2020 FALL REAL ANALYSIS (I) @ NCTU APPL. MATH. HOMEWORK 4

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on November 5, 2020.
(1) If f is integrable in $(0,1)$, show that $x^{k} f(x)$ is also integrable in $(0,1)$, for all $k \in \mathbb{N}$. Moreover, $\int_{0}^{1} x^{k} f(x) d x \rightarrow 0$ as $k \rightarrow \infty$.
(2) Let $f(x, y), 0 \leq x, y \leq 1$ satisfy the following conditions: For each $x, f(x, y)$ is an integrable function of y, and $\frac{\partial f(x, y)}{\partial x}$ is a bounded function of (x, y). Show that $\frac{\partial f(x, y)}{\partial x}$ is a measurable function of y for each x and

$$
\frac{d}{d x} \int_{0}^{1} f(x, y) d y=\int_{0}^{1} \frac{\partial}{\partial x} f(x, y) d y
$$

(3) Let $E \subset \mathbb{R}^{n}$ be any measurable subset, and f be a nonnegative measurable function defined on E. Let $\left(f_{m}\right)(E):=\int_{E} f(x) d x$. Show that
(a) f_{m} is a (Lebesgue) measure. ${ }^{1}$
(b) If T is a measurable and one-to-one map from \mathbb{R}^{n} to \mathbb{R}^{m} with a measurable inverse T^{-1}. Show that $\left(f_{m}\right) \circ\left(T^{-1}(K)\right)=\left(f \circ T^{-1}\right)(K)$, where $K \subset \mathbb{R}^{m}$ is any measurable subset of $\mathbb{R}^{m} .^{2}$
(4) Define f by

$$
f(x)= \begin{cases}0, & x \in \mathbb{Q} \cap(0,1), \\ {[1 / x]^{-1},} & x \in \mathbb{Q}^{c} \cap(0,1),\end{cases}
$$

where $[x]$ denotes the integer part of x. Evaluate $\int_{0}^{1} f(x) d x$.
(5) Let $\left\{f_{k}\right\}$ be a sequence of measurable functions on E. Show that $\sum_{k=1}^{\infty} f_{k}$ converges absolutely a.e. in E if $\sum_{k=1}^{\infty} \int_{E}\left|f_{k}\right|<\infty$.

[^0]
[^0]: ${ }^{1}$ For example, when $f=1$, the integration stands for the usual Lebesgue measure.
 ${ }^{2}$ Consider the change of variables in your calculus course.

