2020 FALL REAL ANALYSIS (I) @ NCTU APPL. MATH. HOMEWORK 7

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on November 26, 2020.
(1) If $f(x)$ is a measurable function on \mathbb{R}^{n}. Show that $F(x, y):=f(x-y)$ is also measurable on $\mathbb{R}^{2 n}$.
(2) Let f be measurable and periodic with period 1: $f(x+1)=f(x)$ for all x. Suppose that there exists a finite number c such that

$$
\int_{0}^{1}|f(a+x)-f(b+x)| d x \leq c
$$

for any a and b. Show that f is integrable in $[0,1]$.
(3) Let f be integrable on $(-\infty, \infty)$, and let $h>0$ be fixed. Show that

$$
\int_{-\infty}^{\infty}\left(\frac{1}{2 h} \int_{x-h}^{x+h} f(y) d y\right) d x=\int_{-\infty}^{\infty} f(x) d x
$$

