2020 FALL REAL ANALYSIS (I): FINAL EXAM (DECEMBER 24, 2020)

- Please mark your name, student ID, and question numbers clearly on your answer sheet.
- State all reasons, lemmas, theorems clearly, while you are using during answering the questions.
- You can use all results coming from *advanced calculus* without any proofs.
- The total score is 120 points. 20 points are your bonus.
- (a) (5 points) State and prove the Young's inequality.
 (b) (10 points) State and prove the Hölder's inequality (for the version f ∈ L^p and q ∈ L^q with suitable exponents (p, q)).
- 2. (20 points) Prove the integral version of Minkowski's inequality for $1 \le p \le \infty$, and measurable function f(x, y):

$$\left[\int \left(\int |f(x,y)|\,dx\right)^p\,dy\right]^{1/p} \leq \int \left(\int |f(x,y)|^p\,dy\right)^{1/p}\,dx.$$

3. (15 points) Let f(x, y), $0 \le x, y \le 1$ satisfy the following conditions: For each x, f(x, y) is an integrable function of y, and $\frac{\partial f(x, y)}{\partial x}$ is a bounded function of (x, y). Show that $\frac{\partial f(x, y)}{\partial x}$ is a measurable function of y for each x and

$$\frac{d}{dx}\int_0^1 f(x,y)\,dy = \int_0^1 \frac{\partial}{\partial x} f(x,y)\,dy.$$

4. (20 points) Let $\Omega \subset \mathbb{R}^n$ be a connected open set, and $u \in W^{1,p}(\Omega)$ for some $1 \leq p \leq \infty$. Suppose

$$Du = 0$$
 a.e. in Ω .

Prove that u is constant a.e. in Ω .

5. (15 points) Suppose $1 and <math>u \in C_c^1(\mathbb{R}^n)$. Prove that¹

$$\int_{\mathbb{R}^n} \frac{|u|^p}{|x|^p} \, dx \le \left(\frac{p}{n-p}\right)^p \int_{\mathbb{R}^n} |\nabla u|^p \, dx.$$

6. (15 points) For $1 \le p, q \le \infty$ and $\frac{1}{p} + \frac{1}{q} \ge 1$. Suppose r satisfies $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$. Prove that

 $||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q},$

where * denotes the convolution of two functions.

¹Hint: Scaling in the space variable, fundamental theorem of calculus and Hölder's inequality.

7. (20 points bonus) Let $f \in L^1(\mathbb{R}^n)$ and $\{K_{\delta}\}_{\delta>0}$ be an approximation to the identity. Show that

$$\lim_{\delta \to 0} (f * K_{\delta})(x) = f(x),$$

for all x in the Lebesgue set of f, and the limit holds for a.e. $x \in \mathbb{R}^n$.