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1 Motivations.

Theorem 1. Let Ω = {x ∈ Rn : |x| < R} be the ball in Rn. Let u
be a positive C2 solution of the Dirichlet problem ∆u+ f(u) = 0
in Ω with u=0 on |x| = R, where f is a C1 function. Then u is

radially symmetric and
∂u

∂r
<0, for r∈ (0, R)

Theorem 2. Let u>0 be a C2solution of the Dirichlet problem ∆u+
f(u) = 0 in a ring domain R′ ≤ |x| < R with u=0 on |x|=R.

Then
∂u

∂r
<0 for

R′ +R

2
≤ |x| < R.

How do we prove these two theorems? If we have the property
that the solution of the PDE to be radially symmetric, then the
PDE becomes to an ODE, we can use the theory in ODE to reduce
this problem. For example, if we don't know the existence of some
PDE, but we know the solution of the ODE is unique, then we
�nd the solution of PDE is also unique.

2 Tools.

Let L be the uniformly elliptic operator which is de�ned as Lu =
aij(x)Diju + bi(x)Diu + c(x)u, where aijξiξj ≥ c0|ξ|2 for some
c0 > 0

Lemma 3. (Maximum Principle)
Suppose u ≤ 0 satis�es Lu ≥ 0. If u vanishes at some point

in Ω, then u≡0.
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Lemma 4. (Hopf boundary lemma)
Suppose there is a ball B in Ω with a point P∈∂Ω on its bound-

ary and suppose u is continuous in Ω ∪ P and u(P)=0. Then if
u6= 0 in B we have for an outward directional derivative at P,
∂u

∂ν
(P )>0 , in the sense that if Q approaches P in B along a

radius then lim
P−→Q

u(P )− u(Q)

|P −Q|
>0.

3 Main Results.

Consider a solution u ∈ C2(Ω) of ∆u + b1(x)ux1 + f(u) = 0 in
Ω with b1(x) ∈ C(Ω) and f ∈ C1, where Ω is a bounded smooth
domain; for x ∈ ∂Ω, ν(x) is the exterior unit normal. Before
proving our main results, we give some assumptions as follows.

Assumptions.

1. Let γ be a unit vector in Rn and and λ be a real number.
De�ne Tλ = {x|γ · x = λ}, and let Σλ be the hybersurface
such that {x|γ · x > λ}. WLOG, we let γ = (1, 0, . . . , 0) be
the unit vector. For convenience, we denote the hypersurface
Σr
λ to be the re�ective hypersurface of Σλ with respect to the

plane Tλ.

2. We assume that max
x∈Ω

x1 = λ0 . Let Tλ1 be the plane such

that it contains a maximal cap of Σλ1with Σλ1 contained in
Σr
λ1
. By the de�nition of 1 & 2, it is easy to see that λ1 < λ0.

3. Note the point x ∈ Σλ, and x
λ be the re�ection of x with

respect to the plane Tλ. That is, x
λ ∈ Σr

λ.

4. Without any confusion, we abbreviate Σλ1 to be Σ, and Σr
λ1

to be Σr.

2



5. We let x ∈ Σλ, then we note the re�ection point with respect
to the plane Tλ of x is xλ. That is, if x = (x1, x2, . . . , xn),
then xλ = (2λ− x1, x2, . . . , xn).

Conditions. We only concern the solution u satisfying (∗) u >
0 in Ω, u ∈ C2(Ω∩{x1 > λ1}), and u = 0 on ∂Ω∩{x1 > λ1}. We
have a method which is called moving plane. We use the plane
Tλ and let λ be a large number such that Tλ is disjonted from the
domain Ω, then we decrease λ to touch the domain.

Theorem 5. (Main theorem)
Let u as above, satisfying the condition (∗) and assume b1(x) ≥

0 in Σ ∪ Σr. For any λ ∈ (λ1, λ0) we have ux1(x) < 0 and
u(x) < u(xλ) for x ∈ Σλ. Thus ux1 < 0 in Σ. Moreover, if
ux1 = 0 at some point in Ω on the plane Tλ1 then necessarily u is
symmetric in the plane Tλ1, Ω = Σ∪Σr∪(Tλ1∩Ω) and b1(x) = 0.

Before proving Theorem6, we use the main theorem to prove
theorem1 and theorem2.

Proof. (Theorem 1)
Applying Theorem 6, we see that ux1 < 0 if x1 > 0 for any

choice of our x1 axis. It follows that ux1 > 0 if x1 < 0. Hence
ux1 = 0 on x1 = 0. By the last assertion of Theorem6, we infer
that u is symmetric in x1. Since the direction of the x1 axis is
arbitrary it follows that u is radially symmetric and ur < 0 for
0 < r < R.

Proof. (Theorem 2)
To see the reference [1].

Now, we need two lemmas to prove theorem6.
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Lemma 6. Let x0 belong to ∂Ω with ν1(x0) > 0, where ν(x0) =
(ν1(x0), . . . , νn(x0)) is the outer normal at x0. For some ε > 0
assume u is a C2 function in Ωε where Ωε = Ω ∩ {|x− x0| < ε},
u > 0 in Ω and u = 0 on ∂Ω ∩ {|x− x0| < ε}.
Then ∃δ > 0 such that ux1 < 0 in Ω ∩ {|x− x0| < δ}.

Proof. Since u > 0 in Ω, then uν ≤ 0 on ∂Ω∩ {|x− x0| < ε} = S.
Since u = 0 on S, then u is parallel to ν on S. By the assumption
of the lemma, we have ux1 ≤ 0 on S for ν1 > 0. If the lemma
were false there would be a sequence of points xj → x0, with
u1(x

j) ≥ 0. For j large the interval in the x1 direction going from
xj to ∂Ω hits S at a point where u1 ≤ 0. Since u1(x

j) ≥ 0 and
u1(x0) ≤ 0 on S, then we have u11(x0) ≤ 0. On the other hand,
By mean value theorem, we have u(xj) = u(x0) + ux1(x0)(x

1
j −

x1
0) +

1

2
ux1x1(yj)(x

1
j − x1

0)
2, where x0 = (x1

0, . . . , x
n
0) and xj =

(x1
j , . . . x

n
j ). Since u(xj) > 0 and u(x0) = 0, ux1(x0) = 0, then

u11(yj) > 0. Hence we can imply that u11(x0) ≥ 0. By above two
facts, we have u1(x0) = 0 and u11(x0) = 0.

Case1. Suppose f(0) ≥ 0. Then in Ωε, u satis�es ∆u+ b1ux1 +
f(u)− f(0) ≤ 0 or, by the mean value theorem, for some funtion
c1(x), ∆u+ b1ux1 + c1(x)u ≤ 0. Apply the Hopf boundary lemma
to the function −u we �nd uν(x0) < 0, and so u1(x0) < 0, it is a
contradiction.

Case2. Suppose f(0) < 0. By the equation ∆u + b1(x)ux1 +
f(u) = 0, we see that at x0, by ux1 = 0 we have ∇u = 0 and
∆u = −f(0). But then it follows that uxixj = −f(0)νiνj at x0

(note that the identity is not so trivial to see!). In particular
u11(x0) < 0, it is also a contradiction.

Lemma 7. Assume that for some λ ∈ [λ1, λ0) we have u1(x0) ≤ 0
and u(x) ≤ u(xλ) but u(x) 6= u(xλ) in Σλ.Then u(x) < u(xλ) in
Σλ and u1(x) < 0 on Ω ∩ Tλ.
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Proof. In Σr
λ= the re�ection of Σλ with respect to the pland Tλ,

consider v(x) = u(xλ); note xλ ∈ Σλ. In Σr
λ, v satis�es the

equation ∆v− b1(x
λ)v1 +f(v) = 0 and v1 ≥ 0. If we subtract the

eqution ∆u+ b1(x)ux1 + f(u) = 0, we �nd ∆(v − u) + b1(x)(v −
u)1 + f(v) − f(u) = (b1(x

λ) + b1(x))v1 ≥ 0 in Σr
λ, since v1 ≥

0 and b1 ≥ 0. Using the mean value theorem in integral form
we see that in Σr

λ w(x) ≡ v(x) − u(x) ≤ 0, w(x) 6= 0, and
∆w + b1(x)w + c(x)w ≥ 0 for some function c(x). Since w = 0
on Tλ ∩ Ω it follows form the maximum principle and the Hopf
boundary lemma that w < 0 in Σr

λ and w1 > 0 on Tλ. But on Tλ,
w1 = v1 − u1 = −2u1, and the lemma is proved.

Now, we use lemma7&8 in order to prove theorem6.

Proof. (Theorem6)
It follows from lemma7 that for λ close to λ0, for λ < λ0,

the condition ux1(x) < 0 and u(x) < u(xλ) for x ∈ Σλ holds.
Decrease λ until a critical value µ ≥ λ1 is reached, beyond which it
no longer holds. Then the condition ux1(x) < 0 and u(x) < u(xλ)
for x ∈ Σλ holds for λ > µ, while for λ = µ we have by continuity,
u1(x) ≤ 0 and u(x) ≤ u(xµ) for x ∈ Σµ.

We will show that the critical value of µ is λ1. Suppose µ > λ1.
For any point x0 ∈ ∂(Σµ ∩ Ω) \ Tµ we have xµ0 ∈ Ω. Since
0 = u(x0) < u(xµ0), we see that u(x) 6= u(xµ) for x ∈ Σµ. We
apply the lemma8 and conclude that u(x) < u(xµ) in Σµ and
u1 < 0 on Ω ∩ Tµ. Thus ux1(x) < 0 and u(x) < u(xλ) for x ∈ Σλ

holds for λ = µ.Since u1 < 0 on Ω ∩ Tµ, we see with the aid of
lemma7 that for some ε > 0 , u1 < 0 in Ω∩{x1 > µ− ε}(∗∗) (we
can see it from the critical plane Tλ to anothe critical plane Tµ).

From our de�nition of µ we must then have the following sit-
uation. For j = 1, 2, ... there is a sequence λj, λ1 < λj ↗ µ,
and a point xjin Σλj such that u(xj) ≥ u(xλ

j

j ), we want to get a
contradiction. A subsequence which we still call xj will converge

5



to some point x in Σµ; then x
λj

j → xµ and u(x) ≥ u(xµ). Since
ux1(x) < 0 and u(x) < u(xλ) for x ∈ Σλ holds for λ = µ we must
have x ∈ ∂Σµ. If x is not on the plane Tµ then xµ lies in Ω and
consequently 0 = u(x) < u(xµ) which is impossible. Therefore
x ∈ Tµ and xµ = x. On the other hand, for j su�ciently large,
the straight segment joining xj to x

λj

j belongs to Ωand by the mean
value theorem it contains a point yj such that u1(yj) ≥ 0. Since
yj → x we obtain a contradiction to (∗∗). Thus we have proved
that µ = λ1 and that ux1(x) < 0 and u(x) < u(xλ) for x ∈ Σλ

holds for λ > λ1. By continuity, u1(x) ≤ 0 and u(x) ≤ u(xλ1) in
Σ.

To complete the proof of the theorem suppose u1 = 0 at some
point in Ω on Tλ1. By lemma6, we infer that u(x) ≡ u(xλ1) in Σ.
Since u(x) = 0 if x ∈ ∂Ω and x1 ≥ λ1 it follows that u(xλ1) = 0 at
the re�ected point and thus the condition Ω = Σ∪Σr ∪ (Tλ1 ∩Ω)
holds. Finally, suppose b1 > 0 at some point x ∈ Ω (we may take
x /∈ Tλ1). Then from the equation ∆u + b1(x)ux1 + f(u) = 0
in Ω and the symmetry of the solution in the plane Tλ we see
that b1(x)u1(x) = b1(x

λ1)u1(x
λ1). If x ∈ Σ, the left-hand side is

negative while the right-hand side is nonnegative : it is impossible;
similarly if x ∈ Σr.

4 More Applications.

We can apply the moving plane method to the following equations.

1. Liouville's equation ∆u + eu = 0. with the condtion
´
eu <

∞, if u is a positive solution of this equation, then u is radially
symmetric with respect to some point p0 ∈ R.

2. Yamabe problem ∆u+ u
n+2
n−2 = 0.
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