REMAINDER TERM OF THE TAYLOR SERIES

YI-HSUAN LIN

Taylor series: Use polynomials to approximate functions. If $f(x)$ is a smooth function, which means f is differentiable infinitely many times, and $f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$, then the coefficients $a_{k}=\frac{f^{(k)}(c)}{k!}$, where $f^{(k)}(c)$ is the k-th derivative of f evaluated at $x=c$. When $c=0$, the Taylor series is called the Maclaurin series.

Theorem 0.1. If $f(x)$ has $(n+1)$-derivatives in an open interval I containing 0 , then for any $x \in I$, we have

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0) x+\cdots+\frac{f^{n}(0)}{n!} x^{n}+R_{n}(x) \\
& =P_{n}(x)+R_{n}(x),
\end{aligned}
$$

where $P_{n}(x)$ is the Taylor expansion with n-finite sums $R_{n}(x)$ is called the remainder such that

$$
R_{n}(x)=\frac{1}{n!} \int_{0}^{x} f^{(n+1)}(t)(x-t)^{n} d t
$$

The proof is based on the integration by parts and change of variables, which I have introduced in the lecture.

We want to give another representation formula for the remainder as follow.
Lemma 0.1. Under the same hypothesis of the previous theorem, there exists $c \in(0, x)$ such that

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}
$$

where $R_{n}(x)$ is the remainder given by the previous theorem.
Proof. When $n=0$, the lemma holds by the mean value theorem

$$
f(x)-f(0)=f^{\prime}(c)(x-0)
$$

We prove by the mathematical induction as follows.
Suppose that $n=k-1$ is okay, i.e., there exists $c \in(0, x)$ such that $R_{k-1}(x)=\frac{f^{(k)}(c)}{k!} x^{k}$, then we want to show that $n=k$ has the same formula. From the Taylor expansion formula, one can easily see that

$$
R_{k-1}(x)=\frac{f^{(k)}(c)}{k!}+R_{k}(x)
$$

which implies that

$$
\begin{aligned}
R_{k}(x) & =-\frac{f^{(k)}(0)}{k!} x^{k}+R_{k-1}(x)=-\frac{f^{(k)}(0)}{k!} x^{k}+-\frac{f^{(k)}(c)}{k!} x^{k} \\
& =\frac{x^{k}}{k!}\left(f^{(k)}(c)-f^{(k)}(0)\right)=\frac{x^{k}}{k!} f^{(k+1)}\left(c^{\prime}\right)(c-0),
\end{aligned}
$$

where we used the mean value theorem in the last identity, for some $c^{\prime} \in(0, c)$.
It suffices to show that

$$
\begin{equation*}
f^{(k+1)}\left(c^{\prime}\right)(c-0)=\frac{f^{(k+1)}(\widetilde{c})}{k+1} x \tag{0.1}
\end{equation*}
$$

for some $\widetilde{c} \in(0, x)$, then we finish the proof. In order to prove (0.1), let us consider the function

$$
F(x):=f(x)-P_{n}(x), \quad G(x)=x^{n+1}
$$

then by the Cauchy mean value theorem for $x \neq 0$, one has

$$
\begin{equation*}
\frac{F(x)}{G(x)}=\frac{F(x)-F(0)}{G(x)-G(0)}=\frac{F^{\prime}\left(c_{1}\right)}{G^{\prime}\left(c_{1}\right)}, \tag{0.2}
\end{equation*}
$$

for some $c_{0} \in(0, x)$. Meanwhile, we also have

$$
\frac{F^{\prime}\left(c_{1}\right)}{G^{\prime}\left(c_{1}\right)}=\frac{F^{\prime}\left(c_{1}\right)-F(0)}{G^{\prime}\left(c_{1}\right)-G(0)}=\frac{F^{\prime \prime}\left(c_{2}\right)}{G^{\prime \prime}\left(c_{2}\right)},
$$

and by using $F^{(k)}(0)=G^{(k)}(0)=0$ for all $k=0,1,2, \cdots, n$, then we must have

$$
\begin{equation*}
\frac{F^{\prime}\left(c_{1}\right)}{G^{\prime}\left(c_{1}\right)}=\frac{F^{\prime \prime}\left(c_{2}\right)}{G^{\prime \prime}\left(c_{2}\right)}=\cdots=\frac{F^{(n+1)}\left(c_{n+1}\right)}{G^{(n+1)}\left(c_{n+1}\right)}=\frac{f^{(n+1)}\left(c_{n+1}\right)}{(n+1)!} \tag{0.3}
\end{equation*}
$$

for $0<c_{n+1}<c_{n}<\cdots<c_{2}<c_{1}<x$. The last identity in the above equation comes from the definitions of F and G.

Finally, by using (0.2) and (0.3), since $R_{n}(x)=f(x)-P_{n}(x)=F(x)$, we conclude

$$
R_{n}(x)=F(x)=\frac{f^{(n+1)}\left(c_{n+1}\right)}{(n+1)!} G(x)=\frac{f^{(n+1)}\left(c_{n+1}\right)}{(n+1)!} x^{n+1}
$$

This completes the proof.
Corollary 0.2 (Error estimate). Let M be a positive number such that $\left|f^{(n+1)}(t)\right| \leq M$, for $t \in(0, x)$. Then

$$
\left|f(x)-P_{n}(x)\right|=\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x|^{n+1} .
$$

Proof. The proof is simply applied the formula of the remainder R_{n} and take absolute value.
Example 0.3. $f(x)=\sin x$, then $P_{4}=x-\frac{x^{3}}{6},\left|f^{(5)}(x)\right|=|\cos x| \leq 1$. Then for any $x \in \mathbb{R},\left|\sin x-P_{4}(x)\right| \leq \frac{|x|^{5}}{5!}$.
For instance, take $x=0,1$, then $P_{r}(0.1)=0.1-\frac{(0.1)^{3}}{6}=0.098333 \cdots$, and

$$
\left|\sin 0.1-P_{t}(0.1)\right| \leq \frac{(0.1)^{5}}{120}<0.0000001
$$

