2023 FALL REAL ANALYSIS (I) @ NYCU APPL. MATH. HOMEWORK 2

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on **October 26, 2023**.
- (1) Let $a_k \in \mathbb{R}$ be constants and $E_k \subset \mathbb{R}^n$ be subsets, for k = 1, 2, ..., N. A simple function $f(x) = \sum_{j=1}^{N} a_k \chi_{E_k}(x)$ is measurable if and only if E_k are measurable sets for all k = 1, 2, ..., N.
- (2) (**The Borel-Cantelli lemma**) Suppose $\{E_k\}_{k=1}^{\infty}$ is a collection of countably many measurable subsets of \mathbb{R}^n , and

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

Let

$$E = \{x \in \mathbb{R}^n : x \in E_k, \text{ for infinitely many } k\}$$
$$= \lim_{k \to \infty} \sup(E_k).$$

Prove that

- (a) E is measurable,
- (b) m(E) = 0.
- (3) If f is integrable in (0,1), show that $x^k f(x)$ is also integrable in (0,1), for all $k \in \mathbb{N}$. Moreover, $\int_0^1 x^k f(x) dx \to 0$ as $k \to \infty$.
- (4) Let f(x,y), $0 \le x,y \le 1$ satisfy the following conditions: For each x, f(x,y) is an integrable function of y, and $\frac{\partial f(x,y)}{\partial x}$ is a bounded function of (x,y). Show that $\frac{\partial f(x,y)}{\partial x}$ is a measurable function of y for each x and

$$\frac{d}{dx} \int_0^1 f(x,y) \, dy = \int_0^1 \frac{\partial}{\partial x} f(x,y) \, dy.$$

(5) Let $E \subset \mathbb{R}^n$ be any measurable subset, and f be a nonnegative measurable function defined on E. Let $(f_m)(E) := \int_E f(x) dx$. Show that (a) f_m is a (Lebesgue) measure.¹

¹For example, when f = 1, the integration stands for the usual Lebesgue measure.

(b) Let y = Tx be a non-singular linear transformation of \mathbb{R}^n . Suppose that $\int_E f(y) dy$ exists. Show that

$$\int_{E} f(y) \, dy = |\det T| \int_{T^{-1}E} f(Tx) \, dx.$$

- (6) Let $\{f_k\}$ be a sequence of measurable functions on E. Show that $\sum_{k=1}^{\infty} f_k$ converges absolutely a.e. in E if $\sum_{k=1}^{\infty} \int_{E} |f_k| < \infty$.
- (7) Show that simple functions, step functions, and continuous functions with compact supports are dense in $L^1(\mathbb{R}^n)$, under the graph norm $\|\cdot\|_{L^1(\mathbb{R}^n)}$.
- (8) Suppose that f is integrable, and define $f_h(x) = f(x-h)$, for $h \in \mathbb{R}^n$. Show that $||f_h f||_{L^1(\mathbb{R}^n)} \to 0$ as $h \to 0$.
- (9) For any p > 0, $\int_E |f f_k|^p \to 0$ as $k \to \infty$, and $\int_E |f_k|^p \le M$ for all $k \in \mathbb{N}$. Show that $\int_E |f|^p \le M$.