2020 FALL REAL ANALYSIS (I) @ NCTU APPL. MATH. HOMEWORK 9

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on December 10, 2020.
- (1) Let $f \in L^1(\mathbb{R}^n)$ and $\{K_{\delta}\}_{\delta>0}$ be an approximation to the identity. Show that

$$\lim_{\delta \to 0} (f * K_{\delta})(x) = f(x)$$

for all $x \in \mathcal{L}(f)$, and the limit holds for a.e. $x \in \mathbb{R}^n$.

- (2) Suppose that $\varphi \ge 0$ is an integrable function on \mathbb{R}^n , with $\int_{\mathbb{R}^n} \varphi(y) \, dx = 1$. Consider $K_{\delta}(y) := \delta^{-n} \varphi(\delta^{-1}y)$. Show that
 - (a) $\{K_{\delta}\}_{\delta>0}$ is a family of good kernels.
 - (b) Assume in addition that φ is bounded and supported in a bounded set. Prove that $\{K_{\delta}\}_{\delta>0}$ is an approximation to the identity.
- (3) Let $E \subset \mathbb{R}^n$ be a measurable set, and $p \in (0, \infty)$. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of functions in $L^p(E)$ such that $f_k(x)$ converges to f(x) for a.e. $x \in E$ as $k \to \infty$. Suppose that there exists a constant $C_0 > 0$ such that $\int_E |f_k|^p \leq C_0$, for all $k \in \mathbb{N}$. Prove that

$$\lim_{k \to \infty} \int_E ||f_k|^p - |f_k - f|^p - |f|^p| \, dx = 0.$$

(*Hint: This identity gives the missing term in the Fatou's lemma.*)