2020 FALL CALCULUS 0312: THIRD MIDTERM (DECEMBER 18, 2020)

- Please answer the following questions in details, which means you need to state all theorems or results you used.
- Please mark your name, student ID, and question numbers clearly on your answer sheet.

1. (10 points) Find the volume of the solid obtained by rotating about the x-axis the region enclosed by the curves $y=\frac{9}{x^{2}+9}, y=0, x=0$, and $x=3$.
2. (10 points) The rational number $\frac{22}{7}$ has been used as an approximation to the number π since the time of Archimedes. Show that

$$
\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi .
$$

3. (10 points) Evaluate the integral or show that it is divergent:

$$
\int_{0}^{1} \frac{\sqrt{\arctan x}}{1+x^{2}} d x
$$

(Hint: Try to use some substitution law with suitable trigonometric functions...)
4. (10 points) Find the values of c such that the area of the region bounded by the parabolas $y=x^{2}-c^{2}$ and $y=c^{2}-x^{2}$ is 576 .
5. (a) (10 points) Show that

$$
\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x .
$$

(b) (5 points) Use (a) to evaluate $\int \cos ^{2} x d x$.
(c) (5 points) Use (a) and (b) to evaluate $\int \cos ^{4} x d x$.
6. (10 points) For $m, n \in \mathbb{N}$, show that $\int_{-\pi}^{\pi} \sin m x \cos n x d x=0$.
7. (10 points) Find the surface area obtained by rotating the curve $y=x^{3}, 0 \leq x \leq 2$ about the x-axis.
8. (20 points) Find the length of the curve

$$
y=\int_{1}^{x} \sqrt{t^{3}-1} d t, \quad 1 \leq x \leq 4
$$

9. (20 points bonus) Show that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

