2022 FALL REAL ANALYSIS (I): MIDTERM (NOVEMBER 4, 2022)

- Please mark your name, student ID, and question numbers clearly on your answer sheet.
- State all reasons, lemmas, theorems clearly, while you are using during answering the questions.
- You can use all results coming from *advanced calculus* without any proofs.
- The notations are the same as in the lectures: $|\cdot|$, $m_*(\cdot)$ and $m(\cdot)$ stand for the volume of rectangles, outer measure, and (Lebesgue) measure, respectively.
- The total score is 120 points. 20 points are bonus for you.
- 1. A subset $E \subset \mathbb{R}$ has measure zero if given any $\epsilon > 0$, there exist countable intervals
 - I_n that cover E, such that $A \subset \bigcup_{n=1}^{\infty} I_n$ and $\sum_{n=1}^{\infty} |I_n| < \epsilon$. Please show that
 - (a) (10 points) Every countable set in $\mathbb R$ has measure zero.
 - (b) (10 points) The Cantor set \mathcal{C} in [0, 1] has measure zero.
- 2. (10 points) Let $E \subset \mathbb{R}^n$ be a measurable subset. Let f_n be a sequence of measurable functions defined on E. Show that $g(x) := \limsup_{n \to \infty} f_n(x)$ is a measurable function defined on E.
- 3. (10 points) Prove or disprove that |f| is measurable $\implies f$ is measurable.
- 4. (15 points) Let $Z \subset \mathbb{R}^1$ be a subset of measure zero. Show that the set $\{x^2 : x \in Z\}$ also has measure zero in \mathbb{R} .
- 5. (15 points) Suppose $A \subset E \subset B$, where A, B are measurable sets in \mathbb{R}^n of finite measure. If m(A) = m(B), show that E is measurable.
- 6. Suppose that f_k → f and g_k → g in measure on E as k → ∞. Show that
 (a) (5 points) f_k + g_k → f + g in measure on E as k → ∞.
 (b) (10 points) f_kg_k → fg in measure on E as k → ∞, provided m(E) < ∞.
- 7. (15 points) Give an example of an f that is not (Lebesgue) integrable, but whose improper Riemann integral exists and is finite.
- 8. (20 points) Prove the following LDCT: If $\{f_k\}_{k\in\mathbb{N}}$ satisfies $f_k \to f$ in measure on E as $k \to \infty$, and $|f_k| \leq g$ for any $k \in \mathbb{N}$, where g is an integrable function. Show that f is integrable and $\int_E f_k \to \int_E f$ as $k \to \infty^1$.

¹Hint: Show that every subsequence of $\{f_k\}$ has a subsequence $\{f_{k_j}\}$ such that $\int_E f_{k_j} \to \int_E f$.