paper in 1988. u|∂Ω satisfies an integral equation on ∂Ω.
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