2021 FALL MATHEMATICAL LOGIC AND REASONING 1372 1372: MIDTERM (NOVEMBER 8, 2021)

- Please answer the following questions in details, which means you need to state all theorems or results you used.
- Please mark your name, student ID, and question numbers clearly on your answer sheet.
- The exam has a total of 160 points, and we will not normalize your grade.

1. Let x, y and z be integers. Prove that
(a) (5 points) if x is odd, then $x^{2}+1$ is even.
(b) (5 points) If x divides y and x divides z, then x divides $y+z$.
(c) (5 points) if x is even, y is odd, then $x+y$ is odd.
(d) (5 points) if exactly one of x, y and z is even, then the sum of x, y and z is even.
2. (10 points) Write a proof by contraposition to show that for any real number x, if $x^{2}+5 x+6<0$, then $2<x<3$.
3. (10 points) Suppose a and b are positive integers. Write a proof by contradiction to show that if $a b$ is odd, then both a and b are odd.
4. (20 points) Show that $\sqrt{5}$ is not a rational number ${ }^{1}$
5. Find the power set 2^{X} for the following sets.
(a) (5 points) $X=\{0, \triangle, \square\}$.
(b) (5 points) $X=\{\emptyset,\{a\},\{b\},\{a, b\}\}^{2}$.
6. Show that
(a) (5 points) if $X=\left\{x \in \mathbb{N}: x^{2}<14\right\}$ and $Y=\{1,2,3\}$, then $X=Y$.
(b) (5 points) if A is a set, then $A \subseteq 2^{X}$.
7. Let A and B be two sets. Define the symmetry difference of A and B by

$$
A \Delta B=(A-B) \cup(B-A)
$$

Prove that
(a) (5 points) $A \Delta A=\emptyset$.
(b) (5 points) $A \Delta B=(A \cup B)-(A \cap B)$.
8. State the following principles:
(a) (4 points) The principle of mathematical induction.
(b) (3 points) The principle complete induction.
(c) (3 points) The well-ordering principle.

There are more questions in the next page.

[^0]
BONUS POINTS

Prove the following statements.
9. (20 points) The principle of mathematical induction implies the well-ordering principle.
10. (20 points) The well-ordering principle implies the principle complete induction.
11. (20 points) The principle complete induction implies the principle of mathematical induction.

[^0]: ${ }^{1}$ You can use some facts from Chapter 2 I have taught in lectures.
 ${ }^{2} \emptyset$ denotes the empty set.

