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Taylor series: Use polynomials to approximate functions. If f(x) is a smooth function,

which means f is differentiable infinitely many times, and f(x) =
∞∑
k=0

ak(x − c)k, then

the coefficients ak =
f (k)(c)

k!
, where f (k)(c) is the k-th derivative of f evaluated at x = c.

When c = 0, the Taylor series is called the Maclaurin series.

Theorem 0.1. If f(x) has (n + 1)-derivatives in an open interval I containing 0, then
for any x ∈ I, we have

f(x) =f(0) + f ′(0)x + · · ·+ fn(0)

n!
xn + Rn(x)

=Pn(x) + Rn(x),

where Pn(x) is the Taylor expansion with n-finite sums Rn(x) is called the remainder such
that

Rn(x) =
1

n!

∫ x

0

f (n+1)(t)(x− t)n dt.

The proof is based on the integration by parts and change of variables, which I have
introduced in the lecture.

We want to give another representation formula for the remainder as follow.

Lemma 0.1. Under the same hypothesis of the previous theorem, there exists c ∈ (0, x)
such that

Rn(x) =
f (n+1)(c)

(n + 1)!
xn+1,

where Rn(x) is the remainder given by the previous theorem.

Proof. When n = 0, the lemma holds by the mean value theorem

f(x)− f(0) = f ′(c)(x− 0).

We prove by the mathematical induction as follows.

Suppose that n = k−1 is okay, i.e., there exists c ∈ (0, x) such that Rk−1(x) = f (k)(c)
k!

xk,
then we want to show that n = k has the same formula. From the Taylor expansion
formula, one can easily see that

Rk−1(x) =
f (k)(c)

k!
+ Rk(x),
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which implies that

Rk(x) =− f (k)(0)

k!
xk + Rk−1(x) = −f (k)(0)

k!
xk +−f (k)(c)

k!
xk

=
xk

k!

(
f (k)(c)− f (k)(0)

)
=

xk

k!
f (k+1)(c′)(c− 0),

where we used the mean value theorem in the last identity, for some c′ ∈ (0, c).
It suffices to show that

f (k+1)(c′)(c− 0) =
f (k+1)(c̃)

k + 1
x,(0.1)

for some c̃ ∈ (0, x), then we finish the proof. In order to prove (0.10.1), let us consider the
function

F (x) := f(x)− Pn(x), G(x) = xn+1,

then by the Cauchy mean value theorem for x 6= 0, one has

F (x)

G(x)
=

F (x)− F (0)

G(x)−G(0)
=

F ′(c1)

G′(c1)
,(0.2)

for some c0 ∈ (0, x). Meanwhile, we also have

F ′(c1)

G′(c1)
=

F ′(c1)− F (0)

G′(c1)−G(0)
=

F ′′(c2)

G′′(c2)
,

and by using F (k)(0) = G(k)(0) = 0 for all k = 0, 1, 2, · · · , n, then we must have

F ′(c1)

G′(c1)
=

F ′′(c2)

G′′(c2)
= · · · = F (n+1)(cn+1)

G(n+1)(cn+1)
=

f (n+1)(cn+1)

(n + 1)!
,(0.3)

for 0 < cn+1 < cn < · · · < c2 < c1 < x. The last identity in the above equation comes
from the definitions of F and G.

Finally, by using (0.20.2) and (0.30.3), since Rn(x) = f(x)− Pn(x) = F (x), we conclude

Rn(x) = F (x) =
f (n+1)(cn+1)

(n + 1)!
G(x) =

f (n+1)(cn+1)

(n + 1)!
xn+1.

This completes the proof. �

Corollary 0.2 (Error estimate). Let M be a positive number such that |f (n+1)(t)| ≤ M ,
for t ∈ (0, x). Then

|f(x)− Pn(x)| = |Rn(x)| ≤ M

(n + 1)!
|x|n+1.

Proof. The proof is simply applied the formula of the remainder Rn and take absolute
value. �

Example 0.3. f(x) = sinx, then P4 = x − x3

6
, |f (5)(x)| = | cosx| ≤ 1. Then for any

x ∈ R, | sinx− P4(x)| ≤ |x|5
5!

.

For instance, take x = 0, 1, then Pr(0.1) = 0.1− (0.1)3

6
= 0.098333 · · · , and

| sin 0.1− Pt(0.1)| ≤ (0.1)5

120
< 0.0000001.


