2023 FALL REAL ANALYSIS (I) @ NYCU APPL. MATH. HOMEWORK 1

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on October 5, 2023 in class.
- (1) Let $R \subset \mathbb{R}^n$ be a rectangle, prove that $m_*(R) = |R|$.
- (2) Let $E \subset \mathbb{R}$ be a set, the outer Jordan content is defined by

$$J_*(E) := \inf\left\{\sum_{j=1}^J |Q_j| : E \subset \bigcup_{j=1}^J Q_j\right\}$$

where Q_j 's are intervals in \mathbb{R} for $j = 1, 2, \ldots, J$.

- (a) Prove that $J_*(E) = J_*(\overline{E})$, where \overline{E} denotes the closure of E.
- (b) Construct an example such that $J_*(E) = 1$ but $m_*(E) = 0$, where $m_*(E)$ is the outer measure of E.
- (3) Let $E_1, E_2 \subset \mathbb{R}$ be measurable sets. Show that $E_1 \times E_2$ is a measurable set in \mathbb{R}^2 and $m(E_1 \times E_2) = m(E_1) \cdot m(E_2)^1$.
- (4) Show that the Borel σ -algebra \mathcal{B} in \mathbb{R}^n is the smallest σ -algebra containing the closed sets in \mathbb{R}^n .
- (5) Let $E \subset \mathbb{R}^n$ be any subset, recalling that the outer measure is defined via

 $m_*(E) = \inf \{ m(\mathcal{O}) : E \subset \mathcal{O}, \text{ and } \mathcal{O} \text{ is an open set in } \mathbb{R}^n \}.$

One can also define an inner measure $m^*(E)$ by

 $m^*(E) = \sup \{m(F) : F \subset E, \text{ and } F \text{ is a closed set in } \mathbb{R}^n \}.$

Show that

(a) $m^*(E) \le m_*(E)$.

(b) E is measurable if and only if that
$$m^*(E) = m_*(E)$$
, provided that $m_*(E) < \infty$.

- (6) We have introduced F_{σ} and G_{δ} sets in \mathbb{R}^n .
 - (a) Show that a closed set is G_{δ} but an open set is F_{σ} .
 - (b) Construct a set, which is F_{σ} but not G_{δ} .
 - (c) Construct a Borel set, which is neither G_{δ} nor F_{σ} .
- (7) Construct an example which is a Lebesgue measurable set but not a Borel measurable set.
- (8) Try to understand what is a non-measurable set (in the Lebesgue sense)².

¹In this case we define $0 \cdot \infty = 0$

²Please do not hand in this problem to your TA, and the construction of non-measurable sets can be found in any references.