2020 FALL REAL ANALYSIS (I) @ NCTU APPL. MATH. HOMEWORK 2

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on October 8, 2020.
- (1) Show that the Borel σ -algebra \mathcal{B} in \mathbb{R}^n is the smallest σ -algebra containing the closed sets in \mathbb{R}^n .
- (2) Let $E \subset \mathbb{R}^n$ be any subset, recalling that the outer measure is defined via

 $m_*(E) = \inf \{ m(\mathcal{O}) : E \subset \mathcal{O}, \text{ and } \mathcal{O} \text{ is an open set in } \mathbb{R}^n \}.$

One can also define an inner measure $m^*(E)$ by

 $m^*(E) = \sup \{m(F) : F \subset E, \text{ and } F \text{ is a closed set in } \mathbb{R}^n \}.$

Show that

- (a) $m^*(E) \le m_*(E)$.
- (b) E is measurable if and only if that $m^*(E) = m_*(E)$, provided that $m_*(E) < \infty$.
- (3) We have introduced F_{σ} and G_{δ} sets in \mathbb{R}^n .
 - (a) Show that a closed set is G_{δ} but an open set is F_{σ} .
 - (b) Construct a set, which is F_{σ} but not G_{δ} .
 - (c) Construct a Borel set, which is neither G_{δ} nor F_{σ} .
- (4) Construct an example which is a Lebesgue measurable set but not a Borel measurable set.
- (5) Suppose E is a measure zero set in \mathbb{R} . Show that there exists a sequence of open sets $\{\mathcal{O}_n\}$ such that $E \subset \bigcap_{n=1}^{\infty} \mathcal{O}_n$ and $\lim_{n\to\infty} m(\mathcal{O}_n) = 0$.
- (6) Try to understand what is a non-measurable set (in the Lebesgue sense)¹.

¹Please do not hand in this problem to your TA.