2022 FALL REAL ANALYSIS (I): FINAL EXAM (DECEMBER 23, 2022)

- Please mark your name, student ID, and question numbers clearly on your answer sheet.
- State all reasons, lemmas, theorems clearly, while you are using during answering the questions.
- You can use all results coming from *advanced calculus* without any proofs.
- The total score is 140 points. 40 points are your bonus.
- Good luck.
- 1. (15 points) Prove the integral version of Minkowski's inequality for $1 \le p < \infty$, and measurable function f(x, y):

$$\left[\int \left(\int |f(x,y)|\,dx\right)^p\,dy\right]^{1/p} \leq \int \left(\int |f(x,y)|^p\,dy\right)^{1/p}\,dx.$$

2. (15 points) Let f(x, y), $0 \le x, y \le 1$ satisfy the following conditions: For each x, f(x, y) is an integrable function of y, and $\frac{\partial f(x, y)}{\partial x}$ is a bounded function of (x, y). Show that $\frac{\partial f(x, y)}{\partial x}$ is a measurable function of y for each x and

$$\frac{d}{dx}\int_0^1 f(x,y)\,dy = \int_0^1 \frac{\partial}{\partial x}f(x,y)\,dy$$

3. (15 points) For $1 \le p, q \le \infty$ and $\frac{1}{p} + \frac{1}{q} \ge 1$. Suppose r satisfies $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$. Prove that

 $||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q},$

where * denotes the convolution of two functions.

4. (15 points) Let $f \in L^1(\mathbb{R}^n)$ and $\{K_{\delta}\}_{\delta>0}$ be an approximation to the identity. Show that

$$\lim_{\delta \to 0} (f * K_{\delta})(x) = f(x),$$

for all x in the Lebesgue set of f, and the limit holds for a.e. $x \in \mathbb{R}^n$.

5. (20 points) Prove the following variant Vitali covering lemma: If E is covered in the Vitali sense by a family \mathcal{B} of balls, and $0 < m_*(E) < \infty$, then for every $\eta > 0$, there exists a disjoint collection of balls $\{B_j\}_{j=1}^{\infty}$ in \mathcal{B} such that

$$m_*\left(E \setminus \bigcup_{j=1}^{\infty} B_j\right) = 0$$
 and $\sum_{j=1}^{\infty} m(B_j) \le (1+\eta)m_*(E)$

6. (20 points) Prove that if $\{K_{\delta}\}_{\delta>0}$ is a family of approximations to the identity, then $\sup_{\delta>0} |(f * K_{\delta})(x)| \leq cf^*(x),$

for some constant c > 0 and all integrable f. Here f^* denotes the Hardy-Littlewood maximal function fo f.

- 7. (20 points) Suppose 0 is a point of (Lebesgue) density of the set $E \subset \mathbb{R}$. Show that for each of the individual conditions below there is an infinite sequence of points $x_n \in E$, with $x_n \neq 0$, and $x_n \to 0$ as $n \to \infty$.
 - (a) The sequence also satisfies $-x_n \in E$ for all n.
 - (b) In addition, $2x_n$ belongs to E for all n.
- 8. Prove that
 - (a) (10 points) If f is integrable on \mathbb{R}^n , and f is not identically zero, then

$$f^*(x) \ge \frac{c}{x^n}$$
, for some $c > 0$ and for all $|x| \ge 1$,

where f^* denotes the Hardy-Littlewood maximal function fo f. [Hint: Use the fact that $\int_B |f| > 0$, for some ball B.]

(b) (10 points) Conclude that f^* is not integrable on \mathbb{R}^n . Then show that the weak type estimate

$$m(\{x: f^*(x) > \alpha\}) \le c/\alpha,$$

for all $\alpha > 0$, whenever $\int |f| = 1$, is best possible in the following sense: if f is supported in the unit ball with $\int |f| = 1$, then

$$m(\{x: f^*(x) > \alpha\}) \ge c'/\alpha,$$

for some c' > 0 and all sufficiently small $\alpha > 0$.