- Please answer the following questions in details, which means you need to state all theorems or results you used. L'Hospital rule is prohibited to use in this midterm (no grade will be given if you really used). The definitions of terminology were taught in the lectures, so you cannot ask instructor or TA about mathematical definitions while taking the midterm.
- Please mark your name, student ID, and question numbers clearly on your answer sheet.

1. Compute the following limits:
(a) (5 points) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 3 x}$.
(b) (5 points) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+5}-\sqrt{x^{2}+x+1}\right)$.
2. (10 points) $\lim _{x \rightarrow-\infty} \frac{2 x-\sqrt{4 x^{2}+x}}{\sqrt{x^{2}-1}-x}$.
3. Prove or disprove that the following limits exist.
(a) (5 points) $\lim _{x \rightarrow 0} \frac{\sin |x|}{x}$.
(b) (5 points) $\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin (x \sin x)}$.
4. (10 points) Find $\frac{d}{d x}(\sec x)^{x},-\frac{\pi}{2}<x<\frac{\pi}{2}$.
5. (10 points) Show that $\frac{1}{x+1}<\ln (x+1)-\ln x<\frac{1}{x}$ holds for any $x>0$.
6. (10 points) Show that $\lim _{x \rightarrow 0}(1+x)^{1 / x}=e .^{1}$
7. (10 points) Prove that $e^{x} \geq 1+x$ for all $x \in \mathbb{R}$.
8. Prove the following statements.
(a) (10 points) Consider the logarithmic function $\ln x$ for $x>0$. Show that $\ln x \leq$ $x-1$ for any $x>0$.
(b) (10 points) Based on (a), let $p_{1}, p_{2}, \ldots, p_{m}>0$ and $q_{1}, q_{2}, \ldots, q_{m}>0$ be arbitrary numbers such that

$$
\sum_{k=1}^{m} p_{k}=\sum_{k=1}^{m} q_{k}=1
$$

[^0]Show that

$$
\sum_{k=1}^{m} p_{k} \log q_{k} \leq \sum_{k=1}^{m} p_{k} \log p_{k}
$$

9. (20 points bonus) Let $f(x)$ be a function such that f is twice differentiable, and $f^{\prime \prime}(x)$ is continuous. Let $a \in \mathbb{R}$ be a number such that $f^{\prime \prime}(a) \neq 0$. Suppose that there exists a constant $\theta \in(0,1)$ such that

$$
f(a+h)-f(a)=f^{\prime}(a+\theta h) h
$$

for all $h>0$. Show that $\theta=\frac{1}{2}$.
10. (10 points) Construct a concrete non-constant function $f(x)$ such that

$$
f(a+h)-f(a)=f^{\prime}\left(a+\frac{1}{2} h\right) h
$$

for any $a \in \mathbb{R}$ and $h>0$.

[^0]: ${ }^{1}$ Hint: Consider $g(x)=(1+x)^{1 / x}$, and take $\ln g(x)$ into account.

