2020 FALL REAL ANALYSIS (I) @ NCTU APPL. MATH. HOMEWORK 8

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on December 3, 2020.
- (1) Let \mathcal{R} denote the set of all rectangles in \mathbb{R}^2 that contain the origin, and with sides parallel to the coordinate axis. Consider the maximal operator associated to the family, i.e.,

$$f_{\mathcal{R}}^*(x) = \sup_{R \in \mathcal{R}} \oint_R |f(x-y)| dy.$$

Then show that

(a) $f \mapsto f_{\mathcal{R}}^*$ does not satisfy the weak type (1,1) inequality

$$m\left(\{x: f_{\mathcal{R}}^*(x) > \alpha\}\right) \le \frac{A}{\alpha} \|f\|_{L^1(\mathbb{R}^n)},$$

for all $\alpha > 0$, for all $f \in L^1(\mathbb{R}^2)$ and for some constant A > 0.

(b) Using this, one can show that there exists $f \in L^1(\mathbb{R})$ so that for $R \in \mathcal{R}$

$$\limsup_{\text{diam}(R)\to 0} \oint_R f(x-y) \, dy = \infty,$$

for a.e. x.

- (2) Suppose that $\varphi \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \varphi(x) \, dx = 1$. Set $K_{\delta}(x) := \delta^{-n} \varphi(x/\delta)$, for $\delta > 0$. (a) Prove that $\{K_{\delta}\}_{\delta > 0}$ is a family of good kernel.
 - (b) Assume in addition that φ is bounded and supported in a bounded set. Verify that $\{K_{\alpha}\}_{\alpha>0}$ is an approximation to the identity.