2023 FALL REAL ANALYSIS (I) @ NYCU APPL. MATH. **HOMEWORK 3**

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on **November 23**, 2023.
- (1) Let f be nonnegative and measurable on E and $\omega(\alpha) := \omega_{f,E}(\alpha)$ be finite on $(0,\infty)$. Suppose that $\int_0^\infty \alpha^{p-1} \omega(\alpha) \, d\alpha$ is finite, show that $\lim_{a \to 0^+} a^p \omega(a) = \lim_{b \to \infty} b^p \omega(b) = 0.$ (2) If f(x) is a measurable function on \mathbb{R}^n . Show that F(x,y) := f(x-y) is also
- measurable on \mathbb{R}^{2n} .
- (3) Let f be measurable and *periodic* with period 1: f(x+1) = f(x) for all x. Suppose that there exists a finite number c such that

$$\int_{0}^{1} |f(a+x) - f(b+x)| \, dx \le c$$

for any a and b. Show that f is integrable in [0, 1].

(4) Let f be integrable on $(-\infty, \infty)$, and let h > 0 be fixed. Show that

$$\int_{-\infty}^{\infty} \left(\frac{1}{2h} \int_{x-h}^{x+h} f(y) \, dy \right) dx = \int_{-\infty}^{\infty} f(x) \, dx.$$

(5) Let \mathcal{R} denote the set of all rectangles in \mathbb{R}^2 that contain the origin, and with sides parallel to the coordinate axis. Consider the maximal operator associated to the family, i.e.,

$$f_{\mathcal{R}}^*(x) = \sup_{R \in \mathcal{R}} \oint_R |f(x-y)| dy.$$

Then show that

(a) $f \mapsto f_{\mathcal{R}}^*$ does not satisfy the weak type (1, 1) inequality

$$m\left(\{x: f_{\mathcal{R}}^*(x) > \alpha\}\right) \le \frac{A}{\alpha} \|f\|_{L^1(\mathbb{R}^n)},$$

for all $\alpha > 0$, for all $f \in L^1(\mathbb{R}^2)$ and for some constant A > 0.

(b) Using this, one can show that there exists $f \in L^1(\mathbb{R})$ so that for $R \in \mathcal{R}$

$$\limsup_{\text{diam}(R)\to 0} \oint_R f(x-y) \, dy = \infty,$$

for a.e. x.

- (6) Suppose that $\varphi \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \varphi(x) \, dx = 1$. Set $K_{\delta}(x) := \delta^{-n} \varphi(x/\delta)$, for $\delta > 0$. (a) Prove that $\{K_{\delta}\}_{\delta>0}$ is a family of good kernel.
 - (b) Assume in addition that φ is bounded and supported in a bounded set. Verify that $\{K_{\alpha}\}_{\alpha>0}$ is an approximation to the identity.

(7) Let $f \in L^1(\mathbb{R}^n)$ and $\{K_{\delta}\}_{\delta>0}$ be an approximation to the identity. Show that $\lim_{\delta \to 0} (f * K_{\delta})(x) = f(x),$

for all $x \in \mathcal{L}(f)$, and the limit holds for a.e. $x \in \mathbb{R}^n$.

- (8) Suppose that $\varphi \ge 0$ is an integrable function on \mathbb{R}^n , with $\int_{\mathbb{R}^n} \varphi(y) \, dx = 1$. Consider $K_{\delta}(y) := \delta^{-n} \varphi(\delta^{-1}y)$. Show that
 - (a) $\{K_{\delta}\}_{\delta>0}$ is a family of good kernels.
 - (b) Assume in addition that φ is bounded and supported in a bounded set. Prove that $\{K_{\delta}\}_{\delta>0}$ is an approximation to the identity.
- (9) Let $E \subset \mathbb{R}^n$ be a measurable set, and $p \in (0, \infty)$. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of functions in $L^p(E)$ such that $f_k(x)$ converges to f(x) for a.e. $x \in E$ as $k \to \infty$. Suppose that there exists a constant $C_0 > 0$ such that $\int_E |f_k|^p \leq C_0$, for all $k \in \mathbb{N}$. Prove that

$$\lim_{k \to \infty} \int_E ||f_k|^p - |f_k - f|^p - |f|^p| \, dx = 0.$$

(*Hint: This identity gives the missing term in the Fatou's lemma.*)