2023 FALL REAL ANALYSIS (I) @ NYCU APPL. MATH. HOMEWORK 2

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on October 26, 2023.
(1) Let $a_{k} \in \mathbb{R}$ be constants and $E_{k} \subset \mathbb{R}^{n}$ be subsets, for $k=1,2, \ldots, N$. A simple function $f(x)=\sum_{j=1}^{N} a_{k} \chi_{E_{k}}(x)$ is measurable if and only if E_{k} are measurable sets for all $k=1,2, \ldots, N$.
(2) (The Borel-Cantelli lemma) Suppose $\left\{E_{k}\right\}_{k=1}^{\infty}$ is a collection of countably many measurable subsets of \mathbb{R}^{n}, and

$$
\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty
$$

Let

$$
\begin{aligned}
E & =\left\{x \in \mathbb{R}^{n}: x \in E_{k}, \text { for infinitely many } k\right\} \\
& =\limsup _{k \rightarrow \infty}\left(E_{k}\right) .
\end{aligned}
$$

Prove that
(a) E is measurable,
(b) $m(E)=0$.
(3) If f is integrable in $(0,1)$, show that $x^{k} f(x)$ is also integrable in $(0,1)$, for all $k \in \mathbb{N}$. Moreover, $\int_{0}^{1} x^{k} f(x) d x \rightarrow 0$ as $k \rightarrow \infty$.
(4) Let $f(x, y), 0 \leq x, y \leq 1$ satisfy the following conditions: For each $x, f(x, y)$ is an integrable function of y, and $\frac{\partial f(x, y)}{\partial x}$ is a bounded function of (x, y). Show that $\frac{\partial f(x, y)}{\partial x}$ is a measurable function of y for each x and

$$
\frac{d}{d x} \int_{0}^{1} f(x, y) d y=\int_{0}^{1} \frac{\partial}{\partial x} f(x, y) d y
$$

(5) Let $E \subset \mathbb{R}^{n}$ be any measurable subset, and f be a nonnegative measurable function defined on E. Let $\left(f_{m}\right)(E):=\int_{E} f(x) d x$. Show that
(a) f_{m} is a (Lebesgue) measure. ${ }^{1}$

[^0](b) Let $y=T x$ be a non-singular linear transformation of \mathbb{R}^{n}. Suppose that $\int_{E} f(y) d y$ exists. Show that
$$
\int_{E} f(y) d y=|\operatorname{det} T| \int_{T^{-1} E} f(T x) d x
$$
(6) Let $\left\{f_{k}\right\}$ be a sequence of measurable functions on E. Show that $\sum_{k=1}^{\infty} f_{k}$ converges absolutely a.e. in E if $\sum_{k=1}^{\infty} \int_{E}\left|f_{k}\right|<\infty$.
(7) Show that simple functions, step functions, and continuous functions with compact supports are dense in $L^{1}\left(\mathbb{R}^{n}\right)$, under the graph norm $\|\cdot\|_{L^{1}\left(\mathbb{R}^{n}\right)}$.
(8) Suppose that f is integrable, and define $f_{h}(x)=f(x-h)$, for $h \in \mathbb{R}^{n}$. Show that $\left\|f_{h}-f\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \rightarrow 0$ as $h \rightarrow 0$.
(9) For any $p>0, \int_{E}\left|f-f_{k}\right|^{p} \rightarrow 0$ as $k \rightarrow \infty$, and $\int_{E}\left|f_{k}\right|^{p} \leq M$ for all $k \in \mathbb{N}$. Show that $\int_{E}|f|^{p} \leq M$.

[^0]: ${ }^{1}$ For example, when $f=1$, the integration stands for the usual Lebesgue measure.

