2023 FALL REAL ANALYSIS (I): FINAL EXAM (DECEMBER 19, 2023)

- Please mark your name, student ID, and question numbers clearly on your answer sheet.
- State all reasons, lemmas, theorems clearly, while you are using during answering the questions.
- The total score is 120 points. 20 points are your bonus.
- 1. (20 points) Prove the following variant Vitali covering lemma: If E is covered in the Vitali sense by a family \mathcal{B} of balls, and $0 < m_*(E) < \infty$, then for every $\eta > 0$, there exists a disjoint collection of balls $\{B_j\}_{j=1}^{\infty}$ in \mathcal{B} such that

$$m_*\left(E \setminus \bigcup_{j=1}^{\infty} B_j\right) = 0$$
 and $\sum_{j=1}^{\infty} m(B_j) \le (1+\eta)m_*(E).$

- 2. Suppose $f \in L^2(\mathbb{R}^n)$ and $k \in L^1(\mathbb{R}^n)$.
 - (a) (5 points) Show that $(f * k)(x) = \int f(x y)k(y) \, dy$ converges for a.e. x.
 - (b) (7 points) Prove that $||f * k||_{L^2(\mathbb{R}^n)} \le ||f||_{L^2(\mathbb{R}^d)} ||k||_{L^1(\mathbb{R}^d)}$.
 - (c) (8 points) Establish $\widehat{(f * k)}(\xi) = \widehat{k}(\xi)\widehat{f}(\xi)$ for a.e. ξ .
- 3. (15 points) Consider the function

$$f(x) = \sum_{n=0}^{\infty} 2^{-n} e^{2\pi i 2^n x}$$

Prove that f satisfies $|f(x) - f(y)| \le A_{\alpha}|x - y|^{\alpha}$, for each $0 < \alpha < 1$, where A_{α} is some constant depending on α .

- 4. (15 points) Let $f, g \in L^1(\mathbb{R}^n)$. Suppose that $\int_E f = \int_E g$ for all measurable subset $E \subset \mathbb{R}^n$. Show that f = g a.e..
- 5. Suppose $f \in L^1(\mathbb{R}^n)$, and denote f^* to be the Hardy-Littlewood maximal function of f. Show that
 - (a) (5 points) f^* is measurable.
 - (b) (10 points) f^* satisfies

$$m\left(\left\{x \in \mathbb{R}^n : f^*(x) > \alpha\right\}\right) \le \frac{A}{\alpha} \|f\|_{L^1(\mathbb{R}^n)},$$

for all $\alpha > 0$ and $A = 3^n$.

- 6. (20 points) Show that the space $L^2(\mathbb{R}^n)$ is complete in its metric $\|\cdot\|_{L^2(\mathbb{R}^n)}$.
- 7. (20 points) Suppose that $f \in L^1(\mathbb{R}^n)$ and x is a point in the Lebesgue set of f. Let

$$\mathcal{A}(r) := \frac{1}{r^n} \int_{|y| \le r} |f(x-y) - f(x)| \, dy, \text{ whenever } r > 0.$$

Then $\mathcal{A}(r)$ is a continuous function in r > 0 and $\mathcal{A}(r) \to 0$ as $r \to 0$.